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A Big Data Framework to Address Building Sum Insured Misestimation 

 

Abstract 

In the insurance industry, the accumulation of complex problems and volume of data creates a large scope 
for actuaries to apply big data techniques to investigate and provide unique solutions for millions of 
policyholders. With much of the actuarial focus on traditional problems like price optimisation or 
improving claims management, there is an opportunity to tackle other known product inefficiencies with 
a data-driven approach. The purpose of this paper is to build a framework that exploits big data 
technologies to measure and explain Australian policyholder Sum Insured Misestimation (SIM). Big data 
clustering and dimension reduction techniques are leveraged to measure SIM for a national home 
insurance portfolio. We then design predictive and prescriptive models to explore the relationship 
between socioeconomic and demographic factors with SIM. Real-world results from a national home 
insurance portfolio provide actionable business insight on SIM and facilitate solutions for stakeholders, 
being government and insurers. 

 

Keywords: clustering large applications; home insurance; sum insured estimation; underinsurance; big 
data 

 

 

1. Introduction 

In the technology age, insurers are collecting and outsourcing a wealth of data at an increasing rate. 
They use this information, ranging from geospatial to telematics data, to improve various analytical 
functions of the business, ultimately increasing profitability and providing the customer with a better 
product and experience. Much of this work is focused on core business processes like pricing and 
valuation, and this leaves a large scope in the industry to explore the application of big data techniques 
in other areas.  

A recent report by the Australian Competition and Consumer Commission (ACCC) provided a 
recommendation that estimating the sum insured (SI) is one area where insurers could, and should, 
provide better guidance to consumers to lessen the risk of underinsurance [1]. For some time, the 
industry has recognised home underinsurance as a severe problem. In Australia, where frequent natural 
catastrophe activity can cause many concentrated total losses, underinsurance is rampant [2]. There 
have been substantial steps taken by the industry to address this problem. A recent paper by the 
Actuaries Institute on Property Insurance Affordability developed an affordability measurement and 
provided non-pooling methods to increase insurance affordability [3]. Some insurers provide an increase 
in nominated sum insured if that value is insufficient to cover costs, and other larger insurers will elect 
to cover any loss arising1. These approaches are positioned from a qualitative standpoint, and it is 
difficult to validate their effectiveness.  

Big data analytics are a clear avenue to investigate the portfolio-wide problem of Sum Insured 
Misestimation (SIM). The desirable outcome in addressing SIM is that insurers will be able to better 

 
1 For example, “Complete Replacement Cover” offered by AAMI insurance as per 
https://www.aami.com.au/aami/documents/personal/home/aami-home-building-insurance-pds.pdf 



quantify the likelihood and the amount by which consumers misestimate their SI to ensure that 
customers at claim time will not be left under compensated. Additionally, statistical techniques can be 
used to explain the driving factors of SIM, which aids governments in devising pooling methods, 
subsidies, and risk mitigation measures. Appreciating the social consequences of algorithm prediction in 
insurance discussed in [4], this research provides an application of big data analytics that leads to 
improved social outcomes. The motivation to measure SIM will remain for long as insurers are unable to 
comfortably rely on customers or third-party estimates of SI.  

This paper presents a big data framework for analysing, predicting, and explaining SIM for home 
insurance. A two-pronged approach is taken with parts of the framework, with sampling used to 
maximise exploration of the dataset, and big data techniques to scale results for practical 
implementation. Using big data analytics, the framework aims to address the crucial part of the SIM 
problem, in that we do not directly observe the true SI should be for any customer. The framework’s 
components were also influenced by the analytical big data frameworks presented in [5-6] where they 
use predictive and prescriptive analyses to facilitate social and business action. The key parts of the 
framework are explained below: 

• Clustering Analysis: an unsupervised learning algorithm designed for big data, Clustering Large 
Applications (CLARA), is used to address the key aspect of omitting bias in customer selected SI 
values by grouping similar insured buildings using building features only. Additionally, this 
algorithm helps insurers reduce the dimensionality and noise in big datasets.  

• Predictive Analysis: we propose a measure for SIM which is calculated analytically from the 
clustering results. Statistical prediction models are then used to explain and identify 
policyholders likely to misestimate their SI. For exploratory purposes, we then use SHapley 
Additive exPlanations (SHAP) values to produce waterfall charts, importance plots and explain 
complex relationships driving SIM. 

• Prescriptive Analysis: provides context and packages the outcomes from predictive analysis for 
the benefit of stakeholders. SIM is an important issue for insurers and government, and we note 
future research would look to consolidate the prescriptive analysis findings from the application 
of this framework with other home insurance portfolios.  

