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Biochar application to temperate grasslands: 
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multiple ecosystem services
Robert W. Brown1*  , David R. Chadwick1, Tom Bott2, Helen M. West2, Paul Wilson2, Genevieve R. Hodgins3, 
Colin E. Snape3 and Davey L. Jones1,4 

Abstract 

Grasslands (natural, semi-natural and improved) occupy approximately one-third of the terrestrial biosphere and are 
key for global ecosystem service provision, storing up to 30% of soil organic carbon (SOC). To date, most research 
on soil carbon (C) sequestration has focused on croplands where the levels of native soil organic matter (SOM) are 
typically low and significant potential exists to replenish SOM stocks. However, with the renewed push to achieve “net 
zero” C emissions by 2050, grasslands may offer an additional C store, utilising tools such as biochar. Here, we critically 
evaluate the potential for biochar as a technology for increasing grassland C stocks, identifying a number of practical, 
economic, social and legislative challenges that need to be addressed before the widescale adoption of biochar may 
be achieved. We critically assess the current knowledge within the field of grassland biochar research in the context of 
ecosystem service provision and provide opinions on the applicability of biochar as an amendment to different types 
of grassland (improved, semi-improved and unimproved) and the potential effect on ecosystem provision using a 
range of application techniques in the topsoil and subsoil. We concluded that the key question remains, is it possible 
for managed grasslands to store more C, without causing a loss in additional ecosystem services? To address this 
question future research must take a more multidisciplinary and holistic approach when evaluating the potential role 
of biochar at sequestering C in grasslands to mitigate climate change.

Highlights 

• Carbon (C) rich grassland soils may offer an additional C store, utilising tools such as biochar
• Identification of practical, economic, social and legislative challenges for scaled adoption of biochar in grass-

lands
• Key question: will enhanced C storage in grasslands soils cause a loss in additional ecosystem services?
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Graphical Abstract

1 Introduction
Soil contains large stocks of organic carbon (C), equat-
ing to more C than the biosphere and atmosphere com-
bined (Stockmann et al. 2015; le Quéré et al. 2016). Thus, 
relatively small changes in soil organic carbon (SOC) 
stocks can have significant impacts on the global C bal-
ance, especially the concentration of  CO2 in the atmos-
phere. However, anthropogenic agricultural management 
over the past 10,000  years has reduced soil C stocks by 
116 Gt (Amundson and Biardeau 2018; Sanderman et al. 
2017). Additionally, it has been suggested that there 
is further possibility to exploit the soil’s natural C sink 
potential, which is estimated to be as high as 5.3 Gt of 
 CO2-equivalent  yr−1 (Fuss et  al. 2018). Thus, increasing 
(or restoring) SOC stock is one method that has been 
proposed to mitigate the effects of climate change (Ame-
lung et al. 2020). Increased SOC stocks are not only ben-
eficial in terms of C sequestration but have also been 
shown to increase crop yields and improve soil quality 
(Lal 2016; Oldfield et al. 2019).

For millennia, the act of charring organic material 
and incorporating it into soil had been recognised as 

a technique to improve soil fertility and productiv-
ity in the Amazon basin (Neves et  al. 2004; Lehmann 
2009); the Terra Preta  created and enriched the soil 
with organic matter as well as other key elements for 
crop growth (nitrogen (N), phosphorus (P) and potas-
sium (K)) (Chen et  al. 2019). In temperate systems, 
where soils are generally inherently more fertile than 
tropical systems, char is rarely used as a soil improver. 
Modern agricultural gains in productivity, driven by the 
green revolution (increased use of agrochemicals and 
plant genetic research), reduced the need for organic 
interventions during the mid to late twentieth century 
(Evenson and Gollin 2003). However, with increasing 
interest in restoring anthropogenically degraded soils 
as well as the increased understanding of anthropo-
genic climate change and interest in enhanced soil C 
sequestration, renewed attention in biochar has devel-
oped (Kimetu et  al. 2008; Lehmann et  al. 2006). More 
recently, the ambition of “net-zero” in the agricultural 
sector (Reay 2020) and more broadly across soci-
ety (Deutch 2020) has enhanced the drive to reduce 
C emissions through sequestration and C offsetting. 
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Several C sequestration technologies have been pro-
posed that may allow managed grassland C stocks to be 
increased (for example through increased plant species 
diversity (Chen et al. 2018; Yang et al. 2019), enhanced 
silicate rock weathering (Gomez-Casanovas et al. 2021; 
Masiello et  al. 2004) or iron (oxyhydr)oxide stabilisa-
tion (Wen et  al. 2019)), for which further research is 
encouraged. However, here, we focus specifically on 
biochar.

