

Tree species richness increases spatial variation but not overall wood decomposition

Donghao Wu, Donghao; Seibold, Sebastian; Pietsch, Katherina; Ellwood, M. D. Farnon; Yu, Mingjian

Soil Biology and Biochemistry

Published: 04/06/2023

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Donghao Wu, D., Seibold, S., Pietsch, K., Ellwood, M. D. F., & Yu, M. (2023). Tree species richness increases spatial variation but not overall wood decomposition. *Soil Biology and* Biochemistry.

Hawliau Cyffredinol / General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal ?

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

1	Title:	Tree s	species	richness	increases	spatial	variation	but not	overall w	vood
---	--------	--------	---------	----------	-----------	---------	-----------	---------	-----------	------

- 2 decomposition
- 3 Authors: Donghao Wu^{1,2}, Sebastian Seibold³, Katherina A. Pietsch⁴, M. D. Farnon
- 4 Ellwood⁵, Mingjian Yu^{1*}
- ⁵ ¹College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- 6 ²School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
- ⁷ ³Forest Zoology, Technische Universität Dresden, Pienner Str. 7, 01737 Tharandt,
- 8 *Germany*
- 9 ⁴Department of Systematic Botany and Biodiversity, Leipzig University, Johannisallee
- 10 21-23, 04103 Leipzig, Germany
- ⁵School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2DG,
- 12 United Kingdom
- 13 **Correspondence; Email address: <u>fishmj@zju.edu.cn</u>*
- 14

15 Abstract

16	Empirical evidence for the positive relationship between tree species richness and
17	wood decomposition is weak, despite the greater numbers of decomposers in diverse
18	stands. Tree species identity affects decomposition rates strongly by altering soil
19	communities and micro-environments. It is therefore likely that tree species richness
20	influences spatial variation rather than the mean rate of decomposition. We used a
21	neighbourhood approach to test this hypothesis by quantifying decomposition rates
22	and decomposer activities within deadwood, whilst measuring the surrounding micro-
23	environments.
24	Using the BEF-China experimental platform, we placed three fine branches from
25	seven tree species across richness gradients for one and two years. As expected, plot
26	species richness increased the spatial variation of wood decomposition of three
27	species but decreased the mean rate of wood decomposition of two species.
28	Neighbourhood trees altered wood decomposition in two ways. First, increasing
29	amounts of leaf tannins reduced termite activities and the number of fungal
30	fruitbodies. Second, higher species richness increased tree volumes and thus cooled
31	the understory, which reduced the occurrence and feeding intensity of ectothermic
32	termites. Neighbourhood species richness showed positive effects on decomposer
33	activities (i.e. termite occurrence, fruitbody number and mycelium cover) after two
34	years, probably by weakening resource limitation of deadwood biomass and
35	increasing the stages of decay. Neighbourhood metrics had comparable (after 1 year)
36	and even stronger effects (after 2 years) on decomposer activities than wood traits.
37	Our study reveals that tree species richness promotes spatial variation in wood

38	decomposition rates by enhancing environmental heterogeneity. Our results explain
39	how young regenerating species-rich forests, where termites are the dominant
40	decomposers, can maintain deadwood stocks and decomposer activities over
41	relatively longer time spans.
42	Keywords: BEF-China, wood decomposition, tannins, temperature, termites, fungi

1. Introduction

45	Decomposition is central to ecosystem functioning, with $\sim 90\%$ of global
46	terrestrial plant production entering the dead organic matter pool (Cebrian, 1999).
47	One of the main drivers of decomposition is the diversity of living trees, which
48	represents the main source of litter in forests (Cardinale et al., 2011). Tree species
49	diversity is linked to decomposition rates because distinct litter traits among tree
50	species attract decomposers with specific needs, leading to complementary resource
51	use and facilitation among decomposers (Gessner et al., 2010; Austin et al., 2014).
52	However, multi-site experiments find weak and even neutral effects of tree species
53	richness on litter decomposition rates (Desie et al., 2023), especially for deadwood
54	(Eichenberg et al., 2017; Joly et al., 2017; Pietsch et al., 2019).
55	As opposed to tree species richness, tree species identity has been shown to exert
56	strong effects on decomposition rates (Vivanco and Austin, 2008; Desie et al., 2023),
57	for example the 'home-field advantage' describes the rapid decomposition of litter in
58	the vicinity of conspecifics (Purahong et al., 2019; Fanin et al., 2021). This effect is
59	due to the plant-soil feedbacks that shape distinct soil communities and micro-
60	environments under different tree species. For example, the dissimilarities of soil
61	fungal communities (viz. saprotrophs, plant pathogens, and ectomycorrhizal fungi)
62	increased significantly with woody plant phylogenetic distance in five mountain
63	forests of eastern China (Yang et al., 2019). Moreover, more recalcitrant litters (Joly et
64	al., 2017) and stronger shading (i.e. cooling) effects (Gottschall et al., 2019) of certain
65	tree species could decelerate decomposition rates.
<u> </u>	Locioply, two energies richness is more litely then two energies identity to

Logically, tree species richness is more likely than tree species identity to

67	diversify decomposition rates by creating micro-sites of distinct environmental
68	conditions that alter the decomposing activities of soil communities. Indeed, the
69	spatial variation of wood decomposition rates at local scales are considerable, with
70	climate explaining only 28% of the variation in decomposition in one cross-site study
71	(Bradford et al., 2014). In the meantime, high within-site replications and
72	measurements of regulatory factors at the same spatial grain have been advocated to
73	capture the spatial variation in decomposition rates (Bradford et al., 2016). We
74	therefore set out to investigate how tree species richness causes spatial variation in
75	wood decomposition rates, using a neighbourhood approach for each within-site
76	replicate, i.e. measuring decomposer activities within and micro-environments around
77	deadwood.
78	Termites and fungi are the major decomposers of deadwood in subtropical and
79	tropical forests (Bradford et al., 2014; Ulyshen, 2016), meaning that rates of
80	decomposition should be positively correlated with termite occurrence (Wu et al.,
81	2020) and fungal fruitbody production (Raudaskoski and Salonen, 1984; Kües and
82	Liu, 2000). Neighbourhood trees could affect termites' and fungal activities by
83	modifying the understory environment, e.g. shedding leaves with distinct physico-
84	chemical properties, and creating differing levels of shade depending on the size and
85	species identity of trees (Wu et al., 2020, Wu et al., 2021b). Therefore, quantifying
86	functional trait means, total tree volume and species richness of neighbourhood trees
87	could better predict decomposer activities and decomposition rates.
88	If stand-level tree species richness increases the mean rates of wood
89	decomposition, we should observe positive effects of neighbourhood (i.e. 3×3 tree 5

90	grid surrounding wood samples) species richness on decomposer activities which in
91	turn promote wood decomposition. Moreover, if stand-level tree species richness
92	increases the spatial variation of wood decomposition rates, we should observe
93	significant effects of the environmental modifications by neighbourhood trees on
94	decomposer activities and decomposition rates. Our experiments were based on the
95	observation that wood traits and species identity substantially alter decomposition rate
96	(van Geffen et al., 2010; Hu et al., 2018) and its dominant drivers (Wu et al., 2021a).
97	By using fine branches of seven tree species as substrates, our experimental design
98	allowed us to assess the relative contribution of neighbourhood metrics on
99	decomposer activities and wood decomposition rates by comparing the standardised
100	effect size with that of wood traits.
101	2. Material and methods
102	2.1 Study site and plot species richness

103 The study was conducted in the BEF-China experimental platform in Jiangxi

104 Province, China (29.08°-29.11°N, 117.90°-117.93°E). The local climate is

subtropical, with mean annual temperature and precipitation of 16.7°C and 1800 mm.

