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Summary 

Cat1-groups and crossed modules are equivalent formulations of 2-groups (a two

dimensional generalisation of the concept of group). A linear representation of the 

cat1-group <!: is defined to be a 2-functor ¢ : <!: -+ Ch}~) into the 2-category of length 1 

chain complexes of vector spaces over a fixed field. This definition, and to a large extent 

the theory of cat1-group representations, is based on analogy with the classical theory of 

group representations. There exist cat1 analogues of many definitions and results from 

group representation theory. These include the notion of a faithful representation and 

the existence of regular representations given by Cayley's theorem. However, there are 

also divergences between the theories. For example, the regular representation for cat1-

groups is not necessmily faithful. Every cat1-group , <!:, has an associated cat1-group 

algebra I< ( <!:), which is obtained by first applying the group algebra functor to <!: and 

then factoring the top level by a given ideal in order to introduce relations necessary 

to make the kernel conditions work in the algebra. Representations of a cat1-group are 

equivalent to modules over its cat1-group algebra. Since representations are 2-functors, 

there is a 2-functor 2-category Repc: of representations, morphisms between them (nat

ural transformations), and homotopies between the morphisms (modifications). Many 

of the results on the structure of group representations, for example Maschke's theo

rem, wi ll generali se to the next dimension, although we have only just begun to scratch 

the surface of this theory. Since it is possible to pass freely between cat1-groups and 

crossed modules, it is also possible to describe representation theory for 2-groups in the 

language of crossed modules. 
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Introduction 

Aims and Background 

In group theory, the idea of a representation is to find a group of permutations or linear 

transformations with the same structure as a given, abstract, group (see, for example, 

[48]). Formally, a representation of a group G is a homomorphism G--+ r where r is a 

'concrete' group such as Sn (leading to a permutation representation) or G Ln (C) (lead

ing to a linear representation). Note that while some authors (usually those concentrat

ing on matrix representations) use the term "linear representation" in a more restricted 

sense, meaning representations G --+ ]{ where I< is a field, we shal l use the term more 

generally for any situation where the target is a group of linear transformations. 

Permutation representations of groups are intimately related to actions of groups 

[49]. If </> : G--+ Sx is a representation, then G acts on X by 9x := </> (g)(x); conversely, 

an action of G on a set X defines a representation by associating to each g E G the 

permutation </>(g) that takes x E X to 9x (the fact that this is a permutation is an im

mediate consequence of the definition of group actions). Linear representations may be 

defined as homomorphisms of G into GLn(I<) for a field K, giving an invertible square 

matrix for each element of G. They may also be defined [67] as homomorphisms into 

GL(V) where Vis a J<-vector space, giving a linear isomorphism of V for each ele

ment of G. These two versions are, of course, essentially the same since there is a direct 

correspondence between linear isomorphisms and invertible matrices. More abstractly, 

li near representations may be defined in terms of modules over the group algebra of G. 

This extra level of abstraction gives linear representations a major advantage over per

mutation representations, al lowing easier generali sation to infinite groups and a much 

richer development of the abstract theory. Also, any permutation representation may be 

canonicall y converted to a linear representation, so nothing is lost by concentrating on 

the latter. 

l 
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The theory of representations is an important and well-developed branch of group 

theory (see, for example, the books [24] and [25] by Curtis and Reiner). It is com

putationally valuable, as calculations are generally much easier with well understood 

operations on objects such as matrices and permutations than with abstract operations 

on abstract objects. Also, representation theory helps to elucidate the structure of ab

stract groups, as well as providing important links between group theory and other areas 

of algebra. 

The work of R. Brown on higher-dimensional analogues of the Van Kampen the

orem led to a more general programme of "higher-dimensional group theory" [9, 12]. 

Many classical results have analogues in higher dimensions; the Van Kampen theorem, 

which largely motivated Brown's research, is of course one example. While many ar

eas of group theory have been succesfully generalised to higher dimensions, there has 

previously been no systematic development of representation theory beyond dimension 

one. Since representation theory is so useful and interesting for groups, it is reasonable 

to suppose that a higher-dimensional version might also be useful and interesting. The 

principal goal of this thesis is to explore this supposition. This is not merely an attempt 

to fill in a few gaps in somebody else's programme; a successful representation theory 

of 2-groups should have the same benefits for higher-dimensional group theory that the 

theory of group representations has for group theory, both for facilitating computation 

and for understanding the abstract structures better. Some reasons why we might want 

to study higher-dimensional groups in the first place will be touched on below. 

Brown's programme includes more general higher-dimensional groupoids, but for 

simplicity we shall concentrate on the case of groups in dimension two. It should be 

fairly straightforward to generalise our results to groupoids with many objects. Likewise 

we shall concentrate on the generalisation from dimension one to dimension two, which 

Brown [9] desc1ibes as "a significant one". Again, generali sation to higher dimensions 

should be possible; indeed, conceptually it may well be easier than the initial leap from 

dimension one to two, although the notation is necessarily even more complicated and 

visualisation just about impossible. 

There are several candidates for the title of "2-dimensional group" [ 18], and while 

these are equivalent, they are not trivially so. Of these, we shall concentrate on crossed 

modules of groups and cat1-groups. The fo1mer were historically the first on the scene, 

appearing in the late 1940s in the context of homotopy theory; they are now wel l-known 

to be equivalent to internal categories in Cat (29]. The latter, dating back to about 1982, 
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are relatively easy to picture as 2-categories with a single object, in which all 1- and 

2-cells are invertible. In dealing with higher dimensional algebra, it is common to take 

a category theoretic approach, and this is the way we shall proceed in this thesis. There

fore it will be helpful to remind ourselves of the categorical interpretation of groups, 

and to see what representations look like in this context. 

Viewing a group G as a category with a single object and inve1tible morphisms, we 

find that a functor G -+ Set conesponds to a permutation representation of G (each 

element of G is mapped to a bijection on a fixed set, and functoriality preserves the 

structure of G). Similarly, linear representations (representing the elements of G as 

matrices/linear transformations) are given by functors G -+ Vectg for I{ a fixed field . 

This immediately suggests that representations of 2-groups should be 2-functors into a 

suitable 2-category. For permutation representations this may well be the category of 

groupoids, and for linear representations we investigate the 2-category Ch}~) of length 

one chain complexes of vector spaces. Linear representations of a 2-group ([ will be de

fined as 2-functors ([ -+ Ch}P. In fact, the functorial image of ([ given by a representa

tion naturally lies within a 2-subgroupoid of Ch}P obtained by taking only the invertible 

chain maps over a single length one chain complex together with homotopies between 

them. This substructure is denoted by Aut( c5) and has the structure of a cat1-group. 

Therefore a representation of an abstract cat1-group ([ reali ses it as a cat1-subgroup of 

a cat1-group with linear structure, in the same way that a representation of an abstract 

group G realises that group as a subgroup of a general linear group. 

Taking the above as a working definition of 2-group representations, the first major 

task is to prove such things exist. As Heath [35] pointed out in the commentary to his 

translation of Euclid, "a definition asserts nothing as to the existence or non-existence 

of the thi ng defined". To ensure that we are not studying non-existent things, we simply 

need to come up with some examples of representations. For group representations, 

we can find ad hoc exampJes for particular groups, and there is an existence theorem 

(Cayley's theorem) that constructs a representation (the regular representation) for any 

group. Fol lowing this lead, we shall examine both specific examples and a generalised 

version of Cayley's theorem for 2-groups. 

A representation theory that merely defined representations and showed that they 

exist wou ld not be very exciting, but the group case suggests that a lot more should be 

possible (a mere glance at the size of Curtis and Reiner's tome [25] indicates that this 

is a big subject). We aITived at the definition of cat1-group representations by analogy 
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with group representations, and analogies suggest themselves for many other facets of 

group representation theory. Analogy is a powerful mathematical tool [60], but it must 

be used with caution. While analogies will suggest potential definitions and results, 

they do not prove that these definitions are sensible or the results true (though they may 

suggest ways of attempting the proof). 

Faithfu l representations of groups are those which are injective as homomorphisms; 

these are particularly impo1tant, since they preserve the structure of the group more 

completely than any other representations. They cotTespond to faithful functors. Per

haps the hardest thing about generalising them to dimension two is finding a definition of 

faithful 2-functor. Another important strand of elementary representation theory is the 

idea of reducibility. This involves breaking representations down into smaller, simpler 

parts which cannot be further broken down, and is somewhat akin to prime decompo

sition of integers. A central result in this area is Maschke's theorem, which roughly 

states that, under fairly general conditions, representations are well-behaved and break 

up nicely. Again, such theory immediately suggests itself for generalisation to the next 

dimension, and while the extra level adds a certain amount of complication the problem 

is not insurmountable. 

Representations are functors , so natural transformations provide morphisms be

tween them. This naturally leads to a definition of the category of representations as a 

functor category. For 2-groups, modifications provide "homotopies" between the mor

phisms, and the category of representations becomes a 2-functor 2-category. As with 

any category we may ask what properties it has, for example whether it is abelian, or 

monoidal, and so on. 

As stated earlier, while we have concentrated on the case of 2-di mensional groupoids 

with a single object, the results should generalise in a fairly straightforward way both to 

higher dimensions and to n-groupoids with many objects. Both of these situations would 

require more complex, cumbersome notation , but the concepts involved are scarcely 

more difficult. There are several algebraic models for homotopy (n + 1)-types available, 

including catn-groups [51], crossed n -cubes [28] and hypercrossed modules [21] (for 3-

types, these are equivalent to 2-crossed modules (22]). The links between these models 

are explored in [57]. Together with longer chain complexes of vector spaces and the 

coITesponding higher dimensional versions of Aut( o) these would take care of the higher 

dimensional group versions. Moerdijk and Svensson [56] treat 2-groupoids as a wider 

case of a lgebraic 2-types, and these too could be generalised to higher dimensions. 
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The field I< crops up many times within these pages, and we shall be spending a lot 

of time working with I<-algebras and vector spaces. However, except where noted (for 

example, the construction of section 2.3), the definitions and results given work equally 

well when I< is allowed to be a more general commutative unitary 1ing (and the term 

"vector space" replaced by "I<-module"). Occasionally it will be necessary to allow I< 

to be an integral domain (Z being the classic example). For the most part, however, the 

reader may take I< to be a field and will not lose very much generality by assuming it to 

be JR. or C throughout. The exposition is mostly given in terms of fields for ex positional 

convenience, so that the more familiar language of vector spaces can be used and the 

existence of bases assumed. 

Structure and Principal Results 

At the start of each chapter is a brief summary of what that chapter contains. The idea 

for this was bo1rnwed from Milne [54]. For convenience here is an overview of the 

contents and a1rnngement of this thesis. 

Chapter 1 contains accounts of some necessary preliminaries for our studies - a 

review of the elements of linear representations of groups; the definitions of crossed 

modules and cat1-groups; the properties of a 2-category, Ch}~l, which generalises the 

category VectK of I<-vector spaces; and the construction of the group algebra K(G) of 

a group G and its use in representation theory. 

The 2-category Ch}P defined in chapter 1 is an impo1tant step, but not quite suffi

cient for a ful I exploration of representation theory. In chapter 2, the cat1 -group, Aut( c5) 

of automorphisms of a single linear transfo1mation, which is a subcategory of Ch}~), is 

investigated. The matrix formulation is considered in some depth, since this is particu

larly suitable for calculations, and several examples and special cases are explored. At 

the end of this chapter, we state the definition of a cat1 -group representation, although 

we must postpone actually working with them until we have explored the notion of a 

cat 1 -group algebra. 

Chapter 3 develops the module theoretic aspects of cat1-group representation theory. 

After reminding the reader of the definition of a cat1-algebra, we define the cat1 -group 

algebra of a cat1-group. While the idea of this is exactly what we might expect, based 

on the notion of a group algebra, the details turn out to have a subtle twist. After this, 
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modules over a cat1-group algebra are defined and explored. 

In chapter 4 we return to the definition of a cat1-group representation, and prove 

that interesting examples actually do exist. The apex of this chapter is a catL-group 

version of Cayley's Theorem, giving a constructive proof of the existence of regular 

representations. We then look at some illustrative examples, and define the notion of 

faithfulness for cat1-group representations. The chapter closes by briefly considering a 

direct description of crossed module representations. 

Since we are taking a category theoretic approach, it is natural to ask about the 

category of representations of a given cat1-group, and we do so in chapter 5. After 

setting the scene with the category of representations for a group, we look at that for 

a cat1 -group, which (unsurprisingly) is a 2-category. We then consider some special 

properties of this category. The chapter concludes with a consideration of how the 

degree of a group representation might be generalised to dimension two. 

One of the most important ideas in group representation theory, and the subject of 

chapter 6, is the important concept of reducibility and in-educibility. The major land

mark aimed for is an analogue of Maschke's theorem, which states that for group rep

resentations any representation is semisimple provided that the order of the group does 

not divide the characteristic of the field underlying the representation space. This means 

that, under these quite general conditions, every representation splits up nicely into well

behaved chunks. While a full two-dimensional version of Maschke's theorem will not 

be achieved, this chapter will make progress towards that goal by analysing the classical , 

one-dimensional result and conside1ing ways in which it could be generalised. 

Unfortunately, constraints of time and space prevent the development of a complete 

representation theory within this thesis. Chapter 7 considers the progress made so far 

and looks at some aspects of the theory that I have not yet had time to develop, but 

which wou ld be interesting subjects for fmther research. These include the questions of 

Hopf algebra and Lie algebra structures on the cat1-group algebra, motivated by (i) the 

Hopf algebra structure of the group algebra I<( G) (prompting the question: "is there 

some kind of Hopf 2-algebra structure on J<(C!:)?) and (ii) some diagrams in Quillen 

[65] that relate group algebras to Lie algebras. 

Appendix A contains some examples of matrices con-esponding to Ch~p for the 

case I< = IR. This is a worked example for section 1.3.6, but is removed to the ap

pendix to facilitate the flow of the na1Tative. Appendix B is a dictionary showing the 

c01Tespondence between analogous structures in group representations and catL-group 
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representations. The thesi s closes with an indexed glossary of notation, a bibliography 

and an index. 

A note on notation 

There is a profusion of different notation and terminology used by different authors 

when dealing with any mathematical subject, and those treated here are no exception. 

I have tried to make clear the notation I am employing, which has often been synthe

sised and adapted from a variety of sources. It has often been necessary to make fairly 

arbitrary choices . A case in point is the decision between left and right actions; both 

have their supporters, and I have adopted the former. Clearly, new concepts do not have 

existing notation or terminology, so these have been invented from scratch, often by 

analogy with existing cases. In general, I shall economise on notation and omit orna

mentation (such as subscripts) that is rendered superfluous by the context. In patticular, 

summations are always taken over all the indices unless otherwise stated (e.g., I: r c,p is 

taken to be the sum over c E C and p E P, while I:cEC r c,p is the sum over C for a fixed 

value of p). Finally, I have used the standard symbol □ (which, somehow, has come to 

stand for quod erat demonstran.dum) to indicate the end of a proof. This symbol is used 

even where no actual proof is given, since it helps to make the result stand out from the 

SU!TOUnding text. 

Working with vectors, we move freely between writing a vector x in the form 

I:i aivi (where (v1 , ... , vn) is a basis) and w1iting it as an n -tuple (a 1 , ... , an)- In ei

ther case the coefficients depend on the choice of basis; when this is not made explicit for 

an n -tuple over <C or IR the standard basis, e 1 = (1, 0, .. . , 0), e 2 = (0, 1, 0, ... , 0) , . . . , 

may be assumed. We shall tacitly assume that any given basis is ordered in ascending 

numerical order of subscripts, since this shall facilitate writing n -tuples (we shall not 

use n-tuples when dealing with bases indexed by multiple subsctipts). In general it will 

be most convenient to use row vectors. However, when working with matrices we shall 

instead use column vectors (a 1, .. . , an)T. 

This thesis was typeset using I1T£X. 



Chapter 1 

Preliminaries 

In which some foundations are laid for our study: group representations, various types of 2-

groups, a 2-dim.ensional category of vector spaces, and the extremely useful group algebra func

tor: 

Before commencing the study of cat1-group representations we must assemble an 

arsenal of basic tools to use. This chapter contains no new material (although section 1.3 

is a somewhat di sguised special case of well -known material that appears elsewhere), 

but is intended to keep this thesis reasonably self-contained and to fix the notation that 

we shall employ later on. Section 1.1 consists of a brief overview of some of the most 

basic definitions in the theory of linear representations of groups. Section 1.2 will review 

the definitions of crossed modules and cat1-groups. In section 1.3 we shall examine 

a 2-groupoid built from linear transformations of vector spaces; the aim of thi s is to 

provide a suitable target for the functors to be constructed when we define cat1-group 

representations. Section 1.4 details the group algebra functor. 

1.1 Linear Representations of Groups 

Let I< be a field and Va I<-vector space. The collection of linear isomorphisms V --+ V 

forms a group under composition, denoted GL(V). If V is fin ite dimensional, with 

dimension n, then V ~ Kn and linear isomorphisms c01Tespond to invertible n x n 

matrices with coefficients in I<, so GL(V) is equivalent to GLn(J<), the general linear 

8 
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Definition 1.1.1. Let G be a group and V a I<-vector space. A K-linear representation 

of G with representation space V is a homomorphism 

¢ : G-+ GL(V). 

The dimension of V is call ed the degree of ¢. 

The representation ¢ assigns to each e lement g E G a linear isomorphism 

¢(g) : V -+ V. The image ¢(G) is a subgroup of GL(V) and, by the fundamental 

homomorphism theorem, G /ker ¢ ~ ¢( G). Particularly impo11ant is the case when ¢ 

is a rnonomorphism, for then ker ¢ = {le} and G itself is isomorphic to a subgroup of 

GL(V) . 

Definition 1.1.2. A representation ¢ : G -+ G L(V) is faith.fit! when ¢ is a monomor

phism. 

Example 1.1.3. The following are simple examples of representations over e (they also 

work over IR.): 

(i) Let G be any group and n EN+ and define Un: G-+ GL(en) by un(g) = id for 

every g E G. This is the trivial representation of Gin degree n, and is clearly not 

faithful unless G is the trivial group. The case n = 1 gives u = u 1 : G -+ ex with 

u(g) = 1 for every g E G; this is the unity representation2. 

(ii) For permutation groups, a more interesting degree 1 representation than the unity 

representation is defined as fo llows. Define ( : Sn -+ ex by ((x) = 1 when x is 

an even permutation and ((x) = -1 when x is an odd permutation. The fact that ( 

is a homomorphism amounts to the fact that a product of even or odd permutations 

is even, while a product of an even and an odd pe1mutation is odd [49]. 

