
 

 

 

P
R

IF
Y

S
G

O
L

 B
A

N
G

O
R

 /
 B

A
N

G
O

R
 U

N
IV

E
R

S
IT

Y
 

 

On their way to the north: larval performance of Hemigrapsus sanguineus
invasive on the European coast—a comparison with the native European
population of Carcinus maenas
Espinosa-Novo, Noé ; Gimenez Noya, Luis; Boersma, Maarten; Torres, Gabriela

Biological Invasions

DOI:
10.1007/s10530-023-03095-3

Published: 01/10/2023

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA):
Espinosa-Novo, N., Gimenez Noya, L., Boersma, M., & Torres, G. (2023). On their way to the
north: larval performance of Hemigrapsus sanguineus invasive on the European coast—a
comparison with the native European population of Carcinus maenas. Biological Invasions,
25(10), 3119-3136. https://doi.org/10.1007/s10530-023-03095-3

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or
other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal
requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private
study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to
the work immediately and investigate your claim.

 29. Jun. 2024

https://doi.org/10.1007/s10530-023-03095-3
https://research.bangor.ac.uk/portal/en/researchoutputs/on-their-way-to-the-north-larval-performance-of-hemigrapsus-sanguineus-invasive-on-the-european-coasta-comparison-with-the-native-european-population-of-carcinus-maenas(277a6d02-f9db-4ca0-857a-bc38bce156fa).html
https://research.bangor.ac.uk/portal/en/researchers/luis-gimenez-noya(3beb8871-ee8e-4cf4-b985-fb27afb61328).html
https://research.bangor.ac.uk/portal/en/researchoutputs/on-their-way-to-the-north-larval-performance-of-hemigrapsus-sanguineus-invasive-on-the-european-coasta-comparison-with-the-native-european-population-of-carcinus-maenas(277a6d02-f9db-4ca0-857a-bc38bce156fa).html
https://research.bangor.ac.uk/portal/en/researchoutputs/on-their-way-to-the-north-larval-performance-of-hemigrapsus-sanguineus-invasive-on-the-european-coasta-comparison-with-the-native-european-population-of-carcinus-maenas(277a6d02-f9db-4ca0-857a-bc38bce156fa).html
https://research.bangor.ac.uk/portal/en/researchoutputs/on-their-way-to-the-north-larval-performance-of-hemigrapsus-sanguineus-invasive-on-the-european-coasta-comparison-with-the-native-european-population-of-carcinus-maenas(277a6d02-f9db-4ca0-857a-bc38bce156fa).html
https://doi.org/10.1007/s10530-023-03095-3


1 
 

 1 

 2 

 3 

On their way to the North: larval performance of Hemigrapsus sanguineus 4 

invasive to the European coast. A comparison with the native European 5 

population of Carcinus maenas 6 

 7 

Noé Espinosa-Novo1*, Luis Giménez1,2, Maarten Boersma1,3, Gabriela Torres1 8 

 9 

1Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt 10 

Helgoland, 27498 Helgoland, Germany. 11 
2School of Ocean Sciences, Bangor University, LL59 5AB Menai Bridge, United Kingdom. 12 
3University of Bremen, Germany 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

*Corresponding author: 21 

Noé Espinosa-Novo 22 

Ostkaje 1118 23 

27498 Helgoland 24 

Email: Noe.Espinosa@awi.de 25 

Noé Espinosa-Novo: 0000-0001-8469-3374 26 

Luis Giménez:               0000-0002-1472-2915 27 

Maarten Boersma: 0000-0003-1010-026X 28 

Gabriela Torres: 0000-0003-0970-5990 29 

https://orcid.org/0000-0001-8469-3374


2 
 

2 
 

ABSTRACT 30 

The Asian shore crab Hemigrapsus sanguineus has become invasive in North Europe and it co-occurs 31 

and competes with the native European shore crab Carcinus maenas. Both species develop through a 32 

feeding and dispersive larval phase characterised by several zoeal and a settling megalopa stage. Larvae 33 

of marine crabs are vulnerable to food limitation and warming has the potential to exacerbate the 34 

negative effects of food limitation on survival and growth. We quantified the combined effects of 35 

temperature and food limitation on larval performance (survival and growth) of H. sanguineus and we 36 

compared our results with those reported on performance of C. maenas larvae, under the same 37 

experimental design and methodology. Larvae from four females of H. sanguineus collected on 38 

Helgoland (North Sea) were experimentally reared from hatching to megalopa, at four temperatures 39 

(range 15-24ºC) and two food conditions (permanent vs daily limited access to food). Larval survival 40 

of H. sanguineus was low at 15 ºC and increased with temperature, in contrast to the high survival 41 

reported for C. maenas larvae in the range 15-24 ºC. Food limitation reduced survival and body mass 42 

of H. sanguineus larvae at all temperatures, but without evidence of the exacerbating effect caused by 43 

high temperatures and reported for C. maenas. By contrast, high temperature (24ºC) mitigated the 44 

negative effect of food limitation on body mass on H. sanguineus larvae. Advantages of H. sanguineus 45 

over C. maenas appear especially under the increased temperatures expected from climate change. 46 

 47 
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INTRODUCTION  58 

Increasing trade and travel in the last decades has led to biological invasions, i.e. the dispersion 59 

and introduction of many species to geographical areas located outside their native range (Hulme 2011; 60 

Bailey et al. 2020). Dispersion of organisms due to anthropogenic activities occurs through shipping 61 

(ballast water, fouling), construction of corridors, aquaculture, fisheries, and food trade (Carlton 2002, 62 

Hulme et al. 2008; Molnar et al. 2008; Katsanevakis et al. 2013). The introduction of a new species can 63 

lead to the decline in native species richness and abundances, loss of genetic variation in the native 64 

community, and an increase in the homogeneity of the invaded communities (Rahel 2000; Pyšek et al. 65 

2012; Geburzi et al. 2018). Whenever the “introduced” species causes an impact on the host ecosystem, 66 

it is considered “invasive”. Biological invasions are one of the most important threats to biodiversity 67 

after changes in land and sea use, animal exploitation, climate change, and pollution (Brondizio et al. 68 

