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physical activity in paediatric clinical groups: A systematic review
Mayara S. Bianchima,1, Melitta A. McNarrya,⁎,1, Lillebeth Larunb, Alan R. Barkerc,1,
Craig A. Williamsc,1, Kelly A. Mackintosha,1
a School of Sport and Exercise Sciences, Swansea University, Bay Campus, Swansea, Wales, UK
bNorwegian Institute of Public Health, Division of Health Services, PO Box 222 Skøyen, N-0213 Oslo, Norway
c Children's Health and Exercise Research Centre, University of Exeter, UK

A B S T R A C T

Regular physical activity is associated with physiological and psychosocial benefits in both healthy and clinical populations. However, little is known about tailoring
the analysis of physical activity using accelerometers to the specific characteristics of chronic conditions. Whilst accelerometry is broadly used to assess physical
activity, recommendations on calibration in paediatric clinical groups are warranted. The aim of this systematic review was to provide a critical overview of protocols
used to calibrate accelerometry in children and adolescents with clinical conditions, as well as to develop recommendations for calibration and validation of
accelerometry in such populations. The search was performed between March to July 2017 using text words and subject headings in six databases. Studies had to
develop moderate-to-vigorous intensity physical activity (MVPA) cut-points for paediatric clinical populations to be included. Risk of bias was assessed using a
specific checklist. A total of 540,630 titles were identified, with 323 full-text articles assessed. Five studies involving 347 participants aged 9 to 15 years were
included. Twenty-four MVPA cut-points were reported across seven clinical conditions, 16 of which were developed for different models of ActiGraph, seven for
Actical and one for Tritrac-R3D. Statistical approaches included mixed regression, machine learning and receiver operating characteristic analyses. Disease-specific
MVPA cut-points ranged from 152 to 735 counts·15 s−1, with lower cut-points found for inherited muscle disease and higher cut-points associated with intellectual
disabilities. The lower MVPA cut-points for diseases characterised by both ambulatory and metabolic impairments likely reflect the higher energetic demands
associated with those conditions.

1. Introduction

Regular physical activity (PA) is recommended for children and
adolescents to promote health and well-being (World Health
Organisation, 2015), irrespective of disease status. However, PA plays a
particularly potent role in youth with chronic conditions and is asso-
ciated with slowing disease progression in conditions such as cerebral
palsy (CP; Keawutan et al., 2017; Verschuren et al., 2016). A common
issue for children and adolescents with chronic conditions is the ten-
dency to become less physically active with age and disease progres-
sion, which can lead to deconditioning and the initiation of a vicious
negative spiral involving subsequent reductions in the ability to engage
in PA (Durstine et al., 2013; Torpy et al., 2018).

Careful consideration should be given when recommending PA to
children and adolescents with some chronic conditions due to the en-
hanced nutritional, metabolic and energetic requirements associated
with the condition or structural disability (West et al., 2019). Children
and adolescents with chronic conditions would, therefore, benefit from

a greater understanding of the dose–response relationship between PA
and health benefits in order to balance this with the potential negative
sequalae that could ensue (Riner and Sellhorst, 2013). However, the
current recommendation that children aged 5 to 18 years should ac-
cumulate, on average, at least 60 min of moderate-to-vigorous physical
activity (MVPA) per day across the week (Department of Health and
Social Care, 2019) has been developed for non-clinical populations and
are therefore likely to have limited applicability to clinical populations.
Indeed, a specific clinical guideline would warrant a higher degree of
specificity and a cautious assessment of particular risks and benefits for
each condition. It is therefore imperative to account for condition-
specific factors that could be associated with exercise intolerance and/
or an altered physiological response to exercise/PA (Wells et al., 2019).

PA recommendations tailored for children and adolescents with
clinical conditions, however, remain sparse (Morris, 2008).

Objective methods used to assess PA, such as accelerometers, are
appropriate for clinical settings due to the low participant burden and
relatively low cost (Trost and O'Neil, 2014). Accelerometers are capable
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of detecting patterns of PA accumulation, as well as information on PA
frequency and intensity, such as sedentary time (SED), light physical
activity (LPA) and MVPA (Welk, 2005). Specifically, accelerometry
measures velocity over a specific period of time, which can be trans-
lated into intensities of PA by using cut-points (Welk, 2005). However,
the generation of these cut-points is highly challenging, for example,
even within one type of accelerometer, the MVPA cut-point in healthy
youth varies from 400 to 3,600 counts.min−1 (Cain et al., 2013). Whilst
the accurate assessment of PA levels is particularly important in chronic
conditions, inaccurate cut-points can result in over- or under-estimated
predictions. Additionally, it is also important to consider the limitations
associated with the use of accelerometry. For example, while accel-
erometry can accurately assess SED, it is not able to differentiate be-
tween various sedentary activities (Hurter et al., 2018). Moreover,
factors such as brand and placement are likely to have an impact on the
prediction of both SED and time spent in different PA intensities
(Godfrey et al., 2008).

