
 

 

 

P
R

IF
Y

S
G

O
L

 B
A

N
G

O
R

 /
 B

A
N

G
O

R
 U

N
IV

E
R

S
IT

Y
 

 

Challenges in Developing a Real-time Bee-counting Radar

Morton Williams, Samuel; Aldabashi, Nawaf; Cross, Paul; Palego, Cristiano

Sensors

DOI:
https://doi.org/10.3390/s23115250

Published: 01/06/2023

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA):
Morton Williams, S., Aldabashi, N., Cross, P., & Palego, C. (2023). Challenges in Developing a
Real-time Bee-counting Radar. Sensors, 23(11). https://doi.org/10.3390/s23115250

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or
other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal
requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private
study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to
the work immediately and investigate your claim.

 20. Mar. 2024

https://doi.org/10.3390/s23115250
https://research.bangor.ac.uk/portal/en/researchoutputs/challenges-in-developing-a-realtime-beecounting-radar(9d4559be-866b-42b6-8d8e-d68c523d7fb5).html
https://research.bangor.ac.uk/portal/en/researchers/samuel-morton-williams(c65b61b7-f9fe-4303-97a2-c3f406e0cecb).html
https://research.bangor.ac.uk/portal/en/researchers/paul-cross(25d03c0e-a54e-4482-915c-f02f5aae7985).html
https://research.bangor.ac.uk/portal/en/researchers/cristiano-palego(7fb9d04a-52fc-4188-a0c9-c0907eac4c10).html
https://research.bangor.ac.uk/portal/en/researchoutputs/challenges-in-developing-a-realtime-beecounting-radar(9d4559be-866b-42b6-8d8e-d68c523d7fb5).html
https://research.bangor.ac.uk/portal/en/researchoutputs/challenges-in-developing-a-realtime-beecounting-radar(9d4559be-866b-42b6-8d8e-d68c523d7fb5).html
https://doi.org/10.3390/s23115250


 

 
 

 

 
Sensors 2022, 22, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors 

Article 1 

Challenges in Developing a Real-time Bee-counting Radar. 2 

Samuel M Williams 1, Nawaf Aldabashi2, Paul Cross3 and Cristiano Palego2* 3 

1 School of Computer Science and Engineering, Bangor University. eeu816@bangor.ac.uk 4 
2 School of Computer Science and Engineering, Bangor University. 5 
3 School of Natural Sciences, Bangor University 6 
* Correspondence: c.palego@bangor.ac.uk  7 

Detailed within is the attempt to implement a real-time radar signal classification system to monitor 8 

and count bee activity at the hive entry. There is interest in keeping records of the productivity of 9 

honeybees. Activity at the entrance can be a good measure of overall health and capacity, and a 10 

radar-based approach could be cheap, low power, and versatile beyond other techniques. Fully au- 11 

tomated systems would enable simultaneous, large-scale capturing of bee activity patterns from 12 

multiple hives, providing vital data for ecological research and business practice improvement. Data 13 

from a Doppler radar was gathered from managed beehives on a farm. Recordings were split into 14 

0.4-second windows and Log Area Ratios (LARs) were computed from the data. Support vector 15 

machine models were trained to recognize flight behavior from the LARs, using visual confirmation 16 

recorded by a camera. Spectrogram deep learning was also investigated using the same data. Once 17 

complete, this process would allow for removing the camera and accurately counting the events by 18 

radar-based machine learning alone. Challenging signals from more complex bee flights hindered 19 

progress. System accuracy of 70% was achieved, but clutter impacted the overall results requiring 20 

intelligent filtering to remove environmental effects from the data. 21 

Keywords: 1; Apis Mellifera 2; Honeybee 3; Radar 4; Machine Learning 5; Support Vector Machine 22 

6; Linear Predictive Coding 7; Log Area Ratios 23 

 24 

1. Introduction 25 

Wild bees and honey bees both contribute more than $2900 ha-1 each to the produc- 26 

tion of insect-pollinated crops [1]. They are seen as critical for achieving sustainable de- 27 

velopment goals while being too poorly understood to capitalize on their potential [2]. 28 

The decline of managed honey bees and their keepers, as well as wild hives, has been 29 

documented [3], [4]. Pressure is mounting to manage hives more effectively and with 30 

more consideration for their needs. Automating the counting of activity at the entrance to 31 

hives will provide detailed, live, and contextual information about their health and 32 

productivity. 33 

Bee-counting devices capable of providing accurate data suitable for scientific in- 34 

quiry are few. Most operate by using a type of camera to track bee traffic coming to and 35 

from the hive entrance [5]. Cameras can be both visual or infrared, and some studies have 36 

utilized capacitive sensors [6], [7]. Radar has been used to monitor the signals reflected 37 

from bees and radar microphones to track bees through hive walls without disturbance 38 