106 A large-scale tree biodiversity experiment was initiated in 2009-2010 at two study

sites (A and B) of approximately 20 ha each. Each plot is 25.8 m × 25.8 m in size and

planted with 400 individual trees arranged on rectangular 20×20 grids with 1.29 m

109 spacing between rows and columns. Plots were established adjacent to each other,

110 forming a continuous cover across the entire site. Undesired herbs and woody species

111 were removed from all plots annually. The composition of tree species for each

112 richness gradient has been introduced in detail (Bruelheide et al., 2014). We selected

113	134 plots that spanned the study sites (Fig. S1), including 54 monocultures, 42 two-
114	species mixtures, 21 four-species mixtures, 11 eight-species mixtures, four 16-species
115	mixtures and two 24-species mixture plots. Given that decomposition experiments
116	were conducted in the central grid of 6×6 trees, we defined plot species richness as
117	the number of tree species within the central grid. Plot species richness ranged from 1
118	to 15. Number of trees per plot ranged from 108 to 400. Mean tree height (basal
119	diameter) ranged from 0.12 m (0.27 cm) to 8.09 m (7.92 cm). Terrain slope ranged
120	from 14.37° to 43.85°.
121	2.2 Decomposition experiment
122	Seven tree species were chosen for the decomposition experiments: Alniphyllum
123	fortunei, Myrica rubra, Schima superba, Quercus serrata, Cunninghamia lanceolata,
124	Platycarya strobilacea, and Castanopsis eyrei. These species vary in wood density,
125	C:N ratios, tannin content and lignin content (Table S1) and are widespread in
126	southeast China (Wu et al., 2021b). Lignin content (%) was measured using near-
127	infrared reflectance spectroscopy (Tsuchikawa and Kobori, 2015); tannin content
128	(mostly condensed tannin; mg/g) by the radial diffusion method (Hagerman, 1988);
129	C:N ratio by a CHNS-932 elemental analyzer (LECO Corporation, St. Joseph, MI,
130	USA).
131	Healthy branches (length = 20.3 ± 0.6 cm; diameter = 1.5 ± 0.3 cm) were
132	collected from living trees around the study sites in December 2014. Bark traits are
133	different from wood tissue (Li et al., 2021) and pose distinct effects on wood
134	decomposition rates across tree species (Dossa et al., 2018; Tuo et al., 2021).
135	Therefore, we removed bark to focus on wood decomposition. Meanwhile, cut 7
	'

136	surfaces on both ends of the samples were sealed with silicone to ensure that
137	decomposers could only enter samples radially. This is because decomposers such as
138	termites entering cut ends might show no sign on the radial surface and therefore the
139	level of decomposer activities would be difficult to assess (see next section for
140	details). 35 samples per species were dried to constant weight for $>$ 48 h at 60 °C, and
141	dry matter content was averaged for each species. The initial dry mass of field
142	samples was estimated by multiplying fresh mass with species-specific dry matter
143	content. Sample volumes were calculated as the cylinder, with diameter averaged
144	from two measurements at both ends of the sample. Wood density was calculated as
145	initial dry mass divided by sample volume.
146	Each sample was enclosed in a 5 mm mesh bag. Samples of seven species were
147	joined together as a bundle using cable ties. Six bundles were placed at the base of six
148	trees along the diagonal in each plot's central grid of 6×6 trees (Fig. S2). Having
149	placed 5628 samples (7 species \times 6 bundles \times 134 plots) in January 2015, we
150	retrieved half after one year $(1^{st}, 3^{rd} \text{ and } 5^{th} \text{ bundle per plot})$ and half after two years
151	(2 nd , 4 th and 6 th bundle per plot). After removing fungal fruitbodies and soil
152	transported by termites, samples were dried at 60 $^\circ$ C until we observed no further loss
153	of weight. Wood mass loss was calculated as the ratio of dry mass loss to the initial
154	dry mass.

156 Previous studies confirmed that termites are the dominant invertebrate

157 decomposers of deadwood in the BEF-China experimental platform (Eichenberg et

al., 2017). We recorded the occurrence (0/1) of termites within samples as the first

159	measure of termite activities. In addition, the feeding intensity of termites was also
160	documented to estimate the level of termite-mediated decomposition. Termite feeding
161	was evidenced by soil sheeting and bore holes on the surface of deadwood as well as
162	soil and complex tunnels and galleries inside deadwood (Fig. S3). To determine
163	termite feeding intensity, one person visually inspected the surface of each sample for
164	boreholes (Liu et al., 2015; Cheesman et al., 2018), and then rated them using six
165	predefined area percentage classes (estimated as $0, < 5, < 10, < 25, < 50, > 50$), with
166	the respective levels $(n = 0, 1, 2, 3, 4, 5)$ used in the analysis.
167	Wood-decomposing fungi exploit resources through vegetative growth, i.e.
168	mycelium (Baldrian, 2017). Before fruiting for spore dispersal, mycelium must reach
169	a critical biomass which serves fruitbody production (Raudaskoski and Salonen,
170	1984; Kües and Liu, 2000). Therefore, we used mycelium cover and fruitbody
171	number as the indicator of fungal-mediated decomposition. Mycelium cover on the
172	wood surface was visually inspected and rated into six levels as with termite feeding
173	intensity. The number of fruitbodies with clear boundaries was visually counted. In
174	cases where fruitbodies formed conglomerations (e.g. Trametes), we treated each
175	basidiocarp as a separate fruitbody because it could produce and disperse its own
176	spores.
177	2.4 Neighbourhood metrics

The neighbourhood trees were defined as the grid of 3×3 trees surrounding the bundle of wood samples (Fig. S2a). Neighbourhood species richness ranged from 0 to 6 (Fig. S4a). Death of some trees meant that there were no neighbourhood trees for some bundles and so the analyses for neighbourhood effects excluded these samples.

182	We calculated the abundance-weighted mean of three plant traits (measured on fresh
183	material) at the neighbourhood level, including wood density (g/cm ³), leaf nitrogen
184	content (mg/g) and leaf tannin content (mg/g). These traits could impact the
185	decomposing activities of termites and fungi mechanically through wood density (Liu
186	et al., 2015; Wu et al., 2020), nutritionally through leaf nitrogen content (Allison et
187	al., 2009; Mullins et al., 2021) and physiologically through leaf tannin content
188	(Scalbert, 1991; Ismayati et al., 2018). We therefore used neighbourhood mean trait
189	values to indicate the overall palatability of fallen branches and leaf-litter. Species-
190	level trait data was accessed from existing datasets (Eichenberg et al., 2016a, 2016b)
191	to calculate the neighbourhood means (Fig. S5).
192	Individual tree volume proxies (dm ³) were calculated as $H \times \pi(BR)^2$ in which H
193	was height and BR was basal radius at the ground level. These volume proxies were
194	transformed to more accurate tree volume estimates by multiplying the proxies with a
195	size-dependent correction factor estimated and applied by a previous study (Huang et
196	al., 2018). Individual tree data (H and BR) recorded in 2014 were used to estimate
197	total tree volumes at neighbourhood (Fig. S4b) and plot levels. To quantify the
198	cooling effects of total tree volume, we monitored air temperature at 30-minute
199	intervals during the first year (2014-2015) with HOBO U23 Pro V2 data loggers
200	(Onset Computer Corporation, Bourne, MA, USA). Aluminum panels placed ca. 5 cm
201	above the loggers protected them from direct sunlight, rain, and wind turbulence. One
202	logger per plot was placed between the 11th and 12th row and column of trees (Fig.
203	S2). Mean annual temperatures were calculated and analyzed for relationships with
204	total tree volume.

2.5 Statistical analysis

206	All statistical analyses were conducted in R version 4.0.5 (R Core Team, 2021).
207	We conducted analyses at two spatial scales. At the plot scale, we fitted simple linear
208	regression models to test if plot species richness increased the mean or spatial
209	variation of wood mass loss for each of seven tree species. The spatial variation was
210	estimated as the coefficient of variation (CV = standard deviation / mean \times 100%) of
211	wood mass loss, which could control for the vast difference in wood mass loss among
212	species and across plots. Furthermore, we tested if tree species richness increased total
213	tree volume (Huang et al., 2018), which in turn can reduce air temperature (de Frenne
214	et al., 2019). This analysis was also applied at the neighbourhood scale.
215	At the neighbourhood scale, we fitted linear mixed models with R package 'lme4'
216	(Bates et al., 2015) to test if neighbourhood species richness increased wood mass
217	loss for each of the seven tree species, with plot identity as random effect. We then
218	fitted bivariate generalised linear mixed models for wood mass loss (Gaussian),
219	termite occurrence (Binomial) and fruitbody number (Poisson) to test if they were
220	significantly related to five wood traits (diameter/density/C:N ratio/tannin/lignin) and
221	five neighbourhood metrics (richness.n/volume.n/density.n/nitrogen.n/tannin.n). The
222	ten predictors were scaled (mean = 0; standard deviation = 1) so that their parameter
223	estimates were comparable. Species identity of wood samples and plot identity were
224	treated as random effects. We fitted cumulative link mixed models with R package
225	'ordinal' (Christensen, 2022) for termite feeding intensity and fungal mycelium cover
226	since they were ordinal data. The highest log-likelihood was reached when the
227	threshold structure was set as 'flexible', and the link function as 'cloglog' and 'logit' 11