2019; IPCC 2019). Invasive species affect the dynamics of native communities at different scales 69 

(Hulme 2017), by means of different interactions including competition, predation, and introduction of 70 

new diseases (Ruiz et al. 2000; Sakai et al. 2001; Jeschke et al. 2012). Biological invasions have been 71 

reported for most marine and estuarine habitats in the world (Katsanevakis et al. 2013; Chan and Briski 72 

2017; Pyšek et al. 2020). Many hypotheses have been proposed to explain biological invasions and the 73 

success of the invaders (Simberloff and Von Holle 1999; Gurevitch et al. 2011; Kelley 2014), yet there 74 

is still little information on the processes involved in dispersion and establishment of alien species in 75 

novel habitats (Bailey et al. 2020; Rato et al. 2021).  76 

Global climate change is causing an increase in the number and the impact of biological 77 

invasions (Hulme 2017; González-Ortegón et al. 2020; Pyšek et al. 2020), because of the steady increase 78 

in temperature (IPCC 2021), and the increased frequency of extreme events (e.g. heatwaves, Meehl and 79 

Tebaldi 2004; Smale et al. 2019). These changes combined with other human activities can act together 80 

to help the dispersal and establishment of new species. For example, the oyster Crassostrea gigas was 81 

first introduced in the North Sea for aquaculture purposes and was able to establish there due to above-82 

average summer temperatures that helped the species to spread (Diederich et al. 2004; Smaal et al. 83 

2009). Global warming has also led to the poleward expansion of many species (Sorte et al. 2010; 84 

Poloczanska et al. 2013; Giménez et al. 2020).  85 

Global warming could affect both invasive species and their native competitors in different 86 

ways. How different species respond to changes in environmental variables (e.g. temperature) will 87 

ultimately determine individual performance and species interactions. Increases in temperature cause 88 

rises in metabolic demands, which should be met by food supply (Gillooly et al. 2001; Somero 2002). 89 

However, for organisms living in the marine pelagic realm, where the food distribution is patchy 90 

(Paffenhöfer et al. 1987, McManus et al. 2003) increased temperature combined with food limitation 91 

could impair growth and survival. The combined effect of food limitation and increased temperature 92 
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may particularly impact life history stages characterised by high growth rates (Foster and Hirst 2012; 93 

Otto et al. 2020). Crustacean larvae are an example where high growth rates are sustained by high 94 

feeding rates, which in turn demand higher food availability (Anger 2001). In such case, one would 95 

expect that increased temperatures combined with limited access to food may cause reductions in 96 

growth rate and survival (Torres and Giménez 2020). However, the nature of the effect could vary 97 

between native and exotic competitors because of differences in thermal optimum ranges (Griffith et 98 

al. 2021). Hence, a critical question to understand current invasion and future population spread is how 99 

increased temperature combined with food limitation drive the performance of both native and exotic 100 

species.  101 

The Asian shore crab Hemigrapsus sanguineus is native to the east coast of Asia (20º - 50º N) 102 

(Takahashi et al. 1985; Fukui et al. 1989; Hwang et al. 1993). It is one of the most abundant crab species 103 

on rocky beaches and occupies the upper and middle intertidal zones (Kikuchi et al. 1981; Fukui 1988). 104 

It has successfully invaded the coasts of North America, North Europe, and the Adriatic and Black Seas 105 

(Schubart 2003; Micu et al. 2010) via ballast water (Ai-yun and Yang 1991; Kraemer et al. 2007; 106 

Epifanio 2013). In northern Europe, H. sanguineus was first recorded in France and the Dutch Delta 107 

system in 1999 (Breton et al. 2002) and then spread to the North Sea and Scandinavia (Wolff 2005; 108 

Kerckhof et al. 2007; Dauvin and Dufossé 2011; Gittenberg et al. 2010; Gothland et al. 2013; Seeley et 109 

al. 2015; Karlsson et al. 2019). H. sanguineus was occasionally found in the Mediterranean and Black 110 

Sea (Schubart 2003; Ben Souissi et al. 2004; Micu et al 2010; Ounifi-Ben Amor et al. 2016a,b; 111 

GBIF.org). There are several factors likely to drive or limit the expansion of H. sanguineus, including 112 

the presence of congeneric competitors (e.g. US North Pacific, Steinberg and Epifanio 2011, Lord 2017) 113 

and low summer temperatures (Stephenson et al. 2009). In the Atlantic coast of North America, the 114 

northern distribution limit of H. sanguineus is determined by the larval thermal tolerance to low 115 

temperatures (Epifanio et al. 1998; Stephenson et al. 2009). Hence, as a result of warming, the 116 

distribution of H. sanguineus is likely to expand further north (Epifanio 2013; Giménez et al. 2020). H. 117 

sanguineus co-occurs and competes with the shore crab Carcinus maenas in Europe and in North 118 

America. Both species overlap in diet and habitat use, with juvenile/adults of H. sanguineus 119 

outcompeting C. maenas in the use of space and resources. H. sanguineus also predates on C. maenas 120 

juveniles affecting their recruitment success (Lohrer and Whitlach 2002; Jensen et al. 2002; Geburzi et 121 

al. 2018). For example, in Southern New England H. sanguineus has significantly reduced the 122 

recruitment of C. maenas due to direct predation, leading to a decline in densities by 40 - 90 % (Lohrer 123 

and Whitlatch 2002). In addition, when in sympatry individuals of C. maenas migrate towards the 124 

subtidal zone (Geburzi et al. 2018). The above-mentioned factors, help explain the displacement of C. 125 

maenas from environments where it was previously more abundant.  126 

We compared the performance of H. sanguineus and C. maenas from the perspective of the 127 

larval phase for co-occurring populations of the German Bight (Helgoland, North Sea). We focus on 128 
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larvae because larval survival and recruitment are critical contributors to the propagule pressure by H. 129 

sanguineus (Simberloff 2009) and for the persistence of populations of C. maenas. Propagule pressure, 130 

i.e. a group of individuals of a species arriving in a region to which they are not native, drives the 131 

establishment and spreading of invasive populations (Simberloff 2009). Marine larvae in particular, 132 

tend to be more sensitive to environmental fluctuations than juveniles or adults (Pandori and Sorte 2019) 133 

and larval survival is central to the recovery of populations after environmental disturbances (Cowen 134 

and Sponaugle 2009; Pineda et al. 2009; Giménez et al. 2020). In particular, differences in larval 135 

survival among co-occurring species may affect the balance of competition, either exacerbating or 136 

counteracting the outcome. In theory, counteracting effects may occur in cases of trade-offs between 137 

competition and dispersal abilities (Seifan et al. 2013). Because H. sanguineus was first reported in the 138 