(iii) More general ly, any degree I representation of a finite group Gover e maps each 

e lement of G to a root of unity in ex. 
1GLn(K) is one of Weyl's classical groups [33], at least when I( = C. Throughout most of this 

thesis, I( may be thought of as <C or IR if desired. 
2The term " unity representation" is a translation of Serre's representation unite [67). 
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(iv) Suppose a : G ➔ Sn is a permutation representation of degree n, where Sn is con

sidered to be the group of permutations of the integers 1, ... , n. Let { e 1 , ... en} 

be a basis for e n; then </> : G ➔ GL(Cn) , defined by ¢9 (ek) := e<Tg(k), is a degree 

n linear representation. 

Since linear isomorphisms of finite-dimensional vector spaces are equivalent to non

singular matrices, the definition of a representation with finite degree can easi ly be 

reformulated in terms of matrices. This approach is less amenable to theoretical de

velopment, or generalisation to representations of infinite degree, but it does facilitate 

calculations. 

Definition 1.1.4. Let G be a group. A matrix representation of G over K is a homo

morphism 

n E w+ is called the degree of <1?. The representation <P isfaithfitl if it is a monomor

phism. 

Example 1.1.5. Here are some matrix representations over C: 

(i) The trivial representations of example l.1.3(i) conespond to matrix representa

tions Un : G ➔ GLn(C) with Un(.9) = In for every g E G. 

(ii) Let Cn = (x : xn) be the cyclic group of order n, and let w; (1 ~ j ~ n) be 

the nth roots of unity (which exist and are distinct since C is algebraical ly closed; 

see [69]). Define the map Dn : Cn ➔ GLn(C) by Dn(x) := diag(w1 , ... , wn), 

Then for 1 ~ k ~ n, (Dn(x ))k = diag(wt, ... , w~) = Dn(xk). In particular, since 

{ w;} includes primitive nth roots of unity, Dn(xk ) =I= In when k < n. Thus the 

S111 (n E fiJ+ ) provide faithful matrix representations of any finite cyclic group. 

(iii) The smallest non-abelian group is S3 = (a, f3 : a 3 = (32 = 1, a/3 = (3a2) , of order 

6. Let A, B be the matrices: 

where w is a primitive cube root of unity. Then ¢ : Sn ➔ G L 2 (C), a H A , f3 H B 

is a faithful representation of degree 2. 
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(iv) Suppose a : G ➔ Sn is a petmutation representation of G, and let { e 1, .• . en} be 

the standard basis for Cn, with the ek column vectors. Then the matrix representa

tion conesponding to the linear representation of example l.l.3(iv) can be written 

down by taking the i th column of the matrix c.I>9 to be ea
9

(i )· 

It is always true that if V has dimension n, then GL(V) ~ GL11 (J(), but the exact 

isomorphism depends on the choice of basis for V. Therefore the mat1ix representation 

obtained by taking matrices cotTesponding to elements cp(g) of a linear representation 

(the representation afforded by</>) depends on the choice of basis. 

Lemma 1.1.6. Let A, B E GL11(K). Then A, Bare afforded by the same linear iso

morphism. </> : K 11 ➔ K n, for (possibly) different bases, if and only if there exists a 

matrix SE GL11(K) such that B = SAs- 1. 

Proof: 

Standard linear algebra (see, for example, [6]). D 

Definition 1.1.7. Two matrix representations <D , 1lJ G ➔ GL11 (K) are equivalent if 

there is a matrix S E GLn(K) such that 

for every g E G. 

Corollary 1.1.8. Two matrix representations are equivalent if and only if they are af

forded by the same linear representation (with possibly d(fferent bases). 

Proof: 

Immediate from Lemma 1.1.6. D 

The matrix formulation lies at the pragmatic, concrete end of the spectrum of repre

sentation theory. At the theoretical, abstract end of this spectrum is found the module 

theoretic approach pioneered by Noether. The key result that enables this approach is 

the bijection betweeen representations of a group and modules over its group algebra, 

which we shall examine in section 1.4. 
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1.1.0.1 Flavours of Representation Theory 

We have defined representations over any field I<. In fact they can be defined somewhat 

more generally over commutative rings with unity. Classically, representations were 

studied over fields of characteristic zero (such as JR, C); the theory of such representa

tions is called ordinary representation theory in [26). The study of representations over 

fiel ds of characteristic p #- 0 (e.g. the fields 'll,P for pa prime) was developed largely by 

Richard Brauer. This theory, called modular representation theory, diverges most sig

nificantly from ordinary representation theory when p divides the order of the group (for 

instance, Maschke's theorem then fails). Representations over integral domains (such 

as Z) are called integral representations. 

The same terminology can be bo1rnwed for the 2-group representations we shall be 

studying. We shall usually formulate the results for general fields, although in many 

cases the reader can substitute JR or C if so desired. In fact, most of the results will 

work for more general commutative rings, although we have chosen to state and, where 

applicable, prove them only for fields for the sake of exposition. Occasionally, it will be 

necessary to work in the greater generality of integral domains. 

1.2 2-Group Analogues 

Groups can be generalised to higher dimensions in several different ways, so we must 

make a choice as to how to proceed ([18, 50]). We shall restrict our attention to the two

dimensional case in which the two-dimensional elements are lozenge-shaped. Even 

here, there are at least five equivalent structures; a discussion can be found in [1 8). 

We shat I concentrate on crossed modules and cat1-groups. In this section all crossed 

modules will be crossed modules of groups. 

1.2.1 Crossed Modules 

Crossed modules were first introduced by J. H. C. Whitehead [72] as a tool for homotopy 

theory. T hey also occur naturally in many other situations (see examples 1.2.3 below). 

Definition 1.2.1. A crossed module x = (C, P, 8, a) consists of groups C, P together 

with a homomorphism 8: C-+ Panda left action a : P x C-+ C of Pon C, written 

Pc := a(p, c) , satisfying the conditions 
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CM2 o(c)ct = cc'c1. 

We shall sometimes assume that C, Pare finite, with ICI = c and IP I = p. When 

the action is unambiguous, we may w1ite X as the t1iple3 ( C, P, 8). Crossed modules 

may also be drawn as C ~ P, or P x C ~ C ~ P if the action must be stated 

explicitly. 

Remark: The terminology associated with crossed modules is not entirely standard

ised, but the following useful terms are sometimes encountered. The homomorphism 

8 : C ~ P is called the boundary, while the groups C and P are refen-ed to as, re

spectively, the top group and the base of the crossed module. The two crossed module 

axioms also have names, which are inconsistently applied. CMl is sometimes known 

as equivariance; CM2 is called the Peiffer identity (see [13] for an explanation of this 

name). A structure with the same data as a crossed module and satisfying the equivari

ance condition but not the Peiffer identity is called a precrossed module. 

The crossed module axioms impose some restrictions on the kernel and image of a. 
The fo llowing result is well known. A proof is included for convenience. 

Proposition 1.2.2. Let 8 : C ~ P be a crossed module. Then 

(i) o(C) <JP, and 

(ii) kero is a P/8(C)-module. 

Proof: 

Standard group theory ensures that ker 8 <J C and 8( C) :::; P. 

(i) o(C) = {8(c) : c EC}:::; P. Suppose x E 8(C) andp E P; then x = o(c) for 

some c EC, and po(c)p- 1 = 8(Pc) by equivari ance. Now, Pc EC, hence pxp- 1 E 8(C) 

as required. 

(ii) ker 8 = { c E C : 8(c) = lp} <JC. Let c E C, k E ker 8. T he Peiffer identity 

ensures that 8 kc = kck-1
, but 8k = lp so 8kc = c, whence ck = kc and ker 8 :::; Z( C), 

the centre of C. 

The action of P on C induces an action of P on ker 8; it is sufficient to check that 

Pk E ker 8 whenever k E ker 8. This is true because 8(Pk) = po(k)p-1 = pl pp- 1 = l p. 

Therefore ker 8 is a P-module. 
3Most autho rs leave the action implic it as a matter of course. Lavendhomme and Roi s in [ 47) explic itly 

include it, defined as a homomorphism P ~ Aut(C) (using different letters for the relevant groups). 
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From ( i ), 8( C) ~ P, so P / 8( C) is defined. The action of P on ker 8 induces an 

action of P / 8( C) on ker 8 with v(p)k := Pk for p E P, k E ker 8 and I/ : P ---+ P / 8( C) 

the natural map. This is well-defined, since if q E P with 1/(q) = 1/(p), there is a c E C 

with q = poc and so qk = pack = Pckc1 = Pk since ker 8 is central. □ 

Remark: Since part (i) of proposition 1.2.2 depends only on equivariance, it is true 

for any precrossed module. However, part (ii) uses the Peiffer identity, so it need not 

be true of a general precrossed module. The proof of (ii) shows that the kernel of any 

crossed module is central in C and hence abelian. 

Example 1.2.3. Certain generic situations give rise to crossed modules. Some are de

tailed here, others may be found in [1 , 32, 58]. Our first two examples may be thought 

of as converses to proposition 1.2.2. 

(i) Suppose N ~ G is a normal subgroup. Then G acts on N by conjugation ; this 

action and the inclusion l: NY G form a conjugation crossed module, (N, G, l). 

(ii) If lvf is a G-module, there is a well-defined G-action on NI. This, together with 

the zero homomorphism O : M ---+ G (sending everything in NI to the identity in 

G) yields a G-module crossed module, (M, G, 0). 

(iii) A central extension of the group P is an epimorphi sm 1r : E -» P where J{ = 
ker 1r E Z(E), the centre of E. A map s : P ---+ E such that 1rsp = p for 

each p E P picks out a transversal of P c::,; E / K. Although s may not be a 

homomorphism, 

for some k E K. This fact and the centrality of J{ ensure that the action Pe ·

sves;1 is well-defined and, together with 1r, yields a central extension crossed 

module, (E, P, 1r). 

(iv) Let G be any group and Aut( G) its group of automorphisms. There is an obvious 

acti on of Aut( G) on G, and a homomorphi sm ¢ : G ---+ Aut( G) sending each 

g E G to the inner automorphism of conjugation by g. These together form an 

auromorphisni crossed module, ( G, Aut( G) , </>) . 

(v) Any group G may be thought of as a crossed module in two ways. Since G always 

has the two normal subgroups {!} and G, we can form the conjugation crossed 
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modules {1} '---+ G and id : G -+ G. Note that the homomorphism G -+ {l} 

with the trivial action forms a crossed module whenever G is abelian, otherwise 

the Peiffer identity fails and the result is a precrossed module. 

These examples provide strong motivation for studying crossed modules. As Nonie 

[58] wrote in her thesis: "crossed modules simultaneously generalize normal subgroups, 

modules over a group and central extensions of groups. Furthermore any group together 

with its automorphism group gives rise to a crossed module, and any group may itself 

be regarded as a crossed module." 

Example 1.2.4. In addition to the generic examples of crossed modules considered 

above, it will be useful to have at hand some small, easi ly checked, examples of in

dividual crossed modules. These will provide test cases for later constructions. 

(i) Let C2 = (x: x2
) and I= {l}. Then C2 -+ I is a crossed module (there is 

no choice for either the homomorphism or the action). 

(ii) Let C3 = (x : x3
) and C2 = (y: y2). The zero homomorphism and the trivial 

action, 1, (with Yx = x ) make (C3 , C2 , 0, 1) a crossed module. 

(iii) With the same groups and boundary as (ii), define the twisting action, T, of 

C2 on C3 as Yx := x2
. This also yields a crossed module (C3 , C2 , 0, T) . 

(iv) Let C4 = (x : x4
) and C2 = (y : y2

) (where y = x2) . Action by conjuga

tion fixes each element of C4 , and together with the boundary 8 defined by 

xi---+ y, gives a crossed module, (C4,C2 ,8). Since C4 is abelian, action by 

conjugation fixes every element of C4 , and we suppress explicit mention of 

the action. 

Definition 1.2.5. If .x1 = (C1 , Pi, 81 , a 1 ) and .x2 = (C2 , A, 82 , a 2 ) are crossed mod

ules, then a crossed module morphism cp : .x1 -+ .x2 consists of a pair of group homo

morphisms ¢c : C 1 -+ C2 and <pp : Pi -+ A that commute with 8i and preserve the 

action . That is, 82¢c = cp p81 and ¢c(Pc) = <PP(P)cpc (c). These conditions are encapsu

lated in the commutativity of the following diagrams: 
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Example 1.2.6. Let .x = (C3 , C2 , 0, 1) and qJ = (C3 , C2 , 0, ,) be the crossed modules 

of example l.2.4 (ii) and (iii) respectively. Then ¢ : .x -+ q) with ¢c3 : x i---+ x2 and 

¢c2 : y i---+ 1 is a crossed module map; in fact it is the only non-trivial map between 

these crossed modules. There is no non-trivial map qJ -+ .x. 
There is an obvious composition of crossed module morphisms that leads to the 

category XMod of crossed modules (of groups) and their morphisms. 

An important construction on crossed modules, which relates to their homotopy 

theoretic origins, is the classifying space [11 , 31, 51]. This is a functor B from XMod 

to the category of CW-complexes such that for any .x E XMod, Bx is a connected 

CW-complex with 1r1B.x ~ coker c5 = P/o(C), 1r2B.x ~ ker c5 and 1riB.x = 0 for every 

'i -=I= l , 2. Also, for any connected CW-complex with 1fi = 0 for i -=I= l, 2, there is a 

crossed module with that complex as its classifying space. In this way, crossed modules 

of groups are algebraic models for 2-types. We may slightly abuse notation and write 

?Tix for 1riB.x. The classifying space functor is a generalisation of Segal's classifying 

space functor for categories (and hence groups), described in [45, 46]. 

1.2.2 Cat1-groups 

Cat1-groups (originally called 1-cat groups) are the first in a series of models for ho

motopy n -types introduced by Laday [51]. They are sometimes refen-ed to simply as 

cat-groups [31] if the higher catn-groups are not also being considered4; the term cate

gorical group [3] is used for similar structures in which inverses for the group operations 

are only defined up to isomorphism [37]. 

Definition 1.2.7. A cat1-group <[ = (G, P, i , s , t) consists of groups G and P, an em

bedding i : P >-) G and epimorphisms s, t : G - P satisfyi ng: 

CG 1 si = ti = idp 

CG2 [ker s, ker t] = {le } 

We shall often assume that both groups are finite, and write g for ICI. A morphism 

'Y : <L1 ~ ([2 of cat1-groups consists of a pair 'Ye : Ci -+ G 2 and 'YP : Pi -+ A that 

commute with the homomorphisms of ([1 and <t2 . With the obvious composition, there 

is a category Catl of cat1 -groups and their morphisms . 

.J Although we shall not be considering catn-groups for n ~ 2, we shall continue to use the term 

call-group in the interests of greater generality. 
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Remark: As wi th crossed modules, the groups G and P of a cat1-group may be 

referred to as the top group5 and base respectively. The morphisms s , t (standing for 

source and target respectively) are called structural (homo)morphisms and i is the in

clusion (a justifiable term, since P can always be thought of as a subgroup of G). CMl 

may be termed the identity condition and CM2 is the kernel condition. A structure with 

the same data as a cat1-group and satisfying the identity condition but not the kernel 

condition is called a precat1-group. 

Example 1.2.8. We shall not need to define any specific examples of cat1-groups di

rectly since, as we shall see below, we can obtain cat1-groups from any crossed mod

ules. However, in considering trivial cat1 -groups, note that the top group may not be 

trivial unless the base is also trivial , for the identity condition would be violated. The 

simplest cat1 -groups are those for which the base and top group are the same, and all 

morphisms the identity. Any group G forms a precat1-group with trivial base. 

There is a useful structural decomposition of the top group of a cat1-group as a 

semidirect product involving the base and one of the structural homomorphisms. First 

we recall the definition of a semi direct product. 

Definition 1.2.9. If G and Hare groups, with a left action of H on G, the semidirect 

product of G by His the group G ><J H = { (g, h) : .9 E G , h E H} with multiplication 

(.9 , h)(.91, h' ) := (ghg' ,hh') . The inverse of (g,h ) is ( h-
1
.9- 1, h- 1). 

Of course, the semidirect product G ><J H has the same underlying set as the direct 

product G x H, so JG ><J H I = IGI IH I. Since, for any cat1-group, ker s <JG and iP ~ G, 

there is an action of iP on ker s by conjugation. Hence, the semi direct product ker s ><JP 

is defined. 

Lemma 1.2.10. For a cat1-group (G, P, i , s, t ), 

G ~ ker s ><J P. 

Proof: 

Let ¢ : G---+ ker s ><l Pwith ¢ (.9) := (gis(g - 1),s(g)) and 'l/; : ker s ><J P---+ G 

wi th ·tj; (c, p) := ci(p). It is straightforward to check that ¢, ·(/; are homomorphisms and 

·(/;= ¢- 1. D 

5Brown and Loday call this the big group in their definiti on of catn-groups [ 14). 
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From a crossed module X = (C, P, 8) we can construct a cat1-group, <r(X): 

s 
C xl p-==:_ p 
~ 

i 

Here s, t : C xl P -+ P , i : P -+ C xl Pare defined as s(c, p) = p, t(c, p) = 8(c)p and 

i(p) = (lc,p) . Then s IP= t IP= idp and [ker s, ker t] = l c~P · 

Note that (c,p) E ker s ¢:? p = l p , i.e. ker s = {(c, l p)} ~ C; hence t(c, l p) = 

8(c)lp = 8(c), so 8 = t lker s and we can recover X from <r(X). The same trick enables 

us to construct a crossed module X ( <:!:) from any given cat1-group <:!:, if we first use 

lemma 1.2.10 to decompose the top group. These constructions lead to the well-known 

equivalence between crossed modules and cat1-groups [51]. 

Example 1.2.11. Each of the crossed modules of example 1.2.4 yields a cat1-group 

according to the given recipe: 

(i) From C2 -+ I we get the cat1-group (C2 , I, i,0, 0) where i is the inclusion 

(1 H 1) and s, t both the zero map. 

(ii) The semi direct product con-esponding to ( C3 , C2 , 0, 1) is C3 xl C2 ~ C6 and so 

<t(X) = (C6 , C2 , i, s, s) , where the structural homomorphisms are identical 

and send odd powers of the generator of C6 to the generator of C2 and even 

powers to the identity. 

(iii) (C3 , C2 , 0, T) gives semidirect product C3 xl C2 ~ S3, so the conesponding 

cat1-group is <:!:(~ ) = (S3 , C2 , i, s, s) . The inclusion i maps y to a transpo

sition in S3 , whiles maps every odd permutation to the generator of C'2 and 

every even permutation to the identity. 

(iv) (C4 , C2 , c5) with action by conjugation yields C4 xl C2 ~ C4 x C2 and leads 

to the cat1 -group (C4 x C2 ,C2 ,i,s,t) with s the projection onto C2 and t 

the homomorphism sending both (x, 1) and (1, y) (that is, the generators of 

C1 x C2) to y . 