[8], [9]. However, fully automated, low-impact systems to achieve counting goals do not 39 

currently exist, with most systems requiring human input or modifications of the hive 40 

itself.  41 

Previously published work undertaken by the authors suggests that radar systems 42 

can provide cheap, reliable, and simple-to-deploy bee counters [10], [11]. This work differs 43 

in that it expands the problem to include background signal removal. In addition, the 44 

work uses multiple hives across different days to determine whether the system is resili- 45 

ent to the effects of weather change and clutter differences between hives. 46 
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Similar technologies have been used to monitor insect activity. Gaussian models have 47 

been used to address misreadings when counting bee behavior activity using RFID tags 48 

[12]. RFID has also been used with machine learning to determine insect species from ac- 49 

tivity at the entrance [13]. RFID is a powerful tool but relies on both tagging the bees and 50 

modifying the entrance of a beehive, limiting its use for wild and managed bees without 51 

disturbing behavior. 52 

Zenith-pointing linear-polarized small-angle conical-scan (ZLC) entomological ra- 53 

dars have been used to classify insect species based on weight, wing beat, and body 54 

length-to-width ratio [14]. X-band radar has been used alongside Support Vector Regres- 55 

sor algorithms to estimate insect mass based on each insect’s radio cross-section (RCS 56 

[15].) Radar has been demonstrated as a powerful tool for entomological purposes [8], 57 

[16]. 58 

Machine learning using Doppler radar data captured from bees has not been other- 59 

wise investigated. Human activity has been classified using micro-Doppler signatures and 60 

machine learning [17]. Radar and machine learning have been investigated together for 61 

other animals, such as radar imagery being used to detect bird roosts using convolutional 62 

neural networks [18]. Lameness in farm animals has been automatically detected using 63 

machine learning classification of radar signatures [19]. The lack of research targeting bees 64 

using similar techniques leaves room for work tracking bee activity at the hive entrance 65 

using radar. 66 

Bee movement tracking has been investigated using machine learning on data cap- 67 

tured by a camera [5], [10]. However, radar systems require less processing power, are 68 

cheaper, and can be more resilient to weather interference.     69 

 This study aimed to develop a real-time bee counting radar by integrating a Rasp- 70 

berry Pi © processor with a custom 5.8GHz Doppler radar. This system fills a gap by al- 71 

lowing accurate counting of bee activity at the entrance of the hive. However, complex or 72 

overlapping bee flights created signals that could not readily be differentiated into the 73 

target classes. These challenges became the focal point of the study, providing a basis for 74 

continued development once these barriers are cleared. 75 

2. Materials and Methods 76 

2.1. Radar Receiver and Modelling Approach 77 

The radar module supporting the present effort was similar to the 5.8 GHz continu- 78 

ous-wave (CW) radar Printed Circuit Board (PCB) deployed in [20] and is visible in Figure 79 

1(a). The PCB module integrated an in-phase/quadrature (IQ) mixer for the discrimination 80 

of positive and negative Doppler shifts. The IQ mixer fed 2 channels with identical 60-dB 81 

custom-designed Variable Gain Amplifiers (VGAs) and 100-dB common mode rejection 82 

ratio (CMRR) for amplification of the Intermediate Frequency (IF) signal. The VGAs ad- 83 

ditionally included a first-order low-pass filter limiting the IF output noise outside of the 84 

~DC-408 Hz range. The VGA’s output was fed to a laptop using an external USB sound 85 

card with a 44.1 kHz sampling rate. 86 

   87 
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  (a) (b) 

Figure 1. (a) The radar used during this experiment and (b) Experimental setup (radar encircled in 88 
red) and an example of a standard hive and nuc (nucleus colony) box. 89 

The received radar signals were well approximated through a simple model overlap- 90 

ping scattering from uniform speed translation of bee body and harmonic oscillation of 91 

an adjacent smaller scatterer, which mimicked wingbeat motion: 92 

 93 

𝑥𝑟(𝑡) = 𝐴1 cos (2𝜋
2

𝜆
𝑅) +𝐴2 cos{2𝜋

2

𝜆
[𝑅 + 𝐴𝐻cos(𝜔𝐻𝑡)}  (1) 94 

 95 

There, A1 and A2 represent the amplitude for the baseband body translation and wingbeat 96 

motion components, respectively, and are a measure of the respective radar cross sections 97 