The remainder of this paper is structured as follows: a summary of relevant big data analytics 
applications in insurance literature is provided in Section 2. An overview of the SIM problem in literature 
is also included in Section 2. Section 3 introduces the datasets used in this work. The big data framework 
developed for the analysis, prediction and explanation of property SIM is discussed in Section 3. Section 
4 includes thorough detail on the validation and experimental results of the framework. The work is 
concluded in Section 5, with recommendations for future analysis. 

2. Literature review 

There is limited academic literature in the SIM space. In total, 4 papers were returned from using search 
terms “underinsurance”, “under insured” in the Web of Science database. We excluded any papers that 
referred to insurance products other than retail Home Insurance. We also conducted a review on papers 
that used big data clustering techniques with applications in insurance, to cater for the big data analytics 
piece of this work. 

Booth and Tranter [7] provided insights into associations and unfolding effects of house and contents 
underinsurance in Australia. They reproduced underinsurance along socioeconomic and geographic 
lines, with those of lower socioeconomic status or living in cities more likely to be underinsured. They 
also identified factors that explain house insurance uptake, such as age, income, education, and marital 
status. In a case study on insurance vulnerability in rural Australia, Whittaker et al. [2] found that many 



residents and landlords were substantially underinsured for damage to livelihood assets such as farm 
fences, livestock, and sheds. The paper proposed that cultural, economic, political, and social factors 
prevent people from attaining an adequate level of cover. Hope [8] found that the most vulnerable 
policyholders to underinsuring were those in high-risk categories for natural phenomena. Grislain-
Letrémy [9] hypothesised that the margin in the insurance market was due to uninsurable housing and 
the anticipation of financial assistance. The focus of existing SIM literature is on the risk factors 
correlated with underinsurance and understanding the impacts of underinsurance on populations. There 
were no papers found that considered over-insurance or made an attempt to use quantitative 
information to estimate SIM.  

From a broader review of literature around clustering within insurance, and to the best of the authors’ 
knowledge, no prior research has used clustering algorithms, or any big data techniques, for the SIM 
problem. We found that clustering applications in insurance involved rate making, policyholder 
behavioural analysis, risk characteristic analysis and geographical risk analysis. Additionally, this research 
predominantly used the k-means algorithm, where it was applied to small scale problems. The 
algorithms and sample sizes used in the relevant research are summarised in Table 1 and Table 2.  Yeo 
and Smith [10] used k-means clustering to separate automobile insurance policyholders based on risk 
characteristics. The groupings were used to analyse customers’ overall price sensitivity to premiums 
through modelling retention rates. Samizadeh and Mehregan [11] used k-means clustering to cluster 
policyholders in a life insurance company to predict customer behaviour based on payment type. 
Kašćelan et al. [12] used k-means clustering to identify homogenous groups of car insurance 
policyholders based on their risk characteristics to improve risk premium calculations. K-means 
clustering was also used by Williams and Huang [13] for identification of policy owners with large claim 
sizes.  

Several papers considered more sophisticated clustering techniques. Khalili-Damghani et al. [14] used a 
two-stage clustering classification model to recommend suitable insurance coverages to customers. 
Dehghanpour and Rezvani [15] apply Similarity Based Agglomerative Clustering (SBAC) to find different 
segments and associated attributes of insurance fraud. Carfora et al. [16] explored the use of K-means 
and other K-means derived clustering algorithms (Cobweb, FarthestFirst) to identify driver behaviour 
parameters that can be incorporated into methodologies for automobile insurance coverage. Devale et 
al., [17] used a SBAC algorithm for segmenting and attracting new customers.  

Zhuang et al. [18] used Partitioning Around Medoids (PAM) and SBAC in a study on insurance customer 
segmentation and explored the algorithm's functionality with mixed-data type similarity measures. Yao 
[19] compared a wide range of partitional, hierarchical and density-based clustering, including CLARA, in 
their application to insurance ratemaking. Kharel et al. [20] used a Poisson mixture methodology to 
develop and model clusters of natural hazard phenomena in general insurance. 