All of these cat1-groups are included in the first few rows of Alp and Wensley's table 

[ l]. 



CHAPTER 1. PRELIMINARIES 19 

Since cat1-groups are equivalent to crossed modules, it follows that they too must 

be algebraic models for 2-types. It is also possible to construct the classifying space of 

a cat1-group, and establi sh this fact directly. The construction, detai led in (19) for catn

groups, starts by forming the nerve of([., a simplicial group. The classifying space, B([., 

of([. is defined to be the classifying space of its nerve. As with the crossed module case, 

the homotopy groups of B([. can be found, and we shall write ni ([. for niB([.. Garzon and 

Miranda (31) state that n1 ([. = coker ( s, t) (the coequaliser of s, t, using the notation of 

(7)) = P /t(ker s) and n 2([. = ker snker t , while all other ni are tri vial. These results can 

also be obtained from general formulae given in [57) (using the fact that a cat1-group 

is, equivalently, a simplicial group with Moore complex of length 1). Some authors, 

including Garzon and Miranda, shift the suffixes and have no and n 1 respectively for 

the groups we are denoting as n1 and n2 . The choice of suffix convention employed 

depends on whether you principally interpret a cat1-group as a 1- or a 2-dimensional 

structure (see page 21). 

1.2.3 Composition 

We have seen that crossed modules and cat1-groups are equivalent. That is, they may 

be considered as different ways of looking at the same thing. They are also equivalent 

to 2-categories (7, 44, 70) with ce1tain restrictions. This categorical view is particularly 

useful for two principal reasons. Firstly, it provides a more visual understanding of 

the structures [2], and while a visual intuition breaks down in higher dimensions - and 

cannot entirely be relied upon even in the lowest dimensions - it can provide useful 

insights. Also, the full weight of categorical machinery may be brought to bear on the 

problem in hand; this usually opens the way to more elegant methods than a brute force 

approach. 

A cat1-group is more-or-less immediately an internal category in the category of 

groups [2 1, 51]. This fact is uncovered in section 12.8 of [52), en route to showing the 

equivalence of internal categori es and crossed modules of groups, although MacLane 

does not explicitly use the term 'cat1-group' in hi s account. The essence of the argu

ment is that the kernel condition of the cat1-group is equivalent to a categorical compo

sition which is a group homomorphism (i.e. there is an interchange law between this 

composition and the multiplication in the top group G). 
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We now s how that these are equivalent to 2-groups6 . Pis a group, so its elements 

can be taken as aITows (I-cells) with a unique vertex (denoted*). The multiplication 

in P becomes composition in the categorical view. We may write this as q#0p := qp 

(mean ing 'fi rst p then q' ); the subscript O indicates that the two elements are joined by 

a common face in dimension zero; in this case, there is only one possible such face(*) 

so composition is always defined. We shall use the notations of composition (#o) and 

multiplication Uuxtaposition) interchangeably. The idea behind this notation is that each 

compos ition for an n -cell is denoted as #k with k = 0, l , ... n- l; k is the dimension of 

the common boundary by which the adjacent cells are joined. This notation is useful in 

2-dimensional algebra and ce1tainly invaluable in higher dimensions. It is quite common 

in recent papers on higher-dimensional algebra (e.g., (23]), though I am not sure who 

introduced it. 

By lemma 1.2. l 0 , G can be decomposed as ker s ><i P, so a typical element is ( c, p), 

with c E ker s, p E P. Then s(c, p) = p and t(c, p) = o(c)p so we can view (c, p) as a 

2-cell p ⇒ 8(c)p, with source s(c, p) and target t(c, p) (hence the names): 

p 

~ 
* .JJ.(c,p) * 
~ 

8(c)p 

Of course, G is itself a group, so it is also a category with one object, * (which may 

be taken to be the same one as for P); its multiplication is interpreted categorically as 

composition. Suppose (c,p) and (d,q) are in G, then (d,q)#o(c,p) = (d,q)(c,p) = 
(dr,c, qp) . Now o(dqc) = o(d)qo(c)q- 1 , so (dC/c, qp) is a 2-cell qp ⇒ o(d)qo(c)p. Picto

rially, 

p q 

~~ 
* .JJ. (c,p) * .JJ. (d,q) * 

~~ 
8(c)p 8(d)q 

The picture makes it obvious why this is called horizontal composition. 

6It is worth noting that the term '2-group' is used by group theorists to mean a group with order a 

power o f 2 [66). This is quite different from the category theoretic meaning used here, i.e. a 2-category 

with invertible I- and 2-cells and o nly one object [3]. 
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There is an alternative composition that can also be defined. Suppose (c' , 8(c)p) is 

another element in G, i.e. c' E ker s. Then we can compose (c, p) and (c', 8(c)p) by 

defining 

(c',8(c)p)#1 (c,p) := (c'c,8(c'c)p) 

For this composition, the subscript l indicates that the two elements to be composed 

share a common face in dimension one (an element of P). Due to the natural way of 

drawing 2-cells, this composition is known as vertical composition. 

p 

~ * lJ. (c,p) * 
~ 

8(c)p 

p 

~ * lJ. (c' #oc,p) * 
8(c)p 

~ 
~ 

8(c' c)p 

* lJ. (c' ,8(c)p) * 
~ 

8(c')8(c)p 

The second condition on cat1-groups establishes an interchange law between the 

horizontal and ve1tical compositions, hence we have a 2-category. Since both composi

tions are clearly invertible and there is only one object, it is in fact a 2-group. 

Conversely, any 2-group is a cat1-group. The source and target maps from 2-cells to 

1-cells, together with the identity map from 1- to 2-cells, function as the structural mor

phisms and immediately satisfy the identity condition. The kernel condition is slightly 

more subtle, but comes fairly directly from the interchange law between the two com

positions in the 2-group, which essentially states that vertical composition is a homeo

morphism [64]. 

At this point we may also note in passing that a cat1-group can also be interpreted as 

a strict monoidal groupoid. This follows from the observation in [50] that a 2-category 

with one object is a monoidal category. Because of thi s fact, a cat1-group may be viewed 

e ither as a two-dimensional structure (a 2-groupoid with a single 0-cell) or as a one

dimensional structure (a monoidal category with inverses). We shall usually take the 

first view, and this will be reflected in the notation we employ. The reader should be 

aware that different sources may use different notational conventions. 
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1.3 A 2-Groupoid of Very Short Chain Complexes 

From a categorical viewpoint, a linear representation of a group G becomes a func

tor from G to the category VectJ< of K-vector spaces. In section 1.2.1 we saw that a 

cat1-group is essentially a 2-group, and in section 4.1 we shall be exploring cat1-group 

representations as a 2-categorical generalisation of group representations. In order to do 

this, we need a 2-categorical analogue of VectJ<, and it is to this problem that we now 

turn. The construction we shall describe in this section is essentially a special case of 

Gabriel and Zisman 's 2-category of complexes [30]. 

1.3.1 First Steps 

Let I< be a field and let C0 , C 1 be vector spaces over I<. If 6 : C 1 --+ Co is a linear 

transformation , then C : C 1 !...+ Co is a length l chain complex of vector spaces. C can 

be considered as ... --+ O --+ C 1 !...+ C0 --+ 0 --+ . . . and so composition trivially gives 

the zero map and 6 is a differenti al (a discussion of the terminology and basic theory 

of chain complexes can be found in [39)). Thus, every linear transformation can be 

considered as a chain complex. It will sometimes be convenient to blur the distinction 

between the linear transformation and its chain complex, and refer to 6 itself as a chain 

complex. 

Suppose that in addition to C we have a chain complex 

1J : D 1 ~ Do (write c5c for the differenti al in C to distinguish it). Then a morphism 

between C and 1) is defined as follows. 

Definition 1.3.1. A chain map f : C --+ 1) consists of components ft : C 1 --+ D1 and 

Jo : C0 --+ Do such that (5DJ1 = f 0!5°; i.e. the following diagram commutes: 

Suppose f : C --+ 1) and g : 1J --+ £ are chain maps. T hen the composite 

g#0 f : C --+ £ is defined by (g#0 J) i := gdi, where i = 0, 1 and the composition on the 

right hand side is the usual one for linear maps. The notation used for the composition 

on the left hand side is the same as that described in section 1.2.3, and is introduced in 
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order to facilitate exploration of 2-cells later on. Each chain map has a clearly defined 

source and target, and maps can be composed when the target of one coincides with the 

source of the next; composition is clearly associative. For each chain complex C, there 

is an identity, idc, under this composition, where (idc)i is the identity on Ci. Hence the 

collection of all length l chain complexes of vector spaces over I<, and all chain maps 

between them, forms a category. 

Definition 1.3.2. Let I< be a field. The category of length 1 chain complexes of K

vector spaces, and chain maps between them, is denoted Ch}p. 

This structure provides the foundation for a 2-groupoid. By restricting our attention 

to those chain maps that are invertible we obtain a subgroupoid of Ch}~), which we 

shall write as invCh}P, From definition 1.3.l it is clear that a chain map J : C --+ 1) is 

invertible precisely when both its components are invertible. 

Definition 1.3.3. A chain isomorphism is an inve11ible chain map J : C --+ TJ. 

Hence the morphisms of invCh}p are precisely the chain isomorphisms of Ch}P. 
As an aside, readers with a penchant for homological algebra will observe that for 

any CE Ch}P, H1 (C) = ker 6c and H0 (C) = coker 6c = C0/6c(C1), while H11 (C) = 
0 for every other n E Z. We shall not explicitly consider homology any further in this 

thesis. 

1.3.2 The Next Dimension 

The next task is to find a groupoid enrichment for Ch}p (see [39] for an introduction 

to this concept). This will make it a 2-category in which the vertical composition is 

invertible; hence, invCh}p will be a 2-groupoid. 

One of the standard motivating examples of a 2-category (given, for instance, in 

[52]) is Top, in which the 2-cells are given by homotopies between the continuous 

maps. This suggests that, for other suitable categories, homotopy might provide a 2-

categorical structure. Chain complexes of vector spaces have a well-behaved homotopy 

theory (in fact, several equivalent theories). We shall consider homotopies of length 1 

chain complexes over Vectg, with a view to demonstrating their suitability as a 2-cell 

s tructure for Ch }p. See [39] for a more detailed treatment of the elementary homotopy 

theory of chain complexes in general. 
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For any chain complex C, there is a chain complex C 0 I defined as 

with differential 

JC®I (x, y, z) := (6x - z, 6y + z, -6z) . 

As usual, the superscript on the 6 will be omitted wherever possible . For C E Ch}P, 
most of the Ci are trivial and so C 0 I reduces to a chain complex of length 2: 

0 -+ C1 ~ C1 EB C1 EB Co ~ Co EB Co -+ 0. 

This construction yields a functor - 0 I : Ch};) -+ Ch}~), where Ch};) is the 

3-category of length 2 chain complexes (to be discussed in section 1.3.5.2). There 

are natural transformations e0 , e1 : idc h(1J -+ - 0 I and <J : - 0 I -+ idch(1J with 
K K 

eo (C)(x) = (x,0,0), e1(C)(y) = (0,y,0) and <J(C)(x,y,z) = (x + y) . This functor 

and these natural transformations provide a cy linder structure on Ch}P, which allows 

homotopy to be defined. 

Definition 1.3.4. Let f, f' : C -+ V be chain maps in Ch}p. Then f is homotopic 

to f', written f '.:::= f', if there is a chain map h : C ® I -+ V with he0 (C) = f and 

he1 (C) = f'. 
In practice, homotopies, along with chain complexes, chain maps, and other graded 

stuff, are usually viewed as "black boxes" which take the given input and produce the 

required output without the user having to worry about the details . At times, however, it 

is useful to be able to see inside the box, so to speak, and examine what is happening at 

the level of the individual objects/maps. The following diagram illustrates the definition 

of homotopy for Ch}~): 

0 C1 0 

j 
(eo(C))1 

j,i•· l 
C C h1 C1 C1 EB 1 EB o D1 

,c j 
(e1(C)) 1 

j ,r•· j,c 
(eo(C))o 

ho 
Co Co EB Co Do 

j 
(e1 (C))o 

j j 
0 0 0 
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The condition f = he0 (C) implies that h(x, 0, 0) = f(x) for any x E C; likewise 

h(0, y, 0) = J'(y) . Define h'(z) := h(0, 0, z), then for any (x, y, z) E C® J, h(x, y, z) = 
.f(x) + .f'(y) + h'(z). It is straightforward to check that 6h' + h'6 = .f' - f. Note that 

because C and 1J are both length 1 chain complexes, the homotopy is trivial in dimension 

two. 

Definition 1.3.5. If f, f' : C -+ 1J in Ch}~) then a map h' : C0 -+ D 1 with h'6c = 
f{ - ./1 and 6Dh' = f~ - .fo is called a chain homotopy from f to .f': 

Ji 

The chain homotopy condition may be written more succinctly as 6h' + h' d = f' - f, 
bearing in mind that these are graded maps (6 being of degree -1, h' of degree +l, and 

the chain maps f, f' of degree 0). This fonnula is a lso valid for longer chain complexes. 

From the foregoing discussion , it is clear that every homotopy on Ch}P yields a 

chain homotopy. Conversely, suppose h' is a chain homotopy from f to f'. Then 

h(x, y, z) := f(x) + J'(y) + h'(z) is a homotopy. Indeed, the chain homotopy con

dition may be reaITanged and then substituted into this formula to yield: 

h(x, y, z) = f(x) + (6h' + h'6 + f)(y) + h'(z) . 

Therefore any homotopy is uniquely specified by its chain homotopy and its starting 

point, and we may write h H (h', f) interchangeably. Note that for chain maps we 

use primes (') to distinguish between different maps having the same source and target, 

while for homotopies we use h' to denote the chain homotopy component of the homo

topy h, i.e. h'(z) = h(0, 0, z). In practice it should always be clear from the context 

whether we are refening to chain maps or to homotopies, so no confusion should occur. 

It would be cumbersome to always write out the full commutative diagrams for chain 

maps homotopies, but the "black box" idea enables us to avoid this most of the time. A 

homotopy h = (h' , f) : f ~ f' runs between two aJTows (I-cells) of Ch}p , and so can 
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be viewed as a 2-cell: 

f 
~ 

C JJ h V. 
~ 

!' 

26 

The 2-cell may be written more compactly as h : f ⇒ f', although it will sometimes 

be more convenient to draw the full picture, particularly when horizontal and vertical 

composition are considered. In practice, we shall flit freely between all of these nota

tions. Of course, it will sometimes also be useful to open up the black box and work on 

a component level. 

Note that while the endpoints are implicit in any homotopy h, the chain homotopy 

h' is not unique to f c::: f'. It is possible to have f i- g and f' i- g' such that both 

oh'+ h'o = f' - f and oh'+ h'o = g' - g, i.e. f c::: f' and g c::: g'. Therefore a 2-cell is 

not completely determined by the chain homotopy. We shall return to this observation 

later. 

Calculations with homotopies may be done using either the chain homotopy or the 

cylindrical homotopy formulation, since these are equivalent. We shall usually use chain 

homotopies . In order to get a feel for calculations using chain homotopies, we shall 

check that homotopy is an equivalence relation. Note that homotopy is automatically 

reflexive (this is a basic consequence of the cylinder structure), but not neccessarily 

symmetric or transitive. These are, however, desirable properties for a homotopy the

ory and fortunately the homotopy of chain complexes, like the standard homotopy of 

topology, has them. 

Proposition 1.3.6. Homotopy on. Ch}P is an equivalence relation. 

Proof: 

It is sufficient to check the three properties directly. 

Reflexivity: For any f E Ch~p, we have ooc = 0 = Ji - Ji and o0 o = O = 
Jo - / 0 ; thus the zero map is a chain homotopy for f c::: f. Denote the coITesponding 

homotopy by 11 : f ⇒ f (for consistency, we may write 11 = 0). 

Symmetry: Suppose h : f '.:::'. f'. Then Ji - f{ = -h' oC and Jo - J~ = -o D h' = 
o0 (-h'), so -h' is a chain homotopy f' c::: f and there is a coITesponding -h: f' ⇒ f, 
as required. 
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Transitivity: Suppose h : f '.::::'. J' and h : f' '.::::'. f" . Then, in addition to the 

equations for Ii, JI and h' already establi shed, h' fP = J{' - J{', 6 ° ii = J~' - f~. Then 

(h' +h')8c = h'8c +ii8° = f{ - Ji+ f{' - f{ = n'-Ji and 6D(h' +h') = 8° h' +6Dh,' = 

f~ - fo + f~' - f~ = Jg - .fo hence (h' + h') is a chain homotopy. Thus homotopy is 

transitive and hence an equivalence relation. D 

Transitivity allows us to define a composition of homotopies. 

Definition 1.3.7. Let h : f '.::::'. f' and h : f' '.::::'. J" (.f, f' , f" : C ➔ D). Then the vertical 

composite (h,# 1h) : f '.::::'. f" is the homotopy with chain homotopy component: 

Using 2-cells, this composition is pictured as follows: 

f 
~ 

C .tJ.h 1) 

~ 
J' 

J' 
~ 

C .u. ii 1) 

~ 
J'' 

(1.1) 

The name vertical composition refers to the way 2-cells are usually drawn 7, and distin

guishes it from the horizontal composi tion to be defined below. The collection of all 

homotopies between chain maps in Ch)p will now be considered as a co llection of 2-

cells in Ch}P. Each homotopy has clearly defined source and target chain maps and (by 

composition) source and target chain complexes. The composition is associative. Re

flexivity of homotopy gives us an identity 1 J for each chain map f. Symmetry ensures 

that (-h#Ji)' = -h' + h' = 0, so every 2-cell is invertible under vertical composition. 

Thus Ch}P has a vertical groupoid structure on its 2-cells (with composition written as 

# 1), and a horizontal category structure on its 1-cells (with composition # 0). Note that, 

whereas to get a groupoid structure hori zontally (as in invCh}~)) we must explicitly re

strict our attention to invertible chain maps, all 2-cells are int1insically invertible under 

7The notation for vertical composition (#1), and that for horizontal composition (#o), is the notation 

introduced in section 1.2.3 in the context of cat1 -groups. 
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verti cal composition, due to the properties of homotopy for chain complexes. It remains 

to extend the horizontal composition to the 2-cells and establish a relationship between 

the two types of 2-cell composition. 

1.3.3 Whiskers 

As an intermediate step to defining horizontal composition for 2-cells, we can define a 

composition between a 1-cell and a 2-cell. Let h : .f '.:::::'. f' : C -+ 1) be a homotopy and 

g : 1) -+ [ a chain map. With the chain homotopy h' we get the following picture: 

!1 
91 

C1 D1 E1 

j I' , j j,, 5c '~ / \ / 50 

/ Jo 
Co D1 90 Eo 

Jb 

Since h' and g1 are compatible linear transformations, they may be composed; the com

posite g1h' satisfies: 

and 

In other words, g1h' is a chain homotopy from g#0J to g#0f' . 