German Bight very recently (2008- Scrosati et al. 2011, 2009- Jungblut et al. 2017), it is not clear yet 139 

whether H. sanguineus would be able to outcompete C. maenas at that local habitat. Unlike C. maenas, 140 

larvae of H. sanguineus cannot develop at temperatures below 13-15 ºC (Epifanio 2013) which 141 

characterise the spring and early summers in the German Bight and coastal North Sea (Giménez et al. 142 

2020). For H. sanguineus, larvae appear to be released when the temperature surpasses 15 ºC which is 143 

early/ mid- June depending on the year (Giménez et al. 2020). In the case of C. maenas, larval release 144 

starts in May (Harms et al. 1994), but the full larval season of both species partially overlap. We know 145 

that under food limitation, zoea I of H. sanguineus is more tolerant to short thermal fluctuations than 146 

C. maenas (Giménez et al. 2021). However, over the entire larval phase and under low temperatures, 147 

food limitation may produce a stronger negative effect on survival of H. sanguineus than that observed 148 

in C. maenas.  149 

Here we compared the responses of larvae of Hemigrapsus sanguineus and Carcinus maenas 150 

to food limitation under increased temperature, reared in comparable experimental conditions. We first 151 

quantified the combined effects of temperature and food limitation on survival and performance of 152 

larvae of H. sanguineus. For the first time, we documented growth and survival responses in any 153 

population of this species to food limitation over a wide range of temperatures. In particular, we 154 

quantified the correlated responses of growth and development, driving size, and reserves at 155 

metamorphosis, which for benthic invertebrates, are known to drive the performance of the post-156 

metamorphic stages in the benthic habitat (Giménez et al. 2004; Pechenik 2006; Giménez 2010; Torres 157 

et al. 2016). Second, we compared our results on H. sanguineus with those obtained by Torres and 158 

Giménez (2020) for a co-occurring population of C. maenas.  159 

 160 

 161 

  162 



6 
 

6 
 

MATERIALS AND METHODS  163 

Animal husbandry, larval rearing and experimental design  164 

Berried females of H. sanguineus (carapace width 15.8 - 17.2 mm) were collected on the island 165 

of Helgoland (North Sea, German Bight, 54°10'40.9" N 7°53'32.4" E) during their reproductive season 166 

(July - September) and transported to the laboratory. Females were kept individually in 2-L aquaria 167 

with UV-treated filtered (0.2 µm) seawater (32.5 ‰) permanently aerated, in a temperature-controlled 168 

room at 18 ºC (± 0.5 ºC) with a 12:12 h light: dark cycle. Females were fed every 3 days with shrimps 169 

(Crangon crangon) and water was changed daily to ensure high water quality at hatching.  170 

The experimental setup comprised a factorial design, in which we exposed larvae obtained from 171 

each given female to different combinations of temperatures and access to food (following Torres and 172 

Giménez 2020). This experimental procedure was repeated four times, i.e. once for each of the hatches 173 

obtained from four different females, in order to assess potential variations in responses driven by 174 

maternal influence. Freshly hatched zoeae were distributed in 8 treatments (4 replicate vessels per 175 

treatment, see below for more details), combination of 2 levels of daily access to food (6 or 24 h / day, 176 

provided ad libitum) and 4 temperatures (15, 18, 21 and 24 ºC). The different temperatures were chosen 177 

based on its natural variability in the German Bight: 15 and 18 ºC represent temperatures recorded 178 

during the larval season of H. sanguineus (Giménez et al. 2020); this corresponds to summer 179 

temperatures around the local population (Wiltshire and Manly, 2004). Temperatures > 20 °C are 180 

expected as the consequence of steady warming due to climate change (Schrum et al. 2016), and as the 181 

consequence of the expected increment in the frequency of warm summers (Christidis et al. 2015). 182 

Experiments were carried out in temperature-controlled rooms and using natural UV-treated 183 

filtered (0.2 µm) seawater. When hatching occurred, 50 larvae were sorted into each of 500-mL rearing 184 

vessels (4 replicate vessels per treatment for each of the four females) in UV-treated filtered seawater 185 

at the temperature of hatching. Freshly hatched Artemia sp. nauplii (Great Salt Lake Artemia, Sanders, 186 

USA) were provided as food for the larvae in densities of ∼5 nauplii/mL (Torres et al. 2021). In the 187 

treatment of limited access to food, Artemia sp. nauplii were available for 6 hours each day (between 9 188 

a.m. and 3 p.m., following Giménez and Anger 2005, Torres and Giménez 2020). By contrast, in the 189 

treatment of permanent access to food, Artemia sp. nauplii were available all day. Water in all treatments 190 

was changed daily following standard procedures for larval rearing (Torres et al. 2021). During the 191 

daily water change, live larvae were staged and recorded, dead ones were also recorded and removed 192 

from the experiments; in addition, we checked that remaining food was present in each rearing vessel.  193 

Body mass and elemental composition (carbon and nitrogen) were measured in freshly hatched 194 

larvae (3 replicates, 50 zoea each at the start of each experiment) and in freshly moulted megalopae 195 

(sampled within 24 h after moulting). Carbon content is used as a proxy for lipid reserves, used by 196 

crustacean larvae to sustain periods of food limitation (Dawirs et al. 1986; Anger and Harms 1990); 197 

nitrogen content is used as a proxy for protein content (Dawirs 1996; Dawirs et al. 1986). The number 198 
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of individual megalopae sampled in each of the 4-replicate rearing vessel was on average 5 (Table S1). 199 

