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Abstract 

Climate change is one of the greatest threats in the 21st century to all inhabitants of the planet. 
Conservation organisations in the UK are interested in understanding this risk to their sites, and in 
integrating climate adaptation into management plans. This research assesses the use of high resolution 
UKCP18 projections for three case studies managed by the National Trust in Wales. The case studies cover 
a range of expected climate impacts to, bird species distributions, wind on parkland trees and fire in 
peatland areas. Predictions are at a range of scales from a single property through to the UK scale. Results 
are presented for three time frames of 20-year averages; 1980 to 2000 (1990s), 2020 to 2040 (2030s) and 
2050 to 2080 (2070s). 
 
Bird species in the UK uplands, especially habitat specialists, are vulnerable to climate change. For the 
species distribution study current and future distributions of five bird species found in the uplands of 
Britain were modelled using the Maxent model. Results at 2.2 km and 12 km scales were compared, with 
baseline and projected habitat layers included to investigate land cover change. Species-specific, local scale 
species distribution models outperformed those at the larger spatial scale. Habitats were found to be more 
limiting than climate, with all species increasing ranges under climate change alone. 
 
Fire risk on peatlands is increasing, with risks to important habitats and carbon stores. The Canadian Forest 
Fire Danger Rating System (CFFDRS) was tailored to an upland peatland and predicted three metrics of 
future fire risk: 1. Fire Weather Index (FWI), a measure of fire risk, 2. Head Fire Intensity (HFI), the strength 
of a potential fire and 3. fire season length. The metrics were validated using dates of known fire at the 
site. All metrics of fire risk increase from the 1990s to 2070s with reductions in risk in the 2030s. Validation 
results suggest FWI is a better predictor of fire risk than HFI. Current conservation and farming practices 
may need to adapt to consider risk from fires all year round. 
 
High wind speeds have a direct impact on tree health and lifespan in forests and parklands, and 
consequently affect visitor safety. Tatter flags were used to quantify the exposure of individual parkland 
trees to wind speeds and direction, with baseline data gathered from a year-long fieldwork study. The 
number of times the site may have to close due to high winds above pre-determined thresholds were also 
calculated. Trees are more likely to become more exposed to high winds in autumn and winter seasons, 
with a decrease in exposure in the spring and summer months. Wind directions are predicted to continue 
as a prevailing south-westerly, but likely to experience more wind from the north-west. Closures are 
predicted to increase, especially around Christmas and Easter holidays. The current site plan may not be 
viable in the future, with exploration around new access routes and species a potential next step. 
 
Finally, we conducted a feedback study with staff at each site to explore understanding about the results 
from the data chapters. We developed all chapters and outputs iteratively with staff using an online 
questionnaire. Staff found that results presented about their case study site would be useful when thinking 
about conservation planning and adaptation for the future. 
 
Overall, most results suggest a decrease in risk from climate change in the 2030s, and an increase in the 
2070s compared to the 1990s. We found that, as expected, tailoring models to a site or species produces 
results of a greater degree of accuracy, and therefore are a greater useful contribution to conservation. 
Finally, we have demonstrated the versatility of high-quality local scale climate data in a range of scenarios 
as useful data to explore future risk at the site scale. 
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Maximum FWI, D) Maximum HFI. 
 
A4.2.1 Interpolated wind speed results for Chirk Castle November 2019 to November 2020. 
 
A4.3.1 A) Linear model comparing fieldwork period and theoretical results along the logarithmic scale. The 
majority of points fall along the reference line suggesting normality. B) Linear model comparing each 
fieldwork period results along the logarithmic scale. Most points for each month fall along the reference 
line, suggesting normality. 
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Chapter 1: General introduction 

 

Here I provide a general introduction to this thesis and the surrounding research with a focus on current 

and future impacts of climate change to biodiversity. This includes, the data used and how these have 

evolved over time, differences in scale and need between conservation management and processes 

impacted by climate change, and finally consideration of the requirements of conservation practice in 

communicating these impacts. This chapter, while a thesis introduction, provides a review of the relevant 

literature as well as outlining the rest of the thesis. 

1.1 Climate change and biodiversity 

Climate change, directly impacted by anthropogenic activity (Mooney et al., 2009; Haustein et al., 2019; 

Basińska et al., 2020), will be the most important threat to, and primary driver of increasing vulnerability 

and loss to biodiversity by 2100 (Klausmeyer et al., 2011; Pautasso, 2012; Scheffers et al., 2016; Brandt et 

al., 2017; Synes et al., 2020). Disruptions to ecosystems from this change are unlike any previous 

disturbance, with threat of a sixth mass extinction (Barnosky et al., 2011; Bellard et al., 2012). Global 

biodiversity is declining faster than at any time in human history with devastating implications for all 

species (Diaz et al., 2019). Other impacts, such as habitat fragmentation, land use change and agriculture 

also negatively affect biodiversity (Sozanska-Stanton et al., 2016), and are exacerbated by climate change. 

Average global temperatures are predicted to exceed 1.5oC of warming above pre-industrial levels at the 

earliest by 2030 (IPCC, 2018; Masson-Delmotte et al., 2018a), with warnings of irreversible changes to 

ecosystems and Earth systems processes. Impacts to weather events over recent decades in the United 

Kingdom have already been directly attributed to global greenhouse gas (GHG) emissions (Pall et al., 2011). 

These impacts are mirrored in the natural world, with increases in risks of droughts, wildfires and flooding 

(Arnell et al., 2021). Extreme weather events in the UK are becoming more common and severe, and are 

expected to become more frequent with climate change (Arnell et al., 2021; Clarke, Otto and Jones, 2021). 

Considerable evidence highlights the need for developing good quality habitats through actions such as 

wetland restoration and land use changes to sequester carbon, reduce GHG emissions and increase 

biodiversity in priority habitats in the UK and beyond (e.g. Sozanska-Stanton et al., 2016; Morecroft et al., 

2019; Field et al., 2020; Rowland et al., 2021a; Smith et al., 2022). Through reduction of these emissions, 

change may be slowed, extreme events lessened and ecosystems likely to become more resilient to change 

although global progress on emissions reduction is falling short of both commitments and requirements to 

avoid the worst climate change. 

This thesis focuses on local-level impacts of climate change to conservation sites in Wales owned and/or 

managed by the National Trust, and in this, explores some of the risks to Wales. These risks have been 

recognised since the 1990s, with recognition that costs will far outweigh the benefits of warmer winters 

and wetter summers (Hurst, 1997; Farrar et al., 2000). Average temperatures in Wales have increased by 

almost 1oC since the mid-1970s, with significant heatwaves in 2019 and 2022 (Netherwood, 2022). Under 
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high emissions scenarios estimating future average global temperatures exceeding 4oC, average 

temperatures in Wales could increase by 2.3oC by the 2080s, with a greater number of risks associated with 

these increases identified in the most recent Climate Change Risk Assessment (CCRA3) (Climate Change 

Committee, 2021; HM Government, 2022). Met Office predictions show similar trends (Met Office, 2018), 

with Welsh climates under high emission scenarios potentially experiencing summer rainfall decreasing by 

over 50 % and temperatures increasing by up to 6oC. Winter months are also predicted to see increases in 

temperature of up to 4oC with precipitation up to 29 % wetter than current averages. These changes could 

see negative impacts to species and landscapes in Wales such as losses to habitats, although little research 

has explored these impacts at the Welsh scale. Recent studies have explored the significant impacts of 

climate in Wales to hydrology (Dallison, Patil and Williams, 2021), buildings (Hayles et al., 2022) and 

forestry (Ray et al., 2015), but with little exploration into the impacts to species and habitats. One paper 

(Arnell, Freeman and Gazzard, 2021) explored how climate change may affect fire danger in the UK, with a 

Welsh case study which predicts between a 78 to 98 % likelihood of Wales experiencing more days than 

the current average at very high danger from fire. This highlights the importance of conducting research at 

the local-level for Wales due to the scarcity of research investigating climate change impacts, but the high 

risk found in studies which have explored risks to the area. 

Nearly 60 % of species in the UK are showing long term negative trends in abundance and distribution 

(Hayhow et al., 2019), with agricultural policies and climate change highlighted as key reasons for declines. 

Previously, the Lawton et al., Report (2010) emphasised that England’s ecosystems are highly degraded and 

unable to respond to climate change and changes in land use. This limits not only the species and habitats 

present, but also the capability of these landscapes to deliver important ecosystem services, from 

recreation to carbon sequestration. Without understanding how these unprecedented impacts may affect 

sites managed for nature, experts will be unable to put useful, sustainable practices in place to bolster 

ecosystems and potentially lessen the effects of negative change. There is potential for some species to 

benefit from climate change, through new colonisations or increases in suitable range (Thomas et al., 

2011), especially through the protected area network (Johnston et al., 2013). Targeting management to 

areas that are more likely to protect diversity of species, and facilitate species distribution shifts, could 

focus resources to and increase positive outcomes from the perspective of climate change.  

There is an understanding of these threats and the scale of potential change, depending on different 

scenarios, but there is less understanding on the most effective ways to react to this change (Cook, 

Hockings and Carter, 2010). Evidence-based decisions and action will help nature to become more resilient 

to, and better aligned with, change and even help slow global average temperatures (Stafford et al., 2021). 

There could be several options for a site or area (McLaughlin et al., 2022), with conflicting requirements 

and limited resources for implementation. Analysis of change and impacts at the local scale leads to greater 

understanding of risk and opportunity (Glad and Mallard, 2022) and provides evidence to decide the most 

effective ways to manage change. 
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1.2 What can we do about climate change? A brief introduction to UK climate policy and 

targets. 

Nature is essential for meeting worldwide agreements such as the Sustainable Development Goals to 

ensure a liveable planet, many of which have already been exceeded (Pecl et al., 2017). As a global 

community we have already missed seemingly vital targets to enhance biodiversity as set out by the 

Convention on Biological Diversity (CBD) (Lawton et al., 2010; Mace et al., 2010). Even though these targets 

were criticised as being unrealistic, with recommendation for a smaller number of specific targets, we have 

seen little positive change towards worldwide goals. Transformative change is required to meet any global 

targets set for emissions reductions, area of land within conservation designation or sustainability goals. 

For example, the ambitious proposal to protect or conserve at least 30 % of the planet by 2030 (Convention 

on Biological Diversity, 2020), will require coordinated efforts between countries and experts to meet this 

goal. 

Within the UK, the Climate Change Act (2008) forms the basis for responding to climate change, primarily 

through the reduction of GHGs, but also through identifying vulnerability via climate change risk 

assessments (UK Government, 2008). In Wales, this catalysed the formation of the Environment (Wales) 

Act 2016, which contains targets for an 80 % reduction in GHG emissions by 2050, compared to 1990 levels 

(Welsh Government, 2016). These are strong targets, requiring updates and innovative measures to meet 

more recent ‘net zero’ emissions targets for the UK as set in 2019, also to a 2050 deadline (BEIS, 2021). In 

England, the UK Government’s 25-Year Plan for the Environment commits, albeit without specific 

recommendations, to do what is necessary to adapt to the effects of a changing climate (DEFRA, 2018). 

This plan has also come under scrutiny as it is unlikely to fit with some approaches to protecting nature, 

such as more innovative, experimental ideas (Dempsey, 2021) such as rewilding projects. The Plan does 

provide strong targets and recognises the broad benefits nature brings to the table, but without 

implementation and ongoing research into adaptation need, these targets are unlikely to be met. 

Additionally, with the continuing relaxation of regulations following the UK exit from the European Union in 

2016, and further damaging of shields against development on legally protected land in recent 

Conservative announcement and budgets, these policies may amount to little.  

From a Welsh perspective, the Wellbeing of Future Generations (Wales) Act (2015) includes commitments 

to protect the natural environment to enhance a healthier, globally responsible, and resilient Wales. 

Climate change is at the centre of the Act (ASC, 2016), with one wellbeing goal the ‘Resilience Goal’ 

specifically highlighting the need for adaptation. Wales’s natural environment is worth £8 billion to the 

Welsh economy (Welsh Government, 2015), and also recognised for its intrinsic, cultural values and 

positive impact to sustainability. Recent pledges by Welsh Government to uphold fracking bans are hopeful 

signs that these goals will be respected, but political climates often only examine the short term whereas 

our planetary climate requires much greater temporal scales of investigation and care. 
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To analyse risks to the UK from changing climates, the UK Climate Change Risk Assessments (UK CCRA) 

were developed as a requirement of the Climate Change Act in 2008. Three CCRAs published in 2012, 2017 

and 2022 (CCRA3) (HM Government, 2022) have assessed future impacts and the actions required to 

mitigate and adapt to them, including our commitment to net zero. Main points from CCRA3 surround the 

large economic cost of climate change and highlight the case for acting now rather than later, especially to 

prevent locking-in large future impacts. The report recognises that small average changes can lead to large 

changes in extreme events, but also that climate change will present some opportunities for the UK, 

although these centre around international trade rather than the natural world. Nevertheless the key risks 

and priorities recognised by CCRA3 and the prior independent review (Climate Change Committee, 2021) 

highlight risks to terrestrial species and habitats from temperature changes, wind speeds and wildfires, all 

of which are explored in this thesis. The CCRA3 identified 61 risks to Wales from climate change, with all 

but eight requiring further investigation or more action (Netherwood, 2022). This suggests a lack of useful 

evidence or resources to assess these risks. Three risks to Wales in the CCRA3 have particular relevance to 

this research project. One relates to the risks and opportunities presented in natural carbon stores, with 

healthy environments contributing to carbon sequestration, but degraded and more at risk stores 

potentially shifting to become sources of GHG emissions. Another risk with an associated opportunity is to 

terrestrial species and habitats which are at risk from changing climatic conditions and extreme events, as 

described above. There could be some opportunities to these terrestrial species through potential for new 

species colonisation, although this could lead to negative impacts from invasive species. Finally, there has 

been a recognised risk and potential opportunity from climate change to natural heritage and landscape 

character. The urgency score for this sector has been updated from ‘watching brief’ in CCRA2 to ‘further 

investigation’ in CCRA3 (Netherwood, 2022) suggesting that these risks have increased in scale from 

previous risk assessments. 

Evidence of current change and increases in risks (Arnell et al., 2021) support development of national and 

local climate and resilience policy. Many climate variables, such as wind gusts (Schindler et al., 2013) and 

precipitation, are highly variable and likely to become more so (Pendergrass et al., 2017), and therefore 

understanding local risk and putting into place local policy and plans are likely to have greater positive 

outcomes. However, this is likely to be resource intensive and requires a thorough understanding of local 

risks and variability. 

1.3 Using conservation management to react to processes impacted by climate change: 

scale and need 

There are impacts of climate change to ecosystems that have been understood for many years now 

(Thomas et al., 2004; Chambers et al., 2007; Lawton et al., 2010; Johnston et al., 2013; Turetsky et al., 

2015; Liang et al., 2018; Hayhow et al., 2019; Loisel et al., 2020). However, identifying and assessing the 

vulnerability of species, habitats and processes to climate related change is complicated (Clark et al., 2010; 

Pacifici et al., 2015), and often an overlooked step in conservation planning (Pearce-Higgins et al., 2011). 
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For example (Pearce-Higgins et al., 2017), identified the most vulnerable species through considering 

alterations to species ranges sizes with climate change, and combining species distribution modelling 

techniques (Beale, Brewer and Lennon, 2014) with species risk assessments (Thomas et al., 2011). These 

results were found to be highly species-specific and therefore using broad species categories can be 

problematic as many individual species respond differently to even closely related cousins. A meta-analysis 

(Radchuk et al., 2019) found that climate change has advanced phenological traits, such as migration, in 

birds. This could greatly affect timings of management on site, such as cutting or burning as species could 

be at great risk from disturbance or loss of habitat. However, whilst these impacts of climate change are 

being experienced on sites, many site managers are yet to include climate change adaptation in 

conservation plans (Duffield, Le Bas and Morecroft, 2021). 

The need for evidence-based management for UK conservation has been recognised (Sutherland et al., 

2010) with priority policy options able to guide scientific research. This need can be met through the 

tailoring of research around the type of decisions that are made about a certain species or habitat requiring 

conservation (Schwartz, 2012). Yet there have been relatively few case studies of scenario-led adaptation 

(Green and Weatherhead, 2014). This is potentially due to a lack of resources, considerable uncertainties 

around models and future conditions, and data intensive methods (Green and Weatherhead, 2014). 

Scenario-led adaptation could be developed through co-designed research between academics and 

practitioners with significant inputs from stakeholders at all stages of research which can increase the uses, 

reach and scope of a desired outcome (Kurle et al., 2022). When stakeholders bring a scenario to 

researchers this can lead to tailoring of outputs to what people actually need on the ground, and while 

these could become highly specific to a place or impact, they can also clead to the formation of new ideas 

for wider conservation management. 

In this thesis, I explore the needs of the National Trust (NT) a non-governmental organisation (NGO) in 

understanding climate risk to places it manages, and how these risks can be adapted to bolster resilient 

sites. The NT has a commitment to preserve nature and heritage across England and Wales, to protect 

important sites and ensure that these areas can be enjoyed by everyone. There is a clear recognition for 

the need to protect sites from climate change and the NT is leading the way in sustainable practices such as 

energy generation at its properties. As part of this, in 2015 the NT identified climate change as the greatest 

threat to the organisation in the 21st century (National Trust, 2015), and yet is unsure exactly what this will 

mean for properties and how to plan for these impacts. Much of the evidence for change was reactionary, 

in understanding events that had already occurred in the context of climate change. Current academic 

research surrounding the impacts of climate change to the NT has focused on energy (Blades et al., 2018) 

and risks to historic interiors (Lankester and Brimblecombe, 2012). There has been investigation into 

sustainable heritage tourism at the National Trust and this commitment to climate change (Floy, 2015), but 

little research into how climate impacts may threaten nature on its sites. When considering the NT role in 

climate change adaptation, and wider nature conservation, there is a responsibility not just to the natural 
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world, but to members of the charity. The NT has a bold commitment of ‘For ever, for everyone’, with an 

explicit promise to maintain and enhance land and property within its care. Additionally, the NT is facing 

similar challenges to other nature conservation organisations like the Royal Society for the Protection of 

Birds (RSPB) and the Wildlife Trust. These three organisations all have sites that are open to the public to 

encourage people to enjoy and learn about nature with a dedication to the protection and conservation of 

the natural world.  

I have worked in collaboration with the National Trust through funding from the Knowledge Economy Skills 

Scholarship (KESS2) programme (kess2.ac.uk). The scholarship is supported by the European Social Fund, 

and through Welsh Government links organisations with all Welsh universities to undertake collaborative 

research. This not only trains research students and enables them to further their education, but also puts 

small-to-medium enterprises at the heart of research. This collaboration highlights the importance of 

evidence-based decision making for conservation organisations and the usefulness of conducting scientific 

research to aid in these decisions. The project was part-funded by the National Trust directly by the three 

case study sites explored in this thesis due to their interest in the impacts of climate change and risks at 

each site. Properties were visited at the commencement of research to understand more about the current 

impacts and the potential risks that managers were concerned about in the future. This ongoing 

collaboration helped to strengthen the project and keep it focused on organisational need as well as 

scientific advancement. 

1.4 Communicating the impacts 

There is little point in researching and quantifying impacts of climate change to ecosystems, if the 

understanding gained is not passed on to relevant organisations and stakeholders. However, this 

communication of impacts is often overlooked, with a widening gap between research and practice. While 

there is an increasing focus on applied research that delivers impact, recognising and quantifying this 

impact once research is conducted can be lacking (Yates et al., 2018; Fabian et al., 2019). Numerous studies 

have investigated ways to bridge this gap. There is recognition that the published science is useful in 

conservation management and used if appropriately provided (Fabian et al., 2019), but that barriers to 

uptake by stakeholders include time constraints, access to journals and lack of specialised scientific 

expertise. This has led to decisions in the past being mostly experience-based (Pullin et al., 2004) with 

reliance on traditional land-management practices, which may not be suitable under future climates. 

Decision makers need access to reliable evidence-based information, presented in readable form, to enable 

the best responses to climate change risks and assess opportunities for adaptation (Harrison et al., 2013). 

Decisions may also need to be made quickly in reaction to impacts (Cook, Hockings and Carter, 2010), with 

sometimes little time for assessment of evidence-based literature. Integration of stakeholders from the 

onset of a project has been highlighted as an important step in communicating impacts and developing 

projects that meet stakeholders needs (Harrison et al., 2013; Samson et al., 2017; Fabian et al., 2019). 

Additionally, local perspectives on environmental change are important as these communities are the ones 
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who experience the change and often have a greater wealth of knowledge on the area than potentially 

outside researchers (Palacios-Agundez et al., 2013).  

Several methods have been used to bridge this science-practice gap and produce outputs which are useful 

and accessible for local nature conservation. Community-based scenario planning puts locals at the heart of 

a project, which revealed local perspectives on environmental change, visions for their community and 

actions to aid in community adaptation to change (Bennett, Kadfak and Dearden, 2016). Early engagement 

of stakeholders and practitioners is a key step in producing results useful and wanted for practice (Samson 

et al., 2017), with ongoing engagement throughout a project providing stakeholders with ownership of a 

project (Shaw et al., 2009). Additionally, visualisation of an impact or a solution aids in better 

understanding and acceptance (Milligan et al., 2009). Projects like the CLIMSAVE platform (Harrison et al., 

2013; Harrison, Holman and Berry, 2015) provide an interactive tool which practitioners can use to assess 

impacts under different scenarios and adaptation measures. This open access participatory modelling tool 

provided a high level of customisability and was developed with stakeholders through a number of 

workshops to develop scenarios and adaptation responses (Harrison, Holman and Berry, 2015). While this 

is an innovative approach, it requires a certain level of knowledge from stakeholders and could be fairly 

time intensive.  

Other repositories of information collated to assist in environmental decision making include the 

Conservation Evidence website (Sutherland et al., 2004, www.conservationevidence.com) which is 

designed to suggest conservation actions based on keywords, species and habitats, and the country in 

question. For example, searching “adaptation” for the United Kingdom returns 15 actions which could be 

used to conserve biodiversity. Searching “climate change” as a keyword also for the UK returns 22 actions, 

with information on the effectiveness of these actions and links to multiple open access journal papers in 

that area. However, these actions are based around specific species and habitats which may not be useful 

to stakeholders if they are interested at a site or landscape-scale level. Recently, the British Ecological 

Society published a new open-access journal Ecological Solutions and Evidence to foster communication 

between practitioners, policy makers and academic researchers in the sharing of ideas and ecological 

system management (Cadotte, Jones and Newton, 2020). However, these papers are still only likely to be 

accessible to those with time and knowledge of their availability, even with the inclusion of shorter form 

papers designed to share practice in applied management. 

Communication of environmental research to stakeholders is vital to ensure uptake and use of ideas and 

results in decision-making. These must be accessible through face-to-face meetings, stakeholder-led 

initiatives, interactive online programmes, or open-access easily understandable research. Projects 

developed with stakeholders are likely to be more successful if stakeholders are included in all aspects of a 

project (Samson et al., 2017), and there may be scope to design, run and publish research in direct 

collaboration with stakeholders. The research within this thesis creates links between science and practice. 

Throughout my PhD research I worked collaboratively with a range of partners within the National Trust 
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from the conception of the individual site-based projects throughout my research through iterative 

feedback loops. The recognised value in integrating stakeholders from the onset of a project as shown in 

previously mentioned research (Shaw et al., 2009; Bennett, Kadfak and Dearden, 2016; Samson et al., 

2017) was the reasoning behind developing each project directly with the National Trust, so that the results 

were more likely to be integrated into current and future nature conservation and land management 

planning. 

1.5 The case studies 

This thesis presents three chapters exploring through spatial and temporal data the local effects of three 

different situations for which the increasing impacts of climate change are likely to be common issues for 

UK nature conservation bodies. Three case study sites (figure 1.1) chosen for their popularity with visitors, 

observed impacts of climate change and previous management activities are the focus of each chapter. 

These sites also represent values the National Trust aims to uphold across its entire site portfolio of, among 

others, nature conservation, heritage value and community. The impacts studied represent a variety of 

issues the National Trust faces when properties are affected by the impacts of climate change, and I 

provide information about how trends of these impacts may develop. Each site is at a different spatial scale 

to explore differences in trends and useability of UKCP18 climate. Abergwesyn Common is at the largest 

scale being an upland common approximately 20 km in length. The Ysbyty Ifan Estate is marginally smaller 

at 10 X 12 km with Chirk Castle at the finest spatial scale of just over 1 X 1 km. These case study sites are 

explored in more detail below, with a data chapter focusing on each site individually. 

For more information about the differences between scale, which are continued throughout this thesis, 

local refers to the Met Office UKCP18 climate projections used in all analyses, while site scale refers to the 

scales at which each case study site is at. These site scales are similar, but differ slightly due to the physical 

size of the sites included in this thesis, and the scope of each chapters research as mentioned above. 
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Figure 1.1: The location of the three case study sites in Wales, UK. Each study site is a property or land owned and/or managed by 
the National Trust. 

1.6 Thesis aims and objectives 
Accounting for adaptation to climate change in conservation planning at the site level was recommended 

in the recent CCRA3 technical report as being important to develop ongoing successful adaptive 

management (HM Government, 2022). Overall, this thesis has three main objectives; 

1. To assess if local scale UKCP18 data together with existing models is useful in identifying and 

quantifying climate risks, 

2. To assess how climate change is likely to affect ecosystems at different scales and for different 

impacts to explore usefulness of modelling outputs at different scales, and 

3. To understand how to communicate these risks and provide more insight into bridging the gap 

between science and practice. 
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These objectives work towards an overall aim to evaluate the extent to which integrating high scale climate 

data into landscape management improves the information provided and enables climate change to be 

integrated into these management plans. 

Here I aim to highlight the importance of process-based site-specific, but transferable modelling that is able 

to enhance adaptation management as an additional layer of information in conservation planning. 

Tailoring models to sites and impacts provides useful insights into local scale changes which could be tested 

at other sites and scales. The transferability and connection to Welsh conservation, in this case through the 

National Trust, is vital to ensure implementation of research which may add to the current wealth of 

information professionals use on sites to adapt to climate change. Local scale climate projections are 

assessed for useability in these models to test predictions at similar scales to conservation management 

needs and associated processes. The outcomes of this research provide more evidence on the impact of 

climate change at the site-level through three specific risks and how modelling projects can bridge the 

science – practice gap. Through three case studies, this thesis meets the overall aim and objectives 

through: 

1. Quantifying the change in suitable climate and habitat space for distributions of five bird species 

found in the uplands of Wales and Great Britain and assess the predictive power of default and 

species-specific inputs, with a case study in mid-Wales at Abergwesyn Common (20 km length of 

site) (chapter 2). 

2. Assessing the future impacts of fire risk and severity to an upland peatland in North Wales and 

investigate the applicability of a Canadian fire risk model in this context focusing on a case study at 

the Ysbyty Ifan Estate (10 X 12 km) (chapter 3). 

3. Assessing the capability of tatter flag methods to quantify the current impacts of wind speed and 

direction to parkland trees and develop future predictions of the risks of exposure to these 

individual trees, focusing on a case study at Chirk Castle (1 X 1 km) (chapter 4). 

4. Investigating the needs and requirements of National Trust staff in developing robust conservation 

planning essential to delivering resilient ecosystems and understand further the barriers and 

opportunities in the interface between science and practice (chapter 5). 
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Chapter 2: Data and data use in environmental modelling: what do we 
need and how do we use it? 
 

2.1 Climate change data and accessibility 
The basis of evidence and information needed to prioritise action for biodiversity should come from an 

understanding of current and past conditions of species and habitats, and take into account projected 

future change (Thomas et al., 2011). Identification of trends through spatial modelling highlights costs and 

opportunities through the testing scenarios and tailoring inputs to modelling. Projections of future climates 

are at the heart of research understanding climate impacts to species and habitats. The Met Office has 

released four iterations of climate projections for the UK in 1998 (Hulme and Jenkins, 1998), 2002 (UKCP02) 

(Hulme et al., 2002), 2009 (UKCP09) (Murphy et al., 2009) and 2018 (UKCP18) (Lowe et al., 2018) to provide 

a range of plausible scenarios based on individual data for different environmental variables. Overall trends 

for all iterations of climate projections predict in general, warmer, wetter winters and hotter, drier 

summers for the UK (Hulme and Jenkins, 1998; Hulme et al., 2002; Murphy et al., 2009; Lowe et al., 2018). 

The scale of change has been updated over time with new information on global emissions and greater 

predictive power for models. In particular this relates to spatial scales available for modelling future 

climates and impacts. The first predictions in 1998 were available at one spatial scale which matched that 

of the HadCM2 emissions scenarios at approximately 295 km X 278 km (Hulme and Jenkins, 1998). Greater 

geographical resolution was requested for subsequent iterations of projections, with 2002 predictions 

available at a finer 50 km scale (Hulme et al., 2002). At the time, users of these models were warned about 

“over-interpreting the significance of geographical differences on these small scales” (Hulme et al., 2002) 

as these regional models were driven by a global climate model. Further iterations of UKCP models 

increased spatial scales of predictions further, with UKCP09 projections available at 25 km resolution, with 

Weather Generator predictions at 5 km (Jenkins et al., 2009; Murphy et al., 2009). This allowed greater 

exploration of projections and impacts at regional scales (Jenkins et al., 2009), those which are more likely 

to match with species movements and conservation management decisions. The UKCP18 climate 

projections provide future trends of climate at the greatest range of spatial and temporal scales, from local 

2.2 km, regional 12 km and 25 km, and larger resolution 60 km scale to investigate landscape-scale impacts 

(Lowe et al., 2018). Daily projections have been included for the first time, and a wider range of emissions 

scenarios are available. This increase in resolution and scenarios allows exploration of change at the scale 

at which ecosystems are likely to change enabling management to respond in kind. While there are higher 

uncertainties surrounding high spatial scale climate projections, these data are especially useful for the 

examination of extreme risk and weather events which could have large impacts to the natural world. 

Climate trends, weather events and tipping points for individuals and communities of species can be 

predicted using these Met Office projections under a range of climate scenarios, and spatial and temporal 

scales. Research has explored the useability of these projections (Tang and Dessai, 2012), as there has 

often been a disconnect recognised between climate impact science and the writing and implementation 
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of conservation decisions and policies. This research found that although the UKCP09 data was perceived 

to be robust and useful by adaptation stakeholders, actual use of projections was dependent on scientific 

competence which was often lacking (Tang and Dessai, 2012).  

The UKCP18 data provides projections at higher spatial resolutions without further manipulation of the 

data sets being required when compared to UKCP09. One large difference between the 2009 and 2018 

iterations of projections is the increase in temporal scale in raw projections. A number of papers explored 

the use of the UKCP09 Weather Generator which was able to calculate hourly predictions of weather 

variables for a location (Eames, Kershaw and Coley, 2011a; Kershaw, Eames and Coley, 2011; Watkins, 

Levermore and Parkinson, 2011; Dunn et al., 2012; Jack and Kelly, 2012; Lankester and Brimblecombe, 

2012; Mylona, 2012). This Weather Generator was used, for example, to create wind speed and direction 

variables at an hourly temporal resolution (Eames, Kershaw and Coley, 2011b), which were not previously 

available. However, the creation of such files was not without requiring computational skill to ensure that 

these Weather Generator outputs were useful for the task at hand. Therefore, the Weather Generator 

highlighted the importance of using projected weather files to identify smaller temporal scale changes, but 

that there was a high level of uncertainty (Mylona, 2012) and computational requirements in the creation 

and comparison of these files. Flexibility of climate projections in developing weather files for a specific 

area, for example, can enhance useability of the data for those with available technology and skills, but 

may exclude some users from fully accessing the data. UKCP18 went a step further by providing a larger 

range of projections of climate variables at a variety of temporal and spatial scales (Lowe et al., 2018). This 

data is relatively new with the literature exploring a variety of uses for the models from using the Climate 

Projections User Interface (Reeves et al., 2022) to download ready-made products of future climate, to the 

calculation of decadal averages from raw data to aid in analysis (Dallison, Patil and Williams, 2021). 

However, these are at broader spatial scales of 12 km (Dallison, Patil and Williams, 2021) and 25 km 

(Reeves et al., 2022), which provide important regional predictions, but give less information at the local 

scale. The UKCP18 projections provide predictions of future climate at a 2.2 km spatial scale (Lowe et al., 

2018) which can be especially useful for highly spatially variable metrics such as wind and precipitation. 

Assessing the accuracy of these predictions is ongoing as high spatial and temporal scales can be highly 

variable. However, these local scale variables are being explored and they are able to predict observed 

climate patterns to a high degree of accuracy (Chen, Paschalis and Onof, 2020). In this thesis, I explore the 

potential use of 2.2 km UKCP18 climate projections from the Convection Permitting Model (CPM) (Kendon 

et al., 2019) to explore local-scale impacts. The CPM allows for high spatial and temporal predictions of 

future climate if a high emissions scenario (RCP 8.5) is experienced (Kendon et al., 2019). The 

Representative Concentration Pathway 8.5 is the worst case scenario of change utilised by the IPCC and 

relates to a predicted global temperature increase of approximately 4.5oC (van Vuuren et al., 2011). While 

this is unlikely to occur if emissions targets are met, it represents a worst case scenario, which can be 

useful in planning responses. Additionally, this greater spatial and temporal scale allows for change to be 
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modelled at a scale that matches local processes and impacts, such as those for an individual species 

(Boulangeat, Gravel and Thuiller, 2012) or site (Coll et al., 2010). 

 

2.2 What are we talking about when we talk about model results? 
When thinking about how well a model explains a hypothesis or answers a question, there are a number of 

things to consider. These include, the accuracy and reliability of input data, model methods and analysis, 

how the model is validated and compared to real-time data, and the precision of the results which in turn 

could dictate how useful they are. However, detail on what is meant by terms such as ‘accurate’ can be 

lacking which in turn, can be misleading in scientific text. Below, I outline the definitions of commonly used 

language when explaining scientific models. For all mentions of these terms in the rest of the thesis, refer 

back to this section for definitions. 

Accuracy is often used to describe for example, how close predicted results match known values or trends. 

The higher the accuracy of a model or result, the higher the likelihood of these results being useful in 

contributing to answering questions about a system. If a result is not accurate, decisions could be made 

that negatively impact the study system or research may not provide the answers required. Understanding 

and clearly reporting the accuracy of a model or result is vital in evidence-based decision making to ensure 

that subsequent actions are made from the best information possible. 

Reliability assesses if the findings produced from a study are good and useful. It refers to if a result can be 

trusted, and if decisions can be made based on the results. A more reliable result may lead in larger 

changes being made based on what the results show. For example, this could refer to greater financial 

backing or time spent on an action made in response to a study producing reliable results. Reliability can be 

tested through comparisons of predicted known distributions of a species or event to actual data of these 

predicted. The closer predictions are to known values, the more reliable we can ascertain the model to be. 

 

2.3 Shared methods and data within this thesis 
The main research and presentation of results in this thesis is separated into four data chapters, chapters 3, 

4, 5 and 6. While the majority of methods are unique to the specific chapter, there are some shared 

methods across the thesis. In this next section, I will go into detail about these shared methods. These 

methods will be mentioned in each subsequent data chapter, but this section will provide the greatest 

detail. 

 

2.3.1 Emissions scenario usage 
The Intergovernmental Panel on Climate Change (IPCC) set out four climate scenarios of future average 

global temperature increases based on future levels of greenhouse gas (GHG) emissions. Within this thesis, 

one emissions scenario is used throughout, that at the Representative Concentration Pathway (RCP) 8.5. 

This pathway represents a ‘worst case scenario’ in which global emissions continue to increase from the 

present day up to 2100, unchecked by policy, government, or individual action (IPCC, 2014). Under this 
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pathway, average global temperatures are predicted to increase by over 4.5oC, which would have 

catastrophic impacts to the natural and anthropogenic worlds. It is thought that this future would be 

unlikely to occur, however, understanding a worst case scenario ensures that  

 

Climate projections are available at a range of ‘global futures’ i.e. what the world could feel like, in terms of 

the climate variables explored, depending on the rate of GHG emissions and, in some cases, the level of 

adaptation and mitigation to climate change in place. These projections are detailed below to give an idea 

of the range of futures explored in climate change impact research, and the range of futures scientists 

conclude have the potential to occur. A representation concentration pathway is that that represents a 

possible range of radiative forcing values in the year 2100. Therefore, a RCP of 8.5 indicates a radiative 

forcing of 8.5 W per m2. 

 

2.3.2 UKCP18 climate change projections 
This thesis explores the use of local scale UKCP18 climate projections, developed by the Met Office, to 

analyse the impacts of climate change to three National Trust properties and sites in Wales. But what does 

all this mean in terms of the data used to assess these impacts? 

I used one data set from the UKCP18 climate projections, raw climate data from the Convection Permitting 

Models at the local spatial scale of 2.2km (see table 2.1 for details about other climate projection data). 

 
Table 2.1: Details about the Met Office UKCP18 climate projection datasets (Lowe et al., 2018; Kendon et al., 2019) 

Type Spatial 
Scale 

Temporal Scale Time Frame Emissions 
Scenarios 

Description 

Probabilistic 
projections 

25km Monthly 
Seasonal 
Annual 

1961 – 2100 RCP2.6 
RCP4.6 
RCP6 
RCP8.5 
SRES A1B 

- Probabilistic changes in future climate 
- Based on uncertainties in emission 

scenarios, key processes in climate 
models 

- Characterises future extremes in risk 
assessment 

Global 
model 
projections 

60km Daily 
Monthly 
Seasonal 
Annual 

1900 – 2100 RCP2.6 
RCP8.5 
2oC world 
4oC world 

- 28 projections 
- How climate may change in 21st century 
- Long time series 
- Has raw data 

Regional 
model 
projections 

12km Daily 
Monthly 
Seasonal 
Annual 

1981 - 2100 RCP8.5 - 12 projections 
- Downscaled from global projections 
- Has raw data 
- Extremes in climate are improved 

Convection 
permitting 
model 

2.2km Sub-daily (some 
variables) 
Daily 
Monthly 
Seasonal 
Annual 
20/30-year means 

1981 – 2000 
2021 – 2040 
2061 – 2080 

RCP8.5 - Predictions can be made at local spatial 
scales 

- 12 projections 
- The most spatially detailed picture of 

future climate 
- Provides information about localised 

rainfall and extreme events 
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The Convection Permitting Model (CPM) provides predictions of local effects of climate, and is downscaled 

from the regional climate models. These models provide credible climate information at sub-daily 

timescales, but cannot be substituted for real-time weather forecasts, they are still climate predictions and 

exist to provide trends at high resolutions and to explore extreme events.  

When evaluating if climate projections have accurately represented know time periods in terms of climate 

trends, both Met Office (Lowe et al., 2018) and independent (Tucker et al., 2022) reports indicate that 

current trends are simulated in climate projections, giving users high confidence in these predictions of 

future change. While this independent report (Tucker et al., 2022) does focus on the regional 12km 

projections, the local 2.2km projections are downscaled from those analysed in the study, and therefore 

confidence in the projections can be gathered. 

 

2.3.4 Ensemble members of climate change projection data 
The Convection Permitting Model (CPM) consists of 12 members, all assuming no reduction of greenhouse 

gas emissions to 2100, but each member differing due to natural climate variability and uncertainties in 

global model physics (Kendon et al., 2019). However, uncertainty in the CPM model members has not been 

sampled by the Met Office, and therefore uncertainties in the climate predictions are underestimated.  

Predictions of climate by the CPM do not differ greatly from the rest of the UKCP18 ensemble, and 

headline impacts remain that future conditions are likely to be warmer and wetter in the winter, and 

hotter and drier in the summer (Lowe et al., 2018). Rainfall predictions are those most different to the 

regional climate model (RCM) ensembles, with rain less often in the future, but when rainfall is predicted, it 

is heavier in the CPM compared to the RCM (Kendon et al., 2019). 

This thesis uses the first model member (01) and unfortunately, does not include an ensemble mean 

approach to the climate variables. As the raw daily data was used in analysis, data processing was 

extensive, and there was not enough time during the studies to pull out the data for all members and 

compute an average, or run the models for multiple members. This was especially challenging due to my 

own coding and data processing skills as the researcher as throughout the PhD research study period, I was 

learning to code in R, process huge data sets and run these models as I was going along. I recognise the 

limitations only using one model member adds to my research, and the results presented in this thesis. 

However, this thesis provides a step forward in the use of local-scale climate impact modelling for 

understanding further how climate change is likely to affect nature at the site scale, and therefore can be 

seen as a strong starting point for further research. Not only is the use of higher spatial resolution climate 

data a plus to the research, but the development of individual research skills, especially through coding, 

and experience and comfort with novel, large data sets only a benefit to the research sphere. 

Met Office guidance suggests that the 2.2km spatial scale predictions are to be used where improved 

‘representation of extremes or spatial detail is more important than exploring a wider range of future 

outcomes’ (Kendon et al., 2019). As this thesis is focused on improving the information provided in making 

decisions about future conservation management at the local/site scale, exploring these higher resolution 
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data is paramount, and therefore even assessing one model member, provides more information, and 

furthers science, than modelling only at lower spatial resolutions, even if this data may be easier and faster 

(computationally) to process. 

The first model member (01) of the CPM used in this thesis is without perturbed physics, and can be 

thought of as the default model in the projection members. Perturbation of model variables means that 

values of some variables within the model outputs are tested and changed for each member. This provides 

analysis of uncertainty and recognises that there are a range of plausible values for each model parameter 

which may control the processes informing climate change (Sexton et al., 2017). Future research could 

utilise multiple model members in analysis, either as a full ensemble of all members, or one that included 

lower, median and upper extremes of uncertainty within the overall model to reduce computational 

requirements. 

I used this first model member in this research with the recognition that this only provides information 

about one potential future of change and that there are a range of futures simulated within the UKCP18 

projections. Therefore, this research provides a single picture of potential impact, due to computational 

and researcher limitations, and that updating these results in the future with an ensemble projection 

would provide greater detail of plausible change.  

 

2.3.5 Shared data processing 
All climate data was processed once, and used in the same format for each thesis chapter, with the only 

alterations being in geographical space, and with some unit changes (see chapter 4). In this section, I 

describe the common methods used in all chapters in regards to the processing of the raw climate data 

projections. This data processing was carried out using R 4.0.2 (R Core Team, 2020), the sf (v0.9-8; 

Pebesma, 2018), ncdf4 (v1.17; Pierce, 2019), raster (v3.4-10; Hijmans, 2021), rgdal (v1.5-23; Bivand et al., 

2021)and PCICt (v0.5-4.1; Bronaugh and Drepper, 2018) packages. Data at two spatial scales was extracted 

from the Met Office UKCP18 directory within the Atmospheric Data repository in the Centre for 

Environmental Data Analysis Archive (data.ceda.ac.uk/badc/ukcp18) from Model 01 (as described above in 

2.3.4). These spatial scales were the 12km regional data and the 2.2km local scale data, both at the daily 

time steps to accurately compare the same temporal time scales.  

All data were downloaded as netCDF files which contained a yearly time step of the climate variable in 

question. Below is an explanation of the data within an example file name, 

 
 
 
 
 
 
 
 
 
 

Mean 
temperature Local scale 

at 2.2km 

tas_rcp85_land-cpm_uk_2.2km_01_day_19801201-19811130.nc 

Representative 
concentration 
pathway 8.5 

Convection 
Permitting 
Model over land 

United 
Kingdom 
scale 

Model 
ensemble 
member 01 

Daily 
temporal 
scale 

Date range between 1st December 
1980 and 30th November 1981  
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Baseline data for the study was the 20-year daily average between 1980 and 2000 (1990s), with two 20-

year daily average future time frames between 2020 and 2040 (2030s), and 2060 and 2080 (2070s). 

Hereafter and throughout the rest of the thesis, the time periods will be referred to as the 1990s, 2030s 

and 2070s. Full reproducible code is available in on request with further detail on extracting and averaging 

data at both spatial scales in published blogs at luciazwatts.wordpress.com which are included in Appendix 

1.  

Data processing for each spatial scale were completed in similar ways, with some differences which I will 

detail below. As mentioned previously, netCDF files for each year of the 1990s, 2030s and 2070s were 

downloaded from the online repository. The data was in a 360 day format, which presents variables as 360 

day years and each month as 30 days. Therefore, each netCDF file contained 360 layers of a variable as 

individual days, which were extracted as separate files to facilitate the creation of multi-decadal averages. 

Data at both spatial scales were extracted from the netCDF files using R 4.0.2 (R Core Team, 2020) with 

individual days of data saved as .TIF files. All data was required to be at the British National Grid (BNG) 

coordinate system for continuity between climate, species, land cover and any other data included in 

further analysis. However, climate projections at the 2.2km spatial scale were presented in the rotated grid 

latitude/longitude (37.5, 177.5) (Fung, 2018) and therefore required re-gridding to BNG. Detail, with code 

and instructions for use in open-source GIS, on this re-gridding can be found in Appendix 1. Climate 

projections at the 12km spatial scale did not require re-gridding as they were already available in the BNG 

coordinate system, with each individual day extracted from the relevant netCDF files and stored as .TIFs. 

Once individual days of data for both 2.2km and 12km were written, each set of 20-year averages could be 

computed from these individual days (see Appendix 1 for further detail). There could be potential for faster 

computation using different temporal scale data, but this was not used in this study. Throughout the three 

data chapters, climate variables used were: average temperature, average precipitation, maximum 

temperature, average wind speed, maximum wind gust, eastwards winds, northwards winds and relative 

humidity. Only one chapter (chapter 3) utilised the lower resolution 12km data, with all chapters using the 

local 2.2km data. 

 

2.4 The Models 

 

Two established spatial and temporal models which can produce information about the impacts of climate 

change have been used within this thesis. Subsequent chapters go into great detail about the methods 

used and how these can inform conservation management in regards to adaptation to climate change. 

These sections investigate the inputs into the models, the parameters requiring exploration, the formats 
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available and how to analyse outputs. The two models included are Maxent and the Canadian Forest Fire 

Danger Rating System (CFFDRS). 