228	for 1-year and 2-year models, respectively. We also fitted mixed models to test if
229	environmental predictors at coarser scale (study site/air temperature/plot species
230	richness) significantly impacted wood mass loss and decomposer activities, by
231	treating plot identity and species identity as random effects.
232	Finally, we fitted piecewise structural equation models with R package
233	'piecewiseSEM' (Lefcheck, 2016) to test the potential paths from five wood traits and
234	five neighbourhood metrics, via termite occurrence and fruitbody number, to wood
235	mass loss. Previous studies have confirmed that termite feeding could alter fungal
236	activities (Wu et al., 2020; Bradford et al., 2021), and we thus tested if termite
237	occurrence significantly impacted fruitbody number. Instead of assuming an a priori
238	full path model, we first ran a backward stepwise selection to remove variables of
239	little importance. R package 'ImerTest' (Kuznetsova et al., 2017) and
240	'StatisticalModels' (Newbold, 2021) were used for variable selection of gaussian and
241	non-gaussian mixed models, respectively. The remaining variables for each response
242	were the input for <i>piecewiseSEM</i> analyses. Apart from the causal paths, we added the
243	correlative path between neighbourhood species richness and total tree volume (Kunz
244	et al., 2019). We used Shipley's d-separation test to evaluate model fit through
245	Fisher's C statistic and χ^2 -based <i>p</i> -value (Shipley, 2013). We refined the initial model
246	by dropping non-significant paths or including missing paths that were significant,
247	until the decrease in AICc (i.e. Δ AICc) was less than 2 units. See Table S2 for model
248	selection and see Table S3-S4 for model summaries.

3. Results

250 We successfully retrieved complete samples from 134 plots after one year, and

251	from 126 plots after two years. Mean wood mass loss across the seven species was
252	46.6% \pm 23.8% after one year, and 71.7% \pm 25.0% after two years.
253	3.1 Does plot species richness increase the mean or spatial variation of wood
254	mass loss?
255	Based on simple linear regressions (Fig. 1), we found negative effects of plot
256	species richness on mean wood mass loss of two species (A. fortunei and Q. serrata),
257	and positive effects on the coefficient of variation (CV%) of three species (A. fortunei,
258	<i>Q. serrata</i> and <i>S. superba</i>). Results for the other species were insignificant ($p \ge 0.1$).
259	Mixed models pooling all seven species (Table 1 and Table S5) showed that plot
260	species richness had insignificant effects on wood mass loss and decomposer
261	activities.
262	3.2 Does neighbourhood species richness drive wood mass loss via decomposer
263	activities?
264	Bivariate linear mixed models at the sample-level (Fig. 2) showed that
265	neighbourhood species richness had negative relationships with wood mass loss of
266	three species (A. fortunei, C. eyrei and S. superba). Results for the other species were
267	insignificant ($p \ge 0.1$). Similar results were found after pooling seven tree species
268	(Fig. 3), namely that neighbourhood species richness significantly ($p \le 0.05$) and
269	marginally significantly $(0.05 decreased wood mass loss after one year and$
270	two years, respectively.
271	Unexpectedly, neighbourhood species richness did not increase decomposer
272	activities after one year but after two years (Fig. 3 and Fig. S6). Bivariate models
273	showed that after one year of decomposition, there were significant negative effects of 13

274	neighbourhood species richness on fruitbody number but not on other metrics of
275	decomposer activities. After two years of decomposition, we found positive effects of
276	neighbourhood species richness on termite occurrence ($p = 0.010$) and fungal
277	mycelium cover ($p = 0.069$) and found no significant effects on other metrics of
278	decomposer activities. By incorporating all causal paths, piecewiseSEM models
279	further showed that neighbourhood species richness had direct positive effects on
280	fruitbody number after two years, which was neutralized by the indirect negative
281	effects through increasing termite occurrence and the negative interactions between
282	termites and fungi (Fig. 4b).
283	Bivariate linear mixed models (Table 2) showed that termites predominantly
284	drove wood mass loss. After one year of decomposition, both termite occurrence and
285	termite feeding intensity significantly increased wood mass loss, while fungal effects
286	were insignificant. After two years of decomposition, termite feeding intensity
287	increased wood mass loss significantly whereas termite occurrence had no significant
288	effects. In contrast, both fungal fruitbody number and mycelium cover showed
289	significant negative relationships with wood mass loss.
290	3.3 How do neighbourhood metrics alter decomposer activities and wood mass
291	loss?
292	Besides species richness, three neighbourhood metrics showed impacts on
293	decomposer activities and wood mass loss, including total tree volume ('Volume.n'),
294	mean leaf tannin content ('Tannin.n') and mean wood density ('Density.n'). Although
295	wood traits exerted stronger effects on wood mass loss, neighbourhood metrics
296	exerted comparable and even stronger effects on decomposer activities (Fig. 3 and 14

297 Fig. S6).

298	Bivariate mixed models showed that Volume.n negatively affected termite
299	occurrence after one year ($p = 0.054$) but positively affected fruitbody number after
300	two years ($p < 0.001$; Fig. 3). The <i>piecewiseSEM</i> analyses showed that Volume.n
301	indirectly decelerated wood mass loss after one year by decreasing termite occurrence
302	(Fig. 4a). Similarly, Volume.n showed an indirect negative relationship with wood
303	mass loss after two years, which was mediated by the increase of fruitbody number
304	and its negative correlation with wood mass loss (Fig. 4b). Further analyses revealed
305	that neighbourhood species richness increased Volume.n, which in turn decreased air
306	temperature (Fig. 5 and Table S6). Mixed models at the sample-level (Table 1 and
307	Table S5) showed that temperature increased termite occurrence after one year ($p =$
308	0.006), and increased termite feeding intensity ($p = 0.063$) and wood mass loss after
309	two years ($p = 0.002$). In contrast, temperature showed negative relationships with
310	fungal mycelium cover after two years ($p = 0.003$).
311	Bivariate mixed models (Fig. 3) showed that Tannin.n had negative effects on
312	wood mass loss ($p = 0.070$), termite feeding intensity ($p = 0.066$; Fig. S6) and
313	fruitbody number ($p < 0.001$) after one year, and had significantly negative effects on
314	termite occurrence and fruitbody number after two years. The <i>piecewiseSEM</i> analyses
315	did not report direct or indirect effects of Tannin.n on wood mass loss but confirmed
316	that Tannin.n negatively impacted fruitbody number after one year (Fig. 4a), and
317	termite occurrence and fruitbody number after two years (Fig. 4b).
318	Bivariate mixed models (Fig. 3) showed that Density.n had significant negative
010	relationshing with wood maga loss often two years. Density a class had significant

319 relationships with wood mass loss after two years. Density.n also had significant

320	positive relationships with fruitbody number at both time-steps, which was supported
321	by the <i>piecewiseSEM</i> analyses (Fig. 4). Accordingly, we found that deadwood density
322	decreased wood mass loss at both time-steps (Fig. 3). Meanwhile, deadwood density
323	showed significant positive relationships with fruitbody number and mycelium cover
324	at both time-steps, except that fruitbody number after two years decreased with higher
325	deadwood density (Fig. 3f). Although we did not find significant relationships
326	between Density.n and termite activitiy, we found significant negative effects of
327	deadwood density on termite feeding intensity (Fig. S6a).
328	4. Discussion
329	4.1 Tree species richness decreases wood decomposition rate
330	Theoretically, increasing tree species richness should strengthen complementary
330 331	Theoretically, increasing tree species richness should strengthen complementary resource use and facilitation among different decomposers, thus increase
331	resource use and facilitation among different decomposers, thus increase
331 332 333	resource use and facilitation among different decomposers, thus increase decomposition rate (Gessner et al., 2010). On the contrary, we observed negative
331 332 333	resource use and facilitation among different decomposers, thus increase decomposition rate (Gessner et al., 2010). On the contrary, we observed negative effects of tree species richness on wood mass loss of four tree species at the plot scale
331 332 333 334	resource use and facilitation among different decomposers, thus increase decomposition rate (Gessner et al., 2010). On the contrary, we observed negative effects of tree species richness on wood mass loss of four tree species at the plot scale and at the neighbourhood scale. Greater wood volume production and crown
331 332 333 334 335	resource use and facilitation among different decomposers, thus increase decomposition rate (Gessner et al., 2010). On the contrary, we observed negative effects of tree species richness on wood mass loss of four tree species at the plot scale and at the neighbourhood scale. Greater wood volume production and crown complementarity in the species-rich neighbourhood (Kunz et al., 2019) exert stronger

