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Abstract: Current LiDAR-based methods for detecting forest change use a host of statistically selected
variables which typically lack a biological link with the characteristics of the ecosystem. Consensus
of the literature indicates that many authors use LiDAR to derive ecosystem morphological traits
(EMTs)—namely, vegetation height, vegetation cover, and vertical structural complexity—to identify
small-scale changes in forest ecosystems. Here, we provide a conceptual, biological model for
predicting forest aboveground biomass (AGB) change based on EMTs. We show that through use of a
multitemporal dataset it is possible to not only identify losses caused by logging in the period between
data collection but also identify regions of regrowth from prior logging using EMTs. This sensitivity to
the change in forest dynamics was the criterion by which LiDAR metrics were selected as proxies for
each EMT. For vegetation height, results showed that the top-of-canopy height derived from a canopy
height model was more sensitive to logging than the average or high percentile of raw LiDAR height
distributions. For vegetation cover metrics, lower height thresholds for fractional cover calculations
were more sensitive to selective logging and the regeneration of understory. For describing the
structural complexity in the vertical profile, the Gini coefficient was found to be superior to foliage
height diversity for detecting the dynamics occurring over the years after logging. The subsequent
conceptual model for AGB estimation obtained a level of accuracy which was comparable to a model
that was statistically optimised for that same area. We argue that a widespread adoption of an
EMT-based conceptual approach would improve the transferability and comparability of LiDAR
models for AGB worldwide.

Keywords: vegetation structure; carbon stock; LiDAR; modelling

1. Introduction

Tropical forests are complex ecosystems which provide important ecosystem services,
especially relating to global carbon and water cycles [1,2]. Tropical forests suffer from defor-
estation and illegal logging which have significant environmental, ecological, and economic
impacts locally and globally [3,4]. Remote sensing technologies are becoming increasingly
efficient at detecting large-scale disturbances [5]; however, small-scale clearance activities
in the Amazon rainforest account for half of Brazil’s deforestation rate [6]. This small-scale

Remote Sens. 2022, 14, 933. https://doi.org/10.3390/rs14040933 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14040933
https://doi.org/10.3390/rs14040933
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-7844-3560
https://orcid.org/0000-0003-2517-0279
https://orcid.org/0000-0003-0493-7581
https://doi.org/10.3390/rs14040933
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14040933?type=check_update&version=2


Remote Sens. 2022, 14, 933 2 of 20

degradation includes natural windfall and legal and illegal selective logging and is difficult
to detect using most forms of remote sensing due to their effective resolutions [5]. There is
therefore a need to further develop current remote sensing technologies into methods that
are more sensitive to such selective logging which would then be capable of detecting and
monitoring the degradation.

Ecosystem morphological traits (EMTs)—namely, vegetation height, vegetation cover,
and vertical structural complexity—are a proposed framework of “ecosystem-agnostic”
variables, which can be derived from a suite of three-dimensional (3D) remote sensing
methods, to comprehensively describe the structural properties of a range of diverse
ecosystem environments [7–10]. Ecosystem disturbance, such as selective logging in tropical
forests, can cause changes in any of these EMTs [11], and therefore each of these EMTs may
be independently relevant to monitor in order to effectively fight tropical forest degradation.
Efforts to detect forest degradation have most commonly been based on the detection of
changes in either forest cover only [5] or forest height only [12]. These approaches may miss
selective logging activities concentrating on small trees underneath the upper canopy. There
is thus a need to develop methods which can identify degradation from changes in any of
these EMTs, and not simply based on the loss of either forest cover or vegetation height.

Since remote sensing methods are best suited to tackle large-scale disturbance [5],
monitoring and mapping of small-scale selective logging in tropical forests are still heavily
reliant upon expensive and time-consuming field survey techniques [13]. Among the
multiple techniques that can be used to combat degradation, airborne LiDAR—one type
of 3D remote sensing [10]—has undergone widespread use due to its capacity to reliably
measure detailed characteristics of forest ecosystems at very high spatial resolutions [14–18].
In addition to reliable and accurate data collection, the use of airborne LiDAR benefits from
fast and affordable large-scale estimation, which allows one to detect logging activities and
subsequent biomass changes over large and inaccessible landscapes [19,20].

Models using data from airborne LiDAR can be used to generate maps of aboveground
biomass (AGB) estimates over large areas [16–18,21–32]. Multitemporal LiDAR can be
used to evaluate small-scale changes [33,34] but the capacity of these maps to detect small-
scale changes is contingent upon AGB estimation models being accurate enough to detect
forest disturbance [35]. The selection of predictor variables for AGB estimation models
from LiDAR follows two fundamentally distinctive approaches: data-driven methods
employing a statistical criterion that delivers an ad hoc selection of variables (referred to as
“statistical models” hereafter), or conceptual approaches driven by knowledge of biological
relationships that aim to obtain generalisable models of global validity (referred to as
“conceptual models” hereafter). Statistical models are based on the selecting predictors
under a given criterion tested over a given sample, such as statistical significance [15,33,35],
information criteria [36], penalised likelihood [37], maximisation of accuracy [21,30], or
algorithms combining several criteria [38]. These models only work ad hoc, and potential
issues have been identified, such as tendencies to overfit to their sample and lack of
transferability [39–41]. By contrast, conceptual models employ variables that are decided
beforehand because they are known to have biological and physical relationships with
forest AGB [22,41]. We argue that modelling forest AGB should be based on EMTs, and
thus an investigation on LiDAR proxies identified for each of them can help identify forest
AGB changes from small-scale logging.