Larvae were pipetted onto a filter, rinsed with distilled water, gently blotted dry with filter paper, and 200 

stored in pre-weighed tin cartridges at -20 °C for later analysis. To determine the dry weight, samples 201 

were freeze-dried for 48 h and weighed using a microbalance (Sartorius SC2, precision 1 µg). Carbon 202 

and nitrogen content were then determined using an elemental analyser (vario MICRO cube CHNS 203 

analyser, Elementar Analysensysteme). 204 

 205 

Data analysis  206 

The response variables were survival, duration of development, body mass, elemental 207 

composition (carbon and nitrogen), and instantaneous growth at the megalopa. Survival to each zoeal 208 

stage was calculated as the percentage of survivors in relation to the number of organisms at the start 209 

of each experiment. Duration of development was calculated as the time elapsed from hatching to reach 210 

each developmental stage. Growth rates were estimated as G = log (Wf / W0)/t. In this formula W0 is the 211 

average mass (dry weight, carbon or nitrogen) at hatching, Wf is the corresponding mass of each 212 

individual megalopa collected in each rearing replicate and t is the corresponding duration of 213 

development of each individual megalopa.  214 

Mixed modelling was carried out in R (function lme and gls from package nlme, Pinheiro et al. 215 

2018, R Core Team 2013) to assess the responses to the different combinations of food availability and 216 

temperatures on survival and duration of development. The models contained temperature and food 217 

availability as fixed factors and female of origin as a random factor. We performed backwards model 218 

selection (Zuur et al. 2009) in two steps. In a first step, we tested the random terms using restricted 219 

maximum likelihood (REML), we compared the different models through the corrected Akaike 220 

information criteria (AICc) and ranked them. The model with the lowest AICc was selected for further 221 

analysis. When the difference between two models was ΔAICc < 3 and the most complex model had 222 

the lower AICc we applied hypothesis testing (likelihood ratio tests). When the models differed 223 

significantly (p < 0.05), we chose the model with the lowest AICc and when the difference was not 224 

significant we chose the simpler model (with the lowest number of parameters). In a second step, the 225 

fixed terms were analysed through maximum likelihood (ML). For dry mass, elemental composition, 226 

and growth rates at the megalopa we did not get sufficient data in the food limited treatment at 15 °C 227 

for female 4 (F4). We therefore, analysed the data using two different starting models: (1) considering 228 

all females but without 15 °C and (2) considering all treatment combinations but without F4.  229 

Data for survival was analysed in the logistic (Warton and Hui 2011) and logarithmic scale; as 230 

a first step, proportions (p) were re-scaled using the formula p´= [p (50-1) + 0.5]/50, to avoid 231 

inconsistencies associated to log (0) values. Logarithmically-transformed proportions were used to test 232 

the multiplicative model, whereby temperature and food limitation would act independently on the 233 
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survival rates (Piggot et al. 2015). Survival responses consistent with a multiplicative model cannot be 234 

tested when the proportions are expressed in the logistic scale (Torres and Giménez 2020). Duration of 235 

development was analysed in the raw and the logarithmical scale to test if the effects were additive, 236 

multiplicative or interactive. Body mass and elemental composition were analysed in the raw scale.  237 

Tukey´s honestly significant difference tests (Tukey´s HSD) were performed to test differences among 238 

the different treatments.  239 

 240 

Comparison performance H. sanguineus and C. maenas  241 

We compared the performance of H. sanguineus and C. maenas at different temperatures and 242 

food conditions through two means. First, we compared the integrative response of body mass and 243 

developmental time. We calculated the ratios between the body mass under food limitation and those 244 

observed under permanent access to food for each temperature; the same calculation was made for 245 

duration of development. For comparison, these standardised values were plotted against those of 246 

Carcinus maenas. In this plot, the unit corresponds to the values of body mass (and duration of 247 

development) under permanent access to food at each temperature.  248 

We also calculated the ratios of survival (SR) and growth rates (GR) between species, i.e. as SR 249 

=SH/ SC and GR= GH/ GC, where SH and SC are the survival to the megalopa of H. sanguineus and C. 250 

maenas, respectively and GH and GC the respective growth rates (from hatching to megalopa). We 251 

calculated average ratios and used simulations (details in: Supplementary material, Materials and 252 

Methods, Section 2. Data analysis: details on model simulation) to incorporate the intraspecific 253 

variation in survival and growth associated to variations within and among families. First, for each 254 

species, we simulated 1000 values of the survival and growth rates. Survival was simulated from the 255 

statistical model fitted to the responses of both species to the different combinations of temperature and 256 

access to food; i.e. there were 1000 values for each combination of species, response variable, 257 

temperature, and food condition. Growth was simulated from an additional statistical model which also 258 

considers survival as covariate; this model incorporates correlations between average survival and 259 

growth associated to female-to-female variation in larval performance. The data and models used for 260 

C. maenas correspond to Torres and Giménez (2020). The model used for survival of H. sanguineus 261 

was that of Tables S2; for growth we fitted an additional model based on female-to-female averages 262 

(Supplementary material, Materials and Methods, Section 2. Data analysis: details on model 263 

simulation). Simulations were performed using the function simulate of the package nlme (R Core Team 264 

2013) applied to the best fitted models for each variable. Second, for each combination of temperature 265 

and food condition a pair of values of survival and growth was randomly sampled (function sample, R 266 

Core Team 2013) for each female of each species. The ratio of survival (or growth) was calculated 267 

between two randomly chosen females (one per species). This procedure was repeated 4000 times in 268 
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order to obtain distributions of ratios of survival (and growth) for each combination of temperature and 269 

food condition. We then calculated the average of four ratios, comparing the performance of four 270 

hatches of H. sanguineus and four of C. maenas; this calculation takes into account that larvae obtained 271 

from four different females were used for each study. In addition, this procedure to calculate the average 272 

maintained the correlation between survival and growth. Using the simulated ratios of survival and 273 

growth, we calculated the centroid and the 90% confidence ellipses which were plotted for each 274 

combination of temperature and food (see Fig. 5). 275 

  276 
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RESULTS 277 

We first describe the survival, development and growth rates for Hemigrapsus sanguineus and we 278 

compare them to the data from Carcinus maenas already published (Torres and Giménez 2020, 279 

PANGAEA: https://doi.org/10.1594/PANGAEA.918056). The graphs showing the results 280 

corresponding to already published data of C. maenas, are highlighted with a grey background in figures 281 