Amongst the challenges of calibrating accelerometry are the dif-
ferent methods to translate (e.g., PA protocols and criterion method)
and interpret (e.g., statistical approach) the accelerometer raw signals
into biological and behavioural outcomes (e.g., cut-points). Indeed, a
recent systematic review summarising different accelerometry calibra-
tion studies in healthy populations acknowledged the lack of cut-points
that account for individual characteristics, such as demographic and
physiological variations (de Almeida Mendes et al., 2018). A key lim-
itation of generalising cut-points developed for healthy populations to
clinical populations is that they will not consider the altered resting
metabolic rate (RMR) and higher energy expenditure (EE) for a given
activity often evident in youth with chronic conditions (Bandini et al.,
1991; Epstein et al., 1989; Ramsey et al., 1992). Whilst some research
has sought to calibrate accelerometry in paediatric clinical conditions
(Stephens et al., 2016; Trost et al., 2015), the lack of standardisation,
wide variability in protocol designs and lack of healthy matched con-
trols limits interpretation (Logan et al., 2016). Indeed, this systematic
review can contribute by providing recommendations regarding the
most appropriate criterion references, types of activities and statistical
analyses to calibrate and cross-validate the cut-points.

The aim of this systematic review was to provide a critical overview
of the protocols used to calibrate and validate accelerometry-derived
MVPA cut-points in children and adolescents with clinical conditions
and identify key parameters and considerations for future research.

2. Methods

This review was performed in accordance with the Preferred
Reporting items for Systematic Review and Meta-Analysis statement
(Liberati et al., 2009; Moher et al., 2015) and is registered on the In-
ternational Prospective Register of Systematic Review (PROSPERO re-
gistration ID: CRD42016053880).

2.1. Search methods

The search was performed between March and July of 2017 using
six databases (PubMed, SPORTDiscus, ScienceDirect, Scopus, ISI Web of
Knowledge, Wiley Online Library). A Population Intervention
Comparison Outcome (PICO) framework was adopted to build and
structure the search; a detailed description of the search protocol is
available on the web-appendix. The protocol and search strategy were
reviewed by an experienced librarian and a pilot was performed to
ensure the suitability of the criteria and search terms. The search terms
were in accordance with the 2017 Medical Subject Headings and were
inserted as keywords to all the databases and platforms. The search
terms were: acceleromet*; acceleromet* AND (validation OR calibra-
tion); acceleromet* AND physical activity; wearable monitors AND
(calibration OR validation); physical activity AND (calibration OR va-
lidation); acceleromet* cut-points; acceleromet* cut-points; energy ex-
penditure AND acceleromet*; and classification AND physical activity
intensities. The reference lists of relevant reviews and of all the studies
included therein were examined for studies matching the inclusion
criteria.

2.2. Eligibility criteria

Studies published in English from the year 2000 which generated
MVPA accelerometry cut-points for accelerometry in children and
adolescents (5 to 18 years) with any chronic clinical condition (disease
of long duration and slow progression; Goodman et al., 2013) were
included. Only studies published after the year 2000 were included in
order to avoid inclusion of outdated accelerometers. Non-English, non-
human and unpublished studies, book chapters, theses, monographs,
dissertations and abstracts were not included. Studies in adults, or ca-
librating for healthy populations, sedentary behaviour or wheelchair
users were excluded. Thus, studies using accelerometers along with
additional technologies such as a microcontroller were not included.

2.3. Data extraction and management

An EndNote X7 (Clarivate Analytics, US) database was created with
potential studies, and the lead author screened all the titles and ab-
stracts. All full-texts selected by the first author (MSB) were screened by
two co-authors (MAM and KAM) according to the pre-established in-
clusion criteria. Supplementary information for each study was con-
sulted when available. In the case of missing information or variables
required for completion of the extraction sheet, study authors were
contacted, however, no additional data was provided. Data was ex-
tracted from the included full-texts by MSB and reviewed by KAM and
MAM (Table 1). Any discrepancies were discussed by the three authors
until a consensus was reached.

The risk of bias was assessed independently by MSB and MAM using

Table 1
Summary of the data extracted from the included studies.

Data extraction field Information extracted

Context and participants The author, year and sample size of the study; participant characteristics such as age, health status, height, weight, BMI, ethnicity; and covariates
measured such as self-report questionnaire data and health scales related to disease assessments were extracted.

Study design and methods used Any information related to the accelerometer, such as accelerometer model (e.g., number of axes); accelerometer placement (e.g., wrist
[dominant/non-dominant], hip, chest); accelerometer settings (e.g., epoch, sampling frequency, use of low frequency filter); and data processing
decisions (e.g., wear-time criteria) were extracted. Additionally, any information related to the calibration protocol, such as protocol design (e.g.,
laboratory-based, field-based, daily-life protocol); duration of the protocol; adjustment of specific variables (e.g., age, body mass); performance of
individual calibration; criterion measure (e.g., energy expenditure, direct observation, heart rate); resting metabolic rate assessment; statistical
approach (e.g., ROC-curve analyses, linear regression, machine learning); validation method (e.g., validation, cross-validation leave-one-out,
cross-validation k-fold); and assessment for agreement (e.g., Kappa, Bland-Altman) were also extracted.

Findings The extracted outcomes were protocol design and cut-points. All the extracted protocols were classified in four categories: laboratory-based
(walking or running, over-ground or on a treadmill), free-living (assessment of participant routine), daily-life (daily-life activities performed at
the research site), and mixed (at least two of laboratory-based, free-living and daily-life) protocols.

Quality of the study checklist sheet.
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a specific checklist (Table 2) created according to previous re-
commendations for calibration protocols (Bassett et al., 2012; Freedson
et al., 2005; Welk, 2005). This checklist considers six elements of the
calibration protocol (sample characteristics, accelerometry settings,
criterion measure, statistical approach for calibration, and statistical
approach for validation) to rate studies as good, fair or poor according
to the criteria described in Table 2. The inter-rater reliability was cal-
culated using Kappa scores with 0.8 as the minimum acceptable inter-
rater agreement (McHugh, 2012). Where any discrepancies arose fol-
lowing the risk assessment, all three authors involved in the screening
and data extraction (MSB, MAM and KAM) discussed these until a
consensus was reached.

