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Abstract: The outdoor performance of large area Organic Photovoltaics (OPVs) is investigated in this
work. Initially, the diurnal performance of the three modules is determined and found to be similar.
Subsequently module degradation is monitored, and it is found that the larger area module displays
a significantly greater stability as compared to the smallest area module; in fact the larger module
displays a T50% (time to fall to 50% of its original value) of 191 days whilst the smallest module
displays a T50% of 57 days. This is attributed to an increased level of water infiltration due to a larger
perimeter-to-area ratio. These findings are then used to verify a computer simulation model which
allows the model parameters, series and shunt resistances, to be calculated. It is determined that
the series resistance is not an obvious obstruction at these module sizes. The findings of this work
provide great promise for the application of OPV technology on a larger scale.

Keywords: organic photovoltaic; OPV; stability; outdoor testing; modelling of OPVs

1. Introduction

The development and laboratory testing of organic photovoltaic (OPV) devices has
been rapid over the past 20 years. However, the stability of OPV devices remains a key
issue [1], that can be assessed through a variety of indoor laboratory tests. Data acquired
through these methodologies led to the enhancement of stability of the latest generations of
OPV cells [2]: by performing indoor stability studies, the isolated effects of various stress
factors can be determined, and the physical and chemical degradation pathways involved
in the degradation process can be understood in detail. Nevertheless, to fully understand
and mitigate the degradation of OPV devices, the combined effect of several stress factors
must be studied simultaneously [3]. Outdoor monitoring provides the perfect platform to
simultaneously test the effect of various stress factors and determine their impact on the
stability of devices and modules.

In addition, outdoor monitoring allows failure modes to be verified and confirmed in
real-world conditions; these are the conditions under which the technology will, ultimately,
be deployed and OPVs must be able to tolerate them. Furthermore, outdoor monitoring
allows to observe behaviours and characteristics which may not be evident from tests
conducted in a laboratory environment. For example, the response of OPV devices to low
and fluctuating light levels can be assessed. This response cannot be determined from 1-Sun
Standard Test Conditions (STC). Silverman et al. have reported on the effect of shading
on the performance of thin film solar cells and panels [4]. These reports demonstrate
how temporary, partial cloud obstruction will lead to the formation of shunts within thin-
film devices which can lead to the rapid deterioration of the solar panel. Furthermore,
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several other characteristics of OPV devices have been discovered via outdoor testing: for
example, [5] shows that OPV devices display a slower rise in performance as a function of
irradiance when compared with conventional silicon modules [5]. Outdoor testing work
also showed that OPV devices possess a positive temperature coefficient for efficiency [6],
which is not observed in many other technologies.

Implementation of OPV technologies for power generation means that modules should
be large in scale [7] and versatile such that they can be deployed in a wide range of
scenarios, such as integration into buildings [8]. Outdoor monitoring allows large area
module tests to be conducted: this would not be possible in typical laboratory setups where
the light source cannot illuminate the entire module. To our knowledge, only a handful
of works [9–13] show the impact of scaling modules size on the OPV performance and
stability. Furthermore, advanced mathematical models are required for system design
and integration studies. These models will allow the system designers to determine
the behaviour of large modules, their electrical characteristics and their impact on the
electrical grid.

The work presented here demonstrates the application of large-area, flexible OPV
modules in outdoor conditions. The effect of module size on the outdoor degradation
of the devices is studied. The diurnal performance of the modules is assessed, and the
degradation of the modules is monitored over the course of six months. The primary
causes of degradation are determined and the effect of module size on degradation is
identified. A computer simulation model, described in [14], is employed, verified using
the experimental data and used to quantify the variation of the module parameters. To our
knowledge, this is one of the first reports describing large area module testing and provid-
ing an assessment of how module sizes impact on the performance and stability of OPVs,
and the first attempt to model OPV module degradation through a computer model.