The gap identified here is that firstly, SIM research has not been approached from a purely quantitative 
angle, and there has been no consideration for big data or associated techniques. These techniques, 
specifically clustering techniques have been useful in other areas of insurance for similar tasks, and are a 
natural choice for this problem given the unsupervised nature of SIM. Furthermore, there was only one 
example of a large application algorithm, CLARA, in insurance. This study also deeply contributes to SIM 
research – current SIM literature is limited to specific case studies that are not applicable to the wider 
population such as rural buildings [7] or using anecdotal evidence as a proxy for SIM) [8]. Taking a 
quantitative angle with a national insurance portfolio, provides a wealth of statistical bases from which 
to derive information about SIM – which aims to result in more reliable estimates of SIM that are 
applicable to a wider population of buildings than investigated in current literature. Our big data 
analytics framework for SIM aims to address the lack of quantitative research for SIM and contribute to 
the wider initiative of big data clustering techniques in insurance.  
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[15] ✓           ✓    
[17]            ✓    
[12] ✓               
[14] ✓               
[20]      ✓          
[11] ✓               
[19] ✓ ✓  ✓ ✓  ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓ 
[10] ✓               
[18]  ✓ ✓         ✓    
[13] ✓               
[16] ✓               

 TOTAL  
(Clustering Algorithm) 8 2 1 1 1 1 1 1 1 1 1 3 1 1 1 

 TOTAL  
(Clustering Method) 14 8 3 

Table 1 Summary of clustering algorithms used in papers. The algorithm definitions are not strict as to 
reduce the number of total algorithms presented in the table. For example, K-means includes algorithms 
that use some element of K-means in the wider algorithm such as Cobweb and FarthestFirst in [16]. 

 

Sample Size Papers 
Relative 
Frequency 

Cumulative 
Frequency 

< 1000 3 30.0% 30.0% 
1001 to 10,000 3 30.0% 60.0% 

10,001 to 100,000 3 10.0% 70.0% 
100,000+ 1 30.0% 100.0% 

Total 10 100.0% 100.0% 
Table 2 Samples sizes of the papers reviewed that applied clustering algorithms. For comparison, this 
study uses a dataset of approximately 400,000 observations. 

 

3. Methodology 

In this work, we present a framework to assess the misestimation of a policyholder’s building SI value. 
The current home insurance portfolio of a major Australian insurer was selected as the case study. The 
framework for SIM is shown in Fig. 1 and constitutes of three main stages: clustering, predictive, and 
prescriptive analysis.  

 

 



 

Fig. 1. The big data framework for analysing, predicting, and explaining SIM for property insurance. The 
dataset used should be a reasonable approximation of the population, i.e. a national portfolio. The 
results from the Clustering Analysis along with the policyholder and sum insured data feed into the 
Predictive Analysis. Using the results from the Predictive Analysis, Prescriptive Analysis is provided for 
relevant stakeholders. For insurers, Prescriptive Analysis can lead to solutions requiring real-time 
implementation and these can be facilitated by storing predictive results on cloud servers. 

3.1 Data 

The data set sourced from an Australian insurer consists of approximately 400,000 risks2 (sold policies) 
collected in May 2021. In the quote process the policyholder will manually enter their personal 
information and a SI value for their insured building within the appropriate underwritings bounds. Via a 
unique identifier, individual risk, geographic, socioeconomic, and demographic information are attached 
to the risks. The information required at the various analysis stages is provided in Table 3 and Table 4 
along with a description of each variable.  

For the clustering analysis stage of the framework, we derive a list of rebuilding variables that should 
influence the true SI value. These variables are further categorised by common attributes such as height, 
size, and building quality. For predictive and prescriptive analysis, relevant socioeconomic and 
demographic features are used. The Sum Insured Cover is also listed, which indicates whether a 
policyholder has opted for cover in the event they are underinsured. It can be seen from Table 4 that 
several features are captured at the population level and thus more importance is placed on the 
features at the policyholder level.  

Fig. 2 presents the mean SI for the features that provided the greatest differentiation in SI to 
demonstrate the suitability of the features listed for use in the clustering algorithm. Fig. 3 displays the 
distribution of SI values for the dataset. 

  

 
2 Exact number of observations not provided due to commercial confidentiality. 



 

ID Variables Type 

Building Height 
1 Eave Height Continuous (in metres) 
2 Roof Height Continuous (in metres) 
3 Slope of Land Continuous (in metres) 
Building Size 
4 Number of Bedrooms Categorical, (1-10 and Unknown) 
5 Number of Bathrooms Categorical, (1-10 and Unknown) 
6 Building Area Continuous (in square metres) 
Building Quality/Type 
7 Wall Type Categorical (11 levels*) 
8 Roof Type Categorical (5 levels*) 
9 Year Built Continuous (1800 to 2021) 
10 Building Type Categorical (10 levels*) 
11 Security Systems Categorical (6 levels*) 
12 Swimming Pool Categorical (Yes & No) 

Table 3 Description of building variables used in descriptive and clustering analysis. Details are omitted 
for variables indicated by a “*” due to commercial sensitivity.  