A substantial proportion of research has focused on 
the potential for C sequestration in (arable) croplands, 
due to their significant C storage potential and the ease 
in which interventions can be incorporated into normal 
farming practices (Zomer et  al. 2017). However, grass-
lands (natural, semi-natural and improved) account for 
around one-third of the terrestrial surface of the planet 
(Bengtsson et al. 2019), and are globally important in the 
delivery of many ecosystem services (and associated sus-
tainable development goals). Ecosystem services provided 
by grasslands are diverse, ranging from provisioning of 
food, through ruminant livestock production, regulation 
of climate and water flows, supporting services such as 
nutrient cycling and pollination, and provision of cultural 
and aesthetic benefits (Bengtsson et al. 2019; Murray et al. 
2013;). In terms of C, grasslands already store significant 
amounts of SOC (up to 30% of terrestrial SOC; Schuman 
et al. 2002), due to reduced soil disturbance (i.e., tillage) 
and high plant C inputs through rhizodeposition and 
plant litter (Dignac et  al. 2017), as well as excreta from 
grazing livestock (Whitehead 2020). In addition, they have 
also been shown to be relatively resilient to environmen-
tal change (e.g., drought, flooding, warming; Dass et  al. 
2018). Thus, grasslands play a vital role in soil C seques-
tration (Bai and Cotrufo 2022). However, grasslands 
require careful management, as they are frequently grazed 
and receive additional inputs (including mineral fertiliz-
ers and manures), resulting in diffuse losses of nutrients 
and C to water and emissions of greenhouse gases (GHG) 
and ammonia to the air (Cai and Akiyama 2017; Hutch-
ings et  al. 2007). Modelling has suggested that managed 
grasslands are largely GHG sources, as opposed to natural 
grasslands which are C sinks (Chang et al. 2021).

To date, however, little research has been performed 
on the potential for further C storage in grasslands, par-
ticularly examining the role of biochar applications as a C 
storage strategy with potential added benefits (increased 
nutrient retention, water storage capacity and plant pro-
ductivity). This targeted and critical review aims to iden-
tify the current gaps in the knowledge, as well as barriers 
and opportunities regarding biochar application to grass-
land soils. We collated a number of research questions 
around the application of biochar to grasslands at the 
wider scale.

As the pyrolysis product of organic waste, biochar 
is a chemically stable (~ 2000  years), C-rich material, 
with its production having the potential to be C neutral 
or negative (Glaser et  al. 2009). Its resistance to micro-
bial decay makes it an ideal candidate for long-term 
enhanced C storage. Biochar may have beneficial effects 
on soil quality, adding nutrients (phosphorus (P), sul-
phur (S) and silicone (Si); Li and Delvaux 2019), buffer-
ing pH and reducing bulk density (Alkharabsheh et  al. 
2021) and  N2O emissions (Verhoeven et al. 2017), which 
may subsequently increase grass productivity. Biochar is 
particularly effective in increasing yields when applied 
to low fertility or degraded soil, with little or transient 
effects seen on more fertile or healthier soil (El-Naggar 
et al. 2019a, b; Jones et al. 2012). Further, while a lack of 
positive effect is often seen as a negative result in science, 
this seeming transience of (positive) effect may not be a 
disadvantage. This is particularly the case if the overall 
goal of biochar application is focused on C storage alone 
and not productivity gains, as C storage itself is a benefi-
cial ecosystem service and will contribute to the target of 
“net-zero” emissions (McLaren et al. 2019; Reay 2020).