2. Materials and Methods

Three large area monolithically connected OPV modules were bonded onto rigid poly-
carbonate substrates and mounted at an inclination angle of 35◦ and orientated southwards.
The edges of the flexible modules were sealed with pressure sensitive adhesive tape to
minimise the effect of water infiltration. The modules were elevated to avoid shadowing
effects. The modules were manufactured by InfintiyPV in Denmark and their active areas
are 360 cm2, 2928 cm2 and 5904 cm2, respectively. Low resistance cables were soldered
onto the contact points and were fed to an InfinityPV high voltage source measure unit
(HV-SMU, 16-MUX). A schematic of the setup is given in Figure 1: a fourth module with
Area 720 cm2 is shown here, but measurements from this module are not included in this
paper because the module experienced a failure within two months of operation.

The performance of the modules was monitored with current-voltage (I-V) sweeps
recorded at 10-min intervals. The irradiance levels were monitored using an Igenieur-
buro solar irradiance sensor (SiS-13TC). The weather conditions were monitored using
a Davis Vantage Pro 2 weather station. Module panel temperature was not measured,
but was calculated based on the ambient temperature, the irradiance and the Ross co-
efficient. The methods for obtaining the Ross coefficient and module temperature are
described in [5].
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Figure 1. (a) Image of mounted OPV modules positioned due South at the School of Electronic En-
gineering, Bangor University and (b)a schematic of the experimental setup. 

3. Results 
3.1. Diurnal Performance of Large Area OPVs 

Analysis of the diurnal performance allowed the response of the modules to be tested 
over a wide range of irradiances from 0 W/cm2 (at night) up to around 1100 W/cm2 (which 
is the maximum for this geographic location). In Figure 2, it is evident that the OPV starts 
operating at sunrise and reaches a maximum value of 980 W/cm2. Figure 2 illustrates the 
variation in (a) power conversion efficiency (PCE), (b) short-circuit current density (JSC), 
(c) open circuit voltage (VOC) and (d) fill factor (FF) over the course of a sunny day with 
little or no cloud obstruction (5 August 2018). The irradiance curve for this day can be seen 

Figure 1. (a) Image of mounted OPV modules positioned due South at the School of Electronic
Engineering, Bangor University and (b) a schematic of the experimental setup.

3. Results
3.1. Diurnal Performance of Large Area OPVs

Analysis of the diurnal performance allowed the response of the modules to be tested
over a wide range of irradiances from 0 W/cm2 (at night) up to around 1100 W/cm2 (which
is the maximum for this geographic location). In Figure 2, it is evident that the OPV starts
operating at sunrise and reaches a maximum value of 980 W/cm2. Figure 2 illustrates the
variation in (a) power conversion efficiency (PCE), (b) short-circuit current density (JSC),
(c) open circuit voltage (VOC) and (d) fill factor (FF) over the course of a sunny day with
little or no cloud obstruction (5 August 2018). The irradiance curve for this day can be
seen in Figure 2 e, with a peak irradiance of approximately 1000 W/m2 around 1:30 pm.
There are some fluctuations as a result of partial clouding.
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Figure 2. Diurnal variation in solar module parameters (a) PCE, (b) JSC, (c) VOC, (d) FF and
(e) irradiance variation over the course of a sunny day with peak irradiance of approximately 1 Sun
for OPVs with three differing module sizes on the 5 August 2018.

For all quantities monitored, the performance appears to be relatively stable, irrespec-
tive of module size. PCE, JSC and FF are relatively similar across all module sizes, with
the only major variations being in VOC, due to the different number of cells connected
in series within each module. It is quite surprising that the module performance is so
similar; ordinarily one would expect the series resistance of large modules to moderately
reduce the power output and energy yield, yet in this work, no discernible differences were
noted. The PCE is seen to rise steadily over the course of the day: we explain this result
with the moderately positive temperature coefficient in OPVs [6]. Slight fluctuations can
be observed in JSC and these can be attributed to minor cloud shading, that explains the
oscillations seen in the irradiance curve. The PCE displays significant enhancement in the
early morning and late in the evening, correlating strongly with the FF. This suggests that
the low irradiance levels experienced at these times result in an increase in the FF for all
modules. Overall, the different modules show relatively similar PCE and characteristics
irrespective of module sizes.