  



Var. No. Variables Type^ 

Policyholder Level 
1 Age Continuous (in years) 
2 Gender Categorical (Female, Male and Unknown) 
3 Tenure at address Continuous 
4 Retired Categorical (Yes, No and Unknown) 
5 Median Weekly Rent Continuous (in AUD) 
6 Sum Insured Gap Cover Categorical (Yes, No) 
Population Level 
7 Weekly family income Percentile (at Postcode) 
8 Socio-economic factor 1 Percentile (at SA1 level) 
9 Socio-economic factor 2 Percentile (at SA1 level) 
10 Socio-economic factor 3 Percentile (at SA1 level) 
11 Socio-economic factor 4 Percentile (at SA1 level) 
12 Socio-economic factor 5 Percentile (at SA1 level) 
13 Population density Population rate per sqm (at SA1 level) 
14 Youth population Youth population out of total population (at SA1 level) 
15 Crime factor 1 Rate per 100k (at Police District) 
16 Crime factor 2 Rate per 100k (at Police District) 
17 Crime factor 3 Percentile of rate (at Police District) 
18 Crime factor 4 Percentile of rate (at Police District) 
19 Drug factor 1 Decile of rate (at Police District) 
20 Drug factor 2 Decile of rate (at Police District) 
21 Language proficiency (English, other) Percentile (at SA1 level) 
22 Highschool education achieved Percentile (at SA1 level) 
23 Education type 1 Percentile (at SA1 level) 
24 Education type 2 Percentile (at SA1 level) 
25 Marital status Percentile (at SA1 level) 
26 Unpaid work/total care for children Percentile (at SA1 level) 
27 Number of motor vehicles owned Percentile (at SA1 level) 
28 Number of residents Percentile (at SA1 level) 
29 Mortgage repayment  Percentile (at SA1 level) 
30 Rent and tenure type Percentile (at SA1 level) 
31 Socio-Economic Indexes for Areas Index 

(SEIFA) 
Ranking 1-10 (per Postcode) 

32 Index of Relative Socio-economic 
Advantage and Disadvantage (IRSAD) 

Ranking 1-10 (per Postcode) 

33 Index of Education and Occupation (IEO) Ranking 1-10 (per Postcode) 
Table 4 Description of socioeconomic and demographic variables used in prescriptive analysis. Some 
factor names are generalised due to commercial sensitivity, such as “Crime factor X” and “Socio-
economic factor X”. Definitions of population groupings that can be provided are:  

• Postcode: Geographical postal areas, there are approximately 2,600 postcodes in Australia. 
• SA1: Statistical area 1 defined by the Australian Bureau of Statistics (ABS) are designed to 

maximise the geographic detail available for Census of Population and Housing data. There are 
approximately 57,500 SA1 levels in Australia. 

• Police District: Geographical areas pertaining to police districts, maintained by each Australia 
state – for example, some states use Local Government Areas (LGAs). 

 

  



 

Fig. 2. Using the univariate analysis method, the relation between the SI value is presented for the four 
attributes that differentiated the SI value the most. The lower and upper bounds reflect one standard 
deviation of the SI value. The sample figures demonstrate intuitive results, with a higher mean SI for 
buildings with a larger number of bedrooms and bathrooms, taller (eave height), and more complex 
structures (slope of land). These relationships strengthen the argument to use clustering analysis to 
create an unsupervised representation. 

 

Fig. 3. Distribution of SI value for the dataset.  
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3.2 Clustering analysis  

In this stage, clustering, an unsupervised learning technique, is used to group similar buildings based on 
their building features. The key aspect of this algorithm is that the building features are selected a-priori, 
and the policyholder’s chosen SI value is removed from the analysis to omit bias. By design, the clusters 
outputted from the algorithm should represent a specific type of building, with which we can attribute a 
specific SI value. 

3.2.1 Data preparation 

Insurance data will usually contain categorial and numerical attributes, so the first constraint that 
unsupervised learning techniques face is how distance measures can efficiently deal with mixed data 
types. Several mixed data-type distance measures exist, such as the Goodall measures, but the required 
CPU power makes implementation of these measures impractical [21]. An alternative approach is to use 
Factored Analysis for Mixed Data (FAMD) – the mixed data variation of Principal Components Analysis 
(PCA) – to transform the dataset into squared loadings [22].  