However, as biochar encompasses a wide variety of 
feedstocks and pyrolysis conditions, there is signifi-
cant variability in biochar quality and physicochemi-
cal composition with some biochars being the source of 
toxic substances (e.g., polycyclic aromatic hydrocarbons 
(PAHs), volatile organic compounds (VOCs), dioxins and 
heavy metals) as well as potentially reducing the efficacy 
of agrochemical and availability of nutrients (Brtnicky 
et al. 2021; El-Naggar et al. 2019a, b). It should be noted, 
however, that not all VOCs have negative impacts and 
some contaminants bound to biochar (e.g., PAHs) are not 
bioavailable (Brown et al. 2021; Quilliam et al. 2013a, b). 
The wide diversity in biochar composition makes it dif-
ficult to draw generalisations based on individual studies, 
with biochar properties being the sum of its unique feed-
stock composition and pyrolysis conditions (temperature 
and atmosphere composition). Generally, lower tempera-
tures increase its cation and anion exchange capacity 
(Ferraro et al. 2021), while higher temperature pyrolysis 
increases both the stability of the biochar and its anion 
exchange capacity (Banik et al. 2018; Nguyen et al. 2010; 
Woolf et  al. 2021). This allows ‘designer biochar’ prop-
erties to be tailored to its application. In an agricultural 
system this may be either slow release of nutrients, or 
addition of high stability C to the system for long-term C 
sequestration.

The status of biochar research in soil, mainly in an ara-
ble setting, has been summarised in recent publications 
by, among others, Joseph et  al. (2021), Blanco-Canqui 
(2021), Brtnicky et al. (2021), and Sun et al. (2021). How-
ever, field studies, particularly at large scale, are limited 
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in number, leading to difficulty in drawing robust conclu-
sions (Schmidt et  al. 2021; Vijay et  al. 2021), with labo-
ratory and mesocosm studies often not being reflective 
of real-world conditions. Non-significant results are 
often not published (Amrhein et al. 2019; Lederman and 
Lederman 2016), potentially leading to publication bias.

2  Biochar as a tool for grassland carbon storage
As permanent grasslands (> 5 consecutive years), by 
their nature, have reduced tillage and disturbance com-
pared to arable systems, they have comparative stabil-
ity (in both physiochemistry and biology); potentially 
offering greater persistence and therefore permanence 
of C storage (Dynarski et  al. 2020). Additionally, grass-
land degradation is also increasing in many parts of the 
world (Bai et al. 2008), likely leading to a loss in C stocks 
(Conant et al. 2017). To address this, biochar addition (1 
to 50 t C  ha−1) has been identified as a potential strat-
egy for combatting degradation (i.e., promoting resto-
ration) of grassland, aiding preservation of grassland C 
stocks and increasing productivity (Bai et  al. 2020; van 
de Voorde et al. 2014; Rafiq et al. 2020). When applied at 
high rates, this has the potential to double the organic C 
in the topsoil of many degraded grasslands. However, the 
addition of biochar to soil has also been shown to illicit 
a loss of native soil organic matter (SOM) in the short 
term, through the addition of labile nutrients leading to 
priming (Cross and Sohi 2011; Wang et  al. 2020). Since 
grasslands are already such a significant store of C, this 
priming effect may outweigh any benefit of C storage, 
although there are few long-term field studies (> 10 yr) to 
critically evaluate the significance of this.