- effects of total tree volume and positive effects of mean air temperature on termite
- 340 activities, meaning that the 'Richness-Volume-Temperature' pathway could be an
- 341 important mechanism reducing wood decomposition rates in young regenerating
- 342 forests. Furthermore, increasing tree volume reduced maximum temperature but

343	increased minimum temperature (Fig. S9), which in turn reduced termite feeding
344	activity (Table S7). While reduction in maximum temperature could depress termite
345	activities due to their ectothermic and metabolic-driven nature, we posit that
346	increasing minimum temperature might release the overwintering termites
347	(Reticulitermes for most specimens discovered), which would have dwelled in and fed
348	on branch samples at low temperature (Hu and Song, 2014). Our study therefore
349	suggests that in young regenerating species-rich forests, where termites are dominant
350	decomposers, deadwood accumulation is greater (Liu et al., 2018) not only because of
351	biomass production (Huang et al., 2018), but also because of slower wood
352	decomposition.
353	Other mechanisms which are not covered in this study could contribute to the
354	negative effects of tree species richness on termite activities and wood decomposition.
355	First, the top-down control of decomposers by predators directly affects
356	decomposition rates (Gessner et al., 2010). Ants are widespread and efficient
357	predators of termites (Tuma et al., 2020). Previous studies in the BEF-China
358	experimental platform found that leaf-litter ant species richness increased with plot
359	tree species richness (Skarbek et al., 2020). Predatory ant species richness increased
360	with canopy density, lowering termite abundance (Wu et al., 2021b). Second, the
361	amount of surrounding deadwood could also play a role. We found that termite
362	occurrence (Fig. 3) and feeding intensity (Fig. S6) increased with wood diameter,
363	indicating that larger pieces of wood attract more termites than smaller pieces.
364	Termites would therefore be less likely to discover small pieces of deadwood when
365	more large-sized wood was being shed from neighbouring trees. Meanwhile, we 17

found that termites disliked deadwood of high density, C:N ratio and lignin content
(Fig. 3 and Fig. S6). The amount and palatability of deadwood will therefore also
affect decomposition rates.

4.2 Tree species richness increases the spatial variation of decomposition 369 Multiple studies have documented significant effects of tree species identity on 370 decomposition rates (Vivanco and Austin, 2008; Gottschall et al., 2019; Peng et al., 371 2022; Desie et al., 2023). Our study has aligned tree species identity effects at the 372 fine-scale with the spatial variation caused by tree species richness at the stand-level, 373 which is often overlooked when only focusing on the relationship between tree 374 species richness and the mean rate of wood decomposition (Eichenberg et al., 2017; 375 Joly et al., 2017; Pietsch et al., 2019). In accordance with our hypothesis, three of 376 seven tree species showed higher spatial variation of wood decomposition rates with 377 increasing tree species richness at the plot scale. This indicates that environmental 378 variation at the neighbourhood scale significantly alters decomposer activities and 379 thus wood decomposition rates. To more accurately predict fine-scale wood 380 decomposition rate in forests, the spatial variation in properties of neighbourhood 381 trees, e.g. canopy gap and shading (Griffiths et al., 2021), should be fully considered. 382 In addition to the shading effects of neighbourhood trees, plant functional traits 383 such as leaf tannin content and wood density could also impact decomposer activities 384 and wood decomposition rates. First, tannins are detrimental for microbes because 385 they inhibit extracellular enzymes, depriving the microbes of substrates for growth, 386 387 and directly affecting metabolism (Scalbert, 1991). As expected, we found that leaf tannin content reduced fruitbody production, and even decreased termite activities, 388

389	probably by inactivating gut microbes and digestive enzymes (Ismayati et al., 2018).
390	Although fruitbody production was not positively related with wood decomposition
391	rates, tannins might influence fungal-mediated wood decomposition via unmeasured
392	pathways, such as decelerating enzyme activities and biomass accumulation
393	(Rubenstein et al., 2017). Second, wood density is one of the key traits that
394	mechanically hinders termites from efficient consumption (Liu et al., 2015; Cosme Jr
395	et al., 2018). Accordingly, we observed negative effects of deadwood density on
396	termite feeding intensity. Therefore, neighbourhood trees with higher mean wood
397	density could repel termites and thus indirectly lower wood decomposition rates (Fig.
398	3a, 3d). Unexpectedly, mean leaf nitrogen content was unrelated with decomposer
399	activities or wood decomposition rates, even though deadwood C:N ratios negatively
400	affected termite activities and fruitbody production. Considering the high (> 50%) and
401	species-specific resorption rate of limiting nutrients (e.g. N) from senesced leaves,
402	nutrient traits of fresh leaves might not accurately represent those of litters (Vergutz et
403	al., 2012). Therefore, future studies should consider measuring nutrient traits of
404	senesced leaves to better predict decomposer activities and wood decomposition at the
405	neighbourhood scale.

406 **4.3 Tree species richness maintains decomposer activities over time**

407 In addition to the richness-decomposition relationship, our study also stresses the

- 408 critical role of tree species richness for maintaining wood decomposers and their
- 409 activities over the course of the decomposition process, as we found that
- 410 neighbourhood species richness increased termite occurrence, fruitbody number and
- 411 mycelium cover after two years. Note that although two years appear short to study

wood decomposition, branch samples in our study already reached ~72% mass loss 412 after two years. First, deadwood serves as the food resources and habitats for various 413 wood-dwelling organisms (Thorn et al., 2020), meaning that the size and biomass of 414 deadwood stocks are critical for preserving the longevity and diversity of saproxylic 415 communities not limited to decomposers (Sandström et al., 2019; Uhl et al., 2022). 416 We found that wood diameter was positively associated with termite activities at all 417 time-steps (Fig. 3) and fungal mycelium growth (i.e. the vegetative state) after one 418 year (Fig. S6b). Furthermore, fungal activities were negatively correlated with wood 419 decomposition rates (Table 2 and Fig. 4b). Given that fungi are one of the major wood 420 decomposer groups in forest ecosystems, it is unlikely that increasing fungal activities 421 would decrease wood decomposition rate. Instead, with termites being the dominant 422 decomposers, faster decomposition rates due to termite activity lower the remaining 423 wood biomass. This may reduce fungal activities through resource limitation. This 424 was further supported by the finding that neighbourhood tree volume positively 425 impacted fungal fruitbody number (Fig. 3f). These findings altogether indicate that 426 tree species richness could attract and strengthen decomposer activities through 427 increasing wood production (Kunz et al., 2019) and decreasing wood decomposition 428 rates. Second, diversifying decomposition rates could contribute to the spatial and 429 temporal 'source-sink' dynamics of decomposer communities among deadwood of 430 different decay stages (Benbow et al., 2019). Comparatively speaking, termites are 431 early colonists (Ulyshen, 2016), whereas fungal diversity often peaks in advanced 432 433 stages of decomposition (Kubartová et al., 2015). As expected, we observed that termite feeding marks were common for samples after one year of decomposition 434

435	(Fig. S7), whereas fungal marks were scarce until the second year (Fig. S8).
436	Considering that saproxylic taxa colonize and utilize deadwood at different decay
437	stages (Stokland and Siitonen, 2012; Yang et al., 2021), increasing the spatial
438	variation of wood decomposition rates by increasing tree species richness could
439	contribute to the conservation of saproxylic species diversity.
440	Finally, increasing tree species richness could enhance environmental
441	heterogeneity, and thus mitigate interspecific competition among decomposers via
442	niche partitioning. Consistent with previous studies (Ulyshen et al., 2016; Bradford et
443	al., 2021), we found that termite feeding suppressed fungal activities, especially
444	fruitbody production. This pattern could be due to the resource limitation caused by
445	termite feeding and also due to the anti-fungal substances released by termites
446	(Bulmer et al., 2012; Martin and Bulmer, 2018). We observed that fungi performed
447	better in the absence of termites. First, fungal activities tended to increase with
448	deadwood density and neighbourhood mean wood density. The only exception was
449	that fruitbody production after two years of decomposition was higher for lower
450	density deadwood. Given that the economic spectrum of wood traits shows a hump-
451	shaped relationship with termite foraging populations in deadwood at later stages of
452	decay (Guo et al., 2021), the predictive power of initial wood traits on decomposer
453	activities weakens as decomposition proceeds. Fungal fruiting processes might be
454	sensitive to such changes. Second, termites and fungi seemed to prefer different
455	temperatures, which is consistent with empirical studies (Jonsson and Stokland, 2012;
456	Zanne et al., 2022). We found that air temperature increased termite activities whilst
457	suppressing fungal mycelium cover, and neighbourhood tree volume suppressed 21

458 termite occurrence whilst enhancing fungal fruitbody production. Altogether, these
459 findings suggest that fungi could avoid intense competition by occupying undesired
460 niches of termites.