 

2.4.1 Maxent 
Maxent is a hugely utilised species distribution model (some examples include: Elith et al., 2006; Phillips, 

Anderson and Schapire, 2006; Barbet-Massin et al., 2012; Farashi and Alizadeh-Noughani, 2018) and works 

off the theory of maximum entropy. This calculates the distribution of maximum entropy, the closest to 

uniform distribution, of the study object (e.g. a bird species) when subject to constraints of relevant 

environmental variables (Elith et al., 2006). The closer to maximum entropy, the better it can be assumed 

that distributions are being described well by the model in relation to observed data. 

In essence, using information about the climate and landscape (if added) alongside data showing where a 

species is present Maxent identifies the conditions under which a species is likely to thrive, correlating 

presence in a certain condition with the species’ ability to survive. Then, using novel climates or categorical 

landscape variables, the model is able to predict where in this novel space the same species is likely to be 

able to inhabit. Maxent provides an idea about a species distribution at a different time or space when 

compared to known data, and therefore can be used to predict where a species may inhabit under 

changing climates or land cover. Research has shown that Maxent performs better with continuous data 

such as climate, compared to categorical data like land cover and altitude (Hof, Jansson and Nilsson, 2012), 

especially as climate variables such as temperature can be used as a proxy for variables like altitude. 

Maxent is available in two different formats. The software is available to download for free at 

https://biodiversityinformatics.amnh.org/open_source/maxent/, where there are also a number of 

tutorials and information about the latest updates. Additionally, Maxent can be run in R using the dismo 

package (Hijmans et al., 2021), where there are also a wide range of help information and tutorials to aid in 

building the model. Outputs for each model run are presented as .html documents with detailed 

information as to the importance of variables within the model, how each feature affects the model, maps 

of predicted suitability and a record of the variables that wrote that specific model. This aids in keeping a 

record of each model run, and they are easy to understand documents. In this thesis, I used Maxent in R to 

code a more complex model and to keep track of the model runs I produced. 

One benefit of using Maxent is that it is highly customisable to a project, spatial scale or output need 

(Merow, Smith and Silander, 2013) as there are many input parameters that can be changed from variable 

types to model fitting values. Below I introduce the parameters that I have used in my research, and the 

values at which these can be set. Chapter 3 presents the project in which I use Maxent to look at the 

impact of climate change to five upland bird species in Mid-Wales, with many inputs altered from the 

default values. The section in this chapter provides an introduction to the inputs that can be changed in 

Maxent, and provides background to the changes I make throughout my research. 
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2.4.1.1 Input parameters and model fitting 
During my research project, I assessed the impact changing three input parameters had on model 

performance and outputs. These were: the feature classes used in each run, the number of background 

points assigned, and, the regularisation multiplier value.  

Maxent uses features to produce the model based on the environmental variables used as prediction layers 

and the functions of these. There are five different feature classes: product, hinge, threshold, linear and 

quadratic. The model uses all five classes in a default run of Maxent. Below are brief descriptions of what 

each feature does (Phillips, Anderson and Schapire, 2006; Phillips and Dudík, 2008; Anderson and Gonzalez, 

2011). 

Linear: this feature uses the variable itself and models the mean value of the variable for locations 

occupied by the species, to identify the optimum conditions for the study species. 

Quadratic: this is the square of the continuous variable used in the modelling process. 

Product: this looks at the interactions between variables, and analyses the covariance of two 

continuous variables. 

Threshold: also investigating continuous variables, this feature adds in a threshold to analysis to 

say for example, that a species is likely to be present when a value is over a certain number. 

Hinge: these features model more complex relationships in the training data to provide an 

estimate of probability of presence. 

Changing which features are used in a model run alters outputs, and different features work best with 

different types and amount of input variables, such as the number of species presence points, or climatic 

variables included. 

In order to understand where a species is, and might be, it also needs to be known where it is not. While 

Maxent is a presence-only model (Barbet-Massin et al., 2012) the model uses background points as 

pseudo-absences used to separate out areas in observed and novel space where the study species is not 

present. This does give the researcher an idea of the sorts of conditions in which a species is unlikely to 

thrive and gives the model important information about what to assess as suitable space for predictions. 

The default number of background points in a Maxent model is 10,000, but it has been suggested that this 

value may not be high enough to correctly represent areas potentially containing conditions that are 

unlikely to be suitable for a species (Wunderlich et al., 2019). 

The regularisation multiplier (RM) parameter affects how focused or closely-fitted the output distribution 

of the Maxent model is (Phillips, 2017). This is set at a default of 1.0. A RM value smaller than 1.0 will result 

in a more localised output distribution, closer to the fit of the presence data, but can result in overfitting. 

On the contrary, a RM value greater than 1.0 results in a more spread out and less localised prediction 

(Phillips, 2017). As the potential for overfitting increases the more complex the model is, including a higher 

RM value may reduce the chances of model overfitting, while still providing highly detailed outputs from an 

intricate model. 
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2.4.2 Canadian Forest Fire Danger Rating System 
The Canadian Forest Fire Danger Rating System (CFFDRS) is a framework that was developed on the back of 

nearly 100 years of research into wildland fire ignition and behaviour in North America to inform wildfire 

operations planning of the current and upcoming risk of fires (Wang et al., 2017). This model uses a variety 

of weather and fuel variables to calculate the inherent risk of fires in terms of strength, likelihood of 

ignition, spread rate, fuel availability, fire direction and other behaviour indices (Van Wagner, 1987). Daily 

weather data is required to set up the model, which then calculates the fire weather indices for upcoming 

hours and days. This has been used to assess the risk of fire across Canada, with some tailoring of the 

model globally (Dimitrakopoulos, Bemmerzouk and Mitsopoulos, 2011).  

This risk assessment system is available in a fairly straightforward R package called cffdrs (Wang et al., 

2017), which is accompanied by a number of help and tutorial documents. The base calculations for each 

inputs are available for editing, but this could greatly increase the complexity of the code, and may end up 

not representing the system accurately. There is a large amount of information into the calculation of these 

inputs, called codes, in Van Wagner, (1987), which is easily available online.  

While there is potential for analysis of fire risk using this model globally, there are some caveats that must 

be considered. For one, the model is tailored to upland peatland forests with a high amount of fuel litter. 

The type of forest can be altered within the model settings to include different types of species, dead or 

growing wood, or open brush and water. This provides a fair range of conditions experienced in these 

ecosystems, but may require some further investigation of the study site. 

 

2.5 Conclusions 
This section, and the references included, provide some background to the climate data used in the thesis 

and further information about shared methods in all chapters, with an introduction to the two main 

models used in analysis. There is a vast amount of information in tutorials and online forums such as 

stackoverflow.com when learning, analysing and running new models, techniques and when processing 

data. It cannot be underestimated how useful these online resources, and communication with experts 

have been to myself as a researcher throughout my PhD studentship. Science is an ongoing learning 

experience, which is exciting and, occasionally frustrating! Being able to learn from others’ mistakes and 

through (what often feels like) years of testing code and models is such an important experience, and only 

increases the breadth of knowledge added to the sphere of climate impact modelling and analysis. 
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Chapter 3: The impact of climate and habitat change to five bird species 

found in the uplands of Great Britain: Are species-specific model inputs 

more accurate than default settings? 

 

Abstract 

Bird species in the uplands of the UK are vulnerable to climate change, with habitat specialist species most 

at risk. Projections of climate change are widely used to assess responses of biodiversity to future impacts, 

at a variety of spatial and temporal scales. The use of local scale climate data and the testing of model 

settings to predict future species distributions has not been widely explored. 

Current and future distributions of five bird species found in the uplands of mainland Britain were 

modelled using the Maxent model and tailoring important inputs with the ENMEval package in R. These 

bird species were; golden plover (Pluvailis apricaria), meadow pipit (Anthus pratensis), skylark (Alauda 

arvensis), wheatear (Oenanthe oenanthe) and whinchat (Saxicola rubetra). Future climate projections were 

from the UKCP18 climate change projections at the local 2.2 km and regional 12 km daily scale for 

comparison in model performance at different spatial scales. Multiple evaluation metrics assessed model 

performance including, AUC, null models, TSS and SEDI. Habitat layers at the baseline and projected to 

2050 were used to investigate the impact of land cover change. Alongside predictions of all species at the 

Britain scale, a mid-Wales case study at Abergwesyn Common exploring the amount of suitable climate 

space for the habitat specialist golden plover is presented. This site is an upland peatland and an important 

site for the golden plover, with monitoring by the National Trust registering declines in species presence 

and abundance. 

Our results show that species-specific local scale species distribution models outperform those at the larger 

spatial scale. As expected, tailoring inputs to the Maxent model also produces more accurate results 

compared to default inputs when assessing a variety of model evaluation metrics. There are greater 

contractions predicted to potential range sizes in the 2030s compared to predictions for the 2070s. Only 

the specialist golden plover experienced contractions of range size under climate change alone between 

the 1990s to 2030s. However, all species in this analysis increased their potential distributions by the 2070s 

when only considering impacts from changes in temperature and precipitation. Land cover is predicted to 

be more limiting than climate for all species, with specialist species impacted the most. Centroids of 

species distributions are likely to shift northwards, but with little contraction of southern ranges. 

Previous studies that have suggested that tailoring model inputs, such as background points, could lead to 

more accurate predictions have been furthered. For background predictions, this research suggests that 

the default 10,000 points is unsuitable for many species, and that a greater number of pseudoabsences are 

required to increase predictive accuracy of models. Multiple model evaluation metrics need to be utilised 

to assess both model performance compared to other inputs and goodness-of-fit when examining results. 
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Local-scale climate data provides detailed information at the site level, and when used alongside other site 

data can be a valuable addition when undertaking nature conservation. Although it may appear that 

climate change could be beneficial to the study species, without habitats to support them, the amount of 

suitable climate and habitat space greatly diminishes.  It can be concluded that climate predictions at the 

2.2 km scale and tailored model inputs improve the quality of species distribution predictions. 

 

2.1 Introduction 

 

Anthropogenic climate change (Haustein et al., 2019), will be the greatest threat to, and primary driver of, 

increasing vulnerability and loss to biodiversity by 2100 (Klausmeyer et al., 2011; Pautasso, 2012; Brandt et 

al., 2017), and will cause disruptions to ecosystems in ways previously unseen (Mooney et al., 2009). 

Climate change is already affecting the natural world around us as the third highest global impact to 

biodiversity (Diaz et al., 2019). Most recent climate science warns of unprecedented change within the next 

15 years, and a requirement to keep temperature increases below a global average of 2oC if catastrophic 

thresholds are to be avoided (Masson-Delmotte et al., 2018a). 

Severe weather events in the UK over the past 20 years have already been directly attributed to global GHG 

emissions (Pall et al., 2011; Met Office, 2014; Arnell et al., 2021; Arnell, Freeman and Gazzard, 2021; 

Clarke, Otto and Jones, 2021), with both humans and the natural world affected. In general, it is projected 

that UK climate will be warmer and wetter in the winter, with hotter, drier summers (Lowe et al., 2018). 

However, worst case emissions scenarios predict an increase in average UK temperatures of over 4oC 

compared to pre-industrial levels (Lowe et al., 2018), far surpassing suggested ‘safe’ levels of warming. 

Equally, precipitation is expected to change, with on average over 25 % more rain in winter and about 35 % 

less in summer. This will have profound effects on plant growth, food availability and flooding across the 

UK. It is these extremes of change that will potentially be the most damaging as species and landscapes are 

attempting to cope with such a large alteration of expected conditions. So far, mean annual temperatures 

in Wales have increased by 1.3oC as of 2017 compared to the 1961 to 1998 average, with precipitation also 

increasing by on average 16 mm (Lowe et al., 2018).  

Birds are good indicators of environmental change (Terrigeol et al., 2022) with impacts of climate to birds 

investigated globally (Huntley et al., 2008; Eyres, Böhning-Gaese and Fritz, 2017; Salas et al., 2017; Liang et 

al., 2021; Michel et al., 2021; Sierra-Morales et al., 2021). In extreme conditions in central America, species 

distributions are predicted to decrease by around half under climate scenarios predicting a 3oC increase in 

average global temperatures (Sierra-Morales et al., 2021). When investigating impacts in Asia, individual 

species’ distributions shifted northeast and lost some suitable climate space (Liang et al., 2021). 

Insectivorous bird species in North America are experiencing negative climate impacts, particularly to 

migratory species (Michel et al., 2021). These impacts are also being recorded in Europe, with increases in 

hot-dwelling species (Gaüzère et al., 2020), impacts to migrations, egg laying and hatching, spring arrivals 
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and northward and upward range expansion (Pautasso, 2012). Even with some potential range expansions, 

average numbers of breeding species have been predicted to decrease (Huntley et al., 2008), with over 50 

% of internationally important European bird populations are predicted to decline by at least 25 % under 

high emissions scenarios (Johnston et al., 2013). 

Under low emissions scenarios that predict a 2oC global temperature increase by the end of the century 

(Rogelj, Meinshausen and Knutti, 2012), it has been estimated that 21 % of English species would be at high 

risk of range loss from changing climates (Pearce-Higgins et al., 2017). Already it has been found that 58 % 

of all species have decline in the past 50 years in abundance and distribution, with 600 species at risk of 

extinction in the UK (Hayhow et al., 2019) due to a range of factors from land use change to climate 

change. Strong decreases to distribution and abundance of species were found to be greater in the short 

term than those in the long term, but overall impacts are likely to be worse in the long term (Hayhow et al., 

2019). Upland species were more at risk than those in other habitats due to altitudinal contractions in 

range (Pearce-Higgins et al., 2017), with analysis conducted for Great Britain but species data from 

England. Bird species in the UK are already affected by climate change (Pautasso, 2012; Johnston et al., 

2013; Pearce-Higgins et al., 2015; Stralberg et al., 2015; Salas et al., 2017) with cold-associated and habitats 

specialist species predicted to be the most vulnerable (Pearce-Higgins et al., 2015). However, relatively few 

predictive models have been applied to this community of rare, narrowly distributed and specialised highly 

vulnerable bird species, with modelling identified as a priority (Farashi and Alizadeh-Noughani, 2018). Any 

changes to suitable climate space in summer breeding grounds or wintering sites could change migratory 

patterns or further affect species’ population sizes. Many birds of upland environments, including the 

golden plover, are habitat specialists, and there is little knowledge as to their vulnerability and predicted 

habitable range under future climatic change. In England, the golden plover has been recognised as a 

declining species, with the moorlands of Great Britain of international importance to population survival 

(Pearce-Higgins and Yalden, 2004). Threats from habitat loss and declining prey abundance are thought to 

have impacted species numbers, which is likely to have been exacerbated by climate change (Pearce-

Higgins and Yalden, 2004). However, some species will benefit from climate change with 44 % of included 

species predicted to increase their climatic suitability by 2080 (Massimino et al., 2017). Another study 

assessed that 42 % of included species may expand range extents under future change (Pearce-Higgins et 

al., 2017) in Great Britain. Climate change could provide opportunities for bird species to increase range 

and distribution if larger areas of the UK with suitable habitats fall within a species’ climate envelope. This 

may result in improved population abundance and biodiversity of an area due to species movements, with 

the right management. 

Therefore, to understand how best to manage the environment in the future, we must understand how 

climate change will affect ecosystems at larger scales and at specific sites (Pearce-Higgins et al., 2017). 

When planning conservation activities, it is valuable to know how any management applied will affect the 

area and if they are the best actions to take (Han et al., 2018; Bowgen et al., 2022). Often, conservation is 
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limited by time, money and resources so management needs to be efficient and effective (Guisan et al., 

2013; Di Febbraro et al., 2018). By planning management based on projected evidence conservation 

outcomes can be improved (Guisan et al., 2013), and may have a better chance of supporting systems 

resilient to change and adaptable to the future. For example, creating new habitats adjacent to those 

already occupied has been shown to increase species’ range expansion and occupancy more than 

conservation actions simply improving existing habitats (Synes et al., 2020). To protect specific species and 

habitats, and provide accurate predictions of future change, these estimates of change must be tailored for 

sites and species to implement meaningful adaptive conservation. 

Habitat change impacts nature alongside climate change, with intensive management of agricultural land 

having the largest negative effect on wildlife (Hayhow et al., 2016, 2019). Bird species are influenced by 

land cover and habitat extent (Pautasso, 2012; Goodenough and Hart, 2013) alongside climate change. 

Landscape features are an important factor when considering where species will be most vulnerable 

(Nadeau and Fuller, 2016), as climate may not be the most limiting factor. If current protected areas 

become outdated through shifts in species distributions, then it becomes even more important to manage 

at the landscape-scale (Pautasso, 2012). This impacts not only protected areas, but all areas where land is 

managed even partly for conservation impact or species preservation. It would not be possible to restore 

habitat in an area that is not currently climatically suitable, but it may be possible to prioritise currently 

unprotected habitat that is likely to be within climate envelopes for key species in the future. Climate 

envelopes for some bird species are predicted to potentially increase in the future (Pearce-Higgins et al., 

2017), especially in grassland habitats (Vermaat et al., 2017), so conserving these habitats now could result 

in refuges for wildlife and connect existing areas of suitable habitats (Dormann et al., 2012; Han et al., 

2018; McCarthy et al., 2018). Linking and restoring natural areas has already shown successes in both 

biodiversity improvements and climate resilience (Morecroft et al., 2019). A more diverse landscape is 

more climate resilient (Pecl et al., 2017; Morecroft et al., 2019; Stafford et al., 2021) and able to support a 

wider range of species (Smith et al., 2022) and store carbon (Renou-Wilson et al., 2019), thus reducing the 

impacts on the planet. It is hoped that this research can not only help land managers and conservation 

teams prioritise where to target conservation activities but contribute to mitigating the effects of and 

adapting to climate change. 

Species distribution models have been widely used to predict the suitable space in both climate and 

habitats, that species are likely to be able to inhabit (Walker and Cocks, 1991; Guisan and Zimmermann, 

2000; Kubisch et al., 2003; Pearson and Dawson, 2003; Elith et al., 2006; Elith and Leathwick, 2009; 

Gallego-Sala et al., 2010; Hof, Jansson and Nilsson, 2012). These models have a wide variety of uses. They 

are useful to drive conservation practice at specific sites (Pearson et al., 2007; Guisan et al., 2013), to 

hypothesis testing of novel methods (Dormann et al., 2012) and even using virtual species (Liu et al., 2013; 

Qiao et al., 2019; Synes et al., 2020) to evaluate model methods. Models including Maxent, boosted 

regression trees (BRT) and random forests (RF) are often cited as the highest performing models in a 
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number of reviews (Elith et al., 2006; Bucklin et al., 2015; Salas et al., 2017), with Maxent consistently 

outperforming other models based of predictive accuracy (Elith et al., 2006; Rebelo and Jones, 2010; 

Aguirre-Gutiérrez et al., 2013; Merow, Smith and Silander, 2013; Tessarolo et al., 2014; Farashi and 

Alizadeh-Noughani, 2018; Feldmeier et al., 2018). Maxent was chosen to calculate outputs for this study 

due to its performance and functionality at multiple temporal and spatial scales (Phillips, Anderson and 

Schapire, 2006). Many studies using Maxent employ all default input values (Giovanelli et al., 2010; 

Kearney, Wintle and Porter, 2010; Fourcade et al., 2014; Paquit and Rama, 2018; Liang et al., 2021), with 

some changing the default background point, features and regularisation multiplier values (Pearson et al., 

2007; Warren and Seifert, 2011). It has been suggested that the default inputs to Maxent do not produce 

the best results (Warren and Seifert, 2011; Merow, Smith and Silander, 2013; Feldmeier et al., 2016) and 

that only a handful of studies analysed had evaluated multiple input values to their models (Morales, 

Fernández and Baca-González, 2017). The R package ENMEval (Muscarella et al., 2014; Kass et al., 2021) 

provides testing for optimum input values for Maxent and other algorithms. Studies (e.g. Bao, Li and Zheng, 

2022) have begun to implement this to choose input values that are more likely to produce robust results, 

but this is not yet the norm and has not been explored to test input values for investigating species 

distributions of UK birds. 

Many species distribution studies have been conducted at low spatial and climatic resolutions, often at the 

continent (Hof, Jansson and Nilsson, 2012; Johnston et al., 2013) or country (Eglington and Pearce-Higgins, 

2012; Pearce-Higgins et al., 2017) scale. Models are at a variety of spatial scales from 50 X 50 km (Huntley 

et al., 2008), 40 X 40 km (Heikkinen et al., 2007), 25 km grid (Pearce-Higgins et al., 2017) down to 10 X 10 

km (Heikkinen et al., 2007). However, studies investigating the local 2.2 km grids of predicted climates have 

not yet been explored. Finer scale studies are often developed from the collection and modelling of 

primary data (Pearce-Higgins, 2011), which are highly time and data intensive. Often, climate data is 

downscaled from global projections to pull out local scale data (Baker et al., 2017). The most recent climate 

data for the United Kingdom are the Met Office UKCP18 projections released in late 2018 (Lowe et al., 

2018). These provide information for a wide range of future conditions under climatic change until 2080. 

Projections are at a variety of spatial scales from 80 km to 2.2 km, downscaled from HADGEM global 

models. Predictions of species distributions at the local daily scale, then averaged into larger (e.g. decadal) 

time frames, have not been widely evaluated, with some doubts as to the accuracy of these predictions 

due to high levels of uncertainty (Heikkinen et al., 2006; Graham et al., 2008; Oppel et al., 2012; Gottwald 

et al., 2017). There are some uncertainties as to how well these local scale climate projections can predict 

future suitable climate space, and whether uncertainties are too high. Daily UKCP18 climate projections at 

the local 2.2 km scale at the Representative Concentration Pathway (RCP) 8.5 which predicts an average 

global temperature increase of over 4oC by 2100. These have the potential to produce site level 

information about the impacts of climate change that could be instrumental in influencing nature 

conservation actions for adaptation. 
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 Research aims 

In this study the value of using local climate data to predict future species distributions to aid in 

conservation planning for specific species is explored. With reliable predictions at a high spatial resolution, 

conservation actions tailored to specific areas and species could be much improved. Additionally, the 

impact to model performance is investigated through the changing of default inputs in Maxent, namely 

background points, feature classes and the regularisation multiplier. Models are run at the Great Britain 

scale, with a case study in mid-Wales exploring how site-level predictions of change impact an iconic 

endangered bird species. Overall, I hypothesis that high spatial resolution species-specific models with 

tailored inputs will predict more realistic and useful projections of suitable climate space. Additionally, 

under high emissions scenario climate projections, suitable climate space for five bird species found in the 

uplands of Great Britain will experience range contractions due to climate change and these will also be 

negatively affected by habitat and land cover change. 

 

3.2 Methods 

3.2.1 Study site 

Abergwesyn Common (52.2oN, 3.7oW) is an upland common in Mid-Wales, UK (figure 3.1). It is owned and 

managed by the National Trust, a UK conservation non-governmental organisation (NGO) alongside local 

graziers who stock the common with sheep and cattle. Part of the Common is within the Elenydd Site of 

Special Scientific Interest (SSSI) with other areas designated as a Special Protection Area (SPA) due to 

containing a core population and breeding sites for golden plovers. 
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Figure 3.1: The location within Wales and the habitats of Abergwesyn Common in Mid-Wales, UK. 

The Common mainly comprises of marshy grassland with areas of bracken and some mosaic habitats 

(figure 3.1). There are some small areas of improved grassland that cover less than 5% of the site, but most 

of the upland area is degraded due to historic peatland drainage, with a small area of the Common 

designated as a Special Area of Conservation (SAC) for blanket bog. The site is covered extensively by 

Molinia caerulea, impacting habitat diversity. Numbers of many bird species, including the Golden plover, 

have been declining across the Common since 2011 as recorded by the National Trust and RSPB. 

Current climates are temperate and often wet, with warm summers and cooler, wet winters. For Wales, 

the current average climate, sees precipitation rates from 6 mm per day in the winter fall to 3.6 mm per 

day in the summer. Temperatures are cool, with an average of 4.4oC in the winter increasing to 13.5oC in 

summer. Future impacts of climate to Wales are similar UK averages, although summers could become 

over 50% drier and nearly 6oC warmer compared to the 1990s baseline (Lowe et al., 2018). 

3.2.2 Bird species 

Using National Trust surveys from 2011 to 2018, five bird species found in the uplands of Wales and at 

Abergwesyn Common were selected for analysis. These study species are; golden plover (Pluvailis 

apricaria), meadow pipit (Anthus pratensis), skylark (Alauda arvensis), wheatear (Oenanthe oenanthe) and 

whinchat (Saxicola rubetra). Species were selected due to their range of life histories and vulnerability to 

climate change and habitat loss. Iconic species such as P. apricaria are declining due to habitat losses while 

migrants like red-listed S. rubetra could see range increases. 
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Data were obtained from the British Trust for Ornithology (BTO) for all five species at the 2 km tetrad scale 

for the United Kingdom. Bird species data were included for March to September to fit with the breeding 

seasons of all target species and presence at Abergwesyn Common to prevent double counting. Data from 

two BTO surveys were used, the Breeding Bird Survey with data from 1994 to 2000 and BirdTrack data 

from 1980 to 2000. Species data is included from 1980 to 2000 to fit with the baseline climate data from 

the UKCP18 projections. Any data points that did not contain one or more of the following were removed; 

species name, date species recorded, latitude and longitude coordinates, reducing the chance that the data 

used in the study was not within the species date or location range required. Additionally, duplicate 

occurrences with the same coordinates were removed to avoid pseudoreplication. To avoid spatial 

autocorrelation, cell duplicate coordinates were removed, that is that they share a grid cell in the predictor 

variable data. This method removed more occurrence data when writing models with the 12 km climate 

data compared to the 2.2 km spatial scale data. 

Other available bird occurrence data such as BTO Atlas data and that from the Global Biodiversity 

Information Facility was not used because the spatial scale of the records are recorded at different or lower 

resolution than the climate data. Additionally, due to the large uncertainty in data collection methods and 

potential accuracy, models containing these data may not represent current and future distributions to a 

high enough precision. The data used in this study was not significantly different (p > 0.05) to the data that 

was excluded. This may be because some of the data contained duplicates, and there were data in many of 

the same areas as used. Many studies have used the BTO datasets used in this study (Pearce-Higgins, 2011; 

Renwick et al., 2012; Malm et al., 2020), potentially aiding in some comparisons between research. 

3.2.3 Climate data 

Climate projections were from the Met Office UKCP18 data set (Lowe et al., 2018; Kendon et al., 2019), 

released in 2018 as an update to the UKCP09 projections of future climate change in the UK. In this study, 

the highest spatial scale data were used, the Convection Permitting Model (CPM) at 2.2 km and a 

comparison scale using the regional 12 km model for the UK. The 2.2 km projections are downscaled from 

global CMIP5 climate models at 60 km using the Met Office HadGEM3 model. Both the 2.2 km and 12 km 

projections were run for 12 members. The first model member (model 01) based on the HadGEM3-0.5 

model without perturbed physics has been used in this analysis. These 2.2 km and 12 km data are both at 

the Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathway (RCP) 8.5, 

which estimates a global average temperature increase of approximately 4.5oC by 2100. This is the most 

extreme climate scenario modelled by the IPCC, and is so far the only available projection for the 2.2 km 

spatial data.  

Baseline data for the study was the 20-year daily average between 1980 and 2000 (1990s), with two 20-

year daily average future time frames between 2020 and 2040 (2030s), and 2060 and 2080 (2070s). 

Hereafter, the time periods will be referred to as the 1990s, 2030s and 2070s. Data from the 2.2 km CPM 

were re-gridded from the rotated grid latitude/longitude (37.5, 177.5) (Fung, 2018) to British National Grid. 
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Data processing were done using R 4.0.2 (R Core Team, 2020), the sf (v0.9-8; Pebesma, 2018), ncdf4 (v1.17; 

Pierce, 2019), raster (v3.4-10; Hijmans, 2021), rgdal (v1.5-23; Bivand et al., 2021) and PCICt (v0.5-4.1; 

Bronaugh and Drepper, 2018) packages. Data at 12 km were already available at the British National Grid, 

with daily data averaged into the 20-year projections. Full reproducible code is available in on request. 

Mean temperature and mean precipitation were used to predict future suitable climate space for the five 

bird species, as reflected in a number of previous studies (Renwick et al., 2012; Pearce-Higgins et al., 2015; 

Massimino et al., 2017; Pearce-Higgins and Crick, 2019). Many studies use different amalgamations of 

seasonal and monthly climate data in models (Eglington and Pearce-Higgins, 2012; Renwick et al., 2012; 

Johnston et al., 2013; Pearce-Higgins et al., 2015; Massimino et al., 2017; Pearce-Higgins and Crick, 2019). 

The majority of the studies investigated used data from both the breeding season and winter, either as 

these two distinct time frames (Eglington and Pearce-Higgins, 2012; Renwick et al., 2012; Johnston et al., 

2013), or seasonally (Pearce-Higgins et al., 2015; Massimino et al., 2017; Pearce-Higgins and Crick, 2019). 

Seasonal conditions have been recognised as strong influences of bird populations (Pearce-Higgins et al., 

2015; Massimino et al., 2017). Due to this, the minimum average temperature of the coldest month 

alongside mean temperature and precipitation for each month between and including March to September 

was included. This gave a measure of winter severity and annual variation in breeding conditions and 

covered all seasons. The minimum average temperature for all three time periods at the baseline and two 

future projections was the month of February. 

3.2.4 Species modelling 

To assess the potential impact of climate change to the five bird species, the Maxent species distribution 

model (Phillips, Anderson and Schapire, 2006; Phillips and Dudík, 2008) has been used to identify future 

areas of likely suitable climate space. This applies the theory of maximum entropy to identify suitable space 

for a species bases on species occurrence data and historical variables (Elith et al., 2006; Phillips, Anderson 

and Schapire, 2006; Phillips and Dudík, 2008; Elith, Kearney and Phillips, 2010; Phillips et al., 2017). These 

are then run with future predictions of climate and categorical data, such as elevation or land use, (Elith et 

al., 2006; Phillips, Anderson and Schapire, 2006; Norberg et al., 2019) to write spatial estimates of 

conditions suitable for habitation by the specific species. Predictions of suitable climate space are based on 

the relationship between the species and climatic variables that determine where the species’ climatic 

niche is (Heikkinen et al., 2006). Maxent is robust to spatial errors in occurrence data (Phillips, Anderson 

and Schapire, 2006; Graham et al., 2008; Kass et al., 2021), which is important when using secondary 

species data, as done in this study. Many species distribution models require both presence and absence 

data to make informed predictions about changes to occurrences, with Maxent using pseudoabsences from 

the study area. These pseudoabsences are a randomly selected sample of pixels from the study area where 

the study species are not present and represent areas that are more likely to be climatically or physically 

unsuitable for that species (Phillips, Anderson and Schapire, 2006). 
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To choose optimum settings for the Maxent model, species-specific approach to model tuning was utilised. 

Using the R ENMEval package (2.0, Kass et al., 2021) optimum model settings were selected through 

automated model evaluation and tuning that the package provides. There was focus on three input 

parameters that are often overlooked in Maxent modelling; the number of background points, 

regularisation multiplier value (beta multiplier) (RM) and the feature classes (FC) used. For more 

information on these input parameters, see chapter 2. 

While allowing for quantitative assessment into model inputs, ENMEval also provides a range of model 

evaluation metrics including the area under the curve of the receiver operating characteristic plot (AUC), 

Continuous Boyce Index (CBI) and null models. Null models account for features of the system that often 

lead to incorrect statistical conclusions (Kass et al., 2021), especially when using background data as 

absences. The null models in ENMEval use withheld data to evaluate both these and empirical models 

which lead to more statistically reliable results (Kass et al., 2021). Models were built with RM values 

ranging from 0.5 to 6, in increments of 0.5, and with six different FC combinations (L, LQ, H, LQH, LQHP, 

LQHPT), similar to Muscarella et al. (2014). The corrected Akaike information criterion (AICc), AUC, 

Continuous Boyce Index, and null model values were tested to assess model suitability metrics and 

statistical significance. 

Occurrence data was partitioned using the block method which increases the independence of validation 

data and forces models to extrapolate more environmentally, evaluating better the transferability of a 

model to new conditions (Kass et al., 2021). Each model was run five times to assess the effect five 

different numbers of background points had on model accuracy. Models were run with 5000, 10,000, 

15,000, 20,000 and 25,000 background points.  

To reduce sampling bias, the kernel density function was applied, which is a statistical way to estimate 

densities of data, to write a bias layer which transferred to background points. The two-dimensional kernel 

density estimator approximates a raster that represents the sampling bias, this is used to estimate where 

background points would more likely occur based on the occurrences. Sampling bias was run using 

unfiltered species occurrences to rule out the chance of additional bias from filtering the presence data, 

with random background points probabilistically generated from this output. Sampling bias background 

points were used to run the final Maxent models to prevent any possible biases and represent true 

absences as best as possible, but used completely random background points for the ENMEval optimum 

input runs. There was very little difference between the AUC score and visual outputs when comparing 

models run with sampling bias accounted for and those without. 

Optimal models, to potentially demonstrate the more accurate and reliable model inputs, were chosen 

using two methods. The first was based on ΔAICc (optimum AICc) without considering cross-validation 

results which has been found to be a good method at predicting the occurrence of individual species 

(Warren and Seifert, 2011). The second model choice method (optimum sequence) was based on cross-

validation and used sequential criteria that selected the lowest average test omission rate and highest 
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average validation AUC (Radosavljevic and Anderson, 2014; Kass et al., 2021). To select the best 

background point value for each optimal model, the background point value for the model with the lowest 

ΔAICc was used for the first selection method. For the sequential criteria method, the lowest omission rate 

and highest validation AUC out of all background point models was chosen. These two ‘optimal’ models for 

each species at each spatial scale of climate data resulted in four models for each species, at 2.2 km and 12 

km spatial resolutions for both the optimum AICc and optimum sequence tests, and 20 models overall. In 

the results, optimum AICc models are referred to as ‘OA’ with optimum sequence models as ‘OS’. 

To add further model inputs, baseline Maxent models were run using the dismo package (Hijmans et al., 

2021) in R for these 20 models. These models estimated suitable climate space for the five bird species for 

the 1990s time period between 1980 and 2000, which was the baseline and ‘current’ time period from 

which projections were predicted. Occurrence and environmental layers were the same as inputted to the 

ENMEval models, while background layers, feature classes, and regularisation multiplier (beta multiplier) 

were used from the optimal models. Also added were, fade by clamping and Multivariate Environmental 

Similarity Surface (MESS) analysis and 10 replicates using the replicated bootstrap cloglog method with 

40% of the data withheld for testing. 

The fade by clamping input parameter reduces the suitability value of model to that between a model only 

run within the limits of the training data, and with a completely open-ended model response (Webber et 

al., 2011). This produces a model output that is not completely constrained by training data, which may not 

be a complete reflection of the entire data set, but one that is not completely beyond the bounds of 

possibility. MESS analysis evaluates the differences between the reference layer of bioclimatic variables 

and those under different climatic conditions (Zhang et al., 2021), here the different temporal steps of 

UKCP18 data. The model was run 10 times (replicates) for each set of input variables to understand the 

variability within the model results. An average of these models was computed and used in final analysis to 

control for this variability.  

The bootstrap method is a resampling method in which the number of presence points in each training 

data set equals the total number of presence points in the study, so training data sets have duplicate 

records (Phillips, 2017). This training data is selected by sampling with replacement from the presence 

points (Phillips, 2017), so is a more thorough examination of the whole dataset. In this method, 40% of the 

dataset was withheld in a testing set, with 60% of the data used to train the model. This ensures that the 

model is tested using data that actually represents the study system and species being investigated, and a 

higher testing set, such as this 40%, often leads to better model results. 

Cloglog results were produced as these provide a probability of suitability between 0 and 1 which aids in 

clearer analysis (Phillips et al., 2017). Again, as with the ENMEval models, all maxent models were 

evaluated using AUC and the True Skill Statistic (TSS) and Symmetric External Dependence Index (SEDI) 

(Wunderlich et al., 2019) were included in evaluation (further information in supplementary material, 

appendix 2) to estimate the accuracy of predictions between optimal model runs and between species. TSS 
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is an alternative metric to AUC (Allouche, Tsoar and Kadmon, 2006), with sensitivity and specificity values 

derived from the testing dataset of the model. The threshold dependent TSS calculation is defined as 

sensitivity + specificity – 1, with ranges from -1 to +1. Values below zero indicate a model performance no 

better than random, with a score of 1 depicting perfect agreement (Allouche, Tsoar and Kadmon, 2006; 

Ruete and Leynaud, 2015). Maximum TSS was calculated, which uses a threshold very similar to that 

calculated by Maxent in the maximum test sensitivity plus specificity threshold also used in analysis. SEDI is 

an evaluation metric previously used in the field of meteorology and is thought to be an optimal metric for 

presence-background SDMs (Wunderlich et al., 2019). A similar approach was taken to TSS that any SEDI 

value above zero is better than random, and any SEDI or TSS value above 0.4 is considered a ‘good’ model. 

These Maxent models were projected to the two future climates (2030s and 2070s) each with the same 

inputs as the original baseline Maxent models. The averaged model across all replicates for the three time 

periods was calculated and analysed the estimated amount of suitable space for each species. The 

averaged model across all 10 replicates was calculated and analysed the estimated suitable space for each 

species. To calculate model fit analysis of the area under the receiving curve (AUC) and TSS values was 

completed, a ‘good’ model was produced if AUC > 0.7 and TSS > 0. Models were evaluated using both AUC 

and TSS to test whether modelled occurrence data was able to accurately distinguish between presences 

and absences (Merow et al., 2013). AUC is a common and easy way to evaluate the goodness-of-fit of 

Maxent models, but has been criticised as it is too correlated to the size of the study area and number of 

records (Aguirre-Gutiérrez et al., 2013). However, this is a good method to use as a threshold-independent 

measure of model performance (Allouche, Tsoar and Kadmon, 2006). In addition to these two metrics, the 

Symmetric Extremal Dependence Index (SEDI) (Wunderlich et al., 2019) was calculated. This is thought to 

be a better measure of a model for presence-background SDMs, such as Maxent, as it is able to distinguish 

random and skilled predictions (Stephenson et al., 2008; Hogan, O’Connor and Illingworth, 2009; 

Wunderlich et al., 2019), while also able to interpret overfitted or mis-specified models (Wunderlich et al., 

2019). Additionally, using multiple evaluation metrics including null models (Beale, Lennon and Gimona, 

2008; Hijmans, 2012; Radosavljevic and Anderson, 2014), narrows down the number of optimum models 

available and provides more information that aids in choosing the model settings that represent accurate 

current and future distributions. This reduces the reliance on one model metric, such as AUC, which can 

result in un-realistic, overfitted models (Lobo, Jiménez-Valverde and Real, 2008). A variety of model 

evaluation metrics and techniques were used, both to choose model inputs and identify optimum models. 

AUC is useful when comparing between different model runs (Wisz et al., 2008), but not when examining 

how good the model actually is at predicting future occurrences and suitability of future climates. 

However, a low AUC with presence-only data may represent a good model of a species niche if that species 

is limited by dispersal or low numbers (Yackulic et al., 2013).  

Model results were written as two different outputs, as a probability scale measuring a range of how 

suitable the climate space is likely to be, and as an output with a threshold applied. Thresholds are often 
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used in conservation models (Allouche, Tsoar and Kadmon, 2006; Liu et al., 2013), with a probability of 

suitable space or presence is translated into a more definite presence or absence. The maximum test 

sensitivity plus specificity cloglog threshold was used. The average for each optimal model was calculated 

from the 10 model runs. While this threshold may overpredict the amount of space suitable with a slightly 

higher threshold of presence, it reduces the risk of missing out suitable space for a species (Liu et al., 2013; 

Liu, Newell and White, 2015).  

3.2.5 Land cover data 

Land cover was included in these analyses to identify where suitable land cover occurred within modelled 

suitable climate space. A collaboration between ESRI and Clark University produced predicted land cover 

data in 300m-pixels for 2050 based on 2018 observations of global land cover and future change (Esri, 

2021). Past land cover data from 2010 to 2018 was used to produce a land cover vulnerability model which 

includes data such as bioclimatic variables, population counts and infrastructure to better understand the 

global pressures of land development (Esri, 2021). There are 10 classes of land cover predicted for 2050 

from the 2018 observations. Of this land cover data, five land cover classes were chosen for the analysis 

which coincide with suitable habitats for the five study species (table 3.1A).  

Observational land cover classifications for the UK are available for each year between and including 1992 

and 2000, within the baseline climate data period. There is a less than 5% difference between the 

percentage of both total land area and the land cover layer that contain both suitable climate and land 

cover between the 1992 and 2000 layers. For the baseline land cover data, the 2000 observational data 

were used. This provides a 50-year change in land cover area when comparing to the projected land cover 

for 2050. The 2000 data consisted of 20 land cover types similar to those used in the 2050 projections. 12 

of these classes were selected to write five land cover classes to match with those in the 2050 layer (table 

3.1B) which would contain potentially suitable habitats for the study species. Both the 2050 and 2000 land 

cover layers were used to clip areas of the climate projections to identify suitable climate and potentially 

suitable habitats. Centroids of potential species distributions containing suitable climate and habitat were 

calculated to investigate geographical shifts. 
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Table 3.1: The land cover classes from 2000 observational dataset used to write five land cover classes that were 

similar to those used in the 2050 projections found at: https://datastore.copernicus-climate.eu/documents/satellite-

land-cover/D5.3.1_PUGS_ICDR_LC_v2.x_P 

A) 2050 projection layer B) 2000 layers used to write similar layers 
Value  Value Land cover type 
LC1 Mostly cropland 10 

(11,12) 
Cropland, rainfed 

 30 Mosaic cropland (>50%), natural vegetation (<50%) 
 LC2 Grassland, scrub, or shrub 40 Mosaic natural vegetation (tree, shrub, herbaceous cover) 

(>50%), cropland (<50%) 
100 Mosaic tree and shrub (>50%), herbaceous cover (<50%) 
110 Mosaic herbaceous cover (>50%), tree and shrub (<50%) 
120 Shrubland 
130 Grassland 

 LC5 Sparse vegetation 150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%) 
 LC6 Bare area 200 Bare areas 
 LC7 Swampy or often flooded 

vegetation 
180 Shrub or herbaceous cover, flooded, fresh/saline/brackish 

water 
 

3.3 Results 

When investigating different data inputs, the higher spatial scale climate data produced the most accurate 

model results, when comparing all model evaluation metrics, for all species in comparison to coarser 

scales. Additionally, the default 10,000 background points for Maxent models was often found to be 

insufficient. This varied with species, with optimum values of background points between 5,000 and 25,000 

random points. Models for specialist species had higher evaluation metric values compared to other 

studied species, suggesting models were of a greater predictive accuracy. Amounts of suitable climate 

space are expected to increase across Britain under climate change, albeit with northward shifts. Many 

areas predicted to be suitable under future climates alone, were unsuitable when habitat requirements 

were considered. This suggests that habitats are a more limiting factor to species distributions than climate 

alone. 

3.3.1 ENMEval and optimum model inputs 

Overall, optimum model inputs for the higher spatial scale models (2.2 km) resulted in more complex 

models that required a greater number of features and background points when compared to the lower 

spatial scale climate data (table 3.2). This is likely to be expected as the greater level of information within 

higher resolution data requires a greater level of evaluation. Most models’ optimum settings met or 

exceeded the default 10,000 background point value (table 3.2), with species-specific results. Out of all 

models at both 2.2 km and 12 km spatial scales, 85% of optimum models required the number of 

background points that represent pseudoabsences to meet or exceed 10,000.  

A greater number of features were selected for the best performing models at 2.2 km compared to those 

at 12 km (table 3.2), with more features required in optimum AICc methods compared to optimum 

sequence models. When investigating the regularisation multiplier (RM) value (beta multiplier), 2.2 km 
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scale optimum AICc models computed lower values than for optimum sequence inputs, but with less 

difference for the 12 km models of both input methods. The smaller the RM value the closer the projected 

distribution will fit to the training data (Gottwald et al., 2017), suggesting that the 2.2 km results using the 

optimum AICc input method are likely to be models with greater prediction accuracy. 

On average, results at the 2.2 km resolution performed better than those at 12 km for both optimum AICc 

and optimum sequence inputs, with a higher AUCTRAIN (2.2 km = 0.670, 12 km = 0.566), and lower AUCDIFF 

(2.2 km = 0.129, 12 km = 0.204) (table 2.2), suggesting that results were more accurate and less overfitted 

at the higher spatial scale. Additionally, most AUC values (TRAIN and VAL) were higher for optimum AICc (table 

2.2; OA) inputs when compared with optimum sequence (table 2.2; OS). These patterns were observed for 

both 2.2 km and 12 km results, apart from Meadow Pipit and Wheatear predictions. In general, optimum 

AICc results displayed a greater predictive accuracy, with higher AUCTRAIN and AUCVAL metrics compared to 

optimum sequence. These trends were only not experienced when comparing the 2.2 km resolution AUCVAL 

results, although with very similar values (OA = 0.626, OS = 0.660) there are likely to be marginal 

differences. Omission rates are lowest for 2.2 km resolution optimum sequence results (table 2.2: mean = 

0.0482), with these inputs outperforming one metric (OR10p) and optimum AICc inputs outperforming for 

AUC. When comparing null and empirical model results for both spatial resolutions, the null models 

predicted distributions with less accuracy than empirical models with lower AUCTRAIN and AUCVAL results, 

and higher AUCDIFF values. Most null and empirical models at 2.2 km resolution are statistically different (p 

< 0.05) for AUCTRAIN, AUCVAL and AUCDIFF metrics (table 3.2). This suggests that empirical models are more 

realistic than the null models and therefore are better at predicting species distributions when compared 

to those models with random input data. A greater number of results at 12 km spatial resolution are not 

significant when examining the relationship between empirical and null models (table 3.2). However, 

statistical differences for OR10 metric are less clear, with most null and empirical models not significantly 

different (table 3.2). The only exceptions were the Meadow pipit and Wheatear 2.2 km predictions with 

optimum AICc inputs and Meadow pipit predictions with optimum sequence inputs at 12 km resolution 

(table 3.2). When investigating further metrics of the Continuous Boyce Index (CBI) and minimum training 

presence omission rates (ORMTP), trends were very similar to AUC and omission rates at 10%, with empirical 

models positively correlated with the true probability of presence. These CBI and ORMTP results are 

available in supplementary material (appendix 2, table A2.1). 