3.2. Stability of Large Area OPVs

In addition to the diurnal performances, degradation over the course of six months is
monitored by tracking the PCE at a specific irradiance of 300 ± 10 Wm−2. This irradiance is
selected to maximise the available data during both summer and winter months. Figure 3a
illustrates the degradation curves for the modules between August 2018 and December
2018. The raw data is fitted using trend lines for clarity and to facililate the comparison
between modules. The fastest rate of degradation is observed for the smallest area module,
which began degrading from the outset of the testing period. The module with an area of
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5904 cm2 is associated with a T50% (the time taken to reach 50% of the initial efficiency)
of approximately five months, whereas the module with an area of 360 cm2 reaches T50%
in only two months. On inspection, degradation was primarily due to water infiltration
at the edges of the module, resulting in degradation of both the silver electrode grid and
the solder bonds. Water and oxygen could then further infiltrate, ultimately leading to
degradation of the OPV stack.
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irradiance of 300 ± 10 Wm−2; fitted degradation trend lines shown, and (b) variation in time to reach
50% of the original efficiency (T50% lifetime) as a function of the Perimeter-to-area ratio (P/A) ratio.

The faster rate of degradation of the smaller modules can probably be attributed to
the varying perimeter to active area ratio (P/A). From our data, the OPV module appears
to degrade at the edges by delamination first of all, leading to water and oxygen can
ingress into the OPV module. This is likely to be greater than any ingress from the top and
bottom surfaces as these are both coated in a barrier layer. Further studies are required to
confirm this, but our visible inspection during these tests suggest this is likely. The P/A
signifies how much of the active area can be reached by water infiltration through the
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perimeter of the module. Larger area modules possess a smaller P/A when compared
to with smaller area modules. For the largest area module, the P/A is 0.91 cm−1 whilst
for the smallest area module, the P/A is 2.2 cm−1. As water infiltration occurs along the
perimeter, this phenomenon will lead to a faster rate of water infiltration for the smaller
area devices. Figure 3b illustrates the variation in T50 lifetime plotted as a function of P/A
for each module size. From this plot it is evident that larger area modules display higher
T50% lifetimes as a result of a smaller P/A, most likely due to less exposure to water and
oxygen infiltration.

Figure 4 shows images of the modules before and after degradation. Figure 4a il-
lustrates the colour of the centre strip of the active material at the beginning of the test
period and Figure 4b–e illustrate the state of each module at the end of the test period on
15/12/2018 (b = 5904 cm2, c = 2928 cm2, d = 720 cm2 and e = 360 cm2). The colour change in
the active material of the modules can clearly be seen when comparing Figures 4a and 4b–e.
It was apparent that the edges of the OPV panel degraded initially. In the case of the large
module, after around one month, the edges became frayed indicating a loss of adhesion
at the edges of the module. The delamination became worse as time progressed. For the
large module, degradation of the active layer occurred at delamination points, where
photobleaching was evident. The colour gradation between Figure 4b–e can supports the
hypothesis stated above, i.e., that there is greater degradation of the active material for
the smaller area modules than for the larger area modules. Each image shows the cells
at the centre of each module. The edges of the smallest module can also be observed in
Figure 4e and the effect of contact tarnishing can be seen (illustrated by the arrow), further
demonstrating the infiltration of water into the module through solder joints and contacts.
With improved encapsulation and edge sealants, this could be dramatically reduced.

3.3. Computer Simulation
3.3.1. Model Description

The use of computer models is essential in power system design and in integration
studies. Therefore, the acquired data was used to build a computer module that allows
representing the OPV module characteristics measured in real world tests, and to forecast
the effect of degradation on module performance. The diode approximation-based model
is based upon earlier work conducted in [14] where a good match between the computer
model and the experimental data from small modules was shown. The computer model is
therefore adopted in this work to quantify the performance and degradation of large area
OPV modules.

The equivalent circuit of the OPV modules is shown in Figure 5: it includes a current
source Iph, a diode ID, a shunt resistor Rsh and a series resistor Rs. The PV output current
is represented by Ipv. The equations that describe the model are as follows [14,15]:

Iph =

[
Isc +

IscRs

Rsh
+ ki

(
Tc − Tre f

) S
Sre f

]
(1)

ID = Io

[(
e

q(Vpv+Ipv Rs)
nkNsTc

)
− 1
]

(2)

Io =
Isc

e
qVoc

nkNsTc − 1
(3)

Ish =
Vpv + IpvRs

Rsh
(4)