461 **4.4 Conclusions**

Using a neighbourhood approach, we found evidence for the positive effects of 462 tree species richness on the patchiness but not the overall mean of wood 463 decomposition. Diverse stands in young forests or those undergoing regeneration will 464 experience cooler understory and thus lower rates of decomposition, due to the faster 465 volume growth and the suppression of termite feeding activity. Furthermore, different 466 tree species composition and functional traits at the neighbourhood scale strengthens 467 environmental heterogeneity and thus the spatial variation of decomposer activities 468 and wood decomposition rates. Altogether, our findings suggest that: 1) young 469 regenerating species-rich forests could maintain higher deadwood stocks by 470 decreasing wood decomposition rates, where termites are dominant decomposers; 2) 471 decomposition will be patchier in species-rich forests, which can be predicted by 472 crown shading and plant functional traits at the neighbourhood scale. Meanwhile, our 473 study suggests that tree species richness could contribute to the persistence of 474 decomposers by weakening resource limitation, and increasing the heterogeneity of 475 stages of wood decay. While two years seem to be enough for branch samples to be 476 highly decomposed in our study, future studies might consider monitoring 477 decomposer communities for longer temporal span (e.g. 3-5 years for coarse woody 478 479 debris) to verify if tree species richness drives the long-term maintenance of decomposer activities. 480

Two open questions remain unresolved in our study. First, some species showed 481 significant responses to tree species richness while others did not. While the small 482 sample size (n = 3) per species per plot might not be enough to detect patterns, wood 483 traits and quality might also alter the species richness effect. For example, species 484 with higher lignin content would suffer from stronger negative effects by 485 neighbourhood tree species richness (Table S8; marginally significant interaction 486 between lignin content and richness). Future studies could select more species of 487 varying traits to better understand the interaction effects between wood traits and 488 neighbourhood species richness. Second, neighbourhood effects of tree communities 489 might change with topography, for instance, the variation associated with sloping 490 terrain. We found that terrain slope strengthened the effects of five neighbourhood 491 metrics on fungal fruitbody number but not wood mass loss and the other proxies of 492 decomposer activities (Table S9-S13). More studies would be needed to resolve the 493 intricate effects of neighbourhood trees on decomposition given the complex terrain 494 in many forest ecosystems. 495

496 Acknowledgements

497 We are grateful to Christian Wirth for his financial support and constructive

498 comments on the experimental design.

499 Funding: This work was supported by the International Collaborative Project of

- 500 National Key R & D Plan [grant number, 2018YFE0112800], the Major Project of
- 501 Zhejiang Provincial Natural Science Foundation of China [grant number
- 502 LD19C030001), the German Research Foundation [grant number DFG-FOR-981-2],
- and National Natural Science Foundation of China [grant number 31930073].

- 504 **Data statement:** The data that support the findings of this study are available from
- 505 the corresponding author upon reasonable request.

506 **References**

- Allison, S.D., LeBauer, D.S., Ofrecio, M.R., Reyes, R., Ta, A.-M., Tran, T.M., 2009.
- Low levels of nitrogen addition stimulate decomposition by boreal forest fungi.
 Soil Biology and Biochemistry 41, 293–302.
- Austin, A.T., Vivanco, L., González-Arzac, A., Pérez, L.I., 2014. There's no place like
 home? An exploration of the mechanisms behind plant litter-decomposer affinity
 in terrestrial ecosystems. New Phytologist 204, 307–314.
- Baldrian, P., 2017. Forest microbiome: diversity, complexity and dynamics. FEMS
 Microbiology Reviews 41, 109–130.
- Bates, D., Maechler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects
 models using lme4. Journal of Statistical Software 67, 1–48.
- Benbow, M.E., Barton, P.S., Ulyshen, M.D., Beasley, J.C., DeVault, T.L., Strickland,
 M.S., Tomberlin, J.K., Jordan, H.R., Pechal, J.L., 2019. Necrobiome framework
 for bridging decomposition ecology of autotrophically and heterotrophically
 derived organic matter. Ecological Monographs 89, e01331.
- Bradford, M.A., Berg, B., Maynard, D.S., Wieder, W.R., Wood, S.A., 2016.
 Understanding the dominant controls on litter decomposition. Journal of Ecology
 104, 229–238.
- Bradford, M.A., Maynard, D.S., Crowther, T.W., Frankson, P.T., Mohan, J.E.,
 Steinrueck, C., Veen, C.G.F., King, J.R., Warren II, R.J., 2021. Belowground
 community turnover accelerates the decomposition of standing dead wood.
 Ecology 102, e03484.
- Bradford, M.A., Warren II, R.J., Baldrian, P., Crowther, T.W., Maynard, D.S., Oldfield,
 E.E., Wieder, W.R., Wood, S.A., King, J.R., 2014. Climate fails to predict wood
 decomposition at regional scales. Nature Climate Change 4, 625–630.
- Bruelheide, H., Nadrowski, K., Assmann, T., Bauhus, J., Both, S., Buscot, F., Chen,
 X.Y., Ding, B., Durka, W., Erfmeier, A., Gutknecht, J.L.M., Guo, D., Guo, L.,

533	Härdtle, W., He, J., Klein, A., Kühn, P., Liang, Y., Liu, X., Michalski, S., Niklaus,
534	P.A., Pei, K., Scherer-Lorenzen, M., Schuldt, T., Andreas, S., Seidler, G.,
535	Trogisch, S., Oheimb, G. von, Welk, E., Wirth, C., Wubet, T., Yang, X., Yu, M.,
536	Zhou, S., Zhou, H., Fischer, M., Ma, K., Schmid, B., 2014. Designing forest
537	biodiversity experiments: general considerations illustrated by a new large
538	experiment in subtropical China. Methods in Ecology and Evolution 5, 74-89.
539	Bulmer, M.S., Denier, D., Velenovsky, J., Hamilton, C., 2012. A common antifungal
540	defense strategy in Cryptocercus woodroaches and termites. Insectes Sociaux 59,
541	469–478.
542	Cardinale, B.J., Matulich, K.L., Hooper, D.U., Byrnes, J.E., Duffy, E., Gamfeldt, L.,
543	Balvanera, P., O'Connor, M.I., Gonzalez, A., 2011. The functional role of
544	producer diversity in ecosystems. American Journal of Botany 98, 572-592.
545	Cebrian, J., 1999. Patterns in the Fate of Production in Plant Communities. The
546	American Naturalist 154, 449–468.
547	Cheesman, A.W., Cernusak, L.A., Zanne, A.E., 2018. Relative roles of termites and
548	saprotrophic microbes as drivers of wood decay: A wood block test. Austral
549	Ecology 43, 257–267.
550	Christensen, R.H.B., 2022. ordinal-Regression Models for Ordinal Data. R Package
551	Version 2022.11-16.
552	Cosme Jr, L., Haro, M.M., Guedes, N.M.P., della Lucia, T.M.C., Guedes, R.N.C.,
553	2018. Tropical wood resistance to the West Indian drywood termite Cryptotermes
554	brevis: If termites can't chew Pest Management Science 74, 914–924.
555	de Frenne, P., Zellweger, F., Rodríguez-Sánchez, F., Scheffers, B.R., Hylander, K.,
556	Luoto, M., Vellend, M., Verheyen, K., Lenoir, J., 2019. Global buffering of
557	temperatures under forest canopies. Nature Ecology & Evolution 3, 744-749.
558	Desie, E., Zuo, J., Verheyen, K., Djukic, I., van Meerbeek, K., Auge, H., Barsoum, N.,
559	Baum, C., Bruelheide, H., Eisenhauer, N., Feldhaar, H., Ferlian, O., Gravel, D.,
560	Jactel, H., Schmidt, I.K., Kepfer-Rojas, S., Meredieu, C., Mereu, S., Messier, C.,
561	Morillas, L., Nock, C., Paquette, A., Ponette, Q., Reich, P.B., Roales, J., Scherer-
562	Lorenzen, M., Seitz, S., Schmidt, A., Stefanski, A., Trogisch, S., Halder, I. van,