The current paradigm shift around airborne LiDAR remote sensing is that EMTs may
be better measured directly using airborne LiDAR than by other methods, including ground
assessments [42]. Thus, airborne LiDAR could ultimately “ground truth” other data sources
and serve as a reference to combine different data sources [27]. However, there is still a
lack of consensus as to which exact airborne LiDAR proxies (a.k.a., LiDAR metrics, sensu.
Naesset, 2002) would most suitably correspond to each of the EMTs: height, cover, and
complexity [10]. For this reason, in this study we focus on identifying the LiDAR proxies
for each EMT on the basis of their sensitivity to small-scale disturbances (e.g., Nunes et al.,
2021) rather than on the estimated AGB change itself (e.g., Rex et al., 2020). The expected
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behaviours of each of the EMTs in response to small-scale disturbance are outlined below
(Figure 1). For each EMT there is a range of proxies that are commonly employed by
authors in AGB modelling (Table 1).

Remote Sens. 2022, 14, x FOR PEER REVIEW 3 of 21 
 

 

the LiDAR proxies for each EMT on the basis of their sensitivity to small-scale disturb-
ances (e.g., Nunes et al., 2021) rather than on the estimated AGB change itself (e.g., Rex et 
al., 2020). The expected behaviours of each of the EMTs in response to small-scale disturb-
ance are outlined below (Figure 1). For each EMT there is a range of proxies that are com-
monly employed by authors in AGB modelling (Table 1). 

 
Figure 1. An illustration depicting the changes in each of the three ecosystem morphological traits 
over time in a forest stand which is subject to both selective logging and then a period of stand 
recovery. (a) Vegetation height—there is initially expected to be a decrease in the vegetation height 
EMT immediately after logging and this will then increase over time as the stand recovers and the 
trees continue to grow. (b) Vegetation cover—there is expected to be an initial reduction in the veg-
etation cover EMT immediately after logging due to gaps in the canopy. This then increases over 
time as the stand recovers and the canopy infills. (c) Structural complexity of vegetation—the meas-
urable structural complexity is expected to increase after logging due to the heterogeneity of the 
stand increasing and the opening of the canopy to permit greater detection of the understory. This 
is expected to decrease as the canopy infills and the understory grows over time. 

Table 1. Ecosystem morphological traits, their associated metrics, and examples of their use. 

EMT Metrics References 

Vegetation 
height 

TCH Lefsky et al., 1999 [43]; Asner and Mascaro, 2014 [22]; Fahey et al., 2019 
[9]; Almeida et al., 2019 [27]; Silva et al., 2019 [44] 

MEANH Næsset et al., 2002 [15]; Hinsley et al., 2009 [45]; Kane et al., 2010 [46]; 
Zellweger et al., 2016 [47]; Fahey et al., 2019 [9]; Rex et al., 2020 [33] 

MODEH Næsset et al., 2002 [15]; Fahey et al., 2019 [9]; Rex et al., 2020 [33] 
MEDIANH Næsset et al., 2002 [15]; Rex et al., 2020 [33] 

Percentiles of height (H95, H75 
etc.) 

Næsset et al., 2002 [15]; Kane et al., 2010 [46]; Bater et al., 2011 [48]; 
Zellweger et al., 2016 [47] 

Vegetation 
cover 

Leaf area 
index/plant 
area index 

COVER2 COVER5 
COVER10 COVER20 

Nelson et al., 1988 [49]; Næsset et al., 2002 [15]; Morsdorf et al., 2006 
[50]; Solberg, 2010 [51]; Korhonen et al., 2011 [52]; Görgens et al. 2017 

[53]; Schneider et al., 2017 [8] 
Gap fraction Wedeux & Coomes, 2015 [54]; Jucker et al., 2018; Silva et al., 2019 [44] 

Entropy FHD 
Clawges et al., 2008 [55]; Bergen et al., 2009 [56]; Valbuena et al. 2012 

[57]; Zellweger et al., 2016 [47]; Schneider et al., 2017 [8] 

Figure 1. An illustration depicting the changes in each of the three ecosystem morphological traits
over time in a forest stand which is subject to both selective logging and then a period of stand
recovery. (a) Vegetation height—there is initially expected to be a decrease in the vegetation height
EMT immediately after logging and this will then increase over time as the stand recovers and the
trees continue to grow. (b) Vegetation cover—there is expected to be an initial reduction in the
vegetation cover EMT immediately after logging due to gaps in the canopy. This then increases
over time as the stand recovers and the canopy infills. (c) Structural complexity of vegetation—the
measurable structural complexity is expected to increase after logging due to the heterogeneity of the
stand increasing and the opening of the canopy to permit greater detection of the understory. This is
expected to decrease as the canopy infills and the understory grows over time.

We evaluated the suitability of EMTs—namely vegetation height, cover, and structural
complexity—for monitoring selectively logged forests through use of LiDAR proxies.
Specifically, we evaluated the temporal dynamics of LiDAR-derived metrics after selective
logging activities, assessing which of these metrics were more sensitive to logging. We
also assessed the capacity of the metrics to identify historical logging which preceded
LiDAR survey through detection of additional growth in multitemporal datasets. These
analyses permitted us to identify the LiDAR proxies for each of the three EMTs most
sensitive to small-scale selective logging. In turn, this allowed us to develop a conceptual
model for AGB estimation using EMTs to produce the most suitable LiDAR model both
in terms of its accuracy and its capacity to describe the overall variability in AGB. We
compared this model to an established model with the intent of illustrating the relative
accuracy of the new model when compared to that of a commonly used alternative. The
advantage of our EMT-based conceptual model is that the traits have a mechanistic link
with the characteristics of the ecosystem rather than being selected via machine learning
and statistical analyses. Through use of this conceptual approach, we set out to show that
there are alternative means of variable selection available other than the use of automatic
selection methods such as AIC.
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Table 1. Ecosystem morphological traits, their associated metrics, and examples of their use.