It has been proven through analysis of multiple model evaluation metrics that models developed at the 2.2 

km spatial scale are generally better predictors of distributions compared to 12 km resolutions and null 

models when investigating AUC. However, these trends are not ubiquitous, and switch when looking into 

omission rates. This suggests that the model inputs selected by ENMEval analysis predict more realistic 

results of species distributions than those with random data from the null models. As models run at the 2.2 

km scale consistently outperformed those at the 12 km scale, only results at the higher 2.2 km spatial 

resolution will be presented in subsequent results. 
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3.3.2 Maxent model results 

Results computed with Maxent at the 2.2 km resolution using the optimum inputs values for both optimum 

AIC and optimum sequence results are presented in table 3, with those at the 12 km resolution in 

supplementary material (appendix 2, table A2.2). All model evaluation metrics indicated that results at 2.2 

km spatial resolution had greater prediction accuracy when compared to those at 12 km. Every model had 

AUC values above 0.5 and TSS and SEDI values greater than 0 which are considered thresholds at which 

models are better than random. AUCTRAIN was greater than AUCTEST for all species and scales, which is 

expected and suggest that models are not overfitted. Models written with optimum AICc inputs computed 

higher values of AUC, TSS and SEDI metrics compared to optimum sequence results (table 3.3) indicating 

models with optimum AICc inputs have a greater predictive accuracy than those with optimum sequence 

inputs (table 3.3). This differs slightly to the original selection of these optimum inputs (table 3.2), with 

changes to model performance when modifying replicates and outputs.  

When investigating species results, those species that are more specialised with smaller numbers of 

presence data resulted in the best models (table 3.3). The predictive models for golden plover and 

whinchat had the highest test AUC and TSS scores (table 3.3), with the only SEDI scores over 0.4, indicating 

a good model. While no models exceeded a score of 0.4 in the TSS evaluation, they were over zero. One of 

the most ubiquitous species, the meadow pipit, resulted in the model with the lowest predictive accuracy 

when investigating the 2.2 km optimum AICc results. 

The models represented in table 3.3 are generated with random background points as pseudoabsences. I 

compared 2.2 km optimum AICc models run with random background points and background points 

selected through a bias layer. Evaluation matrices showed little difference between biased and random 

background points, so the random point models were chosen as the final outputs. This matches with the 

ENMEval input model outputs and allows for comparisons with other studies, as many use random 

background points in presence-background modelling. The BTO Breeding Bird Survey, one of the data sets 

used in the models, does account for sampling bias, and therefore there is unlikely to be overwhelming 

bias in the outputs. 

The models built with optimum AICc inputs at the 2.2 km scale UKCP18 climate data were chosen to 

examine how suitable climate space is likely to change with climate for the five bird species in the analysis. 

3.3.3 Suitable climate space 

Results in figure 3.2 use the cloglog predictive scale which gives a proportion of overall space that is likely 

to be suitable climatically from 0 to 1, with the higher the value, the higher the amount of area likely 

containing suitable climates. All species showed similar trends when investigating suitable climate space for 

both 2030s and 2070s futures from the 1990s baseline (figure 3.2). The generalist species of meadow pipit 

(figure 3.2B) and skylark (figure 3.2C) gained more suitable space in the future when compared to specialist 

species such as the golden plover (figure 3.2A). Any increases in future suitable climate space under future 

climate change show shifts mainly in areas of higher latitude and altitude (figure 3.2). Greater changes to 
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suitable climate space are expected between 1990s and 2030s rather than between 2030s and 2070s. Out 

of all five species in the analysis, the golden plover was the only species that saw a predicted reduction in 

suitable space across mainland Britain (figure 3.2A; 3.3A). 

Spatial results show the meadow pipit and skylark with the greatest amount of predicted suitable climate 

space increasing in the future under climate change (figure 3.2). These results show the areas of mainland 

Britain that are likely to be suitable when only considering climate, regardless of habitat cover, 

anthropogenic influence, or accessibility by the species. 

Results are presented from the maximum test sensitivity and specificity cloglog threshold within Maxent, 

which coordinated with the threshold used to calculate maximum TSS (figure 3.3).  

All species increase in suitable climate space from the 1990s to 2030s and 2070s (figure 3.3) for the 

threshold results. Again, as with the scaled results (figure 3.2) the generalist meadow pipit and skylark 

species see the largest increase in suitable space. The golden plover models show the greatest different to 

the other species (figure 3.3). All species except the golden plover have the potential to expand 

distributions into eastern and southern Britain (figure 3.3), with all species shifting ranges to the north and 

increasing these extents.  
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Table 3.2: Optimum inputs for Maxent models as computed by ENMEval models investigating different background point (BP), feature class (F) and regularization multiplier 

(RM) inputs. Results are presented from empirical and null models with area under the operating curve (AUC) and omission rates at 10 % (OR10p) explored. Optimum model 

inputs are reflected in high AUCTRAIN and AUCVAL scores and low AUCDIFF and OR10p values. A significant difference between empirical and null models (pAUCTRAIN, pAUCVAL, 

pAUCDIFF and pOR10p) indicate models that are more likely to accurately predict species distributions than random. OA = optimum AICc, OS = optimum sequence. 

2.2 km 
Species Model BP F RM ΔAICc AUCTRAIN AUCVAL-

AVG 

AUC-
DIFF 

AUCNULL-

TRAIN 

AUCNULL-

VAL-AVG 

AUCNULL-

DIFF 

pAUCTRAIN pAUCVAL pAUCDIFF OR10p OR10p-

NULL 

pOR10

p 
Golden 
plover 

OA 25,000 LQHPT 0.5 0 0.772 0.611 0.173 0.663 0.512 0.178 <0.001 0.017 0.468 0.310 0.339 0.324 
OS 15,000 L 1 173.029 0.680 0.674 0.111 0.547 0.541 0.255 <0.001 0.003 <0.001 0.112 0.172 0.172 

Meadow 
pipit 

OA 25,000 LQHPT 0.5 0 0.655 0.666 0.054 0.598 0.569 0.093 <0.001 0.002 0.095 0.124 0.197 0.034 
OS 5,000 LQH 1 143.523 0.615 0.688 0.076 0.553 0.692 0.168 <0.001 0.546 <0.001 0.034 0.036 0.473 

Skylark OA 25,000 LQHPT 0.5 0 0.678 0.605 0.154 0.628 0.611 0.114 <0.001 0.603 0.938 0.208 0.117 0.999 
OS 15,000 H 5.5 359.446 0.623 0.653 0.218 0.596 0.632 0.223 <0.001 <0.001 0.232 0.019 0.019 0.503 

Wheatear OA 25,000 LQHPT 0.5 0 0.689 0.672 0.081 0.614 0.560 0.097 <0.001 <0.001 0.298 0.128 0.221 0.015 
OS 15,000 LQHP 6 403.498 0.630 0.681 0.095 0.512 0.615 0.209 <0.001 0.016 0.002 0.048 0.067 0.317 

Whinchat OA 25,000 LQHPT 0.5 0 0.723 0.578 0.215 0.664 0.528 0.153 <0.001 0.076 0.936 0.294 0.294 0.505 
OS 5,000 H 6 196.205 0.636 0.605 0.112 0.508 0.567 0.100 <0.001 0.175 0.584 0.028 0.009 0.873 

12 km                  
Species Model BP F RM ΔAICc AUCTRAIN AUCVAL-

AVG 
AUC-
DIFF 

AUCNULL-

TRAIN 
AUCNULL-

VAL-AVG 
AUCNULL-

DIFF 
pAUCTRAIN pAUCVAL pAUCDIFF OR10p OR10p-

NULL 
pOR10

p 
Golden 
plover 

OA 10,000 LQ 0.5 0 0.610 0.566 0.153 0.558 0.526 0.235 <0.001 0.247 0.063 0.190 0.205 0.435 
OS 20,000 L 0.5 12.534 0.601 0.613 0.267 0.555 0.528 0.258 <0.001 0.051 0.568 0.138 0.202 0.177 

Meadow 
pipit 

OA 10,000 LQH 6 0 0.525 0.551 0.233 0.516 0.501 0.197 0.075 0.163 0.687 0.127 0.159 0.360 
OS 20,000 LQHPT 1 83.990 0.554 0.614 0.153 0.584 0.502 0.135 0.999 0.010 0.647 0.053 0.254 0.002 

Skylark OA 5,000 LQ 0.5 0 0.612 0.594 0.111 0.556 0.521 0.245 <0.001 0.097 0.005 0.172 0.211 0.316 
OS 20,000 H 5 22.723 0.545 0.543 0.268 0.532 0.552 0.152 0.001 0.579 0.943 0.016 0.050 0.302 

Wheatear OA 10,000 H 6 0 0.552 0.562 0.232 0.511 0.516 0.042 0.001 0.070 0.999 0.206 0.027 0.999 
OS 10,000 LQ 0.5 19.896 0.557 0.580 0.212 0.532 0.525 0.166 <0.001 0.154 0.773 0.097 0.157 0.214 

Whinchat OA 10,000 LQHPT 5 0 0.549 0.560 0.222 0.525 0.552 0.160 0.009 0.426 0.903 0.149 0.106 0.767 
OS 25,000 L 3.5 0.840 0.548 0.578 0.185 0.519 0.569 0.194 <0.001 0.424 0.433 0.063 0.095 0.313 
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Figure 3.2: The change in suitable climate space for five bird species found in the uplands of Great Britain under climate change. Results are at the 2.2 km spatial resolution 

with model inputs as indicated by ENMEval optimum AICc results. A) Golden plover, B) Meadow pipit, C) Skylark, D) Wheatear, E) Whinchat.
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Figure 3.3: The change in suitable climate space when constrained by maximum test sensitivity and specificity cloglog threshold. Values of 1 indicate geographical space 

more likely to contain suitable climate space for the species, with values of 0 indicating geographic space unlikely to contain suitable climate space for that species. A) 

Golden plover, B) Meadow pipit, C) Skylark, D) Wheatear and E) Whinchat. 
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Table 3.3: Maxent model results using optimum settings from ENMEval (see table 2.1). n = number of presence 
points for each species. 

 
 
 
 
 
 
 
 
 

 

 

 

The 1990s model estimated 52 % to 74 % of mainland Britain as unsuitable climatically for the five 

target species, with the least available space for the whinchat (74.8 %) (table 3.4). By 2070s, only 

one species, the golden plover, has the majority space being climatically unsuitable (51.19 %), with 

an increase of 21.17 % in suitable climate space from the 1990s (table 3.4). In contrast, the meadow 

pipit is likely to see the greatest increase of suitable climate space (table 3.4) with the amount of 

predicted suitable space increasing by 67 % over the study period from the 1990s to 2070s. Both the 

whinchat and wheatear increase in suitable space by approximately 64 %, and the skylark sees the 

second smallest increase of 43.87 % (table 3.4). 

 

Table 3.4: Amount of and percentage change in suitable space for threshold Maxent results between the 

baseline and two climate futures. + or – indicate increases or decreases in the amount of suitable climate space 

predicted to occur for each species between baseline and future projections. 

 Amount of suitable space (%) Percentage change between years (%) 
Species 1990s 2030s 2070s 1990s to 2030s 2030s to 2070s 1990s to 

2070s 
Golden 
plover 

27.6 23.8 48.8 - 3.8 + 25.2 + 21.2 

Meadow 
pipit 

31.6 79.4 97.5 + 47.8 + 18.2 + 67 

Skylark 47.9 66.6 91.8 + 18.6 + 25.2 + 43.9 
Wheatear 30.1 71.5 94.2 + 41.4 + 22.7 + 64.1 
Whinchat 25.2 64.4 89.8 + 39.2 + 25.5 + 64.6 
Averages 32.5 61.1 80.4 + 28.6 + 23.4 + 52.2 

 
3.3.4 Suitable climate and land cover 

Areas of grassland, scrub and shrub, and cropland are predicted to increase over mainland Britain, 

however, land cover of sparse vegetation, bare ground and swampy vegetation will potentially 

2.2 km 
Species n Model AUCTEST AUCTRAIN TSS SEDI 
Golden plover 1441 OA 0.732 0.809 0.348 0.461 

OS 0.643 0.651 0.237 0.355 
Meadow pipit 3996 OA 0.624 0.688 0.188 0.289 

OS 0.576 0.587 0.127 0.263 
Skylark 4889 OA 0.651 0.703 0.233 0.354 

OS 0.611 0.612 0.179 0.289 
Wheatear 3001 OA 0.659 0.727 0.245 0.363 

OS 0.619 0.620 0.188 0.289 
Whinchat 1488 OA 0.685 0.789 0.287 0.414 

OS 0.587 0.604 0.150 0.253 
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reduce in size. The greatest increases in the amount of suitable space within potentially suitable land 

cover are found in the mostly crops (LC1) and grassland, scrub, or shrub (LC2) habitats. See 

supplementary material, appendix 2, table A2.3 for percentages and percentages of change of 

suitable habitat within suitable climate space for every species. The meadow pipit (appendix 2, table 

A2.3) has the largest increase of suitable space also containing potentially suitable habitat, with a 

375 % increase in the amount of LC1 from the 1990s to the 2030s average. The greatest change from 

the 1990s to 2070s and between 2030s and 2070s was for the skylark within sparse vegetation (LC5) 

with an increase of 1073 % and 346 % respectively (appendix 2, table A2.3). 

Some species see a decline in the amount of suitable climatic space also containing potential suitable 

habitat (appendix 2, table A2.3) from the 1990s to the 2030s. These are seen in all land cover types 

for the golden plover (appendix 2, table A2.3) and with less pronounced declines for other species, 

mainly seen in the bare vegetation (LC5) and swampy or often flooded vegetation (LC7). By the 

2070s, all land cover types exceed the amount of suitable space within the habitat layers predicted 

for the 1990s (appendix 2, table A2.3). For some land covers, more than 90% of suitable climatic 

space is also likely to contain habitat that may be suitable (appendix 2, table A2.3).  

However, when examining this within mainland Britain, there are still increases in suitable climatic 

and habitat space, but these areas are much smaller. For all percentages and percentage change of 

suitable climate and habitat within mainland Britain see supplementary material (appendix 2, table 

A2.4). This may lead to more fragmented, small habitats that species are less likely to be able to 

inhabit. For all species, the amount of suitable climate space in LC5 and bare area (LC6) land cover 

types only increase incrementally (appendix 2, table A2.4). This could be an issue for species that 

rely on bare ground and sparse vegetation in their life cycles. In alignment with appendix 2, table 

A1.3, LC1 and LC2 are predicted to have the largest increases in amount of suitable space in 

mainland Britain (appendix 2, table A2.4). However, LC2 has the largest percentage of suitable land 

cover for all species, in contrast to LC1 in table A2.3 (appendix 2). The golden plover is the only 

species that is expected to experience a decline of approximately 24 % on average in the amount of 

suitable climate and habitat space within all habitat types from the 1990s to 2030s (appendix 2, 

table A2.4). Future projections in the 2070s predict, on average 2.4 % to 8.6 % of mainland Britain 

within suitable climates and habitats for these five species. For habitats both within climate space 

and mainland Britain, the highest percentage of suitable space are within cropland (LC1) and 

grassland, scrub, or shrub (LC2).  
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Table 3.5: The distance in kilometres, and direction in which the centroid of each species' range is predicted to 

change from the 1990s baseline to 2030s and 2070s future. The average is of absolute values, disregarding 

direction. 

 
Figure 3.4 shows potentially suitable habitats that are also within potentially suitable climate space 

for all five bird species and the centroid of these distributions. On average, species distributions shift 

the greatest distance between 2030s and 2070s (table 3.5), with the skylark predicted to have the 

greatest shift of over 100 km north (figure 3.3C; table 3.5). All species shift distributions northwards 

over time, with the skylark with the greatest potential movement, but also retaining the most 

southerly centroid of range (figure 3.3C). The golden plover is predicted to be the most northerly 

distributed species (figure 3.3A), and the only species whose distribution centroid is likely to move 

southwards in the 2070s. All species’ distribution centroids are predicted to shift on average 

approximately 64 km (table 3.5) with greater amounts of potential suitable cropland in the east of 

Britain and grasslands in the west (figure 3.3). While croplands may be suitable for species such as 

the skylark (figure 3.3C) and meadow pipit (figure 3.3B), they may not suit the life histories of more 

specialist golden plover (figure 3.3A). Species with very similar life histories like the wheatear (figure 

3.3D) and whinchat (figure 3.3E) are predicted to have similar potential future ranges, despite their 

differing migratory habits. 

3.3.5 Abergwesyn Common case study: the golden plover 

Investigating the site level results show us how results could influence future conservation 

management. Climatically suitable space does appear to increase across Abergwesyn Common in the 

future (figure 3.5A, B) for the golden plover. It is predicted that by the 2070s, most of the common 

land is likely to be suitable climatically for the specialist species (figure 3.5B). There is a slight decline 

in the amount of suitable space between the 1990s and 2030s (figure 3.5B), but only by about 2 %. 

However, the climatic space that is suitable does become slightly fragmented across the Common. 

Only two land cover types are predicted to occur there in the future (figure 3.5C). Areas of grassland, 

scrub, and shrub (figure 3.5C, LC2) and swampy or flooded vegetation (figure 3.5C, LC7) are 

predicted to increase between 1990s (figure 3.5Ci) and 2070s (figure 3.5Ciii), with a decline in LC7 in 

the 2030s (figure 3.5Cii). While the majority of the Common appears to contain suitable habitats and 

climate  

Species 1990s to 2030s 2030s to 2070s 1990s to 2070s 
Golden plover 78 km northwards 59 km southwards 28 km westwards 
Meadow pipit 54 km southwards 54 km northwards 12 km northwards 
Skylark 66 km northwards 107 km northwards 173 km northwards 
Wheatear 84 km southwards 56 km northwards 36 km eastwards 
Whinchat 33 km eastwards 54 km westwards 64 km northwards 
Average 63 km 66 km 63 km 
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Figure 3.4: Areas of mainland Great Britain containing suitable climate within five different habitat types for five bird species found in the uplands of Britain. Black points 

represent the centroid of the potential species distribution and indicate general shifts in potential distributions. Species: A) Golden plover, B) Meadow pipit, C) Skylark, D) 

Wheatear and E) Whinchat. Land cover types: 1) Mostly cropland, 2) Grassland, scrub, or shrub, 5) Sparse vegetation, 6) Bare ground and 7) Swampy or often flooded 

vegetation. Baseline land cover from 2000, with predictions of land cover to 2050 as projected by Clark Labs X ESRI (Esri, 2021). 
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for the golden plover, if these are not in good condition or managed incorrectly, then the species will 

not be able to thrive. 

 

Figure 3.5: Abergwesyn Common case study Maxent model results and land cover estimates. A) Maxent model 

of climate suitability, the closer the value to 1, the greater likelihood of that area being climatically suitable for 

the golden plover. B) Threshold Maxent results using 'maximum test sensitivity and specificity cloglog 

threshold'. C) Areas of Abergwesyn Common likely to contain suitable climate and land cover. i) 1990s, ii) 

2030s, iii) 2070s. LC2 = Grassland, scrub or shrub, LC7 = swampy or often flooded vegetation. 

 
3.4 Discussion 

3.4.1 Conservation implications 

Cold-associated and habitat specialist species are predicted to be the most vulnerable to climate and 

habitat change. Habitat specialist golden plover and migrant whinchat are predicted to have the 

least amount of suitable climate and habitat space in the future. This is similar to Pearce-Higgins et 

al., (2015) who identified that generalist species were less affected than specialists. Even with these 

vulnerabilities, all species have the potential to expand their ranges, which has been suggested in 

previous research (Massimino et al., 2017; Pearce-Higgins et al., 2017; Pearce-Higgins and Crick, 

2019). It was not found that resident species were affected more than the migrant species (Pearce-

Higgins and Crick, 2019), especially when comparing the whinchat and wheatear, with similar life 

histories. The most abundant species, meadow pipit and skylark, are projected to experience the 

greatest increases in suitable climate space, potentially due to their generalist traits and current 

abundance.  
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Habitat type has a larger impact on potential suitable space than climate change for these five 

species. This is similar to other studies in the UK and globally, with climate not being the determining 

factor of species distributions (Beale, Lennon and Gimona, 2008; Rich and Currie, 2017; Vermaat et 

al., 2017; Liang et al., 2021; Tourinho et al., 2022). Human-influenced croplands and grassland, scrub 

and shrub habitats provided the most suitable climate space in the 1990s, 2030s and 2070s for all 

species in this study, with some increases in suitable habitat and climate space over time with 

climate change. This is similar to Vermaat et al., (2017) where dry grassland habitats saw 50 % bird 

species increasing. However, distribution increases in these habitats are dependent on human 

activity alongside climate and land cover availability. It has been established that habitat 

management can have a greater effect on species distributions and prevalence (Schwartz, 2012; 

Goodenough and Hart, 2013) regardless of climate, and that habitats in poor condition are likely to 

be more susceptible to climate change (Segan, Murray and Watson, 2016). Therefore, without some 

management for wildlife, these habitats will be unable to support the studied bird species even if 

they are present. 

Impacts of climate change are greater in the 2030s than the 2070s, with any contractions of range 

under climate and/or habitats seen only up to the 2030s. This is unusual as, with global 

temperatures projected to increase beyond the 2030s (Masson-Delmotte et al., 2018a), it could be 

hypothesised that the impacts would become more severe. However, there is some evidence to 

suggest that increasing winter and spring temperatures may result in long-term population increases 

in some resident UK bird species (Pearce-Higgins et al., 2015), which could be translated to future 

climates as shown in our research. Additionally, species are predicted to expand distributions 

northwards without contraction of southern ranges, which has already been observed in the UK 

(Massimino, Johnston and Pearce-Higgins, 2015). However, these results suggesting population 

increases only show areas of land where climates are potentially suitable, and not where a species is 

either currently residing or is able to inhabit. Therefore, these expansions of potential species 

distributions can be considered a best-case scenario for future distributions when considering 

conditions under average temperatures and precipitation rates, with consideration of current 

population sizes, species migration abilities, and other factors such as shelter, food and land cover 

availability required to provide a more realistic picture of future distributions. 

As there are limited negative impacts from climate change for all five species, other factors may 

have a greater effect on species distributions. Even though habitat did constrain distributions more 

than climate, each species experiences possible range increases for all habitat types under future 

conditions. Dispersal could have significant impacts to species’ ability to access sites of increasing 

climatic suitability (Hellmann, Alkemade and Knol, 2016). Fragmented habitats or barriers of 
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unsuitable habitats are likely to significantly impact a species ability to reach suitable space (Segan, 

Murray and Watson, 2016; Pearce-Higgins et al., 2017), if the area they currently inhabit becomes 

unsuitable. Creating new habitats adjacent to currently occupied areas (Synes et al., 2020), to create 

stepping stones (Aben et al., 2016), is one way to reduce these impacts of fragmented habitats, 

which could occur in future projections. If species, such as the specialist golden plover, are unable to 

reach the variety of habitats required for their life history then populations will decrease regardless 

of if they are within suitable climate space. Finally, while distributions have the potential to increase, 

abundances of species are more vulnerable to change (Renwick et al., 2012; Johnston et al., 2013; 

Massimino et al., 2017), with impacts from habitat management (Douglas et al., 2017) alongside 

climate. 

The findings presented suggest that species-specific models are required to fully understand how 

different bird species are likely to react to climate change, especially when suitable habitats are 

included in analysis. This will result in targeted policies with the potential to improve habitat 

connection and availability to vulnerable species (Vermaat et al., 2017). 

3.4.2 The Case Study – Abergwesyn Common 

There are predicted to always be suitable areas of climate space for the golden plover on 

Abergwesyn Common up to 2080. When investigating the case study results for Abergwesyn 

Common, two potentially suitable land cover types were observed at the baseline and predicted for 

the future. The golden plover relies on a variety of habitat types (Whittingham, Percival and Brown, 

2001), mostly covered by one of these present (LC2) (Pearce-Higgins and Yalden, 2004). However, 

these grassland and scrubby habitats require specific plant and prey species to support the plover 

and without these, the birds are unlikely to thrive due to food availability and shelter requirements 

(Pearce-Higgins, 2011). Cranefly (Tipulidae) larvae and adults are especially important as a food 

source for young plover chicks, with positive correlations between predation of these insects and 

plover use of grassland and bare peat areas (Pearce-Higgins and Yalden, 2004). There are areas of 

grassland (LC2) predicted to be present in the future within areas of suitable climatic space, but bare 

peat areas are lacking in future projections. However, previously it was mentioned that areas of 

Abergwesyn Common consist of degraded peatland, with some moves to begin widespread 

restoration. If small areas of the Common were maintained as bare peat as part of a mosaic of 

grassland, peat-bog and wetland areas, then the potential for an increase, or at least maintenance, 

in distribution and abundance of golden plovers is more likely. This suggests that there are climate 

and land cover conditions suitable for not only species presence, but food availability at Abergwesyn 

Common currently and in the future, which may require targeted restoration and ongoing 

conservation actions.  
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Over half of all ecoregions are predicted to become impacted by habitats loss in this century under 

RCP8.5 emissions scenarios (Segan, Murray and Watson, 2016), the same extreme scenario used in 

this study. Wetlands are forecasted to become more vulnerable (Britton et al., 2017) with habitat 

loss and fragmentation, and climate change decreasing some vulnerability in shrublands (Segan, 

Murray and Watson, 2016). This contradicts our findings, with scrubland (LC2) and wetlands (LC7) 

within suitable climate space increasing for every species, although wetlands saw the smallest 

increases. If habitats become more fragmented, as our results suggest, even increasing the overall 

amount of these may not benefit the plover, as they require a mosaic of habitats (Whittingham, 

Percival and Brown, 2001; Pearce-Higgins and Yalden, 2004), confounded by some contraction of 

ranges under climate change. 

Extracting results from country-wide predictions for individual case studies is useful and provides 

insights into risks at finer scales alongside broader trends. Results at the Abergwesyn Common scale 

do show spatial and temporal variability, suggesting that there are predicted changes across the site 

as have been examined. Scaled results in this case are likely to be more useful than those identified 

through the threshold as threshold results predict the majority of the site to be suitable climatically 

for the plover, which may not aid in making conservation decisions.  

3.4.3 Model choice and input selection 

This study suggests that UKCP18 daily climate data from the CPM at the local 2.2 km spatial scale are 

likely to produce the most accurate models of future distributions for the species studied when 

compared to the larger scale 12 km data. The higher spatial resolution climate data allows the use of 

higher spatial resolution bird data for presence modelling, with less data excluded when controlling 

for pseudoreplication and autocorrelation. Additionally, the 2.2 km data has more information about 

detailed local climate than the 12 km layers, and provides useful ideas about site level impacts, along 

with country-wide trends about how climate may affect species distributions. While such local data 

has not been used extensively (Coll et al., 2010; Feldmeier et al., 2018) in species distribution 

models, this study shows that these can produce robust future projections. This supports previous 

findings that showed Maxent performance declining at resolutions greater than 4 km (Farashi and 

Alizadeh-Noughani, 2018). Additionally, without use of the 2.2 km data, any site level case study 

would be unlikely to produce detailed results able to make informed decisions about site or regional 

conservation, although this does depend on the scale of the site in question. Although only one 

member of the UKCP18 model was utilised due to data processing time constraints, this study 

provides good information about the useability of the data and incorporating further members will 

only improve predictions. Local adaptation to climate impacts can deliver biodiversity benefits 
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(Smith et al., 2022), which could be targeted using the 2.2 km data proven to be useful in this study. 

Our research highlights the importance of using data at scales that are appropriate for the topic in 

question (Feng et al., 2019), which could enable scales of conservation to be aligned with scales of 

climate change projections (Wiens and Bachelet, 2010).  

Writing species-specific models improves predictions (Radosavljevic and Anderson, 2014; Aben et 

al., 2016; Brandt et al., 2017) through tailoring of inputs both in data and models. The use of 

ENMEval (Kass et al., 2021) to select the best model inputs suggest that the default inputs of 

features, background points and the regularisation multiplier are not always optimal. Similar studies 

have also explored this and have suggested that default numbers of background points are not 

suitable (Feldmeier et al., 2016), but little exploration into values of the other inputs has been noted 

(Morales, Fernández and Baca-González, 2017; Feng et al., 2019). The models in our study suggest 

that the default background point number of 10,000 is inadequate for most scenarios, and that 

testing a wide range of point numbers is required to find the optimum number to use. That the 

optimum models use a greater number of feature classes suggests that the model is more complex. 

This could indicate model results explaining better the changes in the study area, but could also 

suggest overfitting. Therefore, as with all model results, they must be examined carefully, with the 

remembrance that they do not represent true locations, but a suggested future distribution location. 

The low regularisation multiplier value in the optimum models (0.5) suggests that the model is more 

closely fitted to the presence dataset with a more localised output (Phillips, 2017), but the values are 

not so low to indicate a great level of overfitting. 

 

Using both threshold dependent (TSS and SEDI) and threshold independent (AUC) metrics to 

evaluate models helps to better identify the best overall results (Merow et al., 2013). However, 

when investigating the final model results, especially using TSS and SEDI, there is still room for 

improvement. While all models were better than random, evaluation metrics did not rise above 0.4 

for any species. Some observed variability will be due to noise, and variables not included in these 

models. Other papers analysing model inputs and evaluation criteria also included a range of abiotic 

and biotic inputs (Aguirre-Gutiérrez et al., 2013; Scherrer and Guisan, 2019), such as soil moisture 

and nutrients, light, and bioclimatic data exploring seasonality. Changes to management affect bird 

species abundance (Douglas et al., 2017), which can be controlled to improve prey foraging by chicks 

(Pearce-Higgins and Yalden, 2004), which the abundance of has a great impact on bird species like 

the golden plover (Whittingham, Percival and Brown, 2001).   

When examining the influence of each climate variable of monthly average temperature and 

precipitation in the breeding season to the model results, about half had no influence on the results. 
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However, the minimum temperature from the coldest month (February) had a large contribution to 

all final Maxent models bar those for the Skylark. This suggests that extremes of conditions have a 

large impact on species distributions, which may be the case for other variables not studied in this 

thesis such as extreme storms. All variables were included to aid in comparison with the wider 

literature, but removing these could produce more accurate results. Overall, using packages such as 

ENMEval as part of the modelling procedure enables greater certainty that results are robust and fit 

for purpose. This enables the information used in decision making to be improved and contribute to 

more useful integrations of scientific predictions into nature conservation. 

The choice of threshold is likely to have a large effect on model results (Cao et al., 2013), and 

potentially future conservation activities. This choice is often largely subjective, but can have a big 

impact on how results are interpreted and used. Thresholds which maximise the sum of sensitivity 

and specificity have been found to be the most accurate (Jiménez-Valverde and Lobo, 2007). The 

maximum test sensitivity and specificity threshold used in this study has been utilised in a number of 

others (Aguirre-Gutiérrez et al., 2013; Liu et al., 2013; Liu, Newell and White, 2015; Feldmeier et al., 

2018; Shabani, Kumar and Ahmadi, 2018; Feng et al., 2019) investigating suitable climate space for 

species, future prevalence and potential spatial shifts. While it may overestimate the amount of 

space that is likely to be climatically suitable, areas are not missed that may be important. 

Additionally, presenting larger areas of potentially climatically suitable space at a case study site 

enables expert local knowledge to pinpoint areas for conservation action. 

There is often an emphasis on including estimations of the effect of bias, such as from sampling, in 

studies (Merow et al., 2013). In our study, models attempting to incorporate bias through 

background point selection are not significantly different to those run with completely random 

background points when tested statistically. Results were different, by only > 0.1 % between runs. 

Keeping models as simple as possible has been found to increase reliability and reproducibility (Bell 

and Schlaepfer, 2016), with simple ecological niche models providing better results than complex 

models when exploring climate-driven changes to distribution extents in British breeding birds 

(Fordham et al., 2018). The BTO data used in this study had already been bias checked and biases 

accounted for before publishing, suggesting why biases had little effect on the results. 

 

3.5 Conclusions 

The use of UKCP18 2.2 km climate data is useful when modelling species shifts in relation to climate 

change. Results at the finer scale were more statistically accurate than those at the larger 12 km 

scale in predicting species distributions under baseline and future climates. Additionally, local 

climate data provides detailed information at the site scale, useful for nature conservation. Tailoring 
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species distribution models to specific species produces more realistic results than using default 

model inputs. It is demonstrated in this chapter that some default inputs to widely used Maxent 

models, such as background point number and regularisation multiplier values do not, in this study, 

produce accurate results.  

Overall, climate space is likely to increase for the species analysed over the next century. Specialist 

species are predicted to see the smallest increases in space, but still potentially benefit from climate 

change. When incorporating habitat and land cover, the amount of suitable space decreases. Land 

cover and management is likely to have a greater impact on species than climate change, although 

both will affect a species individually.  

While climate and land cover change will alter natural areas and affect the species in this analysis, 

there is a chance, due to potentially positive climate-only impacts, that species could thrive with the 

right management of landscapes and monitoring of populations. 
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Chapter 4: Assessing the frequency and severity of potential future 

fires under climate change: A peatland case-study in the Welsh 

uplands exploring the future of controlled burning. 

 

Abstract 

Fire risk in the United Kingdom is increasing, with greater extremes of warm weather and prolonged 

dry periods expected to occur under climate change. Peatlands, diverse ecosystems storing vital 

amounts of carbon, are under greater threat from fires than previously. Controlled burning has been 

used to manage upland areas for conservation and private activities such as grouse rearing, often at 

the detriment to natural systems. Dedicated projects are currently predicting short-term fire risk in 

the UK with on-going research to evaluate this risk at larger temporal scales and at greater detail. 

The UK has committed to net zero emissions by 2050. Peatlands are central to carbon sequestration 

in the UK, with healthy peatlands locking in the greatest amounts of carbon over time. The Canadian 

Forest Fire Danger Rating System (CFFDRS) was developed to forecast fire risk to Canadian peat 

forests. This model has been used and adapted worldwide to calculate short-term risk from fires in a 

variety of climates.  

Estimations of baseline and future fire risk to an upland peatland in Wales on the Ysbyty Ifan Estate 

using the CFFDRS were tailored to site conditions. Three metrics of fire risk are calculated; fire 

season length, Fire Weather Index (FWI) and Head Fire Intensity (HFI) for three time periods. Fire 

season predictions were calculated with default values and values of temperature from known fire 

days as adjusted methods. Fire risk metrics were validated using data from fires on-site in March 

2003, April 2003, and April 2015. Future climate layers were from the UKCP18 daily projections at 

the 2.2km scale.  

Fire seasons are predicted to increase in length under all future scenarios using both default 

methods, and those adjusted to known fire days. The conditions under which fires may be more 

likely to occur (FWI) increased under climate change projections. FWI increased the most between 

the 2030s and 2070s, with a reduced fire risk between the 1990s and 2030s. The largest single 

percentage change in FWI between the 1990s and 2070s was a 745% increase for the month of 

October. With similar trends in HFI compared to FWI, decrease in fire strength is predicted from the 

baseline to the 2030s and an increase to the 2070s. Fires if they do start in the long-term, are likely 

to become more intense under climate change, as HFI could increase by a maximum of 700 % 

between the 1990s and 2070s.  
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Our research suggests that peatlands are likely to become more vulnerable to fires in the future. 

Additionally, it is indicated that fire risk in frequency and severity of potential fires is likely to 

increase throughout all months of the year, with some of the biggest increases in risk in months 

currently considered safe. This study suggests that controlled burning of peatlands is not suitable 

management for every site when considering carbon sequestration targets and risk to ecosystems. 

UKCP18 data provides useful insights into these trends, with high validation accuracy for one metric 

(FWI). Bias correction could improve validation with other fire risk metrics. The results present the 

first integration of long-term climate change with a tailored version of the CFFDRS to a site in Wales. 

It is possible to use this model to investigate fire risk under future conditions, but further work needs 

to be done to improve applicability to landscapes not included in the model.  

 

4.1 Introduction 

Peatlands are highly important natural landscapes, providing a range of ecosystem services, perhaps 

most notably as carbon stores (Lavoie, Paré and Bergeron, 2005; Limpens et al., 2008; Searchinger et 

al., 2018; Young et al., 2018; Morecroft et al., 2019). These habitats are home to a diversity of birds 

(Pearce-Higgins and Yalden, 2004), invertebrates (Carroll et al., 2011) and plants, including 

Sphagnum species (Noble et al., 2019) which are vital for peat formation and water quality. 

Peatlands have the potential to further contribute to nature-based solutions to climate change, 

acting as a carbon sink, promoted by the UK government and environmental organisations (Stafford 

et al., 2021). However, many UK peatlands are currently in a degraded state and further at risk from 

impacts such as fire, while also risking a transition to a source of carbon emissions. 

UK peatlands are estimated to occupy approximately 12 % of total UK land area (Evans et al., 2017), 

containing around 3000 Mt of carbon (Dunn et al., 2021) with about 22% of this remaining in near-

natural condition. However, over three quarters of the UK’s peatlands are in a modified state, 

transitioning from a historical greenhouse gas (GHG) sink of approximately 0.25 Mt CO2e yr-1, to a 

total source of over 23 Mt CO2e yr-1 (Evans et al., 2017). The UK Climate Change Risk Assessment in 

2017 recognised that for Wales, there was more action needed to restore degraded carbon stores, 

and particularly those in peatlands (ASC, 2017). In this report, over 75 % of Welsh peatlands have 

been impacted by land-use activities such as drainage, grazing, neglectful management, and 

conversion to grassland. Due to this, these Welsh peatlands have become a carbon source, currently 

estimated at 0.7 Mt CO2e yr-1 (ASC, 2017). While this makes up a small proportion of the total UK 

emissions from peatlands, any emission of GHGs has a negative impact on climate change. Climate 

modelling of sensitive blanket bog peatlands suggest that under high emissions scenarios, these 

ecosystems are likely to shrink by 84 % by the end of the century under climate change alone 
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(Gallego-Sala et al., 2010). This would result in large GHG emissions from these environments, and 

negatively affect species of conservation and economic importance. Any other impacts are therefore 

likely to exacerbate this change and further impact peatlands. In 2019, the UK government 

committed to ‘net zero’ GHG emissions by 2050 under the 2008 Climate Change Act (UK 

Government, 2008). Large scale of conservation action is required if the aims of net zero as set out 

by the UK government’s 25 year plan (DEFRA, 2018) are to be met (Field et al., 2020). Restoration of 

key carbon sequestering habitats is recognised as a critical step towards this target. Over long time 

periods, peatlands in good condition are able to store far greater quantities of carbon than 

woodlands of a similar size (Gregg et al., 2021). However, increases of risk in terms of frequency and 

severity of fires could limit the likelihood of reducing carbon emissions to net zero as peatlands grow 

as sources of emissions rather than sinks. The UK Government has pledged over £750 million in the 

next few years to restore peatlands and other carbon storing habitats (BEIS, 2021). Ensuring these 

peatlands are restored robustly will contribute to aims of reducing emissions from natural resources 

by up to 50 % by 2035 (BEIS, 2021), but further damaging fire events could reduce these 

opportunities. Peatlands are central in the move to net zero in the natural world, investigating future 

trends of risk from fire will aid in understanding how best to maximise these sinks of carbon. 

Many areas of moorland in the UK, which often contain peat, are managed by controlled burns 

(Bedia et al., 2015; Blundell and Holden, 2015; Douglas et al., 2015; Davies, Kettridge, et al., 2016; 

Morecroft et al., 2019), with implications for future climate. While these burns are generally used to 

maintain heathland habitats for reared grouse management (Douglas et al., 2015; Davies, Kettridge, 

et al., 2016; Harper et al., 2018), and are thought to mimic natural fire regimes and reduce wildfire 

risk (Davies, Kettridge, et al., 2016), greater damage is caused to the natural environment. 

Controlled burns lead to lower rates of peat accumulation, reduced local water quality (Douglas et 

al., 2015) and impacts the microbial community, affecting carbon storage (Davies, Kettridge, et al., 

2016). Additionally, greater burning to expand the area over which grouse shoots can operate 

negatively affects the natural ecosystem through losses of habitat for upland bird species (Douglas et 

al., 2017), and disturbance from human presence. Specialist bird species, like the golden plover, did 

increase in abundance post-fire, but only during the initial post-burning period (Douglas et al., 2017), 

with reductions in all other studied species. Low severity fires may or may not have a significant 

negative impact on peatland structure (Taylor, 2014), with peatland condition a large factor in the 

potential impact of a fire (Davies, Domènech, et al., 2016). The idea that low severity fires don’t 

negatively affect peatlands is highly contentious, as even these events lead to decreased water 

availability (Lukenbach et al., 2015) and sphagnum damage (Noble et al., 2019). High severity fires 

have the largest negative impacts to peatlands (Davies, Kettridge, et al., 2016). These dangerous, 
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fires cause large emissions of carbon (Davies, Kettridge, et al., 2016), expose peat (Brown et al., 

2015), and have been associated with lower rates of peat accumulation (Kuhry, 1994; Blundell and 

Holden, 2015). These intense fires also cause the greatest damage to important sphagnum mosses 

(Noble et al., 2019), which are vital for peat growth. Controlled burns can spiral into high intensity 

fires, significantly increasing the risk to ecosystems. Research suggests that these controlled burns 

should occur on rotation roughly every 10 to 25 years (Davies, Kettridge, et al., 2016), although the 

number of burns has increased over past years (Douglas et al., 2015) which may compound negative 

impacts if sites do not recover. It is essential to restore peatlands to a resilient state, and controlled 

burns, planned in rotation may be part of the toolkit. Understanding the risk from more dangerous 

potential fires is essential to ensure the sustainable future of peatlands as biodiverse landscapes, 

and important carbon stores. 

Wildfire is a semi-natural hazard, the conditions for which are determined by the surrounding 

environment, while ignition is often a result of anthropogenic activity (Arnell, Freeman and Gazzard, 

2021). There is increasing awareness of the devastating impacts of wildfire, especially in vulnerable 

areas of the globe including Australia (Wang et al., 2022) and California (Duine, Carvalho and Jones, 

2022). Studies have investigated the current risk of wildfire to the UK (Arnell et al., 2021; Perry et al., 

2022), North America (Waddington et al., 2012) and the Mediterranean (Bedia et al., 2018), with 

widespread understanding that wildfire risk will increase with climate change, especially for 

vulnerable habitats (Fernández-García et al., 2022; Velasco Hererra et al., 2022). Additionally, 

research has investigated the interactions between fire and peatlands (Benscoter et al., 2011; 

Nelson et al., 2021), with an understanding that increased fire risk is likely to contribute to the 

release of carbon from peatlands (Nelson et al., 2021). This will contribute negatively to climate 

change, and fuelling a feedback loop, increasing the vulnerability of peatlands to extreme weather 

events. 

The vast majority of UK wildfires are on peatlands in lowland and upland heath areas (Benscoter et 

al., 2011; Santana and Marrs, 2014; Noble et al., 2019; Arnell, Freeman and Gazzard, 2021; Perry et 

al., 2022), many of which are degraded due to human activity and vulnerable to further change. 

Future projections of fire danger are predicted to be greatest in late summer under a scenario of 4oC 

of warming (Perry et al., 2022), with significant increases in risk from wildfires. Much of the UK has 

not experienced widespread impacts from fire, with this potentially likely to change in the future 

(Perry et al., 2022). The 2017 UK Climate Change Risk Assessment (CCRA) recognised fire risk as a 

serious, although uncommon risk to natural landscapes in Wales (ASC, 2017). Current modelling 

incorporating climate change suggests an increase of 30 to 40 % in wildfire risk in Welsh National 



70 
 

Parks by the 2080s (ASC, 2017). This does not include risk from human activity, accidental or 

intentional, yet this still indicates a substantial increase in risk in the future. 

There are a number of metrics used to calculate the potential risk for fire conditions, many 

developed from the Canadian Forest Fire Danger Rating System (CFFDRS) (Waddington et al., 2012; 

Wang et al., 2017; Nelson et al., 2021). These were mostly developed to predict potential fire events 

in boreal forests. Using a variety of weather and habitat metrics, CFFDRS predicts daily fire risk, fire 

behaviour and indices about length of fire season (Wotton, 2009; Wang et al., 2017). The model has 

been in development since the 1970s (Turner and Lawson, 1978; Lawson and Armitage, 2008) and is 

used extensively in Canada and internationally. The model appears to be relatively easily edited in an 

attempt to make daily site specific predictions (Waddington et al., 2012; Tsinko et al., 2018) using 

local weather and climate inputs. However, the main calculations for the System relate to a forested 

ecosystem (Turner and Lawson, 1978; Lawson and Armitage, 2008), often in commercial plantation 

and on peat soils. Calculating fire behaviour metrics using local data but keeping to default inputs in 

CFFDRS may be more likely to result in unrealistic fire behaviour patterns and risk indices for 

different habitats, such as upland peatlands. This is due to the difference in above ground 

combustible material in a North Wales upland peatland featured in this chapter, and the forested 

peatlands in Canada that the model was developed for. 

Despite many publications exploring the future likelihood of fires on peatlands due to climate 

change (Nelson et al., 2021; Rein and Huang, 2021), estimating how fire risk could change spatially is 

covered less. Studies have investigated fire in forestry (Turner and Lawson, 1978; Wotton and 

Flannigan, 1993; Gazzard, McMorrow and Aylen, 2016), the impacts of fire to peatland soil content 

and health (Rein et al., 2008; Magnan, Lavoie and Payette, 2012; Noble et al., 2019), vegetation 

recovery post-fire events (Lukenbach et al., 2015; Lees et al., 2021), and vegetation responses to 

rewetting (Renou-Wilson et al., 2019) and climate change (Basińska et al., 2020; Ziegler et al., 2021). 

 Research aims 

This chapter tailors the CFFDRS model to a partly restored upland peatland in North Wales, UK and 

evaluate the ability to use this tool to predict how fire risk and behaviour is likely to change in the 

future under climate change. A popularly used metric of the CFFDRS in the FWI is evaluated, with 

consideration of different ways to examine fire risk through HFI and potential fire season length. 