- Weih, M., Williams, L.J., Yang, B., Muys, B., 2023. Disentangling drivers of
 litter decomposition in a multi-continent network of tree diversity experiments.
 Science of The Total Environment 857, 159717.
- Dossa, G.G.O., Schaefer, D., Zhang, J.L., Tao, J.P., Cao, K.F., Corlett, R.T.,
 Cunningham, A.B., Xu, J.C., Cornelissen, J.H.C., Harrison, R.D., 2018. The
 cover uncovered: bark control over wood decomposition. Journal of Ecology 106,
 2147–2160.
- [dataset] Eichenberg, D., Böhnke, M., Bruelheide, H., 2016a. CSPs: Wood density of
 tree species in the CSPs. https://data.botanik.uni-halle.de/bef-china/datasets/123
- [dataset] Eichenberg, D., Bruelheide, H., Kröber, W., Böhnke, M., 2016b. Main
 Experiment: Leaf traits and chemicals from individual trees in the Main
 Experiment (Site A & B). https://china.befdata.biow.uni-leipzig.de/datasets/323.
- Eichenberg, D., Pietsch, K., Meister, C., Ding, W., Yu, M., Wirth, C., 2017. The effect
 of microclimate on wood decay is indirectly altered by tree species diversity in
 a litterbag study. Journal of Plant Ecology 10, 170–178.
- Fanin, N., Lin, D., Freschet, G.T., Keiser, A.D., Augusto, L., Wardle, D.A., Veen, G.F.
 (Ciska), 2021. Home-field advantage of litter decomposition: from the
 phyllosphere to the soil. New Phytologist 231, 1353–1358.
- Gautam, B.K., Henderson, G., 2011. Wood consumption by Formosan subterranean
 termites (Isoptera: Rhinotermitidae) as affected by wood moisture content and
 temperature. Annals of the Entomological Society of America 104, 459–464.
- Gessner, M.O., Swan, C.M., Dang, C.K., McKie, B.G., Bardgett, R.D., Wall, D.H.,
 Hättenschwiler, S., 2010. Diversity meets decomposition. Trends in Ecology &
 Evolution 25, 372–380.
- Gottschall, F., Davids, S., Newiger-Dous, T.E., Auge, H., Cesarz, S., Eisenhauer, N.,
 2019. Tree species identity determines wood decomposition via microclimatic
 effects. Ecology and Evolution 9, 12113–12127.
- Griffiths, H.M., Eggleton, P., Hemming-Schroeder, N., Swinfield, T., Woon, J.S.,
 Allison, S.D., Coomes, D.A., Ashton, L.A., Parr, C.L., 2021. Carbon flux and
 forest dynamics: Increased deadwood decomposition in tropical rainforest tree-

- fall canopy gaps. Global Change Biology 27, 1601–1613.
- Guo, C., Tuo, B., Ci, H., Yan, E.-R., Cornelissen, J.H.C., 2021. Dynamic feedbacks
 among tree functional traits, termite populations and deadwood turnover. Journal
 of Ecology 109, 1578–1590.
- Hagerman, A.E., 1988. Extraction of tannin from fresh and preserved leaves. Journal
 of Chemical Ecology 14, 453–461.
- Hu, X.P., Song, D., 2014. Behavioral responses of two subterranean termite species
 (Isoptera: Rhinotermitidae) to instant freezing or chilling temperatures.
 Environmental Entomology 36, 1450–1456.
- Hu, Z.H., Michaletz, S.T., Johnson, D.J., McDowell, N.G., Huang, Z., Zhou, X., Xu,
 C., 2018. Traits drive global wood decomposition rates more than climate.
 Global Change Biology 24, 5259–5269.
- Huang, Y., Chen, Y., Castro-Izaguirre, N., Baruffol, M., Brezzi, M., Lang, A., Li, Y., 605 Härdtle, W., von Oheimb, G., Yang, X., Liu, X., Pei, K., Both, S., Yang, B., 606 Eichenberg, D., Assmann, T., Bauhus, J., Behrens, T., Buscot, F., Chen, X.-Y., 607 608 Chesters, D., Bing-Yang, D., Durka, W., Erfmeier, A., Fang, J., Fischer, M., Guo, 609 L.-D., Guo, D., Gutknecht, J.L.M., He, J.-S., He, C.-L., Hector, A., Hönig, L., Hu, R.-Y., Klein, A.-M., Kühn, P., Liang, Y., Li, S., Michalski, S., Scherer-610 Lorenzen, M., Schmidt, K., Scholten, T., Schuldt, A., Shi, X., Tan, M.-Z., Tang, 611 Z., Trogisch, S., Wang, Z., Welk, E., Wirth, C., Wubet, T., Xiang, W., Yu, M., Yu, 612 X.-D., Zhang, J., Zhang, S., Zhang, N., Zhou, H.-Z., Zhu, C.-D., Zhu, L., 613 Bruelheide, H., Ma, K., Niklaus, P.A., Schmid, B., 2018. Impacts of species 614 richness on productivity in a large-scale subtropical forest experiment. Science 615 362, 80-83. 616
- Ismayati, M., Nakagawa-izumi, A., Ohi, H., 2018. Utilization of Bark Condensed
 Tannin as Natural Preservatives Against Subterranean Termite. IOP Conference
 Series: Earth and Environmental Science 166, 012016.
- Joly, F., Milcu, A., Scherer-Lorenzen, M., Jean, L., Bussotti, F., Dawud, S.M., Müller,
 S., Pollastrini, M., Raulund-Rasmussen, K., Vesterdal, L., Hättenschwiler, S.,
 2017. Tree species diversity affects decomposition through modified micro-
 - 27

- environmental conditions across European forests. New Phytologist 214, 1281–
 1293.
- Jonsson, B.G., Stokland, J.N., 2012. The surrounding environment, in: Jonsson, B.G.,
 Stokland, J.N., Siitonen, J. (Eds.), Biodiversity in Dead Wood, Ecology,
 Biodiversity and Conservation. Cambridge University Press, Cambridge, pp.
 194–217.
- Kubartová, A., Ottosson, E., Stenlid, J., 2015. Linking fungal communities to wood
 density loss after 12 years of log decay. FEMS Microbiology Ecology 91, fiv032.
- Kües, U., Liu, Y., 2000. Fruiting body production in basidiomycetes. Applied
 Microbiology and Biotechnology 54, 141–152.
- Kunz, M., Fichtner, A., Härdtle, W., Raumonen, P., Bruelheide, H., von Oheimb, G.,
 2019. Neighbour species richness and local structural variability modulate
 aboveground allocation patterns and crown morphology of individual trees.
 Ecology Letters 22, 2130–2140.
- Kuznetsova, A., Brockhoff, P.B., Christensen, R.H.B., 2017. ImerTest package: tests
 in linear mixed effects models. Journal of Statistical Software 82, 1–26.
- Lefcheck, J.S., 2016. piecewiseSEM: Piecewise structural equation modelling in R
 for ecology, evolution, and systematics. Methods in Ecology and Evolution 7,
 573–579.
- Li, J., Chen, X., Niklas, K.J., Sun, J., Wang, Z., Zhong, Q., Hu, D., Cheng, D., 2021.
 A whole-plant economics spectrum including bark functional traits for 59
 subtropical woody plant species. Journal of Ecology 110, 248–261.
- Liu, G., Cornwell, W.K., Cao, K., Hu, Y., van Logtestijn, R.S.P., Yang, S., Xie, X.,
 Zhang, Y., Ye, D., Pan, X., 2015. Termites amplify the effects of wood traits on
 decomposition rates among multiple bamboo and dicot woody species. Journal
 of Ecology 103, 1214–1223.
- Liu, X., Trogisch, S., He, J.-S., Niklaus, P.A., Bruelheide, H., Tang, Z., Erfmeier, A.,
 Scherer-Lorenzen, M., Pietsch, K.A., Yang, B., 2018. Tree species richness
 increases ecosystem carbon storage in subtropical forests. Proceedings of the
 Royal Society B: Biological Sciences 285, 20181240.