(RCSs); A1 and H represents the wingbeat amplitude and angular frequency, respectively; 98 

 represents the incident signal wavelength determined from the 5.8GHz carrier; R repre- 99 

sents the radar-target range and was effectively independent of wingbeat motion in the 100 

extracted micro-doppler signatures scenarios where 𝐴𝐻 <<𝐴2<<𝐴1 . For typical experi- 101 

mental values of 𝐴2=𝐴1/5=0.2, AH~1 cm, R=0.1-2m, H=2(150-230) Hz, ~5 cm, and bee 102 

speed ~0.2-2 m/s the body Doppler shift ranged between 2-20 Hz while sidebands from 103 

phase modulation in (1) were well visible up to the 400 Hz frequency range [20]. Con- 104 

versely, setting 𝐴1=0, and relaxing the 𝐴𝐻<<𝐴2 condition encodes an explicit dependence 105 

of range onto harmonic motion and enabled (1) to be used to model: the effect of radar 106 

shaking from wind (H 5 Hz); or mechanical coupling with a nearby (e.g. laptop fan) 107 

vibration source (H =50 Hz). While (1) made higher frequency sidebands plausible, their 108 

prominence was expected to fade with increasing range because the VGAs output atten- 109 

uates the IF signal components beyond 408 Hz. 110 

 A raw initial interpretation of the data was achieved by investigating the time- 111 

stamped radar signatures recorded of bees against a camera recording of transpiring 112 

events. Spectrogram representations of this data allowed for an initial assessment of the 113 

quality and detail recorded by the radar. Labels were provided for the events by a human 114 

observer. 115 

 This data was then processed by extracting features in the form of Log Area Ratios 116 

[21]. These features were the dataset used to train Support Vector Machine models to label 117 

new samples recorded by the radar [22]. The predicted labels were compared with those 118 

provided by the observer to provide an estimate of accuracy.  119 

 A final interpretation of results was achieved by comparing the accuracy of the gen- 120 

erated models when predicting all labels for a separate, new recording against labels pro- 121 

vided by the observer. This was to measure the effects of changes in environmental con- 122 

ditions on the ability of the model to predict correctly. 123 

 124 
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2.2. The Processing Equipment 125 

 The computing system was designed to minimize both cost and power consumption 126 

and was centred on a Raspberry Pi 4B. Without an AI Accelerator or equivalent, the Pi 127 

was not suitable for a deep learning approach. Instead, this system would leverage Sup- 128 

port Vector Machines (SVMs [22]) to match previous work [11], [20]. 129 

 The sampling time was limited to 0.4 seconds. This window represents the smallest 130 

observed complete event in the original dataset. Even within 0.4 seconds, most recorded 131 

samples included one or more hovering bees as well as the other classes. In 4.4% of sam- 132 

ples, both an inward and outward bee event took place within 0.4 seconds. This is true of 133 

overlapping inward and outward bees as well. A smaller percentage (0.18%) contained 134 

multiple overlaps such as two inward and one outward. 135 

 Other research studies, without machine learning or automatic counting, have 136 

placed the radar onto the hive surface, facing outward [8], [23], [24]. The approach was 137 

chosen to overcome the following challenges of such placements: 138 

• It removed the need to modify the hive which is advisable given that the system 139 

may be used on wild bees. 140 

• Bees crawl at the entrance and may cover either antenna, as in Figure 2. 141 

• Antennae have a radiation pattern that may cause flights to be lost from the de- 142 

tection cone if, for example, they walk to the edge of the hive before take-off. 143 

• While offering some protection against hovering bees, surface-mounted radar 144 

may still be obscured more infrequently. 145 

• Limited research suggests that bees may be sensitive to the frequencies used and 146 

the equipment will function as a source of heat which may affect behavior [25], 147 

[26]. 148 

 149 

Figure 2. A thermal imaging camera capture of bees crawling over the entrance of a busy hive. 150 

 The position in this study ensured that the entire front surface of the hive was in 151 

view of the radar, was less invasive and the setup quicker. Hovering bees and weaker 152 

power reflection at the entrance of the hive remained an issue because of the free space 153 

between the radar and hive entrance.  154 

 Challenges were expected from the outset because there was no effort to standardize 155 

bee flights or control flight direction. Bees were free to leave in any direction, even crawl- 156 

ing along the edge of the hive until take-off on a side face. Similarly, on approach, bees 157 

could arrive from any angle and could be as quick or slow to enter as needed. When the 158 

entrance was congested, bees would often hover on arrival until there was space to enter, 159 

mimicking other hovering bees and obfuscating other activity when flying close to the 160 

antennae. The free-flying bees created complex radar samples that could not be intuitively 161 

labeled solely on signature structure alone. 162 
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 Initial data were gathered across three days, consisting of twelve recordings with a 163 

maximum duration of 20 minutes each. Different hives were used during each day. Re- 164 

placing the radar between sample gathering periods was not precise because the system 165 

needed to be flexible, so long as it was placed within the expected range (1-2 meters) of 166 

the hive as in Figure 1. When working with wild colonies it would not be possible to guar- 167 

antee the same distance or angle, nor would it be advisable to force such placement if 168 

minimal disturbance was desired. 169 

Each radar stream was accompanied by a video from a digital camera. The video 170 

recording was initiated first, and the radar data was aligned by the operator counting 171 

down to the commencement of the radar recording. This was suitable to align within half 172 

a second. Two or three clean bee events would, by matching video frames to timestamps, 173 

allow complete alignment. 174 

This source dataset was gathered to train the algorithms. Once trained, these would 175 

then be used to label entire videos. The operator would provide corrections of the sample 176 

labels where needed and the resultant datasets fed into the training data pool. 177 