A narrative synthesis of the studies was performed due to the het-
erogeneity of calibration protocols encountered, covering the topics of
the protocol design, description of, and adjustment for, disease-specific
factors, accelerometry model and settings, criterion measure and the
statistical approach for generating and validating the cut-points. All
cut-points in counts·min−1 were reintegrated to counts·15 s−1 epochs,
which is commonly used in youth, to allow inter-study comparability.

3. Results

A total of 543,741 titles were found across all databases, with
540,630 titles remaining following the removal of duplicates. Following
initial screening, 619 articles were selected by the main author for full-
text assessment. In total, 614 studies were subsequently excluded, pri-
marily due to being in a healthy population (279 studies; Fig. 1). A list
of all full-text studies that were excluded can be obtained from the
correspondent author. Five studies (Clanchy et al., 2011; McGarty et al.,
2016; Ryan et al., 2014; Stephens et al., 2016; Trost et al., 2015), in-
cluding 347, 9–15 year old, participants, with a total of 24 generated
MVPA cut-points for seven clinical conditions, were included in the
final synthesis. The clinical conditions were: CP, intellectual dis-
abilities, CF, congenital heart diseases (CHD), haemophilia (HE), in-
herited muscle disease (IMD), juvenile idiopathic arthritis (JIA;
Table 3).

The inter-rater Kappa score for risk of bias was 0.80, with authors
disagreeing regarding ‘accelerometry settings’, and were resolved after
MSB and MAM discussed each point, resulting in a Kappa score of 1.
Most studies (n = 4) were classified as fair for sample characteristics,
with only one study scoring as good. One study scored as fair, and four
as good, for accelerometry settings, with three and two studies classi-
fied as fair and good, respectively, for protocol design. For criterion

measure, one scored as good, three as fair and one as poor. The majority
(n = 4) of the studies scored as fair for statistical approach for cali-
bration, with only one scoring as good. Finally, regarding the statistical
approach for validation, three studies scored as fair and two as poor
(Table 4).

Quality of life (Varni et al., 2004), maturity status (Emmanuel and
Bokor, 2017; Stephens et al., 2016) and a generic health questionnaire
(Feldman et al., 1995; Huber et al., 2001) were used as co-variates.
Additionally, three studies (Clanchy et al., 2011; Ryan et al., 2014;
Trost et al., 2015) used the specific classification system for CP (Gross
Motor Function Classification System - GMFCS). Whilst covariates were
considered by most of the included studies, only one study (Stephens
et al., 2016) adjusted for disease-specific factors when generating the
cut-points, although no formal description was provided on the vari-
ables included in the model. None of the studies investigated whether
the disease-specific factors and participant demographics impacted on
the developed cut-points.

3.1. Accelerometers

Sixteen of the included MVPA cut-points were developed for dif-
ferent ActiGraph models (McGarty et al., 2016; Ryan et al., 2014;
Stephens et al., 2016; Trost et al., 2015), seven for Actical (Stephens
et al., 2016) and one for Tritrac-R3D (RT3; Table 5; (Ryan et al., 2014).
This translates to 15 MVPA cut-points derived from the vertical axis
(VA) (Clanchy et al., 2011; Stephens et al., 2016) and nine from the
vector magnitude (VM; (McGarty et al., 2016; Ryan et al., 2014; Trost
et al., 2015). Three studies utilised hip-worn accelerometry on the right
side (McGarty et al., 2016; Stephens et al., 2016; Trost et al., 2015) and
two studies calibrating for CP placed the accelerometer on the least
affected side (Clanchy et al., 2011; Ryan et al., 2014). The sample
frequency varied between 1 and 32 Hz, with one study (Clanchy et al.,
2011) not specifying this information. Two studies used an epoch of
15 s (Stephens et al., 2016; Trost et al., 2015), with others using 1 s
(Clanchy et al., 2011), 10 s (McGarty et al., 2016) and 60 s (Ryan et al.,
2014).

3.2. Calibration protocol settings

A daily-life calibration protocol was the most commonly used
(n = 3), generating 22 MVPA cut-points, with only two studies utilising
a laboratory-based protocol (Clanchy et al., 2011; Ryan et al., 2014).
Indirect calorimetry was the most common physiological criterion used

Table 2
Quality and risk assessment criteria according to descriptive variables and study design.

Standard Poor Fair Good

1. Sample Characteristics Study did not include any
descriptive variables other than
age and sex.

Study included height, weight, body
mass index and variables specific to the
clinical condition.

Study included height, weight, body mass index, ethnicity, resting
metabolic rate, maturity stages and variables specific to the
clinical condition.

2. Accelerometry Settings Study described accelerometer
model.

Study included accelerometer model,
number of axes and placement position.

Study included accelerometer model, number of axes, placement,
sampling frequency, epoch length and any filtering techniques.

3. Protocol Design Calibration protocol composed by
walking or treadmill test.

Calibration used a mixed protocol
(daily-life activities and a treadmill
test).

Mixed protocol combining daily-life activities, laboratory protocol
test on a treadmill and free-living assessments.