EMT Metrics References

Vegetation
height

TCH Lefsky et al., 1999 [43]; Asner and Mascaro, 2014 [22]; Fahey et al.,
2019 [9]; Almeida et al., 2019 [27]; Silva et al., 2019 [44]

MEANH Næsset et al., 2002 [15]; Hinsley et al., 2009 [45]; Kane et al., 2010 [46];
Zellweger et al., 2016 [47]; Fahey et al., 2019 [9]; Rex et al., 2020 [33]

MODEH Næsset et al., 2002 [15]; Fahey et al., 2019 [9]; Rex et al., 2020 [33]

MEDIANH Næsset et al., 2002 [15]; Rex et al., 2020 [33]

Percentiles of height (H95, H75 etc.) Næsset et al., 2002 [15]; Kane et al., 2010 [46]; Bater et al., 2011 [48];
Zellweger et al., 2016 [47]

Vegetation
cover

Leaf area
index/plant
area index

COVER2 COVER5
COVER10
COVER20

Nelson et al., 1988 [49]; Næsset et al., 2002 [15]; Morsdorf et al.,
2006 [50]; Solberg, 2010 [51]; Korhonen et al., 2011 [52]; Görgens et al.

2017 [53]; Schneider et al., 2017 [8]

Gap fraction Wedeux & Coomes, 2015 [54]; Jucker et al., 2018; Silva et al., 2019 [44]

Structural
complexity of

vegetation

Entropy FHD Clawges et al., 2008 [55]; Bergen et al., 2009 [56]; Valbuena et al.
2012 [57]; Zellweger et al., 2016 [47]; Schneider et al., 2017 [8]

Variability
SD Kane et al., 2010 [46]; Bouvier et al., 2015 [41]; Coops et al., 2016 [7];

Zellweger et al., 2016 [47]

GC Kane et al., 2010 [46]; Valbuena et al., 2013; 2017b; 2020 [10,39,58];
Adnan et al., 2021 [31]

2. Materials and Methods
2.1. Study Area

We assessed the data from the Fazenda Cauaxi in Pará state, Brazil. The region is
humid and tropical with the average total precipitation annually being 2200 mm and with
predominantly flat topology and an elevation ranging between 74 and 150 m above sea
level [32]. The primary form of vegetation in the region is ombrophilous dense forest
with the upper canopy having a mean height between 30 and 40 m and emergent trees
reaching above the canopy up to 50 m tall [20,32]. The site consisted of a region split into
12 blocks of 100 ha which were either left unlogged or were subject to selective logging
by similar methods at different times in the years 2006–2013 [59]. Previous works in
this same area have carried out assessments of the following: forest types at different
stages of degradation [25], the impact of LiDAR pulse density on the accuracy of AGB
estimations [60], identification of logging damage impacts and recovery [59], and the
development of an improved framework for reduced impact logging [61]. Previous AGB
models from LiDAR in this study area were “statistical models” using either machine
learning or statistical approaches for variable selection [25,33,38,59,60,62].

2.2. Field Data

The field dataset was collected in 2014 from 85 plots of 50 × 50 m (0.25 ha) with
100 m spacing along transects through logged regions of the study area. Plot corners were
registered using differential GNSS (GeoXH6000, Trimble Navigation, Ltd.; Dayton, OH,
USA). Along one side of each plot a subplot of 5 × 50 m (250 m2) was marked out. At each
plot, trees with a diameter at 1.3 m breast height (dbh; cm) greater than or equal to 35 cm
were measured within the entirety of the larger plot, whereas trees with dbh 35–10 cm were
measured exclusively within the 250 m2 subplot. AGB estimates for each field data plot
were aggregated from the AGB estimated for each tree using the widely adopted allometric
model by Chave et al. (2014) [63]. The value for environmental stress parameter (E) used in
the model was E = −0.104 for the entire study site as in Rex et al. (2020) which used the
same field dataset.
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2.3. LiDAR Data Acquisition and Processing

LiDAR datasets were collected by a joint venture of the Brazilian Corporation of
Agricultural Research (EMBRAPA) and the United States Forest Service (USFS), called
“Sustainable Landscapes Brazil”. Collection took place in 2012, 2014, and 2017, at a flight
altitude of 850 m and overlaps of 65–70%; further details regarding LiDAR data collection
such as sensor attributes and flight details are available in Table 2 of Rex et al. (2020).
Processing of LiDAR data was conducted using the software FUSION/LDV version 3.8 [64],
LAStools [65], and the LidR package in R [66].

Table 2. Statistics reflecting accuracy and goodness of fit for AGB models.