1, 2 and 3.   282 

Survival, development, and growth  283 

Survival to megalopa in H. sanguineus decreased towards lower temperatures and under limited 284 

access to food (Fig. 1, left panel); while at 15 °C, food limitation reduced survival by 74 %, at 24 °C 285 

the survival reduction was 35 %. Best models retained food availability and temperature operating in 286 

additive or interactive ways depending on the stage (Table S3), but with variations among larvae from 287 

different females (Table S4). Survival to megalopa under limited access to food ranged from 0 - 74 % 288 

depending on temperature and female of origin, with 0 % survival occurring at 15 ºC and 24 ºC for 289 

female 3 (Fig. S5). The effects of temperature and limited access to food on survival to zoeae II to IV 290 

were small, but increased for survival to ZV and especially to the megalopa (Fig. S6). The sensitivity 291 

to temperature varied among larvae from different females; survival at 15 °C was consistently low (13.2 292 

%) but survival at 24 °C ranged from 19 to 92 % (larvae under permanent access to food) depending on 293 

the female (Fig. S5). 294 

 The combined effects of temperature and food limitation on the overall survival to megalopa 295 

(Fig. 1, left panel) were consistent with a multiplicative model (additive model retained in the 296 

logarithmic scale: Table S3). The multiplicative model can be illustrated considering the combination 297 

of 24 ºC and permanent access to food as the optimal condition. In this case, the observed proportion 298 

of survivors under the combination of two stressors experienced simultaneously (15 ºC and limited 299 

access to food: 0.05) is close to that expected by the product of the proportions observed when the 300 

stressors were experienced in isolation (limited access to food: 0.3; 15 ºC: 0.2). On a female-by-female 301 

basis, the effects ranged from synergistic with a strong effect of temperature (F1 and F2) to antagonistic 302 

with a strong effect of limited access to food (F3 and F4).   303 

 The overall response of H. sanguineus was clearly different from that of C. maenas (Fig. 1). 304 

The increased survival of H. sanguineus with temperature irrespective of the food condition contrasts 305 

with the reduced survival of C. maenas under food limitation and high temperatures. The response of 306 

H. sanguineus to food limitation and temperature, consistent with a multiplicative model, also differs 307 

from the strong interactive effect shown by C. maenas where high temperatures exacerbated the effect 308 

of food limitation on survival (Fig. 1).  309 

 310 
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 311 

Figure 1. Hemigrapsus sanguineus and Carcinus maenas. Average survival from hatching to megalopa as a response to 312 
temperature and food availability. Data shown as average values ± SE for the four females of origin. Permanent access to food: 313 
blue symbols and continuous line; limited access to food: green symbols with dashed line. Percentages on top (only when 314 
significantly different): percent difference in survival between permanent and limited access to food treatments for each 315 
temperature. Already published data for Carcinus maenas is presented in the right panel, grey background (Torres and 316 
Giménez 2020). 317 

 318 

Duration of development to megalopa in H. sanguineus increased with decreasing temperatures 319 

in a non-linear pattern (Fig. 2a, left panel); the best model retained the interactive effect of temperature 320 

and limited access to food (Table S5). At low temperatures, the effects of food limitation were weak, 321 

producing a delay in the metamorphosis of fewer than 3 days (representing less than a 5 % change 322 

between the two food conditions). However, at 21 and 24 ºC the delay was longer than 3 days, 323 

representing 14 - 16 % change (Fig. 2a, left panel). The effect of food limitation was weak at early 324 

stages and then it became stronger in the zoea IV (Fig. S7); best models retained temperature in 325 

development to stages ZII and ZIII, temperature and food availability operating in an additive way in 326 

development to ZIV, and interactively in development to ZV and megalopa (Table S5). In larvae from 327 

all females reared at 15 °C, there was an extra zoeal stage (zoea VI) regardless of food availability.  328 

Carbon growth rates of H. sanguineus increased with increasing temperatures in both food 329 

conditions; food limitation caused a reduction in carbon growth rates, and the effect was stronger at 330 

higher temperatures (Fig. 2b, left panel); best models retained the interaction of food availability and 331 

temperature (Table S6). Similar effects were also found in terms of dry mass and nitrogen content (Fig. 332 

S8 a, c). Exposure to food limitation resulted in a reduction in body mass, carbon and nitrogen content 333 

(Figs. 2c left panel, S8 b, d), but the magnitude of the effect depended on temperature and varied among 334 

females. Best models retained food availability and temperature operating interactively (Table S6). 335 

Consistently for all females, the effect of food limitation on carbon content was strong in the range 15 336 
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- 21 ºC as compared with 24 ºC (e.g. 16 % vs 8 % decrease in carbon content). Similar effects were 337 

found for dry mass and nitrogen content (Fig. S8 b, d). Food limitation reduced carbon and nitrogen 338 

contents in similar proportions among temperatures resulting in comparable C/N ratios (Fig. 2d, left 339 

panel); the exception was 15 ºC where the reduction in nitrogen (19 %) was higher than that of carbon 340 

(16 %). 341 

Duration of development and growth of H. sanguineus larvae were more affected by 342 

temperature which contrasts to those of C. maenas, that are more sensitive to food limitation (Fig. 2). 343 

In terms of duration of development, larvae of H. sanguineus were more sensitive to temperature than 344 