4. Criterion Speed or direct observation. Heart rate or metabolic equivalent. Energy expenditure (including resting metabolic rate
estimation*).

5. Statistical Approach for
Calibration

Linear regression or Individual
linear regression.

ROC curve analyses. Machine learning techniques, hierarchical models or multilevel
modelling, adjusting for factors related to participants
characteristics and to the pathophysiology of the clinical
condition to develop the cut-point.

6. Statistical Approach for
Validation

No validation assessment. Leave-one-out cross-validation and
agreement assessment using Bland-
Altman or kappa score.

K-fold cross-validation using different samples and activities.
Agreement assessment using Bland-Altman or Kapa score, and
estimates the intraclass correlation coefficient, and/or limits of
agreement.

ROC: receiver operating characteristic. *The criteria for a valid resting metabolic rate estimation was a minimum of 15 min of steady state, preferably adopting the
formula of Weir (1949).
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for calibration (Clanchy et al., 2011; Ryan et al., 2014; Stephens et al.,
2016; Trost et al., 2015), with one study using direct observation
(McGarty et al., 2016). The protocol duration varied from 35 to
240 min. Resting metabolic rate was estimated by Stephens et al.
(2016) using the Weir equation, whereas Clanchy et al. (2011) and
Trost et al. (2015) used the Schofield equation and Ryan et al. (2014)
the Oxford equation. As McGarty et al. (2016) developed cut-points
through direct observation, a RMR estimation was not required. All
included studies performed a group calibration rather than individual
calibrations.

3.3. Statistical approach

Fourteen MVPA cut-points were developed through mixed

regression models (Stephens et al., 2016), six using machine learning
(regressing trees; Trost et al., 2015), and four through Receiver Oper-
ating Characteristic (ROC) analysis (Clanchy et al., 2011; McGarty
et al., 2016; Ryan et al., 2014; Stephens et al., 2016). Only one study
did not perform any kind of validation (Clanchy et al., 2011), with all
other validations performed using leave-one-out cross-validations. No
studies utilised independent samples or a different set of activities to
cross-validate. Eighteen (Clanchy et al., 2011; Ryan et al., 2014;
Stephens et al., 2016; Trost et al., 2015) of the generated cut-points
were validated through comparison of previously established cut-points
developed for healthy populations (Evenson et al., 2006; Puyau et al.,
2002; Rowlands et al., 2004; Vanhelst et al., 2010). Three studies
(McGarty et al., 2016; Ryan et al., 2014; Trost et al., 2015) utilised the
Kappa score for agreement assessment, whereas two studies (Clanchy
et al., 2011; Stephens et al., 2016) performed ANOVA.

Fig. 1. PRISMA flow chart presenting the systematic literature search.
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Table 3
Summary of included studies calibrating accelerometry in paediatric clinical groups.

Studies Participants Accelerometer Calibration Protocol Statistical Approach Outcome
Author, year Sample size (n)

Health status
Control Group
Sex (boy/girl)
Age (range or mean ± SD)
Height (mean ± SD)
Weight (range or mean ± SD)
BMI (range or mean ± SD)
Ethnicity
Covariates

Device Model
Number of axes
Placement
Sampling frequency
Filter
Epoch
Sampling duration
Wear time

Physiological/
Observational
EE estimation
RMR estimation
Individual calibration
Protocol type
Duration

Calibration
Validation
Agreement

Cut-Points/
Equation

Trost et al., 2015 n = 51
Cerebral Palsy
GMFCS I (27)
GMFCS II (12)
GMFCS III (12)
Control: 0
28 girls
12 ± 3 years
147.0 ± 16.5 cm
46.8 ± 19.0 kg
GMFCS

ActiGraph GT3X
Tri-axial
Right hip
30 Hz
Epoch: 1 s

Physiological: VO2

Resting VO2: Schofield
Individual calibration: no
Protocol type: Mixed –
daily-life and walking
Duration: 120 min

Calibration: Binary DT
Validation: LOOCV
Agreement: Kappa and ROC

Cut-points (counts·15 s−1)
All levels:
LPA: < 72
GMFCS I
MVPA: 724
GMFSC II
MVPA: 685
GMFCS III
MVPA: 669

Ryan et al., 2014 n = 18
Cerebral Palsy
Control: no
11.4 ± 3.2 years
147.0 ± 18.5 cm
44.6 ± 16.9 kg
BMI: 20 ± 4.5 kg·m−2

GMFCS

RT3
Right hip
Epoch: 60 s

Physiological: VO2

RMR: Oxford equation
Individual calibration:
none
Protocol type: laboratory
Duration: 36 min

Calibration:
ROC curve
Validation: none
Agreement: Kappa score

Cut-points (counts·min−1):
LPA: 52
MVPA: 689.3

Clanchy et al., 2011 n = 29
Cerebral palsy
Control: no
13 girls
12.5 ± 2.0 years
156.6 ± 11.0 cm
47.7 ± 16.1 kg
GMFCS

ActiGraph (7164)
Uniaxial
Least affected hip
10 Hz
Epoch: 1 s

Physiological: VO2

RMR: Schofield equation
Individual calibration:
none
Protocol type: laboratory
Duration: 60 min

Calibration:
ROC curve
Validation: none
Agreement: none

Cut-points (counts·min−1):
LPA: 1627.3
MVPA: 2942.1
VIG: 4683.6

McGarty et al., 2016 n = 50
Validation: 36
Intellectual disabilities
Control: no
37 girls
9.54 ± 1.09 years
143 ± 0.9 cm
39.33 ± 10.28 kg
BMI: 19.9 ± 3.8 kg·m−2