Adj.R2 RMSE
(Mg/ha) RMSE (%) MD

(Mg/ha) MD (%) SSR SDR

Height

a * × TCH * 0.82 49.93 20.97 1.64 0.69 1.03 0.88

MEANH * 0.82 50.66 21.28 −7.89 3.31 1.01 0.69

H95 * 0.60 69.54 29.20 −11.24 −4.72 1.01 0.58

a * × H75 * 0.56 56.73 23.83 1.02 0.43 0.91 0.76

Cover

COVER2 * 0.01 87.77 36.86 −15.84 −6.65 1.03 0.10

COVER5 * 0.21 85.67 35.98 −15.53 −6.52 1.04 0.15

a * × COVER10 * 0.50 74.72 31.38 1.41 0.59 1.02 0.52

COVER20 * 0.75 57.54 24.16 −5.85 −2.46 1.01 0.75

Structural
Complexity

a * × GC * 0.13 80.79 33.93 1.92 0.81 1.02 0.46

a * × FHD * 0.37 70.31 29.53 2.64 1.11 1.05 0.80

a * × SD * 0.07 83.06 34.88 1.62 0.68 1.03 0.32

Bi-variate models

TCH * × COVER2 * 0.82 50.07 21.03 −5.47 −2.30 1.03 0.83

TCH * × COVER5 * 0.81 50.96 21.40 −6.15 −2.58 1.03 0.80

TCH * × COVER10 * 0.80 52.95 22.24 −7.79 −3.27 1.03 0.72

TCH * × COVER20 * 0.80 54.73 22.98 −8.66 −3.64 1.03 0.62

Tri-variate models

TCH * × COVER2 * × GC * 0.81 50.46 21.19 −4.52 −1.90 1.05 0.87

TCH * × COVER2 * × SD * 0.81 51.17 21.49 −4.71 −1.98 1.05 0.86

* Denotes variable is significant (p < 0.05), a = 1 if not shown, only significant models shown.

Initially, the data were classified to identify ground returns and then the elevation
values for returns were normalised to heights-above-ground (Figure 2). The pulse densities
were not standardised across the LiDAR data collection, as it was shown that for plot level
AGB predictions there is no significant impact to the accuracy when the pulse density is
above the range of 1.0 pulses·m−2 [60].

Of the metrics listed in Table 1, not all were selected in this study as candidates for
EMT proxies. MEANH, H75, and H95 were calculated directly from the point cloud. TCH
was calculated as the mean of the CHM values aggregated at the grid resolution of 50 m.
The cover was calculated at a range of height thresholds: 2, 5, 10, and 20 m above the
ground (COVER2, COVER5, COVER10, and COVER20, respectively). FHD was calculated
based upon Shannon’s diversity [67] abundances being the proportions of LiDAR returns
within six contiguous strata along the vertical profile: <2, 2–5, 5–10, 10–20, 20–30, >30 m
above the ground. GC was calculated as half of the relative mean absolute difference [39].
Unless otherwise specified, the LiDAR-derived metrics were available from the outputs of
functions in FUSION, and they were calculated for the LiDAR returns at the position of
the field plots and throughout the entire study area using a grid of 50 m spatial resolution,
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resulting in one complete grid for each of the collection years. A canopy height model
(CHM) was generated at 1 m spatial resolution using the grid_canopy function available
in LidR.
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logging between 2012 and 2014 after having been classified and normalised.

The maps of percentage change in LiDAR-derived metrics were generated using
the raster package in R [68] and the software QGIS [69]. To produce graphs of temporal
dynamics for each metric, we calculated the number of complete years since logging which
was then subsequently used as the variable expressing the temporal dimension. Since
metrics were expressed in different units and had disparate variances, we used normalised
z-scores to fairly compare the changes observed at different metrics. The normalised z-
scores of each metric were plotted against the years since logging using the R package
ggplot2 [70], showing the mean of all the corresponding 50 × 50 m cells of the grid along
with ribbons showing their 95% confidence intervals.

2.4. AGB Modelling

The dataset used for the development of models consisted of the plot aggregate AGB
estimations from the field data and the 2014 LiDAR metrics calculated at the location of
those same plots. The power-law equation for the Asner et al. (2012) model (hereafter
referred to as the “TCH model”) was:

AGB = a× TCHb (1)

where AGB was the aboveground biomass in Mg/ha and TCH the top-of-canopy height in
meters derived from LiDAR. The model parameters a and b were determined through the
linearised log-log version of the model [12], including the correction for the intercept value
when back-transforming the parameter a from the linear model [71].

Further from the TCH model which accounted for a vegetation height EMT only,
we considered a conceptual model under the postulate that all the EMTs considered
in Valbuena et al. (2020)—vegetation height, vegetation cover, and vertical structural
complexity—explain an independent proportion of variability in AGB. Hereafter, we refer
to this model as the “EMT model”, which has a similar power-law form that typically
regulates these relationships [72–74] and is typically employed in LiDAR modelling [15]:

AGB = heightb1 × coverb2 × complexityb3 (2)

where height was the value of the LiDAR metric chosen for vegetation height ETM (TCH
being one of the candidates) in meters above the ground, cover was the value of the LiDAR
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metric chosen for vegetation cover in units between 0 and 1 expressing the proportion of
area covered by vegetation above a chosen height threshold, and complexity is the value
of the LiDAR metric chosen for the structural complexity trait. The units for expressing
complexity are dependent upon the metric chosen, with the SD being expressed in meters,
the GC ranging between 0 and 1, with GC = 0 denoting no height variability and GC = 1
denoting maximally variable, and FHD being a dimensionless measure ranging between
FHD = 0 for an area with no vegetation and the logarithm of the number of strata used in its
calculation which provides a value for maximum entropy (FHD = ln(6) = 1.79 in this case).
Again, the model parameters a, b1, b2, and b3 were determined in the linearised log-log
form of the model, including Baskerville’s correction for bias in the estimation of a [71].