Definition 1.3.8. For h : f '.:::::'. f' : C -+ 1) and g : 1) --, [, the whiskering 

g#0 h : g#0 f '.:::::'. g#0f' is the homotopy with chain homotopy component 

This choice of terminology is explained by the picture: 

f 
~ 

C ,U,h 1)--
9-~ [ 

~ 
J' 

g#of 

~ 
C lJ 9#oh [ 

~ 
9#0!' 

(1.2) 

Since the natural "whisker" is the 1-cell g, which appears on the left in the notation 

g#0 h but on the right in the diagram, we refer to it as apostwhisker (and to the operation 

as posrwhiskering) rather than a whisker on the left or on the right. 
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As might be expected, whiskering can also be defined for a 1-cell followed by a 

2-cell, i.e. prewhiskering. In this case (for f : C -+ D and k : g '.:::'. g' : 'D -+ [) the 

homotopy k#of is defined by 

(k#of)' := k' Jo. 

g 

~ c--1-v ~k E 
~ 

g' 

1.3.4 Horizontal Composition 

(1.3) 

g#of 
~ 

C ~ k#of [ 
~ 

g' #of 

Now suppose we have 2-cells h : f '.:::'. f' : C -+ D and k : g '.:::'. g' : 'D -+ [. The 

following picture suggests a possible definition of horizontal composition. 

J g 
~ ~ 

C ~ h D ~k [ ·-
...__________._ ~ 

!' g' 

This is clearly well-defined in the sense that the right hand side is the vertical composite 

of two whiskerings, which are both defined and have a common I-face. In order to check 

that it is a sensible definition, we need to ensure that the sum is indeed a homotopy. As 

usual, we do this by considering the chain homotopy component. 

Lemma 1.3.9. If h : J '.:::'. J' and k : g '.:::'. g' are homotopies, then (k#0 J')#1 (g#0 h) is 

a homotopy. 

Proof: 

Put </>= (k#of')#1 (g#oh). Then 

</>' = g1h' + k' f~ 

and it is sufficient to prove that </>' is a chain homotopy. Now, 
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Similarly, 

Hence ¢' is a chain homotopy and (k#oh) := ¢ : g#0J:::: g'#of' as required. D 

Armed with this lemma, we may now formally define horizontal composition. 

Definition 1.3.10. Let h : J :::: f' : C -+ D and k : g :::: g' : D -+ E be homotopies. 

Then the horizontal composite k#oh := (k#0J')#1 (g#oh) : g#oJ -+ i#oJ' is the 

homotopy with chain homotopy component 

(1.4) 

In defining (k#0 h), it was necessary to arbitrari ly choose how to split the 2-cell 

composition as a sum of whiskerings. We chose to use k# 0 h := (k#0J')# 1(g#0 h), 

but could equally well have taken k#0 h := (g'#oh)# 1 (k#0 J) instead. It is easy to see 

that this would also yie ld a homotopy, but it is less immediately obvious whether this is 

the same as the one we have taken for our definition. 

Lemma 1.3.11. (g'#oh)#1 (k#oJ) = (k#of')#1 (g#oh). 

Proof: 

Consider the chain homotopy 

[(g'#oh)#1 (k#oJ)]' = g~h' + k' Jo. 

Reairnnging the defining equations of chain homotopy we get g'i 
Jo= J~ - JDh'. Substituting these into (1.5) gives 

g~h' + k'Jo = (g1 + k'JD)h' + k'(J~ - JDh') 

= g1h' + k'J~ + k'JDh' - k'JDh' 

= g1h' + k'J~ 

which is, of course, (k#oh)' as given by (1.4). 

(1.5) 

g1 + k'JD and 

D 
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Thus it makes no difference which of the two formulae is chosen; more important is 

to be consistent once the initial choice is made - we shall use the 01iginal choice given 

in definition 1.3.10. 

We are now ready to establish the interchange law for the vertical and horizontal 

compositions as defined. 

Suppose that h : f '.:::'. f', h : f' '.:::'. f", k : g '.:::'. g' and k : g' '.:::'. g" are homotopies 

(f, f', f" : C --+ 1) and g, g', g" : 1J --+ £). We can form horizontal composites k#oh 

and k#oh and then compose these vertically: 

J g 9#of 

~~ 
C -- IJ --£ 
~~ 
~ 

C, Jlf.,11,nii /£ 
~ 

!" g'' g" #of" 

where¢:= (k#oh)#1(k#oh). 
Alternatively, we can start by forming the vertical composites and then compose 

these horizontally: 

J g 

~~ C ---+-1) ---+-£ 
~~ 

!" g" 

f g 

~ ~ 
C JJ. li#,h 1) JJ. k#1k £ 
~ ~ 

!" g" 

g#of 
~ 

C U,1/1 £ 
~ 

911 #0!11 

where '!j) := (k#1k)#o(li#1h). 
Looking at the coITesponding chain homotopies, and using (1.1) and (1.4), we get: 

and 

¢ ' = ((k#1k)#o(!i#1h))' = g1(!i#1h)' + (k#1k)'Jg = gJi' + g1h' + k'J~' + k'J~'. 
(1.7) 

Then (1.6) - (1.7) gives 
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whence ¢ ' = ¢ '. Since these chain homotopies are identical, the coITesponding homo

topies are also identical; thus we have: 

Since the interchange law is satisfied , Ch}~) is a 2-category. The interchange law shows 

that hori zontal composition is a homomorphism with respect to the (vertical) groupoid 

structure on the Hom-sets of Ch}P. T he foregoing di scussion proves the fo llowing: 

Theorem 1.3.12. Ch}~) is a Grpd-enriched category. 
D 

The reader is referred to [43] for a treatment of enriched category theory. By re

stricting the chain maps to those which are invertible, invCh};l is a 2-groupoid, or 

groupoid-enriched groupoid. 

1.3.5 The Long and Short of It 

From our starting point of length 1 chain complexes, let us make two brief excursions 

in opposite directions. 

1.3.5.1 Even Shorter Chain Complexes 

The following elementary observation may be useful to help strengthen the claim that 

Ch}P is a 2-categorical generalisation of VectK, A length O chain complex of vector 

spaces is j ust a vector space: C = ... -r O -r C -r O -r .... Any linear transfo1mation 

of vector spaces is a chain map in this case (the commutativi ty condition is trivial) and 

all homotopies, being degree 1 maps, are trivial. Therefore the category of length 0 

chain complexes, and chain maps between them, which would be denoted as Ch}~) , is 

just VectI<. It has no non-trivial 2-category structure (given by homotopy, at least). 

Ch}~), of course, appears as a fu ll subcategory of Ch}P, consisting of those chain 

complexes wi th C 1 = 0. 

1.3.5.2 Longer Chain Complexes 

Length O chain complexes give us the category Ch }~) = VectK. Length l chain com

p lexes g ive us Ch}P, which as we have seen, is a groupoid-enri ched category, i.e. a 

2-category with minimal extra structure. There is no intrinsic reason why th ings should 
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stop at this level. Given any natural number n , it is possible to define the (n + 1)

category Ch~)) of length n chain complexes. There is also an oo-category, Ch}fl, 

which includes all finite cases ([50] discusses oo-categories in general). 

In the sequel, we shall mostly be working with subgroupoids of Ch}p and their 

equivalents, but occasionally it wi ll be necessary to consider longer chain complexes of 

vector spaces (or of modules over a more general 1ing). These would also be necessary 

in order to generalise our results to higher dimensions. 

The definition of a chain map extends very obviously to chain complexes of arbitrary 

length; the definition of homotopy is equal ly obvious. The level wise definition of chain 

homotopy requires just a little more work. If f, g are chain maps C ➔ D (so that 

C : ... ➔ C2 ➔ C 1 ➔ C0 ➔ C_1 ➔ ... etc.) and f ~ g then a chain homotopy 

consists of maps h;i : Cn ➔ Dn+l satisfying 9n - fn = 8f+1 h~ + h~-1 a;; for each 

n E Z: 

The chain homotopy conditions for length 1 chain complexes are just a special case 

in which most of the maps are trivial. 

In this thesis, and conceivably in any generalisation to higher dimensions, it is suf

ficient to consider non-negative chain complexes. A non-negative chain complex is one 

in which the subscripts are natural numbers8. The category of all such chain complexes, 

in the slightly more general setting of modules over a ring, is called Ch and is discussed 

in some detail by Kamps and Porter [40]. They show that Ch is in fact a 2-groupoid 

enriched Gray category. Our Ch)~) is clearly a subcategory of Ch. Since it has nothing 

at level 2 or beyond, the Gray-category structure is c learly trivial. 

1.3.6 A Matrix Formulation For Calculations 

Perhaps one of the most beautiful results of elementary linear algebra is that, up to 

isomorphism, there is on ly one I<-vector space for each (finite) dimension n . The upshot 

8 We take N to include 0. 
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of thi s is that any element in an abstract vector space V of dimension n can be considered 

as an n -tuple in Kn. Linear transformations between vector spaces are equi valent to 

matrices over !(; assuming standard bases, a linear transformation cp : J(n ➔ J(m 

uniquely determines and is determined by an m x n matrix cJ? (or9 !VI¢ or !VI (cp )) with 

coefficients in K. In particular, a linear isomorphism 1(11 -+ K n is equivalent to an 

e lement of G Ln (I<). Matrices have the advantage over abstract linear transformations 

that, at least for low dimensions, calculations can be performed easily by hand or by 

computer. 

In Ch}~), the objects are chain complexes of length 1. As we have seen, these are es

sentiall y the same as linear transformations. Hence a chain complex C with differential 

fP : C1 ➔ C0 can be represented by an n0 x n 1 matrix D. c , where ni is the dimension 

of Ci. 

Suppose 1) is another chai n complex, with differenti al d0 : D 1 -+ D0 , w here the 

dimension of Di is mi . A chain map f : C ➔ T> is given by a pair of mat1ices F1 

(m 1 x n 1) and F0 (m o x n0 ). The commutativity of the chain map with the differentials 

is then expressed as 

(1.8) 

which is an m0 x n 1 matrix as required. Any chain map f : C -+ T> in invCh}P 

is invertible, so in this case Di also has dimension ni and the coJTesponding square 

matrices are non-singular, i.e. F 1 E GLn1 (K) and Fo E GLn0 (I{ ). Equation (1.8) can 

then be rewritten as 

Using matrices, the abstract composition of chain maps is, of course, replaced by straight

forward matrix multiplication. We wi ll look at thi s in more detail later (see section 

2.1.2). 

Moving up to dimension two, a homotopy is determined by its s tarting point (a 

chain map f) and its chain homotopy. A chain homotopy is a linear transformation, so 

coJTesponds to a matrix. Suppose, in addition to the maps in the previous paragraph, we 

9In general , we shall use a lowercase G reek letter for an abstract linear transformation, and the corre

sponding uppercase lette r for its matrix. Occasio nally, however, it will be useful to resort to o ne of the 

o ther obvious notations . 
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have another chain map f' : C -+ D and a homotopy h : f c::: J'. Then there is a chain 

homotopy h' : C0 -+ D 1 with a conesponding n 1 x n 0 matrix 10 H such that 

(l.9) 

If h: f-+ f' and ii : f'-+ f", then the vertical composite h#1h, which is given by 

the chain homotopy (1. 1), coJTesponds to the matrix sum iI + H. Since both the chain 

homotopies in question have the same source and target 0-cells, the matrices are always 

compatible for addition. 

Whiskering and horizontal composition are likewise modelled on the formulae for 

chain homotopies given in equations ( 1.2), (1.3), and (1 .4). Suppose we have homo

topies h : f c::: f' : C -+ D and k : g c::: g' : V -+ E. Then the chain homotopy 

components of g#0h, k#of', and k#oh are represented by the matrices G 1H, K F0, 
and G1 H + KF0 respectively. 

In this section , we have assumed that the standard basis is used for each vector space. 

In fact, it is possible to use any basis, although the mat1ices obtained will vary with 

different bases. In chapter 2 we shall consider, in the special case of automorphisms over 

a specific linear transformation, the effect of a change of basis on the matrix formulation. 

Example 1.3.13. The foregoing discussion may be somewhat illuminated by consider

ing some actual examples of matrices for Ch}p. Since these necessarily take up a fair 

amount of space they have been placed in appendix A, so as not to disrupt the flow of 

the narrative. 

1.4 Group Algebras 

The group algebra construction is particularly useful in representation theory. Not only 

does it provide a way of getting an algebra from any given group, but also it allows 

representations to be studied by way of modules. For convenience, the exposition in 

this section will be given for the case where K is a field. In fact, the definitions and 

results hold with little extra complication, when I< is a more general commutative ring; 

later on we shall sometimes need the case I<= Z. 

10S ince only the chain homotopy is to be rendered as a matrix, the use of primes to distinguish chain 

homotopies fro m homotopies is no longer necessary. If desi red, the ho motopy h can be thought of as the 

triple of matrices (Fa, H, F 1) satisfying equations ( 1.8) and (l .9). 
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1.4.1 Definition and Adjunction 

Let G be any group and Xe the underlying set 11 of G. Let e9 denote the element in 

Xe coJTesponding tog E C. Then form the vector space I<( G) (over a fixed field ]{) 

with basis Xe= { e9 : g E C}. This is a vector space of dimension #(Xe) . A typical 

element of I<(G) is of the form L-gEe r9e9 , with r9 E J{ and only finitely many r9 f 0 

[59). Suppose L, S 9e9 is another element in K(C), then 

this addition is clearly commutative, since I< is an abelian group. If s E K, then the 

scalar multiplication is defined as 

The group operation in G induces a multiplication in K(C). If L, T 9 e9 and L- s1ie1i 

are in K(C), then 

(Lr 9 e9 ) (L she1i) := L r9 s1iegh· 
9 h g,h 

Together with the addition and scalar multiplication thi s makes K( G) an algebra. 

Definition 1.4.1. Let G be a group and K a field. Then K ( G), as defined above, is 

called the group algebra of G. 

We shal l also use the term group algebra when K is merely a commutative ring, 

although the term group ring is often used when K = Z (technically, we should ignore 

the scalar multiplication if this name is used). K(G) may be written as ffi
9

EG Ke9 , 

where Ke9 is a ! -dimensional K-vector space. The definition of multiplication for 

I<(G) ensures that Ke9 I<eh = Ke91i. A lso 1 E Ke1 is a 2-sided identity. This means 

that K( G) is a special case of the definition of 1r-algebra used by Turaev [71). 

Let f : C -+ H be a homomorphism of groups. Define K(f) : K(G) -+ K(H) by 

I<(j) ( e9 ) := e J(g); K(f) is a homomorphism of group algebras. It has the properties 

that J((ide) = idK(C) and, if f' : H -+ J is a group homomorphism, J( (.f' f) 

K(f')K(f) . These facts are summarised in the following proposition: 

11 The notation Xe is chosen for the underlying set to avoid confusion with IGI used for the o rder of 

the group G. When speaking about sets we will refer to the cardinality of the set X, written as #(X). Of 

course, for any group, IGI= #(Xe). 
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Proposition 1.4.2. I<(.) : Gr-+ Algg is aji1ncto1: 
□ 

In fact, a group algebra can be endowed with a comultiplication and an antipode to 

make it into a Hopf algebra (see [53]). We shall not require this extra structure; indeed, 

for the present we shall mostly be concerned with the vector space underlying K( G) (i.e. 

we ignore the multiplication). To avoid cumbersome notation we shall write I<(G) for 

this underlying vector space as well. If G is finite, let g = #(Xa); then K(G) ~ Kg 

and we may write Kg for K( G) to emphasise the dimension of the vector space. To 

abbreviate notation, we will usually write ¢ for K(J), using a Roman letter for the 

group homomorphism and the COJTesponding Greek letter for the linear transformation. 

The group algebra functor provides a canonical construction for a K -algebra from 

any given group. Conversely, there are at least two canonical ways of extracting a 

group from a given I<-algebra. One is to forget the multiplications and take the additive 

(abelian) group of the algebra; this gives the forgetfu l functor Algg -+ Ab. Alter

natively, the subset of the algebra consisting of elements which are invertible under 

multiplication forms a subgroup (with the operation of multiplication, of course) called 

the group o.f'units of the algebra; this gives a functor U(.) : Algg-+ Gr. In general, the 

group of units of a non-commutative algebra need not be abeli an. 

The fo llowing result is well-known, but a proof is given since the ideas contained 

within it are useful later. 

Proposition 1.4.3. The group algebrafimctor K(.) : Gr -+ Algg is left adjoint to the 

unit group functor U(.) : Algg -+ Gr. 

Proof: 

Let G be a group and A a K-algebra, and suppose f G -+ U(A). Define a map 

0a,A : Gr(G, U(A))-+ Algg(K(G), A) by 

(this defines 0a,A completely, since { e9 : g E G} is a basis for K( G) and, for every 

g E G, 0a,A(J)(e9 ) E I<U(A) ~ A). 

Suppose ¢ : K(G)-+ A. Then ¢ is completely detetmined by {¢(e9 ) : g E G}, 

and for each g E G 
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so ¢(e9 ) E U(A) . Define the map Gc,A : AlgI<(K(G), A)-+ Gr(G, U(A)) by 

Now [Gc,A0c,AU)](g) = J(g) and [0c,1-1 8 c,A(¢)](g) = ¢(g), so 0c,A is a bijection and 

Gr(G, U(A)) ~ AlgI<(J<(G), A) 

as required. 

It remains to show that 0 and 8 are natural in G and A. For 0 to be natural in G 

requires, for a homomorphismµ: G' -+ G, 

0c,,A(J o µ) = 0c,A U) o Kµ . 

It is clear that both sides of this equation are J<-algebra morphisms KG' -+ A, so let 

e9, be a basis element of KG'. Then 

while 

Now, J(µg') = f o µg', whence equality. The remaining cases are proved simi larly. D 

Corollary 1.4.4. The group algebra functor preserves colimits. 

Proof: 

By proposition 1.4.3, the group algebra functor is a left adjoint. The result then follows 

from standard category theory (see, for example, [52]). □ 

Note that K(.) need not preserve limits. 