FAMD is a computationally feasible and practical solution that allows use of continuous distance 
measures with mixed data types. FAMD allows for inclusion of all attributes from the original data but in 
a lower-dimensional representation that is more tractable for clustering techniques. The lower 
dimensions result in a non-linear decrease in computational time of the distance and clustering 
calculations. In this work, FAMD was computed on the full dataset, and Manhattan distance was 
selected for the dissimilarity matrix. FAMD reduced the dataset from 63 dimensions (including one-hot-
encoding for factor attributes) to 36, resulting in a 43% reduction in dimension with 70% of variance 
explained. 

3.2.2 Clustering techniques 

The aim of the clustering algorithm is to create clusters that accurately represent a specific type of 
building, such that we can attach a single SI value to all buildings within a cluster. Given the lack of true 
labels in unsupervised problems, the selection criteria for the clustering technique are influenced more 
heavily by the constraints of algorithms rather than performance measures.  

The crucial constraint in this work is the computational complexity of running the algorithm, and the 
memory requirements inherent to distance-based clustering, due to the size and breadth of the dataset 
(n=~400,000). A secondary constraint is the nature of insurance data which contains significant outliers. 
To account for these big data challenges, we use Partitioning Around the Medoids (PAM) via Clustering 
Large Applications (CLARA) implementation, referred to jointly as CLARA-PAM3. CLARA-PAM is a 
specifically designed algorithm for large applications and has seen huge improvements in the efficiency of 
runtime for large datasets [23]. PAM also effectively deals with outliers, when compared with other 
efficient partitioning approaches such as k-means, by using the median value of a cluster (medoid) as 
opposed to the mean value (centroid) as the cluster centre to measure distances from [24]. For 
completeness, we assessed the efficacy of other algorithms on a sample of the dataset to understand if it 
would be beneficial for future research to consider scaling the application of other algorithms. Partitioning 
and hierarchical methods were the main focus due to the smaller amount of parameter selection and 
because they are generally more efficient than density-based methods. Three algorithms other than 
CLARA-PAM were compared: k-means, AGNES, and H-Clust. 

3.2.3 Validation 

The final part of clustering analysis involves the validation of the algorithm. This involves the selection of 
k clusters for CLARA-PAM using relative indexes and performing sensibility checks on the cluster output 

 
3 To compute the algorithm we used the cluster package available on R, a free open-source programming language. 
Results were collected on a computer with i7 10700K CPU and 64.0 GB of RAM. RAM of at least 16.0 GB was 
required to compute the CLARA-PAM algorithm. The use of cloud computing resources could be used to further 
improve the efficiency on large datasets.  



using external indexes. We are concerned with finding groups of insured buildings that can reasonably 
represent a specific house rebuild, and thus indexes that measure intra-cluster similarity, but also 
incorporate inter-cluster dissimilarity are most suitable. Three relative validation indexes that satisfy 
these criteria were selected: Silhouette index, Davies-Bouldin index and Dunn index. These indexes were 
used to determine the number of k clusters in the CLARA-PAM algorithm through a majority vote.  

3.3 Predictive analysis 

In the predictive analysis a measure of SIM is first devised from the information provided by the 
clustering analysis; predictive models are then used to explain SIM. First, we take the clusters that each 
represent a specific type of building and analyse the associated SI values selected by the policyholders. 
This leads to formulating a proxy measure of SIM. Given we have the response variable SIM, we can 
then use predictive models as means to investigate relationships that may exist between SIM and the 
socio-economic and demographic factors. As a by-product of using a national insurance portfolio, the 
predictive component also encompasses inferential goals. 

3.3.1 SIM measure 

To formulate the SIM measure, we investigated taking the difference between the policyholders 
selected SI and some view of each cluster’s true SI. In managing the limitation of the true SI value not 
being known, a level of judgement is used. Such judgements can include focusing on capturing SIM at 
the extremes, cross-referencing results with related studies [2,7,8,9], and understanding outcomes with 
actuarial knowledge of SIM [3]. In arriving at a measure for the true SI for each cluster, our main 
consideration was that outliers are expected to be the buildings that are most over or underinsured, and 
thus their values should be down-weighted in the true SI calculation. To account for this, we used the 
Huber-M estimator with a winsorize factor of 1.5, which down-weights non-Gaussian tails of the SI 
distribution by 1.5 times the standard deviation. Depending on the proportion of over and underinsured 
buildings within a given cluster, using the Huber-M estimator as the true SI will result in a larger SIM for 
outlier values, thus capturing SIM at the extremes. We also considered our actuarial knowledge, that 
each cluster can have differing levels of over and under SIM, which skews common metrics such as the 
mean – the Huber-M mean better reflects the true SI value by winsorizing the potentially over and 
underinsured observations. Taking the difference between the policyholders selected SI and the Huber-
M estimator for their respective cluster, we arrive at a value of SIM for each policyholder’s insured 
building.  