To identify the metrics that would serve as the LiDAR proxies for the EMTs in the
EMT model (Equation (2)), several means of variable selection were employed:

1. Maps of percentage change in metrics (denoted as ∆ in front of each metric). From the
maps of change in the metrics it was possible to identify the metrics which showed
the greatest percentage change in areas of recent and historical selective logging, and
thus sensitivity to small-scale disturbance, and this was one factor that was used to
select LiDAR proxies. One-tailed Wilcoxon rank tests, for data grouped by the logging
year, were used to assess the significance of the increase or decrease in a given metric
compared to the baseline defined by the unlogged areas.

2. Graphs of temporal dynamics of metrics in the years following logging. The graphs
of normalised z-scores (in which the mean is equal to 0) were used to identify which
metrics showed the greatest change in the years after selective logging and the graphs
also highlighted how long it took metrics to stabilise and thus for how long after
logging metrics were sensitive to the impacts of small-scale disturbance.

3. Correlation plots and Pearson correlation coefficients. Plots of the correlation of
change in metrics, with trendlines and inset correlation values. These identified
relationships between metrics that allowed for informed decisions to be made with
regards to the use of metrics which may explain the same variance.

Final selection of the metrics which were used as variables in the EMT model was
achieved through comparison of the information derived from the above methods of vari-
able selection and information from accuracy assessments of predictive models using the
different metrics to identify the metrics which are most sensitive to small-scale disturbance.

2.5. Accuracy Assessment

Leave-one-out cross-validation (LOOCV) was carried out to assess the predictions of
the two models. This is performed through the iterative removal of one case (i) from the
total n, with the remaining used to calculate a new AGB prediction for the absence of that
case (predcv

i ). For the purposes of notation, superscript “cv” identifies calculations after
the cross-validation procedure, as opposed to superscript “fit” which denotes non-cross-
validated measures. We employed five analytical measures and two graphical methods for
accuracy diagnosis. The analytical measures were employed to evaluate:

(1) The precision of predictions given as the absolute and relative root mean squared
error (RMSE) of predictions against the observed:

RMSE = SScv/n (3)

where SScv was the predicted sum of squares through LOOCV:

SScv =
n

∑
i=1

(predcv
i − obsi)

2

(4)

The error in RMSE was given in AGB units, and also the relative error RMSE% as
the coefficient of variation of RMSE, i.e., calculated by dividing it by the mean observed
AGB (obs).
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(2) The degree of under- or over-prediction as the mean difference (MD) of the predictions
minus the observed:

MD =
n

∑
i=1

(
predcv

i − obsi
)

n
(5)

Likewise, MD was presented both in AGB units and relative mean difference (MD%)
calculated by dividing it by obs.

(3) The agreement between observed and predicted, evaluated by the coefficient of
determination R2 (Valbuena et al., 2019):

R2 = 1− SScv/SStot
obs (6)

where SStot
obs was the sum of squared differences of each observation from obs:

SStot
obs =

n

∑
i=1

(
obsi − obs

)2

(7)

Another measure of agreement depicted in Taylor diagrams (see below) was Pearson’s
correlation (r), but we discarded its analytical use since Valbuena et al. (2019) showed R2 to
more faithfully represent the agreement between observed and predicted.

(4) The degree of overfitting, comparing the sums of squares obtained with (“cv”) and
without (“fit”) cross-validation (Valbuena et al. 2017), calculated as the sum of squares
ratio (SSR):

SSR =
√

SScv/
√

SS f it (8)

where SS f it was the predicted sum of squares without LOOCV:

SS f it =
n

∑
i=1

(
pred f it

i − obsi

)2

(9)

SSR provides a suitable measure of increase in the unexplained variance when carrying
out the LOOCV. It has been suggested that the difference between model fit and cross-
validation exceeding 10% (i.e., SSR = 0.90–1.10) signals a model that is overfitted to the
sample [39,75].

(5) The model’s capacity to match the AGB variability originally observed. As the
standard deviation ratio (SDR):

SDR =
√

SStot
pre/

√
SStot

obs (10)

where SStot
pre was the sum of squared differences of each observation from the mean

predicted AGB (pre):

SStot
pre =

n

∑
i=1

(prei − pre)
2

(11)

Moreover, the graphical methods employed for accuracy assessment were:
Observed versus predicted plots depicting the LOOCV predictions. The plots include

both the 1:1 line and their regression, which can be tested against the null hypothesis of
alpha = 0 and beta = 1 [18], on the basis that predicted is x and observed y in that regression
analysis [76].

Taylor diagrams. A prerequisite for AGB models to produce reliable maps (particularly
to detect small-scale changes) is to ensure that they not only predict the average AGB but
the observed variability in AGB as well. To that end, we produced Taylor diagrams [77] for
each of the LOOCV models using the taylor.diagram function of the package plotrix [78]
which was then modified to normalise standard deviation without normalising RMSE
and, for additional clarity of interpretation, through colour coding. Overfitting makes
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models less transferable by being overly specific to a single site and/or dataset, whereas the
intent with the conceptual EMT model is to have a widely usable alternative to statistically
driven, site-specific models and thus it may allow for the interpretation of the fitted
model parameters in terms of their physical meaning. Taylor diagrams are a method of
summarising multiple aspects of model performance in a single diagram. Three statistics
are plotted on Taylor diagrams:

(a) Correlation, denoted by the azimuthal angle (blue radial dashed lines and arc) which
represents the Pearson correlation coefficient, evaluating similarity in patterns of
distribution of the predicted and observed, which is also a measure of the similarity
of the means. The Pearson correlation coefficient is a normalised measure of the linear
correlation between two datasets, in this case the predictions of a leave-one-out model
and the observed dataset [79]. Valbuena et al. (2019) [80] pointed out that only the
squared correlation gives values comparable to the coefficient of determination in
Equation (3), but correlation is added here as implemented in the package stats.