Globally, it has been predicted that biochar production 
using sustainable feedstocks (e.g., agricultural wastes; 
crop residues, manures, and biomass crops) and maxim-
ising the use of by-products (i.e., bio-oil, syngas and heat) 
may be able to offset a maximum of 1.8 Pg  CO2-Ce  yr−1 
(~ 12% anthropogenic annual GHG  (CO2-Ce) emissions) 
(Woolf et  al. 2010). However, the potential for biochar 
application as a C storage tool is variable across the world 
and is generally dependent on the area and availability 
of applicable land, the current state of soil quality, and 
level of soil C saturation. For example, as a rough esti-
mate, grasslands (improved and semi-improved) account 
for ~ 40% of total UK land area (244 000  km2; Office for 
National Statistics, 2015), therefore the maximum tech-
nical potential of C removal may be up to 23 Mt  CO2-e 
(assuming an optimistic C storage value of 4.8 t  CO2 per 
tonne of biochar produced and loading rate of 50 t  ha−1; 
Hammond et al. 2011; Roy and Dias 2017). However, the 
actual (achievable) technical potential is likely to be lower 
due to a range of social, cultural, legal, economic, and 
practical barriers.

Regulatory barriers, for example the fact that biochar 
maybe considered a waste product and therefore might 
be governed by waste regulation (He et al. 2022; Kane and 
Ryan 2022), as well as public and stakeholder opinion and 
potential compensation from C markets (central to the 
socioeconomic willingness to adopt biochar (Latawiec 
et al. 2017)), provide challenges and uncertainty in wide-
scale adoption.

3  State of current biochar grassland research
Biochar research focusing specifically on grassland soils 
represents a small percentage (~ 2%) of the significant 
body of research that exists around biochar (> 12,300 
results: Web of Science, search string “biochar AND soil” 
for the period 2006 to 2023). Here, we briefly reviewed 
the biochar literature in a grassland setting for the most 
common ecosystem service measurements that were 
taken in relation to the field study of temperate grass-
lands. The Web of Science was used as the primary data-
base, utilising the search string "ALL = (biochar AND 
grassland)". We extracted data over the period 2009 to 
2022, producing 206 publications. After excluding non-
field-based experiments, as well as metanalyses, and 
studies not in temperate climates (including Continental, 
Mediterranean and Oceanic), as well as papers contain-
ing no reference to any ecosystem service measurements, 
a total of 41 papers were taken forward for analysis. These 
were then examined to identify which ecosystem service 
parameters were recorded and reported, under the broad 
themes of (i) provisioning, (ii) regulating, or (iii) support-
ing and (iv) cultural. Overall, 19 individual ecosystem 
service indicators were assessed across the themes (Dodd 
et al. 2023). The full list of papers and ecosystem services 
measured are summarised in Additional file 1.

Generally, 46% of  the studies reported indicators across 
at least two of the three ecosystem service themes evalu-
ated here, 10% reported on only one, while 44% included 
measurements from all three. pH and plant biomass were 
jointly the most reported ecosystem service indictor 
measured (54% of studies), followed by some measure-
ment of dissolved nutrients  (NO3-N,  NH4-N,  PO4-P; 46% 
of studies). However, several ecosystem service indicators 
are rarely reported, including: porosity (0%), the tea bag 
index as a metric for C storage potential (0%), earthworm 
biomass and abundance (0%), percentage plant ground 
cover (2%) and plant survey (species richness and diver-
sity; 2%). Feedstocks were predominantly wood (58%), or 
straw- or grass-based (21%).

While few studies on biochar examine   long-term, 
field-scale effects (Vijay et  al. 2021), 67% of the studies  
last over a year. Equally, the duration of monitoring rarely 
exceeds 3 years (5%; likely reflecting the nature of scien-
tific funding), however, with the persistence of biochar in 
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soil being estimated at 200–2000 years, this only provides 
a snapshot of the short-term effects following applica-
tion. We have little knowledge of the stability of biochar 
C and its effect on soil health over the long term, particu-
larly in temperate grasslands (in comparison to the study 
of the legacy effects of Terra Preta in the tropics). Equally, 
the comparative effect of differing feedstock and pyroly-
sis conditions between biochars is often little explored in 
terms of creating ‘designer’ biochar for specific grassland 
applications (Ippolito et al. 2020).