Additionally, weather data from the Climate, Hydrological and Ecological Research Support System 

(CHESS) dataset was used to validate the CFFDRS model with known dates of fires at the case study 

site, and predict these fire risk variables into the future using Met Office UKCP18 climate projections 

for the 2030s and 2070s. Reports have outlined a need for empirical research into the risk of 



71 
 

wildfires to Wales (Jollands, Morris and Moffat, 2011) and this study contributes to this need 

through evaluating these CFFDRS metrics and projecting risk spatially and temporally. 

This chapter examines if and when there are likely to be changes to fire risk and evaluate whether 

the high resolution UKCP18 scenarios can be used to make fire risk predictions for a partially 

restored peatland site of historic and conservation value in the uplands of North Wales. There has 

not been, to our knowledge, research in the UK which examines these site level changes in peatland 

risk to sites in this geographical area. Peatlands are an important part of the net zero strategy and 

assessing the risk of increased fire is crucial to their longevity for biodiversity and contribution to 

solving the climate crisis.  

 

4.2 Methods 

4.2.1 Study site 

The Migneint peatland is part of the Ysbyty Ifan Estate in North Wales (figure 4.1), which is the 

largest single estate cared for by the National Trust. The Estate comprises of 51 farms situated on 

open moorland, peatland, and river valleys. Designated as a SSSI, the Migneint is a large stretch of 

moorland and blanket bog on the south of the Estate. Peatland restoration over the past decade has 

rewetted the site through a change in farming practices and grip blocking. There has been a good 

uptake of sphagnum mosses, with a greater amount of water now held on the peatland. Restoration 

work is ongoing in close collaboration with the National Trust, local farmers, and other conservation 

organisations.  

There have been a number of fire events at the Ysbyty Ifan Estate on the Migneint peatland over the 

past decade. I collated fire data from 1st November 2000 to 8th April 2022 from the Moderate 

Resolution Imaging Spectroradiometer (MODIS) (C6.1) and Visible Infrared Imaging Radiometer Suite 

(VIIRS) (SUOMI C2 and J1 C1) databases. Data is available from November 2000 and analysis started 

in April 2022, hence the date range for data collation. These comprised of five data sets of archive 

and Near Real-Time (NRT) data. There were 54 fire events on the estate since 2000 (figure 3.1) over 

seven individual days within the study area. There was also evidence of a fire in March 2003 from 

personal communications, but no corresponding data or dates. While there are no records of 

managed burning on site the evidence for known fires on site are during seasons when these burns 

can be undertaken. Four known fire days (KFDs) are used in this study, 17th, 18th and 19th April 2003 

and 22nd April 2015. 
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Figure 4.1: The location of the Ysbyty Ifan Estate within Wales, UK, and locations of known fire days (KFDs) at 

the case study site. 

4.2.2 Climate data 

The Met Office have developed the UKCP18 climate predictions (Lowe et al., 2018; Kendon et al., 

2019) as an update to the UKCP09 projections of future climate change in the UK. Here the 

Convection Permitting Model (CPM) 2.2km local projections downscaled from the 60 km global 

CMIP5 climate models using the Met Office HadGEM3 model are used. These projections were run 

for 12 members to explore the range of futures expressed in the model. The first model member 

(model 01) based on the HadGEM3-0.5 model without perturbed physics has been used in this 

analysis.  

Five climate variables were used in analysis, mean temperature (oC) (tas), mean relative humidity (%) 

(rh), mean wind speed (m s-1) (sfcWind), mean precipitation (mm day-1) (prec) and maximum 

temperature (oC) (tmax) All variables were at the 2.2 km spatial scale and for RCP 8.5 which predicts 

global average temperatures increasing by over 4oC by the end of the century. These data layers 

were re-gridded from the rotated grid latitude / longitude (37.5, 117.5) (Fung, 2018) to British 

National Grid. Data processing were done using R 4.0.2 (R Core Team, 2020), the sf (v0.9-8; 

Pebesma, 2018), ncdf (v1.17; Pierce, 2019), raster (v3.4-10; Hijmans, 2021), rgdal (v1.5-23; Bivand et 
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al., 2021), and PCICt (v0.5-4.1; Bronaugh and Drepper, 2018) packages. This data was averaged into 

three 20-year predictions of climate for five variables: average temperature, average relative 

humidity, average wind speed, average precipitation, and maximum temperature. Full reproducible 

code detailing re-gridding and averaging of climate data available on request. Baseline data was 

between 1980 to 2000 (1990s), with two future projections between 2020 and 2040 (2030s), and 

2060 to 2080 (2070s). Hereafter, the time periods will be referred to as the 1990s, 2030s and 2070s. 

These spatial data for the UK were cropped to the Ysbyty Ifan Estate (figure 4.1) for ease in data 

processing time during analysis. This resulted in 49 grid squares of data across the case study site 

(figure 4.1). 

4.2.3 Weather data 

The Climate, Hydrological and Ecological research Support System (CHESS) dataset (Robinson et al., 

2020a, 2020b) comprises of daily mean meteorological variables largely drawn from the 

Meteorological Office Rainfall and Evaporation Calculation System (MORECS) data downscaled to a 1 

km resolution using information about the impact of topography. MORECS calculates the 

evapotranspiration and soil moisture deficit from daily values of five weather variables: hours of 

sunshine, air temperature, vapor pressure, wind speed and rainfall (Hough and Jones, 1997). This 

data is available via the Centre for Ecology and Hydrology (CEH). Metrics of near surface air 

temperature at 1.2 m (K), daily temperature range (K), precipitation from the Gridded Estimates of 

Areal Rainfall (GEAR) (kg m-2 s-1) dataset, near-surface wind speed at 10 m (m s-1), near surface 

specific humidity at 10 m (kg kg-1) and surface air pressure (Pa) are included to calculate the same 

variables used in predictions (see 4.2.2). All variables were converted to the same metric as the 

UKCP18 data (see 4.2.2) e.g., specific humidity, atmospheric pressure and mean temperature were 

used to calculate relative humidity. Data was extracted for two years of KFDs at the case study site, 

resulting in 49 grid squares of five variables of weather data for 2003 and 2015. Data for 2022 was 

not available and therefore these KFDs were excluded from further analysis. R code for all weather 

data processing is available on request. 

4.2.4 Canadian Forest Fire Danger Rating System (CFFDRS) 

Three metrics of fire risk from the CFFDRS were calculated to estimate risk at the baseline and future 

at the case study site. First, UKCP18 and CHESS data were converted into the units required for the 

CFFDRS. Then, fire season, Fire Weather Index (FWI) and Fire Behaviour Prediction (FBP) calculations 

were run. From these, results are explored relating to fire season, FWI and Head Fire Intensity (HFI). 

Additionally, the Fine Fuel Moisture Code (FFMC) was investigated using thresholds as described in 

(Davies and Legg, 2016a; De Jong et al., 2016) and Initial Spread Index (ISI) (Davies and Legg, 2016a). 
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Hereafter, fire risk refers to the overall risk from fire at the site based on multiple metrics, fire 

danger refers to results of FWI with fire strength referring to HFI. 

4.2.4.1 Fire season 

Fire season length was estimated using default and tailored settings for baseline and future climate 

scenarios. There are multiple thresholds that trigger organisations to begin the weather recording 

season to identify a potential fire season. In Canada, the CFFDRS model begins this ‘after three 

consecutive days of noon temperatures greater than 12oC for areas with no snow cover’ (Turner and 

Lawson, 1978). The National Fire Danger Rating System (NFDRS) in the USA starts their weather 

recording season ‘four weeks before the first fire season is to start’, with each region deciding when 

this is (Wotton and Flannigan, 1993). There is little information as to how the end of a fire season is 

calculated. A study by Wotton and Flannigan (1993) developed thresholds based on the previous 

methods, with fire seasons starting after three consecutive days of maximum temperatures greater 

than 12oC and ending after three consecutive days of maximum temperatures below 7.2oC. These 

thresholds are useful, although there is little justification for their use. Thresholds were developed 

for the case study using local temperature and records of fire occurrence.  

Temperature was used as an indicator of the start and end of fire seasons, to fit with previous 

research and due to its strong annual cycle (Wotton and Flannigan, 1993). Additionally, temperature 

data is an accessible metric being readily available across the UK at multiple different scales. Using 

CHESS data (see 3.2.3) highest maximum temperature at the case study site for the three days 

preceding and the lowest maximum temperature following each fire event in 2003 and 2015 were 

calculated. These methods were developed to be similar to those used in Wotton and Flannigan 

(1993), but with maximum temperature thresholds taken from the study site to give a more accurate 

representation of temperatures under which fires were more likely to ignite. Maximum temperature 

data for the 2022 fires was not available in the CHESS database. This resulted in an overall maximum 

temperature before a known fire event of 18.5oC and after a fire event of 12oC and was taken from 

the 2003 fire event between the 17th and 19th April. 

Two thresholds of fire season length at the case study site were tested – 

1. CFFDRS default settings 

2. Highest maximum temperature in the three days before a known fire event (18.5oC) and 

lowest maximum temperature in the three days after a known fire event (12oC). Hereafter, 

these are referred to as ‘2003 adjusted’. 

4.2.4.2 Fire Weather Index (FWI) 

The Fire Weather Index (FWI) is a commonly used metric which establishes the daily fire danger level 

for an area. While this is often used and updated in real time, here I am assessing whether these 
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metrics can be used in long-term predictions of future fire danger, and how this danger may change 

spatially and temporally. FWI has a dimensionless scale, so results are presented as the percentage 

change of FWI to give an idea of change in risk. FWI calculations were run in the CFFDRS package 

using Met Office UKCP18 20-year averages of mean temperature, humidity, wind speed and 

precipitation. Default settings were used as Fine Fuel Moisture Code (FFMC), Duff Moisture Code 

(DMC) and Drought Code (DC) values are calculated for each consecutive day using previous inputs 

and therefore viable values of these metrics are used after the first day’s calculations. These three 

input values relate to different fuel moistures of: forest litter fuels under the shade of the forest 

canopy (FFMC), decomposed organic material underneath litter (DMC) and moisture content deep in 

the soil (DC). High values of all these codes indicate drier fuels and potentially higher fire risk 

(Wotton, 2009). A previous study (De Jong et al., 2016) suggested calibration percentiles for FWI. 

These thresholds were investigated by calculating the 99th and 75th percentiles of the FWI results 

calculated for the case study area, as these are expected to contain over 50% of all potential 

wildfires (De Jong et al., 2016). 

Additionally, metrics of FFMC and the Initial Spread Index (ISI) which estimates a spread potential of 

fire based on fuel moisture and windspeed, were calculated and analysed based on thresholds from 

Davies and Legg (2016) and De Jong et al. (2016). Thresholds were: those exceeding 75 for FFMC and 

2 for ISI (Davies and Legg, 2016), and those exceeding 72 in spring, 74 in summer and 69 in autumn 

for FFMC (De Jong et al., 2016). These thresholds, when exceeded, indicate conditions in which 

managed burning should be avoided due to the risk of development into dangerous wildfires. Scales 

for both metrics are dimensionless and FWI results for the Migneint which included these two 

metrics were analysed. 

 

 4.2.4.3 Head Fire Intensity (HFI) 

The final metric calculated from CFFDRS and tailored to the case study site was Head Fire Intensity 

(HFI) (kw m-1) which measures the potential intensity of any fire if one were to ignite. Input settings 

were tailored to the Ysbyty Ifan Estate, most notably the FuelType input. Using land cover data from 

the ESA CCI (Climate Change Initiative) global land cover maps the most common land cover type in 

each of the 49 grid-squares across the peatland was identified. Baseline land cover data was from 

2000, with future land cover from predictions of 2050 developed by ESRI X Clark Labs (Esri, 2021). 

The closest FuelType in the Fire Behaviour Prediction (FBP) model was matched to the most 

prevalent land cover type at Ysbyty Ifan and selected as the input (table 4.1), with HFI an output 

from the FBP. 
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Table 4.1: The land cover types present (2000) and predicted to occur (2050) at the Ysbyty Ifan Estate on the 

Migneint peatland, and the FuelType they correspond to for the Fire Behaviour Prediction (FBP) calculations in 

the CFFDRS package. 

2000 FuelType input 2050 FuelType input 
Grassland O1B Grassland, scrub, or shrub O1B 
Tree cover, needleleaf, evergreen, 
closed to open (>15%) 

C7 Mostly 
needleleaf/evergreen 
forest 

C7 

Mosaic tree and shrub 
(>50%)/herbaceous cover (<50%) 

M2   

Mosaic tree and shrub 
(<50%)/herbaceous cover (>50%) 

M2   

Water bodies WA   
 

Lidar data for the area was used to compute group slope percentage and slope aspect for each grid-

square. Julian Day, FFMC and Buildup Index (BUI) were taken from previous FWI calculations. In 

order to understand risk from fire intensity, raw values and the change in kW m-1 are presented as 

results. 

4.2.5 Model validation 

In order to understand the accuracy of the outputs of FWI and HFI at the baseline and future 

scenarios, models were validated using weather data from fire data at the case study site. FWI and 

HFI metrics were calculated for 2003 and 2015 at the case study site using CHESS data (Robinson et 

al., 2020a, 2020b), which resulted in four validation data points. KFD data from 2022 was not used in 

model validation as CHESS data for the 2022 dates was not available. To assess risk over time and 

the applicability of FWI and HFI predictions, with comparisons of KFD dates to values of FWI and HFI 

calculated for 2003 and 2015. These values were used as thresholds of known risk and used to 

evaluate predictions of projected risk under future climates. While these data points for validation 

are not extensive, it does provide a very general idea as to whether these metrics of fire risk are, to 

an extent, an accurate representation of the impacts possible to an upland Welsh peatland. 

 

4.3 Results 

4.3.1 FFMC and ISI 

Mean FFMC exceeds both proposed thresholds (Davies and Legg, 2016a; De Jong et al., 2016) for all 

individual months and seasons at all years. Maximum FFMC exceeds all seasonal thresholds at all 

years as stated by De Jong et al., (2016), and exceeds the threshold set by Davies and Legg, (2016) 

for 94 % of grid-squares for all years (table 4.2). Maximum ISI exceeds the threshold set by Davies 

and Legg, (2016) for 81 % of grid-squares for all years (table 4.2). There are reductions in grid-
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squares experiencing conditions above these thresholds in the 2030s for ISI (table 4.2). However, 

these reductions are not predicted to also occur for FFMC (table 4.2), suggesting overall risk is 

continuing in the future. 

 

Table 4.2: The percentage (%) of days in each grid-square over each month that exceed the threshold set by 

Davies and Legg (2016) for A) Initial Spread Index (ISI) (2) and B) Fine Fuel Moisture Code (FFMC) (75) as to 

conditions in which managed burning should be avoided. 

Month Threshold 1990s 2030s 2070s 
January ISI > 2 90 0 100 

FFMC > 75 100 98 98 
February ISI > 2 100 0 100 

FFMC > 75 100 100 76 
March ISI > 2 100 0 100 

FFMC > 75 100 100 100 
April ISI > 2 100 61 100 

FFMC > 75 100 100 100 
May ISI > 2 100 100 100 

FFMC > 75 100 100 100 
June ISI > 2 100 100 100 

FFMC > 75 100 100 100 
July ISI > 2 100 100 100 

FFMC > 75 100 100 100 
August ISI > 2 100 100 100 

FFMC > 75 100 100 100 
September ISI > 2 100 100 100 

FFMC > 75 100 100 100 
October ISI > 2 100 12 100 

FFMC > 75 100 100 100 
November ISI > 2 100 0 100 

FFMC > 75 100 100 100 
December ISI > 2 63 0 100 

FFMC > 75 16 12 100 
 
4.3.2 Fire season 

Fire seasons are predicted to increase in length under both default and CHESS adjusted inputs in the 

future under climate change (table 4.3). Greatest increases and amount of time within fire season 

conditions are seen under the default inputs, with the maximum length of a fire season lasting 

nearly three years (table 4.3, 2070s). This is fairly implausible, especially within climate conditions in 

North Wales, even under climate change. The adjusted inputs appear more likely, with a maximum 

potential increase between 1990s and 2070s of 23% (table 4.3). Other differences between default 

and adjusted inputs are the total number of fire seasons present in a 20-year period. The adjusted 

inputs predict a higher number of fire seasons per 20 years, with 1.15 fire seasons per year by the 
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2070s (table 4.3). However, this is a slight decrease from the baseline (1990s) with a predicted 1.25 

fire seasons per year. The default input results suggest that there is likely to be only one fire season 

per year, so negligible differences between these methods for this metric. 

 

Table 4.3: The estimated mean and maximum total number of fire season in a 20-year period (mean total start, 

mean total end), length of fire season (days) and length between fire seasons (days) at the Ysbyty Ifan Estate 

on the Migneint peatland at the baseline (2030s), short-term future (2030s) and long-term future (2070s). 

Comparing the CFFDRS default inputs (default) and adjusted inputs using temperatures around the 2003 known 

fires (2003 adjusted) using temperature data for the case study site from the CHESS dataset. 

Year Input Mean 
total 
start 

Mean 
total 
end 

Mean 
length 

Mean 
length 
between 

Maximum 
total start 

Maximum 
total end 

Maximum 
length 

Maximum 
length 
between 

1990s Default 20 20 192 147 21 21 573 227 
2003 Adjusted 25 25 79 256 27 27 169 668 

2030s Default 20 19 208 122 21 20 586 211 
2003 Adjusted 21 21 109 229 22 22 175 626 

2070s Default 21 20 235 88 23 22 1047 167 
2003 Adjusted 23 23 143 192 25 25 208 261 

 
The greatest change in fire season length across the case study site is between the 1990s and 2070s 

(figure 4.2). Some areas in the south and south-west areas of the Estate could see an increase of up 

to over three months extra in a fire season during the 2070s compared to the 1990s baseline (figure 

4.2, change 1990s to 2070s). This area is where the majority of known fires were seen (figure 4.1), 

indicating that this area of the site could remain susceptible to fire. 

 

Figure 4.2: Change in the predicted maximum length (days) of a fire season between the baseline (1990s), a 

short-term (2030s) and long-term (2070s) future and between these futures using inputs adjusted with CHESS 

data on-site. Value = number of days within a fire season. 
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4.3.3 FWI and HFI 

There are similar patterns in FWI and HFI predictions (figure 4.3). Overall, it is predicted that danger 

from potential fire ignition and strength from burning fires is likely to increase in the future (table 

4.4, 3.5; figure 4.3). On average, FWI is predicted to increase by 143 % and HFI by 21 % across all 

time periods and grid-squares, with maximum increases of 131 % and 467 % respectively. Greatest 

change for both metrics is estimated by the 2070s, with average and maximum change in FWI 

between 2030s and 2070s of 355 % and 334 % and between 1990s and 2070s of 36 % and 716 % for 

HFI. Mean change of FWI is greatest over time (table 4.4), with maximum change having the largest 

impact for HFI (table 4.5). Change in FWI and HFI is predicted to decrease between the 1990s and 

2030s (figure 4.3, table 4.4 & 3.5), before experiencing large long-term increases far greater than 

those experienced at the baseline in 1990s. 

Peaks of fire risk are predicted to occur in summer months (table 4.4 & 3.5; figure 4.3), under both 

metrics and for both mean and maximum conditions. Fire risk is likely to be much greater in the 

2070s when compared to the 1990s and 2030s in all months other than winter (figure 4.3), although 

20-year averages follow similar trends between metric and condition. Predictions for the 2030s 

suggest two peaks of fire danger for both metrics (figure 4.3), with these potentially less severe than 

the baseline in mean conditions, with average FWI (figure 4.3A) likely to decrease more than average 

HFI (figure 4.3C). Even with decreases at the short term (-4.2 % average), mean HFI of a fire igniting 

in the 2030s is still likely to exceed 10 kW m-1 (table 4.5). FWI between the baseline and 2030s is also 

predicted to decrease by almost half (table 4.4), but it can be estimated that even with a reduction 

over the short term, danger from fires does not disappear (figure 4.3A & B). Both metrics predict a 

slight shift later in the year in the peak of maximum fire risk, compared to the mean, in the 2070s 

(figure 4.3B & D), suggesting a longer fire risk period, as echoed by fire season length predictions 

(table 4.3). 

Percentage change of risk and strength of potential future fires is more varied, with greatest changes 

between then 2030s and 2070s (figure 4.3E, F & H). However, percentage change for mean HFI 

(figure 4.3G) follows the same trends between 1990s and 2070s and 2030s and 2070s. Both FWI and 

HFI are predicted to experience decreases in percentage change between 1990s and 2030s. Only 

FWI in November (table 4.4), and HFI in June, July, September, and November (table 4.5) are 

predicted to increase between the 1990s and 2030s. Greatest maximum percentage change of FWI 

and HFI are likely to occur in March and November (figure 4.3 G & H), suggesting that out of season 

fires could become more frequent and stronger. There is a large change in the strength of potential 

fire over time, with maximum fire strength far greater in the 2070s than in the 2030s or 1990s (table 

4.5). 
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On average over all years and grid squares average fire strength is predicted at 24 kW m-1, but with a 

maximum strength of over 500 kW m-1. However, as seen for all values of FWI (table 4.4), average 

raw HFI remains fairly low, even at extremes (164 kW m-1 in August 2070 (table 4.5)). 

These results suggest that severity and frequency of fires are likely to increase across the case study 

site in the 2070s, but that future conditions in the 2030s average are not predicted to exceed 1990s 

values, and only slightly exceed 1990s frequency. Maximum HFI has a larger impact than maximum 

FWI, which suggests that maximum fire strength is likely to increase more than maximum fire 

danger. However, the reverse is true for average conditions, which may be more likely, with average 

fire danger (FWI) is predicted to increase more than average fire strength (HFI). 

 
 
Table 4.4: Mean and maximum percentage (%) change of monthly Fire Weather Index (FWI) between each time 

period. Mean average = 143.4 %, maximum average = 130.8 %. 

 

  

Month Year Mean Maximum Month Year Mean Maximum 
January 1990s to 2030s -74.0 -72.1 July 1990s to 2030s -17.2 8.5 
 1990s to 2070s -25.1 63.2  1990s to 2070s 147.7 33.2 
 2030s to 2070s 118.4 485.2  2030s to 2070s 199.3 22.8 
February 1990s to 2030s -55.0 -63.2 August 1990s to 2030s -52.3 -44.2 
 1990s to 2070s -12.8 5.8  1990s to 2070s 221.7 123.0 
 2030s to 2070s 93.9 187.3  2030s to 2070s 573.9 299.3 
March 1990s to 2030s -75.6 -77.0 September 1990s to 2030s -24.5 65.9 
 1990s to 2070s 1.9 81.6  1990s to 2070s 233.7 189.8 
 2030s to 2070s 318.0 691.2  2030s to 2070s 341.8 74.6 
April 1990s to 2030s -56.2 -63.9 October 1990s to 2030s -64.0 -59.8 
 1990s to 2070s 65.3 46.1  1990s to 2070s 203.9 170.7 
 2030s to 2070s 277.6 304.4  2030s to 2070s 744.5 572.7 
May 1990s to 2030s -47.5 -49.0 November 1990s to 2030s 22.5 -58.9 
 1990s to 2070s 127.8 64.2  1990s to 2070s 290.9 207.7 
 2030s to 2070s 334.3 221.7  2030s to 2070s 219.1 649.1 
June 1990s to 2030s -37.8 -18.3 December 1990s to 2030s -77.6 -56.0 
 1990s to 2070s 132.6 99.6  1990s to 2070s 78.2 101.0 
 2030s to 2070s 274.0 144.3  2030s to 2070s 694.1 356.4 
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Table 4.5 The change in Head Fire Intensity (HFI) over time from the 1990s to the 2030s and 2070s. A) Raw HFI 

(kW m-1) for each time period. B) Change (%) in HFI (kW-1) between each time period. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 A) Raw Head Fire Intensity (HFI) (kW / m-1) 
1990s 2030s 2070s 
Mean Maximum Mean Maximum Mean Maximum 

January 2.8 60.7 0.6 11.9 2.1 102.9 
February 3.3 81.3 1.2 20.8 2.6 75.1 
March 5.7 128.3 1.2 28.8 5.0 152.2 
April 10.3 197.1 4.1 65.5 14.3 324.5 
May 15.3 299.6 9.6 126.0 35.4 490.3 
June 24.4 341.0 18.8 367.7 68.3 1194.2 
July 32.1 610.1 31.6 768.4 85.1 1069.6 
August 38.1 716.1 20.0 324.8 164.4 3265.5 
September 31.9 524.0 34.1 1271.7 134.2 3579.0 
October 11.8 323.2 4.7 116.1 36.0 1219.9 
November 2.0 80.3 2.1 32.2 6.8 194.6 
December 1.2 38.5 0.2 11.4 1.9 63.6 
 B) Difference in Head Fire Intensity (HFI) (%) 

1990s – 2030s 2030s – 2070s 1990s – 2070s 
Mean Maximum Mean Maximum Mean Maximum 

January -2.2 -48.8 1.5 91.0 -0.7 42.2 
February -2.0 -60.5 1.3 54.4 -0.7 -6.1 
March -4.6 -99.5 3.8 123.5 -0.8 24.0 
April -6.2 -131.6 10.2 259.0 4.0 127.4 
May -5.6 -105.6 25.7 364.3 20.1 260.7 
June -5.6 26.7 49.5 826.5 43.9 853.2 
July -0.4 158.4 53.5 301.2 53.0 459.5 
August -18.1 -391.3 145.4 2940.7 127.3 2549.4 
September 2.2 747.8 100.1 2307.2 102.4 3055.0 
October -7.1 -207.1 31.3 1103.9 24.2 896.7 
November 0.1 -48.1 4.6 162.4 4.7 114.2 
December -1.0 -27.1 1.7 52.2 0.6 25.1 
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Figure 4.3: Raw values and percentage change of mean and maximum Fire Weather Index (FWI) and Head Fire Intensity (HFI) for the case study site at the baseline and in 

the future. A) Mean FWI, B) Maximum FWI, C) Mean HFI (kW m-1), D) Maximum HFI (kW m-1), E) Percentage change of mean FWI, F) Percentage change of maximum FWI, 

G) Percentage change of mean HFI, H) Percentage change of maximum HFI.
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4.3.4 Validation with CHESS 

Both models of FWI and HFI using CHESS data identify a KFD (see supplementary material, appendix 

3; figure A3.1), with greater success in identifying KFD’s in 2003 using FWI. All three days of known 

fire in 2003 are greater than the average values of mean (appendix 3; figure A3.1(A)) and maximum 

(appendix 3; figure A3.1(C)) FWI and are prominent in results. Additionally, it is likely that the 2003 

data is a better indicator of extreme conditions than that from 2015, as peaks in 2015 results 

(appendix 3; figure A3.1B & D) are larger than those calculated for KFDs. However, there are further 

peaks of fire risk, particularly of maximum HFI (appendix 3; figure A3.1(D)) that are not recognised as 

a KFD. This suggests that there could be a risk of higher intensity fires, but the weather conditions to 

cause a fire are less common. It also could indicate that fires are not igniting naturally and the results 

could show that there is a greater risk from future anthropogenic ignition as any fires that do start 

are likely to be more intense in strength. There are no peaks of FWI greater than that for the 2003 

fire, suggesting it is a reliable threshold of risk. FWI predicts what actually happened more accurately 

than HFI, but both models identify a KFD.   

4.3.5 Future risk 

There are a number of days for both FWI and HFI that are likely to see risk above that calculated for 

the KFDs using CHESS data (table 4.6, figure 4.4). Conditions modelled to have occurred during the 

April 2015 fire are predicted to be exceeded the most often for both FWI and HFI (table 4.6, figure 

4.4). Peaks of FWI exceeding all KFD thresholds are predicted during each summer season (figure 

4.4), with duration of the peak remaining fairly narrow. These FWI peaks above all KFD thresholds 

are predicted to occur for over half of years during the 2070s (figure 4.4A), which is the greatest 

when comparing to the baseline and 2030s. HFI risk is likely to be greater and more frequently 

exceed all thresholds of risk compared to FWI (figure 4.4B). All predictions exceed the conditions 

identified during KFDs (table 4.6), with the 2070s exceeding these the most. Predictions of maximum 

FWI and HFI exceed the KFD thresholds more often than mean values. Both metrics see similar 

percentages of projected days which exceed threshold values of mean and maximum FWI and HFI. 

For example, mean FWI and HFI exceeds the KFD threshold for 6 % of days in the 2070s, with 50% 

and 44 % of days exceeding the maximum prediction values for FWI and HFI respectively. As with 

FWI and HFI estimations, there is a decrease in the number of days predicted to be over the KFD 

threshold in the 2030s compared to the 1990s and 2070s. Mean values of FWI and HFI fall by about 

half between 1990s and 2030s, with maximum predictions decreasing between 3 and 4 %. 
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Table 4.6: The percentage of projected days when mean and maximum Fire Weather Index (FW)I and Head Fire 

Intensity (HFI) are likely to exceed thresholds set by four Known Fire Days (KFDs) at the case study site in 2003 

and 2015. 

 Mean FWI Max FWI Mean HFI Max HFI 
KFD 1990s 2030s 2070s 1990s 2030s 2070s 1990s 2030s 2070s 1990s 2030s 2070s 
17th April 
2003 

0.24 0.22 3.63 0.31 0.15 3.59 0.68 0.99 8.68 0.21 0.96 6.56 

18th April 
2003 

0.14 0.18 3.08 0.21 0.13 2.89 60.24 56.66 69.93 59.73 55.33 70.04 

19th April 
2003 

0.03 0.11 2.02 0.07 0.08 1.88 31.33 21.80 47.99 10.95 5.37 30.21 

22nd April 
2015 

4.40 2.26 13.6 4.14 2.00 14.28 61.65 61.78 71.14 57.17 51.81 68.24 

 
On average, there is more time during the 2070s when the case study site is likely to experience 

predicted conditions that are above the values calculated for KFDs. If FWI and HFI conditions are at 

their maximum predicted strength, nearly half of all days in the 2070s could experience these 

conditions.
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Figure 4.4:Predictions of Fire Weather Index (FWI) and Head Fire Intensity (HFI) with thresholds of Known Fire Days (KFDs) at the case study site. A) Maximum predicted FWI 
and maximum FWI of KFDs, B) Maximum predicted HFI and maximum HFI of KFDs. 
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4.4 Discussion 

This study presents the applicability of using the CFFDRS to investigate long term risk of fire for 

multiple metrics at a case study site for two futures. This study builds on previous research through 

extending the timeframes of prediction and testing the HFI metric not often explored in the 

literature. Using data from KFDs the reliability of these metrics is further proven, especially FWI, at 

accurately predicting fire risk. Using CFFDRS as a projection tool rather than forecasting has not been 

widely explored, especially not in a UK setting, or at the small site scale. Dual peaks of fire risk in the 

spring and the summer have been identified in the UK (Perry et al., 2022). Our research also 

identifies two peaks of risk, especially in the 2030s. However, these appear to potentially occur in 

summer and autumn, suggesting a shift in risk over time. The peatland in the case study is likely to 

experience increased fire risk in the future, in particular in areas that have previously experienced 

fire which could have implications for managed burning and the recovery of these landscapes and 

habitats. 

4.4.1 Using CFFDRS in a UK setting 

Thresholds for FFMC and ISI (table 4.7) are used in the UK to identify risk of sustained fires (De Jong 

et al., 2016) over which controlled burns are not advised (Davies and Legg, 2016a). Our results 

exceed at least one threshold at every season, month, and year for the majority, or all, grid-squares 

at the case study site. Using these metrics alone, it can be concluded that the risk of sustained fires is 

extremely high throughout most of the year, but especially in summer months, and that controlled 

burns at any month would be dangerous. However, these could indicate that country-wide 

thresholds as determined by De Jong et al., (2016) and Davies and Legg, (2016) are inappropriate for 

North Wales (table 4.7) due to predicting very high risk with few fires experienced. This could 

suggest that further development of regional thresholds would produce more accurate results as 

suggested for other metrics (Davies and Legg, 2016a; De Jong et al., 2016; Arnell, Freeman and 

Gazzard, 2021). 

Predictions of fire season have not been examined extensively in the literature for the UK (Davies 

and Legg, 2016a; Perry et al., 2022), but this chapter shows that it is likely to be a useful metric of 

change. Fire season calculations adjusted to local temperatures predict a greater number of fire 

seasons in a 20-year period, and with these increasing in length over time. Tailoring calculations of 

fire season to local weather data appears to produce predictions of fire seasons that are more 

realistic than those from default CFFDRS settings. While fire season length is not recorded or 

investigated on the case study site currently, the default settings predicted maximum fire season 

lengths of over 500 days for all time frames, which is highly implausible. Adjusted settings (table 4.7) 

predicted maximum lengths of between 170 and 210 days per year, which is still high, but potentially 
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more likely. Investigating spatial risk from fire seasons, areas previously burnt appear to remain at 

risk. This could target patrols or conservation activities to these areas of the site. A maximum 

potential increase in fire season length with the 2003 adjusted inputs of 23% is predicted. This is 

similar to, but slightly greater than the average increase in fire season length as calculated by 

Wotton and Flannigan, (1993). This is likely to be expected with updates in climate change 

projections, and estimations of increasing average temperatures growing. Considering fire season 

length in the future could encourage occasional monitoring around temperatures used in 

calculations when conditions could be thought to be optimum for a fire season. Recognising that a 

site is within a fire season may raise further awareness of risk outside those living and working 

within the site and provide more impetus to restrict some activities on the site.  

 

Table 4.7: A summary of all thresholds used for multiple metrics in assessing fire risk to the upland Migneint peatland in 
North Wales 

Metric/Variable measured Threshold used Origin of threshold 
Initial Spread Index (ISI) > 2 (Davies and Legg, 2016) 
Fine Fuel Moisture Code 
(FFMC) 

> 75 (Davies and Legg, 2016) 
> 72 in spring, > 74 in summer and > 
69 in autumn 

(De Jong et al., 2016) 

Fire season length CFFDRS default settings = after three 
consecutive days of noon 
temperatures greater than 12oC for 
areas with no snow cover 

(Turner and Lawson, 1978) 

2003 adjusted settings using KFD 
data = three consecutive days of 
18.5oC to start a fire season and 
three consecutive days of 12oC to 
end a fire season (maximum 
temperatures) 

Based on Wotton and 
Flannigan (1993) but values 
calculated from Known Fire 
Day data from 2003 

Fire Weather Index (FWI) Maximum 
10.6 = 17/04/2003 
11.7 = 18/04/2003 
13.7 = 19/04/2003 
4.2 = 22/04/2015 
Average 
7.2 = 17/04/2003 
8 = 18/04/2003 
9.6 = 19/04/2003 
0.1 = 22/04/2015 

Extracted from calculations 
of FWI using CHESS data 
for the years 2003 and 
2015 to correspond with 
Known Fire Days (KFDs). 

Head Fire Intensity (HFI) Maximum 
977.8 = 17/04/2003 
6.2 = 18/04/2003 
267.5 = 19/04/2003 
10.3 = 22/04/2015 
Average 
140.7 = 17/04/2003 

Extracted from calculations 
of HFI using CHESS data for 
the years 2003 and 2015 to 
correspond with Known 
Fire Days (KFDs). 
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0.3 = 18/04/2003 
10.7 = 19/04/2003 
0.2 = 22/04/2015 

 

 

Fire Weather Index (FWI) is a metric of the CFFDRS most used outside Canada (Davies and Legg, 

2016a; Bedia et al., 2018; Tsinko et al., 2018). This study has proven the use and applicability of FWI 

as it best explains future fire risk at the case study site. Research shows that an increase of 20 % in 

an individual FWI value is the smallest change that can be associated with recognisable differences 

in fire behaviour (Turner and Lawson, 1978). Most of the FWI results presented in our study are 

above this 20 % change threshold and could lead to a recognisable difference in fire behaviour at the 

Ysbyty Ifan Estate.  

Head Fire Intensity (HFI) required the most inputs to be tailored and relied on vegetation inputs 

specific to those found in the Canadian Peatlands (Turner and Lawson, 1978). This is likely the reason 

why HFI was not as good a predictor of KFDs compared to FWI, as even though a fuel type input was 

chosen as close to the case study site as possible, this is still unlikely to represent the Estate exactly. 

Fire intensity is predicted between a class 1 to 4 (Lawson and Armitage, 2008), indicating a wide 

range of likely conditions. Classes 4 and above specify the transition from a surface fire to 

intermittent and continuous crown fires (Lawson and Armitage, 2008). These are unlikely to occur at 

the Ysbyty Ifan Estate due to the more open peatland, but also a positive that these high intensity 

fires are only occasionally predicted and more unlikely to occur. Important Sphagnum mosses are 

most damaged by fires at high temperatures (Noble et al., 2019), with preventing these high 

intensity fires a priority. 

4.4.2 Implications for peatland conservation 

Current risk of fire is during the spring, with all KFDs during March and April, matching country-wide 

trends (Perry et al., 2022). However, out of season fires are potentially becoming far stronger, 

potentially due to warmer, drier summers. These fires could become more damaging due to a 

greater availability of fuel (Benscoter et al., 2011; De Jong et al., 2016; Arnell, Freeman and Gazzard, 

2021), and suitable weather conditions over previous months. Some research suggests that 

controlled burns can reduce the amount of fuel that then would be available to a severe wildfire 

(Davies, Kettridge, et al., 2016). While this could be an option in the short term, as their risk is 

predicted to be reduced in the 2030s from the 1990s, long term plans such as burning rotations, may 

require adapting. Yet, there is a stronger imperative for changing management, ideally to re-wetting 

peatland or replacing burning with cutting (Douglas et al., 2017), the latter which has been 

associated with increases in some bird species abundances. Wet peatlands lower fire risk and 
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potential intensity compared to drained peatlands (Loisel and Gallego-Sala, 2022), and early re-

wetting puts peatlands in better condition to resist degradation from climate change with a wet 

peatland body likely to withstand drier summers in the future. These risks combined with a longer 

potential fire season may require further monitoring and awareness to the general public of risk.   

When examining predicted changes, and comparing results in the 2030s to 2070s, it must be taken 

into consideration how natural processes can adapt to change. Peat has been found to be resilient to 

gradual, long-term changes in climate and hydrology, but responds rapidly to short-term high 

intensity anthropogenic disturbance (Page and Baird, 2016). Natural changes in fire risk may be 

tolerable by peatlands at the case study site, especially as greater risk is predicted into the 2070s. 

However, greater risk coupled with short-term anthropogenic disturbance from controlled burns 

could compound risk of severe fires further. Additionally, fire-return intervals have been identified 

over a number of spatial and temporal scales, ranging from yearly to thousands of years (Davies, 

Adam Smith, et al., 2010; Turetsky et al., 2015; Bona et al., 2020; Wang et al., 2022) and vary 

significantly regionally and locally (Davies, Adam Smith, et al., 2010). Shorter fire-return intervals are 

often associated with relatively low intensity fires and vice versa for fires over longer time frames 

(Davies, Kettridge, et al., 2016; Wang et al., 2022), with management fires in the UK recommended 

on a 10 to 20 year cycle (Davies, Gray, et al., 2010). However, our research predicts both increases in 

frequency and severity, suggesting that shorter fire-return intervals could become more damaging. 

Considering the results from this chapter, it can be hypothesised that with fire risk metrics predicting 

values similar to those seen in KFDs without fire present suggests that many fires at the case study 

site are not igniting naturally. Controlled, or otherwise, burning has been used historically for land 

management. This negatively affects the flora and fauna on site, particularly ground nesting birds at 

the beginning of the breeding season. This increase, or continued presence, of fire risk indicates that 

there is no good time in the year to deliberately burn an upland peatland. 

Taking a whole system approach to understanding fire risk and utilising a variety of metrics alongside 

current monitoring is likely to have the greatest positive impact on the environment (Rowland et al., 

2021b). This research has started this by examining multiple metrics of fire danger to understand 

length, strength, and severity of risk. Even with reductions in potential fire risk between the 1990s 

and 2030s, the overall danger is still present, especially when considering predictions for FFMC and 

ISI. Further understanding the system through peat health (Davies et al., 2013) and site biodiversity 

could improve these predictions of risk further.  

4.4.3 The future and net zero in the UK 

In vulnerable areas, higher temperatures and drier summers, as predicted in UKCP18 projections 

(Lowe et al., 2018), are likely to contribute to increases in emissions of carbon (ASC, 2017). A greater 
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frequency of conditions likely to initiate wildfires are also predicted, which could lead to more 

frequent emissions of GHG and damage to the case study site peatland. These emissions could be 

linked to the increased likelihood of fire events on peatlands, as shown in this study, strengthening 

the positive feedback cycle of increasing GHG concentrations and fire risk. Climate change may 

increase wildfire frequency, extent and amount of high-severity fire (Dillon et al., 2011; Sommers, 

Loehman and Hardy, 2014), with peat fires potentially able to contribute significantly to global 

emissions of GHGs (Turetsky et al., 2015).  

Estimates of fire carbon emissions appear to depend on indications of fire frequencies, that is, the 

more fires, the more emissions (Turetsky et al., 2015). However, low-severity fires typically release 

less carbon per fire event (Sommers, Loehman and Hardy, 2014), suggesting that controlled burns 

are not as damaging compared to wildfires in terms of emissions. Yet impacts to soil structure 

(Thompson et al., 2016; Loisel and Gallego-Sala, 2022) and biodiversity (Douglas et al., 2015, 2017) 

may be nearly as bad. Fire severity is likely to increase, through investigation of HFI results. This 

could suggest that any fire at the case study site may release more emissions in the future, and that 

even with reductions in risk in the 2030s, any fire will release carbon, which will not help meet net 

zero targets by 2050. Additionally, even with reduced frequency of fires in the 2030s, severity is 

likely to increase in some months. This could see controlled burns developing into dangerous 

wildfires, with serious consequences for both carbon and ecosystems. 

This study adds to the growing evidence base of the vulnerability of modified ecosystems and 

habitats to climate change (Dodd et al., 2020). It highlights the importance of evidence-based 

research in developing strategies and management tailored to the specific threat and location, and 

provides a development of methodology specific to UK peatlands and future climate change (Dodd 

et al., 2020; Stafford et al., 2021). Tackling the climate crisis takes concerted effort from every facet 

of society, with land use choices on individual sites able to contribute a positive impact. Rewetted 

peatlands show reductions in GHG emissions (Evans et al., 2017; Renou-Wilson et al., 2019), and 

these restored peatlands are also more resilient to fire (Rowland et al., 2021b). Peatland restoration 

and wetland plant community which drives peat formation and carbon sequestration will have a 

smaller short term influence on GHG management than avoiding high severity fires (Renou-Wilson et 

al., 2019) which, as well as releasing significant amounts of carbon, also damage the Sphagnum 

species, soil structure and the water table which are vital in peat formation (Noble et al., 2019). It is 

important to build peat resilience, biodiversity and fire resistance through rewetting and restoring 

upland peatlands creating a stronger ecosystem that addresses both the climate and nature crises at 

site, Wales, and UK scales. 
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Some alternative management practices on peatlands, such as paludiculture (Ziegler et al., 2021) 

which is the practice of wet agriculture and forestry on peatlands, have the potential to reduce GHG 

emissions while keeping these landscapes in agriculture (Lahtinen et al., 2022), Land uses such as 

paludiculture require peat to be wet, potentially bringing together restoration, maintenance of 

livelihoods and contributions to net zero. Paludiculture is however in its very early stages of 

development in the UK, and currently focused more on lowland peatland areas. The idea of carbon 

farming however is growing apace for all peatlands, and providing revenue through carbon markets 

such as the IUCN Peatland Code. 

While fire has formed part of the management toolbox for upland areas in the UK for many years, 

change in approach is now well underway, with early stage and prospects of wider bans in England 

and Scotland. Welsh Government launched the National Peatlands Action Programme in 2020 to 

manage and restore existing peatlands. There is a large increase in fire risk predicted for the 2070s, 

for when any planned fire would be at a greater risk of becoming difficult to control, and therefore a 

high severity fire. With the UK’s commitment to net zero by 2050, and a continued commitment to 

the environment, is it recommended that controlled burning will not be a suitable management tool 

in many cases as the likelihood of development into an out-of-control fire is too great. Alternative 

management practices including grazing and cutting of vegetation to control plant matter are likely 

to be more appropriate. Additionally, removing fire from management plans will benefit species 

such as ground nesting birds, and allow plant species requiring longer timeframes to establish the 

chance to thrive. 

4.4.4 Limitations and future research 

Work is needed to increase the accuracy of vegetation type habitat factors to reflect UK vegetation 

types. This is particularly so for peatlands, with different factors likely to be relevant for drained and 

re-wetted peatlands as fire risk is markedly lower for wetland peatlands supporting typical bog 

vegetation. For example, the Marsden Moor fire of 2019 stopped largely at re-wetted areas, with 

extensive damage caused to other areas Updating these habitat types and integrating into models 

like the CFFDRS would provide a prediction of risk within sites based on habitat quality and type 

alongside climate and weather variables.  

Ongoing tailoring of fire risk metrics will increase the reliability and accuracy of models. Addition of 

fire monitoring and data collection to validate models of risk would improve site level understanding 

of risk and potentially guide future management plans. The application of more realistic input 

variables, such as fuel types to calculate HFI, would greatly improve these outputs and further 

inclusion of peat health could identify areas most at risk from carbon loss. Additionally, the data 

processing of climate projections could be developed further. Bias correction of projections and 
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including further model members in analysis would provide a more accurate representations of local 

climate and risk. Further understanding the climatic reasons why these fires are likely to be stronger 

and more frequent could help to guide management and improve model accuracy. Unpicking the 

relationships between management activities, site diversity and climate are more likely to reveal 

drivers of change and further understanding of the requirements for a healthy, resilient ecosystem. 