ActiGraph Wgt3X+
Tri-axial
Right hip
30 Hz
Epoch: 10 s

Physiological: Direct
Observation
Individual calibration:
none
Protocol type: Daily-life
Duration: 45 min

Calibration: ROC
Validation: LOOCV
Agreement: Kappa score

Cut-points (counts·min−1):
VA:
SED: 507
MPA: 1008–2300
VPA: 2301
MVPA: 1008
VM:
SED: 1863
MPA: 2610–4214
VPA: 4215
MVPA: 2610

Stephens et al., 2016 n = 195
Control: n = 29
13 girls
13.1 ± 2.8 years
162 ± 16 cm
57.6 ± 20 kg
Skinfold: 38 ± 17
Tanner stages: 30% (stages 1–2),
70% (stage 3)
CHAQ: 0.15 ± 0,26
PedsQL: 83 ± 9
Cystic fibrosis (n = 32)
14 girls
12.8 ± 2.9 years
156 ± 16 cm
45 ± 14 kg
Skinfold: 31 ± 13
Tanner stage: 19% (stages 1–2),
81% (stage 3)
CHAQ: 0.27 ± 0.3
PedsQL: 78 ± 12
Congenital heart disease (n = 15)
5 girls
13.6 ± 3.3 years
161 ± 17 cm
54 ± 17 kg

ActiGraph (7164) and
Actical
Uniaxial
Right hip
10 HZ / 32 Hz
Epoch: 15 s

Physiological: VO2 and HR
RMR: 2 h fasting – 20 min
in rest
Individual calibration: no
Protocol type: Mixed:
laboratory and daily-life
Duration: 240 min

Calibration: Mixed regression
models for equation, ROC curve
for cut-points.
Validation: LOOCV
Agreement: none

Chronic disease (combined) –
ActiGraph
SED: 10
LPA: 10–426
MVPA: 426–785
Chronic disease (combined) –
Actical
SED: 10
LPA: 17–288
MVPA: 289–570
Cystic fibrosis - ActiGraph
SED: 10
LPA: 10–487
MVPA: 487–852
Cystic fibrosis - Actical
SED: 5
LPA: 5–368
MVPA: 368–1025
Congenital heart disease -
ActiGraph
SED: 10
LPA: 10–349
MVPA: 349–785
Congenital heart disease -
Actical
SED: 9

(continued on next page)

M.S. Bianchim, et al. Preventive Medicine Reports 19 (2020) 101142

5



Table 3 (continued)

Studies Participants Accelerometer Calibration Protocol Statistical Approach Outcome
Author, year Sample size (n)

Health status
Control Group
Sex (boy/girl)
Age (range or mean ± SD)
Height (mean ± SD)
Weight (range or mean ± SD)
BMI (range or mean ± SD)
Ethnicity
Covariates

Device Model
Number of axes
Placement
Sampling frequency
Filter
Epoch
Sampling duration
Wear time

Physiological/
Observational
EE estimation
RMR estimation
Individual calibration
Protocol type
Duration

Calibration
Validation
Agreement

Cut-Points/
Equation

Skinfold: 42 ± 15.5
Tanner Stage: 38% (stages 1–2),
62% (stage 3)
CHAQ: 0.17 ± 0.3
PedsQL: 72 ± 12
Haemophilia (n = 28)
0 girls
12.4 ± 3.3 years
156 ± 19 cm
53 ± 20.7 kg
Skinfold: 40 ± 20
Tanner Stage: 27% (stages 1–2),
73% (stage 3)
CHAQ: 0.25 ± 0.4
PedsQL: 82 ± 16
Idiopathic muscular dystrophies
(n = 30)
8 girls
12 ± 3.4 years
146 ± 22 cm
41 ± 14 kg
Skinfold: 41 ± 18
Tanner stage: 70% (stages 1–2)
30% (stage 3)
CHAQ: 0.8 ± 0.7
PedsQL: 68 ± 17
Juvenile dermatomyositis
(n = 31)
20 girls
13.4 ± 2.3 years
159 ± 11 cm
52 ± 14 kg
Skinfold: 48 ± 17
Tanner stage: 27% (stages 1–2),
73% (stage 3)
CHAQ: 0.4 ± 0.6
PedsQL: 77 ± 15
Juvenile arthritis (n = 31)
23 girls
12.7 ± 2.6 years
154 ± 12 cm
47 ± 14 kg
Skinfold: 46 ± 22
Tanner stage: 32 (stages 1–2),
68% (stage 3)
CHAQ: 0.5 ± 0.5
PedQL: 72 ± 13

LPA: 9–349
MVPA: 349–633
Haemophilia - ActiGraph
SED: 17
LPA: 17–432
MVPA: 432–788
Haemophilia - Actical
SED: 19
LPA: 19–306
MVPA: 306–1114
Inherited muscle disease -
ActiGraph
SED: 37
LPA: 37–663
MVPA: 663–972
Inherited muscle disease -
Actical
SED: 14
LPA: 14–297
MVPA: 297–523
Juvenile dermatomyositis-
ActiGraph
SED: 14
LPA: 14–172
MVPA: 172–543
Juvenile dermatomyositis -
Actical
SED: 18
LPA: 10–166
MVPA: 166–601
Juvenile arthritis - ActiGraph
SED: 25
LPA: 25–255
MVPA: 255–771
Juvenile arthritis - Actical
SED: 19
LPA: 19–152
MVPA: 152–542

SD: standard deviation; BMI: body mass index; EE: energy expenditure; RMR: resting metabolic rate; GMFCS: gross motor function classification system; VO2: oxygen
uptake, LOOV: leave-one-out cross-validation; ROC: receiver operating characteristic; SED: sedentary time; LPA: light physical activity; MVPA: moderate-to-vigorous
physical activity; VIG: vigorous activity; CHAQ: childhood health assessment questionnaire; PedsQL: pediatric quality of life inventory.