The machine learning models would be expected to label entire videos. Therefore, an 178 

additional dataset was later included that featured one, full-length recording that was dis- 179 

aggregated into 0.4-second samples, and this was labeled and included in its entirety. 180 

An overlapping window of 0.1 seconds was used to extract samples from consecutive 181 

or extended events, such as long hovering flights and background samples. A flexible ap- 182 

proach was used when samples were not an ideal length for subdivision, modifying the 183 

final overlap to ensure all source data was used. For example, a signal of 0.6 seconds 184 

would be split into two 0.4-second samples with an overlap of 0.2 seconds. 185 

Feature extraction for the primary system was achieved by using Log Area Ratios 186 

(LARs) derived from Linear Predictive Codes (LPCs)[21]. LPCs and their derivatives are 187 

a means of expressing the spectral envelope of a signal in compressed form. Their use in 188 

machine learning for radar data is relatively new and has been used to successfully clas- 189 

sify other, non-acoustic, signals [17], [27], [28].    190 

The LARs were used to train a support vector machine with Bayesian hyperparame- 191 

ter optimization. Five different models were trained: 192 

• Four-way classification. 193 

• Background samples versus all others. 194 

• Hover samples versus in and out. 195 

• Three-way classification (hover, in, and out.) 196 

• Binary classification (in and out.) 197 

These models were chosen to allow multiple potential classification pathways. Either 198 

four-way brute classification, or splitting the problem into multiple, potentially easier, 199 

problems as demonstrated in Figure 3. These separate pathways were developed to max- 200 

imize the opportunity for binary classifications which can favor SVM models [29], [30]. 201 

To provide context, similar models to those in the authors’ previous work were used 202 

[11]. This was a DenseNet deep learning architecture with a custom head network [31]. 203 

This network would operate on spectrograms generated from the 0.4-second samples. 204 

While unlikely to be lightweight enough to run on portable hardware, this model would 205 

provide a crucial understanding regarding the suitability of the data for machine learning. 206 

 207 
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 208 
Figure 3. Three prediction pathways (P1, P2, P3) toward labeling samples. Continued binary classi- 209 
fications may favor Support Vector Machine (SVM) architecture over multi-class problems. 210 

 211 

 212 

3. Results 213 

3.1. Preliminary Results 214 

Generated spectrograms of the signal samples provided evidence that signatures 215 

would have less information above 300Hz (see Figure 4). This would exceed the typical 216 

flight speed of a bee at 8m/s. As image processing networks require small inputs of no 217 

more than a few hundred pixels square, the authors limited the upper range of spectro- 218 

grams to 300Hz and then 150Hz to maximize image quality. The change to 150Hz was 219 

initiated as accelerating and decelerating bees were always much slower than their cruis- 220 

ing speed and spectrograms contained little information above 150Hz. Any information 221 

here was lost in the contrast limits of the generated images and would only penalize the 222 

models. Empty space in already small images would reduce the resolution of the lower- 223 

frequency, more powerful signatures. 224 

 225 

  

(a) (b) 

Figure 4. (a) A complete signal sample (outward bee) spectrogram limited to 150 Hz matching the 226 
images that were inputted into the deep learning models. (b) A larger range, high contrast spectro- 227 
gram of the same signal shows a paucity of information beyond 150 Hz.   228 

However, results from the DenseNet deep learning approach were poor, with the 229 

best accuracy being 46.73%. Given the four-way nature of the problem, this is significantly 230 

better than a random choice, but the results warranted further investigation. 231 
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By using LARs it was possible to achieve a preliminary accuracy of 75.12% in a four- 232 

way scenario (Figure 5). In all cases, a 9:1 split of training and testing data was used and 233 

the results were gathered as an average of tenfold cross-validation. The Figure shows the 234 

outputs of running the experiment with three sets of data: 235 

• Set A: The single channel, manually gathered Doppler data from the radar. 236 

• Set B: The dual channel, manually gathered IQ data from the radar. 237 

• Set C: The dual channel, complete IQ dataset including both the manual set and 238 

the full recording breakdown dataset. 239 

 240 

Figure 5. Results from preliminary machine learning models using Log Area Ratio (LAR) imple- 241 
mentation.  242 