3.3.2 Modelling SIM 

Once a measure of SIM is established, predictive analysis serves to identify and predict the SIM for 
customers in the insurance portfolio, additionally we can obtain inferential insights about the portfolio. 
In this study, we investigate the relationship between SIM (the response variable) and 
socioeconomic/demographic features (explanatory variables). For exploratory purposes, the gradient 
boosting technique, XGBoost, was used to model the relationships. SHAP values are computed to 
illustrate the relationships, and furthermore we discuss the relevance of each SHAP visualisation. 
Additionally, the relationships observed between explanatory variables and SIM can be used as a basis 
to validate the framework and the SIM measure. For example, we can see if the effect that 
underinsurance is more prevalent in catastrophe prone areas [2] is observed in the predictive models. In 
this work, we validated our framework with the relationships observed between the SIM measure and 
wealth, income, and other related economic factors. 

3.4 Framework scope and limitations 

In practice, Australian insurers do not capture whether a building is underinsured and over-insured; if 
there data were captured, then it could be used for a supervised learning task. However, insurers are 
only able to capture this information, for the very small number of buildings that claim a total loss – 
where still, the cost of a total loss is usually deemed to be the nominated SI, even in cases where the 
building could have been over or underinsured. Given that securing a reliable dataset suitable for 



supervised learning is not feasible, the unsupervised learning approach presented in this paper is 
proposed as a suitable quantitative way to address the SIM problem. 

The factors that lead to SIM are noted in [2,7,8,9] as stemming from demographic, socio-economic, and 
geographic factors; we have accounted for all of these (as listed in Table 3). Based on the case study 
findings, using our framework should also tend to more robust estimates of SIM relationships due to the 
size and coverage of a national insurance dataset. 

It is relevant to note that there are actuarial considerations that the framework does not capture. The 
most notable is the demand surge phenomenon for rebuild materials and labor, which inflates the cost 
of a rebuild and hence the sum insured covered under the policy. A demand surge is experienced when 
there are a number of total losses concentrated in the same geographical region, usually the result of a 
catastrophe event such as a severe weather event. Policy terms and conditions generally make 
allowances for these types of situations, but it still remains a factor in evaluating potential 
underinsurance. Other less material considerations are factors like inflation and macroeconomic trends 
for rebuild costs and materials. 

4. Experimental results and discussion 

4.1 Clustering analysis 

We set the sampling amount to 10,000 observations for the CLARA-PAM algorithm. We found that the 
average distance from medoids for the fixed observations in Table A.1 in the appendix did not materially 
change with increases in sample size past 10,000 and so did not warrant the increased computational 
requirements. Smaller sample sizes were found not to allow for the formation of clusters large enough 
to provide reasonable metrics of SIM. In practice, if the computing power and time is available for a 
larger sample, or even the full population such that PAM can be used directly (as opposed to the big 
data implementation CLARA-PAM), then this is encouraged. The extent to which the sample size of 
10,000 is generalisable to other studies depends on the coverage of the insurance dataset in terms of 
homogeneity of risks – for example, a small sample size may suffice when dealing with a state-wide 
insurance portfolio as more homogeneity is expected with fewer types of buildings (and thus, fewer 
clusters). 

The parameterisation of k in CLARA-PAM is presented in appendix Fig. B.1, which shows that diminishing 
returns are received after ~100 clusters across all validation indexes. A majority vote is taken across 
indexes with the number of clusters set at 160 to parameterise CLARA-PAM. Fig. 4 presents the SI 
distributions for each of the 160 clusters, ordered by the mean SI. From Fig. 4, we observe that there is 
(i) reasonable intra-cluster mean SI variability (ii) high inter-cluster SI variability, especially in the tails of 
the distributions (iii) and some extreme outliers for most clusters. Observation (i) confirms the findings 
from the univariate analysis in Fig. 2, where (ii) and (iii) suggest that there is a material level of SIM. 



 

Fig. 4. Box plot of SI for each cluster. Ordered with respect to mean SI (including outliers). 