In recent years, there has been an increase in the finan-
cial and cultural value put on the environment and the 
ecosystem services that it provides (Bateman et al. 2019). 
Thus, metrics of soil and plant health should not be 
measured in isolation, rather a broad range of measure-
ments across the ecosystem service spectrum allows for a 
more holistic overview of the benefits (or disadvantages). 
Biological indicators of soil quality are some of the most 
responsive to change and of high importance (particu-
larly earthworms as “ecosystem engineers”; Paz-Ferreiro 
and Fu 2016). The number of species of earthworm is 
generally higher under grassland compared to arable 
(Boag et al. 1997; Singh et al. 2021), and while this likely 
provides increased functional redundancy, the effect of 
biochar on this diversity and its implications for ecosys-
tem service provision should be explored.

Additionally, grasslands are often hosts to ruminant 
livestock systems, and while there has been some explo-
ration of effect of biochar in soil on  N2O emissions from 
soil, generally showing reductions (Cayuela et  al. 2014), 
ruminant urine patches represent a hotspot of N load-
ing (and subsequent loss) (Chadwick et  al. 2018; Mars-
den et  al. 2016). Biochar has previously been explored 
as a feed amendment for livestock for the abatement of 
nutrient and GHG losses (Man et al. 2021; Schmidt et al. 
2019). While there is some evidence that incorporation of 
biochar to soil may reduce ruminant urine patch N losses 
(Mahmud et al. 2018; Taghizadeh-Toosi et al. 2011), the 
effects of this must be explored on a range of soil types 
and over time. Equally, the diversity of grassland is rarely 
reflected in the literature, with the vast majority of stud-
ies taking place on lowland agricultural systems, when 
semi-natural and upland grasslands are also important in 
extensive livestock systems.

4  Potential for net ecosystem service provision 
change

Over the years, two key themes in soil related biochar 
research have emerged. These can be broadly character-
ised into amendment for soil and crop quality improve-
ment (Agegnehu et  al. 2017; Jones et  al. 2012; Mousavi 
et  al. 2022), and amendment for soil C storage (Chagas 
et al. 2022; Lehmann et al. 2021; Smith et al. 2016). Few 

studies have examined the effect on ecosystem multi-
functionality (Bolan et  al. 2021) i.e., the net effect on 
ecosystem service provision. Generally, benefits/disad-
vantages are not isolated and will have interaction effects 
and feedback mechanisms with other functions and ser-
vices. As summarised by Blanco-Canqui (2021), the lit-
erature indicates that biochar is unlikely to improve all 
ecosystem services, which is dependent on a plethora of 
factors (e.g., the type of biochar being used, application 
rates, and soil properties).

Here, we summarised the potential for biochar as an 
amendment for grassland, and potential net changes 
in broad ecosystem service provision in the opinion of 
the authors of this paper as technical experts in a range 
of disciplines (biochar, grassland science, soil science, 
sustainable land use systems, microbial ecology, envi-
ronmental biology, soil biochemistry, agricultural eco-
nomics, pyrolysis and fuel science). Authors were asked 
to score the effects of biochar addition to grasslands on 
each ecosystem service individually and results were then 
averaged to produce a final score. The applicability of 
biochar as a soil amendment in grassland is assessed in 
Table 1, while the net effect on the potential for ecosys-
tem service provision in improved grassland (determined 
as the most likely to be amended with biochar) is pre-
sented in Table 2. Application of biochar to soil in arable 
systems was used a comparative reference.

Generally, there was consensus that arable cropland 
remains the most favourable for biochar application 
(Table  1), likely due to the relative ease of application 
within normal agricultural practices and the increase in, 
often depleted, C stocks (Davidson and Ackerman 1993; 
Paustian et al. 2019). This also suggests that arable soils 
are more appropriate for the highest potential biochar 
application rates, with potentially little impact on crop 
productivity (Jones et  al. 2012). However, as discussed 
above, grasslands occupy a significant amount of land 
that may be further utilised to sequester C.