 243 

Set C would be the dataset used in the testing phase of the work. This shows a per- 244 

formance penalty associated with fully captured datasets rather than hand-chosen sam- 245 

ples. This is not unexpected, as more difficult samples (such as those with overlapping 246 

events) were required to be included. The results show that complete IQ datasets are more 247 

suited for machine learning than single-channel results. 248 

Separating the problem into smaller challenges did not create better results. While 249 

background prediction is good (91.59%) this would then be followed by either hover pre- 250 

diction (83.19%) or three-way prediction (78.65%), together these would fall below base 251 

prediction accuracy (75.12%). The targets are the labels generated by the final classifica- 252 

tion, the inward and outward bees. Knowledge of background and hovering signals is 253 

useful but is not the goal of this work. 254 

 255 

3.2. Exploring the Weaker Results 256 

The weaker-than-expected results spurred a further investigation into the spectro- 257 

grams generated. Complex signals, difficult to classify, became apparent due to the free- 258 

flying nature of the targets. Figure 6 shows an ideal sample of four consecutive outward 259 

flights of bees, which quickly accelerate toward the radar before passing by in proximity 260 

as confirmed by video recording. The first two flights overlap on the spectrogram, hin- 261 

dering the ability of the machine learning to count them separately as they exist in one 262 

0.4-second window. 263 

 264 
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(a) (b) 

Figure 6. (a) Image showing the trajectories of four bees and (b) spectrogram recording of this event. 265 
The first two overlapped, limiting attempts to separate them. 266 

However, not all flights were clean. Figure 7 shows both a visual record and a spec- 267 

trogram of complex overlapping events. These events are: 268 

1. Take off for a single bee. 269 

2. Flight of the first bee to the right and behind the radar. 270 

3. A hovering bee emerges from under the radar and flies off-screen to the left. 271 

4. Vertical take-off of two bees, one does not approach the radar. 272 

5. The second of the two bees loops, increasing speed, and exits the frame. 273 

6. The inward bee from the screenshot appears. 274 

7. The first of the three bees in the screenshot takes off. 275 

8. Two more bees take off after the first. 276 

9. Closest approach of the exiting bees. 277 

10. Inward bee enters the hive. 278 

11. The last view of the exiting bees, flying away from the radar both left and right. 279 

 280 

 

  

(a) (b) 
Figure 7. (a) A screenshot of the video recording of an event and (b) the corresponding spectrogram 281 
representation of the signal, showing complex overlapping elements. 282 
 283 

While the signal happened across eight seconds and would be broken down into 284 

smaller, easier-to-classify samples, there is a paucity of information when multiple over- 285 

lapping events took place. Specifically, between events 7 and 10 there is a compounding 286 

of the signals, justifying that the spectrogram approach would be met with failure. 287 
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Some events were too similar in the target frequencies to separate visually. An exam- 288 

ple of these is provided in Figure 8. The first event (a) is of a hovering bee that moves both 289 

towards and away from the radar with variable speed. The second event (b) is two inward 290 

bees flying towards the entrance of the hive, however, there is a sudden uplift of wind 291 

which makes their flight difficult, and they struggle to fly along a fixed path. 292 

 293 

  

(a) (b) 

Figure 8. Two signals (a) showing a hovering bee signal and (b) showing an inward bee signal. 294 

Figure 9 shows three hovering bees, none of which enters the hive or leaves the area 295 

during the segment. At 0.4, 0.75, and 1.5 seconds some examples are like the outward 296 

signals present in the ideal sample. Multiple hovering bees in a signal recording were 297 

common. 298 

 299 

Figure 9. A hovering signal of three bees shows similarities to outward bee signals. 300 

These signals are a close visual match to other, less ideal outward signals. In the sam- 301 

ples collected, there were matches between all four classes. A spectrogram deep learning 302 

approach would encounter a point of no improvement due to the restraints of the visual- 303 

ization format. In the future, as this dataset is expanded, the visual overlap will continue 304 

to grow.  305 

Given this limitation, questions emerged regarding the signal compression tech- 306 

niques and mild success. To understand how the data allowed the models to perform well, 307 

several exploratory investigations were undertaken. 308 

The major disparity between these results and others found in literature was the 309 

number of LARs used in this work. It is common to expect 10 or fewer LP coefficients 310 
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(equivalent in number to LARs) for each small window, itself less than 100 milliseconds 311 