C. maenas, especially at low temperatures; at 15 ºC H. sanguineus reaches the megalopa in ca 70 days 345 

while C. maenas needs ca 30 days (Fig. 2a). By contrast, limited access to food increased developmental 346 

time in a lesser extent in H. sanguineus (< 16 % change between the two food conditions) than in C. 347 

maenas (> 20 %).  While growth rates of H. sanguineus increased with temperature irrespective of the 348 

food condition, those of C. maenas decreased with temperature but remained constantly low in the food 349 

limited treatment (Fig. 2b). H. sanguineus megalopa had higher carbon content and lower C/N ratios 350 

than C. maenas (Fig. 2d). The weakest effect of food limitation on carbon content found at the highest 351 

temperature in H. sanguineus contrasts to the pattern found in C. maenas, where the effect was weakest 352 

at the lowest temperature (Fig. 2c).  353 

 354 

 355 
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 356 

Figure 2. Hemigrapsus sanguineus and Carcinus maenas. (a) Average duration of development. (b) Average growth rates. (c) 357 
Average carbon content. (d) Average C/N ratio. Data corresponds to the responses, from hatching to megalopa, to temperature 358 
and access to food. Data shown as average values ± SE. Symbols as in Figure 1. Percentages on top or below (only when 359 
significantly different): percent difference in development time, C growth, C content, and C/N between permanent and limited 360 
access to food treatments for each temperature. 361 
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Integrated growth responses to megalopa of H. sanguineus were characterised by a strong 362 

decrease in body mass under food limitation rather than a long delay in development. The delay in 363 

metamorphosis did not compensate the effects of food limitation on growth rates. At 24 °C and under 364 

permanent access to food larvae reached a maximum threshold of body mass (= 260 µg/ ind), and 365 

differences between food conditions were small (limited access to food = 240 µg/ ind). However, lower 366 

thresholds were reached at lower temperatures, especially under limited food availability (Fig. 3, upper 367 

side of graph). In addition, H. sanguineus larvae did not compensate for the effect of low temperature 368 

on body mass even under permanent access to food (Fig. 3, upper side of graph). Similar patterns 369 

characterised the integrated responses in terms of carbon and nitrogen content (Fig. S9).  370 

  371 

Figure 3. Hemigrapsus sanguineus and Carcinus maenas. Integrated responses of body mass and duration of development 372 
under the different treatments of temperature and food availability. Data shown as average values ± SE for both variables. 373 
Symbols: permanent access to food is represented with blue symbols (indicated as `+´) and limited access to food with green 374 
symbols (indicated as `-`), temperature is indicated in the graph next to the symbols.  375 
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The range of variation in the integrative response of H. sanguineus is much higher than that of 376 

C. maenas larvae (Fig. 3). However, when the duration of development and the body mass are 377 

standardised, the opposite pattern arises. Figure 4 compares the effect of food limitation on the 378 

integrated responses of body mass and developmental time, for each temperature, of both Carcinus 379 

maenas and H. sanguineus. Each variable (V: body mass or duration of development) was expressed 380 

for each temperature (T) as a ratio, R:  381 

𝑅𝑅𝑇𝑇 = 𝑉𝑉𝑇𝑇,𝐿𝐿
𝑉𝑉𝑇𝑇,𝑃𝑃

     (1) 382 

where the subindices L and P represent limited and permanent access to food, respectively. In this 383 

representation, the condition of permanent access to food is set to one irrespective of the temperature 384 

because the formula becomes: 385 

𝑅𝑅𝑇𝑇 = 𝑉𝑉𝑇𝑇,𝑃𝑃
𝑉𝑉𝑇𝑇,𝑃𝑃

= 1  (2) 386 

Figure 4 shows that as compared with C. maenas, H. sanguineus extended the development in a small 387 

fraction in response to limited access to food. In C. maenas, the proportional reduction in body mass 388 

and delay in metamorphosis became larger with temperature (Fig. 4, see also Torres and Giménez 389 

2020); by contrast in H. sanguineus both reduction in body mass and delays in metamorphosis do not 390 

show any consistent trend.   391 

 392 

Figure 4. Hemigrapsus sanguineus and Carcinus maenas. Summary of standardised responses to the different temperatures 393 
under food limited conditions (blue triangles and red diamonds, see equation (1)). For the standardised values of body mass 394 
and developmental time, the values for permanent food conditions represent the unit (green star, see equation (2)). At the 395 
lowest temperature tested, C. maenas extended the developmental in response to food limitation; larvae compensated for the 396 
limited access to food, metamorphosing with high body mass. H. sanguineus did not compensate for the limited access to food 397 
and metamorphosed with lower body mass. Symbols: C. maenas: blue triangles, H. sanguineus: red diamonds. Data for H. 398 
sanguineus this study, data C. maenas from Torres and Giménez 2020.  399 
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 400 

 401 

 402 

 403 

 404 

 405 

 406 

 407 

 408 

 409 

 410 

 411 

 412 

Figure 5. H. sanguineus and C. maenas simulated survival and growth ratios under different food and temperature conditions. 413 
Squares and circles denote centroids of 95% confidence ellipses in shown colour. Data for permanent access to food (circles) 414 
shown with ellipses as continuous lines and for limited access to food (squares) as dashed lines. Blue: 15 °C, green: 18 °C, 415 
purple: 21 °C and red: 24 °C.  416 

 417 

The results of the simulated ratios of survival vs growth rates of both species showed that at 418 

most of the temperatures and food conditions (15 °C and 18 °C permanent and limited access to food 419 

and 21 °C limited access to food) larvae of C. maenas will be favoured; but at higher temperatures and 420 

especially under conditions of high access to food, larvae of H. sanguineus may be favoured (Fig. 5). 421 

The ellipses, indicating the importance of intraspecific variation in the performance of both species, 422 

show that H. sanguineus might perform better at higher temperatures, but it is not likely to outperform 423 

C. maenas at the lower temperatures that characterise the German Bight. 424 

 425 

 426 

 427 

 428 

 429 
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DISCUSSION  430 

There were three main findings out of our experiments. First, Hemigrapsus sanguineus is able 431 

to metamorphose to megalopa under limited daily access to food over a wide thermal range (15 - 24 432 

ºC). Second, within the range of temperatures experienced in the local habitat (German Bight, North 433 

Sea), low temperature (15 ºC) appears to be the primary limiting driver of larval performance, in terms 434 

of survival and growth. Third, when the performance is quantified in relation to that of Carcinus 435 

maenas, unfavourable scenarios for H. sanguineus are projected for temperature characterising cool 436 

summers. In turn, favourable scenarios are projected for summers characterised by long heatwaves and 437 

after coastal warming.  438 

Temperature and food limitation 439 

H. sanguineus larvae were able to metamorphose to megalopa under limited access to food over 440 

a wide range of temperatures, with some variations among families (i.e. larvae originated from different 441 

females). This is consistent with other studies on decapod crustacean larvae and strengthen the general 442 

hypothesis that such larvae can reach metamorphosis as long as they access food patches for a short 443 

period of time every day (Sulkin et al. 1998; Giménez and Anger 2005; González-Ortegón and Giménez 444 