 

4.5 Conclusions 

This study has shown applicability of CFFDRS at the local scale and for long term predictions. Using 

local validation data highlights strength of FWI at predicting fire risk, and greater risk is likely in 

2070s from fires in frequency and severity when compared to the 2030s and baseline 1990s. The 

UKCP18 data provides a good basis for tailoring of the CFFDRS, although further tailoring could be 

improved through further data manipulation such as bias correcting. This greater fire risk over 

multiple metrics including fire season indicates dangers of burning for management control, 

especially when considering impacts of regular fires to peatland biology and hydrology. However, 

with potential shifts of severity predicted to occur later in the year, the winter burning season is 

unlikely to be viable and this research supports the growing call to ban burning on peatlands. Burns 

are especially not advised in the long-term with far greater severity and frequency of fires predicted 

to increase from the end of the 2030s. While, under historic management and climate, burning 

regimes may have been a key part of a land-management toolkit, this may not be the norm for the 

future. Resilient, healthy, carbon sequestering peatlands must be the goal for biodiversity and 

climate, considering commitments to net zero targets, global agreements, nature-based solutions, 

and the intrinsic need to protect the natural world. 
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Chapter 5: The impact of current and future wind speeds and 

direction to historic parkland trees: using low-cost methods to 

inform long-term conservation plans 

 

Abstract 

Wind impacting woodlands and individual trees has a negative impact on tree health and lifespan. 

Additionally, in public nature areas, such as National Trust properties, high wind speeds impact 

health and safety, and access to and within sites. Conservation charities like the National Trust, and 

other bodies with public access responsibility around trees, are keen to understand potential future 

risk from wind to parkland trees. Trees are important for biodiversity, leisure, and heritage, with 

these anthropogenic and biological aspects going hand in hand. Climate change is likely to have 

larger impacts to wind speed over direction, although small changes in these metrics can result in 

large changes to wind power. Higher latitude trees are at a greater risk from changing wind speeds 

influenced by changing climates which could result in greater windthrow and damage. 

Tatter flags have been used to assess the impact of strong winds to conifer plantations over the past 

30 years, but they have not been utilised for measuring the impacts to individual trees, or to guide 

conservation work. This research builds on the low-tech tatter flag methods to assess wind speed to 

quantify exposure to individual trees under climate change assessing two wind metrics, maximum 

average wind speed and maximum wind gusts. Future climate projections were from the UKCP18 

climate change projections at the local 2.2km daily scale. A year-long fieldwork study at Chirk Castle 

National Trust property assessed the impacts of wind speed and direction to 21 parkland trees using 

tatter flags. This site contains historic parkland trees as part of a parkland plan unchanged for 

hundreds of years. Spatial and temporal exposure to wind was calculated for the fieldwork period 

and two future projections. Additionally, the number of days wind speeds were likely to exceed a 

threshold leading to the closure of the property were calculated to assess impacts to the running of 

a site from high winds. Finally, the most common wind direction at the current baseline and two 

future climate projections were estimated. If directions change to those not commonly currently 

experienced, trees could be more vulnerable to a range of wind speeds.  

This study shows that it is possible to use the tatter flag method for individual trees, and that local 

scale climate data provides a picture of future exposure. There are both temporal and spatial 

differences in exposure, with autumn and winter seasons likely to be the most exposed to high 

winds. Maximum gust exposure is predicted to be greater than the 1990s baseline at more times and 

sites in the 2070s compared to the 1990s and the 2030s. There is likely to be a higher percentage of 
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days in the year when wind speeds could exceed the closure thresholds in winter and spring months 

in future years. With however, an overall reduction in closure days to approximately 3 weeks a year 

in the 2070s. Wind directions are not predicted to change dramatically, with a continuing prevailing 

south-westerly wind, yet Chirk is likely to experience more winds from the north-west.  

Understanding where on site and when during the year wind exposure is likely to be greater is useful 

for conservation planning and visitor management. Future wind exposure is not predicted to exceed 

the baseline average during all months of the year, aligning with current research which indicates 

the higher impact from storms in winter months. The case study property at Chirk Castle will be 

more impacted from wind speeds at the Christmas and Easter holidays which are important events 

for visitors. Particular areas of the site will be more exposed to wind speeds in the future, influencing 

both site biodiversity and public access. UKCP18 data allows for future predictions of risk, although 

at a coarser resolution than fieldwork. This study highlights the usefulness of low-cost fieldwork 

methods of tatter flags to gain an understanding of a site’s exposure to wind speeds both currently 

and into the future, and the importance of integrating these predicted impacts into conservation 

and visitor management planning. 

 

5.1 Introduction 

Negative impacts from wind often arise from extreme events, such as storms, which are likely to 

intensify in the future (Masson-Delmotte et al., 2018b; Arnell et al., 2021; Forzieri et al., 2021). 

Impacts from extreme winds are increasing (Forzieri et al., 2021), and being identified in areas 

previously unaffected (Gardiner, 2021), suggesting climate change is already having an effect.  

Wind speeds and direction have large impacts on tree growth and morphology, with changes to 

winds likely to have negative effects and increase tree wind damage (Zhu et al., 2004; Ciftci et al., 

2014; Dupont, 2016; Gardiner, 2021). Damage to forests by wind has significant impacts and is 

responsible for over 50% of tree damage in Europe (Hart et al., 2019), leading to tree loss and 

disturbance to the surrounding ecosystem (Zhu et al., 2004). This could be especially damaging in 

these areas as trees are unlikely to be acclimated to strong winds (Gardiner, 2021) due to the 

protection from surrounding trees.  

There have been efforts to understand how wind influences trees in the forest ecosystem, and in 

commercial plantations (Suárez, Gardiner and Quine, 1999; Schelhaas et al., 2007; Kamimura et al., 

2008; Blennow, Andersson, Bergh, et al., 2010; Gardiner, 2021). Trees are vulnerable to sudden 

changes due to their long life-spans, limiting their ability to rapidly adapt (Seidl et al., 2017; Forzieri 

et al., 2021) to extreme events and sustained increases in wind speeds. Larger trees grow to buffer 

to prevailing wind directions, and if these change, they are at a higher risk from windthrow. Current 
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research about forest vulnerability to windthrow in European forests has found no significant trend, 

and dynamics appear to be largely dominated by interannual variability in climate (Blennow, 

Andersson, Sallnä, et al., 2010; Forzieri et al., 2021). However, nearly 60% of European forests’ 

biomass was found to be vulnerable to windthrow between 2009 and 2018, which appear to 

correlate to increases in precipitation and wind speed (Forzieri et al., 2021).  

A greater proportion of potential changes in future wind damage are likely to be due to changes in 

wind climate rather than changes within the forest (Blennow, Andersson, Bergh, et al., 2010), 

suggesting that climate change could have a larger impact on forests in the future. Colder forests, 

and those at higher latitudes including the British Isles, were found to be the most vulnerable to 

disturbance due to current environmental conditions and intensified warming over recent decades 

(Forzieri et al., 2021), which is likely be exacerbated in the future. Currently cooler areas projected to 

experience warmer, wetter conditions  may become more vulnerable to wind disturbances in forests 

in the future (Seidl et al., 2017) due to cascading effects from interacting disturbances (Stadelmann 

et al., 2014; Forzieri et al., 2021). 

There has been extensive research investigating how turbulent winds impact forest stands 

(Schindler, Bauhus and Mayer, 2012), aerodynamic interactions between trees and tree features 

(Schindler, Bauhus and Mayer, 2012), the impacts of wind to trees in urban environments (Giachetti, 

Ferrini and Bartoli, 2021; Gu et al., 2021), wind damage at forest margins (Talkkari et al., 2000) and 

in trees stands (Dupont, 2016). All this research investigates impacts to trees as one of a stand or 

forest, but with useful information about wind flows, turbulence and interactions causing 

disturbance. Additionally these wind events causing windthrow and damage can be positive for a 

forest to kickstart changes in structure, composition and landscape patterns (Schindler, Bauhus and 

Mayer, 2012). The centre of forests are considerably more sheltered than the edges and therefore 

less prone to windfall. Investigating effects on forest edges could also serve as a general indicator of 

how individual trees are likely to react to changes to wind disturbances. Some models (Peltola et al., 

1999; Gardiner, Peltola and Kellomäki, 2000; Talkkari et al., 2000) were developed to analyse critical 

wind speeds at the forest stand edge. 

There have been some attempts to model wind risk to individual trees within the stand level for 

commercial forestry (Ancelin, Courbaud and Fourcaud, 2004; Hale et al., 2012; Seidl, Rammer and 

Blennow, 2014; Kamimura et al., 2019). While this is suitable in a uniform forest, it is not applicable 

to individual parkland broadleaf trees of differing ages and at different distances to other 

vegetation. Some models at the individual scale identify those trees which could impact 

infrastructure (Gullick et al., 2019) and urban environments (Ciftci et al., 2014; Gu et al., 2021). 
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However, all these methods are highly specific and require large amounts of complex data, which 

are above many projects’ scope and budget. 

Wind speeds resulting in damage and disturbance are often very localised. While country-wide 

forecasts are useful, detailed local information is vital to understand wind patterns and the impacts 

from these. Vulnerability to wind speed varies over geographical regions, with changing magnitudes 

of local sensitivity (Forzieri et al., 2021), highlighting the added value of high resolution data and 

simulations (Outten and Sobolowski, 2021). 

Research into calculating threshold wind speeds and other vulnerability metrics to quantify risk to 

windthrow has utilised a range of wind and tree variables to make these predictions. These often 

aim to use or estimate local wind speed values using a variety of methods. Using regional wind data, 

and information about topography of the site and geographical elements, local spatial wind speeds 

can be interpolated, as in Suárez, Gardiner and Quine (1999) who used anemometer data alongside 

terrain and landscape roughness metrics. To ascertain high resolution temporal data, they calculated 

mean wind speeds from half-hour frequency distributions to predict wind speeds in forests (Suárez, 

Gardiner and Quine, 1999). Some papers have utilised remote sensing techniques to identify wind 

impacts to specific areas post-storm damage (Rich et al., 2010; Forzieri et al., 2021). Combining wind 

speed data with knowledge of a specific site through imagery (Rich et al., 2010), tree measurements 

(Rich et al., 2010; Ciftci et al., 2014) and field results produces a detailed picture of how wind is likely 

to affect an area. Higher resolution data and simulations of wind impacts are more useful than those 

at coarser resolutions (Outten and Sobolowski, 2021), so integrating these with site information will 

provide further useful evidence of the impacts of damaging wind to trees. However, often these 

methods utilise high levels of technology and data in statistical models that may exceed the scope of 

time, data inputs and workforce present in conservation organisations.  

Long-term fieldwork studies using low cost tatter flags to estimate the effects of wind to conifer 

stands were developed and assessed in a number of publications (Rutter, 1966; Miller, Quine and 

Hunt, 1987; Mackie and Gough, 1994; Quine and White, 1994; Quine, 2000). In these, the amount of 

flag lost to the wind over time is calculated, the rate of tatter, to equate to scores predicting 

windthrow hazard, exposure and other metrics of risk to trees (Miller, 1985; Quine and White, 

1994). When combined with topographical variables, these metrics have proven useful to forestry 

and forest conservation in the UK in previous years. There is a proven relationship between 

estimates of windiness derived from tatter flag experiments and observations of wind speeds 

(Quine, 2000), and the methods ability to predict risk using a variety of models (Suárez, Gardiner and 

Quine, 1999). Tatter flags are a simple, robust and inexpensive method to measure wind exposure 

(Willoughby, Stokes and Kerr, 2009) and can be employed in all conditions and landscapes. 
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While there is a research interest in examining the impacts of climate change to historically 

important structures (Sabbioni et al., 2009; Lankester and Brimblecombe, 2012; Leissner et al., 

2015), there is little to no research investigating these impacts to parkland landscapes in the UK. 

These landscapes, often managed by grazing and home to veteran native trees, are historically and 

biologically important to the area and wider environment. There has been the debate around 

environmental conservation versus preservation over recent decades. Preservation can be thought 

of as preventing resource production through an intrinsic need to protect nature (Minteer and 

Corley, 2007), and conservation taking a more malleable approach to land management through, 

what should be, the use of natural resources sustainably (Minteer and Corley, 2007). There is 

recognition that culture and conservation can be on opposite sides, and that integrating cultural 

desire into conservation practices is important (Shen and Tan, 2012), which can also relate to the 

history of a site. In this study, preservation is recognised as the maintenance of landscapes without 

change to original plans, and conservation as adapting to change, whether reactive or proactive, 

while protecting biodiversity and heritage priorities. It is recognised that often both preservation 

and conservation require anthropogenic intervention to maintain and protect the site for future 

generations and from natural and anthropogenic change. 

Conservation organisations, like the National Trust in England and Wales, are noticing increasing 

impacts of wind to sites, from extreme events and sustained high winds, which are affecting the 

environments looked after and access to sites by staff and visitors. There is a need to understand the 

changes to wind speeds and direction in relation to tourism, heritage and recreation at these sites, 

alongside biological implications. Some affected areas are historic parklands, with trees often 

planted according to plans spanning back centuries. Generally, estates have been managed with an 

emphasis on preservation for local and national heritage, but this is unlikely under climate change. 

Due to increasing wind speeds and changes to wind direction with climate change (Lowe et al., 

2018), the chance of exceeding critical wind speeds that impacts both the trees themselves and site 

closures could be increased. When investigating whether a site is focusing on preservation alongside 

or instead of conservation, it is important to assess whether this will be sustainable for the future. 

This includes thinking about the work required to maintain a site as well as how the site could be 

impacted by these disturbance conditions. Minimising health and safety risks to the public is just as 

important an aspect to a property as is preserving the heritage and conserving biodiversity. Finding 

the balance in these needs is likely to prove difficult, with this study aiming to provide another level 

of information to help in decision making around this historic and biologically important parkland. 

 Research aims 
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In this paper, novel analysis of current and future wind exposure to wind speeds and directions at 

the individual tree level in parkland is presented using the case study of Chirk Castle in North Wales. 

There is assessment of tatter flag methods, and if these can be used as a low-cost method for 

quantifying individual tree exposure in a parkland setting in comparison with already established 

tatter flag experiments on single trees in commercial forestry stands. Field spatial measures of tree 

exposure derived from the tatter flags are integrated with Met Office UKCP18 projections of future 

climate to estimate spatial and temporal trends in exposure from mean wind speeds, maximum gust 

speeds and wind direction in a parkland context.  This tests whether it is realistic to preserve existing 

landscapes under climate change and if visitor safety will be affected by future conditions. 

 

5.2 Methods 

5.2.1 Study site 

Chirk Castle is on the border between Wales and England (figure 5.1) and is a popular National Trust 

property with over 170,000 visitors in 2019. The parkland trees at Chirk Castle host internationally 

important groups of invertebrates and fungi, and are historically important as they are part of the 

original plans of the parkland. Chirk Castle is one of the best examples of ancient wood pasture and 

parkland in Wales and holds a Site of Special Scientific Interest (SSSI) designation. Over 700 trees are 

identified on the oak dominated castle site as being of mature parkland tree status. These trees are 

at risk from increasing wind speeds and changes in wind directions which are predicted to change in 

the future under climate change (Lowe et al., 2018). Storms cause significant damage on site due to 

the high number of mature trees and the wooded, narrow driveway is easily blocked. When speeds 

and gusts over 40mph and 50mph respectively are recorded, the site is closed due to safety 

concerns. Sites for wind exposure measurement were chosen randomly across the site based on the 

location of surveyed broadleaf trees identified in a 2017/18 survey. 

Wind speeds are monitored daily on site using a Skylink-Pro weather station which is situated at the 

top of Adams Tower in the south-west corner of the castle. The weather station has been active 

since February 2016 and records 33 metrics of weather relating to temperature, wind, humidity, and 

precipitation at five-minute intervals. Chirk Castle is often closed during times of high wind, using the 

data from the weather station alongside weather forecasts. The dates of closure were extracted 

from social media postings and correlated against the wind speed data for those days over the past 

six years. 
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Figure 5.1: A) The location of Chirk Castle and the three closest MIDAS weather stations with available data 

(Hawarden Airport, Shawbury and Lake Vyrnwy No. 2) within Wales. B) The location of 21 study trees across 

the Chirk Castle parkland case study site. 

5.2.2 Measurements of wind and exposure 

 5.2.2.1 Tatter flags 

Tatter flags were installed at Chirk Castle between November 2019 and November 2020 with five 

data collection periods. May to July were excluded due to COVID-19 restrictions. The five fieldwork 

periods were between November and January, January and March, March and May, July and 

September, and September and November. Subsequently, these periods will be referred to as NDJ, 

JFM, MAM, JAS, and SOC respectively throughout this chapter. 

The Chirk Castle site was stratified into a 5 X 5 grid of 9-hectare squares (figure 5.1). 711 parkland 

trees with GPS locations and known species were included in the study. One tree was chosen in each 

square using stratified random sampling and allocated as the study tree for that area. Three squares 

did not contain a tree so 22 trees were selected in total. 22 more trees were allocated as back-ups in 

case the original study tree was unable to be reached on site. Species, topographic exposure (topex) 

A 

B 
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and altitude were recorded for each tree location. Access restrictions meant that 21 of the planned 

22 trees were used for the fieldwork. 

Flags were made by hand from 100% muslin, as the closest match to Madapollam cotton (Mackie 

and Gough, 1994) available. Each flag was 420 mm X 305 mm, which is slightly larger than 

recommended for standard practice (Mackie and Gough, 1994), to accommodate overlap with 50 

mm X 32 mm 1.8 m stakes the flags were attached to. Four flags were installed at each study tree at 

the north, south, east, and west sides to gather data on the effect of wind direction and overall tree 

exposure to wind. Each stake was placed at least one metre from the edge of the visible root system 

of the tree to try and reduce the impact of shelter from branches. 85 flags were put out at Chirk 

Castle for each fieldwork period; 4 X 21 (84) at each tree (figure 5.1B), plus one flag at the weather 

station.  

Tatter flags were placed at 1.8 m on stakes at the foot of each study tree and changed every two 

months (table 5.1), or between 55 and 67 days (Mackie and Gough, 1994). Flags were checked in the 

intervening month. Each flag was placed one meter away from the root system of the tree to 

attempt to reduce the impact of the shelter effect of each tree. Two fieldwork periods, three and 

five (table 5.1), exceeded the maximum 67-day length. This was due to COVID-19 restrictions which 

meant that the researcher was unable to get into the field any sooner. An increase of one to two 

days extra on site is unlikely to have a significant impact on results. 

 

Table 5.1: The start and end date of each fieldwork period at Chirk Castle and the number of days each set of 

flags was out for. Dates in italics saw no data collection due to COVID-19 restrictions. 

Number Start date End date Number of days Fieldwork 
period code 

1 6th November 2019 6th January 2020 62 NDJ 
2 6th January 2020 6th March 2020 61 JFM 
3 6th March 2020 12th May 2020 68 MAM 
4 12th May 2020 15th July 2020 65 MJJ 
5 15th July 2020 21st September 2020 69 JAS 
6 21st September 2020 20th November 2020 61 SON 

 
Post-fieldwork, all flags were soaked for minimum 52 hours to remove dirt collected throughout the 

fieldwork months. Flags were separated into two containers, keeping the dirtiest flags together to 

prevent dirt transfer to cleaner flags. Warm water was added to each container until just covering 

the flags, and approximately 20 ml of 20% Deacon 90 detergent mixed into the water. After all flags 

were soaked, they were rinsed in clean, warm water with any residue gently washed off by hand 

with a sponge. Flags were left to air dry overnight, as machine washing and drying caused damage to 

the material.  



101 
 

Two metrics were used to calculate how the flags changed over time. Both methods were used to 

ensure accurate results and to assess which metric is more useful to measure change. In previous 

studies (Jack and Savill, 1973; Miller, Quine and Hunt, 1987; Mackie and Gough, 1994; Quine and 

White, 1994; Quine and Bell, 1998; Quine, 2000), tatter rate is expressed in units of cm2 day-1. 

Change was estimated with similar methods, through weight change and area loss. Both methods 

were undertaken prior to, and after fieldwork for each two-monthly periods. All flags were weighed 

using laboratory balances to four decimal places. Weights were taken the first time the balance 

settled for reproducibility.  

The second flag analysis method consisted of photographing each flag to calculate change in area by 

calculating the amount of white space (the flag) before and after fieldwork. Weights of flags were 

found to be more reliable and consistent than the photography and coding method and therefore, 

the below methods and results relate only to the change in weight of flags before and after 

fieldwork. For full photography methods, see supplementary material in appendix 4.1 and table 

A4.1.1. 

Livestock disturbance was a significant problem throughout the fieldwork study. Visual analysis 

combined with records of livestock presence were used to score flags on a rating system. All flags 

were given a score from zero to two. Flags with a score of one were present and not impacted by 

livestock, and it is these flags that were analysed. Additionally, any flags that were found on the 

ground in the in-between month (e.g., December in the NDJ fieldwork period) were disregarded 

from analysis. Any flags that scored either zero (flag not present) or two (flag present but impacted 

by livestock) were also disregarded from analysis.  

 5.2.2.2 Meteorological data 

A combination of weather observations from the Skylink-Pro and MIDAS weather stations and future 

climate projections from Met Office UKCP18 predictions were used in analysis. 

When analysing weather data from the Skylink-Pro station, some records for Chirk Castle were 

missing. The weather station automatically uploads data to the Skylink database via a solar panel. 

However, some of the data did not upload for a number of days over the fieldwork period. 

Therefore, methods were tested to interpolate this data and get an estimate of wind speeds and 

temperature for the Chirk Castle site on days that did not upload data. Hourly wind speed, gust, and 

direction data were obtained from the nearest Met Office Integrated Data Archive System (MIDAS) 

stations and further Skylink weather data from National Trust Erddig to interpolate missing data at 

Chirk Castle. These were all averaged to daily data. The three MIDAS stations closest to Chirk Castle 

are Shawbury, Hawarden Airport and Lake Vyrnwy (No.2) (Figure 5.1A).  
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Both deterministic and stochastic regression methods were tested to interpolate missing weather 

station data for the fieldwork study period. The true and predicted correlations were compared and 

used the regression method that most closely predicted the true correlation, without 

overestimation. The closer to the true correlation, the more it can be assumed that wind speeds, 

and other missing weather data, predicted using these regression methods are accurate estimations 

of past conditions. Future wind exposure was calculated based on average daily wind speed and 

maximum daily wind gusts, and therefore only these values were interpolated. All imputations were 

run using the mice (v 2.9, Van Buuren and Groothuis-Oudshoorn, 2011) package in RStudio. Weather 

station data for Chirk Castle between 1st November 2019 and 30th November 2020 is missing 146 

days of data, which is a 36.9% loss, compared to the full dataset of 365 days. 37 interpolations of a 

multiple regression were run, as as many imputations should be run as the percentage of missing 

data (Bodner, 2008; White, Royston and Wood, 2011). The multiple regression was run using data 

from all four of the closest weather stations. For results, see supplementary material in appendix 4 

3.2 and table A4.2.1. Interpolated wind speed results are shown in figure A4.2.1. 

5.2.3 Climate data 

The Met Office have developed the UKCP18 climate projections, the most up to date predictions for 

how climate is likely to change in the future in the UK. Here the Convection Permitting Model 2.2km 

local projections were used, downscaled from the 60km global CMIP5 climate models using the Met 

Office HadGEM3 model. These projections were run for 12 members. The first model member 

(model 01) based on the HadGEM3-GC3.05 model without perturbed physics has been used in this 

analysis. 

Four climate variables were used for analysis, mean daily wind speed (m s-1) (sfcWind), maximum 

daily wind gusts (wsgmax10m), eastwards wind (uas) and northwards wind (vas). All variables were 

at the 2.2km spatial scale and for RCP 8.5 which predicts global average temperatures rising by over 

4oC before the end of the century. This data was averaged into three 20-year predictions of climate 

for mean wind speed, maximum gust speeds, mean eastwards wind and mean northwards wind. 

Baseline data was between 1980 to 2000 (1990s) with two future projections between 2020 and 

2040 (2030s), and 2060 and 2080 (2070s). These spatial data for the UK were cropped to Chirk Castle 

for ease in data processing times during analysis.  

Daily mean and maximum wind speeds and gust speeds, and daily mean eastward and northward 

wind directions were produced for Chirk Castle from the UKCP18 (model 01) scenarios and averaged 

to three 20-year time frames. These consisted of; the baseline 1980 to 2000 (1990s), a present 

future of 2020 to 2040 (2030s) and the long-term future between 2060 and 2080 (2070s). Hereafter, 

the time periods will be referred to as the 1990s, 2030s and 2070s. 
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5.2.4 Data analysis 

 5.2.4.1 Closure analysis  

National Trust staff are required to close the site when maximum gust speeds exceed 50 miles per 

hour (mph) due to danger to staff and visitors from falling trees and debris preventing access to the 

property, with interest as to how frequently this threshold may be exceeded in the future under 

projected climate change. Three time periods of 20-year daily data, 1990s, 2030s and 2070s (see 

chapter 2, section 2.3.5 for detailed information about data processing) were investigated. All wind 

speeds from the UKCP18 data are in metres per second (m s-1). The threshold of 50 mph was 

converted to m s-1 which equals 22.4 m s-1. This threshold was added to the UKCP18 max gust data 

for each day to identify the number of days in both the baseline and future scenarios exceed(ed) 

22.4 m s-1. 

 5.2.4.2 Flag analysis 

The difference between weights before and after fieldwork exposure were calculated as a 

percentage loss 

((after weight – before weight) / before weight) * 100 

Proportions of flags and potential future exposure using UKCP18 wind speed and direction data were 

calculated. As all flags were handmade, there were slight discrepancies across flag size, and 

therefore, weight. Using proportions of flag weight change made for a comparable and repeatable 

method to assess the level and change in wind exposure across the Chirk Castle site. To do this, fc 

was calculated, the flag weight change where fa is the weight after fieldwork and fb is the weight 

before fieldwork, 

fc = fa - fb. 

The proportion of the weight change for each flag is fp and calculated by 

fp = fc / fb 

where the flag weight change is divided by the flag weight before to give a calculation of the 

proportion of flag lost due to wind tattering. The relative difference in proportion of flags was then 

calculated, that is, how the proportion of weight loss of each flag differs compared to the average of 

all flag weight loss proportions across all fieldwork periods. The average of all flag weight change 

proportions (fp) given as fav to calculate the relative difference of all proportions by 

frd = fp / fav 

where the flag proportion (fp) is divided by fav to give the relative difference of proportion of weight 

change (frd). Values of frd > 1 represent flag proportions higher than the average and therefore 
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more exposed than the average due to more flag weight lost. Values of frd < 1 represent the 

opposite. 

To then assess the change in exposure across the site under climate change conditions, change in 

four wind climate variables (wind speed, wind gusts, eastwards, and northwards wind directions) 

was measured from the 1990s to the short term 2030s and long term 2070s. This change in wind 

metrics is calculated by  

w1 = wf1 – wb 

w2 = wf2 - wb 

where w1 is the change in the wind climate variable between the 1990s baseline wb and the 2030s 

projections (wf1) and w2 is the change in the wind climate variable between wb and the 2070s 

projections (wf2). The value of wind speed (from w1 and w2), was extracted for each flag location. 

To calculate the impact of future climate at each flag location, 

rel.exp = frd * fw 

where fw is the wind climate variable from the difference between baseline and future climate (w1 

or w2). The rel.exp therefore is the potential future exposure at each flag. 

The rel.exp value for each flag was calculated using both the averages and maximum of the four 

wind metrics, wind speed, gusts, and northward and eastward directions. All further analysis is 

conducted using the exposure results calculate with the maximum values of wind metrics as the 

averages did not have a great impact on results.  

To assess whether there is an effect of seasonality across the fieldwork study, statistical tests were 

run to determine differences between each fieldwork period. To test for normality, Shapiro-Wilk’s 

test was run for both ANOVA model residuals across all fieldwork periods and each fieldwork period 

separately. A log-transformed data set was analysed and found to be normally distributed. For full 

results see supplementary material in appendix A4.3 and figure A4.3.1. 

 5.2.4.5 Direction analysis 

Wind direction data is presented as eastwards and northwards metrics of wind speed, with negative 

values of that direction representing the opposite direction e.g., positive eastwards wind values 

indicate a wind going towards the east, negative eastwards wind values indicate a wind going 

towards the west. The most likely prevailing wind direction for each UKCP18 grid square within the 

study site were calculated with values at the baseline (1990s), short-term future (2030s) and long-

term future (2070s) 20-year averages of daily direction data. Wind direction data was split into 

negative and positive values, with the most common (negative or positive) indicating the prevailing 

wind direction. By combining these prevailing directions for each grid square from the eastwards 

and northwards direction data, baseline and future prevailing wind directions could be predicted. 
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For example, if both positive eastwards and northwards directions were the most common, this 

would predict a south westerly prevailing wind. 

 

5.3 Results 

5.3.1 Castle closures 

Since February 2016, the Chirk Castle estate was closed 63 times due to high wind speeds, and 14 

times due to other adverse weather such as snow and ice. Highest wind speeds on closure days were 

around 70 mph with these winds from a West/North-West direction. The days of closure during this 

period were mainly in December, February, and March. 

Through analysis of UKCP18 climate data, baseline years were predicted to have the highest number 

of days exceeding the closure threshold of 22.4 m s-1 with 559 days over the 1990s experiencing a 

maximum gust speed above the threshold (figure 5.2). This decreases under future predicted climate 

change (figure 5.2), with little change between the 2030s and 2070s when considering count of days 

(figure 5.2). In the long-term future predictions, the least days when wind speeds are projected to 

exceed the closure threshold are in August, with the most days predicted during January. 

Additionally, the percentage of days when maximum wind gusts are predicted to exceed the closure 

threshold were examined seasonally (table 5.2). Winter has historically been the time of year with 

the highest instances of gust speeds over the threshold, and this is predicted to be the same in the 

future (table 5.2). There are slight increases in the percentage of days exceeding the closure 

threshold in winter and spring in the future under climate change. By the 2070s, half of the days 

when wind gusts could exceed the threshold are likely to be in winter (table 5.2). However, 

percentages of high wind gusts in summer and autumn are predicted to decrease (table 5.2). This 

could be positive as a reduction in high wind gust events when trees are in full leaf may reduce 

windfall in these months. 

 

Table 5.2: The percentage (%) of days maximum wind gusts are predicted to exceed the closure threshold of 

wind gusts over 50 mph (22.4 m s-1) 

 1990s 2030s 2070s 
NDJ 26.5 30.2 30.0 
JFM 31.4 28 32.1 
MAM 15.3 17.3 17.1 
MJJ (No fieldwork) 6.7 5.4 4.6 
JAS 6.5 4.8 3.5 
SON 13.5 14.2 12.7 
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Figure 5.2: The number of days (count) per month in each 20-year period when wind speeds are predicted to 

exceed the closure threshold of 50 mph (22.4 m s-1). 

Overall, this amounts to approximately a month per year of closures predicted at the baseline, in 

comparison to about three weeks a year in the future. For both projected 20-year climate future 

averages, Chirk Castle is predicted to close for 22 days per year. Winter months are likely to have the 

highest number of windy days with summer the least affected (table 5.2). Spring wind gusts are 

likely to be more prevalent than at the baseline for both scenarios (figure 5.2, table 5.2). Seasonal 

events at Christmas and Easter could be more affected by wind gust speeds in the future, but 

popular summer holiday seasons are unlikely to be greatly impacted. 

5.3.2 Flag change analysis and exposure 

When comparing results using weight and size change for flag analysis, weight changes were the 

most accurate way to measure exposure to wind. Analysis of size did not show patterns similar to 

weight change for all months, but some were correlated. Subsequent analysis was conducted using 

the weight change results only. For size change results, see supplementary material in appendix 4 

(table A4.3.1). 

All flags lost weight over each two-month fieldwork period, showing evidence of tattering. Wind 

exposure varied spatially and temporally across the Chirk Castle property, with some areas of the 

site more exposed throughout the year than others. Figure 5.3 shows the average percentage of 

weight lost by the four flags at each tree during each fieldwork period. Flags in the north-western 

and eastern areas of the parkland lost the most weight throughout the year (figure 5.3), with 

greatest average weight lost during the SON fieldwork period (figure 5.3, SON). Flags at trees 14, 15, 
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19, 20, 24 and 25 were the most impacted by livestock (figure 5.3), resulting in less analysis on winds 

from a south-easterly direction. 

When comparing observed and interpolated wind speeds (appendix 4.2, figure A4.2.1) with average 

weight loss for each tree (figure 5.3) across the study year, there are patterns between wind speeds 

and tattering. Spring and summer months (March to August; figure 5.3, MAM, JAS) see predicted 

and observed wind speeds lower than the average (3 m s-1), which also saw lowest amounts of 

tattering and less weight lost (figure 5.3). Highest wind speeds in JFM and SON fieldwork periods 

(appendix 4.2, figure A4.2.1) correlate with highest average percentages of flag weight lost at each 

tree (figure 5.3).  

Relative exposure for the baseline and future periods was calculated relative to the overall average 

exposure at the time period in question. This assumes that a relative exposure score of one is equal 

to the overall mean flag weight loss. Any data below one was less exposed than the average and vice 

versa. Higher values indicated greater exposure spatially and temporally. For baseline exposure 

values, see appendix 4, table A4.3.2. 

Exposure of flags was greatest during winter and spring months of the fieldwork period, with the 

least exposed fieldwork periods during the summer (table 5.3C). Additionally, there are changes 

throughout the site regardless of fieldwork period with some areas of the parkland being more 

exposed than others (table 5.3A). Flags to the north and edges of the parkland were more exposed 

than those in other areas (table 5.3A, B). About half of trees were more exposed than the average 

(table 5.3A), with flags at one tree providing no data due to the impact of livestock. Livestock 

affected flags at study trees across the estate, but especially those between 19 and 25 (see appendix 

4.3, table A4.3.2), with a loss of data for the majority of the year. The fieldwork period between July 

and September (JAS, table 5.3C) was most affected by livestock, with 64% of data missing.  
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Table 5.3: A) The average relative difference in the proportion of flag weight lost compared to the average for 

every tree. B) The average relative difference in the proportion of flag weight lost as an average of each 

compass direction. C) The average relative difference in the proportion of flag weigh tlost as an average of each 

fieldwork period. NDJ – November to January, JFM – January to March, MAM – March to May, JAS – July to 

September, SON – September to November. Values > 1 represent flags, directions and fieldwork periods that 

lost more weight than the average and values < 1 represent flags, directions and fieldwork periods that lost less 

weight than the average. 

A Tree Average relative 
difference 

Tree Average relative 
difference 

 

 1 1.300 13 0.997  
2 1.036 14 0.949 
3 0.943 15 1.027 
4 1.018 16 0.814 
6 1.035 17 0.926 
7 1.197 18 0.846 
8 1.149 19 0.854 
9 0.980 20 0.729 
10 1.034 24 NA 
11 1.098 25 0.863 
12 1.024   

B Direction Average relative 
difference 

C Fieldwork 
period 

Average relative 
difference 

 North 1.001  NDJ 1.038 
South 0.990  JFM 1.054 
East 1.007  MAM 0.862 
West 1.002  JAS 0.915 
   SON 1.072 
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Figure 5.3: Average flag weight loss (%) for each study tree site in the Chirk Castle parkland over the fieldwork period between November 2019 and November 2020. Black 

points represent the site of the study tree. The more weight lost by the four flags on average at that tree, the darker the larger point. Any black points without a larger point 

represent a tree without data collected due to livestock or wind disturbance to those flags. NDJ) November – December – January 2019-2020 (62 days), JFM) January – 

February – March 2020 (61 days), MAM) March – April – May 2020 (68 days), JAS) July – August – September 2020 (69 days), SON) September – October – November 2020 

(61 days).
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Figure 5.4 shows the relative exposure of each flag during the fieldwork study between November 

2019 and November 2020. The warmer months (figure 5.4C, D) were the least exposed and the 

colder months (figure 5.4A, B, E) were more exposed. Areas of the site to the north-west were more 

exposed than those in the south-west or south-east. Between tree exposure varied seasonally, with 

the majority of trees having greater than the average exposure at some point during the year (figure 

5.4).  More flags were more exposed than the average between the NDJ (figure 5.4A) and JFM 

(figure 5.4B) fieldwork periods than at other times of year. Flags between MAM (figure 5.4C) and JAS 

(figure 5.4D) had the least number of flags more exposed than the average, although both these 

fieldwork periods saw the highest amount of livestock disturbance. Some flags were consistently 

more exposed than the average during the entire fieldwork study (figure 5.4). These were flags at 

trees one and two in the north-west area of the property, flags at tree seven in the centre north-

west area and flags at tree 13 in the centre of the parkland close to the castle, which had one or 

more flags exposed more than the average for every fieldwork period (figure 5.4). Log-transformed 

Welch-one way ANOVA results indicated that the exposure of trees to wind was statistically different 

between NDJ and MAM (-0.21, 95% CI (-0.33 to -0.09), p < .001), NDJ and JAS (-0.16, 95% CI (-0.32 to 

-0.01), p < 0.05), JFM and MAM (-0.21, 95% CI (-0.35 to -0.07), p < .001) and MAM to SON (0.22, 95% 

CI (0.06 to 0.37), p < 0.05), but no other combination of fieldwork periods were statistically different. 

There is some evidence of seasonality affecting wind exposure, most notably in fieldwork periods 

that were in different seasons. Those fieldwork periods that were concurrent, with the exception of 

JFM to MAM were not statistically difference from one another.  

Results calculating future predicted exposure with average wind speed and average maximum gust 

speeds showed very little change from zero (appendix 4, table A4.3.3). Therefore, all results 

presented are future exposure of trees to maximum average wind speeds and maximum gust 

speeds. Raw results for each flag can be found as supplementary material in appendix 4 (table A4.3.3 

and table A4.3.4). 

Future predicted exposure from maximum average wind speeds (figure 5.5), and maximum wind 

gusts (figure 5.6), vary spatially within and between future climate averages. In the 2030s (figure 

5.5A-E), more areas on the property are predicted to experience maximum average wind speeds 

that could increase the exposure risk to the individual trees. This can be seen clearly in the JFM 

fieldwork period (figure 5.5B) with the whole site being more exposed to maximum average wind 

speeds than the average. Where just a few flag sites are more exposed, these are all to the north 

side of a tree (figure 5.5A, D) in the SON and JAS fieldwork periods, suggesting these sides of those 

individual trees could be more at risk. When investigating potential risk in the 2070s (figure 5.5F-J), 

the risk of exposure from maximum average wind speed is only above the average for the NDJ 
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fieldwork period (figure 5.5E). All other fieldwork periods in this projection are predicted to see a 

smaller risk of exposure from maximum average wind speeds. This suggests a greater risk in the 

short term, with some temporal shifts in exposure. 

Maximum gust speeds (figure 5.6) have a greater impact on exposure than maximum average wind 

speeds (figure 5.5). There are some changes between both future climate periods, but in this case 

predictions for exposure in the 2070s (figure 5.6F-J) are greater than those in the 2030s (figure 5.6A-

E). Similar to figure 5.5, the JFM fieldwork periods (figure 5.6B, G) predict that trees could be more 

exposed than the average to maximum gust speeds, with less impact on other fieldwork periods. 

There are predicted to be a greater number of trees in the 2070s (figure 5.6F-J) that are likely to be 

more exposed than the average, with the majority of trees in the MAM fieldwork periods (figure 

5.6H) to be at a greater risk of exposure. This is a large change from the fieldwork period baseline 

(figure 5.4C), when the MAM fieldwork period is observed to have the least impact from wind 

exposure. There are some similarities to the maximum average wind speed predictions, with trees 

along the north side of the parkland being most exposed to maximum wind gusts when other trees 

are not affected (figure 5.6I, J). 

When investigating the impacts of wind direction, there was minimal change between the baseline 

and both future projections (figure 5.7). Winds from the south-west are predicted to be the most 

common over all time periods (figure 5.7), in line with current prevailing winds. Largest changes in 

predicted wind direction were between the 1990s and 2030s, with south-easterly winds becoming 

more prevalent (figure 5.7B). North-westerly winds were predicted to become more widespread in 

the 2070s, with no prevailing winds from the east (figure 5.7C). Despite some predicted changes to 

wind directions, a south-westerly prevailing wind is likely to remain the most common over the next 

80 years at the case study site. Spatial changes to prevailing wind direction are most common in the 

summer months (see supplementary material, appendix 4.3 table A3.3.5), when there are greater 

changes for prevailing winds to occur from a north-westerly direction. However, during winter 

periods when exposure is greatest, prevailing wind direction is not predicted to change (appendix 

4.3, table A4.3.5).  

Overall, the largest impacts from wind temporally, observed and predicted, are during winter 

months, with the JFM fieldwork period most affected in the future in all years and metrics (figure 

5.5B, figure 5.6B, G). Maximum gust speeds are likely to have a greater negative impact on tree 

exposure than maximum average wind speeds, with the risk of exposure in the latter staying roughly 

the same temporally and only shifting spatially (figure 5.5). The risk of exposure from maximum gust 

speeds is likely to double across the Chirk Castle parkland with more flag sites becoming exposed 
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spatially and temporally (figure 5.6). The most affected flag sites from wind exposure are to the 

north of the study trees in all time periods and wind metrics. 
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Figure 5.4: Relative exposure of each study tree in the Chirk Castle parkland to wind speeds and direction during the fieldwork period between November 2019 and 

November 2020. Exposure calculated from the relative proportion of flag weight loss over time.  Red, upward arrows represent flags that lost more than the average weight 

and are therefore more exposed to wind speeds. Green, downward arrows represent flags that lost less weight than the average and are therefore less exposed to wind 

speeds. A) November – December – January (NDJ), B) January – February – March (JFM), C) March – April – May (MAM), D) July – August – September (JAS), E) September – 

October – November (SON).  
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Figure 5.5: Estimated future relative exposure for study trees from maximum average wind speeds. Red, upwards arrows represent flags that are predicted to lose more 

weight than the average and therefore would be more exposed to future maximum average wind speeds. Green, downward arrows represent flags that are predicted to 

lose less weight than the average and therefore would be less exposed to future maximum average wind speeds. Panels A to E show predictions for the 20-year average 

between 2020 and 2040. Panels F to J show predictions for the 20-year average between 2060 and 2080. A/F) November – December – January (NDJ), B/G) January – 

February – March (JFM), C/H) March – April – May (MAM), D/I) July – August – September (JAS), E/J) September – October – November (SON).  
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Figure 5.6: Estimated future relative exposure for study trees from maximum gust speeds. Red, upwards arrows represent flags that are predicted to lose more weight than 

the average and therefore would be more exposed to future maximum wind gust speeds. Green, downward arrows represent flags that are predicted to lose less weight 

than the average and therefore would be less exposed to future maximum wind gust speeds. Panels A to E show predictions for the 20-year average between 2020 and 

2040. Panels F to J show predictions for the 20-year average between 2060 and 2080. A/F) November – December – January (NDJ), B/G) January – February – March (JFM), 

C/H) March – April – May (MAM), D/I) July – August – September (JAS), E/J) September – October – November (SON).
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Figure 5.7: The most common wind direction at Chirk Castle from the baseline (A) 1980 to 2000), to the short-

term future (B) 2020 to 2040) and long-term future (C) 2060 to 2080. The direction indicated shows the wind 

azimuth direction. E.g., the most common wind direction at the baseline is south-westerly. 

 

5.4 Discussion 

5.4.1 Fieldwork use of tatter flags 

This study has demonstrated that tatter flags can be used to identify areas of exposure to individual 

trees at a broadleaf parkland scale and that these methods are not restricted to commercial 

forestry. Deploying multiple flags at each site has shown that direction influences wind exposure to 

trees, something that is often not explored with tatter flag studies in commercial forestry as only 

one flag is stationed at a site (Quine and White, 1994; Quine, 2000). Direction impacts wind 
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exposure to trees, with winds from the north the most likely to cause a larger impact to an individual 

tree under future conditions.  

There were some limitations to stationing multiple flags at multiple trees over a fieldwork period. All 

flags were handmade to reduce monetary cost, which added significant time to the study through 

marking out, cutting and labelling each flag before weighing before and after the flag was in the 

field. Additional time was required to soak, hand wash and air dry all the flags to prevent unwanted 

damage in machine washing and drying. Another consideration is to the type of cotton used in flag 

making. Madapollam cotton is stated in Mackie and Gough, (1994), although this is difficult to 

acquire. The closest available muslin cotton was used, which may also affect comparisons between 

this study and those before. Although methods were not directly replicated, this chapter presents an 

alternative way to calculate exposure using tatter flags regardless of flag size or material, relying on 

proportion of loss rather than cm2, which is likely to be more accessible. 

Unforeseen impacts are present in many experimental studies, and in this case, livestock on the 

Chirk Castle estate caused significant damage and data loss throughout the study period. Results 

may therefore be skewed to tree sites that did not experience data loss, and these affected study 

trees and subsequent flags may have provided a different story to tell. However, from the little data 

collected from the most affected field (trees 19, 20, 24 and 25), wind exposure is below the average 

and these trees are not expected to be those most at risk from wind speeds on the estate. However, 

this could be due to cattle favouring these areas on the site.  

Another unforeseen impact was the COVID-19 pandemic and the subsequent lockdowns, which 

prevented travel to and from the study site for three months of the fieldwork period. This meant 

that three months of fieldwork between May, June and July were not undertaken which may skew 

results as the impacts of wind speed and direction to the site during these times could not be 

assessed. However, subsequent months of fieldwork yielded the lowest wind exposure values of the 

whole year, with wind conditions not dissimilar to those during the months of missing data. This 

could suggest that even though three months of data is missing due to the pandemic, exposure 

values for these times are likely not to be the greatest for the year and as such, at risk times are not 

underestimated. 

5.4.2 Weight vs. size 

There is little information in the literature regarding the analysis of tatter flags post-fieldwork with 

methods on tatter rate calculation from Forest Research (Mackie and Gough, 1994) stating that ‘the 

amount of tatter is measured and the actual tatter rate (cm2day-1) is calculated’. From this, two 

methods were developed to calculate tatter rate, although this was done over each two month 

fieldwork period rather than per day due to the amount of data collected. In past studies, fewer flags 
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were deployed at each site, often just a handful rather than over 400 in this experiment. Therefore, 

measuring change by hand, as was done in the past, was simply not feasible. Weighing and 

photographing each flag before and after fieldwork was completed to calculate weight and area lost 

from each respective method. Only the weight change results produced a repeatable outcome, with 

too many variables from the photography method being difficult to control. This could be due to 

issues with how flags were photographed and analysed, as laboratory conditions for photographing 

were unavailable. Estimating size loss using photographs and robust analysis of size change using R 

coding is potentially a very useful method, but more analysis and tests need to be done before this is 

a reliable method of estimating tatter rate. Other studies investigating tatter rate to measure tree 

exposure have not been forthcoming on the methods used in analysis (e.g. Willoughby, Stokes and 

Kerr, 2009), often simply citing Mackie and Gough (1994) without further information. 