To validate the choice of CLARA-PAM over other applications appendix Table A.1 presents a summary 
criterion that captures similarity in medoids across iterations of the selected algorithms. As seen in 
Table A.1, PAM has the lowest mean and max distance from the medoid in building features out of the 
clustering algorithms tested. These results suggest there is limited additional value in devising a large 
application for the other algorithms (AGNES, H-Clust, k-means).  

4.2 Predictive analysis 

To condense the SIM information of each cluster to a single measure, we take the difference in the 
policyholder’s SI value and the Huber-M adjusted mean SI of their cluster. A positive (negative) value for 
SIM refers to over-insurance (underinsurance); SIM reflects the dollar amount by which a customer’s SI 
differs from the expected SI for their building. Fig. 5 shows the relationship of the Huber-M mean SI for 
a given cluster. Computing SIM for each observation arrives at a portfolio median SIM of -$13,101.  



 

Fig. 5. An example of the SI distribution for cluster 3 shows that the Huber-M mean ignores the outlier 
with a SI of $1.2m. The difference between the Huber-M mean SI, and the building selected SI of $1.2m 
(distance from the black dotted line to the outlier), results in a larger  SIM, than if we were to use the 
mean SI (distance from the red dotted line to the outlier). By employing the Huber-M as the true SI 
measure, the SIM for the outlier is larger, and thus we better capture SIM at the extremes. 

The following sections then illustrate the multifaceted value of the proposed framework in a prediction 
perspective4 through (i) understanding individual-level drivers or indicators of SIM (Fig. 6) and (ii) 
understanding portfolio-wide drivers of SIM (Fig. 7 and Fig. 8): 

• Waterfall chart: Fig. 6 shows the directional impact of each feature on SIM prediction and how each 
feature contributes to the absolute value of SIM for an individual policyholder. Observing the 
impacts for individuals as opposed to population levels, is particularly crucial for the SIM problem. 
The consequences of underinsurance for a policyholder are severe, and by using SHAP values we 
observe the direct influence of certain factors for a specific policyholder. Stakeholders can devise a 
much more targeted response, where we can produce a bespoke impact chart for each policyholder 
across a national portfolio. Additionally, the results are easily interpretable as the SHAP value is in 
terms of the SIM, which is in dollar amounts. For example, given the current set of model features 
for the policyholder in Fig. 6, being in an area with a higher proportion of high school education 
attendance (high school education = 94th percentile) marginally contributes -$123,947 to the SIM 
prediction, and having a below median mortgage repayment (mortgage repayment = 46th 
percentile) marginally contributes +$113,282. 

• SHAP importance summary: Fig. 7 presents the SHAP value (x-axis) for each explanatory factor, 
ranked by importance in the model. The dots represent an individual policyholder, and they are 
shaded according to their feature value. This summary plot gives us a view of the most important 
variables driving SIM, but also leading indications into the relationships (as per the shaded feature 
values), and the materiality of potential outliers (with each dot representing an individual 

 
4 The prediction perspective refers to visualising the SHAP values produced from an XGBoost model that 
incorporated all socioeconomic and demographic features as listed in Table 2. 



policyholder). For example, we can see that the two most important factors driving SIM are the 
policyholder age and drug rate information, which have a mean absolute impact of $31,952 and 
$29,667 respectively. We also see that a low drug rate (drug factor 2), where the blue dots indicate 
a low feature value, generally has a positive impact on SIM. The opposite occurs for a high drug rate. 
Outliers can also be identified, where having a low mortgage repayment, leads to a very high 
contribution to a positive SIM (over-insurance), with the impact over $200,000 for one policyholder. 
In this work, the average relationships are important to understand SIM on a national scale, but the 
outliers are the crucial focus given these are the policyholders that will be significantly over or 
underinsured. 

• SHAP dependence plots: Fig. 8 further illustrates the relationships summarised in Fig. 7, with the 
SHAP dependence plot shown individually for the four most important features in explaining SIM. 
The relationships are mostly intuitive, e.g. it is expected that younger policyholders are more likely 
to underinsure their building. The relationships observed are subject to a large amount of noise but 
provide a valuable insight to the average SIM experience. We can also contrast these findings with 
those in the literature [2,7,8,9]. To illustrate the value of the framework we provided the plots for 
the top four features only, but in practice it is useful to consider all features used in the predictive 
model. 

In addition to the three primary charts, SHAP values also allow for contrasting explanations. Predictions 
can be compared to the average prediction of a subset of the data, or even a single data point, which is 
extremely useful when a particular factor is of interest. For example, insurers will be keen to understand 
whether their SIM Cover product tends to be used by policyholders that believe they may be 
underinsured, and whether the effects are different for a significant demographic factor such as age. 