Table 4
Checklist Risk of Bias Assessment Results.

Study Sample Characteristics Accelerometry Settings Protocol Design Criterion Statistical Approach for Calibrations Statistical Approach for Validations

Clanchy et al., 2011 Fair Fair Poor Fair Fair Poor
Ryan et al., 2014 Fair Good Fair Poor Fair Fair
Trost et al., 2015 Fair Good Fair Fair Good Fair
McGarty et al., 2016 Fair Good Poor Fair Fair Poor
Stephens et al., 2016 Good Good Fair Good Fair Fair
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3.4. Outcome

The disease-specific MVPA cut-points ranged from 152 to 735
counts·15 s−1, with 19 MVPA cut-points presented in counts·15 s−1,
and four presented in counts·min−1 (Table 6). The sensitivity of the cut-
points ranged from 37 to 91%, and the specificity ranged from 85 to
97%. Cerebral palsy was the mostly widely studied clinical condition,
with eight cut-points developed across three studies (Clanchy et al.,
2011; Ryan et al., 2014; Trost et al., 2015). Trost et al. (2015) generated
cut-points for different degrees of CP severity, with fair to excellent
accuracy, demonstrating better accuracy (lower rates of misclassifica-
tion, particularly for GMFCS III and for LPA classification) than Evenson
et al. (2006) cut-points. In contrast, Ryan et al. (2014) and Clanchy
et al. (2011) did not develop specific cut-points for different GMFCS
levels or perform a leave-one-out cross validation, using specificity and
sensitivity as a measure of validation. Clanchy et al. (2011) cut-points
showed no significant improvement in PA classification accuracy
compared to healthy population cut-points, whilst the MVPA cut-points
of Ryan et al. (2014) demonstrated moderate classification agreement
(Evenson et al., 2006; Rowlands et al., 2004; Vanhelst et al., 2010).
Similarly, Stephens et al (2016) also applied healthy population cut-
points (Evenson et al., 2006) to their participants with various chronic
conditions (CF, IMD, JIA, HE and CHD), which resulted in poor-to-
moderate sensitivity in PA classification. Most of the disease-specific
cut-points developed were below the previously established MVPA cut-
points for healthy populations (e.g., 2,020 to 8,199 counts·min−1).

4. Discussion

Twenty-four MVPA cut-points were extracted from five studies
across seven different paediatric clinical groups. Overall, the review
revealed little consensus with regards to MVPA cut-points, due to, at
least in part, the relatively low number of calibration studies and broad
range of protocol designs and accelerometer settings used in the studies,
thereby limiting inter-study comparisons. Nonetheless, despite this, a
thorough methodological quality assessment of the included studies
was performed, which contributed to a higher transparency and aided
the interpretation of the outcomes. Moreover, this review presented a
critical analysis of the methodological challenges faced when devel-
oping cut-points for clinical paediatric populations, providing re-
commendations for future studies.

4.1. Calibration protocol for paediatric clinical populations

The majority of the included studies utilised daily-life (McGarty
et al., 2016) or mixed (Stephens et al., 2016; Trost et al., 2015) pro-
tocols composed of daily-life and laboratory protocols. To accom-
modate different disease and disability levels, Stephens et al. (2016)
adjusted their laboratory-based protocol by performing two different
treadmill tests based on 6-min walking test performance. Whilst the
protocol can greatly impact the PA classification, the physiological

criterion adopted is equally important. For example, both Trost et al.
(2015) and Stephens et al. (2016) utilised indirect calorimetry as cri-
terion, which therefore considers the higher energetic demand asso-
ciated with a given activity in some chronic conditions (Walker et al.,
2015). Specifically, diseases associated with chronic inflammation (e.g.,
CF, obesity) and musculoskeletal adaptations (e.g., CP, JIA, IMD) can
reduce exercise tolerance, leading to chronic deconditioning and a
higher EE demand for a given activity (Mehta, 2015).

It is well known that the majority of paediatric clinical conditions
are associated with altered cardiometabolic demands (Bar-Or and
Rowland, 2004). Thus, studies calibrating accelerometry for these po-
pulations should adopt EE as their criterion method. Another important
consideration is that RMR changes dramatically according to maturity,
disease and health parameters (McErlane et al., 2017), such as chronic
inflammation and reductions in PA (Buchdahl et al., 1988; Eisenstein
and Berkun, 2014). Specifically, individuals with CF often have a
greater RMR, which can be explained to some extent by pulmonary
impairment (Dorlochter et al., 2002) and increased cost of breathing
(Bell et al., 1996; Frankenfield et al., 2017). Conversely, children with
certain types of CP have a reduced RMR due to a lower energetic re-
quirement at rest and altered body composition (e.g., reduced fat free
mass and lean body mass; Bandini et al., 1995, 1991; Stallings et al.,
1993). Consequently, condition-specific calibration protocols adopting
EE as the criterion should measure RMR. Despite using indirect ca-
lorimetry in their protocols, some of the included studies utilised
Schofield and Oxford equations (Clanchy et al., 2011) to determine
RMR. Whilst such equations may provide a low-cost estimation of RMR,
they are based on chronological, rather than biological, age (McMurray
et al., 2015), and do not account for sex or health status. This may lead
to an inaccurate estimation of RMR, and consequently of EE, in clinical
populations (De Wit et al., 2010; Fuster et al., 2007). Therefore, the
measurement of oxygen uptake at rest should be utilised to provide a
precise estimation of RMR, and consequently enhance the accuracy of
the disease-specific cut-points in youth with chronic conditions
(Stephens et al., 2016).