- Martin, J.S., Bulmer, M.S., 2018. A lab-based study of temperate forest termite
 impacts on two common wood-rot fungi. Environmental Entomology 47, 1388–
 1393.
- Mullins, A., Chouvenc, T., Su, N.-Y., 2021. Soil organic matter is essential for colony
 growth in subterranean termites. Scientific Reports 11, 21252.

Newbold, T., 2021. StatisticalModels. R Package Version 0.1.

- Peng, Y., Holmstrup, M., Kappel Schmidt, I., Ruggiero Bachega, L., Schelfhout, S.,
 Zheng, H., Heděnec, P., Yue, K., Vesterdal, L., 2022. Tree species identity is the
 predominant modulator of the effects of soil fauna on leaf litter decomposition.
 Forest Ecology and Management 520, 120396.
- Pietsch, K.A., Eichenberg, D., Nadrowski, K., Bauhus, J., Buscot, F., Purahong, W.,
 Wipfler, B., Wubet, T., Yu, M., Wirth, C., 2019. Wood decomposition is more
 strongly controlled by temperature than by tree species and decomposer diversity
 in highly species rich subtropical forests. Oikos 128, 701–715.
- Purahong, W., Kahl, T., Krüger, D., Buscot, F., Hoppe, B., 2019. Home-field
 advantage in wood decomposition is mainly mediated by fungal community
 shifts at "home" versus "away." Microbial Ecology 78, 725–736.
- R Core Team, 2021. R: A Language and Environment for Statistical Computing. R
 Foundation for Statistical Computing, Vienna, Austria.
- Raudaskoski, M., Salonen, M., 1984. Interrelationships between vegetative
 development and basidiocarp initiation, in: Jennings, D.H., Rayner, A.D.M.
- 674 (Eds.), The Ecology and Physiology of the Fungal Mycelium: Symposium of the
 675 British Mycological Society. Cambridge University Press, p. 291.
- Rubenstein, M.A., Crowther, T.W., Maynard, D.S., Schilling, J.S., Bradford, M.A.,
 2017. Decoupling direct and indirect effects of temperature on decomposition.
 Soil Biology and Biochemistry 112, 110–116.
- Sandström, J., Bernes, C., Junninen, K., Lõhmus, A., Macdonald, E., Müller, J.,
 Jonsson, B.G., 2019. Impacts of dead wood manipulation on the biodiversity of
 temperate and boreal forests. A systematic review. Journal of Applied Ecology
 56, 1770–1781.

683	Scalbert, A., 1991. Antimicrobial properties of tannins. Phytochemistry 30, 3875-
684	3883.
685	Shipley, B., 2013. The AIC model selection method applied to path analytic models
686	compared using a d-separation test. Ecology 94, 560-564.
687	Skarbek, C.J., Noack, M., Bruelheide, H., Härdtle, W., von Oheimb, G., Scholten, T.,
688	Seitz, S., Staab, M., 2020. A tale of scale: plot but not neighbourhood tree
689	diversity increases leaf litter ant diversity. Journal of Animal Ecology 89, 299-
690	308.
691	Stokland, J.N., Siitonen, J., 2012. Mortality factors and decay succession, in: Jonsson,
692	B.G., Stokland, J.N., Siitonen, J. (Eds.), Biodiversity in Dead Wood, Ecology,
693	Biodiversity and Conservation. Cambridge University Press, Cambridge, pp.
694	110–149.
695	Thorn, S., Seibold, S., Leverkus, A.B., Michler, T., Müller, J., Noss, R.F., Stork, N.,
696	Vogel, S., Lindenmayer, D.B., 2020. The living dead: acknowledging life after
697	tree death to stop forest degradation. Frontiers in Ecology and the Environment
698	18, 505–512.
699	Tsuchikawa, S., Kobori, H., 2015. A review of recent application of near infrared
700	spectroscopy to wood science and technology. Journal of Wood Science 61, 213-
701	220.
702	Tuma, J., Eggleton, P., Fayle, T.M., 2020. Ant-termite interactions: an important but
703	under-explored ecological linkage. Biological Reviews 95, 555-572.
704	Tuo, B., Yan, ER., Guo, C., Ci, H., Berg, M.P., Cornelissen, J.H.C., 2021. Influences
705	of the bark economics spectrum and positive termite feedback on bark and xylem
706	decomposition. Ecology 102, e03480.
707	Uhl, B., Krah, FS., Baldrian, P., Brandl, R., Hagge, J., Müller, J., Thorn, S., Vojtech,
708	T., Bässler, C., 2022. Snags, logs, stumps, and microclimate as tools optimizing
709	deadwood enrichment for forest biodiversity. Biological Conservation 270,
710	109569.
711	Ulyshen, M.D., 2016. Wood decomposition as influenced by invertebrates. Biological
712	Reviews 91, 70–85.

- Ulyshen, M.D., Diehl, S. v, Jeremic, D., 2016. Termites and flooding affect microbial
 communities in decomposing wood. International Biodeterioration &
 Biodegradation 115, 83–89.
- van Geffen, K.G., Poorter, L., Sass-Klaassen, U., van Logtestijn, R.S.P., Cornelissen,
 J.H.C., 2010. The trait contribution to wood decomposition rates of 15
 Neotropical tree species. Ecology 91, 3686–3697.
- Vergutz, L., Manzoni, S., Porporato, A., Novais, R.F., Jackson, R.B., 2012. Global
 resorption efficiencies and concentrations of carbon and nutrients in leaves of
 terrestrial plants. Ecological Monographs 82, 205–220.
- Vivanco, L., Austin, A.T., 2008. Tree species identity alters forest litter decomposition
 through long-term plant and soil interactions in Patagonia, Argentina. Journal of
 Ecology 96, 727–736.
- Wu, D., Pietsch, K.A., Staab, M., Yu, M., 2021a. Wood species identity alters
 dominant factors driving fine wood decomposition along a tree diversity gradient
 in subtropical plantation forests. Biotropica 53, 643–657.
- Wu, D., Sebastian, S., Ruan, Z., Weng, C., Yu, M., 2020. Island size affects wood
 decomposition by changing decomposer distribution. Ecography 44, 456–468.
- Wu, D., Staab, M., Yu, M., 2021b. Canopy closure retards fine wood decomposition
 in subtropical regenerating forests. Ecosystems 24, 1875–1890.
- Yang, S., Limpens, J., Sterck, F.J., Sass-Klaassen, U., Cornelissen, J.H.C., Hefting,
 M., van Logtestijn, R.S.P., Goudzwaard, L., Dam, N., Dam, M., Veerkamp, M.T.,
 van den Berg, B., Brouwer, E., Chang, C., Poorter, L., 2021. Dead wood diversity
 promotes fungal diversity. Oikos 130, 2202–2216.
- Yang, T., Tedersoo, L., Soltis, P.S., Soltis, D.E., Gilbert, J.A., Sun, M., Shi, Y., Wang,
 H., Li, Y., Zhang, J., Chen, Z., Lin, H., Zhao, Y., Fu, C., Chu, H., 2019.
 Phylogenetic imprint of woody plants on the soil mycobiome in natural mountain
 forests of eastern China. The ISME Journal 13, 686–697.
- Zanne, A.E., Flores-Moreno, H., Powell, J.R., Cornwell, W.K., Dalling, J.W., Austin,
 A.T., Classen, A.T., Eggleton, P., Okada, K., Parr, C.L., Adair, E.C., Adu-Bredu,
- 742 S., Alam, M.A., Alvarez-Garzón, C., Apgaua, D., Aragón, R., Ardon, M., Arndt,