To summarise the value of the exploratory results of this framework we refer to the two core analysis 
pieces of the framework (Clustering and Predictive), and discuss the stakeholder-specific final aspect 
(Prescriptive): 

• Clustering Analysis: provides a method to create meaningful unsupervised representations of 
policyholders insured buildings, from which we derived a metric for SIM. The clusters may also be 
useful in other actuarial functions such as rating factor selection for pricing. 

• Predictive Analysis: provided inferential insights about SIM on a national scale and a framework to 
visualise predictive model results for the purpose of explaining SIM. 

• Prescriptive Analysis: would serve to translate the predictive measure to meaningful business 
solutions. Various parties will use the information from prescriptive analysis for different means. For 
governments, the socioeconomic and demographic features that influence SIM is valuable in 
deciding policy action to minimise underinsurance. For insurance, prescriptive analysis drives the 
core processes of the business. The predictive outcomes can be used to facilitate more granular risk 
pricing and increase the effectiveness of product covers for policyholders that are likely to be 
underinsured. 



 

Fig. 6. Waterfall plot of variable contribution to SIM (SHAP values) for a policyholder with an SIM of -
$60,722.  

 

Fig. 7. Dependence of each attribute, showing the impact of each attribute from high to low on the SIM 
model prediction. 



 

 

Fig. 8. Partial dependence plot for the four most important attributes in explaining SIM. Noting for Panel 
A – the Policyholder age was winsorized in the raw data (before the research process began) at 83.33 
years (1000 months), this was expected to have limited impact on the results of the big data framework 
– where the distribution still holds 45 years (540 months) as the most common age. Noting for Panels B 
and D, the value is measured in percentile, while for Panel C it is decile. 

 

5. Conclusion 

Motivated by the ACCC’s report on underinsurance [1], this paper provides an example of how data 
analytics can be used in insurance to further optimise and improve the customer experience, outside the 
realm of standard actuarial functions like price and retention optimisation. In fact, this is the first study 
in the literature to estimate individual SIM on a portfolio-wide scale. 

The framework designed to investigate policyholder SIM provides valuable output to stakeholders at 
each stage of analysis. In this work, we used clustering analysis to diagnose SIM and predictive analysis 
to identify the socioeconomic and demographic factors that drive SIM. Complex relationships were 
carefully illustrated from analytical models in a manner that actions business decisions. It was found that 
the age of a policyholder, tenure at address, drug information (of the local area) and the mortgage 
information were important factors in explaining SIM. While not within the scope of this paper, the 
output from other stages of the framework could significantly improve insurance processes. For 
example, the clusters may be used as a rating factor in pricing models, with the potential to remove the 



SI question altogether from the customers quote journey. The level of SIM may also be used in 
predictive models, ad-hoc analysis, and portfolio monitoring.  

The framework employs a range of advanced data analytic techniques to harness large amounts of 
insurance data. We used FAMD to include a variety of data types, reduce dimensionality and avoid using 
computationally complex mixed data distance measures. CLARA-PAM was used to cluster an entire 
portfolio of policyholders, which streamlined and simplified future analyses by avoiding sampling 
approximations. To provide business insight, SHAP values illustrated the complex relationships from the 
XGBoost prediction model. 

The framework has scope for many future studies of SIM characteristics. Future works will include 
greater breadth of building information to improve the accuracy of clusters, reference external sources 
of true SI to quantitatively validate SIM, and draw on the output from various stages of the framework 
for deeper insights on SIM. 
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7. Appendices 

Appendix A  Clustering Algorithm Comparisons 
 

 

 

 

Table A.1 Comparison of different clustering algorithms. We run each algorithm with a fixed random 
sample of 100 observations and randomly sample the remaining 9900 observations, across 20 iterations. 
The distance of the fixed observations to their medoid for each iteration are the basis for measures 
provided in the table. The win rate is the percentage of times out of 20, the algorithm had the lowest 
mean distance from medoid (across the fixed 100 observations). 

Appendix B  Multi-Criteria Evaluation of Number of Clusters 
 

 

Fig. B.1 The grid range selected for k number of clusters was set as 2 to 400. 
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1 K-means 0 1.390 0.052 1.477 
2 PAM 100% 1.260 0.086 1.375 
3 Agnes 0 1.863 0.150 2.102 
4 H-Clust 0 1.517 0.072 1.669 
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