It is also important to consider the influence of disease severity
within a condition, which is likely to affect the relative energetic de-
mand, as might differences in the treatment and medication strategies
between patients (Walker et al., 2015). Indeed, Ryan et al. (2014) and
Clanchy et al. (2011) did not stratify their sample by the GMFCS scale,
resulting in large heterogeneity of CP-severity across participants, with
some children not able to finish the protocol. In contrast, Trost et al.
(2015) demonstrated that the relationship between EE and activity
counts changed significantly according to GMFCS level, with children
classified as level III having greater EE during locomotion when com-
pared to levels I and II.

4.2. Statistical approach

The statistical approach chosen is highly influential in the transla-
tion of the physiological criterion into cut-points. Linear regression,

Table 5
Summary of the accelerometer models used by the included studies.

Name / Model Manufacturer Weight and Size Memory Capacity Axis Frequency Sampling

ActiGraph 7164 (CSA) ActiGraph LLC Pensacola, FL 45.5 g
5.1 × 4.1 × 1.5 cm

22 days of data with 60 s epoch Uniaxial 10 Hz

ActiGraph GT3X ActiGraph LLC Pensacola, FL 27 g
3.8 × 3.7 × 1.8 cm

378 days using 60 s epoch Tri-axial 30 Hz

ActiGraph wGT3X+ ActiGraph LLC Pensacola, FL 19 g
4.6 × 3.3 1.5 cm

38 days 100 Hz Tri-axial 30–100 Hz

Actical Mini-Mitter Sunriver, OR 17.5 g
2.8 × 2.7 × 1.0 cm

45d using 60 s epoch Uniaxial 32 Hz

Research Tracker accelerometer (RT3) StayHealthy, Inc; Monrovia, California 71.5 g
71 × 56 × 28 mm

30 days Tri-axial 0.017–1 Hz
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which was initially one of the most commonly used methods for cali-
bration, cannot account for the non-linear relationship between PA and
EE (Freedson et al., 2005; Welk, 2005). Consequently, most of the
studies included in this review utilised ROC analyses to develop their
cut-points. Whilst ROC is more accurate than linear regression (Welk,
2005), it is dependent on the number of participants and does not allow
adjustment of disease-specific factors (Staudenmayer et al., 2009).

Alternatively, mixed regression modelling is an exploratory ana-
lysis, particularly useful due to its flexible nature that allows the in-
clusion of disease-specific factors (Welk, 2005). Stephens et al. (2016)
utilised mixed regression modelling to control for disease-specific fac-
tors to generate predictive equations for children and adolescents with
CF, HE, JIA, CHD and IMD (Aadland and Steene-Johannessen, 2012;
Lopes et al., 2009), reporting that heart rate improved the model and
lowered the standard error associated with the prediction. These find-
ings agree with those in healthy populations (Altini et al., 2014), with
the improvements in standard error likely to be attributable to the re-
duction of the inter-individual variability caused by the adjustment of
physiological signals. It is noteworthy that whilst a certain degree of
accuracy can be achieved with cut-points, recent PA research has
moved towards using machine learning. Indeed, more complex machine
learning analysis have provided a higher degree of accuracy in com-
parison with traditional cut-points (Bonomi et al., 2009; Staudenmayer
et al., 2015, 2009; Welk, 2005). Despite this, a calibration protocol is
still required even when using those techniques. Indeed, machine
learning can also be used to develop cut-points, for example, Trost et al.
(2015) used Binary Decision Trees to generate CP-specific cut-points.
Whilst machine learning provides high accuracy, evidence suggests that
considerable bias can arise from using a small sample size (Combrisson
and Jerbi, 2015). Alternatively, approaches such as using different
testing and training data sets, and testing algorithm performance (i.e.,
nested cross-validation), can provide unbiased performance estimates
even with small sample sizes (Vabalas et al., 2019).

A cross-validation analysis of the cut-points evaluates the predictive
models to ensure validity and avoid over-fitting, and it can be per-
formed through different methods such as the k-fold or leave-one-out
cross-validation. Specifically, considering that the developed cut-points
might be biased to the sample characteristics or to the calibration
protocol design, the use of an independent sample with a different set of
activities for cross-validating the cut-points is recommended (Welk,
2005). Stephens et al. (2016) and Trost et al. (2015) applied a leave-
one-out cross-validation, identified as the most appropriate approach
when working with smaller samples (Welk et al., 2003), or to lessen the
burden on the participants. It is further recommended that the disease-
specific cut-points should also be validated against a healthy matched
control group to ensure that potential cut-point discrepancies are a
result of the pathophysiology rather than from the protocol design.
Further to the cross-validation, agreement measures, such as Kappa
score and Bland-Altman, indicate whether two methods can be used
concomitantly or interchangeably, thereby facilitating inter-study
comparisons (Bland and Altman, 1986). Alternatively, recent research
has used a statistical equivalence test to measure agreement, which has
been shown to be more appropriate for highlighting similarities be-
tween methods (Dixon et al., 2018; Kim et al., 2016). Particularly, the
performance of agreement measures between activity counts and the
criterion measures in a calibration protocol ensures that both mea-
surements are comparable, avoiding further errors to the developed cut-
points (Welk, 2005).