1.4.2 K(G)-Modules and Representation Theory 

The principal reason for the importance of the group algebra functor in representation 

theory is the fact that there is a bijective coJTespondence between K-linear representa

tions of a group G and I<( G)-modules. This allows the more powerful abstract machin

ery of module theory to be used to study representations. Since thi s fact is so important, 

it wil l be worth our whi le to study it briefly here. 
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Lemma 1.4.5. Let V be a K-vector space. Then the collection, EndK(V) , of all J<

endomorphisms on V is a J<-algebra, with G L (V) as its group o,f units. 
D 

Definition 1.4.6. Let A be a K-algebra. A left A-module is a K -vector space, V, having 

a I<- linear morphism A x V -+ V, (a, v) H av such that the following axioms are 

satisfied for every a, a' E A, v , v' E V, a E K: 

I. a(v + v )' =av + av', 

II. (a+ a')v =av + a'v, 

III. (aa')v = a(a'v ), 

IV. l .4 V = v , 

V. (aa)v = a(av) = a(av ). 

An altern ative way of viewing an A-module is to regard it as a left action of the K 

algebra A on the K-vector space V. The scalar multiplication av is rewritten as Uy and 

the conditions go through mutatis mutandis. In particular, since K(G) is a K -algebra, 

this definition gives us the notion of a (left) 12 K(G)-module, or equivalently a (left) 

K(G)-action on a vector space. 

Theorem 1.4.7. Let G be a group and Va K -vector space. There is a bijective corre

spondence between representations¢ : G -+ GL(V) and K(G) -module structures on 

V. 

Proof: 

Suppose¢ : G-+ G L(V) is a representation, i.e . a homomorphism of groups. Then 

¢ extends unique ly to a K-algebra morphism ¢* : K(G)-+ EndK(V), with: 

12S ince ]( is commutative there is no distinction between left and right K-modules. However, the 

I<-algebra A is not necessarily commutative so left and right A-modules are distinct. We shall only be 

us ing left modu les. 
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Den ne a scalar multiplication 

K(G) x V-+ V 

(a, v ) f-+ av:= <;b*(a)(v ), 

where a E I<(G) and v EV. With this multiplication, Vis a K(G)-module: condition 

I of definition 1.4.6 holds because ¢>*(a) is K-linear; conditions II, III and IV hold 

because¢>* is K-linear; condition V follows from the K-linearity of both the map ¢>* and 

the images ¢>*(a) of each a E K(G) . 

Conversely, suppose V is a I<( G)-module. Then, define <P : K( G) -+ End I< (V) by 

sending each a E K(G) to <P(a) : V -+ V with <P(a)(v) := av. Conditions I and V 

ensure that each <P(a) is K-linear and hence <Pis well-defined. Conditions II - V ensure 

that <I? itself is a K-linear morphism. For any g E G, 

so <P(e9 ) is a unit in Endg(V). Hence <P restricts to a homomorphism cp : G-+ GL(V) 

which is a representation, as required. D 



Chapter 2 

Automorphisms of a Linear 

Transformation 

In which the automorphism cat1 -group of a linear transformation is explored, together with its 

matrix formulation. Finally, we shall meet the definition of a linear representation. 

In section 1.3 we considered the groupoid-enriched category, Ch}~\ of length l 

chain complexes over VectI<, whose objects are linear transformations of K-vector 

spaces, with 1- and 2-cel ls given respectively by chain maps and homotopies. In or

der to develop the representation theory of crossed modules and cat1-groups, we shall 

need the extra algebraic structure obtained by concentrating on the chain isomorphisms 

and homotopies defined on a single linear transformation. After the definition is given 

and examined, several examples are considered. In these we concentrate on the matrix 

fmmulation, which is particularly useful for calculations. The examples culminate in 

the general case for a linear transformation of vector spaces. The definition of a linear 

representation of a cat1-group is given in section 2.4, although a detailed consideration 

of thi s definition, with examples, will be postponed until chapter 4. 

41 
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2.1 The Automorphism Cat1-Group of a Linear Trans

formation 

Let c5 : C 1 -+ C0 be a linear transformation of vector spaces; thi s can and wi II be 

considered as an object in Ch}p in the way explained earlier. The collection of all chain 

isomorphisms c5 -+ c5 and homotopies between them forms a 2-subcategory of Ch}p. In 

fact, it is clear that this will be a 2-group. From the discussion in section 1.2.3, we know 

that this is also a cat1-group. As isomorphisms from an object to itself are commonly 

known as automorphisms 1
, we may call this structure an automorphism cat1-group. 

2.1.1 The Definition of Aut( o) 

Definition 2.1.1. Let c5 : C 1 -+ Co be a linear transformation of K-vector spaces. The 

automorphism cat1-group of c5, Aut(c5), consists of: 

• the group Aut(c5)i of all chai n automorphisms c5-+ c5, 

• the group Aut( c5)2 of all homotopies on Aut( c5) 1 , 

• morphisms s, t : Aut( c5)2 -+ Aut( c5)i , selecting the source and target of each 

homotopy, 

• the morphism i : Aut(c5)i -+ Aut(c5)2, which provides the identity homotopy on 

each chain automorphi sm. 

It may be instructive at this point to look more c losely at the cells of Aut(c5) from the 

2-category perspective. There is but one 0-cell, c5, and so Aut(c5)0 is a singleton; most 

of the time it remains quietly behind the scenes. Aut(c5)t consists of ! -cells: 

while Aut(c5h contains 2-cells: 

f 

~ 
c5 4!, h (5. 

~ 
J' 

1 The meaning of the term "chain automorphism" should be obvious. 
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This is the "black box" interpretation of the cells, which is often the best way to view 

them. When required, however, a chain automorphism f : c5 -? c5 may be unpacked as a 

pair (.fi , fa) of linear isomorphisms such that the following diagram commutes: 

A homotopy h: .f '.:::: .f' decomposes as a pair (h', f), with h' a chain homotopy 

Ji 

and f (a chain automorphism) the source of h. Together these, along with the target .f', 

satisfy the chain homotopy conditions f~ - .fo = c5h' and f { - fi = h' c5 . For convenience, 

we shall often abbreviate these as the single condition .f' - f = c5h' + h'c5. This causes 

no problem as long as it is remembered that f, f' and h' are graded maps (both sides 

are degree O maps). 

The structural homomorphisms in Aut(c5) are straightforward. The maps s, t give 

respectively the source, f, and target, f' = f + c5 h' + h' c5, of the homotopy ( h' , J), while 

i maps each chain map f to the identity homotopy 11 : f ⇒ f. The chain homotopy 

h' and the source chain map f together capture all the info1mation of the homotopy h. 

Note that h' on its own may function as a chain homotopy for several different pairs of 

chain maps. 

The group operation in Aut(c5) 1 is composition of chain automorphisms, for which 

we shall use the notation g#0 f introduced in section 1.2.3. The identity is id.,, the 

chain map consisting of the identity linear transformation at both levels. Since every 

f E Aut(c5)i is a chain automorphism, it has an inverse 1- 1, which is also a chain 

automorphi sm on c5 and hence an element of Aut(c5)i . 

Horizontal composition provides the group operation for Aut(8)2; the related oper

ation of whiskering is a degenerate case of this. The notation employed is again taken 

from the example of Ch};); in this case, if h = (h', J) and k = (k' , g) are homotopies, 
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the composite k#oh is the homotopy specified by the source chain map g#0f and the 

chain homotopy (g1h' + k' f6), where f' = f + oh' + h'o. The identity for this com

position is the homotopy (0, id,s) : id0 ⇒ id,s . The inverse of (h', f) is the element 

(-f1-1h'(f6)-l' 1-1). 

The elements of Aut(o)2 can also be joined by vertical composition, # 1 , which is 

defined for pairs of 2-cells for which the target I-cell of the first is the source of the 

second. That is, if h = (h', f) and h = (h', f +oh'+ h'o) are in Aut(c5)2, the ve1tical 

composite is h#1h = (Ii'+ h', J). This is a groupoid operation, with each I-cell f 
having an identity 11 = (0, J) for vertical composition and every 2-cell (h' , J) having 

the inverse (-h',J +oh'+ h'o). The horizontal and vertical compositions are linked 

by an interchange law, which leads to the kernel condition being satisfied in Aut(o) (so 

that it really is a cat1-group). 

Because Aut(o) is a cat1-group it has a classifying space as discussed in section 

1.2.2, hence the homotopy groups 1riAut( o) can be found. As always, these are trivial 

for i -=I= 1, 2, while formulae are given on page 19 which allow us to find rr1 and n2 

without first calculating BAut(o) explicitly. 

The notation 1r1Aut( o) suggests that this group should be the fundamental group of 

Aut(o), i.e. the group of homotopy classes of the elements of Aut(o)i. This is indeed 

the case, and in fact the result is also true for a more general cat1-group ct. Recal l that 

1r1 ct = P/t(ker s). Now,t(kers) = {o(c)lc EC} (considerthe2-cellstructureofC><1P 

as described in section 1.2.3) and two elements p, p' E P are defined to be homotopic 

precisely when there is a 2-cell (c, p) with o(c)p = p', which occurs whenever p and p' 

are in the same coset of t(ker s ). Hence p '.:::'. p' in ct precisely when j5 = p' in rr1 ct, as 

required. 

We shall not require a 1igorous topological justification of the definition of 1r2 ct as 

ker s n ker t. Informally, a 2-cell in ct yields a disc in Bet. Elements of 1r2 ct are discs 

whose boundaries are identified at a point, and these are the discs coming from 2-cells 

with trivial source and target, i.e. those which are in both ker s and ker t. In the case 

of Aut( o) the chain homotopy condition imposes some severe restrictions on elements 

of 1r2 . Suppose (h', f) E 1r2Aut(o), then both the source and target of (h', f) are the 

identity; hence, oh'+ h'o = f'- f = 0. Ifkero = 0, then of course oh'+ h'o = 0 ⇒ 

h' = 0 and in this case homotopy collapses to equality (i.e. f '.:::'. g ⇒ f = g). However, 

if ker o is non-zero then oh' + h'o = O need not imply that h' = 0. 



CHAPTER 2. AUTOMORPffiSMS OF A LINEAR TRANSFORMATION 45 

2.1.2 Matrices for Aut( J) 

We can now specialise the remarks of section 1.3.6 to obtain a description of Aut(6) as 

a 2-subgroup of Ch}P in matrix terms. The principal benefit of this approach is that it 

allows the potential use of powerful computational algebra packages such as Maple and 

GAP for direct calculation with Aut(6) (and hence of cat1-group representations). It is, 

then, worth outlining in some detail the basic equational formulation required by this 

approach . It is largely a straightforward extension of standard linear algebra techniques, 

but it will also have the advantage of providing us with some more concrete, generic 

examples of cat1-groups and hence crossed modules, including some which seem to 

have previously escaped notice. 

Once bases are chosen for C 1 and C0, the linear transformation 8 yields a unique 

matrix, 6.. If C1 and Co have dimension nL and n0 respectively, 6. is an n0 x n 1 matrix. 

For the moment, assume that the bases are fixed. When conside1ing the matrices, we 

shall write Aut(6.) instead of Aut(8). We shall also adopt the notation J{m,n (bo1TOwed 

from [34]) to denote the set of all m x n matrices with coefficients in K. This is an 

n m -dimensional K-vector space under addition and scalar multiplication; J(m,m is a 

K-algebra with matrix multiplication. Although the general linear group is not strictly 

a subobject of J(m,m (since it is a group, rather than a linear space), we shall employ the 

usual notation that blurs this distinction. As always, G Lm(K) denotes the collection of 

invertible m x m matrices, and the operations of addition and scalar multiplication as 

wel l as matrix multiplication. 

An element of Aut(6)i is a pair F = (F1, F0 ) of matrices, F1 E GL111 (I<) and 

Fa E G Ln0 (I<) such that: 

(2.1) 

Since Fi and F0 are both invertible this condition may be rewritten to give 6. = F06.F1-
1 

or 6. = F0-
16.F1 . One might think that Fi and F0 are linked to the extent that once one 

is chosen the other is automatically fixed. In fact this is not so, and it is an easy exercise 

to find a counterexample (appendix A contains one for invCh}p which can easily be 

customised). 

To get at the elements of Aut( 8)2 it is easiest to use the decomposition of the homo

topy h : f ⇒ f' as the pair (h', f) , chain homotopy and source chain map. Since h' is a 

linear transformation, it gives an n 1 x n0 matrix H. Again, the compatibility condition 
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translates easily into matrix notation, with multiplication replacing the composition of 

linear transformations. This gives: 

(2.2) 

Note that H E J(n1 ,no , while 6. E J(no,ni , so both H 6. and 6.H are defined. Thus an 

element of Aut(oh is a pair (H, F), with Hand F satisfying conditions (2.2) and (2.1) . 

The maps s, t and i work as follows in the matri x formulation. Let F = (Fi , F0 ) , 

F' = (F{, F~) E Aut(o) 1 and (H, F) : F ⇒ F' E Aut(o)2; then s(H, F) = F, 

t (H, F) = F + 6.H + H 6. = F' and i(F) = (0, F). Note that the zero matrix is the 

chain homotopy component for any identity homotopy. 

A s with Ch►~), the formulae for composition in the matrix approach are derived 

from the formulae in the more abstract approach. The composition of chain automor

phisms simply becomes matrix multiplication at each level - this is now always defined 

since the matrices are all square. Vertical composition of homotopies is replaced by ma

trix addition. The slightly more complicated formula for horizontal composition only 

involves addition and composition of linear transformations, so thi s translates equally 

easily to a matrix formula involving addition and multiplication. The formulae for all 

these compositions can be found in the more general di scussion starting on page 33. 

Much of the time it is possible, and convenient, to keep the bases of the vector spaces 

fixed (for example, use the standard basis of C11 
). There are times, however, when it is 

necessary or desirable to change bases. This means, of course, that the same underlying 

linear transformation will give a different matrix. The mathematics of changing bases is 

standard linear algebra, which can be found in any standard text (such as [6]). Here we 

shall recall some of the basic results, mostly for notational purposes . 

Firstly, suppose V = (v 1, ... vn) and vV = (w1, ... , w11 ) are bases for Kn. There 

is a unique non-singular matrix PE GL11 (K), which will be called the change matrix 

from V to HI , such that if x E J(n is a vector expressed in terms of coefficients with 

respect to the basis V, then Px is the same vector expressed wi th respect to the basis 

HI . Where necessary we shall clatify which basis we are using by means of subscripts, 

writing x v or x w instead of x. Of course, p - 1 is the change matrix from W to V. 

Now let ¢ : K m ➔ J(n be a linear transformation and suppose V and W are bases 

for K m, and V ' and W' bases for K n, with change matrices P and P' respectively. 

Denote by <!>11 the matrix obtained from c/> using the bases V, V', and by <I>w the mat1ix 
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obtained using the bases W, HI '. Then (D" and (Dw are related by the formula: 

(2.3) 

Al I of the elements of Aut( 8) are defined in terms of linear transformations between the 

vector spaces C1 and C0 (the source and target of 8), so this formula can be applied, 

with the suitable change matrices, to find matrices for everything in Aut( 8) using any 

basis desired. 

We shall consider change of basis for Aut( 8) as an all-or-nothing package. In other 

words, we insist on using the same pair of bases at any given time for 8 and all its chain 

maps and homotopies. If a change of basis is made, it must be made to everything. If 

.6.v is used for 8 then we must also use Fi,v, Hv and so on. 

2.2 Examples of Aut( J) 

In order to develop a better intuition of what Aut( 8) actually looks like and how it works, 

let us consider some examples. We shall mostly concentrate on the matrix formulation 

of these examples, since this is the version most conducive to calculation . Most of the 

examples will be reasonably generic, but the first is both specific and fairly small. It is 

included to show the ease with which the foregoing methods can be applied to analyse 

individual cat1-groups. In practice, the dimensions of C 1 and C0 are usually sufficient 

to make hand calculation impractical but the same techniques can be used with standard 

computer linear algebra packages to handle larger examples. 

2.2.1 A Small, Specific Example 

Working over C and taking the standard basis for each vector space, define 8 : C2 ➔ C 

to be the linear transformation: 

(X) H X. 
y 

This coJTesponds to the matrix 
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A chain automorphism in Aut(.6) 1 will consist of a pair of non-singular matrices, 

one 2 x 2 and the other 1 x 1, satisfying equation (2. I). Suppose 

is a pair of suitably dimensioned matrices. Then 

while 

In order to satisfy (2.1), then, it is necessary to have d = 0 and a= e; in addition a and 

c must not be equal to zero (in order that F1 be non-singular). Therefore, the elements 

of Aut(.6) 1 will be precisely the matrix pairs F = (F1, F0 ) of the form: 

where a, b, c E C, a, c -=f. 0. 

The simplest possible has both matrices to be the identity in their respective dimen

sions. This gives id6 = (id1, id0) with: 

It is straightforward to check that .6id 1 = id0.6 ( = .6). Clearly id6 is the identity 

chain map on .6. However, it is not the only chain automorphism on .6. For instance, 

F' = (F{, F~) with: 

/ (i 0) / ( ·) F1 = 1 1 ' Fo = i ' 

is another example (with ti.F{ = F0ti. = ( i O) ). There are, of course, infinitely many. 

Aut(ti.)i is, of course a group, so we need to specify not just the elements (which 

we have done already) but also the group operation. In this context, it is simply matrix 
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multiplication at both levels. Suppose F = (F1 , F0 ) as above and G = (G1, G0) is 

another chai n automorphism, where 

G = ( a:- O) 
i /3 ' ' 

Then F#0G is the chain automorphism with (F#0G)0 = F0G0 and 

We can find homotopies, the elements of Aut(6)2, by a similar process. Suppose 

also that F :::: G, i.e. there is a homotopy (H, F) : F =;, G. We already know F; the 

chain homotopy H (a 2 x 1 matrix) must satisfy H 6 = G1 - F1 and 6H = G0 - F0 . 

Let 

Then 

while 

Go - Fo = ( a:- - a) . 

Therefore, to sati sfy the homotopy conditions we must have a:- - a = µ, /3 - b = 11 

and ~ - c = 0. Hence F '.::'. G if and only if 1 = c, and in this case the unique chain 

homotopy such that (H , F) : F '.::'. G is 

(2.4) 

For example, the c hain maps id and F' defined above are homotopic , with chain 

homotopy: 
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As with the lower leve l, Aut(.6)2 is a group. Its elements are the homotopies (H, F). 

In thi s case, the group operation (horizontal composition) is slightly more compl icated 

than merely multiplying the matrices. If (H, F) : F ~ G and (H' , F') : F' ~ G' are 

homotopies, the horizontal composite (H', F')#o(H, F) is defined to be the homotopy 

with source F'#0F E Aut(ll) 1 and chain homotopy (given by the formula on page 35) 

F{H + H'Go. 

Since Aut(.6) is a cat1-group vertical composition is also defined, for suitable pairs 

of homotopies. If (H, F): F ~ F' and (H', F'): F' ~ F" then their vertical composite 

is (H', F')#1 (H, F) : F ~ F". Its source is the chain map F and its chain homotopy 

is the sum of the component chain homotopies H' + H. 

In this example, the homotopy classes of chain maps are characterised by the coef

ficient c in the bottom right corner of the top group matrix. In other words, the funda

mental group 1r1Aut(ll) = <C. 