[17]. 312 

In contrast, the models required that the 400-millisecond signal not be subdivided, 313 

and as such, the number of coefficients climbed at first to 240 per window for a 44.1KHz 314 

sample rate and 100 per window for a down-sampled 3.5KHz rate. This high number of 315 

coefficients is problematic. As the number of coefficients increases the algorithm quickly 316 

includes noise from the source.  317 

Using the full number of coefficients, accuracy response as a function of the sample 318 

rate was assessed. The results are presented in Figure 10. This shows that accuracy re- 319 

quired a sampling rate of greater than 3KHz to achieve a plateau of growth. The exception 320 

to this was predicting background and binary signals which had a strong response from 321 

any sampling rate, expected as these are simpler predictions.  322 

 323 

Figure 10. Accuracy versus sampling rate across the different prediction pathways, showing that 324 
accuracy changes in response to varying the sampling rate of the signal. 325 
 326 

To investigate signal sub-division to match other works in literature, the Raspberry 327 

Pi © was first benchmarked to confirm limits to the number of coefficients that could be 328 

used. The results are presented in Table 1 and ‘times required’ have been measured to 329 

include running a prediction. This is to ensure the process happens faster than the 0.4- 330 

second window. 331 

Table 1. Possible sub-window sizes on the Raspberry Pi © and the maximum number of coefficients 332 
per window possible. 333 

Sub-window size Encoding limit 
Total number of features 

per channel 
Time required 

40ms 76 760 350ms 

50ms 84 672 348ms 

80ms 96 480 349ms 

200ms 110 220 352ms 

400ms (full window) 240 240 351ms 

 334 

Generating many coefficients for a 0.4-second window is computationally taxing. By 335 

using multi-core processing to handle each channel separately, the Raspberry Pi could 336 

encode 240 LARs in a 0.35-second window. 337 

With these limits, a benchmarking routine was created to determine accuracy as a 338 

measure of the sub-window size and number of coefficients. The experiment was also 339 

conducted when downsampling the signal to 3KHz and 1KHz to measure whether lower 340 

frequency components become more important when sub-dividing the window. 341 
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The findings are presented in Figure 11, demonstrating that subdivision of the sam- 342 

ple window decreases accuracy. For completeness, all sub-window lengths with the full 343 

240 LARs are included, which would not be possible to run in real-time on the Raspberry 344 

Pi. Even with all coefficients available, LPC derivative machine learning accuracy de- 345 

creases as the signal is segmented. As LPCs are compression techniques it can be under- 346 

stood that segmenting the signal further decreased the information in each resulting win- 347 

dow. A comparison would be the segmentation of four similar spoken words into small 348 

time windows which would decrease the overall context included as opposed to encoding 349 

the entire words with one compression window. 350 

 351 

 352 
Figure 11. Results from sub-windowing the signal with differing coefficient numbers. Includes ac- 353 
curacy at 44.1KHz sampling rate and change in accuracy at both 3KHz and 1KHz. At 1000Hz some 354 
window/coefficient combinations could not be run due to insufficient data. 355 

 356 

It became clear that there were either high-frequency and/or low-power components 357 

to the signals that were not easily shown on a spectrogram. These elements were crucial 358 

for machine learning success. The signal could not be further segmented without decreas- 359 

ing accuracy. Together, these findings supported that these components are being ob- 360 

scured by background noise.  361 

It had been an expected evolution of the work to begin creating filtering algorithms 362 

to strip out the clutter associated with outdoor recordings in variable weather. However, 363 

the complexity of the filters will now become more challenging. Preserving complex pat- 364 

terns while removing the effects of wind and other clutter will be challenging. 365 

However, without filtration, the machine learning models would be unlikely to adapt 366 

to new recordings. The existing data was recorded as subsets each from a single or group 367 

of videos, each with its own setups and environmental conditions. This could be intro- 368 

ducing noise into the dataset that meant models were unprepared for new sets of data 369 

from previously unseen conditions. 370 

The following question was whether leaving the sampling rate at the maximum 371 

44.1KHz was introducing needless noise that was affecting the feature encoding stage. 372 

Another routine was designed to measure how accuracy reflected the number of coeffi- 373 

cients at differing sample frequencies. Lowering the sampling rate decreases accuracy, as 374 

shown in Figure 12. However, at lower sampling frequencies accuracy requires fewer en- 375 

coding coefficients. A notable plateau is present at 100 coefficients or more with a sam- 376 

pling frequency of 3.5KHz, followed similarly by other sampling frequencies with the 377 

same number of coefficients.  378 

 379 
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Figure 12. Accuracy versus the number of encoding coefficients for a range of sampling frequencies. 381 
Legend indicates sampling frequency in Hz. When using a 1.5KHz sampling rate, it was not feasible 382 
to include large numbers of coefficients as the data became sparse. 383 