Ipv = Iph − ID − Ish

Ipv = Isc + ki

(
Tc − Tre f

) S
Sre f

− Io

[(
e

q(Vpv+Ipv Rs)
nkNsTc

)
− 1
]
−

Vpv +
(

Ipv − Isc
)

Rs

Rsh
(5)
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where Iph is the PV material generated current; Isc is the short circuit current at the reference
temperature; ki is the temperature coefficient of the photon current; Tc is the actual PV
module temperature; Tre f is the reference PV module temperature; S is the actual PV
module irradiance; Sre f is the reference PV module irradiance; ID is the diode current; Io is
the reverse saturation current; q is the electron charge; Voc is the open circuit voltage; Vpv is
the terminal voltage; n is the junction ideality factor; k is the Boltzmann constant; Ns is the
number of cells in series per module; Ish is the current flowing through the shunt resistance.
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Figure 5. Equivalent circuit of the PV cell used to validate the experimental results.

The model shown in Figure 5 was built in MATLAB/Simulink. The model is build us-
ing parameters that can be adjusted in order to represent various modules and technologies.
Screenshots of the computer model are shown in [14].

3.3.2. Comparison between Measurements and Computer Simulation Result

The outdoor measurement results of 5904 cm2, 2928 cm2 and 360 cm2 modules are
compared with the simulation results obtained from the computer model described in
Section 3.3.1. Figures 6–8 show the I-V and P-V curves of each module. For all figures, the
solar irradiance is set as 300 Wm−2: (a) and (b) indicate the results referring to August 2018,
(c) and (d) refer to results in October or November 2018. These two days were chosen
because they illustrate well the effect of degradation across several months. The irradiance
levels on both days were similar, allowing for like for like comparison. The degradation of
the modules is modelled by considering the variation in the values of the series resistance
and parallel resistance which were obtained as fitting parameters for the model. Currently,
the values for these parameters are calculated from the measurement results. When more
test data becomes available, it will be possible to forecast degradation for various OPV
technologies by adjusting the series resistance and parallel resistance.
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The open circuit voltage decreases from approximately 300 V to 140 V and 12 V with
smaller module sizes (from 5904 cm2 to 2928 cm2 and 360 cm2), as shown in Figures 6–8.
The simulated results match the measurements quite well for all three modules in August,
but the difference between experimental results and model are evident for the October and
November dataset. In Figure 6, the maximum power error between simulation and test
results is 2.66% on 24 August but increases to 7.93% on 29 October (5904 cm2 module); in
Figure 7, the error increases from 0.22% to 18.57% from 3 August to 29 October (2928 cm2

module); in Figure 8, the errors are 1.36% on 28 August and 5.80% on 8 November (360 cm2

module). All measurement result curves show oscillations for data collected in October or
November, which means the modules degraded. However, the 5904 cm2 module I-V and
P-V curves are still quite stable when compared to the other two modules, hence it is the
least affected.

Figure 9 compares the maximum power errors between simulation results and mea-
surements. It is evident that the error between simulation/experimental of the three
modules are all below 10% in August, but the 2928 cm2 and 360 cm2 module errors increase
sharply from late October. The figure also shows that the 5904 cm2 error fluctuates the least
while the 360 cm2 fluctuates the most, which means a larger sized module can generate
more stable results.
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4. Conclusions

Large area OPV modules with areas 5904 cm2, 2928 cm2 and 360 cm2 have been tested
in outdoor conditions. During the outdoor test, the I-V characteristics and the irradiance
have been monitored. A significant variation in power output has been observed in OPVs
with their performance drastically affected by the irradiance.

In addition, the degradation of the OPV modules was monitored via I-V scanning in
outdoor conditions over the course of five months. Larger area modules were found to
be more stable in outdoor conditions. For example, the largest tested module had a T50%
lifetime of 191 days whilst the smallest area module has a T50% lifetime of only 57 days.
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This extension in the lifetime for larger area modules has been attributed to the slower rate
of water and oxygen infiltration due to a smaller P/A ratio.

A computer model has been used to replicate the behaviour observed above: the tests
carried out above shows that the computer model allows quantifying OPV module degra-
dation by means of specific parameters and allows representing the degradation of these
cells within a computer simulation.
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