743	S.K., Ashton, L.A., Barber, N.A., Beauchêne, J., Berg, M.P., Beringer, J., Boer,
744	M.M., Bonet, J.A., Bunney, K., Burkhardt, T.J., Carvalho, D., Castillo-Figueroa,
745	D., Cernusak, L.A., Cheesman, A.W., Cirne-Silva, T.M., Cleverly, J.R.,
746	Cornelissen, J.H.C., Curran, T.J., D'Angioli, A.M., Dallstream, C., Eisenhauer,
747	N., Evouna Ondo, F., Fajardo, A., Fernandez, R.D., Ferrer, A., Fontes, M.A.L.,
748	Galatowitsch, M.L., González, G., Gottschall, F., Grace, P.R., Granda, E.,
749	Griffiths, H.M., Guerra Lara, M., Hasegawa, M., Hefting, M.M., Hinko-Najera,
750	N., Hutley, L.B., Jones, J., Kahl, A., Karan, M., Keuskamp, J.A., Lardner, T.,
751	Liddell, M., Macfarlane, C., Macinnis-Ng, C., Mariano, R.F., Méndez, M.S.,
752	Meyer, W.S., Mori, A.S., Moura, A.S., Northwood, M., Ogaya, R., Oliveira, R.S.,
753	Orgiazzi, A., Pardo, J., Peguero, G., Penuelas, J., Perez, L.I., Posada, J.M., Prada,
754	C.M., Přívětivý, T., Prober, S.M., Prunier, J., Quansah, G.W., Resco de Dios, V.,
755	Richter, R., Robertson, M.P., Rocha, L.F., Rúa, M.A., Sarmiento, C., Silberstein,
756	R.P., Silva, M.C., Siqueira, F.F., Stillwagon, M.G., Stol, J., Taylor, M.K., Teste,
757	F.P., Tng, D.Y.P., Tucker, D., Türke, M., Ulyshen, M.D., Valverde-Barrantes, O.J.,
758	van den Berg, E., van Logtestijn, R.S.P., Veen, G.F. (Ciska), Vogel, J.G., Wardlaw,
759	T.J., Wiehl, G., Wirth, C., Woods, M.J., Zalamea, PC., 2022. Termite sensitivity
760	to temperature affects global wood decay rates. Science 377, 1440-1444.
761	

- 762 **Table 1.** Generalised linear mixed models of wood mass loss and decomposer
- activities. Fixed terms included study site, air temperature and plot species richness.

Response	Predictor	Estimate	SE	<i>t</i> (<i>z</i>)-value	<i>p</i> -value	
1-year-decomposition						
Wood mass loss	Intercept	0.464	0.077	6.058	< 0.001	
	Site [B]	0.011	0.007	1.451	0.149	
	Air temperature	0.006	0.004	1.603	0.111	
	Plot species richness	-0.001	0.001	-0.844	0.400	
Termite occurrence	Intercept	-5.219	0.581	-8.983	< 0.001	
	Site [B]	2.360	0.557	4.238	<0.001	
	Air temperature	0.736	0.266	2.763	0.006	
	Plot species richness	0.076	0.094	0.809	0.418	
Fruitbody number	Intercept	-10.739	1.161	-9.253	< 0.001	
	Site [B]	-0.597	1.184	-0.504	0.614	
	Air temperature	-0.110	0.583	-0.189	0.850	
	Plot species richness	0.115	0.198	0.580	0.562	
	2-year-deco	mposition				
Wood mass loss	Intercept	0.707	0.074	9.533	< 0.001	
	Site [B]	0.038	0.012	3.188	0.002	
	Air temperature	0.018	0.006	3.089	0.002	
	Plot species richness	-0.003	0.002	-1.377	0.17	
Termite occurrence	Intercept	-3.351	0.363	-9.233	< 0.001	
	Site [B]	0.877	0.384	2.283	0.022	
	Air temperature	-0.115	0.182	-0.631	0.528	
	Plot species richness	0.004	0.072	0.051	0.959	
Fruitbody number	Intercept	-0.581	0.420	-1.384	0.166	
	Site [B]	0.453	0.325	1.395	0.163	
	Air temperature	-0.088	0.156	-0.565	0.572	
	Plot species richness	0.025	0.060	0.419	0.675	

764 Significant effects ($p \le 0.05$) are printed in bold.

Table 2. Bivariate linear mixed models of wood mass loss. Four indicators of

767 decomposer activities were treated as the fixed effect separately. Significant effects (p

 ≤ 0.05) are printed in bold.

Predictor	Estimate	SE	<i>t</i> -value	<i>p</i> -value			
1-year-decomposition							
(Intercept)	0.463	0.076	6.083	< 0.001			
Termite occurrence	0.026	0.009	2.756	0.006			
(Intercept)	0.378	0.063	5.993	< 0.001			
Termite feeding intensity	0.048	0.002	25.146	<0.001			
(Intercept)	0.466	0.076	6.101	< 0.001			
Fruitbody number	-0.001	0.001	-1.183	0.237			
(Intercept)	0.467	0.076	6.109	< 0.001			
Mycelium cover	-0.009	0.011	-0.885	0.376			
2-yea	r-decompos	sition					
(Intercept)	0.719	0.074	9.747	< 0.001			
Termite occurrence	-0.017	0.012	-1.496	0.135			
(Intercept)	0.452	0.049	9.254	< 0.001			
Termite feeding intensity	0.075	0.002	43.323	<0.001			
(Intercept)	0.720	0.074	9.773	< 0.001			
Fruitbody number	-0.001	0.000	-5.852	<0.001			
(Intercept)	0.736	0.072	10.180	< 0.001			
Mycelium cover	-0.039	0.003	-12.640	<0.001			

770	Fig. 1 Plot tree species richness effects on wood mass loss of seven species. The
771	response variable of the left and right panel is the mean rate and the spatial variation
772	of wood mass loss, respectively. The upper (or lower) panels refer to 1-year (or 2-
773	year) decomposition. Significant ($p \le 0.05$) relationships are printed as solid lines
774	with the 95% confidence interval; marginally significant ($0.05) relationships$
775	are printed as solid lines; insignificant ($p \ge 0.1$) relationships are printed as dashed
776	lines.
777	Fig. 2 Neighbourhood tree species richness effects on sample-level wood mass loss of
778	seven species. The predictor variable of the left and right panel includes and excludes
779	zero values, respectively. The upper (or lower) panels refer to 1-year (or 2-year)
780	decomposition. Significant ($p \le 0.05$) relationships are printed as solid lines with 95%
781	confidence intervals; marginally significant $(0.05 relationships are printed$
782	as solid lines; insignificant ($p \ge 0.1$) relationships are printed as dashed lines.
783	Fig. 3 Bivariate generalised linear mixed model results of wood mass loss and
784	decomposer activities. The response variable of the left, middle and right panels is
785	wood mass loss, termite occurrence and fruitbody number, respectively. The upper (or
786	lower) panels refer to 1-year (or 2-year) decomposition. The mean (dot) and 95%
787	confidence intervals (bars) of the standardised parameter estimates for each of five
788	wood traits and five neighbourhood metrics were reported separately. Note that
789	positive effects are printed in black while negative effects in red. Significance is
790	indicated as: +, 0.05 < p < 0.1; *, $p \le 0.05$; **, $p \le 0.01$; ***, $p \le 0.001$.
791	Fig. 4 The piecewise structural equation model results after 1-year (a) and 2-year
792	decomposition (b). The causal relationship is denoted as the single-arrow line while $\frac{25}{25}$

the correlative relationship as the double-arrow line. Wood traits (in the brown box) 793 and neighbourhood metrics (in the green box) are distinguished by colour. The path 794 coefficients and model fits (in the grey box) are reported, as well as the marginal (and 795 conditional) R². Note that all significant paths are solid lines ($p \le 0.05$) except for the 796 dashed paths (0.05). Path colour indicates the direction of relationship, with797 positive in black and negative in red. The paths related to neighbourhood tree species 798 richness are printed thicker for readers' convenience. 799 Fig. 5 The linear relationship among tree species richness, total tree volume and mean 800 air temperature. The upper panel tests the linear relationship at the plot scale while the 801 lower panel at the neighbourhood scale. Total tree volume is log(1+V) transformed 802 before analysis. Note that plot species richness effect on plot tree volume is 803 marginally significant (0.05 while the other linear relationships are804 significant ($p \le 0.05$). The piecewise structural equation models are used to 805 summarise the relationship between three variables at the plot scale (c) and at the 806 neighbourhood scale (f). 807

Fig. 1

Fig. 2

Fig. 3

Fig. 5