2014; D´Urban Jackson et al. 2014; Torres and Giménez 2020). Limited daily access to food is expected 445 

in habitats characterised by food patchiness (Paffenhöfer et al. 1987; Durham and Stocker 2012; Prairie 446 

et al. 2012, Robinson et al. 2021) and in scenarios where larvae perform diel or tidal migrations 447 

(Forward et al. 2001; Queiroga and Blanton 2005; dos Santos et al. 2008, Thygesen and Patterson 2019). 448 

In temperate latitudes such as the one of the German Bight, access to prey during nigh time should be 449 

limited to a few hours because H. sanguineus larvae develop in summer when the darker period is 450 

restricted to few hours. Hence, H. sanguineus, as other species including C. maenas should be able to 451 

survive the larval phase as long as they access prey for a limited amount of time every day. 452 

Food limitation had important consequences in terms of body mass and reserves at 453 

metamorphosis to the megalopa as well as growth rates and developmental time. In species with 454 

complex life cycles, traits at metamorphosis are relevant for post-metamorphic survival and are the 455 

basis for trait-mediated effects of the pelagic environment on recruitment in the benthic habitat 456 

(Giménez 2004; Pechenik 2006; Marshall et al. 2008; Torres et al. 2016). Larvae of H. sanguineus 457 

under food-limited conditions metamorphosed to megalopae with reduced body mass at all 458 

temperatures, suggesting that impacts of food limitation are consistent across the thermal range 459 

expected for cool and warm summers. It is important to understand the mechanisms driving body size 460 

at metamorphosis as they should mediate effects of warming on species responses (Lowe et al. 2021; 461 

Song et al. 2021). While there is a good amount of information on mechanisms driving metamorphosis 462 

in species with complex life cycles (Werner 1988; Emlet 1988; Hentschel and Emlet 2000), only a 463 

handful of studies have investigated how such mechanisms respond to warming (D’Urban et al. 2014; 464 
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Torres and Giménez 2020; Griffith et al. 2021). Body mass is a plastic trait, driven by variations in 465 

larval growth rates and developmental time, but body mass should vary within upper and lower 466 

thresholds set by fitness costs (Werner 1988; Gotthard and Nylin 1995; Hentschel and Emlet 2000; 467 

Gotthard et al. 2000). Beyond the upper threshold, costs are associated to the high growth rates needed 468 

to achieve a large body mass (e.g. predation). Longer developmental time contributes to larger body 469 

mass but also determines the period when larvae are exposed to pelagic mortality risks (Eckert 2003) 470 

and the conditions experienced after settlement (Miron et al. 1999; Jarrett 2003). Because post-471 

settlement conditions fluctuate in seasonal environments, the specific conditions experienced by 472 

juveniles are indirectly determined by the duration of the larval phase. For instance, in H. sanguineus, 473 

late settlement may result in reduced juvenile growth as individuals may miss most of the summer 474 

season where growth rates are enhanced by high temperatures in the intertidal zone. During summers, 475 

temperatures in the intertidal zone may boost growth because they are much higher than water 476 

temperatures given the exposure to sunlight during low tides (Stephenson 1942; Lewis 1964; Somero 477 

2002). In addition, late settlement may expose individuals to cannibalism (Moksnes et al. 1997; 478 

Moksnes 2002; Moksnes 2004) or predation by e.g. juvenile C. maenas. According to life history 479 

theory, costs associated to trait changes should drive the evolution of plastic responses to environmental 480 

variation; because of trade-offs associated to such costs, the less responsive traits should be those with 481 

higher associated costs (Gotthard and Nylin 1995; Gotthard 2000, 2004). In the case of H. sanguineus, 482 

larvae responded to food limitation mainly through reduction of growth rates; the extension of 483 

development time, found to partially compensate effects of food limitation in C. maenas (Torres and 484 

Giménez 2020) was rather short. By contrast, H. sanguineus larvae showed a strong plasticity to 485 

temperature by extending the development from < 20 days at 24 ºC to > 60 days at 15 ºC. Given that at 486 

the local population, H. sanguineus females appear to release larvae in early summer, only after 487 

temperatures reach 15 ºC (Giménez et al. 2020), summers with water temperatures in the range of 15 - 488 

18 ºC would result in late settlement if larvae were to extend further the developmental time. Hence, in 489 

the range 15 - 18 ºC and under food limitation, further extension of the larval phase may have higher 490 

fitness costs than metamorphosing with a smaller size (but profiting from a warm growing period).  491 

Low temperatures 492 

Our study is in line with others (Stepherson et al. 2009; Giménez et al. 2020), showing that low 493 

larval survival occurs at low temperatures (range 12 - 15 ºC). Reduced body mass at metamorphosis 494 

found at 15 ºC is expected because body mass at stage, peaks at temperatures where physiological 495 

performance is optimal (Anger 1998; Anger 2001). Perhaps the body mass of megalopa of H. 496 

sanguineus would decrease at temperatures higher than 24 ºC, as expected from the temperature-size 497 

rule (Atkinson 1994).  498 
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Under low temperature and food limitation, larvae hatching from all females showed a stronger 499 

reduction in nitrogen as compared to carbon. This is unlike previously observed responses to stressors 500 

in other species (Harms et al. 1994; Torres and Giménez 2020; Torres et al. 2021) where the main 501 

characteristic is a stronger reduction in carbon than in nitrogen content. In decapod crustaceans, carbon 502 

content is considered a proxy for lipid reserves (Anger and Harms 1990); hence, stress responses of that 503 

type are interpreted as a reduction in the accumulation of lipid reserves, but not in the proteins needed 504 

to sustain activity or the enzymatic machinery. Given that in decapods, nitrogen is a proxy for protein 505 

levels, we hypothesise that the reduction observed in H. sanguineus reflects a thermal limitation in the 506 

rate of protein synthesis. Protein synthesis accounts for a great proportion of the specific dynamic action 507 