(b) RMSE, proportional to the distance of a point from the reference for observed data, on
the x-axis (which is shown by green arcs).

(c) The standard deviation ratio of the cross-validation predictions to the observed is
proportional to the radial distance from the origin (black arcs). The standard deviation
ratio reflects how well the predictions reflect the variance of observed data.

3. Results
3.1. Vegetation Height

The maps of the percentage change in LiDAR-derived height metrics (Figure 3—∆TCH,
∆MEANH, ∆H75, and ∆H95) show that all the height metrics highlight areas of logging
in the years between the 2012 and 2014 data collection. The areas of greatest decrease in
height metrics were the areas which were selectively logged in 2012 and 2013 (significant
decrease in all metrics, p < 0.01). This can be seen from the example transect (Figure 3). For
TCH and H75 it was even possible to detect the older logging activities that occurred before
2012 from anomalously greater increases compared to the baseline growth in unlogged
areas (significant increases, p < 0.01). Other common metrics like MEANH or H95 could
not detect this anomalous growth (non-significant increase, p > 0.05).

The graph of the temporal dynamics of height metrics (Figure 4a) shows that H95 had
the greatest decrease in the years immediately following logging. However, it also shows
an erratic upward trend four years after logging, which may be an indication of lack of
robustness in this metric. Considering this in addition to the lower sensitivity shown in the
maps of change for H95, this may be an indication that H95 is not the most suitable LiDAR
proxy for vegetation height. Of the other three metrics, H75 also showed low sensitivity
in the maps and thus the dynamics in the years after selective logging were quite similar,
indicated by their overlapping confidence ribbons. MEANH and TCH appeared to be
the most sensitive to logging, which can make them the most suitable metrics to select as
LiDAR proxy for vegetation height.

Univariate models of AGB estimation were produced for each of the height metrics to
assess their relationship to AGB. Their respective RMSEs (Table 2) showed that the model
accuracy was greatest for TCH. The SDRs also demonstrated that TCH can best model
the range of variability in the area, with the TCH-based model predicting 88% of the total
standard deviation in AGB. SSR results show that none of the models were overfitted to the
sample, with cross-validated values deviating less than 10% from model residuals, although
the MD of H95 showed a tendency for higher bias than other metrics. Based on these model
results, the results of the graph of temporal dynamics, and the maps, it is unclear which of
TCH or MEANH would be the most suitable LiDAR proxy for vegetation height. We will
use TCH as the LiDAR proxy as it is derived directly from the point cloud data.
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mean height, ∆H75 and ∆H95—75th and 95th percentiles of height.

3.2. Vegetation Cover

The maps of percentage change in LiDAR-derived cover metrics (Figure 5—∆COVER2,
∆COVER5, ∆COVER10, and ∆COVER20) clearly identify the regions that were logged in
2012 and 2013 (significant decreases, p < 0.01). In blocks from earlier logging activities
(2006–2010), ∆COVER2, ∆COVER5, and ∆COVER10 highlight different stages of regrowth
(significant increases, p < 0.01). On the other hand, this regrowth cannot be identified from
∆COVER20 (non-significant increase, p > 0.05).

The temporal dynamics of the cover metrics (Figure 4b) show that the most significant
decrease in the years following logging can be detected using COVER2. Additionally,
COVER2 takes more years to stabilise than the metrics with greater height thresholds,
giving potential to detect changes in cover for more years after logging. These results
suggest that lower height thresholds are more sensitive to reduced impact logging and
subsequently may therefore contribute to more accurate estimation of AGB if used as one
of the morphological traits in calculations.

Univariate models of cover (Table 2) to predict AGB show a trend of RMSE falling
and SDR increasing as the cover threshold height increases, thus accuracy increases with
the cover. By contrast, when cover is modelled together with TCH (Table 2, bivariate
models) the trends in the values of RMSE and SDR reverse, and the lower height thresholds
performed better. Based on the maps, the graph of temporal dynamics, and the accuracy re-
sults of the bivariate models, COVER2 is the clear choice of LiDAR proxy for the vegetation
cover EMT.
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Figure 4. Graphs of the temporal dynamics of LiDAR metrics in the years after selective logging
for each of the EMTs, normalised using Z-score for comparison between metrics. (a) EMT—height,
TCH—top of canopy height, MEANH—mean height, H75 and H95—75th and 95th percentiles of
height. (b) EMT—cover: COVER2, 5, 10, and 20 are the percentage cover at height thresholds of 2,
5, 10, and 20 m, respectively. (c) EMT—structural complexity, GC—Gini coefficient, SD—standard
deviation of height, FHD—foliage height diversity.
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Figure 5. Maps of the percentage change in cover metrics of different height thresholds across the
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3.3. Structural Complexity

The maps of percentage change in the structural metrics (Figure 6—∆GC, ∆FHD, and
∆SD) display distinct areas of increased structural complexity for all structural metrics in
the blocks that were logged between 2012 and 2014 (significant increases, p < 0.01). ∆GC
and ∆FHD highlight decreases in structural complexity in the regions that were logged
prior to LiDAR data collection as the regions regrow (significant decreases, p < 0.01); by
contrast, SD does not describe regions of regrowth from previous logging (non-significant
decrease, p > 0.05).