 384 

While these results compare poorly to allowing an unrestricted sampling frequency, 385 

they show that the models require fewer LARs at lower frequencies to achieve maximum 386 

accuracy. This could indicate that the models may have been learning more general pat- 387 

terns in the data when given lower sampling frequencies to work with. When running the 388 

final tests, the results of lower-frequency, fewer-coefficient encoding would be included 389 

to measure whether models could become more generalized. 390 

Now that it had been determined that the models were not influenced by noise in- 391 

cluded with an unrestricted sampling rate, it became prudent to analyze the signals in 392 

greater depth. LPCs are a compressed form of the spectral envelope of a signal. As such, 393 

it was useful to generate the spectral envelope for each signal and produce a standard 394 

deviation per class. In Figure 13, the standard deviation of all spectral envelopes in each 395 

class is shown up to 1.5KHz. Standard deviation is shown as averaging spectral envelopes 396 

would remove most peaks. 397 

 398 

 399 
Figure 13. The standard deviation of the spectral envelopes for each class. 400 

 401 

The standard deviation in the background class is the flattest, except for several peaks 402 

centered at 1KHz which is faint noise in the signals, often masked by the bees themselves, 403 

caused by the recording equipment. 404 
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The bees themselves are visible as a strong peak of deviation at sub 150Hz frequen- 405 

cies, matching the signatures seen on spectrograms. Outward signals have a peak slightly 406 

higher in frequency, which can be explained by bees rapidly accelerating away from the 407 

hive. Inward bees decelerate and hovering bees are unlikely to reach a maximum speed 408 

near the hive. Notable peaks can be seen at 400Hz and 800Hz. Smaller peaks can be seen 409 

throughout, some more pronounced in one class over others but these are minor.  410 

 411 

3.3. Testing Stage 412 

The machine learning was assessed on its accuracy in predicting the entire test set 413 

with all other data included as learning data (Figure 14). Significant penalties when using 414 

a separate set-up are apparent. When exposed to new data, from a new radar position in 415 

differing conditions, the models lose their capabilities. Four-way classification accuracy 416 

drops to 70%, with a precision of 0.63 and recall of 0.70 due to imbalanced class sizes.  417 

Sets in this figure are: 418 

• Set A: The complete training dataset was used, sampled at 44.1KHz with 240 419 

LARs. 420 

• Set B: The complete training dataset was used, sampled at 3.5KHz with 100 421 

LARs. 422 

• Set C: The smaller, manually extracted dataset with higher training accuracy was 423 

used, sampled at 44.1KHz with 240 LARs. 424 

• Set D: The smaller, manually extracted dataset with higher training accuracy 425 

was used, sampled at 3.5KHz with 100 LARs. 426 

 427 

 428 
Figure 13. Testing results from the final stage that show a decrease in performance versus the pre- 429 
liminary results. This is an effect of recording in outdoor spaces with variable conditions.  430 

 431 

For completeness, the results for a down-sampled dataset at 3.5KHz with 100 coeffi- 432 

cients are included. Overall accuracy improved by 1-12% despite the lower training accu- 433 

racy. A critical note for the four-way classification is that no inward bees were predicted 434 

correctly (121 samples or 4.8% of the data to label.) The figures for this four-way classifi- 435 

cation are skewed by the much larger hover and background classes. This is evident when 436 

looking at the F1 macro scores, which expose accuracy bias caused by imbalanced classes.  437 

Set B outperformed Set A despite lower training-stage results. This supports that dif- 438 

ferent frequency bands and coefficient numbers benefit some classifications despite lower 439 

training accuracy. While adding more recordings, from differing weather and hive condi- 440 

tions will improve the results further, the results above suggest that future gains will be 441 

ever-diminishing.  442 
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To achieve complete capability in this system, filters are a requirement. These filters 443 

will be challenging because of the complex signatures which form part of the machine- 444 

learning process. 445 

 446 

4. Discussion 447 

Compared to previous work by the authors, the results from this work are poorer 448 

[20]. For three-way classification, 93.37% accuracy was achieved, and 91.13% binary accu- 449 

racy was achieved in the last effort. Similar results for this work were 81.67% and 88.33% 450 

accuracy for three-way and binary classification respectively (see Figure 5.) 451 

However, some key changes in the experimental setup explain the differences. This 452 

study used no data augmentation as the volume of data was considered sufficient. Data 453 

augmentation improves smaller datasets by creating a larger pool for training but can also 454 

make a set more homogenous and therefore easier to classify. The data recorded here was 455 

gathered across multiple days from more than one hive, which differs from previous stud- 456 

ies where one hive was used on one day. The changes in radar distance and angle, coupled 457 

with varying weather, introduce more difficulty. These additional challenges were inevi- 458 

table in the development of a real-time implementation radar classification system. 459 

Nevertheless, the expected outcome of this study was to meet or exceed previous 460 

results. Without this being achieved, there is further work remaining to overcome the 461 

shortcomings highlighted in this study. 462 

The closest study in the literature to this work comes from Souza Cunha et al. in 2020 463 