5.4.3 Exposure, wind data and scale 

For most of the fieldwork periods and wind metrics (figures 4.4 to 4.6), flags at each tree experience 

similar exposure, which is consistent across site. This suggests a greater temporal effect than spatial, 

and highlights the potential importance for fine scale wind data. Maximum wind gusts are found to 

have a greater impact on exposure than maximum average wind speed, which is expected as gusts 

are always higher than average speeds. The study period between and including January to March 

(JFM) is predicted to experience the highest exposure from average wind at the short term and wind 

gusts for both future periods. Winter storms in the past 20 years have been concentrated in these 

months, so current trends are expected to continue, although potentially worsen.  

Some recent evidence (Gardiner, 2021) suggests that damage is likely to occur when canopy top 

hourly wind speeds exceed 8.5 m s-1. Wind speeds are likely to exceed a higher threshold of 22 m s-1 

more often in the future in winter and spring, increasing the potential for damaging conditions. The 

lower damage thresholds are likely to be exceeded much more often, posing a far greater risk than 

currently expected, at least in the study site presented here.  

Additionally, it has been suggested that in colder climates, there is increased forest vulnerability to 

windthrow due to shallower rooting systems and lower stem resistance of trees in these regions 

(Forzieri et al., 2021). This, coupled with an increase in wind exposure, especially when trees are 

coming into leaf earlier across the UK and worldwide (Parmesan and Yohe, 2003; Walther, 2010; 

Polgar and Primack, 2011; Primack et al., 2015; Reeves et al., 2022) exacerbated by climate change, 

could have significant impacts on tree damage and windthrow. Furthermore, a warming-induced 

reduction in plant defence mechanisms is increasing forest vulnerability to insect outbreaks, 

especially in higher latitudes (Forzieri et al., 2021). These could increase vulnerability of trees to 
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windthrow due to damage from insects even in wind events that are not significantly more extreme 

than the average.  

This study also predicts that there may be fewer prevailing easterly winds, with no easterly 

prevailing winds predicted to occur in the 2070s. This could mean that storms such as the ‘Beast 

from the East’ which caused country-wide damage due to colder, more intense conditions could 

become less prevalent. Easterly winds have brought the most severe spells of winter weather over 

recent years (Kendon et al., 2022), and these incidences may remain few and far between in the 

future at the very localised study site. Increases in wind speeds from the north-west are predicted, 

and, although an isolated event, the strongest wind speeds from the damaging Storm Arwen in 

November 2021 were from the north (Kendon et al., 2022). This could suggest that storms with 

strong wind speeds could become more common bringing together our predictions of increased 

winter wind exposure, more winds from northerly directions and observations of previous damaging 

storms. These however, are predictions of wind speeds rather than extreme events, with other 

variables factoring into the occurrence of a winter storm that must be taken into consideration 

alongside wind direction predictions. 

There are other impacts that are likely to affect established broadleaf trees, exacerbating or 

overwhelming the impacts of wind. Fire and insect outbreaks were found to have greater impacts in 

some locations compared to wind (Forzieri et al., 2021). The impacts of fire at the case study site are 

unlikely due to the site use and wetter Welsh climate (Lowe et al., 2018). However, incidences of 

hotter, drier summers are increasing and could increase the likelihood of a fire event. The Chirk 

Castle estate is internationally recognised for saproxylic invertebrates which feed on decaying wood. 

These species rely on old-growth structures (Bouget and Parmain, 2016), which may be at risk from 

increased exposure, and could lead to clearing by staff for health and safety. Wind-thrown trees 

have been found to promote biodiversity and restoration within forests (Thorn et al., 2014), and are 

likely to do the same in a mature parkland. Removing these downed trees reduced biodiversity and 

removed habitat for saproxylic species (Thorn et al., 2014). Additionally, tree-level parameters 

including size and species were more important than landscape-level predictors (Buse, Schröder and 

Assmann, 2007) on the occurrence probability of an endangered saproxylic beetle. Ensuring that 

suitable trees are maintained and that some wood remains on-site when limbs or the tree are lost, 

could bolster populations of these internationally important invertebrates. Increased windthrow 

could improve distributions of saproxylic invertebrates, but large-scale loss of trees is not 

sustainable for the long-term support of these species.  

There are some limitations to this work. Previous studies using tatter flags deployed flags for a 

minimum of three years (Jack and Savill, 1973; Willoughby, Stokes and Kerr, 2009) to gather longer-
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term patterns and extremes. This length of time was not possible during this study, and there were 

further time constraints due to the COVID-19 pandemic. A full year of data collection was not 

possible under pandemic restrictions, and further long-term data collection could reveal trends that 

do not present themselves under this short time scale. Due to the highly localised nature of wind 

trajectories and speeds, the use of multiple climate models investigating these trends is important 

(Forzieri et al., 2021). However, due to the limitations of this study only one model member was 

used, which may significantly alter the results presented. This study does provide a very useful 

analysis of wind exposure to a specific site, yet incorporating a greater range of model members 

would provide a more robust assessment of potential future risk. Additionally, methods and analyses 

were tested at a local scale, focusing on one case study site. Analysis of multiple sites over a wide 

range of landscapes would display meaningful trends, although the time and labour costs in 

employing our methods may be significant. 

5.4.4 Impacts of results to conservation organisations and the National Trust 

Results from this study have shown that times of greatest wind exposure may change but are 

predicted to be focused into specific times of year and in specific areas of the site. Conservation and 

site management can be targeted to these areas and these results used to influence current and 

future conservation and visitor management plans. Areas of the site more exposed by a change in 

prevailing wind direction could be targeted to protect trees which could become more vulnerable to 

winds from another direction. Exposure from wind gusts in the JFM time period could increase by 

over 16 times that of the baseline at the short-term future between 2020 to 2040. This is likely to 

have significant impacts to trees and other landscape features especially as prevailing wind 

directions on the Chirk Castle estate are predicted to switch from south-west to north-west, 

potentially bringing in colder weather. It has been estimated that small changes to wind speeds and 

directions can have a large impact on wind strength (Fung et al., 2018), which could impact trees 

greatly, especially if they are not acclimated to wind from an unfamiliar direction. 

Spatial maps are useful in estimating site vulnerability to wind exposure alongside values of 

exposure. Other studies have simply used numeric valuations of risk and exposure (Miller, Quine and 

Hunt, 1987; Quine and White, 1994; Quine, 2000; Mylona, 2012; Kamimura et al., 2019; Valta et al., 

2019), but developing these spatial maps increases the chance these results will be put into place by 

experts on the ground.  

There are useful implications for the National Trust in further exploring these results, and to other 

conservation and nature organisations utilising the methodology that has been developed. Wind 

exposure is likely to increase at certain times of year at the Chirk Castle estate, with health and 

safety measures impacted in response to this. Understanding where and when risk to staff and 
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visitors is more likely to occur is useful in updating operational procedures including risk 

assessments and site access. Our research has highlighted that high wind speeds are expected to 

become more common around busy Christmas and Easter periods at Chirk Castle. 

There are likely to be significant changes to landscape features that the National Trust are working 

to preserve on-site. While management considers tree health and mitigates tree loss and damage, 

trees are currently replaced like for like. This push to keep landscapes the same, due to original plans 

and heritage need, may not be feasible in the future. There is a wealth of literature examining how 

to preserve culturally important structures from climate change (Sabbioni et al., 2009; Lankester and 

Brimblecombe, 2012; Leissner et al., 2015), with less research into protecting culturally important 

natural landscapes. At this case study site, the historic parkland may need to evolve in terms of the 

individual trees and species. While it is understandable that the preservation of a historical parkland 

is likely to be an important consideration when planning site work, it is unclear if preservation will be 

sustainable in the long-term viability of such a site. The parkland at Chirk Castle follows the original 

plans of tree species and placement, and has not been changed since the 1300s. Everything from 

global climate, local weather, land management practices and site use have changed drastically since 

the original plans were devised, which may not suit current circumstances. Conservation, including 

adaptation to change, would lead to a more sustainable future for the parkland, while also 

preserving the heritage background of the site. Becoming responsible stewards of these 

environments through adaptation, sustainability, transformation and reform (Mathevet, Bousquet 

and Raymond, 2018) is vital to bring together humans and the environment to support landscapes 

that will both thrive in the future and also represent past heritage. While negative impacts in the 

2070s may seem like a lifetime away, the long-term nature of tree management and planning 

requires these conditions to be included in consideration. Not considering the impact felt by 

relatively young 50-year-old trees planted today, could spell disaster for future biodiversity and 

heritage in a parkland that has been around for many centuries longer than the scales of these 

projections. There is a delicate balance between conserving the environment and preserving 

heritage, which need to be taken forward hand in hand through compassionate records and 

forecasts of change and evidence-based decisions about how these changes should occur. 

There could be some physical measures put in place to conserve trees of high heritage value. These 

could include hedges made up of hardier trees such as hawthorn or alder, or tiered screens of more 

wind-resistant trees especially coniferous species in a 3-row structure which was found to reduce 

wind speeds by 75 % at a height of 1.5 metres (Jeong and Lee, 2020). Methods such as these are 

likely to have a large, and potentially negative, visual impact to a historic site, but could increase site 
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biodiversity and provide shelter for a range of species, alongside the benefit of heritage tree 

protection. 

While the effect of climate change will be site specific, it is likely that other historic sites will be 

similarly affected, and management will require similar considerations. Further work to understand 

regional or country-wide trends may be useful to pinpoint areas of vulnerability. One way this was 

estimated previously was through the Windthrow Hazard Classification (Miller, 1985; Quine and 

White, 1994). These methods could be brought up to date using remote sensing and currently 

available data to highlight areas potentially requiring more detailed investigations. 

5.5 Conclusions 

Tatter flags are useful to assess impacts from future wind exposure and direction to individual 

parkland trees. In flag analysis, using high resolution weight change data is more useful than change 

in size from photograph analysis. Through successful integration of tatter flag results and climate 

projections, fieldwork results can be used to predict future exposure. This study shows that 

exposure to wind does change spatially and temporally, with greater short-term impacts from 

maximum average wind speed and greater long-term impacts from maximum gust speeds, both in 

winter months. Wind direction is expected to change, with the greatest impacts to winter months at 

the short-term and summer months in the long term. Higher wind speeds from northerly directions 

are expected to bring more damaging conditions. The current preservation and/or hold-the-line 

conservation approach and techniques are unlikely to maintain biodiversity and heritage value in the 

future at the case study site. Our study combines established tatter flag methods with climate 

change projections to present a novel and low-tech way of quantifying exposure to individual 

parkland trees. 

  



123 
 

Chapter 6: Working with end users through iterative feedback 

improves the outcomes of climate impact models for nature 

conservation 

 

Abstract 

There is a recognised gap between science and practice, with few research outputs translating into 

conservation management decisions due to lack of time, access, or resources as issues commonly 

cited. This includes future impacts of risk and often practical conservation at local sites is based on 

experience, historic knowledge and business-as-usual, with a core team of dedicated staff sharing 

information about a site they know very well. To adapt to climate change, conservation decision-

makers will need to understand the impacts of change in order to protect species and habitats. 

Studies have shown that integrating stakeholders and decision-makers in research projects at all 

stages increases usefulness and likelihood of use of outputs. This study explores how the projects 

and results were developed with case study site staff, and how this influenced the results presented 

in this thesis. 

Studies investigating suitable climate space for birds in the uplands (chapter 3), the variation of fire 

risk to an upland peatland (chapter 4), and the impact of wind speed and direction to individual 

parkland trees (chapter 5), were developed with case study partners. An online feedback 

questionnaire was shared, sent to each case study site to gather opinions and information about the 

chapter results and current site management. The questionnaire was sent out alongside site-specific 

results with explanations of these results and details on the study rationale and methods used. 

Responses from staff at every site were welcomed and from any area within their site. Responses 

were collated and used to guide the next iteration of results.  

Repeated sharing of study results and information leads to information that is more useful to staff 

on site, which is more likely to be used in conservation planning. Understanding management need 

was a common response in regards to the usefulness of the results presented, as often work is 

required regardless of climate impact. This study shows that involvement with site-specific staff is 

essential when investigating the impacts of climate to a site. Not only were results improved 

following feedback with staff, but that through the building of relationships and sharing of 

knowledge, that these results are more likely to be used on site in the future.  

As with other studies, including site staff in research from the outset lead to study results of greater 

use and significance. Understanding, through iterative feedback, how results are, and are not, useful 

and the needs and requirements of information needed to make conservation management 
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decisions, is important in the development of sound science and nature conservation actions. 

Integrating research and pure science with actual conservation work will lead to more resilient, 

healthy ecosystems and evidence-based decisions for future plans which are vital in the work against 

the climate crisis. 

6.1 Introduction 

Both scientists and conservation professionals have voiced long-standing concerns about the lack of 

exchange between science and practice (Pullin and Knight, 2005; Cook, Hockings and Carter, 2010; 

Anderson, 2014; Fabian et al., 2019). From limited access to journal articles (Anderson, 2014), 

language barriers (Fabian et al., 2019), lack of time for rigorous research (Cook, Hockings and Carter, 

2010; Anderson, 2014; Fabian et al., 2019), and overall inaccessibility and overcomplication of 

published research (Pullin and Knight, 2005; Ainsworth et al., 2020). This could lead to useful 

research not being implemented, or conservation issues left unchecked, causing potential negative 

impacts to the natural world. One study found that around 60 % of conservation management 

decisions relied on experience-based information, with a lack of useful evidence-based research 

(Cook, Hockings and Carter, 2010). Practitioners have to make judgements and give advice based on 

the available evidence at the time, often for multiple activities, in response to ongoing impacts and 

keeping in mind budgets and implementation time. These professionals are under increasing 

pressure to drive positive change, despite increasing time and resources pressures (Jones, Turvey 

and Papworth, 2021). Many models investigating the links and drivers between climate change and 

biodiversity are often highly complex and difficult to understand outside of research circles (and for 

some of us currently in those circles!). However, ecological models could be useful to professionals 

through analysis of different interventions and future impacts (Parrott et al., 2012). Making ‘pure 

science’ accessible to conservation professionals is vital to meeting global targets, boosting 

biodiversity, and tackling the climate crisis. All which local sites and experts on the ground can have 

a significant positive impact to, but only if the information they require is accessible and relevant.  

Management decisions for local sites, from nature reserves to National Trust properties are often 

made by staff on-site. These sites often have a dedicated, long-term staff base who have a deep 

understanding of these areas, the pressures to the systems and how to alleviate these. This provides 

invaluable local knowledge, and the ability for conservation work to maintain the status quo of a 

site, often to a high standard, especially if following guidance to preserve the status of protected 

sites such as SSSIs. That experience-based information rather than evidence-based through 

published material has been found to be commonly used in nature conservation (Fabian et al., 

2019). Staff in practice on-site are often those making decisions about current and future 

management. For example, site managers at each National Nature Reserve (NNR) in England write 
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management plans every 5 to 10 years in response to site observations and information provided by 

outside bodies (Duffield, Le Bas and Morecroft, 2021). However, consideration of climate impacts is 

not as well understood or included extensively in management plans, with further considerations to 

conserve and improve biodiversity required in the long term (Duffield, Le Bas and Morecroft, 2021). 

Additionally, future conditions are likely to be significantly different to those currently experienced 

(Lowe et al., 2018; Masson-Delmotte et al., 2018a), and the experience and practices currently in 

use to manage and protect natural spaces could be less effective in the future. 

Integrating local knowledge with scientific research can significantly improve environmental decision 

making (Ainsworth et al., 2020), although often there are many competing views and agendas. This 

implementation of research, and communication with professionals through discussion and field-

trips builds these important relationships (Fabian et al., 2019). Bottom-up modelling, incorporating 

the views and expertise of on-site practitioners, can contribute to new landscape science based on 

scenario building (Parrott et al., 2012). Through these practices, all views can be heard and 

discussed, although care must be taken to ensure diversity of attendees and methods of knowledge 

transfer (Fabian et al., 2019). Visualisation of results can be a good tool in understanding climate 

change impacts (Shaw et al., 2009; Palacios-Agundez et al., 2013). Discussing a figure or graph is 

likely to provide more meaningful discourse than a statistic or number, especially if relevant sites 

and recognisable places are highlighted. These highly participatory methods are more successful at 

engaging practitioners and implementing research (Palacios-Agundez et al., 2013). Additionally, 

studies on the science-policy interface that engage non-academic stakeholders throughout the 

research processes creates ownership, accountability and a willingness to act (Shaw et al., 2009). 

Early involvement of stakeholders in the transparent development of projects and improvement of 

methods has shown increased chance of success of subsequent management efforts (Guisan et al., 

2013; Seidl et al., 2013; Samson et al., 2017). 

Climate change presents us with an opportunity to make new plans for future conservation 

management which put resilience and flexibility at the heart of natural systems, to adapt and 

mitigate to future change. Stakeholders, conservation professionals and local people need to be at 

the centre of these plans from first development, contributing to science and practice as experts in 

their local area. Local climate change is likely to impact species and habitats in a variety of ways. 

Some species are likely to thrive (chapter 3), with habitats (chapter 5), and extreme events (chapter 

4) more at risk from negative impacts in the long term. Additionally, national Non-Governmental 

Organisations (NGOs) and charities in the UK driven by public membership such as the National Trust 

and RSPB have a need to protect local natural and built environments to provide places for people to 

interact with nature alongside biodiversity benefits. Local nature has a large impact on peoples 
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wellbeing (Buijs et al., 2022) alongside important contributions to ecosystem services in an area such 

as flood prevention (Dolan et al., 2021). Diversification of environmental governance, as seen in the 

inclusion of natural capital and green economy discussions in EU policy, can bring more stakeholders 

to the table when discussing environmental management (Buijs et al., 2022). Although these policies 

do not affect the UK post EU exit, they should not be dismissed or forgotten. The UK’s commitment 

to net zero by 2050 (BEIS, 2021) should include multiple stakeholders in the reduction of GHG 

emissions, and discussions around local environmental management could provide a strong basis to 

these plans. Integrating these ideas with sound, evidence-based research presented in an accessible 

manner increases the likelihood of implementation and strong relationships between researchers 

and professionals. There are a strong diversity of experts in nature conservation in the UK, from 

complex statistical modellers to those with an intimate knowledge of local natural processes. This 

presents an exciting chance to bring together conceptual ideas with what actually happens on the 

ground to make positive steps in adaptation and mitigation to climate change. 

 Research aims 

This study aims to bring together climate impact modelling with non-academic experts at contrasting 

case study sites. Through in-person meetings, ongoing communication, and questionnaire feedback 

we, as the researcher and collaborative partners from all case study sites, aim to improve 

predictions of change and the ways these are presented. Questionnaire feedback was iterative, with 

subsequent results developed with previous feedback answers. Results post-iterations are 

hypothesised to become more useful to site practitioners, and through their involvement a greater 

ownership and desire to integrate results into conservation management planning is achieved. 

Research is only useful if it is implemented, either into further research or practical application. I, as 

the researcher, hope that the results presented in this thesis are more likely to be implemented into 

conservation practices due to the inclusion of experts from project conception to thesis completion. 

Through investigation of quantitative and qualitative data exploring the results and scope of project, 

ways to integrate site-based staff and their expert knowledge into scenarios of future change and 

risk under climate change have been identified. This chapter also provides a reflection on the survey 

development and application, and what could be improved in similar future projects. 

 

6.2 Methods 

6.2.1 The case studies 

In previous chapters, three impacts to National Trust Wales properties likely to be exacerbated by 

climate change were explored using climate projections to make predictions of future risk. The 

studies at: 
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1. Abergwesyn Common explored if and when there is likely to be suitable climate and habitat 

space for a suite of birds found in the uplands of Great Britain (chapter 3), 

2. The Migneint Peatland on the Ysbyty Ifan Estate quantified the fire risk impact and intensity 

of future fires (chapter 4), and 

3. Chirk Castle investigated the impacts of wind exposure and direction to individual parkland 

trees (chapter 5). 

These studies were all developed from day one with staff at each case study site, through regular 

email communication and at least one in-person visit to each field site. These visits consisted of site 

tours, discussion of site history, current management, and future perceptions of risk. The impacts 

staff are most worried about were discussed, and through further research narrowed down research 

questions for each chapter. These questions were confirmed with staff at each site prior to the 

projects beginning, with regular updates and sharing of information between the research student 

and site professionals. 

6.2.2 The questionnaire  

A questionnaire exploring quantitative and qualitative aspects of the studies and National Trust 

requirements for conservation was developed (see supplementary information in appendix 5). 

Research was reviewed and approved by the College of Natural Sciences ethics committee at Bangor 

University prior to undertaking the study. This questionnaire was sent out online using Microsoft 

Forms (https://forms.office.com) to conservation professionals at all three case study sites alongside 

current results for that site, with some explanations of rationale, methods, and results. 19 questions 

explored current information and time frames used to plan conservation management, how staff felt 

results were useful or not, and gave staff a chance to add comments for future improvements of the 

questionnaire and research. Ongoing recruitment of professionals through word of mouth and direct 

communication occurred throughout the study period. The questionnaire was sent out three times 

each to Abergwesyn Common and the Ysbyty Ifan Estate teams, and twice to Chirk Castle. Disruption 

due to Covid-19 limited the number of iterations of the questionnaire and resulted in a fairly low 

sample size. 

6.2.3 Data analysis 

 6.2.3.1 Qualitative questions 

Taguette (Rampin and Rampin, 2021), a free and open-source qualitative data analysis software was 

used to analyse thematic trends in questionnaire responses (appendix 5, table A5.1), with highlights 

for each theme identified in question answers. Every part of an answer could relate to one or 

multiple highlights. If an answer clearly repeats itself, this was included as one highlight to avoid 

double counting. These themes were analysed across all case study site responses, with the total 
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number of times each theme was mentioned summed and ranks assigned. From this common 

themes were identified in answers relating to current management, time frames, usefulness of 

research results and how these results were not useful to on-site nature conservation. Themes were 

summarised into main categories for ease in analysis.  

 6.2.3.2 Quantitative questions 

Quantitative questions were analysed through summation of all answers in each question to identify 

trends. Change over time was examined between result iterations and between different sites. 

Additionally, the most common responses in likert-scale type questions were identified for each 

iteration and site, to recognise any change over time.  

 

6.3 Results 

The questionnaire survey was live for over 18 months between October 2020 and May 2022 in which 

time 14 responses from 12 different staff members over the three case study sites were gathered. 

6.3.1 Current users of results and overall questionnaire results 

Responses were gathered from staff at every case study site, with one response from a member of 

staff working across all Wales sites. The respondents held a range of jobs, from more senior Head 

Ranger positions to wider scale Countryside Manager roles and specialist roles around Archaeology 

and Nature Conservation. The range of respondents gave a good idea as to the structure of teams 

and those who are involved in making conservation management planning decisions. Staff at 

Abergwesyn Common completed the greatest number of responses. This site was also used to pilot 

the questionnaire, which may have influenced the total number of answers. Most members of staff 

responses to the questionnaire once, but three positions responded twice, a Countryside Manager, 

Project Manager and Ranger. The Countryside Manager and Project Manager respondents provided 

two replies each from different case study sites, Abergwesyn Common and Ysbyty Ifan Estate 

respectively, with Rangers from two different properties (Abergwesyn Common and Chirk Castle). 

This suggests that mangers may have a greater interest in the impact of results to conservation 

planning and may have a greater amount of time, and potentially feeling of responsibility, to give to 

these questions. 

Quantitative questions investigated how useful respondents though results were on scale, how likely 

they were to use them and how they would like to receive the information (supplementary material, 

appendix 5, questions 9, 13, 16 and 17). Overall, staff at all the case study sites through that the 

information they currently use on site is extremely or somewhat useful when planning and 

undertaking conservation work. This suggests that while many respondents are happy with the 

information they have at their availability, there is room for improvement. All responses about the 
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results and information from how the three studies were perceived to be mostly ‘moderately clear 

and sufficient’. It is good to see that all responses regarding the results are positive and that staff 

appear to have been engaged with the study overall. One respondent indicated that they would be 

unlikely to use the results, but the majority indicated that they would ‘definitely’ or ‘likely’ use the 

results to support conservation or site management planning and decision making. Most staff would 

prefer to have maps and analysis already completed, but two members of staff were keen to 

conduct analyses themselves. 

6.3.2 Current conservation management planning and time frames 

Six themes from survey responses were identified regarding current site management (table 6.1). 

Themes around National Trust data use, the role of external organisations and local information 

were most commonly mentioned when considering information used in current conservation 

management planning. Collaborations with external organisations were the second highest ranked 

theme for planning conservation work (table 6.1). Natural Resources Wales input around protected 

area guidance was commonly mentioned, alongside Welsh Government policy and priorities 

information.  
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Table 6.1: Themes relating to current site management at three National Trust Wales properties. Questionnaire 

question 7 (supplementary material, appendix 5.1). 

Theme Explanation Rank 
Data from 
National 
Trust 

From a wide variety of sources and scales to direct future work 1 
Historic data provides the background to future work 
Continuous observations and surveys update plans for future years 
There is a wealth of information within the National Trust used for planning 
Estate Management Plans are driven by National Trust strategies 

External 
organisations 

Site designation guidance from SSI and SAC data 2 
Collaboration with organisations including NRW, RSPB, county councils, 
ecologists, government grants e.g., Glastir 

Local people 
and 
knowledge  

People and information at the local scale often know the most about 
properties and sites 

3 
 

Decisions for conservation actions are made at the site-specific local scale 
Priorities and 
responses 

The Covid-19 pandemic has shifted priorities and halted work and planning 4 
These often relate to funding, visitor pressure, tenants, current risk, and 
previous Estate Management Plans 

Teamwork For surveys and data collection on-site 5 
Decisions and work plans are made within site teams through discussion 

Engagement Activities with visitors and volunteers to promote work at specific sites 6 
Disruptive works are planned around busy visitor times 

 
Data from within the National Trust was ranked first (table 6.1), with evidence from surveys, 

ecologist reports and archaeological records used to make decisions. Inputs and knowledge from 

local people was in the top three important themes when considering current conservation 

management planning (table 6.1). Those involved at the local scale often hold the greatest amount 

of knowledge about the site or area with their input highly valuable. Estate Management Plans were 

mentioned by all case study sites as documents which guide future planning at the properties. On-

site knowledge is integral to the sites (table 6.1), with one respondent commenting that  

“local knowledge is a big element … farmers and ranger team who know [the] 

location[s] of specific features and structures”. 

This local information, combined with teamwork for planning works ensures each property runs as 

an independent unit. Unfortunately, conservation priorities can often change in response to 

unforeseen impacts. For example, the Covid-19 pandemic had a large impact on conservation work 

and funding for the National Trust,  

“Covid has prevented work planned for this year on Abergwesyn [Common] and as such we have 

missed out on SMS funding which would [have] been used to help fund works”. 

These outside, uncontrollable impacts can have large impacts to conservation planning, which is 

reactive to continuous observations, data collection and current events.  
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Three planning time frames were identified, with most responses detailing short-term planning for 

site and conservation works (table 6.2). Planning in the short term is more common than planning in 

the long or medium term, but these longer time scales are still considered when planning 

conservation management. These short-term time frames between one and three years, related to 

ongoing yearly work and reactive measures to impacts, 

“project delivery is generally over a 1 – 3 year cycle (depending on funding)”. 

 
Table 6.2: The time periods in which planning, and conservation works are undertaken within National Trust 

Wales sites included in this study. Relating to question 8 of the online questionnaire (appendix 5). 

 
Site Management Plans and funding within the National Trust run on these short-term cycles (table 

6.2), influencing the type of conservation planning that is undertaken. Other themes, including more 

general aspects of planning have a large influence on the time frames, such as the financial year, 

with flexibility brought up as an important consideration when dealing with natural processes. 

Often, longest-term plans are made with ongoing management in mind (table 2), for example, one 

respondent mentioned, 

“ [For] Fridd (hill edge land) expected management timescales would be in decades”. 

Project timescales and Site Management Plans do consider medium- and long-term time scales, with 

generic climate change resilience built in in the form of nature conservation, and carbon and water 

management. However, limitations from weather, funding and biological constraints were 

highlighted as important themes when considering time scales of planning and undertaking nature 

conservation, 

“Conservation/mitigation work would all ideally be during better weather but is 
often when it can be fitted into the schedule or when the money comes through”. 

6.3.3 Usefulness of results presented to case study sites 

Results presented in this section relate to answers gathered from questionnaire questions 10 and 11 

(supplementary material, appendix 5). Respondents did find results presented to them to be useful 

to make some management decisions over a range of themes (table 6.3). The greatest use was 

Theme Explanation Rank 
Short term Project delivery and funding are generally on a one to three year cycle 1 

Yearly surveys and monitoring keep track of site indicators such as tree 
health and species numbers 

Long term Long term management categorised as 10 years plus 2 
Correct management continues in perpetuity post-intervention 

Medium 
term 

Three to 10 years of work and planning 3 
Some restoration e.g., blanket bog, takes a number of years to complete 
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found to be in the visualisation of results (table 6.3) with respondents understanding climate 

impacts through maps and figures of spatial change. 

 
Table 6.3: The reasons staff from each case study site found results presented to be useful. 

 
Some ways in which the results were useful were site-specific (table 6.3), to steer management 

around individual issues. Respondents at Abergwesyn Common mentioned, 

“As a general guide, it is helpful to understand predicted change in future climate space for species”, 

and that, 

“The specific maps relating to Abergwesyn Common are the most useful”. 

At this case study site, spatial, local scale maps are the most useful in planning conservation 

management. The Chirk Castle study focuses more on visitor health and safety and the impacts to 

the parkland trees. Respondents thought, 

“The tools and data provided could help us to plan for closure due to wind 

better”, 

and, 

“[The results could] help us plan new walking routes … away from most ‘vulnerable’ trees”. 

Again, it was visualisation of results and their fit to the specific site making them most useful at the 

castle. Respondents from the Ysbyty Ifan Estate noted that, 

“[The results are] very useful, as [they] confirm the benefits of key interventions”, 

and that, 

“The maps are useful in providing broad view risks”. 

Understanding how a site is likely to be impacted by climate change through site specific analysis 

could prove most useful in future conservation planning. Overall, each case study site found the 

results useful for different reasons, but they all either found that the results justified the use of 

conservation interventions or could be used directly to positively impact both natural processes and 

visitor experience. 

Theme Explanation Rank 
Visualisation 
of results 

To show spatial changes to sites due to climate change impacts 1 
The data provided could help to plan better in the future 

Site-specificity Results can steer management for specific restoration and 
management 

2 

On-site policies and documents for specific actions 
Understanding 
of impact 

Including narrative alongside visual results 3 
Presentation and targeting the correct individuals for the 
information  

Testing To use the data and results to test scenarios 4 
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6.3.4 How results presented were not useful 

There were some ways in which results presented were thought to not be useful to the staff at case 

study sites that were identified through four main themes (table 6.4). The most common themes 

identified were around management need at a site (table 6.4). Respondents from Abergwesyn 

Common and the Ysbyty Ifan Estate mentioned that many other factors go into how management 

decisions are made, and that sites often require work regardless of the impact from future climatic 

conditions. When considering the impact of future climate change in relation to fire risk on the 

upland peatland, one respondent at Ysbyty Ifan stated that, 

“[Maps are useful] but only form part of a wider context of things that happen on land”. 

Additionally, results that are site-specific are limited to the scale they cover, acting as a positive 

(table 6.3) and negative (table 6.4) impact of this work, depending on the use of the results. One 

respondent mentioned that, 

“Localised/micro-scale circumstances and nuances may be missed”. 

Further clarification of materials was suggested to make results more useful, as some of the results 

were found to be misleading. Staff at two sites said that some information was hard to understand, 

and that a better understanding of what the results mean in different scenarios (table 6.4, ‘testing’) 

would be useful. 

 

Table 6.4: The reasons why results presented for each case study site were thought to not be useful to site professionals. 

Theme Explanation Rank 
Management 
need 

Not useful if an area required work was in opposition to results of 
models 

1 

Management is sometimes required for other reasons 
Clarification Need to develop a better understanding of the results = 2 

Interpretation of results could be misleading without clarification 
Scale The results are only useful at the scale they cover = 2 

Levels of detail change depending on the scale of work planned 
Testing Need to use the data to test scenarios, not useful if taken at face 

value 
4 

Inclusion of new data important otherwise not useful in the long term 
 
6.3.5 Improvement suggestions from feedback 

Finally, the questionnaire explored how staff felt overall about the results presented, and if there 

was any further information, figures or questions which were required or needed answering 

(supplementary material, appendix 5, questions 15, 18, and 19). These, and answers from previous 

questions outside the main scope, were compiled as improvement suggestions (table 6.5). Overall, 

most respondents felt that the amount, content, and quality of information was sufficient and said 

that they did not require further information or had further questions. Those that did have 
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comments were mainly around ideas for further research and development of the results (table 6.5). 

These centred around understanding current threats, and the links and drivers between species 

populations, land management and climate change. Additionally, accessibility of results was 

commonly mentioned, 

“[If] models can be incorporated into existing systems [NT GIS]. If so, that would help make the 

information more accessible / useful”. 

It is very important that results generated can actually be used by staff on site, and it was 

encouraging that staff are keen for this to be included, with one respondent asking, 

“Before you complete your project are you planning to undertake training on the use of the tool with 

NT staff?”. 

Communication of results is important for a successful project, with a respondent from the Ysbyty 

Ifan Estate commenting that, 

“For communication with tenants and other key stakeholders … useful to distil findings into a 

synopsis of risks”. 

More help was requested around the understanding of the materials (table 6.5), which led to 

developing the narrative presented with results at each iteration of the research. Finally, 

respondents mentioned that it would be useful to include further species, landscapes, or scales in 

future results, even if they were not at risk, 

“… use this data to work out what the current species most at threat from climate change is, 

including those currently abundant”. 

This suggests a move to proactive conservation management to prevent future losses of species and 

/ or suitable habitats and vital natural processes. 
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Table 6.5: Improvement suggestions mentioned by staff at each case study site in the online questionnaire 

regarding feedback around the site-specific research. These themes relate to answers mainly from questions 

15, 18 and 19 (supplementary material, appendix 5). 

Theme Explanation Rank 
Further research Which species are currently most at threat 1 

The relationships between land management / species / climate 
change 
Investigating scenarios where landscapes in favourable condition 
are affected by climate change – resilience 
Using the climate / other data to look at different impacts / 
consider more factors at the same time  
Different scenarios and other groups of species 

Explanation and 
understanding 

Further explanation around site variations 2 
Need more help to understand results 

Accessibility of 
results 

Incorporating results into National Trust GIS =3 
Results available as a dataset 

Communication Further presentation and communication ideas =3 
Training on using a tool with National Trust staff 
Communication with tenants and stakeholders 

Scale Site scale alongside wider scale maps 5 
More detailed spatial scale of results 

 
6.3.6 The impact of iterative feedback 

For responses from both from Abergwesyn Common and the Ysbyty Ifan Estate, one staff member 

completed the questionnaire twice, providing some insight into the impact of iterative 

communication and feedback throughout the project. Responses from the Countryside Manager at 

Abergwesyn Common were relating to the same modelling project, with results updated over 

iterations. Estate Manager responses from the Ysbyty Ifan Estate related to two different research 

projects. For both sites, the responses relating to likelihood of using the results increased from 

‘likely’ to ‘definitely’, suggesting that the iterative nature of the research was improving the results. 

Additionally, responses from the staff at the Ysbyty Ifan Estate relating to other results, developed 

the scope of the research into the chapter presented here (chapter 4). Fire risk was suggested by 

staff as an impact to focus on, 

“[It could be] useful to model a scenario where peatland is in favourable conditions … and the 

corresponding risks associated with each scenario in a future fire risk sense”. 

This showed the importance of continued communication with all study sites during the research 

period to share ideas and allow for further development of research scope. 
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6.4 Discussion 

This study has shown through qualitative analysis that the results presented to each case study site 

are likely to provide a useful addition of data in conservation management planning. Uptake of 

results was positive among all questionnaire respondents, and through iterations, although brief, 

results became more useful over time.  

6.4.1 Integration of results with stakeholders 

Even though numbers of respondents and iterations were low, the usefulness of developing climate 

impact models alongside conservation professionals is demonstrated. To make evidence-based 

decisions so important in the fight against the climate crisis (Stafford et al., 2021), meaningful 

science needs to fit with organisational frameworks (Meakin and O’Connell, 2018). Making decisions 

for a site at a conservation NGO level is dependent on such a wide variety of reasons that presenting 

useful, tailored information can help to streamline resources and time. So much practical 

conservation has been, and is, performed by small organisations, and at a local level (Garrod and 

Willis, 1994; Duffield, Le Bas and Morecroft, 2021), although often supported by larger bodies. There 

is recognition that the need to make trade-offs with resources and priorities in management is 

important and is a large factor in conservation decision-making. This is why this researcher thinks 

that working in collaboration with researchers and on-site professionals is likely to produce most 

meaningful results, as explored in this chapter. Additionally, the importance of evidence and 

guidance provided by external organisations is already recognised, suggesting teams are receptive to 

collaborations or outside information. Frameworks from reports (e.g. Stafford et al., 2021) and 

journal articles (e.g. Pearce-Higgins et al., 2022) could aid in putting modelling results in the greater 

context of adaptation responses to climate change impacts. Staff on-site are acutely aware of day-

to-day changes, but may not notice wider changes over time, which could lead to underestimation 

of the magnitude of long-term environmental change and damage. Thankfully, these impacts have 

not yet been found to be significant (Jones, Turvey and Papworth, 2021), but outside perspectives to 

a site or impact were recognised as being useful in presenting a more un-biased view.  

There are some challenges in developing results with stakeholders. Interpretation of methodologies 

and results, and communication of model caveats and uncertainties was often difficult to pick up, 

and also something that staff on-site should not necessarily have to do. However, monitoring 

developed from these more refined methodologies has been found to be relatively simple and 

inexpensive (Meakin and O’Connell, 2018), suggesting that after successful integration, 

methodologies developed with researchers could be useful in the long term. Additionally, as 

respondents knew the researcher asking the questions, there is a likelihood of tailoring of answers to 

what they think they wanted to hear. Completely unbiased qualitative data collection in a small 
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study is difficult, and unlikely to occur when the respondents and researchers already have a 

working relationship. This could be overcome through greater numbers of in-person meetings and 

structured group feedback as these can be more informal. A repeated question around methods, 

involved how land management and land cover could be likely to affect species and fire risk 

alongside climate change. These interactions are complex and were outside of the scope of this 

research. It is reiterated that these outputs are designed to form one part of the information used in 

planning conservation management over specific sites and are not intended to be a one-stop-shop in 

planning. Further research and integration of data will improve these results and their utilisation, 

but care must be taken in the reporting of further complexities that could increase uncertainty of 

modelling and interpretation. 

Additionally, even though this thesis attempts to make some steps towards bridging the gap 

between science and practice, this work cannot be considered over and complete until results are 

implemented or at least considered. This requires ongoing communication and collaboration with 

the case study sites to monitor uptake and satisfaction of the projects, and to introduce updates or 

changes to the results. 

6.4.2 Reflections on a questionnaire 

 6.4.2.1 What went well 

Communication and visits to each case study site were ongoing from the start of the project, with at 

least one in person meeting and tour of the sites occurring within the first year of research. This was 

invaluable in building personal connections with the researcher and staff on-site which benefited the 

studies going forward. All chapter hypotheses were developed in response to finding out what staff 

on-site had noticed change, or were most concerned about in the face of climate change. This gave 

staff some ownership to the projects, and understanding why they were being undertaken, rather 

than just being presented with results from someone unknown. This could have led to the high 

number of questionnaire respondents recording that they would be likely to use the results in 

conservation planning, because it is something they are actually keen to understand about and 

monitor on site. The Abergwesyn Common site team provided the greatest number of responses and 

discussion surrounding the species distribution modelling of birds in the uplands. This is likely due to 

greater involvement on site with researcher involvement in two field visits, and down to 

questionnaire piloting at this property. However, this does not compare to the amount of time spent 

at Chirk Castle during fieldwork, so could be down to time availability of staff or individual interest 

around the project. 
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 6.4.2.2 What went less well 

The Covid-19 pandemic was an unforeseen and significant roadblock in the overall research project 

and questionnaire element. Without site visits, or even sites being open, getting in touch with staff 

became increasingly more difficult, with some restructures in teams exacerbating this. This is 

potentially why there were fewer responses throughout later months, and without this, overall 

engagement with staff could have been greater. Additionally, site visits in later months were 

confined to those that were essential for the project. This meant that further development of 

projects may have been slowed, and further discussion with staff on-site not possible. Focus group-

style feedback was planned for within the project, which is likely to have improved results, and 

future uptake further. Unfortunately, with pandemic restrictions and further time constraints this 

was not possible.  

 6.4.2.3 For next time 

Although the researcher is happy with the results presented and the feedback study completed, 

future research bridging the gap between science and practice can always improve. Further research 

into needs on site and working with staff from conception of projects will always be important. This 

includes ongoing and regular meetings with stakeholders including interactive feedback with 

interviews, open meetings and focus groups. Engaging with the local community alongside site 

professionals is likely to bring another level of knowledge and expertise about an area. This is 

especially important in close knit communities, such as those on the Ysbyty Ifan Estate to build 

important relationships which are often vital in ensuring work is received positively and 

implemented.  

Following this research, it can be reflected that a questionnaire cannot be sent out too often. This 

not only increases the number of potential responses and iterations of results, but maintains 

stakeholder awareness and engagement. Conservation staff are contending with many needs and 

wants for their sites and are constantly juggling projects and budgets. Keeping them in the loop 

regularly about research not only ensures the work is not forgotten, but lessens the responsibility of 

professionals to remember many details about a project. It also means that we as researchers are 

constantly improve our skills to learn what is actually needed on the ground, and how to make 

results more useful for an applied setting. Implementation of science is just as important as the 

researching of it all in order to have a positive impact on the environment. 

 

6.5 Conclusions 

Through a detailed online questionnaire, the importance of scientific data in conservation planning 

has been proven at the case study sites explored in this thesis. Iterative discussions and sharing of 
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results improved these outputs and ensured they were more useful for inclusion in conservation 

planning. Although the project was limited in responses, the more iterations presented, the more 

likely respondents were to use results in their work on-site. Bridging the gap between science and 

practice is an ongoing journey, and one that is strengthened through human connection and shared 

goals. 
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Chapter 7: General discussion 

7.1 Key findings  

Our modelling showed that, although climate change does have some negative impacts to species 

distributions of a suite of birds in the uplands of Great Britain (chapter 2), habitat is more limiting 

than climate. Habitat specialist species exhibited the greatest decline in suitable space under tow 

climate projection periods, whilst more generalist species gain suitable climate space. Species 

distributions are predicted to shift northwards in mainland Great Britain, whilst southern ranges for 

these species were found to be unlikely to contract. High spatial resolution models are more 

accurate at predicting potentially suitable climate space compared to lower resolution data, yet 

models still do not meet some of the thresholds considered to be ‘good’ models for more than one 

evaluation metric. This may reflect higher levels of uncertainty, with general trends useful in 

exploring future species distributions.  

Fire risk and severity of fires is predicted to increase substantially in the future at the Ysbyty Ifan 

Estate (chapter 3), advising that management by controlled burning is overly dangerous with the 

potential to develop into more damaging wildfires. Further monitoring onsite to investigate peat 

health and depth would shed more light about the damage from fires, and where peatland site fires 

may be at greater risk of ignition. Fire risk should be considered more in the future by staff on peat 

sites and by farmers managing hefts. UKCP18 was useful in the prediction of fire risk, with higher 

accuracy for one metric (Fire Weather Index) over others (Head Fire Intensity). Further tailoring of 

models to local climate data will increase predictive accuracy and usefulness of results. 

The risk from high winds at Chirk Castle is predicted to increase, especially at more popular Easter 

and Christmas visitor periods (chapter 4). Future risk from high winds is likely to be greatest from 

maximum wind gusts compared to maximum average wind speeds, suggesting that intense periods 

of high winds may be the most damaging. Fieldwork to identify areas more exposed to wind is 

useful, and provides spatial and temporal information about future risk. Longer-term study periods 

may provide better insights into wind trends and risks. Methods used were fairly labour and time 

intensive which may influence uptake for future research. These could be addressed through 

weather station technology, which could automate some data collection. 

Implementing research with potential users is vital (chapter 5), and the more iterations of results to 

practitioners, the more useful our results were for management. This aspect of the research was 

hindered by the Covid-19 pandemic, preventing a lack of face-to-face meetings, feedback, and 

discussion to develop ideas and adaptation responses, and to further improve both content and 

presentation of the outputs. Further use of the outputs and ongoing communication with study sites 



141 
 

is required to ensure understanding of results, developing site management, and tailoring the 

models to increase their accuracy. 

 

7.2 Are local scale UKCP18 projections useful in and able to identify and quantify 

climate risks? 

A range of approaches have been explored for the integration of local scale climate projections for 

analysis of future impacts with the direct use of UKCP18 data (chapter 4), to use in distribution 

models (chapter 3), and to supplementing with secondary landscape data and using to model future 

risk (chapters 3 and 5). There are advantages and disadvantages to each approach, which leads to 

discussion around which models are the most useful to explore impacts of climate change to species 

and sites.  

Direct use of UKCP18 projections is highly accessible post-data processing and is relatively easy to 

undertake. However, this approach, and further use of average climate layers in models, can expose 

biases in the climate data (Ahmed et al., 2013), which could skew results and lead to unreliable 

predictions. Collection of primary baseline data and bias correcting (Ahmed et al., 2013; Fourcade et 

al., 2014) can help to reduce these uncertainties. Climate-only gridded inputs to species distribution 

models are more straightforward in producing predictions but can form more of a ‘black box’ 

approach (Morales, Fernández and Baca-González, 2017), with little understanding as to the model 

workings. This can encourage a high use of default inputs (Cao et al., 2013; Merow et al., 2013), 

whereas our study indicates that user-led inputs at the local climate scale are likely to produce more 

reliable results, as also found in other studies (Shcheglovitova and Anderson, 2013; Bao, Li and 

Zheng, 2022). In risk modelling, again, it was useful to include straightforward gridded climate 

inputs, and tailor other geographical inputs, to provide good indications of future risk. However, 

there was difficulty when other inputs do not fit the system completely due to biological differences 

between our study site and the ecosystems for which the model was built (Davies and Legg, 2016a; 

Taylor et al., 2021). 