Expert opinion suggests that improved grasslands 
(rather than semi-improved and unimproved grasslands) 
are likely to be the most favourable for biochar amend-
ments in terms of practicality and economics (Table 2). In 
contrast, semi-improved and unimproved grasslands are 
unlikely to be appropriate for biochar application, due to 
practicality (as, this land is often remote with accessibil-
ity issues, resulting in little agricultural traffic, or may be 
under some form of conservation designation), accepta-
bility and effectiveness at C storage (as C stocks are often 
high already; Eze et al. 2018). In comparison to improved 
grasslands, the potential amount of biochar which can be 
added may also be lower than economically and environ-
mentally viable. There was a perception that considerable 
uncertainty in understanding the economics and social 
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opinion towards biochar application exists, likely due to a 
lack of research in these areas (Latawiec et al. 2017).

In terms of potential changes to the provision of eco-
systems services, we postulated  that there would likely 
be little substantial change from business as usual using 
most biochar application methods. There was signifi-
cant uncertainty associated with most ecosystem service 
impacts, likely due to the lack of long-term field-scale 
data, including the practicalities of application, and the 
fact that few studies have focused on more than two 

ecosystem services. Topsoil application is likely to be 
more common than subsoil, due to the relative ease and 
cost. Arguably surface broadcasting and incorporation 
during grassland reseeds are likely to be the most com-
mon deployment methods, as they can both be done 
using standard agricultural equipment. However, while 
injection requires more specialised equipment, it may 
bring the largest benefits in terms of regulating and sup-
porting services, potentially reducing bulk density and 
improving water infiltration. It must also be noted that 

Table 1 Assessment of the applicability of biochar as an amendment for grassland

Authors (n = 7) scored the applicably of biochar to agricultural land in each category (1 (not-) to 10 (extremely-)) and gave an uncertainty rating for each (??? (very 
uncertain) to—(certain), the scale being ???, ??, ?, -) and estimated the practical range of biochar that could be added to each land use based on expert opinion. Scores 
are presented as a mean ± SEM, with the mean uncertainty rating in brackets, rounded to the nearest integer. The potential range of biochar was calculated as the 
mode of the lowest and highest numbers suggested, respectively (note that the upper potential range of semi-improved grassland was bimodal)

Practicality of 
accessing and 
adding char to 
the site

Economically 
viability of the 
operation

Social and 
cultural 
acceptability 
to farmers and 
landowners

Effectiveness 
at C storage

Potential for 
widescale 
adoption in the 
UK

Potential range 
of biochar 
addition (t  ha−1)

Overall score

Arable (for com-
parison)

9 ± 0.2 (?) 7 ± 0.4 (??) 7 ± 0.4 (??) 7 ± 0.5 (?) 7 ± 0.4 (?) 10–100 7

Improved grass-
land

7 ± 0.4 (?) 7 ± 0.5 (??) 6 ± 0.4 (??) 6 ± 0.7 (??) 5 ± 0.6 (?) 10–50 6

Semi-improved  
grassland

5 ± 1.2 (?) 4 ± 1.2 (??) 4 ± 1.1 (??) 5 ± 1.3 (??) 3 ± 0.9 (??) 1–5; 20 4

Unimproved 
grassland

4 ± 1.1 (??) 3 ± 0.8 (??) 3 ± 1.2 (??) 5 ± 1.7 (??) 2 ± 0.4 (??) 1–10 3

Table 2 Assessment of the effect of biochar as an amendment for improved grassland on ecosystem services

Authors (n = 7) scored the likely change on ecosystem services that biochar application will cause, − 10 (extremely negative) to + 10 (extremely positive) with 0 
representing no change from business as usual, and gave an uncertainty rating for each (??? (very uncertain) to – (certain), as above). Assessment of ecosystem service 
categories was based the indicator metrics proposed in Dodd et al. (2023), summarised in Additional file 2: Table S1

Practicality Relative change from business as usual

Method of application Potential/known effect Provisioning Regulating Supporting Cultural

Topsoil Surface broadcast
(Dry or wetted)

Reduced liming requirement
Wind/rain loss
Human health (inhalation)
Agrochemical adsorption

0 ± 0.9 (??) 1 ± 0.9 (??) 1 ± 0.8 (??) − 1 ± 1.3 (??)