The elements of 1r2Aut( ll) = ker s n ker t have both source and target equal to the 

identity. Therefore, (2.4) implies that H = 0 for every element of 1r2 . In other words, 

(0, id) is the unique element of 1r2Aut(.6), which is thus the trivial group. 

This example is also a suitable vehicle to explore the effect of a change of basis on 

the matrices. Let S1 and S0 denote the standard bases on C2 and C1 respectively (with 

et = (1, 0) etc.) and let T1 = (ti = (i, 0), t~ = (1, -i)) and T0 = (t ? = (i)) be another 

pair of bases for the same spaces. The change matrix from S1 to T1 is: 

_ (-i -1) P1 -
0 i ' 

while that from S0 to To is: 

The matrix ll previously used to represent 5 was found using the standard bases for C2 

and <C. Writing it more explicitly as .6s, the formula (2.3) may be used to find .6T, the 

matrix representing 6 with respect to the bases~. Thus, -6,T = P0.65P1-1, i.e. 

In the same way, the formula can be applied to give the chain maps and homotopies with 

respect to the new basis. This is left as an exercise for the reader. 
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2.2.2 Identity 

For any finite vector space 1(11
, one linear transformation that is guaranteed to exist is 

the identity l n : Kn ➔ K n. Although Aut(l n) may not be wildly exciting, its ubiquity 

makes it worthy of at least a passing examination. 

Suppose f : 111 ➔ l n is a chain automorphism. Then the commutativity condition 

gives: 

Therefore any chain automorphism consists of the same linear automorphism repeated 

top and bottom; conversely any such pair gives a chain automorphism. Suppose f and g 

are homotopic chain automorphisms. Then there is a chain homotopy h' and we get the 

following diagram: 

The homotopy conditions both become h = g - f. Therefore any pair of chain auto

morphisms are homotopic to each other, with chain homotopy given by their difference. 

In particular, 1r1Aut(l n) and 1r2Aut(111 ) are both trivial. 

Translating to matrices, each chain automorphism F = (F, F) consists of the same 

matrix F E GLn(I<) at both levels. Given chain automorphisms F and G, there is a 

homotopy (H, F) between them, where H = G - F E 1{11 ,n. 

The identity linear automorphism also exists for infinite vector spaces, but since 

these are less amenable to matri x treatment, they have not been considered here. 

2.2.3 Zero 

Another general linear transformation is the zero map, which can be defined on any pair 

of vector spaces. This is the linear transformation 0 : 1(11 ➔ Km such that x H O for 

every x E 1(
11

• Since the composite of a zero map with any other linear transformation 

is also a zero map, it follows that any pair (fi, Jo) of linear automorphisms of suitable 

dimensions will be a chain automorphism in Aut(O). For homotopies, this gives the 



CHAPTER 2. AUTOMORPIDSMS OF A LINEAR TRANSFORMATION 52 

picture: 

go 

Since h'O = 0 = Oh', the chain homotopy conditions become 91 - Ji = 0 and 90 - Jo = 
0, hence ft = 91 and Jo = g0 . In other words, while every pair of suitably dimensioned 

linear automorphi sms is a chain automorphi sm, distinct chain automorphi sms are never 

homotopic. Hence there is a distinct homotopy c lass for each chai n automorphism and 

so 1r1Aut(O) = Aut(0) 1. Any linear transformation h' : Km-+ Kn is a suitable chain 

homotopy for any f '.'.:'.'.'. f and so the e lements of 1r2Aut(O) are of the form (h', id). 

Of course, thi s situation can easily be translated into the language of matrices if 

needs be. 

2.2.4 Inclusion 

Suppose K m is a subspace of Kn (i.e. m =:;;; n) and c5 : K m '--+ K n the inclusion. T hen 

J(n can be decomposed as K m EB J(P, with p = n - m, so that the matrix conesponding 

to O i s b. = (I; ) E Km+p,m where Im i s the i den ti ty on Km,m and O is the zero matrix 

in [(P,m ; thus, for any x E Km, b.x = ( ~). 

A chain automorphism in Aut(6.) 1 will consist of invertible matrices F 1 E G Lm(K) 

and F0 E G Lm+vU<) such that the chain map condition is sati sfied, namely F06. = 

b.F1 . Suppose Fo = ( i ~) where A E GLm(I(), B E Km,,, C E J(P,m and 

DE GL,(K). T hen Fob.= (i) and b.F1 = ( : ' ) , whence A= F1 and C = 0. 

T herefore FE Aut(6.) 1 has the form (F1 , F0 ) where 

F, = (Fi B) 0 
0 D ' 

with F 1 and D invertible and B an arbitrary matri x. Since Aut(6.) is a group, we 

should also consider its multiplication. Suppose Fis as above and G = (Gt, G0) is 
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another chain map, with G0 
1 

. Then F#0G is the chain automorphism 
(

G E') 
0 D' 

(
Fi Gt F1E' + ED') F, G -0 0 

- O DD' ' 

where F1G1 E GLm(I<), F1E' + ED' E K m,p and DD' E GLp(K ). Let J(m,p have 

the structure of a left GLm(K)-module and a right GLp(K)-module. Then 

with multiplication (A , E, D)(A', E', D') = (AA', AB' + BD', DD') . 

Let F and G be the chain automorphisms described above and suppose that (H, F) : 

F '.:::'. G. The chain homotopy H will be an m x n matrix, and can initially be given 

as a block matrix H = ( X Y), where X E Km,m and Y E K m,n- m. The chain 

homotopy conditions will dictate the actual possibilities for homotopy. Firstly, X = 
H6. = G1 - F1. Secondly, 

Comparing coefficients, we deduce the following lemma: 

Lemma 2.2.1. F '.:::'. G <=:> D = D' 
□ 

If F '.:::'. G the unique chain homotopy is given by ( G 1 - Fi B' - E), which is of 

course the top (block) row of G0 - F0 . Thus we have computed the elements of Aut( 6. h; 
a description of the compositions is left to the reader, and can be easily obtained from 

the general case below (2.3). 

From the lemma, the homotopy classes of chain automorphisms are characterised 

by the invertible (m - n )-square matrices D, hence 1r1Aut(6.) = GLp(K) . The only 

chain homotopy id '.:::'. id is the zero mat1ix, so 1r2Aut(6.) is trivial. 

2.2.5 Projection 

Let o : !(11 EB K m -+ K 11 be the projection of K n EB K m onto one of its direct sum

mands. K n is a quotient space of K n EB Km and so we can choose a basis V = 
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{v1 , ... Vn, Vn+t, ... , Vn+m} for J(n EB Km and a basis 11· ={vi, ... vn} for J(n where 

each vi = v i + Km (for i ~ n ). With these bases the map o acts as follows: 

n+m n 
o(I: Qivi) = L QiVi, 

i=l i=l 

A chain automorphism f = (!0 , Ji) on o must satisfy Joo o = c5 o j 1 . Switching to 

the matrix formulation with the bases desc1ibed above, o yields the matrix 

To sati sfy the chain map condition, matrix pairs must have the following structure. Sup

pose F0 E GLn(I<) then Fi E g n+m,n+m has the block fotm: 

where A E J(m,n and B E GLn+m(K). All the elements of Aut(.6.)i are of this form. 

Suppose G is another chain automorphism in matrix form, with 

G = (Go O) 
l C' D' . 

Then the multiplication on Aut(.6.)i yields the chain automorphism with matrices F0G0 

and 

F G = ( FoGo O ) 1 1 
CG0 + DC' DD' . 

If J{m,n is given the structure of a left GLn(K), right GLm(K)-module, this yields 

Aut( .6.) t ~ G Ln ( K) 1>< J{m,n ><l G Lm (I<). 

A homotopy F '.:::'. G consists of the pair (H, F) where H : !(11 -r J{n+m is a chain 

homotopy, given by an (n + m) x n matrix. Suppose initially that H has block form 

where X E J(n,n and Y E J(m,n_ To satisfy the chain homotopy conditions requires 

that X = .6.H = G0 - F0 and 

(
X 0) = H .6. = (Go - Fa O ) 
Y O C' - C D' - D . 
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We deduce that F '.:::'. G if and only if D = D'; in other words the linear transformations 

must coincide on the lower right-hand block, so lemma 2.2. l holds in th is situation as 

wel l. When this condition is met, the unique co1Tesponding chain homotopy is 

H = (Go - Fa). 
C' -C 

Again , these are the elements of the group Aut(~h; the composition can be recovered 

from the general case in 2.3. 

The homotopy classes of chain automorphisms correspond to the distinct inve1tible 

matrices D, so 1r1Aut(~) ~ GLm(K). Since there is only one homotopy for which 

the source and target are both the identity (namely, the one with zero chain homotopy) , 

1r2Aut(~) is trivial in this case as well. 

Note that this example is a generalisation of the first, specific example (2.2.1). 

2.3 The General Form of Aut( 5) Over A Vector Space 

Having familiarised ourselves with various examples of Aut(c\") for specific linear trans

formations, we can now tum to consider an arbitrary linear transformation of vector 

spaces. Note that, while the definition of Aut(c\") itself works perfectly well if vector 

spaces are replaced by modules over a commutative ring, the calculations of this section 

(along with examples 2.2.4 and 2.2.5) require us to work with vector spaces, so that the 

direct sum decompositions are guaranteed to exist. 

Given any linear transformation of vector spaces, 6 : Kr -+ K 5
, with ker cl" ~ K m, 

it is possible to rewrite fJ in the form: 

() : K 11 EB K m -+ K n EB K P, 

where n = r - m and p = s - n , such that fJ(x , y) = (x' , 0) (x E K 11, etc.). Indeed, it 

is possib le (in principle) to choose bases such that fJ(x, y) = (x, 0). Therefore, with a 

sui table choice of bases, fJ can be expressed as a matrix 

Given such a~ the usual conditions on chain automorphisms and homotopies apply. 

A lthough in practice it will usually be difficult to express a given linear transformation 
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in this form, its generality makes it worth considering the structure of Aut(6) in some 

detail. All the foregoing examples are, of course, special cases of this. 

A chain map F consists of matrices F1 and F0 which commute with 6. For a chain 

automorphism, we also require both F1 and F0 to be invertible , hence F1 E GLn+m(I<) 

and F0 E GLn+p(I<) . Suppose 

Fl = ( ~ ~) and Fo = (: : ) 

are such matrices, expressed in block fo1m (so A, U E GLn(I<) , B E J{n,m etc.). Then 

Mi= (i !) andFo6 = ( : ~) 

Since 6F1 = F06, we deduce that A = U while both B and HI are zero matrices. 

Therefore the general block f01m of a chain automorphism (relabelling the blocks to 

conserve letters) is 

Fi= (; ~),Fo= (i ~) 
where A, C, E are invertible. This is a typical element of Aut(6.) 1. Suppose G is 

(A' 0) (A' D') another such element, with G 1 = and G0 = . Then the product 
B' C' 0 E' 

FG = F#0G is the chain automorphism with 

(A O) (A' 0 ) ( AA' 0 ) 
(F#oG)i = B C B' C' = BA'+ CB' CC' 

and 

F G = (A D) (A' D') = (AA' AD'+ DE') . 
( #o )a O X O E' 0 EE' 

With suitable module structures on J{m,n and J{n,p there are isomorphisms from the 

two levels of Aut(6.)i to GLn(I<) t>< J(m,n ><J GLm(I<) and GL11 (I<) IX 1(71 ,P ><J GLp(K) 

respectively. 

Suppose (H, F) : F '::::'. G. The chain homotopy H is an element of J(n+m,n+p, so to 

start w ith assume it has form: 

(
X y) 

H= Z 11V ' 
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with X E J(n,n , Y E J{n ,77, Z E J(1n ,n and HI E J{m,p_ As usual , the chain homotopy 

conditions must app ly. This gives 

6.H = (In O) (X y) = (X y) =Go_ Fo = (A' - A D' - D) 
0 0 Z TV 0 0 0 E' - E ' 

from which we deduce that E' = E, X = A' - A and Y = D' - D. Also 

H6.- - - G -F -(X Y) (In 0) (X 0) (A' - A O ) - z w 0 0 - z 0 - l 
1 

- B' - B C' - C ' 

from which C' = C, Z = B' - B and, again, X = A' - A. These calculations prove 

the fol lowing: 

Lemma 2.3.1. Let F, G be chain automorphisms as given above. Then 

F :::' G tj- C' = C and E' = E. 

In this case a chain. homotopy H such th.at (H, F) : F :::' G is of the form 

(
A' -A D' -D) 
B'-B W ' 

where 11V E J(m,p is arbitrary and the other blocks are determined by the source an.cl 

target of the homotopy. 
□ 

Thus a typical element of Aut(6.h is a homotopy (H, F) as described by the lemma. 

Once the source and chain homotopy (as encoded in the notation) are chosen, the target 

is fixed. For (H, F) using the notation above, the target is G = (G1, G0) where 

G = ( A+ X 0) 1 
B+Z C ' 

In the same way, once a chain homotopy and target are given, the source may be recov

ered straightaway. Unlike most of the special cases discussed above, the chain homotopy 

is not uniquely determined by the source and target of a homotopy, since there is the ar

bitrary block HI. This fact has ramifications for the homotopy groups of the classifying 

space, which we shall return to after discussing the compositions on Aut(6.)2. 

We turn first to the group operation of h01izontal composition. Suppose H is the 

homotopy given above and (iI, F) : P :::' G is another homotopy. Then the group 
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operation on Aut(.6.)2 is ho1izontal composition with (H, F)#o(H, F) the homotopy 

having source F#0 F and chain homotopy G1H + H F0 . 

Compared to the horizontal composition of homotopies, vertical composition is 

straightforward. It is only defined where the target of one homotopy is the target of 

the next, and the chain homotopy is obtained by adding the chain homotopy matrices 

for the two homotopies. Suppose (H, F) : F :::::: F' and (H', F') : F' :::::: F". Then 

(H', F')#1 (H, F) = (H' + H, F) : F:::::: F". 

It remains to examine the structure of 7r1Aut(.6.) and 7r2Aut(.6.). The first of these is 

the group of homotopy classes of chain automorphisms in Aut(.6.) 1 . Lemma 2.3.l shows 

that two chain automorphisms are homotopic precisely when the lower-right blocks 

of both levels (elements of GLm(K) and GLp(K) for top and bottom respectively) 

coincide. 1!'2 is the subgroup of Aut(.6.)2 consisting of homotopies on the identity. For 

most of the examples we previously examined, 1r2 was trivial since a homotopy was 

uniquely determined by its source and target. However, in the general case there is an 

arbitrary m x p block in the lower right-hand comer. These observations lead to the 

following theorem: 

Theorem 2.3.2. Let 8 : J(n ffi J(m -+ J(n E9 J{P be any linear transformation of K

vector spaces, expressed as the matrix 

Then: (i) 

( ii) 

D 

2.4 Linear Representations Defined 

In section 1.2.3 we established that a cat1-group is the same thing as a 2-group (which 

may be thought of as a graded set with 3 non-empty levels, the lowest of which is a 
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singleton , and various graded maps). Therefore we may look for representations of a 

cat1 -group <t as 2-functors into a suitable 2-category, taking elements of P to 1-cells 

and elements of C ><l P to 2-cells, so as to preserve the structures (all the 1- and 2-cells 

wi ll have the same object, *, as their 0-source and target, even if the target category has 

many objects). By analogy with groups and groupoids, the target 2-category of a linear 

representation should involve vector spaces or modules. We have seen in section 1.3 

that Ch}~) is a 2-category which generalises VectK, so this is sui table for our purpose. 

Although its ramifications will be far-reaching, the actual definition of a representation 

is fai rl y obvious. 

Definition 2.4.1. A linear representation of the cat1-group ([ is a 2-functor 

cp : <t -t Ch}P, 

As an abstract definition , this seems plausible enough, and there clearly exists a 

trivial representation sending everything to the identity. Also, it col lapses to the ordinary 

notion of group representation in the special case of cat1-groups with top group and base 

equal (see example 1.2.8). The best way to show that non-trivial representations exist 

is to find some. We shall postpone searching for representations until after the next 

chapter, in which we shall develop some more useful tools to help us, but for now we 

we may pause to consider what data is involved in specifying a representation. 

Given <t, the first step towards defining cp is to find a chain complex (i.e., linear 

transformation) to act as the implicit target object, 8 = 1>(*) -The group algebra functor 

of section 1.4 provides a canonical way of getting from a group homomorphism to a 

linear transfo1mation, although it will sometimes be useful to make a different choice. 

Once 8 is chosen, the elements of the cat1-group must be mapped to elements of Ch}~), 

with elements of the base going to I-cells (chain maps) and elements of the top group 

going to 2-cells (homotopies). For cp to be a functor, thi s mapping must preserve iden

tities and composition. Therefore, the image of Q: lies within Aut(8) (which is why we 

have studied it in such depth earlier in this chapter). This 8 is clearly analogous to the 

representation space of a group representation; since it is a chain complex rather than a 

vector space it will be called the representation complex of the representation. 

Recal l that Aut( 8) is itself a cat1-group, whose elements are linear transformati ons. 

T herefore , another way of considering the representation cp is to take it as a cat1-group 

morphism 

cp : <t -t Aut(8). 
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This is a similar situation to the group case, in which a linear representation group 

reformulates the original group as a group of linear transformations. 



Chapter 3 

Cat1-Group Algebras 

In which a cat1 version of the group algebra functor is built, and modules over the cat1 -group 

algebra are defined and used to study representations of the cat1-group. 

A very common, and fruitful, approach to group representation theory is via modules 

over a group or an algebra (see for example [20], [24], or [26]). Linear representations 

of a group G are in one-to-one correspondence with modules over its group algebra, 

K( G) (see section 1.4) . Whereas the representations, in their matrix form, are con

ducive to calculation, the module theoretic approach is more elegant and powerful for 

developing the theory. This provides motivation for exploring the corresponding notions 

of algebras and modules over a cat1-group. Since a cat1-group is a generalisation of a 

group, it is natural to ask whether there is a sensible notion of cat1-group algebra. This 

should, reasonably, be a cat1-algebra generated in a canonical way from the cat1-group. 

Before constructing a definition of a cat1-group algebra, we shall remind ourselves of 

the definition of general cat1-algebras. 

3.1 Cat1-Algebras 

Cat1-algebras are well-known, at least as an analogue of cat1-groups in another category. 

Their theory is not so well developed, however. A description of cat1-algebras and their 

equivalence to crossed modules of algebras appears in Shammu's PhD thesis [68] and 

is implicit in more general expositions of cat1-objects by Ellis [27] and Porter [62], but 

to fix notation and to keep our account reasonably self-contained we shall now pause to 

61 
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review the basic definition and some properties of cat1-algebras. 