The graph of temporal dynamics of structural complexity metrics after selective
logging (Figure 4c) shows that all the structural complexity metrics are sensitive to selective
logging. The temporal dynamics of all three metrics are quite similar, with sharp increases
in the years after logging before beginning to stabilise, and the confidence ribbons of all
metrics overlap substantially.

Accuracy assessment of the single-variable models of AGB estimation for each of the
structural complexity metrics (Table 2) shows that FHD performs best with the highest
explained variance (SDR) and lowest RMSE. Accuracy assessment of three-variable models
of the same structure as that proposed for the final EMT model (Table 2) found that
FHD yielded an insignificant model and, in further contrast to the univariate models, the
trivariate models with GC and SD perform similarly to each other. GC will be selected as
the LiDAR proxy for structural complexity, given the similar performance of GC to SD in
the trivariate models and the prospect that GC could significantly detect the changes in
structural complexity from the logging in 2006–2010.
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3.4. TCH Model versus EMT Model

The chosen LiDAR proxies for the EMT model were TCH, COVER2, and GC. The
EMT model was compared to the TCH model and the results of the accuracy assessment
show that the TCH model and the EMT model were able to predict AGB with very similar
levels of accuracy. From the observed vs. leave-one-out prediction plots (Figure 7) there
appears to be a very high level of correlation between the AGB values derived from field
plot observations and the leave-one-out predictions of the two models. The plots for the
two models show that both models fail to quite capture the variance of the observed
data, as they over predict low values and under predict high values, but they do have
relatively small values for RMSE and mean difference, with the EMT model performing
slightly better.

The inset Taylor diagrams show the RMSE values of the two models and they also
show that the variance of the predictions of both models is not quite as great as the observed
data, with both models showing an SDR of 0.88, thus only % of the variance of the observed
data is explained. The Taylor diagram also gives a measure of the correlation that is seen
between the predictions and the observations, the Pearson correlation coefficient, which for
both models is approximately 0.8.

The plotted predictions of the LOOCV analyses show very similar relationships to the
predictions of the full models, which suggests that neither model suffered from significant
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overfitting. This is corroborated by the SSR values, which show that neither model shows
significant overfitting, though the EMT model may be more overfitted than the TCH model.
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Figure 7. Graphs of Comparison of predicted vs observed AGB in Mg/ha for the LOOCV of the TCH
and EMT models with inset statistical analysis results and a Taylor diagram representing how well
the models’ predictions reflect the observed data in terms of the ratio of their standard deviations,
the correlation of the data, and the RMSE.

4. Discussion

Detection of logging continues to be a challenge and the development of new methods
and models which can identify small-scale forest disturbance, particularly in the understory,
is of great importance. Selective logging is even harder to detect than equivalent area of
clear felling as the disturbance is spread out and thus the localised impacts are significantly
reduced. As a result, methods of AGB calculation and detection of large-scale forest
disturbance are potentially stretched to the limits of their sensitivity. More sensitive
methods which could identify such selective logging practices are still in an early stage
of development [81]; hence, in this study we have identified and proposed a conceptual
modelling approach which may detect small-scale forest disturbances more accurately.

A standardised framework of essential biodiversity variables could be used to model
ecosystems from a range of 3D-imaging remote sensing data sources [10]. This framework is
the basis of the conceptual model in this study with terms for the ecosystem morphological
traits of vegetation height, vegetation cover, and vertical structural complexity. The model
developed using this method, the “EMT model”, was compared to a traditional method of
AGB modelling presented in Asner and Mascaro (2014) and Coomes et al. (2017), the “TCH
model”, a univariate model based upon TCH, which is a descriptor of ecosystem height.
The TCH model does not account for variation in density of cover nor for a non-uniform
ecosystem structure, which is not thought to be a limitation of the model in undisturbed
ecosystems replete with old growth and consistently high cover but could be so in regions
of small-scale disturbance.

Trait selection for the EMT model was based on maps of percentage change of metrics,
normalised graphs of temporal dynamics of metrics, and the results of accuracy assessments
of models using those metrics. The chosen LiDAR proxies to represent the traits in the
EMT model were TCH, COVER2, and GC. Developing models for AGB estimation can
sometimes be very intensive computationally, relying heavily upon statistics and even
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machine learning [33,62,82] for metric selection. In this study, we made use of visualisations
of the change in metrics to determine the suitability of a metric to be included in a model.

The visualisations of the temporal dynamics of metrics (Figure 4) support the concep-
tual theory of how EMTs were expected to behave over time in a forest stand subject to
selective logging and a period of recovery (Figure 1). The behaviour of the height metrics
over time (Figure 4a) reflects the expected initial decline and subsequent recovery over
time; these changes would be expected to be reflected by the TCH and EMT models which
include height as a parameter. However, the EMT model additionally includes parameters
for cover and structural complexity, where the graphs of their behaviour are shown to
behave differently to one another and to height. Structural complexity rapidly changes in
the first years after logging before rapidly stabilising, whereas the cover metrics take longer
to stabilise, especially at the lower height thresholds where the early regenerative growth
is detected. EMTs are sensitive to changes in the stand structure in the years after selective
logging and can even detect historical logging that predates the survey through changes in
the stand structure as illustrated by the clear delineation of the 12 plots logged at different
times in the maps of percentage change in cover metrics (Figure 5).