Sub-surface application—shallow injec-
tion—conventional injection

Reduced liming requirement
Agrochemical adsorption

0 ± 0.8 (??) 3 ± 0.4 (??) 2 ± 0.5 (??) 0 ± 0.2 (?)

Sub-surface application—shallow injec-
tion—pneumatic injection

Agrochemical adsorption 0 ± 0.7 (??) 3 ± 0.4 (??) 2 ± 0.5 (??) 0 ± 0.2 (?)

Mixed with manure / organic resource 
applications

Increased risk of  NH3 volatilisation 
(high manure pH)

1 ± 1.1 (??) 1 ± 0.9 (??) 1 ± 1.2 (??) -1 ± 0.7 (?)

Incorporation during reseed Reduced liming requirement
Agrochemical adsorption
C priming

1 ± 0.7 (??) 3 ± 0.4 (??) 1 ± 0.9 (??) 0 ± 0.2 (?)

Slot seeding Reduced liming requirement 2 ± 0.2 (??) 2 ± 0.2 (??) 2 ± 0.7 (??) 0 ± 0.3 (?)

Subsoil Trenching/ application to ditch at field 
boundaries

Agrochemical adsorption 1 ± 1.0 (??) 3 ± 0.5 (??) 1 ± 0.7 (??) 1 ± 1.6 (?)

Sub-surface application—Deep injection Unknown 0 ± 0.2 (??) 3 ± 1 (??) 1 ± 0.4 (??) 0 ± 0.0 (?)

Mole drainage infill Drain blockage/induces waterlogging − 1 ± 0.6 (??) 2 ± 0.6 (??) 0 ± 0.7 (???) 0 ± 0.0 (?)

Surrounding field drains during installation Unknown 1 ± 1.0 (??) 2 ± 0.6 (??) 1 ± 0.8 (??) − 1 ± 1.5 (??)
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in terms of measurement, reporting and verification 
(MRV), which will be key to monitoring soil C increases 
over time, methods that directly incorporate biochar into 
the soil are likely to be favoured, as they reduce the like-
lihood that the C is transported/exported through wind 
and water erosion.

5  Future research direction
For almost two decades biochar has been proposed as a 
potential method of GHG removal and climate change 
mitigation (Lehmann et  al. 2006). However, despite the 
large number of positive results published on biochar 
(reviews by Ding et al., (2016), Ali et al., (2017), Liu et al. 
(2018) and Shaaban et  al., (2018)), only a few studies 
(reviewed recently by Vijay et al., (2021)) have examined 
the effect of biochar application on soil quality and pro-
ductivity at the agricultural field scale (Maroušek et  al. 
2016). This disconnect between research and practice is 
not surprising, considering the lack of large-scale infra-
structure for the production, distribution and application 
of biochar, and little understanding of the economic and 
environmental cost (Maroušek et al. 2019). Equally, social 
research on the opinions of farmers and land managers 
(who will be key in wide scale adoption of the technol-
ogy) is extremely scarce (Latawiec et al. 2017). We sum-
marised  the key knowledge gaps in biochar research 
in relation to grassland application by research area, 
highlighting the key areas for future research and devel-
opment to underpin wide-scale adoption of biochar 
amendments in grassland systems:

5.1  Practicality

– What is the best method for field-scale application? 
In terms of cost to the farmers and ease of adop-
tion, utilisation of current machinery i.e., in isola-
tion or spreading with fertiliser or mixing with live-
stock (mainly cattle) slurry, is likely to prove the most 
economically viable option. Equally the interaction 
effects between biochar, slurry and other organic 
resources applied to grassland need to be explored.