3.1.1 Definition 

Firstly, recall the definition of a cat1-algebra. Just as a cat1-group is equivalent to an 

internal category in the category of groups (Gr) [63], a cat1-K-algebra is equivalent to 

an internal category in the category of K-algebras (AlgK ), where K is a fixed commuta

tive ring with identity1• Where there is no ambiguity, we shall refer to cat1-K-algebras 

simply as cat1-algebras. 

Definition 3.1.1. A cat1-K-algebra A consists of K-algebras A 0 , A1 and K-algebra 

morphisms CJ, T : A1 ---+ A0 , 1, : Ao ---+ A1 (called structural morphisms) satisfying 

CAI (JI, = Tl, = idA0 , 

CA2 ker CJ.ker T = 0, ker T.ker CJ = 0. 

This is very similar to the definition of a cat1-group, except for the kernel conditions 

CAl, which are superficially quite different. Condition CA2 states that A is a reflexive 

internal graph in AlgK. The kernel conditions ensure that this is an internal category 

[52] for composition defined as follows. 

AlgK is a complete category, so pullbacks exist. Define composition to be 

with 

a o j3 := a - 1,CJa + /3, 

where CJa = T/3 . Note that, for any a E A1, a - 1,CJa E ker CJ, since CJ (a - 1,CJa) 

CJa - CJw a = CJa - CJa = 0. Similarly, /3 - 1,T/3 E ker T for every /3 E A1 . 

In order for this definition to be useful, composition must be a K-algebra morphism. 

This is true if the interchange law for addition, 

( a o /3) + ( 1 o <5) = ( a + 1) o (/3 + <5), 

and the interchange law for multiplication 

(a o jJ)('Y o <5) = a, o {3<5, 

are satisfied whenever a o f3 and I o <5 are defined. 

1 As usual, K may be thought of as either IR or (C if desired. 

(3 .1) 

(3.2) 
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Lemma 3.1.2. Composition, a o /3 := a - wa + (3, is a K-algebra morphism. 

Proof: 

Suppose a o f3 and I o Sare defined. Thus, a-a = T/3 and o-1 = TS. 

Now, 

(a o /3) + (, o S) = a - io-a + /3 + 1 - w, + S 

=a+ 1 - w(a + ,) + /3 + S 

= ( a + , ) o (/3 + S), 

so (3.1) is satisfied. 

Also, 

(a o /3)(, o 8) = (a - wa + /3)(1 - io-1 + S) 

where 

and 

= (a - wa), + /31 + (a - u,a)(8 - lT6) + (3(8 - lT6) 

= a, - wa, + /31 + a6 - wa6 - mT6 + w(a,) + /36 - /3iT6 

= a, o (38 + A + B 

A= a6 - wa6 - mT6 + wmT6 = (a - io-a)(8 - iTS) E kero-.kerT 

B = /31 - iT/31 - (3w, + lT/3io-1 = (/3 - iT/3) (, - io-1 ) E ker T.ker a-. 

63 

However, the kernel conditions ensure that A = B = 0, whence (3.2) is also satisfied. 

□ 

This lemma shows that, with the kernel conditions of our definition, the cat1-algebra 

is an internal category in Algg as we would expect. Conversely, suppose we have an 

internal category in Algg. This has a composition satisfying the interchange laws with 

addition and multiplication. Then 

a o /3 = (a+ 0) o (io-a - io-a + /3) 

= (a o io-a) + (0 o (- io-a + /3)) 

= Q - lO"Q + (3 . 
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Thus composition is expressible in terms of addition, as in lemma 3.1.2. Since the 

interchange law for multiplication is satisfied, it follows that (a - lO"a)(5 - irc5) = O 

and (/3 - ir/3)(1 - w,) = 0. But these are typical elements of the kernels of O" and 

T, so the kernel conditions are satisfied. Hence every internal category in AlgK is a 

cat1-algebra. 

If the elements of A1 are pictured as 2-cells, then the composite a o {3 is defined 

when the I-source of a coincides with the I-target of {3. This (vertical) composition 

over a I -dimensional boundary could be written using the more suggestive notation # 1 

which we used for cat1-groups. However, both addition and multiplication are defined 

for all the elements of both algebras A1 and Ao and both of these may be thought of as 

horizontal compositions. Rather than extending the notation #o to distinguish between 

these operations, we shall retain the traditional notation of+,. for these operations, and 

thus it makes sense to use o for the vertical composition as well. There is, of course, 

also a scalar multiplication at each level, for which we shall use the usual notation of 

juxtaposition. 

By analogy with the group case, a structure A satisfying CAl but not CA2 will be 

called a precat1-algebra. Morphisms of cat1-algebras can also be defined by analogy 

with the group case. This leads to the category of cat1-K-algebras and their morphisms, 

denoted CatlAig/(; when necessary we shall write the category Catl of cat1-groups as 

CatlGr to distinguish it from this new category (or from any other categories of cat1 

objects we may have occasion to use). Note that if the multiplicative structures are 

ignored, A yields an abelian cat1-group. 

3.1.2 Involution 

It is well-known (a fact observed by Duskin, and published by Brown and Spencer [16]) 

that an internal category in Gr is automatically an internal groupoid. The same result 

is true in AlgK, as we shall now demonstrate2
• Let A be an internal category in AlgK, 

using the notation of 3.1.1. We have seen that composition is expressible in terms of 

addition, as a o {3 = a - lO"O:' + {3 . Since addition is commutative and O"O:' = r/3 (for 

composition to be defined), we also have a o {3 = {3 - ir /3 + a. 

2 Analogous results hold in several other categories, and in fact results are known as to the types of 

categories for which such results are true. We shall not require this more general theory, however. 
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Theorem 3.1.3. Every a E A 1 has an inverse for composition. Hence A is an intemal 

groupoid in AlgJ<. 

Proof: 

Define a* := 1,e7a - a+ 1,ra. Then 

<7a* = e71,e7a - <7a + e71,ra = ra 

and 

ra* = r1,e7a - ra + r1,ra = CJa. 

Also, 

a o a* = a - 1,e7a + (1,e7a - a+ 1,ra) = 1,ra, 

while 

a* o a= a - 1,ra + (1,e7a - a+ 1,ra) = 1,e7a, 

Thus a* is a 2-sided compositional inverse for a. Such an inverse exists for every 

a E A1. D 

The existence of inverses allows us to define an internal endofunctor on A, which is 

an involution. For each x E Ao define x* := x. 

Proposition 3.1.4. ( )* : A -+ A is a contravariant intemal functor in AlgI<, with 

(a*)* = a for each a E A 1. 

Proof: 

A definition of internal functor is given by Borceux [7]. In AlgK it consists of a 

pair of !{-algebra morphisms preserving identities and composition. A contravariant 

internal functor will reverse the composition. 

For A0 , we have the identity morphism. For A1 the mapping a ~ a* is used. We 

check that this is a !{-algebra morphism. Let a, f3 E A1 and,\,µ E K. 

(,\a+ µ(3)* = 1,e7(,\a + µ(3) - (,\a + µ(3) + 1,r(,\a + µ(3) 

=Awa + µwf] - ,\a - µ(3 + ,\1,ra + µ1,r/3 

= ,\(1,e7a - a+ 1,ra) + µ(1,e7/3 - f3 + 1,r/3) 

= ,\a* + µ{3*. 
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Also, 

a*/3* = (ura - a+ lTO!)(u:r/3 - /3 + lT/3) 

= u:rau:r/3 - au:r/3 + lTO!lCJ/3 - u:ra/3 + a/3 - lTa/3 + lCJO!lT/3 - O!lT/3 + U:TO!lT/3 

= u:r(a/3) - a/3 + lT0!/3 + a/3 - lc:70!/3 - O!lT/3 + lCJO!lT/3 + 0!/3 - O!lc:7/3 

- lT0!/3 + lTO!lCJ/3 

= (a/3)* + (a - u:ra)(/3 - lT/3) + (a - LT/3)(/3 - u:r/3) . 

However, (a - l<7a)(/3 - LT/3) E ker <7.ker T and (a - lT/3)(/3 - u:r/3) E ker T.ker T. 

Since A is a cat1-algebra, the kernel conditions hold, whence ( a/3)* = a* /3* as required. 

Next, we check functoriality. Suppose <7a = T/3. 

/3* O a,* = lc:7/3 - /3 + lT/3 - l<7(u:rf3 - /3 + lT/3) + lCJO! - O! + lTO! 

= u:r/3 - /3 + LT/3 - 1,c:7/3 + u:r/3 - lT/3 + lc:70! - O! + lTO', 

= lc:7/3 - /3 + lCJO! - O! + lTO! 

= lc:7/3 - (O! - lc:70', + /3) + lTO! 

= lc:7(0! o /3) - O! O /3 + lT(O! O /3) 

= (ao/3)*. 

Also, for any x E A0 

(lx)* = lCJlX - lX + lTlX = lX = 1,(x*). 

Finally, the functor is an involution, since 

=a. 

D 

We have used a* to denote the inverse for a under composition in order to dis

tinguish it from the multiplicative inverse a-1. In fact, this distinction is unnecessary 

because, when the multiplicative inverse exists (i.e. for every non-zero element of A1) 

it is the same as the compositional inverse (which always exists). Suppose a : x ⇒ y. 

Then 
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Similarly, a o a-1 = 1, whence a-1 is a 2-sided inverse for a under composition. The 

uniqueness of such an inverse is a standard property. Note that the interchange law 

entails a flipping of terms when switching between multiplication and composition, i.e. 

aa-1 = a-1 o a. 

3.2 The Cat1-Group Algebra Construction 

Just as any group G has an associated group algebra (with basis3 indexed by G and 

multiplication induced from G), a cat1-algebra can be constructed from any cat1-group 

<!:. For groups (see 1 .4 ), the construction is achieved via the group algebra functor, 

K (·) : Gr ➔ AlgK, A naive approach towards constructing a cat1-group algebra is to 

apply this functor to the groups and homomorphisms making up<!:. 

3.2.1 A First Approach 

Suppose 

s 
C><lP==:.P 
~ 

i 

is the cat1-group <!:. Then, applying the group algebra functor gives 

(T 

K(C ><l P) ==- K(P) 
T - i 

where K(P) has basis { ep : p E P}, K( C ><l P) has basis { ec,p : c E C, p E P} and 

the maps O', T, l act on the basis elements as follows: 

O'( ec,p) = ep, 

T( ec,p) = eacp 

l( ep) = e1,p• 

These maps extend linearly to the rest of K(P) and K(C ><JP). 

3We may assume K is a field or an integral domain for simplicity here, hence "linear independence" 

and "basis" will make sense without complications. The algebraic calculations work in more generality 

however. 
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Since K(, ) is a functor, condition CAl is induced from the equivalent condition on 

<!:. Thus, K( <t) is certainly a precat1-algebra. 

It remains to examine the kernel conditions CA2. First of all, we shall need to 

find bases forker a- and ker 7. For any e c,p E K( C >4 P), e c,p - e 1,p E ker a-; define 

Lemma 3.2.1. The set { v c,p : c =f l} is a basis forker a-. 

Proof: 

Clearly every v c,p is in ker a-. It suffices to show that these elements span ker a- and are 

linearly independent. 

Suppose v E ker a-. That is v = L pEP L cEC rc,pe c,p with o-(v) = 0. But o-(v ) = 

L / L c rc,p)e p and, since the e p are a basis, this is zero iff L cEC rc,p = 0 for each 

pE P. 

Now, 

V = L L Tc,p(ec,p - e 1,p + €1,p) + L r1,pe l,p =LL rc,pV c,p + L L Te,pel,p, 
p c;z!=l p p efl p e 

but 

p e p e 

because L eEC re,p = 0 for every p E P. Hence v = L p L e# re,pV e,p for every 

v E ker a-, so the v c,p do indeed span ker a-. 

Now suppose that Lp L e;z!=I re,pVc,p = 0. Then 

LL re,p(ee,p - e1,p) = 0 {:?LL rc,pee,p - LL rc,pel,p = 0 
P efl p cfl p c;z!:l 

{=? LL r~,pee,p = 0, 
p C 

where r~,P = r e,p when c =f l and r~,P = - L e# r e,p· This is a linear combination of 

basis vectors e c,p in K ( C >4 P), so r~,P = 0 for each c, p. In particular, this is true for 

c =f l, so every re,p = 0 and the Ve,p are linearly independent, as required. □ 

Similarly, W e,p := e e,p - e1 ,8ep E ker 7 for every c E C, p E P . 

Lemma 3.2.2. The set { w e,p : c =f l} is a basis for ker 7 . 
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Proof: 

The inversion functor of proposition 3.1.4 may be applied to K( <t.) . 

First, observe that if a E ker a, then ra* = aa = 1, hence a* E ker r, and vice 

versa. Thus ( )* interchanges the kernels of a and r. Further, it is evident that a basis 

forker r can be constructed by taking the inverse of each element of a basis forker a . 

The set { v c,p : c # 1} is a basis forker a. Now, 

while 

Therefore 

Hence { - w c,p : c # 1} is a basis for ker r , and so (using an obvious change of basis) 

{wc,p: c # 1} is also a basis, as required. □ 

To satisfy the kernel conditions, it would suffice that v c,p•wd,q = 0 and wd,q·Vc,p = 0 

for every c, d E C\ {le} and p, q E P. 

However, 

This is a linear combination of basis elements with non-zero coefficients, so v c,p · w d,q # 
0 and the kernel condition fails. Likewise for the other kernel condition. Hence, K( <t.) 

is not a cat1-algebra. 

3.2.2 Fixing the Kernel Conditions 

In order to construct a cat1-algebra from K(<t.) it is necessary to impose some relations 

so that the kernel conditions are satisfied. Once suitable expressions are found, K ( <t.) 
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can be factored by the ideal they generate. This is analogous to the method given in (13] 

for producing a crossed module from a precrossed module by factoring out the Peiffer 

group. 

Consider expressions of the form: 

( c, d E C, p E P) (3.3) 

These can be represented pictorially as: 

Note that in this diagram (and those later in this section) the "composition" traced out 

is addition. The signs for the terms can be obtained by tracing in an anticlockwise 

direction, giving a plus sign to any term traced in the direction of the arrow and a minus 

sign to any term traced in the opposite direction. If c = idc , then (3.3) becomes ed,p -

e 1,p - ed,p + e1,p = O; similarly if d = idc (or both). In these cases, we can rewrite the 

condition as edc,p = ec,p - ed,8cp - e 1,acp, so the diagram commutes. 

We shall call expressions of the form (3.3) cocycles. Let J be the ideal 

J = (edc,p - e c,p - ed,8cp + e1,8cp : c, d EC\ {le}, p E P) 

generated by the cocycles; J may be referred to as the cocycle ideal. Then both v c,p•wd,q 

and wd,q•Vc,p are in J, as demonstrated by the following pictures: 

epq ------ eacp8dq 
e cPd ,pq 



CHAPTER 3. CAT1-GROUP ALGEBRAS 71 

and 

J <JK( C ><JP) is a two-sided ideal, so we can form the quotient algebra K( C ><JP)/ J 

with the natural epimorphism 

-:- :K(C ><l P)-K(C ><l P)/J 

For notational convenience, write e c,p = ec,p + J. From the structural morphisms CJ, T, 1, 

we get induced maps a-, f: K(C ><l P)/J ➔ K(P) and r : K(P) ➔ K(C ><l P)/J. 

The basis elements of ker CJ and ker T map to v c,p := v c,p + J and wd,q := w d,q + J 

respectively. The definition of v c,p is preserved by factorisation since v c,p = v c,p + J = 
( ec,p - e1,p) + J = ( ec,p + J) - ( e1,p + J) = e c,p - el,p· Note that (vc,p : Ci= 1) = ker CJ 

and ( w d,q : d i= 1) = ker f , so that the v c,p and w d,q form generating sets for their 

respective kernels. These are not, however, bases, since the factorisation introduces 

linear dependencies as follows. 

Expression (3.3) can be rewritten as 

Since thi s is in the ideal J , it will be killed off by factorisation. Thus, in K(C ><JP)/ J 

we get v dc,p - v c,p - v d,fJcp = 0, hence 

(3.4) 

There are redundancies among the v c,p, so these do not form a basis. Similar relations 

hold for thew d,q • 
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In the same way, the basis { ec,p} of K( C x1 P) induces a generating set {ec,p} for the 

whole of K ( C x1 P) / J. This also fails to be a basis, because of the linear dependencies 

induced by the factorisation. These relations will be called cocycle relations. 

Define K(<l) to be the precat1-algebra: 

ir 

K(C x1 P)/J~K(P) 
..._!_.--

[ 

(3.5) 

induced from K ( <l). Condition CAl is satisfied by K ( <l) since these properties are 

preserved by the quotient map. 

Since, for every c, d E C and p, q E P, the expressions Vc,p·wd,q and w d,q ,Vc,p are 

in J, the kernel conditions CA2 are satisfied in K(<l), hence: 

Proposition 3.2.3. K(<l) is a cat1-K-algebra. 
□ 

We are finally in a position to make our principal definition. 

Definition 3.2.4. For any cat1-group ([ = (C xi P, P, i, s, t), the cat1-group algebra of 

([ is the cat1-algebra K(<l) = (K(C x1 P)/ J, K(P), [, ff, f), where J is the ideal 

J = (edc,p - e c,p - ed,8cp + e1,8cp: c, d EC, p E P). 

K(P) has a basis {ep : p E P} and K(C x1 P) / J has a spanning set {ec,p} whose 

elements satisfy equation (3.5). The kernel of fJ is spanned by the set {vc,p : c =I=- 1}, 

whose elements satisfy (3.4); ker f is generated by { w c,p : c =I=- l} with a similar set of 

relations . 

Example 3.2.5. The cat1-group algebra construction can be applied to each of the ex

amples in 1.2.11. 

(i) ([ = ( C2 , I, 0, 0, i), where C2 may be more strictly thought of as the isomor

phic C2 x1 I, gives K(<l) as: 
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where CJ = T is the map (x, y) t----t x + y and i(x) = (x, 0). In this case, 

there is only one V c,p defined (namely v9 ,1, where g is the generator of C2), 

so ker CJ ~ K is singly generated. The only non-trivial generator of J is 

e1,1 - e9 ,1 - e9 ,1 + e1,1, so the only cocycle relation introduced in K ( er.) is 

2e9 1 = 2e11 -, ' (3.6) 

If K is a field of characteristic =I- 2, this implies that e9 ,1 e1,1, whence 

K(C ><J P)/ J ~ Kand both CJ and T are the identity. If K is a field of 

characte1istic 2 (for example, Z2) or a more general integral domain (e.g. Z) 

this is not the case. Indeed, for K = Z2, relation (3.6) breaks down to the 

tautology 0 = 0, so in fact no cocycle relations are introduced in Z2( C2) / J 

and Z2( C2) ~ Z2 is itself a cat1-algebra. For K = Z we observe that (3.6) 

implies 2v 9,1 = 0, whence ker 8' ~ C2 (this is, of course, a Z-module, since 

it is an abelian group). 