[8]. This study used the root mean square (RMS) of a Doppler radar as a measure of activ- 464 

ity at the hive entrance, validating this by manually counting bees during recordings us- 465 

ing a handheld clicker. RMS has key benefits as it is a simple, non-ML approach that gives 466 

a good measure of activity which they were able to show correlates to hive health. As 467 

such, this approach is closer to field deployment readiness than the work here. However, 468 

they admit that ‘non-foraging’ bees (equivalent to hovering bees in this work) are counted 469 

in the RMS signal and there is no discernment between inward and outward bees using 470 

the radar. Our work is an attempt to overcome these limitations and once fully developed 471 

will provide more precise information for future study.    472 

The results show a pattern in that so long as sufficient data is available for each hive, 473 

distance, and weather condition then the models are reasonably accurate. As soon as new 474 

conditions are introduced, the models lose accuracy. This is not unexpected but the degree 475 

to which minor signal elements are necessary for good classification was not anticipated. 476 

These minor elements would too easily be removed by simple filters for environmental 477 

conditions. 478 

Hovering bees introduce unique challenges in that, given the resolution of the radar, 479 

they appear to mimic the flights of other bees. This is done by passing close to the entrance 480 

of the hive while accelerating or decelerating, but not stopping. Minor differences in the 481 

signals will be useful to detect the difference between a slowing bee and one which stops. 482 

Again, these differences will be subject to interference from the environment. 483 

Despite lower performance during initial training, models trained on subsampled 484 

signals with fewer LARs performed better than those with the complete data. This sup- 485 

ports the interpretation that the bulk of useful information is contained at lower frequen- 486 

cies. This is also shown when investigating the spectral envelope of each class, which 487 

shows more deviation at lower frequencies. However, the identification of which exact 488 

frequency bands are most important is challenging. Further work could look at perform- 489 

ing statistical analysis of the signals in depth. This could provide guidance when devel- 490 

oping filters as to which frequency bands are most important. 491 

Hand-picked samples provided better training accuracy than the dataset containing 492 

all available data. The dataset containing all the data was more useful at the test stage. 493 

This is evidence that a hybrid approach may be useful in the future, with a dataset con- 494 

taining a core set of hand-chosen, clearer samples to provide a strong foundation. This is 495 
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in addition to containing entire recording breakdowns which will provide many hard to 496 

classify ambiguous samples. 497 

This work is useful as no similar attempt has been made to classify honeybee activity 498 

at the entrance of a beehive using Doppler radar. Early experiments such as the one pre- 499 

sented are necessary to identify the limits of existing technologies and algorithms as well 500 

as provide guidance for overcoming such restrictions. 501 

This research implies that further work is needed to create a deployable real-time 502 

radar. A greater understanding of radar bee signatures is required so that good filtration 503 

can be enacted that does not remove the weaker signal elements. 504 

 505 

5. Conclusions 506 

An investigation into generating machine learning models to classify real-time radar 507 

data on honeybees has been detailed. These models aimed to monitor and count activity 508 

at the entrance to the beehives. Data gathered in this fashion, which is automatically la- 509 

belled by machine learning models, would provide valuable data for ecological research 510 

and for businesses looking to improve their use of honeybees. The models generated in 511 

this work achieved an accuracy of 70% though, by other metrics, the class imbalance cre- 512 

ated biased results.  513 

Data was gathered from multiple hives across a few days from beehives kept at a 514 

farm. The data was split into 0.4-second samples, labelled by using video camera record- 515 

ings of each event, and transformed into Log Area Ratios. These were then used to train 516 

Support Vector Machines to predict labels for new samples. 517 

Challenges in progressing further have been identified. It is argued that a filter is 518 

needed, as high-frequency, weak signal elements appear to be needed for successful clas- 519 

sification. These high frequencies are subject to interference and contain weak signal com- 520 

ponents that will be difficult to preserve. A greater understanding of these weak signal 521 

components is needed. 522 

The limits of this work are clear. Four days of data were used from a small selection 523 

of beehives. To develop the solution further, many more hives would be required. Data 524 

would need to be captured that reflected all feasible weather conditions. Some, such as 525 

rain, may render the system incapable of predictions at all. In addition, an intelligent filter 526 

must be investigated to provide a means of removing much of the radar clutter that is 527 

unavoidable when recording outdoors while preserving weak but vital signal elements. 528 

No further machine learning work is advised until filters are developed. Though ad- 529 

ditional data will result in increased accuracy, the system will not be resilient until envi- 530 

ronmental changes can be addressed. This work has functioned to provide specifications 531 

that future filters will need. With suitable further study, the work supports that the capa- 532 

bility will exist to classify honeybee activity in real-time. 533 
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