From the visualisations of the change in metrics, the selection of the height metric
was not clear. The results of accuracy analysis of univariate models of height metrics,
and the graphs of the temporal dynamics of metrics, show that both TCH and MEANH
perform similarly to one another and are more sensitive than H75 and H95. The maps
of percentage change in the height metrics (Figure 1) were supplemented by additional
one-tailed Wilcoxon rank tests to assess how the significance of the change in metrics for
each logging year compared to the baseline of the unlogged areas. From the maps, it was
again clear that the TCH and MEANH performed similarly and were more sensitive to
selective logging than the other height metrics; however, the Wilcoxon rank tests showed
that TCH had sensitivity to historical logging that was not seen in MEANH. Given the
similarity in results and the results of the Wilcoxon, either metric could have made a
suitable LiDAR proxy for height EMT. It was decided that TCH would be selected as
LiDAR proxy despite it being generated from a CHM rather than directly from the point
cloud. Asner and Mascaro (2014) suggested that the top of canopy height (TCH; [43]) could
be a simple proxy for vegetation height universally linked to forest AGB and, although the
derivation of CHMs involves additional processing, the use of CHMs provides a common
processing milestone across sensors and platforms of 3D remote sensing [83], which enables
their robust intercomparability and combination [10].

COVER2 was the standout metric for the cover EMT, which was an interesting out-
come, as in other works that have made use of cover metrics in their predictive models,
higher height thresholds were often the norm for cover metrics. Jucker et al. (2018) used
gap fraction, which they calculated at 20 m above ground level. COVER20 was included
in this study and it was found to be significantly less sensitive to selective logging than
lower height thresholds and the sensitivity to selective logging appears to vary inversely
with the height of the height threshold for the cover calculation. The result was not entirely
unexpected as Kent et al. (2015) [84] showed that it was possible to identify regions of
selectively logged forest in the advanced stages of recovery due to an elevated number of
gaps which penetrated to the forest floor, as determined by gaps in vegetation at a height
of 2 m using LiDAR data.

The chosen structural complexity term was GC which describes skewness of the forest
structure, with low values representing uniformity of the heights of trees and high values
representing an approach to bimodality. The relationship of GC and forest structural types
is explored in greater depth by Valbuena et al. (2014) [84]. It should be noted that only the
structural metrics describing variability yielded significant trivariate models, since FHD
is a metric which describes entropy and was found to produce an insignificant trivariate
model. SD was not chosen due to relative insensitivity to selective logging. In AGB models
from LiDAR, the role of the structural complexity of vegetation is typically neglected, with
few exceptions [31,41].
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Direct comparison of the two models, the conceptually derived EMT model and the
TCH model, shows that they performed similarly at estimating AGB; however, the differ-
ences between the models may be understated due to the fraction of plots in areas subject
to selective logging being small. Consequently, most plots were not subject to disturbance;
thus, the benefits of the logging-sensitive metrics of the EMT model were irrelevant and
the overall improvement to modelling accuracy may have been underestimated.

Accuracy assessment of the two models found that the Asner and EMT models had
very similar levels of accuracy; the explained variance, MD, and RMSE for the two models
were extremely similar. An argument could be made for this being a failure of the EMT
model and the method of its development, as it has been shown in literature that with
more variables, models are able to replicate the mean more accurately at the expense of
variance [18], and thus by only being marginally more accurate than the TCH model, it
indicates the model is flawed due to the less significant parameters. A rebuttal to this
argument is that the overfitting analyses showed both models being slightly overfitted, to a
very similar degree, and that both under predict variance by 12–13%. This similar degree of
overfitting suggests that the additional terms of the EMT model have therefore fallen victim
to the MD-variance trade-off. The method of overfitting analysis used was LOOCV, which is
known to yield lower MD and higher variance results than k-fold cross-validation. LOOCV
was chosen, however, due to the sample size, and the results of the LOOCV were very
similar to the fully fitted models for values of RMSE, MD, and variance, which suggests
the effects of overfitting are small. If one is confident in using the existing TCH model,
then similar confidence should be extended to the use of our proposed conceptual model
outlined in this study. The proposed form of the EMT model, as found in this study, reflects
a development of the TCH model in which the intercept, a, in Equation (1) is replaced by
the terms for cover and structural complexity in Equation (2)—and thus the model becomes
more informed by biological relationships.

5. Conclusions

The sensitivity of EMTs to the changes that happen in a selectively logged forest stand
over time is evident, and this underlines the potential for a more biologically informed
AGB estimation which makes use of EMTs. An EMT-based approach may be more suitable
for the detection and quantification of illegal logging practices, but this remains to be
seen. The use of EMTs for directly detecting changes in forest stands rather than AGB is
demonstrated and represents a potential avenue for monitoring in addition to using those
same EMTs for more monitoring through AGB modelling. Landscape scale methods of
AGB estimation that are sensitive to selective logging will help prevent the over prediction
of AGB stocks in regions where illegal logging takes place and may support monitoring of
forests in selectively logged regions, particularly below the top of the canopy. Future use
of EMTs in monitoring small-scale degradation through relative changes could allow for
comparisons between ecosystems with vastly different AGB yields and encourage the use
of more biologically informed metrics.
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