4.3. Outcome: cut-points

Cross-validation identified moderate to excellent accuracy for most
of the disease-specific cut-points. Considerable inter-study dis-
crepancies were found when comparisons were made between the
disease-specific and previously established healthy population cut-
points. For example, whilst Trost et al. (2015) found that applying cut-

points developed for healthy populations (Evenson et al., 2006) to CP
children resulted in poor accuracy and misclassification, Ryan et al.
(2014) and Clanchy et al. (2011) demonstrated fair to moderate accu-
racy (Rowlands et al., 2004; Vanhelst et al., 2010). Indeed, converse to
Ryan et al. (2014) and Clanchy et al. (2011), Trost et al. (2015) cali-
brated for each level of the GMFCS instead of performing an overall
calibration, and applied machine learning techniques to generate the
CP cut-points, presenting higher specificity than the cut-points devel-
oped for healthy populations. Furthermore, Stephens et al. (2016) also
found that their disease-specific cut-points (CF, CHD, HE, JIA and IMD)
had improved accuracy when compared with standard cut-points,
thereby supporting the notion that specific cut-points are necessary for
clinical populations.

Given that SED is mainly classified based on stationary activities
and therefore does not consider musculoskeletal disabilities, it is un-
surprising that some studies (Clanchy et al., 2011; Ryan et al., 2014;
Trost et al., 2015) demonstrated fair to excellent accuracy when uti-
lising healthy population-based SED cut-points for children with less
severe CP. Despite this, poor classification of LPA may affect specific
clinical populations, such as CP (Verschuren et al., 2014), who may not
be able to engage in MVPA activities, and would therefore greatly
benefit from a reduction in SED (Ryan et al., 2015). Specifically, con-
sidering that daily PA is a composite measure, an increase in LPA could
be associated with a reduction in SED and enhancement on the total
volume of PA (Bassett et al., 2017). Indeed, estimation of LPA for
children with CP through standard cut-points, such as Evenson et al.
(2006) and Vanhelst et al. (2010), presented poor to fair classification
accuracy (Clanchy et al., 2011; Ryan et al., 2014; Trost et al., 2015).
Additionally, the lack of standardisation regarding protocol design and
statistical approach hinders the applicability of the cut-points, which
might explain the variability found between cut-points developed for
the same clinical condition. Consequently, age- and sex-matched
healthy control groups are essential to elucidate whether the differ-
ences observed in the disease-specific protocol are due to the disease
severity or to protocol discrepancies. However, only one study
(Stephens et al., 2016) included a control group although this was only
used for baseline comparisons.

4.4. Strengths and limitations

The present systematic review is associated with numerous
strengths. Firstly, an experienced librarian was consulted to revise the
initial protocol and a pilot search was conducted to minimise errors,
leading to changes in the eligibility of participants, outcomes, risk of
bias assessment and analysis. Moreover, the initial search terms were
adapted following advice from the librarian. The pilot search generated
a large number of studies for participants across the lifespan and health
continuum, therefore, the inclusion criteria for participants were lim-
ited to only children and adolescents with clinical conditions.
Nevertheless, the literature was initially screened to capture all cali-
bration studies for healthy and clinical populations. Whilst this strategy
resulted in an extensive search, it also minimised the possibility of
missing studies calibrating for a clinical condition. However, this
strategy is not without limitations, as it required having only one author
screen all the titles and abstracts. Nonetheless, different approaches
were adopted to minimise error. Specifically, an EndNote library was
created, and the same search strategy was used for all databases. Whilst
double data entry was not performed, a data extraction sheet was cre-
ated and checked by two co-authors (KAM, MAM), and subsequently
made available to all authors during the extraction process.

A qualitative data synthesis was performed due the heterogeneity of
calibration protocols and the calculation of cut-point effect sizes not
being possible, thereby precluding a meta-analysis from being per-
formed. The heterogeneity of the protocols can partially be explained
by the inclusion of a broad range of clinical conditions. However, whilst
the comparison of numerous clinical conditions of a different nature
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may be questioned, the primary aim of the review was to investigate the
structure of different calibration protocols and how they accounted for
the pathophysiology of the respective conditions. Despite the varying
nature of the conditions included, only a small range of studies cali-
brated accelerometry in clinical populations, which hinders further
conclusions regarding the optimal protocol.

5. Conclusion

Overall, this systematic review highlights the broad range of pro-
tocol designs and accelerometer settings of studies developing MVPA
cut-points for children and adolescents with clinical conditions.
Research seeking to develop disease-specific paediatric cut-points
should consider the pathophysiology of the disease and seek to include
a measure of EE, an accurately assessed RMR and a healthy comparison
group. Moreover, all cut-points developed should be cross-validated. In
summary, studies calibrating accelerometry in paediatric clinical po-
pulations are urgently required to establish an optimal calibration
protocol. Subsequently, the enhancement in the assessment and sur-
veillance of PA for clinical populations could lead to the development of
more informed clinically specific PA guidelines.
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