– When is the best time to incorporate biochar into 
grasslands, i.e., at reseed (one large loading) or annu-
ally (repeated lower loading rates)?

– What is the optimal size of biochar (i.e., chunks/ pel-
lets/ dust) and how does this affect application tech-
nology and agroecosystem function?

– Is there a negative priming effect (as grasslands are 
already large stores of SOC)?   Does this response 
exhibit in the field over long time periods?

– What is the potential effect on non-CO2 GHG (direct 
 N2O, indirect  N2O  (NO3

− leaching,  NH3 emissions) 
and  CH4 efflux) under field conditions?

– Biochar feedstock is often highly variable in its com-
position (due to being derived from different waste 
streams and produced under different pyrolysis con-
ditions), so what effect does feedstock variability, 
type, quality and pyrolysis conditions have on the 
ability to store C and support ecosystem services in 
grasslands?

– Where is the feedstock going to come from to make 
the biochar? This is relevant in areas where there is 
a spatial disconnect in biochar production and con-
sumption.

– Can we add biochar to the subsoil (e.g. during deep 
tillage)?

– Is biochar an applicable and/or suitable for C seques-
tration across a wide range of soil types and pasture 
types e.g., hay meadows, upland semi-improved and 
unimproved pastures, some of which may have limits 
imposed on their management strategies (i.e. envi-
ronmental stewardship schemes that preclude any 
inputs)? How spatially variable is the soil’s response 
to biochar addition?

– Livestock may ingest large amounts of soil (cows up 
to 1 kg per day (Jurjanz et al. 2012); how would bio-
char-loaded soil affect the ruminant gut microbiome?

– How does biochar compare with other potential 
methods to sequester C in agricultural systems, i.e., 
enhanced silicate rock weathering and iron mediated 
stabilisation, and could a combination of techniques 
be appropriate?

– How do we validate the net C gains (e.g. for C 
accounting purposes)?

5.2  Social

– What are the social and cultural barriers and oppor-
tunities for farmers and land managers regarding the 
use of biochar on grasslands?

– How practical do farmers think it is as a method of 
C storage, particularly in comparison to other strate-
gies?

– What are the health impacts to grassland farmers 
handling and spreading biochar?

5.3  Economic

– Is it economically and environmentally efficient to 
use biochar as a C sequestration technique or do 
supply chain processes and costs and impacts (i.e., 
production, transport and application) outweigh the 
benefits?
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– Is on-farm biochar production better than off-site 
production at a large industrial plant?

– Would agri-environmental scheme payments (i.e., 
public money) be required to target specific grass-
lands for biochar application and make this viable? 
Or, alternatively, how would a just C trading scheme 
be structured effectively to incentivise farmers to 
manage land to sequester C.

5.4  Legislative/regulatory

– What are the key waste regulations that would need 
to be addressed before biochar could be used at 
scale?

– What is the possibility of application to ‘protected 
grasslands’ e.g., with conservation designation or in 
environmental stewardship schemes, measures that 
preclude inputs to some grassland areas?

6  Conclusions
To summarise, biochar has potential as a soil C seques-
tration tool, adding further benefits to the agroecosys-
tem. Biochar addition into the soil of semi-permanent 
and permanent grassland systems has been explored to a 
much lesser extent than in arable cropping systems. This 
lack of research is hampering the wide-scale adoption of 
biochar in grasslands. Before national scale policy is devel-
oped regarding biochar, much more research is required to 
holistically assess the impacts on ecosystem service provi-
sion as well as the ease of applicability at a field/farm scale, 
and fully understand the life cycle costs. A key question 
remains; is it possible for grasslands under management 
to store more C, without causing a loss in other ecosys-
tem services? This is likely to include  the assessment of 
combinations with other C sequestration techniques (e.g., 
enhanced silicate rock weathering and Fe mediated sta-
bilisation) to maximise C storage. However, this must be 
achieved while minimising the negative effects on ecosys-
tem services for example, adding high nutrients to soil may 
reduce biodiversity with a knock-on effect on pollinators.
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