(SDA, Brody 1964) in crustaceans, i.e. the energetic costs incurred by physiological processes related 508 

to feeding (including e.g. ingestion, digestion, assimilation and synthesis: Jobling 1993; Wieser 1994), 509 

which increase after a meal (Houlihan et al. 1990, Robertson et al. 2001). For example, in Carcinus 510 

maenas, protein synthesis accounts for 20-37 % of the post-meal oxygen rise (Houlihan et al. 1991). 511 

Temperature affects rates of protein synthesis in fasted and inactive crustaceans (McMillan and 512 

Houlihan 1988; Whiteley et al. 1996; El Haj and Whiteley 1997). Hence, one would expect that rates 513 

of protein synthesis are compromised at lower than optimal temperatures, due to limitations in covering 514 

the associated costs (Whiteley et al. 1997, 2001). In this study, the lowest temperatures tested are 515 

suboptimal for H. sanguineus, but not for species that are native to North European Seas (e.g. D’Urban 516 

et al. 2014; Torres and Giménez 2020). Hence, the differences between H. sanguineus and e.g. C. 517 

maenas, in how C:N ratios respond to limited access to prey may reflect interspecific differences in the 518 

thermal tolerance range.  519 

 520 

Performance of H. sanguineus relative to C. maenas  521 

We found that larval performance (e.g. survival) of H. sanguineus at low temperatures is low 522 

in relation to that of C. maenas also at low temperatures (Fig. 1). This is relevant to understand the 523 

outcome of the balance between larval settlement, and competition between C. maenas and H. 524 

sanguineus in the benthos. C. maenas larvae can complete larval development at temperatures as low 525 

as 12 ºC (Dawirs 1985; Nagaraj 1993). The larval season of both species partially overlap, C. maenas 526 

larvae are released from May onwards and megalopae settle in the intertidal zone from the end of June 527 

until the end of August (Giménez and Dirk, 2007). Interspecific competition occurs because juveniles 528 

of both species develop in the intertidal zone during summer (Geburzi et al. 2018)  The balance of larval 529 

supply and competition of C. maenas and H. sanguineus must be evaluated considering both spring and 530 

summer conditions. For example, a large number of C. maenas juveniles would survive competition in 531 

years with strong settlement of C. maenas followed by weak settlement of H. sanguineus due to cool 532 

summers (temperature ~ 15 ºC).  533 
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We hypothesise that summers characterised by long heatwaves and high temperatures due to 534 

warming would increase performance of H. sanguineus larvae  and exacerbate current competitive 535 

advantages already exhibited by the juvenile and adult stages in the benthos (Lohrer and Whitlach 2002; 536 

Jensen et al. 2002; Geburzi et al. 2018). Marine heatwaves, i.e. periods of time (> 3 - 5 days) when 537 

temperatures are above a predefined threshold (Meehl and Tebaldi 2004; Hobday et al. 2016), can have 538 

drastic consequences in structure and functioning of marine ecosystems (Garrabou et al. 2009; Marbà 539 

and Duarte 2010; Wernberg et al. 2013; Mills et al. 2013) and those in the German Bight have become 540 

more frequent since the 1990’s (Giménez et al. 2022). During summer heatwaves such as those 541 

occurring in 2018, water temperatures around the local population reached values above 18 ºC 542 

(Giménez et al. 2020); temperatures in waters of the coastal Wadden Sea (where C. maenas and H. 543 

sanguineus co-occur) were much higher (BSH, 2019).  544 

Another important aspect considered in our analysis concerns the role of intraspecific variation 545 

in performance (IVP). IVP is common in invertebrate larvae (e.g. Appelbaum et al. 2014;  Spitzner et 546 

al. 2019; Torres et al. 2020), and expected from genetic variation (Marshall et al. 2008; Durrant et al. 547 

2013) or parental effects (Pond et al. 1996; Shama et al. 2014). Important IVP was found in this study 548 

as variation in survival, developmental time, and growth among larvae from different females (e.g. Fig. 549 

S5), which is also expressed in Figure 5 as wide ellipses. The ellipses are spread across regions where 550 

the relative performance switches from being stronger in H. sanguineus to become stronger in C. 551 

maenas. The ellipses surround the area where 90 % of the 1000 simulated events for each factor 552 

combination are located. Hence, Figure 5 depicts the importance of the intraspecific variation in the 553 

performance of the species, as opposed to what means show; the ellipses show that, for example, there 554 

is a possibility for H. sanguineus larvae to be able to perform (i.e. survive and grow) better than C. 555 

maenas at low temperatures. Likewise for Carcinus maenas, there is room for their larvae to perform 556 

better than those of H. sanguineus at high temperatures under food limitation. Species coexistence is 557 

one of the important ecological consequences of intraspecific variation (Bolnick et al. 2011; Appelbaum 558 

et al. 2014).  559 

 In synthesis, larvae from the invasive crab H. sanguineus are able to complete their 560 

development under a wide range of temperatures and under daily limited access to food (for a period as 561 

short as 6 h), with variations among families; hence, H. sanguineus larvae should be able to survive 562 

starvation periods as long as they can access food patches for a brief time every day. H. sanguineus 563 

responds to food limitation through lengthening the development to a much smaller degree as compared 564 

to C. maenas; this occurs at expenses of metamorphosing to megalopa with lower body mass. It remains 565 

to be seen how such responses affect the balance of costs and benefits of metamorphosing with lower 566 

body mass but still profiting from the warm season increasing juvenile growth rates. H. sanguineus 567 

shows different responses to high temperatures and food limitation from the native C. maenas (Torres 568 

and Giménez 2020). Under cool summer conditions, we would expect limited survival of H. sanguineus 569 
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larvae which could favour C. maenas. By contrast, under a warming scenario, H. sanguineus should 570 

benefit through high larval growth and survival rates. Under this scenario, increased rates of survival 571 

and growth in the pelagic habitat should enhance propagule pressure of H. sanguineus, magnifying the 572 

effect produced by being the dominant competitor in the intertidal zone.  Overall, our study emphasises 573 

the importance of integrative studies comparing the performance among native and invasive species 574 

across their life cycles, and extending our study towards the juvenile - adult phase. Such approach will 575 

help us to understand and predict effects of warming on species replacement.    576 

    577 

 578 

  579 
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