The usefulness of data available from UCKP18 were explored when considering the conservation of 

an ecosystem. The 20-year averages of climate data utilised are useful in examining long-term 

species distribution trends, or impacts to tree growth, and have proved useful in examining the 

likelihood and frequency of extreme events in this thesis. However, some shorter-scale impacts 

could be missed and data averages used may not fit within conservation management or funding 

time frames, or those required to enact policy (Pearce-Higgins et al., 2022). Data interpolation could 

fill in gaps between the 2040 and 2060 periods, although this could generate predictions with a 

higher uncertainty (Baker et al., 2017).   
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The 2.2 km local projections more accurately predicted species distributions than projections at 12 

km, and were also able to clearly identify some metrics of fire risk. One advantage of using 2.2 km 

data is that resolution better matches the scale at which conservation data is collected (Wiens and 

Bachelet, 2010), such as 2 km spatial resolution Breeding Bird Survey data, and 1 km meteorology 

datasets (Robinson et al., 2020a) or that existing models use. This increase the likelihood that results 

are useful at scales considered in management and conservation of species and habitats. Another is 

simply that there is a greater amount of climate information available for a site. For example, 2.2 km 

resolution data for Chirk Castle allowed modelling of some spatial change across the site, whereas 

any data at a coarser resolution would not show spatial changes at the scale of this site. Further 

work to assess the usefulness and accuracy of this additional resolution is required at the site scale, 

as there are inherent uncertainties from downscaled data. Without this increase in spatial 

resolution, predictions would not have been able to be made around spatial changes at the site, 

which is vital for management intervention and decision-making. Yet, there are some difficulties in 

utilising the 2.2 km data, namely through greater technical skill required in data processing, large 

amounts of data and longer model run times, exacerbated by the high spatial resolution. The data is 

only available at the worst-case climate scenario of RCP8.5 (Met Office, 2019), which does not aid 

comparison between scenarios.   

More work is required to assess the full use of 2.2 km data, especially for example in the ability of 

modelling small scale, variable impacts such as site level wind speed exposure. Additionally, 

predictions at the site scale exclude transboundary impacts so pulling out site results from larger 

scale models (e.g., chapter 2), may be more useful than those only modelled for a site (e.g., chapter 

3 & 4). Methods developed for each site are unlikely to be transferable between the studies in this 

thesis, due to scale (table 7.1). For example, bird species distribution modelling and fire risk at the 

Chirk Castle site would lead to greater uncertainties in results due to low spatial scale at the site 

(table 7.1), although results obtained from larger scale models could explore general trends. Overall, 

the 2.2 km UKCP18 climate projections provide huge steps forward in the spatial resolution of 

climate models, and enables more identification of the spread of risks at the site scale. Further work 

to understand predictive power compared to other spatial resolutions is ongoing, but the 

presentation of general climate risk trends at the site scale is useful for conservation organisations 

(McLaughlin et al., 2022) like the National Trust. 
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Table 7.1: Comparing and contrasting the potential for direct translation of chapter modelling between case 

study sites exploring the scales required to produce robust results. Scales are represented as the number of 

grid-squares of UKCP18 2.2 km data included at each case study site. 

 

7.3 How accessible is UKCP18? A reflection on (nearly!) 4 years of data use. 

There are a large range of useful written publications explaining the overall climate science, 

projections and specific variables of the UKCP18 projections (e.g. Fung et al., 2018; Lowe et al., 2018; 

Kendon et al., 2019; Met Office, 2019), yet these appear aimed at technical modellers and not 

potentially conservation practitioners who may still want to access predictions. Issues were 

recognised for applied modellers (like me, the researcher) and on-site practitioners. 

It is difficult and time consuming for non-climate, but applied, modellers to understand and access 

products of raw, daily climate projections from UKCP18. Data processing of UKCP18 data is not 

straightforward and required significant learning around coding and projection grids which was time 

consuming. The 2.2 km resolution data was presented in a rotated pole projection grid which did not 

align with the British National Grid, and significant time and effort went into learning about these 

rotated poles and also rotating the data. Additionally, UKCP18 climate projections are presented as a 

360-day year, rather than the standard 365 with 12 months of 30 days. While this is standard format 

for climate modellers, this was another thing to contend with as an applied modeller, requiring more 

research and testing into producing averaged outputs. 12 km climate data was presented in a non-

rotated pole format which enabled more simple data processing, but further work to make sure 

projections between resolutions were identical for further comparison. Additionally, all UKCP18 raw 

climate data is presented in netcdf files, which are not commonly used in nature conservation. These 

file types are useful due to their ability to hold vast quantities of data, but can be tricky to access. 

Writing reproducible R code to pull out daily projections of climate in order to write 20-year climate 

averages took considerable time and ongoing learning, but resulted in files which can, and were, 

 Abergwesyn Common (9 X 6) Ysbyty Ifan Estate (7 X 7) Chirk Castle (2 X 2) 
Species Yes (chapter 2) Yes, but only if results are 

identified from wider scale 
modelling. If modelling at site scale, 
uncertainties are too great due to 
less available climate data. 

No, there is not enough data to 
properly represent species, climate 
impacts and potential future 
distributions. 

Fire Yes, as site scales are similar 
to the Ysbyty Ifan Estate and 
data would be readily 
available online. 

Yes (chapter 3) Yes, but only as broad risks to the 
site. Coarser scale results may limit 
within site comparisons.  

Wind No, due to too high labour and time costs in making of tatter flags 
and accessing sites. Scale of site is too large to be fully explored 
using tatter flags. 

Yes (chapter 4) 
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shared among other applied modellers. Only then could data be inputted into models, and is likely 

not a step practitioners would be able to contend with. PhD studies provide valuable time for the 

learning of new techniques supported by experts in the field. Practitioners are unlikely to have 

access to this wealth of support, which would make accessing the data even more difficult. 

Therefore, without this time or previous knowledge, calculating data required for model inputs 

would be impractical for a NT site staff member. There is an understanding that the climate models 

were not necessarily designed to be utilised by site practitioners, but these data should still be 

accessible to those who want to access them.  

Further use of the UKCP18 portfolio to explore probabilistic projections and standalone products can 

be accessed without in-depth knowledge of climate projections, and while these may be at a coarser 

resolution and some outputs unable to be incorporated into models, they do provide good ideas 

about broad trends on sites. Guidance within the UKCP User Interface aids in the production of 

standalone summaries of climate risks for sites and variables. Increasing access for all to the UCKP18 

detailed projections could include more detailed instructions in extracting data from files, and / or 

providing further information written for the non-expert to guide practitioners through the different 

projections and which one could be the most useful for their project. For example, in 2020 I wrote a 

blog (Watts, 2020) detailing methods to extract and average UKCP18 2.2 km data for use in models, 

or simply visualisation of projections. At the time of writing, this blog has been accessed over 590 

times since publication, suggesting that similar step-by-step explanations could be useful in data 

accessibility. These publications could enhance useability of data and allow practitioners the chance 

to investigate the climate trends at their sites themselves. 

Research has shown that engagement between applied modellers and practitioners increases 

positive outcomes of both predictive science and implementation of results (Parrott et al., 2012; 

Fabian et al., 2019; Ainsworth et al., 2020). These methods could be applied further up the 

modelling scale, with engagement between climate and applied modellers potentially increasing 

uptake of projections. This could take the form of workshops at universities with aspiring modellers, 

more detailed help guides or surveys from climate modellers to understand uptake and barriers of 

the data. Over the course of this PhD, I have become comfortable with using the raw UKCP18 data 

and associated documentation in models and have momentously improved my coding skills and 

knowledge. From starting with only a very basic knowledge in R, I am now comfortable conducting 

data processing, running models and analysing results in the language and this PhD study has 

provided the necessary time for this professional growth. While this is not possible for those within 

practitioner roles, any sharing of knowledge and information is important for steps forward in our 

ability to protect the natural world. 
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7.4 Can we produce useful models of climate risk at the local scale for conservation 

adaptation? 

NGOs are recognising the enormous impact climate change is likely to have on the areas they 

manage (National Trust, 2015; Hayhow et al., 2016, 2019), and are keen to understand these further 

to be able to take appropriate action. The literature (Pearce-Higgins, 2011; Thomas et al., 2011; 

Johnston et al., 2013; Han et al., 2018; Hayhow et al., 2019; Netherwood, 2022), three site studies in 

this thesis and questionnaire study (chapter 5) shows that there is a clear need for including 

information about risks from climate change in developing ideas in conservation management 

planning and delivery. There has been consideration of current climate risk to UK landscapes 

(Hayhow et al., 2019; Kendon et al., 2022), but less information about how ongoing climate change 

could impact these in the future . Even with caveats identified in the thesis chapters, from variability 

and uncertainty in modelling, this thesis nevertheless provides useful information for site 

management to incorporate future impacts. Categorising impacts into those more likely to happen, 

these findings add to the current literature (Morecroft et al., 2019; Duffield, Le Bas and Morecroft, 

2021) contributing to site-based conservation and visitor management. 

For all three data chapters, it has been predicted that climate is likely to have a smaller negative, or 

overall positive, effect at the short-term up to the 2030s, with greater negative impacts up to the 

2070s. Greatest negative impacts are likely to occur in risk from fires (chapter 3), with the least risk 

to species distributions of a small suite of birds in mainland Britain (chapter 2). Management needs 

to identify areas of high wind speed risk (chapter 4) may be met more effectively than those at the 

other case studies as primary data collection of wind exposure to trees provides a potentially more 

accurate baseline than those developed from secondary data. There has been some shift from 

conservation prioritising rare species to protecting common species and ecosystem functions 

(McLaughlin et al., 2022), which may also translate to habitats currently, or predicted to be less at 

risk. Yet it is shown that climate change has greater impact on rarer species, even common species 

that may be ‘fine’ in models may still require conservation for maintaining distributions and 

abundance, especially if climate change requires range shifts. 

Results from each chapter can be applicable to the other chapters, for example by guiding future 

monitoring in another case study site. Higher fire risk quantified on the Ysbyty Ifan Estate is likely to 

be similar at other upland peatlands such as Abergwesyn Common. This higher fire risk is likely to 

have direct implications to bird species on site, especially ground nesting species like the golden 

plover. Fires affect the habitats suitable for bird species, for example increasing areas of bare 

ground, affecting hunting areas and vulnerability to predation (Pearce-Higgins, 2011); and habitat at 

a greater risk of loss from fires will exacerbate the impacts of climate change to both flora and fauna 
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(Arnell, Freeman and Gazzard, 2021), particularly to vulnerable species. The results of these studies 

may not be useful for the wider National Trust (NT) site portfolio if they are not transferable: 

however, the modelling approaches used are transferable. Species distribution model results are 

already potentially available for all NT sites in England and Wales, following on from modelling at the 

Great Britain scale. At smaller sites, a reduced number of gridsquares were included, and while this 

may limit the fine details across the site, this is still a far more detailed resolution than previous 

studies exploring predictions at sites across the UK (Pearce-Higgins et al., 2017; Fordham et al., 

2018). 

Alongside investigating the impacts of climate change at the site level, which is useful for those 

managing the specific sites, there is also a need to look at vulnerability and risk across the wider 

portfolio of National Trust sites, and indeed other natural spaces. Some chapter methods such as 

species distribution modelling (chapter 2) and fire risk (chapter 3) could be developed at the wider 

scale fairly easily. Data requirements are greater for calculating fire risk (chapter 3), and both models 

could be improved with on-site data collection. Transferring wind exposure methods (chapter 4) 

would be more difficult due to time and labour intensive baseline data collection. Wind speeds are 

highly localised and variable and depend on topography as well as weather (Kamimura et al., 2019), 

so simply taking trends from Chirk Castle and applying them elsewhere would be unlikely to provide 

useful insight. Yet, as similar temporal trends in risk across all three case studies are suggested, there 

may be potential for wider trends in wind exposure to be similar, and therefore useful, although 

lacking site-specific detail. 

 

7.5 How best can we communicate these climate risks and are there ways to bridge 

the science – practice gap? 

While feedback from National Trust site staff has been positive, and there have been proposals 

about the implementation of these results, their long term usefulness of these results remains 

speculative, and indeed their inclusion in management planning is not yet known. Implementation 

and guidance about results ideally should be ongoing in order for a project to be as successful as 

possible (Anderson, 2014; Jarvis et al., 2020), with further feedback about future outputs. 

Monitoring the uptake and success of research results, as well as further testing the ideas and the 

modelling itself, will be future indicators of the value of the findings. For example, ongoing wind 

speed monitoring at Chirk Castle (chapter 4) to assess longer-term trends of wind exposure could 

highlight corridors of more, or less, exposed areas of the site. This could help to improve future 

models while providing information for short-term management. More regular monitoring of daily 

temperature and peatland quality, particularly wetness, could aid in developing more accurate 
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thresholds of risk for fire seasons, streamlining the time and effort needed to check for fires on the 

Ysbyty Ifan Estate (chapter 3). Finally, ongoing species monitoring alongside habitat surveys and 

restoration would provide further information about bird species assemblages on Abergwesyn 

Common (chapter 2) and their needs and requirements. These, combined with climate change 

predictions, should enable practitioners to develop a range of management decisions for different 

time scales and conditions. Understanding how the results become used will doubtless highlight 

further gaps in knowledge which could improve the development of the models and implementation 

of results still further. 

Presentation of results through visual aids (Shaw et al., 2009; Pettit et al., 2011; Palacios-Agundez et 

al., 2013) have proved useful in understanding impacts to a site, which was also identified through 

the presentation of climate risks. Some stakeholders showed interest in using results as a layer in GIS 

programs for a more interactive assessment of risk. This could be a useful way to build 

understanding of risk and use of results within the organisation, although there would be need for 

training and ongoing communication with users. Finally, extending these models to the wider NT 

would enable wider implementation of results in pro-active adaptation management, building on 

the experience from pilot users in the case studies in this thesis. A few respondents of the 

questionnaire have expressed an interest in conducting modelling themselves and developing their 

knowledge of modelled impacts and how these are generated. Responding to this demand would 

increase the usefulness of this study and its results, enable focusing on particular needs and giving 

users full ownership of outputs: a likely valuable investment from the training and resources 

required. 

 

7.6 Study limitations  

The case studies are representative of sites and risks across the Welsh NT portfolio, with important 

species and priority habitats included in assessments. Additionally, these sites are representative of 

other nature conservation organisations in Wales, such as the Lake Vyrnwy RSPB Nature Reserve, at 

which blanket bog restoration and whinchat distribution and abundance research is ongoing. 

However, all three case study sites are inland, and within Wales. There have been significant impacts 

of climate change identified in coastal habitats (Nicholls et al., 2013; Bennett, Kadfak and Dearden, 

2016) and to the built heritage environment (Sabbioni et al., 2006; Lankester and Brimblecombe, 

2012; Leissner et al., 2015), which have not been explored in this thesis. Nonetheless, these 

methodologies have the potential to be extended and developed to cover a much wider range of NT 

property interests and features. 
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The Covid-19 pandemic limited fieldwork and questionnaire research with valuable time missed on 

site and fewer questionnaire responses received. A full data collection year at Chirk Castle would 

have been likely to provide a better picture of trends. Small numbers of survey responses may have 

skewed the results, and expanding the survey to the wider NT to explore general opinions and action 

about climate change management could have been used to investigate wider trends and gain more 

responses. Finally, the researcher had aimed to conduct face-to-face interviews and discussion 

groups surrounding model results and project progress with NT stakeholders. These experiences and 

data could have provided further discussion around model results and potential adaptation 

management ideas. 

A further limitation in this thesis is the use of a single model member of future climate change from 

the UKCP18 projections. These were not explored due to high data processing costs and ongoing 

coding education by the researcher. Further data processing to calculate an average of multiple 

members would be likely to reduce uncertainties in the future climate as a greater number of 

variations of potential trends would be included. Understanding the differences in predictions these 

futures provide would be likely to provide greater insight into presented trends. Yet, ever finer 

modelling resolution may not result in markedly different user information. 

Additionally, some models, especially for wind exposure (chapter 4) could be improved through the 

bias correction of climate projections in order to write more realistic projections of climate by 

comparing predictions to observations (Fourcade et al., 2014; Bedia et al., 2018). Again, this was not 

undertaken due to computational costs and there is recognition that some time series of raw wind 

speed predictions used in chapter 4 are unlikely to be as accurate as possible. To mitigate for this, 

only maximum averages of time series were used to show longer-term, more extreme trends which 

could be thought of as a worst case scenario. 

The habitat data used forms another limitation. This layer of future projected habitats is not yet 

peer-reviewed, and provides only one time stamp of potential future habitats. While this is useful as 

a general picture, the fewer number of habitat types available in the future projection produced 

broad habitats at the site level which may be unclear if used for management. This provides scope 

for further development of habitat layers, and potentially integration of site-level habitat surveys 

that may be able to include temporal changes throughout a calendar year. 

Only one model for each study site project was explored. Comparing multiple models could increase 

certainty in trends and investigate if certain models provide more accurate results at local scales 

than others. Finally, there could have been greater exploration of model inputs and evaluation 

matrices to further understand the accuracy of models and the level of uncertainty they show. 
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7.7 Conclusions 

‘All models are wrong but some are useful’ the statistician George Box once said, and it is concluded 

that the models presented in this thesis provide useful information about the different site-level 

impacts of climate change at three National Trust sites in Wales.  

Throughout this thesis, the needs of site staff have been considered through the development of 

projects in collaboration with the case studies to explore risks that are less understood and yet 

which need to be included in future conservation and visitor management planning and decision-

making. Climate change affects each of the National Trust sites in this study, with some increases in 

species’ potential ranges (chapter 2) and risk of damage (chapters 3 & 4) from a range of impacts.  

Local scale UKCP18 data has proven to be useful in identifying and quantifying climate risks when 

compared to coarser resolution climate data, and although there are large data processing 

requirements, data is easily manipulated once processed. The scales at which results are useful 

differ between chapters, with 2.2 km data not able to provide some direct translation of modelling. 

High spatial scale data is useful to represent the scale more closely at which conservation data is 

collected, and provides a greater idea about local trends, although with resolution accuracy yet to be 

fully explored. Methods used for each model are likely to be transferable to similar sites, with some 

on-site data collection required to tailor predictions. 

Communication of the risks is vital for successful implementation of this research. Including 

stakeholders in the project from day one helped to develop the project, increased the usefulness of 

the findings, and developed some strong working relationships. Bridging the gap between science 

and practice and developing accessible and useful local scale models of climate risk, will aid in the 

development of better adaptation decision-making and management to increase resilient 

ecosystems in the face of climate change. Climate projection data accessibility is lacking for non-

experts, with high processing and modelling time costs. Further development of accessible 

information could make this data more useful to a wide range of people in the nature conservation 

sector. 

Future research is broad with opportunities to further explore scale and accuracy of local scale 

climate data, the impacts multi-member models and bias correction have on results, implementation 

of modelling results with practitioners and ongoing relationships with nature conservation 

organisations and sites to build a larger picture of the likely risks to the natural world. This thesis has 

provided a strong basis for many of these opportunities, but continuing partnerships, development 

of models and integration of evidence-based science into nature conservation adaptation is likely to 

positively contribute to the protection of species and habitats that are essential to us and the 

natural world. 
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Appendix 1: Supplementary material for chapter 2 – Data and data 
use in environmental modelling: what do we need and how do we 
need it? 

 
How to: using Met Office UKCP18 2.2km climate projections 

My last How to: blog was about sea turtles. This one is a little different… I am using the UKCP18 
climate change projections developed by the Met Office in my PhD research. Here is my blog in two 
parts about how to read in and visualise this data for two spatial resolutions – 5km and 2.2km. This 
blog looks at the 2.2km data, see the previous post for my blog about the 5km data. The data was 
released in November 2018 to provide further insight into the climate change impact to the UK at a 
range of temporal and spatial scales. 

Here I provide some information and code to help with downloading and visualising UKCP18 
projections at 5km resolution as part of the Convection Permitting Model. 

Downloading UKCP18 data 

All the raw UKCP18 data is freely available via the CEDA Archive although there is a requirement to 
sign up for an account to be able to access the data. 

Navigating through the data portal is relatively simple as seen below, these are the steps I have take 
to get to the full set of UKCP18 2.2km data. 

1. badc 
2. ukcp18 
3. data 
4. land-cpm 
5. uk 
6. 2.2km 
7. rcp85 
8. 01 

Step 7 relates to the model run chosen for analysis. There are model runs between 01, 04-15 which 
correspond to the members in the data detailed in the .csv outputs available from the user interface 
(https://ukclimateprojections-ui.metoffice.gov.uk/products). I have chosen to use model 01 in this 
case, but the other model runs are useful. 

When downloading the raw data file you want, right click on the link and save the .nc file to your 
workspace. There is a lot of useful information on the internet about NetCDF (.nc) files, I 
found this link and also this link especially helpful! 

2.2km data 
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Reading in NetCDF files 

There has been some difficulty in preparing the highest resolution 2.2km climate data for use in 
geographical information systems (GIS), computer modelling and general visualisation due to the 
unusual coordinate reference system the files were produced in. The files are in the rotated pole 
coordinate system in which the north pole is rotated to 37.5o N. 177.5o E so that the equator runs 
through the centre of the modelled area. For more information, see section 2.3 here. The files in 
rotated pole coordinates cannot be combined with other data sets without some pre-processing to 
change the coordinate system in the open source GIS QGIS and/or R. This can be done completely in 
R, but I will demonstrate both methods. 

To read in the NetCDF file: 

netcdf_data <- nc_open(“tas_rcp85_land-cpm_uk_2.2km_01_mon_19801201-19811130.nc”) 

To explain what the file name means: tas (average temperature at 1.5m), rcp85 (the representative 
concentration pathway, land-cpm (the UKCP18 model, uk (where the model is run 
for), 2.2km (spatial resolution of the model), 01 (model run), mon (temporal resolution of the model 
– here = month), 19801201-19811130 (the start and end dates of the layer – this file has data 
between 1st December 1980 to 30th November 1981. 

Some differences you might see in file names: 

                Spatial resolution – could also be 60km, 25km, 12km or 5km (check out my other blog here 
for the 5km information) 

                Temporal resolution – could also be at ann, seas, mon, day, 1hr – corresponding to annual, 
seasonal, monthly, daily and hourly scales (in this blog I use data at daily spatial scales, check out my 
other blog which looks at 5km data at a monthly scale). 

However, when you run; 

print(netcdf_data) 

and 

plot(netcdf_data) 

there is a huge amount of information from the print() function, and the plot() function doesn’t run 
as the layer is in the rotated pole coordinate. The steps below (either in QGIS or R) rotate the pole to 
the OSGB/British National Grid coordinate system so we can export and visualise the layers. 

QGIS 
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1. Use the Warp (reproject) tool in the Raster Projections section of the GDAL toolbox to read 
in the rotated grid. Remember to have the output file resolution as 2200.00 to keep the 
2.2km spatial resolution of the layers. 

2. Export the file as a GeoTIFF which still contains all the individual layers corresponding to 
each day. This GeoTIFF can now be read into R and run through a loop that pulls out each 
day similar to that for the 5km data. 

 
Input layer – the file you want to rotate 
Target CRS – EPSG:27700 – OSGB 1936/British National Grid 
Resampling method to use – Nearest Neighbor 
Output file resolution in target georeferenced units – 2200.00 

If you are running this for multiple files, running the tool as a batch process speeds everything up a 
bit! 

R 

1. Make sure you are using the latest version of R and RStudio (4.0.2). 
2. If not using the above QGIS method, the sf package has the gdal_utils tool which, when 

using with the correct coordinate system changes, this will have the same effect as using 
QGIS. 

library(sf) 
library(ncdf4) 
 
setwd(“where the 2.2 NetCDF files are stored”) 
 
#to rotate the pole to British National Grid – new file written as a .tif file 
#when run, use the new .tif file in the extraction code on page 4 
gdal_utils(util = “warp”, source = “original 2.2km file.nc”, destination = “tas_2.2_day_1980-
1981.tif”, 
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           options = c(“-tr”, “2200”,  “2200”, “-t_srs”, “EPSG:27700”, “-r”, “near”, “-overwrite”)) 
           
## if you want to write the new file as a .nc           
gdal_utils(util = “warp”, source = “original 2.2km file.nc”, destination = “new 2.2 file rotated to 
BNG.nc”, 
           options = c(“-tr”, “2200”,  “2200”, “-t_srs”, “EPSG:27700”, “-r”, “near”, “-overwrite”)) 
           
##this will give you a stack with all the bands 
all.bands <- paste0(“Band”, 1:360) 
raster.list <- lapply(1:360, function(x) raster(“new 2.2 file rotated to BNG.nc”, 
varname=all.bands[x])) 
test <- stack(raster.list) 
nlayer(raster.list) 

When you’ve got your rotated files in TIF format, the code below will pull out each day individually 
and save them as a new TIF file. While you can save the rotated file as a NetCDF file (see code 
above), I would suggest saving the rotated files as .tif files to streamline the amount of code that 
needs to be run. 

Whether you choose to rotate the files using QGIS or R, both methods use the gdal warp utility. 

I (along with my supervisors) have developed a code that pulls out each layer individually and saves 
this layer as a .tif file. This TIF file has each date the layer corresponds to as it’s name. TIFs are 
rasters that can be used in R and GIS software and are much easier to analyse and map than having 
all the layers within a netCDF file. 

A word about calendars 
It is generally recognised that the Western calendar comprises of 365 days. However, the UKCP18 
data is in a 360 day calendar – 12 months of 30 days (yes, even February!). Additionally, time of the 
layers is recorded in the number of hours since 1st January 1970. To deal with this, install the R 
package PCICt, which sorts out years when they’re not the year length you’re expecting. 

*Warning* This code does generate a LOT of files (360 for each .nc or .tif file). I save all my files to 
OneDrive as I have the extra space. Make sure you’re not about to fill up your computer with many 
files!! 

For 2.2km data 

install.packages(“rgdal”) 

install.packages(“ncdf4”) 

install.packages(“PCICt”) 

library(rgdal) 
library(ncdf4) 
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library(PCICt) 
 
#open rotated raster 
r<-stack(‘where the rotated file is saved/tas_2.2_day_1980-1981.tif’) 

 
#Plot it just to see if everything is ok 
plot(r) 
 
#Check the number of bands 
nlayers(r) 
 
#to add dates 
netcdf_data <- nc_open(“where the netCDF file is saved/tas_rcp85_land-
cpm_uk_2.2km_01_day_198012-200011.nc”) 
 
# the initial date as indicated in NetCDF file 
initial_date <- as.Date(“01-01-1970”, “%m-%d-%Y”) 
initial_date 
 
# hours from initial date to real date 
time_hours <- ncvar_get(netcdf_data,”time”) 
time_hours 
 
#calculate date based on 360 day calendar 
date_list <- as.PCICt(time_hours*3600, cal=”360_day”, origin=”1970-01-01″) 
date_list 
 
#date list to nearest day – rounds up, so gets rid of hours but not the correct day 
x.day <- round(date_list, “days”) 
 
#take off number of seconds in a day (seconds in an hour*hours) to get it back to the correct day 
days <- c(x.day – 3600*24) 
head(days) 
 
#wales as extent 
wales <- readOGR(“where the shapefile to be cropped to is saved/wales2001.shp”) 
 
#CRSuk 
ukgrid = “+init=epsg:27700” 
 
#pull out each day, crop to Wales and save as individual raster with date in title 
for(i in 1:nlayers(r)){ 
  l1<-r[[i]] 
  
  proj4string(l1) <- CRS(ukgrid) 
  
  cr <- crop(l1, extent(wales), snap=”out”)                    
  
  fr <- rasterize(wales, cr)   
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  lr <- mask(x=cr, mask=fr)  
  
  # export each layer as a numbered .tif 
  writeRaster(lr, paste0(“where you want to save the new files/tas_”, 
                         days[i],”.tif”, sep=””)) 
} 

Note: in this code for the 2.2km data I have cropped the files to Wales, so that I don’t get the whole 
of the UK as I only want to use Wales in my analysis. The 5km example (here) doesn’t include this 
crop. 

Next steps 

Now you have many many files depicting daily (2.2km) projections for the UKCP18 data it’s time to 
get them into a format that can be used in many different ways e.g. modelling, presentations, 
infographics. 

What I did: 

My modelling uses averages of these data of average temperature and precipitation for Wales. 

In Arc (and R if you use the raster package) I used the cell statistics tool to run averages of this data 
and then converted them to ascii files using raster to ascii tool. 

BUT: the individual files can now be identified by themselves as they are labelled with their date and 
can be pulled into GIS software or straight into a word/powerpoint document. 

Happy data-ing! 

Please leave any comments at the bottom of the page. 
This blog could not have been written without the huge amounts of help from Dr James Gibbons, 
Bangor University. 
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Appendix 2: Supplementary material for chapter 3 – The impact of 

climate and habitat change to bird species found in the uplands of 

Great Britain: Are species-specific model inputs more accurate than 

default settings? 
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Table A2.1: Optimum inputs for Maxent models as computed by ENMEval models investigating different background point (BP), feature class (F) and regularization 

multiplier (RM) inputs. Results are presented from empirical and null models with Continuous Boycce Index (CBI) and minimum training presence omission rates (ORMTP) 

explored. Optimum model inputs are relefcted in high CBITRAIN and CBIVAL scores and low ORMTP values. A significant difference between empirical and null models (pCBITRAIN, 

pCBIVAL, and pORMTP) indicate models that are more likely to accurately predict species distributions than random. 

 2.2 km 
Species Model BP F RM Coeff. CBIVAL CBITRAIN CBINULL-

VAL 

CBINULL-

TRAIN 

pCBITRAIN pCBIVAL ORMTP ORMTP-

NULL 
pORMTP 

GP OA 25,000 LQHPT 0.5 261 0.522 1 -0.04 0.991 0.234 0.005 0.076 0.089 0.387 
OS 15,000 L 1 13 0.811 0.985 0.105 0.874 0.147 <0.001 0 0.014 0.247 

MP OA 25,000 LQHPT 0.5 253 0.627 0.997 0.569 0.991 0.318 0.016 0.002 0.022 0.121 
OS 5,000 LQH 1 107 0.752 0.991 0.626 0.943 0.167 0.175 0 0.003 0.399 

S OA 25,000 LQHPT 0.5 275 0.468 1 0.394 0.999 0.252 0.288 0.008 0.012 0.355 
OS 15,000 H 5.5 35 0.453 0.996 0.218 0.993 0.286 <0.001 0 <0.001 0.431 

WHE OA 25,000 LQHPT 0.5 248 0.731 0.997 0.116 0.989 0.280 0.003 0.004 0.032 0.081 
OS 15,000 LQHP 6 63 0.694 0.993 0.245 0.730 0.081 0.011 0 0.004 0.267 

WHI OA 25,000 LQHPT 0.5 267 0.137 0.998 0.041 0.664 0.301 0.084 0.045 0.066 0.265 
OS 5,000 H 6 33 0.269 0.984 0.487 0.459 0.022 0.694 0 <0.001 0.453 

12 km               
Species Model BP F RM Coeff. CBIVAL CBITRAIN CBINULL-

VAL 
CBINULL-

TRAIN 
pCBITRAIN pCBIVAL ORMTP ORMTP-

NULL 
pORMTP 

GP OA 10,000 LQ 0.5 13 0.032 0.973 0.027 0.880 0.173 0.491 0.028 0.043 0.374 
OS 20,000 L 0.5 11 0.257 0.979 0.001 0.856 0.099 0.128 0 0.043 0.157 

MP OA 10,000 LQH 6 1 -0.260 0.543 0.506 0.555 0.522 0.798 0.001 0.019 0.259 
OS 20,000 LQHPT 1 40 0.397 0.988 0.011 0.960 0.197 0.067 0 0.042 0.121 

S OA 5,000 LQ 0.5 15 0.071 0.952 0.020 0.880 0.215 0.405 0.019 0.043 0.316 
OS 20,000 H 5 9 0.090 0.990 0.132 0.191 0.058 0.559 0 0.003 0.343 

WHE OA 10,000 H 6 5 0.343 0.923 0.323 0.230 0.028 0.476 0.003 0.004 0.469 
OS 10,000 LQ 0.5 13 0.441 0.972 0.049 0.789 0.110 0.077 0 0.025 0.231 

WHI OA 10,000 LQHPT 5 2 0.058 0.788 0.130 0.616 0.248 0.621 0.007 0.011 0.400 
OS 25,000 L 3.5 3 0.139 0.846 0.163 0.467 0.060 0.542 0.001 0.009 0.297 
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Table A2.2: Maxent model results at 12 km spatial scale with additional model inputs (see methods 2.2.4) and 

evaluation matrices (TSS and SEDI). 

12 km 
Species n Model AUCTEST AUCTRAIN TSS SEDI 

Golden plover 639 Opt AICc 0.603 0.636 0.178 0.262 
Opt seq 0.593 0.606 0.161 0.237 

Meadow pipit 1240 Opt AICc 0.519 0.531 0.057 0.086 
Opt seq 0.540 0.646 0.021 0.112 

Skylark 1132 Opt AICc 0.538 0.544 0.072 0.110 
Opt seq 0.532 0.543 0.062 0.100 

Wheatear 1073 Opt AICc 0.526 0.545 0.058 0.103 
Opt seq 0.547 0.564 0.090 0.138 

Whinchat 705 Opt AICc 0.540 0.563 0.097 0.138 
Opt seq 0.527 0.558 0.071 0.108 
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Table A2.3: The percentage of (1990s, 2030s, 2070s) and difference between (1990s to 2030s, 1990s to 2070s, 2030s to 2070s) of the amount of suitable habitats also 

containing suitable climate space. Negative values indicate a reduction in suitable habitat space also containing suitable climate space, and vice versa for positive values. 

The average of the total amount of suitable habitat space also containing suitable climate space for each habitat type is presented (average 1990s, average 2030s, average 

2070s).  
  1990s 2030s 2070s 1990s to 2030s 1990s to 2070s 2030s to 2070s Average 

1900s 
Average 
2030s 

Average 
2070s 

Golden 
plover 

LC1 – mostly crops 19.3 15.6 29.0 -19.4 49.7 85.6 47.7 35.3 60.0 
LC2 – grassland, scrub or shrub 24.7 24.9 51.5 0.73 108.5 106.9 
LC5 – sparse vegetation 78.7 53.8 73.6 -31.7 -6.5 36.8 
LC6 – bare area 52.3 33.3 64.5 -36.2 23.4 93.5 
LC7 – swampy or often flooded vegetation 63.2 48.7 81.1 -23.0 28.3 66.6 

Meadow 
pipit 

LC1 – mostly crops 20.0 95.3 99.5 375.7 396.9 4.4 45.7 73.2 97.1 
LC2 – grassland, scrub or shrub 32.8 75.1 96.9 129.4 196.0 29.0 
LC5 – sparse vegetation 71.2 53.7 96.3 -24.5 35.3 79.3 
LC6 – bare area 61.3 83.4 98.5 36.1 60.7 18.1 
LC7 – swampy or often flooded vegetation 43.5 58.2 94.2 34.0 116.8 61.8 

Skylark LC1 – mostly crops 77.1 93.0 99.6 20.7 29.2 7.0 36.9 50.3 78.0 
LC2 – grassland, scrub or shrub 35.1 61.2 90.8 74.3 158.9 48.5 
LC5 – sparse vegetation 3.8 9.9 44.3 163.0 1073.6 346.2 
LC6 – bare area 54.8 67.3 83.9 22.8 53.1 24.7 
LC7 – swampy or often flooded vegetation 13.7 19.9 71.5 44.6 421.4 260.5 

Wheatear LC1 – mostly crops 16.7 90.8 97.5 445.1 485.1 7.3 46.3 71.6 92.2 
LC2 – grassland, scrub or shrub 32.6 66.1 93.1 103.2 186.1 40.8 
LC5 – sparse vegetation 66.2 66.4 87.4 0.3 31.9 31.6 
LC6 – bare area 71.0 85.0 96.2 19.8 35.6 13.2 
LC7 – swampy or often flooded vegetation 44.5 49.6 86.7 10.6 93.4 74.8 

Whinchat LC1 – mostly crops 18.5 82.0 95.4 343.0 415.7 16.4 24.5 58.0 85.8 
LC2 – grassland, scrub or shrub 28.6 60.3 88.8 110.9 210.6 47.2 
LC5 – sparse vegetation 7.1 36.1 77.5 410.7 997.6 114.9 
LC6 – bare area 45.2 66.9 91.5 48.2 102.6 36.7 
LC7 – swampy or often flooded vegetation 23.2 44.9 76.0 93.4 227.0 69.1 
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Table A2.4: The total percentage of mainland Great Britain that contains suitable climate and habitat space for the five bird species (1990s, 2030s, 2070s) and difference 

between (1990s to 2030s, 1990s to 2070s, 2030s to 2070s) of the amount of mainland Great Britain containing suitable habitat and climate space. Negative values indicate 

a reduction in the area of mainland Britain (%) containing suitable climate and habitat space, and vice versa for positive values. The average of the total amount of 

mainland Great Britain containing suitable climate and habitat space for each habitat type is presented (average 1990s, average 2030s, average 2070s). 

  1990s 2030s 2070s 1990s to 2030s 1990s to 2070s 2030s to 2070s Average 
1990s 

Average 
2030s 

Average 
2070s 

Golden 
plover 

Lc1 – mostly crops 1.8 1.4 4.1 -21.8 131.5 196.0 1.4 1.2 4.2 
Lc2 – grassland, scrub or shrub 3.6 3.6 11.9 -0.08 230.3 230.6 
Lc5 – sparse vegetation 0.5 0.3 1.1 -31.4 116.8 216.1 
Lc6 – bare area 0.05 0.03 0.3 -40 494 890 
Lc7 – swampy or often flooded vegetation 1.0 0.8 3.7 -25.2 254.8 374.1 

Meadow 
pipit 

Lc1 – mostly crops 1.8 13.5 14.1 635.9 668.8 4.5 1.6 
 

7.0 
  

8.6 
Lc2 – grassland, scrub or shrub 4.8 17.5 22.5 263.5 369.0 29.0 
Lc5 – sparse vegetation 0.5 0.8 1.4 75.3 214.2 79.3 
Lc6 – bare area 0.06 0.4 0.5 550.8 667.8 18.0 
Lc7 – swampy or often flooded vegetation 0.7 2.7 4.3 270.6 449.6 61.8 

Skylark Lc1 – mostly crops 7.0 13.1 14.1 86.7 99.8 7.0 2.5 5.7 
 

7.9 
Lc2 – grassland, scrub or shrub 5.1 14.2 21.1 176.2 310.2 48.5 
Lc5 – sparse vegetation 0.02 0.1 0.7 516.7 2650 345.9 
Lc6 – bare area 0.05 0.3 0.4 484.9 628.3 24.5 
Lc7 – swampy or often flooded vegetation 0.02 0.9 3.3 300.9 1345.4 260.5 

Wheatear Lc1 – mostly crops 1.5 12.8 13.8 743.0 804.8 7.3 1.5 6.4 8.2 
Lc2 – grassland, scrub or shrub 4.8 15.4 21.6 221.9 353.4 40.8 
Lc5 – sparse vegetation 0.4 1.4 1.3 219.5 205.6 -4.3 
Lc6 – bare area 0.07 0.4 0.4 475.0 551.5 13.3 
Lc7 – swampy or often flooded vegetation 0.7 2.3 4.0 206.0 434.9 74.8 

Whinchat Lc1 – mostly crops 1.7 11.6 13.5 585.1 697.6 16.4 1.3 
 

5.7 7.8 
Lc2 – grassland, scrub or shrub 4.2 14.0 20.6 234.3 392.2 47.2 
Lc5 – sparse vegetation 0.05 0.5 1.2 1093.3 2466.7 115.1 
Lc6 – bare area 0.04 0.3 0.4 616.3 879.1 36.7 
Lc7 – swampy or often flooded vegetation 0.4 2.1 3.5 435.3 805.2 69.1 
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Appendix 3: Supplementary material for chapter 4 – Assessing the 

frequency and severity of potential future fires under climate 

change: A peatland case study in the Welsh uplands exploring the 

future of controlled burning. 
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Figure A3.1: Mean (A & B) and maximum (C & D) FWI and HFI calculated for 2003 and 2015 using CHESS data. Red points indicate known fires in 2003, blue points indicate 

known fires in 2015. A) Mean FWI, B) Mean HFI, C) Maximum FWI, D) Maximum HFI. 
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Appendix 4: Supplementary material for chapter 5 – The impact of 

current and future wind speeds and direction to historic parkland 

trees: Using low-cost methods to inform long-term conservation 

plans. 

A4.1 

All flags were photographed against a black background from a height of approximately 70 cm 

before and after fieldwork. Light around the camera set-up was limited to reduce the amount of 

glare in the photographs. Each photograph was taken and edited in Adobe Lightroom according to 

the same settings (see appendix 4.1, table A4.1.1). All photos were converted to 72 dpi for 

consistency. Three presets were made in Adobe Lightroom to make sure photos were edited using 

the same methods and to create similar final results. These presets enhanced the contrast between 

the black background and white flag. Additionally, any light spots and stray fabric fibres were 

removed in Adobe Lightroom editing. Using R 4.0.2 (R Core Team, 2020) and the magick package 

(v2.7.3, Ooms, 2021), each flag photograph was converted to black and white and the white pixels 

were counted. Difference in white pixels in before and after flag installation quantified the amount 

of flag lost and therefore the level of wind exposure. The difference was calculated the same way as 

the weight data using 

 ((after size – before size) / before size) * 100. 

 

Table A4.1.1 Camera and Adobe Lightroom settings for flag photography and analysis. 

Photograph settings (editing) Camera information 
Dimensions 7952 X 5304 pixels Make Sony ILCE-7RM3 
Horizontal and vertical resolution 300 dpi reduced to 

72 dpi 
F-stop f/4.5 

Bit depth 24 Exposure time 2 seconds 
Resolution unit 2 ISO speed ISO-100 
Colour representation sRGB Exposure bias 0 step 
 Focal length 24mm 

Max aperture 0.96875 
Metering mode Pattern 
Flash mode No flash 
35mm focal length 24 
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A4.2 

Stochastic regression correlations were closest to the true correlation when comparing to 

deterministic regression results (table A4.2.1). A stochastic regression was used to interpolate all 

wind speed data. This method also accounts for random error, resulting in a more realistic and 

accurate correlation between target and explanatory variables. There are strong positive 

correlations between the Chirk Castle wind speed and gust data and those from the four stations 

used in the multiple regression interpolations (table A4.2.2). True correlations were strongest 

between Chirk Castle and the MIDAS weather station at Lake Vyrnwy (No. 2) (table A4.2.1) for both 

wind speed and gusts. The interpolated time series data (figure A4.2.1) show the same trends for 

wind speeds and gusts, which would be expected from a full data set. There are peaks of wind speed 

and gusts during the winter months, especially in February 2020. This may correlate with the high 

winds recorded during Storm Ciara, which hit the UK at the beginning of February 2020. Mean wind 

speed for the interpolated data across the year was 3.9 m s-1 for average wind speeds and 13.4 m s-1 

for maximum gust speeds (figure A4.2.1).  

Table A4.2.1: Comparing deterministic and stochastic multiple regression models to impute two metrics of 

historic weather data (A) Mean daily wind speed, B) Maximum daily wind gust) for Chirk Castle using the 

nearest MIDAS and National Trust weather stations. The weather stations: X1 = National Trust Erddig, X2 = 

MIDAS Shawbury, X3 = MIDAS Hawarden Airport, X4 = MIDAS Lake Vyrnwy No. 2.  

Correlation type X1 X2 X3 X4 Average 
A)  
True 0.908 0.885 0.894 0.927 0.904 
Deterministic 0.916 0.858 0.899 0.931 0.901 
Stochastic 0.903 0.848 0.884 0.920 0.889 
B)  
True  0.921 0.910 0.656 0.927 0.854 
Deterministic 0.933 0.922 0.634 0.938 0.857 
Stochastic 0.915 0.904 0.628 0.923 0.843 
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Figure A4.2.1: Interpolated wind speed results for Chirk Castle November 2019 to November 2020. 

A4.3 

When analysing proportion data (frd), the full data set was found to be not normally distributed (p < 

.001). Additionally, the score were not normally distributed for 60% fieldwork periods (p < 0.05) as 

assessed by Shaprio-Wilk’s test of normality. Therefore, normality for the raw proportion data can 

not be assumed. When data was transformed to a logarithmic scale, the full data set is still found to 

be not normally distributed (p < .001), but the score were normally distributed when comparing 

between fieldwork periods for most monthly groups (p > 0.05 NJ, JM and MM, p < 0.05 JS and SN). 

Additionally, when investigating the QQ plot for the logarithmic data (figure A4.2.2), more points fall 

within the reference when comparing individual fieldwork periods, suggesting they are better to 

assess separately rather than as a full data set. We assumed normality of the logarithmic-

transformed data set, as the Shapiro-Wilk’s test is sensitive to minor deviations in normality.  
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Figure A4.3.1: A) Linear model comparing fieldwork period and theoretical results along the logarithmic scale. 

The majority of points fall along the reference line suggesting normality. B) Linear model comparing each 

fieldwork period results along the logarithmic scale. Most points for each month fall along the reference line, 

suggesting normality. 

The Levene’s test was used to check the homogeneity of variances between fieldwork periods. The 

p-value was significant (p < 0.05) signifying significant difference between variance across groups. 

Therefore, we cannot assume homogeneity of variances in the difference fieldwork periods. To test 

for significant differences between fieldwork periods without assuming homogeneity of variances, 

we performed the Welch one-way ANOVA test with the Games-Howell post hoc test to compare all 

possible combinations of fieldwork periods. 
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Table A4.3.1 The average (%) size change of flags for each tree at the case study site, averaged from four wind 

directions (north, south, east, west). Flags are separated into fieldwork periods: NDJ) November-December-

January, JFM) January-February-March, MAM) March-April-May, JAS) July-August-September, SON) 

September-October-November 

 

Tree NDJ JFM MAM JAS SON 

1 -4.150 -13.084 -28.228 -4.829 -29.903 

2 1.779 -31.833 -29.920 -1.731 -20.755 

3 0.986 -31.582 -29.961 -25.243 -30.503 

5 -0.917 -29.998 -29.591 -1.792 -29.688 

6 -8.589 -31.687 -29.973 0.214 -32.348 

7 0.534 -31.649 -30.357 -2.086 -32.116 

8 -0.511 -32.233 -31.170 -5.143 -22.726 

9 2.202 -30.570 -32.653 -2.476 -29.689 

10 -31.014 -31.597 -27.100 -0.485 -27.643 

11 0.284 -30.254 -28.607 0.608 -21.156 

12 NA -30.112 -27.792 NA -7.160 

13 NA -29.172 -27.568 -0.068 -29.629 

14 -20.901 -28.458 -27.004 NA -27.325 

15 -25.265 -29.932 -27.047 1.132 -20.542 

16 3.336 -29.899 -28.189 0.430 -7.639 

17 5.529 -29.123 -28.225 -15.984 NA 

18 5.361 -29.557 -29.132 0.551 NA 

19 -2.034 -41.187 -27.920 NA NA 

20 -24.974 -39.233 -28.617 NA NA 

24 -60.030 -36.411 NA NA NA 

25 -3.612 -39.391 NA NA NA 
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Table A4.3.2: The relative difference of the proportion of flag weight lost compared to the average for the fieldwork period between November 2019 and November 2020. 

All missing data is represented with NA. Data > 1 indicates flags that lost more weight than the average and data < 1 indicates flags that lost less weight 

Tree NJ JM MM JS SN 

  N S E W N S E W N S E W N S E W N S E W 

1 NA NA NA NA 1.343 1.299 1.521 1.498 NA NA NA NA 1.053 0.773 1.055 2.049 NA 1.100 1.236 1.368 
2 0.874 0.994 1.119 1.289 0.819 1.409 1.155 0.967 0.907 0.700 0.897 1.305 NA NA NA NA NA NA NA NA 
3 1.072 1.028 0.968 0.970 1.073 0.935 0.945 1.195 0.766 NA 1.032 0.749 0.865 0.649 NA 0.876 NA NA 1.003 0.961 
4 0.996 0.998 1.176 1.233 0.841 0.917 0.967 0.885 1.211 0.960 NA NA NA NA NA NA NA NA NA NA 
6 NA NA NA NA 1.050 1.343 1.149 1.245 NA NA NA NA NA NA NA 0.733 0.971 0.853 0.932 1.042 
7 0.940 NA 0.903 1.212 1.301 1.164 1.221 1.098 NA 1.178 1.252 NA NA NA NA NA NA 1.233 1.408 1.458 
8 1.300 NA NA 1.041 0.936 0.936 1.205 1.912 NA NA NA 0.769 NA 1.003 1.640 NA 1.161 1.183 0.993 0.863 
9 NA 0.917 1.078 NA 0.872 1.005 0.879 0.898 0.867 1.313 1.068 0.906 NA NA NA NA NA 1.090 NA 0.872 

10 1.033 NA NA NA 0.983 0.754 1.006 0.763 0.573 0.639 NA 0.889 NA NA NA NA 2.464 1.236 NA NA 
11 NA 1.011 0.958 0.888 0.842 1.189 1.031 1.263 0.764 0.859 0.991 NA NA NA 1.592 NA 1.258 1.422 1.412 0.990 
12 1.102 1.151 0.865 1.060 1.115 1.569 1.002 1.095 NA NA NA NA 0.784 NA NA 0.953 0.784 0.967 0.913 0.980 
13 0.944 1.070 1.253 1.130 1.178 0.855 0.457 0.821 0.895 1.422 0.844 1.273 0.811 1.064 0.883 0.864 0.876 1.184 0.994 1.121 
14 NA 1.223 0.941 1.119 1.277 0.774 0.869 0.951 1.194 0.798 0.635 0.659 NA NA NA NA NA NA NA NA 
15 1.079 NA 0.934 NA 0.933 0.917 0.900 1.055 0.992 0.693 0.814 0.858 NA NA NA NA NA NA 2.123 NA 
16 1.012 0.810 NA 0.907 0.951 1.694 0.737 0.660 0.570 0.662 0.569 0.519 NA NA NA 0.666 0.889 0.730 0.687 0.958 
17 1.125 1.006 1.102 1.146 1.054 0.985 0.888 1.169 0.688 0.660 0.817 0.664 NA NA NA NA 1.018 0.826 0.678 0.991 
18 1.342 1.019 0.899 0.898 1.384 0.879 0.753 0.968 0.719 0.788 0.860 0.454 0.890 0.596 0.618 0.703 0.746 0.640 1.055 0.715 
19 NA 0.910 0.932 0.918 NA NA NA NA NA NA NA NA 0.719 0.659 0.955 0.798 NA NA 0.939 NA 
20 NA NA NA NA NA NA NA NA NA NA NA NA NA 0.746 0.711 NA NA NA NA NA 
24 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
25 NA NA NA NA NA NA NA NA NA NA NA NA 0.871 NA NA 0.854 NA NA NA NA 
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Table A4.3.3: Average exposure for each flag as calculated from the proportion of the relative difference in weight of each flag against two wind metrics (average wind 

speed and average maximum gust speed) over two time periods (2020 to 2040 and 2060 to 2080). For baseline results see Appendix 2 Table 1. 

   
2020 to 2040 - average wind speed 2060 to 2080 average wind speed 2020 to 2040 average maximum wind 

gust 
2060 to 2080 average maximum 

wind gust 
flag easting northing nj jm mm js sn nj jm mm js sn nj jm mm js sn nj jm mm js sn 
e 326345 338862 NA -0.28 NA -0.12 -0.18 NA -0.07 NA -0.42 -0.51 NA -0.36 NA -0.10 -0.49 NA 0.22 NA -0.93 -1.33 
e 326596 338891 -0.15 -0.21 -0.06 NA NA -0.25 -0.05 -0.04 NA NA -0.21 -0.27 0.03 NA NA -0.42 0.17 0.07 NA NA 
e 326821 338836 -0.13 -0.17 -0.06 NA -0.14 -0.22 -0.04 -0.04 NA -0.41 -0.18 -0.22 0.04 NA -0.40 -0.36 0.14 0.08 NA -1.08 
e 327305 338744 -0.15 -0.18 NA NA NA -0.26 -0.04 NA NA NA -0.25 -0.24 NA NA NA -0.39 0.18 NA NA NA 
e 326302 338662 NA -0.21 NA NA -0.13 NA -0.05 NA NA -0.39 NA -0.28 NA NA -0.40 NA 0.22 NA NA -1.07 
e 326592 338610 -0.13 -0.21 -0.08 NA -0.25 -0.19 -0.03 -0.07 NA -0.57 -0.19 -0.30 0.03 NA -0.60 -0.30 0.23 0.06 NA -1.61 
e 326848 338695 NA -0.22 NA -0.19 -0.14 NA -0.06 NA -0.65 -0.41 NA -0.30 NA -0.28 -0.43 NA 0.23 NA -1.84 -1.14 
e 327305 338633 -0.16 -0.15 -0.07 NA NA -0.23 -0.02 -0.06 NA NA -0.23 -0.22 0.02 NA NA -0.36 0.16 0.05 NA NA 
e 327419 338642 NA -0.17 NA NA NA NA -0.02 NA NA NA NA -0.25 NA NA NA NA 0.19 NA NA NA 
e 326229 338341 -0.14 -0.18 -0.06 -0.23 -0.25 -0.20 -0.03 -0.06 -0.73 -0.57 -0.21 -0.25 0.02 -0.27 -0.60 -0.32 0.19 0.04 -1.79 -1.62 
e 326480 338376 -0.13 -0.17 NA NA -0.16 -0.18 -0.02 NA NA -0.37 -0.19 -0.25 NA NA -0.39 -0.29 0.19 NA NA -1.05 
e 326870 338311 -0.18 -0.08 -0.05 -0.13 -0.17 -0.26 -0.01 -0.05 -0.41 -0.40 -0.27 -0.11 0.02 -0.15 -0.43 -0.42 0.09 0.04 -0.99 -1.14 
e 327315 338307 -0.14 -0.15 -0.04 NA NA -0.20 -0.02 -0.04 NA NA -0.20 -0.21 0.01 NA NA -0.31 0.16 0.03 NA NA 
e 327391 338295 -0.14 -0.16 -0.05 NA -0.37 -0.20 -0.02 -0.05 NA -0.86 -0.20 -0.22 0.02 NA -0.91 -0.31 0.17 0.04 NA -2.43 
e 326133 338269 NA -0.13 -0.04 NA -0.12 NA -0.02 -0.03 NA -0.28 NA -0.18 0.01 NA -0.29 NA 0.14 0.03 NA -0.79 
e 326373 338171 -0.16 -0.15 -0.05 NA -0.12 -0.23 -0.02 -0.05 NA -0.28 -0.24 -0.22 0.02 NA -0.29 -0.37 0.17 0.04 NA -0.78 
e 326784 338185 -0.13 -0.13 -0.05 -0.09 -0.18 -0.19 -0.02 -0.05 -0.28 -0.43 -0.19 -0.19 0.02 -0.11 -0.45 -0.30 0.14 0.04 -0.69 -1.21 
e 327181 338027 -0.14 NA NA -0.14 -0.16 -0.20 NA NA -0.44 -0.38 -0.20 NA NA -0.16 -0.40 -0.31 NA NA -1.07 -1.08 
e 327540 338025 NA NA NA -0.09 NA NA NA NA -0.30 NA NA NA NA -0.09 NA NA NA NA -0.74 NA 
e 327220 337833 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
e 327423 337830 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
s 326345 338862 NA -0.24 NA -0.09 -0.16 NA -0.06 NA -0.31 -0.45 NA -0.31 NA -0.07 -0.43 NA 0.19 NA -0.68 -1.18 
s 326596 338891 -0.13 -0.26 -0.04 NA NA -0.22 -0.07 -0.03 NA NA -0.19 -0.33 0.03 NA NA -0.37 0.21 0.05 NA NA 
s 326821 338836 -0.14 -0.17 NA -0.08 NA -0.23 -0.04 NA -0.26 NA -0.19 -0.22 NA -0.06 NA -0.39 0.14 NA -0.57 NA 
s 327305 338744 -0.13 -0.17 -0.06 NA NA -0.22 -0.04 -0.04 NA NA -0.21 -0.23 0.02 NA NA -0.33 0.17 0.04 NA NA 
s 326302 338662 NA -0.24 NA NA -0.12 NA -0.06 NA NA -0.35 NA -0.33 NA NA -0.37 NA 0.25 NA NA -0.98 
s 326592 338610 NA -0.20 -0.07 NA -0.22 NA -0.03 -0.07 NA -0.50 NA -0.29 0.02 NA -0.53 NA 0.22 0.05 NA -1.41 
s 326848 338695 NA -0.17 NA -0.12 -0.17 NA -0.04 NA -0.40 -0.49 NA -0.23 NA -0.17 -0.51 NA 0.18 NA -1.13 -1.36 
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s 327305 338633 -0.13 -0.17 -0.08 NA -0.19 -0.19 -0.02 -0.08 NA -0.44 -0.20 -0.25 0.03 NA -0.47 -0.30 0.19 0.06 NA -1.25 
s 327419 338642 NA -0.13 -0.04 NA -0.22 NA -0.02 -0.04 NA -0.50 NA -0.19 0.01 NA -0.53 NA 0.14 0.03 NA -1.42 
s 326229 338341 -0.15 -0.21 -0.05 NA -0.25 -0.21 -0.03 -0.05 NA -0.58 -0.22 -0.29 0.02 NA -0.61 -0.34 0.22 0.04 NA -1.63 
s 326480 338376 -0.17 -0.27 NA NA -0.17 -0.24 -0.04 NA NA -0.39 -0.25 -0.39 NA NA -0.41 -0.38 0.29 NA NA -1.11 
s 326870 338311 -0.16 -0.15 -0.09 -0.16 -0.21 -0.22 -0.02 -0.08 -0.49 -0.48 -0.23 -0.21 0.03 -0.18 -0.51 -0.36 0.16 0.06 -1.20 -1.36 
s 327315 338307 -0.18 -0.13 -0.05 NA NA -0.26 -0.02 -0.05 NA NA -0.26 -0.19 0.02 NA NA -0.41 0.15 0.04 NA NA 
s 327391 338295 NA -0.16 -0.04 NA NA NA -0.02 -0.04 NA NA NA -0.23 0.01 NA NA NA 0.17 0.03 NA NA 
s 326133 338269 -0.12 -0.29 -0.04 NA -0.13 -0.17 -0.04 -0.04 NA -0.30 -0.17 -0.42 0.01 NA -0.31 -0.27 0.32 0.03 NA -0.84 
s 326373 338171 -0.15 -0.17 -0.04 NA -0.14 -0.21 -0.02 -0.04 NA -0.34 -0.22 -0.24 0.01 NA -0.35 -0.33 0.18 0.03 NA -0.95 
s 326784 338185 -0.15 -0.15 -0.05 -0.09 -0.11 -0.21 -0.02 -0.05 -0.27 -0.26 -0.22 -0.22 0.02 -0.10 -0.27 -0.34 0.16 0.03 -0.67 -0.73 
s 327181 338027 -0.13 NA NA -0.10 NA -0.19 NA NA -0.30 NA -0.19 NA NA -0.11 NA -0.30 NA NA -0.74 NA 
s 327540 338025 NA NA NA -0.10 NA NA NA NA -0.31 NA NA NA NA -0.09 NA NA NA NA -0.78 NA 
s 327220 337833 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
s 327423 337830 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
n 326345 338862 NA -0.24 NA -0.12 NA NA -0.06 NA -0.42 NA NA -0.32 NA -0.10 NA NA 0.20 NA -0.93 NA 
n 326596 338891 -0.11 -0.15 -0.06 NA NA -0.20 -0.04 -0.04 NA NA -0.16 -0.19 0.03 NA NA -0.33 0.12 0.07 NA NA 
n 326821 338836 -0.14 -0.19 -0.05 -0.10 NA -0.24 -0.05 -0.03 -0.34 NA -0.20 -0.25 0.03 -0.08 NA -0.40 0.16 0.06 -0.77 NA 
n 327305 338744 -0.13 -0.15 -0.07 NA NA -0.22 -0.04 -0.05 NA NA -0.21 -0.21 0.02 NA NA -0.33 0.16 0.05 NA NA 
n 326302 338662 NA -0.19 NA NA -0.14 NA -0.05 NA NA -0.40 NA -0.26 NA NA -0.42 NA 0.20 NA NA -1.11 
n 326592 338610 -0.14 -0.23 NA NA NA -0.20 -0.03 NA NA NA -0.20 -0.32 NA NA NA -0.31 0.24 NA NA NA 
n 326848 338695 -0.17 -0.17 NA NA -0.17 -0.29 -0.04 NA NA -0.48 -0.28 -0.23 NA NA -0.50 -0.43 0.18 NA NA -1.33 
n 327305 338633 NA -0.15 -0.05 NA NA NA -0.02 -0.05 NA NA NA -0.22 0.02 NA NA NA 0.16 0.04 NA NA 
n 327419 338642 -0.15 -0.17 -0.04 NA -0.43 -0.22 -0.02 -0.03 NA -1.00 -0.22 -0.24 0.01 NA -1.06 -0.34 0.18 0.03 NA -2.82 
n 326229 338341 NA -0.15 -0.05 NA -0.22 NA -0.02 -0.04 NA -0.51 NA -0.21 0.02 NA -0.54 NA 0.16 0.03 NA -1.44 
n 326480 338376 -0.16 -0.19 NA -0.11 -0.14 -0.23 -0.03 NA -0.36 -0.32 -0.24 -0.28 NA -0.13 -0.34 -0.37 0.21 NA -0.88 -0.90 
n 326870 338311 -0.14 -0.20 -0.06 -0.12 -0.15 -0.20 -0.03 -0.05 -0.37 -0.36 -0.20 -0.29 0.02 -0.14 -0.38 -0.31 0.22 0.04 -0.91 -1.00 
n 327315 338307 NA -0.22 -0.08 NA NA NA -0.03 -0.07 NA NA NA -0.32 0.02 NA NA NA 0.24 0.05 NA NA 
n 327391 338295 -0.16 -0.16 -0.06 NA NA -0.23 -0.02 -0.06 NA NA -0.23 -0.23 0.02 NA NA -0.36 0.18 0.04 NA NA 
n 326133 338269 -0.15 -0.16 -0.04 NA -0.16 -0.21 -0.02 -0.03 NA -0.36 -0.22 -0.24 0.01 NA -0.38 -0.34 0.18 0.03 NA -1.02 
n 326373 338171 -0.17 -0.18 -0.04 NA -0.18 -0.24 -0.03 -0.04 NA -0.41 -0.24 -0.26 0.01 NA -0.44 -0.37 0.20 0.03 NA -1.17 
n 326784 338185 -0.20 -0.24 -0.05 -0.13 -0.13 -0.28 -0.03 -0.04 -0.41 -0.30 -0.29 -0.34 0.01 -0.15 -0.32 -0.45 0.26 0.03 -1.00 -0.85 
n 327181 338027 NA NA NA -0.10 NA NA NA NA -0.33 NA NA NA NA -0.12 NA NA NA NA -0.81 NA 
n 327540 338025 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
n 327220 337833 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
n 327423 337830 NA NA NA -0.13 NA NA NA NA -0.40 NA NA NA NA -0.15 NA NA NA NA -0.98 NA 
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w 326345 338862 NA -0.27 NA -0.24 -0.20 NA -0.07 NA -0.81 -0.57 NA -0.35 NA -0.19 -0.54 NA 0.22 NA -1.81 -1.47 
w 326596 338891 -0.17 -0.18 -0.08 NA NA -0.29 -0.04 -0.05 NA NA -0.24 -0.23 0.05 NA NA -0.48 0.14 0.10 NA NA 
w 326821 338836 -0.13 -0.22 -0.05 -0.10 -0.14 -0.22 -0.06 -0.03 -0.35 -0.40 -0.18 -0.28 0.03 -0.08 -0.38 -0.36 0.18 0.06 -0.77 -1.03 
w 327305 338744 -0.16 -0.16 NA NA NA -0.28 -0.04 NA NA NA -0.26 -0.22 NA NA NA -0.41 0.17 NA NA NA 
w 326302 338662 NA -0.23 NA -0.09 -0.15 NA -0.06 NA -0.29 -0.43 NA -0.31 NA -0.13 -0.45 NA 0.23 NA -0.82 -1.19 
w 326592 338610 -0.18 -0.19 NA NA -0.25 -0.25 -0.03 NA NA -0.59 -0.26 -0.27 NA NA -0.62 -0.40 0.21 NA NA -1.67 
w 326848 338695 -0.14 -0.35 -0.05 NA -0.12 -0.23 -0.09 -0.03 NA -0.36 -0.22 -0.47 0.02 NA -0.37 -0.35 0.36 0.03 NA -0.99 
w 327305 338633 NA -0.16 -0.06 NA -0.15 NA -0.02 -0.05 NA -0.35 NA -0.22 0.02 NA -0.37 NA 0.17 0.04 NA -1.00 
w 327419 338642 NA -0.13 -0.06 NA NA NA -0.02 -0.05 NA NA NA -0.19 0.02 NA NA NA 0.14 0.04 NA NA 
w 326229 338341 -0.13 -0.22 NA NA -0.17 -0.19 -0.03 NA NA -0.40 -0.19 -0.31 NA NA -0.42 -0.30 0.24 NA NA -1.13 
w 326480 338376 -0.16 -0.19 NA -0.14 -0.17 -0.22 -0.03 NA -0.44 -0.40 -0.23 -0.27 NA -0.16 -0.42 -0.35 0.21 NA -1.07 -1.12 
w 326870 338311 -0.17 -0.14 -0.08 -0.13 -0.20 -0.24 -0.02 -0.07 -0.40 -0.45 -0.24 -0.20 0.03 -0.15 -0.48 -0.38 0.15 0.06 -0.97 -1.28 
w 327315 338307 -0.16 -0.16 -0.04 NA NA -0.23 -0.02 -0.04 NA NA -0.24 -0.24 0.01 NA NA -0.37 0.18 0.03 NA NA 
w 327391 338295 NA -0.18 -0.05 NA NA NA -0.03 -0.05 NA NA NA -0.26 0.02 NA NA NA 0.20 0.04 NA NA 
w 326133 338269 -0.13 -0.11 -0.03 -0.10 -0.17 -0.19 -0.02 -0.03 -0.31 -0.39 -0.19 -0.16 0.01 -0.11 -0.41 -0.30 0.12 0.02 -0.75 -1.10 
w 326373 338171 -0.17 -0.20 -0.04 NA -0.17 -0.24 -0.03 -0.04 NA -0.40 -0.25 -0.29 0.01 NA -0.42 -0.38 0.22 0.03 NA -1.14 
w 326784 338185 -0.13 -0.17 -0.03 -0.10 -0.12 -0.19 -0.02 -0.03 -0.32 -0.29 -0.19 -0.24 0.01 -0.12 -0.31 -0.30 0.18 0.02 -0.79 -0.82 
w 327181 338027 -0.13 NA NA -0.12 NA -0.19 NA NA -0.37 NA -0.20 NA NA -0.14 NA -0.30 NA NA -0.90 NA 
w 327540 338025 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
w 327220 337833 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
w 327423 337830 NA NA NA -0.12 NA NA NA NA -0.39 NA NA NA NA -0.15 NA NA NA NA -0.96 NA 
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Table A4.3.4: Maximum exposure for each flag as calculated from the proportion of the relative difference in weight of each flag against two wind metrics (maximum 

average wind speed and maximum gust speed) over two time periods (2020 to 2040 and 2060 to 2080). For baseline results see Appendix 2, Table 1. 

   
2020 to 2040 - maximum average 
wind speed 

2060 to 2080 maximum average 
wind speed 

2020 to 2040 maximum wind gust 2060 to 2080 maximum wind gust  

flag easting northing nj jm mm js sn nj jm mm js sn nj jm mm js sn nj jm mm js sn 
e 326345 338862 NA 2.40 NA -0.52 -2.72 NA -0.63 NA -0.46 -3.95 NA 54.67 NA -13.27 -7.23 NA 5.80 NA 18.41 19.54
e 326596 338891 0.94 1.82 -0.34 NA NA 1.94 -0.48 -0.20 NA NA -16.76 41.51 28.48 NA NA -16.74 4.40 -3.85 NA NA 
e 326821 338836 0.82 1.49 -0.39 NA -2.21 1.68 -0.39 -0.23 NA -3.21 -14.51 33.97 32.77 NA -5.86 -14.49 3.60 -4.43 NA 15.85
e 327305 338744 0.99 1.52 NA NA NA 2.04 -0.40 NA NA NA -58.39 10.70 NA NA NA -54.22 3.30 NA NA NA 
e 326302 338662 NA 1.81 NA NA -2.05 NA -0.48 NA NA -2.98 NA 12.70 NA NA -34.00 NA 3.92 NA NA -42.98
e 326592 338610 0.57 1.67 -0.36 NA -2.91 1.49 -0.61 -0.05 NA -4.66 -44.82 13.51 -40.23 NA -51.33 -41.63 4.16 2.40 NA -64.89
e 326848 338695 NA 1.90 NA -0.81 -2.19 NA -0.50 NA -0.72 -3.17 NA 13.32 NA -7.03 -36.21 NA 4.11 NA -16.04 -45.78
e 327305 338633 0.68 1.20 -0.30 NA NA 1.78 -0.44 -0.05 NA NA -53.50 9.72 -34.31 NA NA -49.68 3.00 2.05 NA NA 
e 327419 338642 NA 1.37 NA NA NA NA -0.50 NA NA NA NA 11.12 NA NA NA NA 3.43 NA NA NA 
e 326229 338341 0.60 1.41 -0.28 1.37 -2.92 1.58 -0.51 -0.04 -0.41 -4.67 -47.53 11.39 -31.83 -6.83 -51.49 -44.14 3.51 1.90 -15.57 -65.09
e 326480 338376 0.54 1.37 NA NA -1.89 1.43 -0.50 NA NA -3.02 -42.96 11.08 NA NA -33.29 -39.89 3.42 NA NA -42.09
e 326870 338311 0.79 0.62 -0.24 0.76 -2.05 2.07 -0.23 -0.04 -0.22 -3.29 -62.22 5.05 -27.11 -3.79 -36.24 -57.78 1.56 1.62 -8.63 -45.82
e 327315 338307 0.59 1.19 -0.18 NA NA 1.55 -0.43 -0.03 NA NA -46.71 9.61 -20.42 NA NA -43.38 2.96 1.22 NA NA 
e 327391 338295 0.59 1.23 -0.23 NA -4.39 1.54 -0.45 -0.04 NA -7.02 -46.37 9.95 -26.14 NA -77.40 -43.06 3.07 1.56 NA -97.85
e 326133 338269 NA 1.01 -0.16 NA -1.42 NA -0.37 -0.02 NA -2.27 NA 8.15 -18.29 NA -25.04 NA 2.51 1.09 NA -31.66
e 326373 338171 0.69 1.21 -0.23 NA -1.40 1.82 -0.44 -0.04 NA -2.24 -54.69 9.82 -26.26 NA -24.73 -50.79 3.03 1.57 NA -31.26
e 326784 338185 0.56 1.03 -0.24 0.53 -2.18 1.48 -0.37 -0.04 -0.16 -3.49 -44.60 8.33 -27.63 -2.65 -38.47 -41.42 2.57 1.65 -6.04 -48.64
e 327181 338027 0.58 NA NA 0.82 -1.94 1.54 NA NA -0.24 -3.10 -46.25 NA NA -4.10 -34.23 -42.95 NA NA -9.34 -43.28
e 327540 338025 NA NA NA 0.60 NA NA NA NA -0.15 NA NA NA NA -65.89 NA NA NA NA -41.54 
e 327220 337833 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
e 327423 337830 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
s 326345 338862 NA 2.05 NA -0.38 -2.42 NA -0.54 NA -0.34 -3.52 NA 46.66 NA -9.73 -6.44 NA 4.95 NA 13.50 17.40
s 326596 338891 0.84 2.22 -0.27 NA NA 1.72 -0.59 -0.15 NA NA -14.89 50.64 22.24 NA NA -14.87 5.37 -3.01 NA NA 
s 326821 338836 0.87 1.47 NA -0.32 NA 1.78 -0.39 NA -0.28 NA -15.40 33.58 NA -8.17 NA -15.38 3.56 NA 11.33 
s 327305 338744 0.84 1.45 -0.37 NA NA 1.73 -0.38 -0.21 NA NA -49.55 10.14 -30.85 NA NA -46.02 3.12 1.84 NA NA 
s 326302 338662 NA 2.12 NA NA -1.88 NA -0.56 NA NA -2.73 NA 14.85 NA NA -31.11 NA 4.58 NA NA -39.33
s 326592 338610 NA 1.59 -0.33 NA -2.55 NA -0.58 -0.05 NA -4.08 NA 12.87 -37.86 NA -44.95 NA 3.97 2.26 NA -56.82
s 326848 338695 NA 1.48 NA -0.50 -2.61 NA -0.39 NA -0.44 -3.78 NA 10.35 NA -4.30 -43.14 NA 3.19 NA -9.81 -54.55
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s 327305 338633 0.58 1.37 -0.37 NA -2.25 1.51 -0.50 -0.06 NA -3.60 -45.50 11.11 -42.19 NA -39.74 -42.25 3.43 2.52 NA -50.24
s 327419 338642 NA 1.03 -0.18 NA -2.55 NA -0.37 -0.03 NA -4.09 NA 8.34 -20.53 NA -45.07 NA 2.57 1.23 NA -56.98
s 326229 338341 0.63 1.62 -0.24 NA -2.94 1.67 -0.59 -0.04 NA -4.70 -50.18 13.14 -27.62 NA -51.83 -46.60 4.05 1.65 NA -65.53
s 326480 338376 0.72 2.14 NA NA -2.00 1.90 -0.78 NA NA -3.20 -57.15 17.35 NA NA -35.27 -53.07 5.35 NA NA -44.59
s 326870 338311 0.67 1.17 -0.40 0.92 -2.45 1.77 -0.42 -0.06 -0.27 -3.92 -53.09 9.45 -45.69 -4.56 -43.18 -49.30 2.91 2.73 -10.41 -54.59
s 327315 338307 0.77 1.06 -0.23 NA NA 2.02 -0.38 -0.03 NA NA -60.72 8.56 -25.63 NA NA -56.38 2.64 1.53 NA NA 
s 327391 338295 NA 1.25 -0.20 NA NA NA -0.45 -0.03 NA NA NA 10.14 -22.28 NA NA NA 3.12 1.33 NA NA 
s 326133 338269 0.51 2.31 -0.19 NA -1.51 1.34 -0.84 -0.03 NA -2.41 -40.23 18.74 -21.29 NA -26.63 -37.36 5.78 1.27 NA -33.66
s 326373 338171 0.63 1.34 -0.19 NA -1.71 1.66 -0.49 -0.03 NA -2.73 -49.91 10.89 -21.22 NA -30.12 -46.35 3.36 1.27 NA -38.08
s 326784 338185 0.64 1.20 -0.22 0.51 -1.32 1.68 -0.44 -0.03 -0.15 -2.12 -50.59 9.72 -25.31 -2.56 -23.34 -46.98 3.00 1.51 -5.83 -29.51
s 327181 338027 0.57 NA NA 0.57 NA 1.50 NA NA -0.17 NA -45.17 NA NA -2.83 NA -41.95 NA NA -6.45 
s 327540 338025 NA NA NA 0.63 NA NA NA NA -0.16 NA NA NA NA -69.14 NA NA NA NA -43.59 
s 327220 337833 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
s 327423 337830 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
n 326345 338862 NA 2.12 NA -0.52 NA NA -0.56 NA -0.46 NA NA 48.26 NA -13.25 NA NA 5.12 NA 18.38 
n 326596 338891 0.74 1.29 -0.35 NA NA 1.51 -0.34 -0.20 NA NA -13.09 29.41 28.82 NA NA -13.08 3.12 -3.89 NA NA 
n 326821 338836 0.90 1.69 -0.29 -0.43 NA 1.86 -0.45 -0.17 -0.38 NA -16.07 38.55 24.34 -10.88 NA -16.05 4.09 -3.29 15.09 
n 327305 338744 0.84 1.33 -0.46 NA NA 1.73 -0.35 -0.27 NA NA -49.45 9.30 -38.91 NA NA -45.92 2.87 2.32 NA NA 
n 326302 338662 NA 1.66 NA NA -2.14 NA -0.44 NA NA -3.11 NA 11.61 NA NA -35.42 NA 3.58 NA NA -44.78
n 326592 338610 0.59 1.78 NA NA NA 1.55 -0.65 NA NA NA -46.66 14.39 NA NA NA -43.33 4.44 NA NA NA 
n 326848 338695 1.10 1.48 NA NA -2.56 2.25 -0.39 NA NA -3.71 -64.53 10.35 NA NA -42.34 -59.93 3.19 NA NA -53.53
n 327305 338633 NA 1.19 -0.25 NA NA NA -0.43 -0.04 NA NA NA 9.65 -27.87 NA NA NA 2.97 1.66 NA NA 
n 327419 338642 0.65 1.34 -0.16 NA -5.09 1.71 -0.49 -0.02 NA -8.15 -51.30 10.87 -18.42 NA -89.85 -47.64 3.35 1.10 NA -113.59
n 326229 338341 NA 1.15 -0.22 NA -2.60 NA -0.42 -0.03 NA -4.16 NA 9.31 -24.56 NA -45.88 NA 2.87 1.47 NA -58.00
n 326480 338376 0.69 1.52 NA 0.68 -1.62 1.82 -0.55 NA -0.20 -2.59 -54.68 12.33 NA -3.36 -28.58 -50.78 3.80 NA -7.66 -36.13
n 326870 338311 0.59 1.61 -0.25 0.70 -1.81 1.56 -0.58 -0.04 -0.21 -2.90 -46.87 13.02 -28.77 -3.48 -31.96 -43.53 4.01 1.72 -7.93 -40.40
n 327315 338307 NA 1.74 -0.34 NA NA NA -0.63 -0.05 NA NA NA 14.12 -38.37 NA NA NA 4.35 2.29 NA NA 
n 327391 338295 0.68 1.27 -0.28 NA NA 1.78 -0.46 -0.04 NA NA -53.57 10.32 -31.88 NA NA -49.74 3.18 1.90 NA NA 
n 326133 338269 0.63 1.30 -0.16 NA -1.84 1.67 -0.47 -0.02 NA -2.94 -50.21 10.51 -18.32 NA -32.41 -46.63 3.24 1.09 NA -40.97
n 326373 338171 0.71 1.44 -0.20 NA -2.10 1.86 -0.52 -0.03 NA -3.37 -55.82 11.65 -22.11 NA -37.13 -51.84 3.59 1.32 NA -46.95
n 326784 338185 0.84 1.89 -0.20 0.77 -1.54 2.22 -0.69 -0.03 -0.23 -2.47 -66.61 15.30 -23.10 -3.82 -27.21 -61.86 4.72 1.38 -8.71 -34.40
n 327181 338027 NA NA NA 0.62 NA NA NA NA -0.18 NA NA NA NA -3.08 NA NA NA NA -7.03 
n 327540 338025 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
n 327220 337833 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
n 327423 337830 NA NA NA 0.75 NA NA NA NA -0.22 NA NA NA NA -3.74 NA NA NA NA -8.52 
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w 326345 338862 NA 2.36 NA -1.02 -3.01 NA -0.62 NA -0.90 -4.37 NA 53.82 NA -25.79 -8.00 NA 5.71 NA 35.77 21.62
w 326596 338891 1.09 1.52 -0.50 NA NA 2.23 -0.40 -0.29 NA NA -19.31 34.74 41.44 NA NA -19.29 3.68 -5.60 NA NA 
w 326821 338836 0.82 1.88 -0.29 -0.43 -2.12 1.68 -0.50 -0.17 -0.38 -3.07 -14.54 42.95 23.78 -11.02 -5.62 -14.52 4.55 -3.21 15.29 15.18
w 327305 338744 1.04 1.39 NA NA NA 2.14 -0.37 NA NA NA -61.20 9.78 NA NA NA -56.83 3.02 NA NA NA 
w 326302 338662 NA 1.96 NA -0.36 -2.29 NA -0.52 NA -0.32 -3.33 NA 13.77 NA -3.14 -37.98 NA 4.24 NA -7.17 -48.01
w 326592 338610 0.76 1.50 NA NA -3.01 2.00 -0.55 NA NA -4.82 -60.14 12.15 NA NA -53.15 -55.85 3.74 NA NA -67.20
w 326848 338695 0.88 3.01 -0.29 NA -1.90 1.80 -0.80 -0.17 NA -2.76 -51.67 21.14 -24.70 NA -31.46 -47.98 6.52 1.48 NA -39.78
w 327305 338633 NA 1.23 -0.26 NA -1.80 NA -0.45 -0.04 NA -2.88 NA 9.93 -29.12 NA -31.81 NA 3.06 1.74 NA -40.21
w 327419 338642 NA 1.04 -0.25 NA NA NA -0.38 -0.04 NA NA NA 8.43 -28.55 NA NA NA 2.60 1.71 NA NA 
w 326229 338341 0.56 1.72 NA NA -2.05 1.47 -0.63 NA NA -3.27 -44.09 13.96 NA NA -36.10 -40.94 4.30 NA NA -45.63
w 326480 338376 0.67 1.49 NA 0.82 -2.03 1.75 -0.54 NA -0.24 -3.24 -52.60 12.11 NA -4.09 -35.73 -48.84 3.73 NA -9.32 -45.17
w 326870 338311 0.71 1.12 -0.36 0.75 -2.32 1.87 -0.41 -0.06 -0.22 -3.71 -56.10 9.07 -40.91 -3.70 -40.86 -52.09 2.80 2.44 -8.45 -51.66
w 327315 338307 0.70 1.30 -0.19 NA NA 1.85 -0.47 -0.03 NA NA -55.57 10.52 -21.19 NA NA -51.60 3.24 1.27 NA NA 
w 327391 338295 NA 1.44 -0.24 NA NA NA -0.52 -0.04 NA NA NA 11.67 -27.57 NA NA NA 3.60 1.65 NA NA 
w 326133 338269 0.57 0.90 -0.15 0.57 -1.98 1.50 -0.33 -0.02 -0.17 -3.17 -45.04 7.30 -16.66 -2.86 -34.91 -41.82 2.25 1.00 -6.52 -44.14
w 326373 338171 0.72 1.60 -0.19 NA -2.05 1.89 -0.58 -0.03 NA -3.28 -56.90 12.93 -21.34 NA -36.14 -52.84 3.99 1.27 NA -45.68
w 326784 338185 0.56 1.32 -0.13 0.61 -1.48 1.48 -0.48 -0.02 -0.18 -2.37 -44.57 10.70 -14.59 -3.01 -26.08 -41.39 3.30 0.87 -6.88 -32.97
w 327181 338027 0.58 NA NA 0.69 NA 1.52 NA NA -0.20 NA -45.56 NA NA -3.42 NA -42.31 NA NA -7.80 
w 327540 338025 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
w 327220 337833 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
w 327423 337830 NA NA NA 0.74 NA NA NA NA -0.22 NA NA NA NA -3.66 NA NA NA NA -8.35 
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Table A4.3.5: The most common prevailing wind direction for each grid square and fieldwork period at the baseline (B) 1980 to 2000, short-term future (F1) 2020 to 2040 

and long-term future (F2) 2060 to 2080. Changes in prevailing wind direction from the baseline are indicated in italics. Each fieldwork period represented by a three letter 

code indicated in 3.2.1 table 1. Grid square coordinates as follows; 1) 337547.667925258, 326335.303968053, 2) 337547.667925258, 328535.303968053, 3) 

339747.667925258, 328535.303968053 , 4) 339747.667925258, 326335.303968053 . 

 N-D-J J-F-M M-A-M J-A-S S-O-N 
Grid square B F1 F2 B F1 F2 B F1 F2 B F1 F2 B F1 F2 
1 SW SW SW SW NW SW NW SW NW SW SW NW SW SE SW 
2 SW SW SW SW NW SW NW SW NW SE SW NW SW SW SW 
3 SW SE SW SW NW SW NW SW NW SE SW NW SW SW SW 
4 SW SE SW SW NW SW NW SW NW SE SW NW SW SW SW 
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Appendix 5: Supplementary material for chapter 6 – Working with 

end users through iterative feedback improves the outcomes of 

climate impact models for nature conservation 

 

Participant consent 

1. Please indicate your agreement below 

a. I agree with the above statements 

b. I disagree with the above statements 

2. Do you consent to your responses to this questionnaire beign used within the project to 

develop the models/tools? 

a. Yes 

b. No 

3. Do you consent to your anonymised responses, including quotes, to be used in my thesis 

chapter, research presentations and any subsequent journal publications? 

a. Yes 

b. No 

About you 

4. Which site do you work at? 

a. Abergwesn Common (Brecon Beacons) 

b. Chirk Castle 

c. Migneint (Snowdonia) 

d. Other 

5. What is your job title? 

a. General Manager 

b. Head Ranger 

c. Ranger 

d. Gardener 

e. Other 

6. Today’s date 

a. Date input 

National Trust conservation management and decision making activities 

7. What do you use currently to plan work on site (e.g. conservation, for visitors, general 

maintenance) and help make decisions surrounding management. For example, this may 
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include details of policy, funding reports, reports from outside bodies e.g. Natural Resources 

Wales, visitor number data etc. that are used to help inform decisions. 

a. Answer input 

8. What is the time period planned for when thinking about site/conservation work (e.g. 

planning horizons)? 

a. Answer input 

9. How useful do you find these current methods when planning/undertaking 

site/conservation work? 

a. Extremely useful 

b. Somewhat useful 

c. Neutral 

d. Not very useful 

e. Not useful at all 

f. No opinion/I don’t know 

The results – relating to the results for each data chapter 

10. If you were to use this map/tool to make management decisions, how would you find it 

useful? How easy is it to read and understand the information? 

a. Answer input 

11. Is you were to use this map/tool to make management decisions, in what ways would you 

find it to not be useful? What do you dislike about the results? 

a. Answer input 

12. Is there anything you were hoping to receive that you did not? If yes, please provide details. 

a. Answer input 

13. Is the information attached to the maps/tools regarding methods/background sufficient and 

clear? 

a. Extremely clear and sufficient 

b. Moderately clear and sufficient 

c. Neutral 

d. Moderately unclear and sufficient 

e. Extremely unclear and sufficient 

f. No opinion/I don’t know 

14. If the answer to Question 13 was ‘unclear’ please give details why. 

a. Answer input 
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15. Would you like any additional information regarding the map/tool you received? If yes, 

please provide details. 

a. Answer input 

16. Do you think you would use maps/tools similar to these/this if provided to you to support 

conservation/site management planning and decision making? 

a. Definitely 

b. Likely 

c. Natural 

d. Unlikely 

e. Not at all 

f. No opinion/I don’t know 

17. Would you prefer to be provided with the maps with analysis already completed or conduct 

the analysis yourself (with training opportunities)? 

a. Maps and analysis already completed 

b. Conduct analysis myself (after/during training) 

18. Do you have any further comments? Are there any additional questions we should have 

asked? 

a. Answer input 

19. Do you have any questions regarding anything about the project? 

a. Answer input
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Table A5.1: Themes and explanation of these themes identified in qualitative questionnaire responses. 

Question Themes used as ‘highlights’ in Taguette 
Q7: What do you 
currently use to plan 
work on site (e.g. 
conservation, for visitors, 
general maintenance) 
and help make decisions 
surrounding 
management? For 
example, this may include 
detail of policy, funding 
reports, reports from 
outside bodies e.g. 
Natural Resources Wales, 
visitor number data etc. 
that are used to help 
inform decisions. 

National Trust 
(specific 
information) – 
the information 
used to plan 
work that is 
developed by 
the National 
Trust within 
properties and 
the Trust as a 
whole. 

Local – from 
National Trust 
staff and local 
communities/g
roups, 
including local 
involvement 
and local 
knowledge. 

Teamwork – 
within local 
and regional 
National Trust 
teams 

Priorities – 
depending on 
current need, 
funding, 
ongoing 
management 
and reacting to 
events. 

Continuous 
observations – 
working 
reactively and 
using ongoing 
data collection 
to inform 
management. 

Engagement – 
with 
volunteers and 
visitors. 

External 
organisations – 
such as 
Natural 
Resources 
Wales, Welsh 
Government 
and local 
councils. 

Data – from 
National Trust 
work, 
commissioned 
work, external 
surveys, local 
knowledge, 
past work. This 
highlight does 
overlap some 
others 
(National 
Trust, local 
knowledge, 
external 
organisations), 
but showcases 
how important 
data is in 
management 
decision 
making. 

Q8: What is the time 
period planned for when 
thinking about 
site/conservation work 
(e.g. planning horizons)? 
Please provide this 
information for all 
activities which are 

Short term – 
categorised as 
one to three 
years (National 
Trust funding 
cycles). 

Medium term 
– categorised 
as three to 10 
years. 

Long term – 
categorised as 
10 years plus. 

No time scale 
stated – where 
work is done 
on an ad-hoc 
basis. 

Limitations – 
such as 
funding, 
biological 
constraints, 
visitors, access. 

General – 
including 
further 
information 
about how 
time scales are 
planned and 
used. 
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applicable to you 
site/area of work. 
Q10: If you were to use 
this map/tool to make 
management decisions, 
how would you find it 
useful? How easy is it to 
read and understand the 
information? 

Useful – how 
the results 
could be useful 
to National 
Trust staff for 
conservation 
management. 

Unsure – how 
recipients are 
unsure about 
the results 
presented. 

Specifics – how 
specific results 
could be 
useful. 

Understanding 
– the level of 
understanding 
gained from 
the results 
presented. 

Improvement 
suggestions – 
how the results 
presented 
could be more 
useful to 
National Trust 
staff. 

   

Q11: If you were to use 
this map/tool to make 
management decisions, in 
what ways would you find 
it to not be useful? What 
do you dislike about the 
results? 

Scale – how the 
scale 
(temporal, 
spatial and 
within 
management) 
results are 
presented at 
makes them 
less useful for 
conservation 
management 
decision 
making. 

Testing – how 
to use data to 
test the results 
(linked to 
clarification). 

Clarification – 
a need for 
better 
understanding 
of what the 
results mean, 
otherwise they 
are not useful. 

Management 
need – results 
are not useful 
to sites that 
need 
management 
regardless of 
future risk. 

Improvement 
suggestions – 
how the results 
presented 
could be more 
useful to 
National Trust 
staff. 

   

Q12: Is there anything 
you were hoping to 
receive that you did not? 
If yes, please provide 
details. 

No – recipients 
received all 
data they 
needed. 

Scale – results 
showing 
different 
spatial scales. 

Data – further 
information of 
local climate 
data and risks. 

Explanation – 
further 
explanation of 
results. 

    

Q15: Would you like any 
additional information 
regarding the maps/tools 

No – recipients 
received all 
information 
they needed. 

Scale – further 
detailed scale 
results. 

Data – 
comparisons 
with other 
datasets. 

Understanding 
– further 
explanation of 
results in 
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you have received? If yes, 
please provide details. 

included 
narrative to 
aid 
understanding. 

Q18: Do you have any 
further comments? Are 
there any additional 
questions we should have 
asked? 

No – recipients 
did not have 
further 
comments or 
examples of 
additional 
questions. 

Land 
management – 
the influence 
of land 
management 
on results. 

Biggest threats 
– concerns 
around 
areas/species 
at greatest 
risk. 

     

Q19: Do you have any 
questions regarding 
anything about the 
project? 

No – recipients 
did not have 
further 
questions 
about the 
project. 

Communicatio
n – how the 
project will be 
communicated 
to 
stakeholders. 

Accessibility – 
how the 
results/data 
will be 
available to 
stakeholders. 
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