(ii) er.= (C3, I, 0, 0, i) (again C3 is really C3 ><JI), gives K(cr.) as: 

where CJ = Tis the map (x, y, z) t----t x + y + z and i(x) = (x, 0, 0). Here, 

ker CJ has two generators, v 9,1 and v 92,1 (with g the generator of C3), while 

the non-trivial generators of J reduce to the cocycle relations 

in K (er.). Thus, for K a field of characte1istic =/- 3, the three generators 

coincide and K( C3)/ J ~ K. For Z3 or Z the situation is also reminiscent of 

the previous example: Z3(C3)/ J ~ Z3 and Z(C3)/ J ~ C3. 

(iii) <!:= (C3 x C2,C2,s,s,i) gives: 

u 
K6 ==:: K2 

T 
~ 

L 

with CJ = T sending ec,p to ep for each c E C3 and p E C2 and i( e p) = e1,P . 

There are four elements V c,p with c =I- l , so ker CJ~ K 4
. 
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3.2.3 The Cat1-Group Algebra as a Functor 

The group algebra construction provides a functor from Gr to AlgK; in the same way 

we may expect the cat1-group algebra to give a functor from CatlGr to CatlAigK. For 

any cat1-group <r:, definition 3.2.4 gives us a cat1-group algebra K(<t), so it remains to 

define a mapping from cat1-group morphisms to cat1-algebra morphisms, and check that 

it is functorial. 

Suppose <ti= (Ci ><1 Pi, Pi, si, ti, ii) are cat1-groups (i = 1, 2, 3), with¢: <t1 -+ <r:2 
and 'ljJ : <r:2 -+ <t3. 

Since both squares in the diagram commute (¢ and 'IP are cat1-group morphisms) the 

outer rectangle also commutes. Similar diagrams hold with Si replaced by ti and by ii . 

Applying the group algebra functor to this setup gives us the following diagram of 

precat1 -algebras, where K(¢c)(ec,p) = e</>(c,p) etc. 

K(C1 ><1 P1) ~ K(C2 ><1 P2) 1!!!sJ_ K(C3 ><1 P3) 

"' j .,j [·, 
K(P)i -K-(</>_p_) --K(Ph-K-('1/J_p_) --K(Ph 

Again, there are similar diagrams for rand 1,. Since K(·) is a functor, both squares and 

the rectangle commute here also. 

To get from here to cat1-algebras, we form the ideals 

Next factor each K(Ci ><1 Pi) by the corresponding Ji and replace a-i (or 'Ti, 1,i) by the 

induced <'h ('Fi, 4). The factoring also induces maps K(¢c) and K('l/Jc), which are 

obviously well-defined. This gives us the diagram: 

K(</>c) K('I/Jc) 
K(C1 ><1 Pi)/J1 -K(C2 ><1 A)/J2-K(C3 ><1 P3)/J3 

,,j ,,j ]·, 
K (P)i --K- (</>_p_) - K ( Ph --K-('1/J_p_) - K ( P h 
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Again, commutativity is assured. Define k(ct.) := K(ct.) and let k(¢i) be the cat1-

algebra map with k(¢ic) defined as above and k(cpp) := K(efip). 

Lemma 3.2.6. k : CatIGr-+ CatlArgK is afunctor. 

Proof: 

The above discussion shows that K('lj;¢i) = K('lj;)K(¢i). It is easy to check that k also 

preserves the trivial morphism on a cat1-group. D 

One important prope1ty of the group algebra functor is that it is left adjoint to the 

unit group functor (see proposition 1.4.3). The claim that the cat1-group algebra functor 

is a good generalisation of the group algebra functor will be strengthened if the cat1-

group algebra functor is also left adjoint to something. It is reasonable to suppose that 

this "something" should be a generalisation of the unit group functor. 

Given a cat1-group algebra, applying the unit group functor levelwise yields a cat1-

group, with structural homomorphisms given by restriction. This construction provides 

us with a unit cat1-group functor U : CatlAigI< -+ Catlcr-

lt remains to verify the adjointness of U and k. The following proposition, and its 

proof, is closely modelled on proposition 1.4.3. 

Proposition 3.2.7. The cat1-group algebra functor k : CatlGr -+ CatlAlgI< is left ad

joint to the unit cat1-group functor U : CatlAlgI< -+ CatlGr· 

Proof: 

For notational convenience we shall write C for Catlcr and A for CatlAigI< . 

Let ct. be a cat1-group, A a cat1-algebra and f : ct. -+ U A a homomorphism of 

cat1-groups. Then f E C(ct.,UA). For every such f, k(f) E A(kct.,kUA) . Clearly 

KU A ~ A , so we may define 

0r::.,A = incok: C(ct.,UA) -+ A (kct.,kUA) , 

where inc is the inclusion. Since both inc and k are functors, 0r::, A is well-defined for 
) 

every choice of ct. and A. 

Now suppose ¢i : kct.-+ A E A(kct., A). Then ¢i is completely determined by the 

images of the basis elements { e c,p : c E C, p E P} and { ep : p E P} indexed by the top 

group and base of ct.. Further, for any ( c, p) in the top group of ct., 
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whence each </J( ec,p) is in U A. Likewise for </J( ep). Define 

8c:,A: A(k<t,A) ➔ C (<t,UA) 

by Gc:,A(<P) = </J k (we may conveniently regard ec,p and (c, p) to be the same element). 

Now Gc:,A0c:,AU) = J and 0c:,AGc:,A(<P) = </J, so 

C(<t, UA) '.:::'. A(k<t, A). 

It remains to show that this bijection is natural in both It and A. This is analogous 

to the proof of 1.4.3, so we shall omit the details. D 

3.3 Modules Over a Cat1-Group Algebra 

Armed with a definition of cat1-group algebras, we may now begin to consider modules 

over them. We have seen in 1.4 that representations of a group G with representation 

space V (a K-vector space) are equivalent to K(G)-module structures on V. We would 

expect a similar result to be true for representations of a cat1-group and modules over 

its group algebra. 

A module over an algebra A is a vector space V together with an A-action on V. 

Since we are dealing with cat1-algebras, it is reasonable to expect a module in this case 

to be a cat1-vector space, or equivalently a 2-vector space, endowed with an action of 

the cat1-algebra. Here we must be slightly careful, for there are at least two separate 

definitions of 2-vector spaces which describe quite different objects. The first, used by 

Kapranov and Voevodsky [42], is not relevant to our purposes but the second, which 

appears in recent work by Baez and Crans [4], ties in very closely with ideas used 

elsewhere in this thesis and is the definition we shall use. 

Definition 3.3.1. A 2-vector space is an internal category in VectJ<. 

That is, it consists of a vector space, V0 , of objects, a vector space Vi of arrows, and 

morphisms (structural morphisms) selecting the source and target of each arrow and the 

identity arrow for each morphism, together with an associative composition which is a 

linear transformation of vector spaces. Internal functors in Vectg are known as linear 

functors, and these are the morphisms in the category 2VectK of 2-vector spaces over 
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K. This is in fact a 2-category, with 2-cells given by linear natural transformations, i.e. 

internal natural transformations in VectK. 

Furthermore, Baez and Crans show that 2VectK is equivalent to the category they 

call 2Term of 2-term chain complexes of K-vector spaces, which is none other4 than our 

old friend Ch~). The nature of this equivalence is very reminiscent of the interplay be

tween cat1-groups and crossed modules discussed in section 1.2.2. Although we studied 

Ch}~) in the case where K is a field, the definition would work for K merely a commu

tative ring with identity, although the terminology of vector spaces would in this case 

be replaced by that of K-modules. In the same way, we can define 2-K-modules to be 

internal categories in K-Mod. For the sake of convenience, we shall continue to speak 

in terms of vector spaces, but the results can be framed more generally. It should also be 

remembered that the terms "2-vector space" and "cat1-vector space" are, to all intents 

and purposes, interchangable (the same is true for "2-groups"/"cat1-groups" etc.). 

Suppose we have a cat1-algebra A and a 2-vector space V, such that both Vo and 

V1 are left modules over their respective levels of A. Hence there is a left action of A1 

on Vi and a left action of Ao on V0 which provide scalar multiplication at both levels. 

These actions commute with the structural morphisms of V to define a left action of A 

on V. 

Definition 3.3.2. A left A-action of a cat1-algebra A on a 2-vector space V consists of 

a left action of A1 on Vi and a left action of Ao on V0 which commute with the structural 

morphisms of V. 

Such a Vis called a left A-module. 

Of course, right A-modules could be defined similarly if required. Because the 

cat1 -algebra module construction is essentially the algebra module construction applied 

level wise, the correspondence between representations of a cat1-group and modules over 

its cat1-group algebra follows from the group case applied levelwise. 

Theorem 3.3.3. Let <t be a cat1-group and Va 2-vector space equivalent to the chain 

complex t5 E Ch}~). Representations cp : <r ➔ Aut( t5) are in bijective correspondence 

with K(<t)-module structures on V. 

Proof: 

Apply theorem 1.4.7 to both levels of cp and Aut(t5). □ 
41n fact, 2Term uses chain homotopies as its 2-cells, but we have seen that these are equivalent to 

homotopies. 



Chapter 4 

Linear Representations of a 

Cat1-Group 

In which representations of cat1-groups are found to exist, both in specific cases and in the 

general construction of regular representations, and the concept of faithfulness is explored. 

Linear representations of cat1-groups were earlier defined as 2-functors by analogy 

with the representations of groups. The definition is recalled in section 4.1. Some exam

ples of cat1-group representations are then introduced in the following sections, firstly 

for individual cat1-groups and then via the general construction of a regular represen

tation, which leads to a version of Cayley 's theorem in section 4.2. Faithfulness is an 

important prope1ty of group representations, so section 4.3 explores the essence of this 

property and attempts to find a cat1-group representation analogue. Finally, a direct de

scription of representations from the point of view of crossed modules is considered in 

section 4.4. 

4.1 Cat1-Group Representations 

The definition of a linear representation of a cat1-group, Q'.:, was stated as definition 2.4.1 

in chapter 2, namely that it is a 2-functor ¢ : (t -t Ch}~). We have also seen that ¢( Q'.:) 

resides within Aut(c5) where c5 = ¢(*), the image of the unique 0-cell in Q'.:, hence a 

representation can also be considered as a cat1-group morphism ¢ : (t -t Aut(c5). We 

are now ready to begin hunting for actual examples of representations. 

78 
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As a first example, we shall attempt to construct a representation of the simplest 

cat1-group that we encountered in examples 1.2.11, namely~= (C2 , I, i, 0, 0), where I 

is the trivial group. We shall start by taking C as the base field (i.e. K = C). Although 

we are at liberty to choose any c5 as the image of* for our representation, we shall take 

one where the dimensions of the source and target are closely related to the orders of 

the top group and base of ~- In this case, the c5 of example 2.2.1 will do nicely. This, 

recall, is the linear transformation: 

We must now seek images for the elements of I and C2 within, respectively, Aut(c5)i 

and Aut(c5)2. Fortunately, our explorations in section 2.2.1 have furnished us with a 

reasonable amount of information about the structure of Aut( c5). To specify a represen

tation, ¢ with representation complex c5, we must designate images under ¢ for all the 

elements of~. and check that the mapping is functorial. 

There is only one element of I to assign, and since this is the identity it must map 

to the identity in Aut(c5)i. Hence ¢(11) = id0 , the chain map consisting of the identity 

at both levels. For C2 the situation is barely more complicated, since there are only 2 

elements to worry about, one of which is the identity. The other element must also be a 

homotopy from id0 to itself, since this is the only chain map available. The homotopies 

id0 =>- id0 are precisely the elements of 1r2Aut(c5) and, for this choice of c5, 1r2Aut(c5) is 

trivial hence ¢(g) is also the identity (where g is the generator of C2). So the represen

tation is trivial and to find a non-trivial representation we must look elsewhere for c5. In 

particular, we need 1r2Aut( c5) to be non-trivial so that we can find distinct images for the 

elements of C2 • 

Bearing this last point in mind and looking back over the examples of chapter 2, 

we observe that Aut(0) has non-trivial 71'2, where 0 is a zero linear transformation. We 

shall therefore take c5 = 0 : C -+ C to be the zero map (z i--+ 0 for every z E C) 

and try to find suitable images for the elements of ~- As before, the unique element 

of I must map to the identity chain map id E Aut(0)i. The identity element of C2 

must similarly map to the identity homotopy (0, id). Whereas in the previous case, 

this was the only homotopy id ~ id, we now have such a homotopy for every linear 

transformation h' : C -+ C. Since the set of linear endomorphisms on C is isomorphic 
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to C itself this gives a homotopy ( o:, id) : id '.:::'. id for every o: E C. On the face of it, this 

would seem to give us plenty of choice for ef>(g). However,¢ must be a functor, so we 

require ef>(g)#oef>(g) = ef>(gg) = ¢(1) = (0, id). Now suppose ef>(g) = (o:, id). Then the 

chain homotopy component of ef>(g )#oef>(g) is o: + o:, whence we require 20:: = 0. Sadly, 

when o: E C this implies that o: = 0 and functoriality forces us to make ef>(g) = ¢(1) 

and end up with another trivial representation. 

All is not lost, however. If we abandon C and work instead with Z 2 (which, of 

course, is a field of characteristic 2), the same algebra enables us to set o: = x (the non

zero element of Z 2) and get ef>(g) = (x, id) #- ¢(1) = (0, id) with ef>(g)#oef>(g) = (0, id) 

as required. This gives us a non-trivial representation ¢ : <!: -+ Chk1
;. In fact, this is a 

faithful representation, according to the definition we shall see in section 4.3. 

Now that we have demonstrated the existence of non-trivial representations, we may 

attempt to find a more systematic method for constructing a representation of a given 

cat1-group. 

4.2 Regular Representations 

The classic existence theorem for non-trivial group representations is Cayley's theo

rem, which explicitly constructs the regular representation of any group. Regular rep

resentations are a particularly impo1tant class of group representations, in which the 

elements act by multiplication. The right regular permutation representation is defined 

as p : C 0
P -+ S1c1 with p(g)(h) := hg (it is convenient to blur the distinction be

tween an element h E C and the corresponding h in the underlying set, on which the 

permutation acts). The source of pis C 0 P, the opposite category to C, rather than C 

itself, since the natural definition of right multiplication forces p to be contravariant1, 

i.e. p(g1g2)(h) = h(g1g2) = (hg1)g2 = p(g2)p(g1)(h). Similarly, the left regular per

mutation representation is given by,\ : C-+ S1ci with ,\(g)(h) := gh; ,\ is covariant. 

Although usually stated for permutation representations (e.g. [6, 49]), it is easy to 

1The choice of left or right regular representation depends largely on the notation employed - usu

ally one or other of them is more natural to use. For the postfix function notation often employed by 

group theorists, the right representation is covariant (a homomorphism), while for the functional notation 

more common in other branches of mathematics (including category theory) it is contravariant (an anti

homomorphism). Although most authors only deal with representations as homomorphisms, there is no 

intrinsic reason why antihomomorphisms cannot also be used. 
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reformulate Cayley's theorem for linear representations (for example, Serre [67] defines 

the (left) regular representation as a linear representation, though he does not men

tion Cayley's theorem). To the regular permutation representations of G there corre

spond regular linear representations p : G 0
P -+ GL1a1(K), ,\ : G -+ GL1a1(K), with 

p(g)(eh) := ehg and ,\(g)(eh) := e9h (where e9 are the basis vectors in the vector space 

K( G) outlined in section 1.4, and p(g), ,\(g) are matrices). The right regular represen

tation can be thought of as an action of G on the group algebra K ( G) by multiplication 

on the right, with p(g )( eh) = 9eh = ehg· The left regular representation is similarly 

a G-action on K( G) by left multiplication. Regular representations of a group, then, 

reconstruct the elements of the group as automorphisms of its group algebra. From now 

on, we shall concentrate on right regular representations. 

Regular representations exist for every group, and they are quite straightforward to 

define and use. An analogue of Cayley's theorem for cat1-groups would be a desirable 

result, since it would enable us to construct a representation in a straightforward manner 

for any cat1-group. It is to the search for such a theorem that we now tum our attention. 

4.2.1 The Regular Representation of a Cat1-Group 

Suppose we have a cat1-group <r = (C ><1 P, P, s, t, i). By analogy with the group case, 

we would expect a regular representation to take elements of <r to automorphisms of its 

cat1-group algebra. We have already studied both the cat1-group algebra construction 

(section 3.2) and the automorphism cat1-group of a linear transformation (chapter 2), so 

we may attempt to combine the two to get a definition of a regular representation. 

The cat1-group algebra of <r, recall , is the cat1-algebra 

- - ii 
K(<t) := K(C ><1 P)/ J ~ K(P) , 

...__!__-
i: 

where J is the cocycle ideal and factorisation by J introduces the cocycle relations 

needed to make the kernel conditions work. We have not yet looked directly at the auto

morphisms of a cat1-algebra, but we have studied Aut(c5), the automorphism cat1-group 

of a linear transformation c5. From K(<t) we can get a single linear transformation by 

defining c5 : ker o- -+ K(P) to be f Iker a (we can also construct c5 using simplicial 

techniques, by observing that K( <t) is a heavily truncated simplicial algebra and con

structing its Moore complex). We saw in section 3.2 that ker o- has a generating set 

{vc,p : c # 1}, where Vc,p = e c,p - e l,p· 
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Any representation of <!: maps elements of P to chain automorphisms in Aut( c5)i 

and elements of C :>q P to homotopies in Aut(c5)2 for some representation complex 6. 

For the regular representation, p, we shall use the c5 described above, which comes from 

the cat1-group algebra. We can informally picture an action of C!: on K(C!:) by right 

multiplication. Note that this is a left action, and the elements of C!: appear in the left 

on the pictures, while they appear on the right in the algebraic notation (hence the term 

right multiplication). In the following diagrams the dotted arrows denote elements of 

the cat1-group, while the cells drawn with solid arrows are in its cat1-group algebra. 

A 1-cell in C!: is an element p E P. This can act both on the 1-cells and the 2-cells of 

K(<!:) . The action of p on a 1-cell is: 

p 
········>- -----+- (4.1) 

The action on a 2-cell is similar: 

p 
(4.2) 

A 2-cell in C!: is an element ( c, p) E C :>q P. This acts on 1-cells of K ( <!:) by right 

multiplication: 

p ..... . . 
••· ~ eq 

· •• .ij. (c,p) :4 --- (4.3) 

8c.'p 

We do not require the action of ( c, p) on a 2-cell. 

Although these pictures show an action of C!: on K ( <!:), we actually want to define 

pas a map into Aut(c5), so we need to do a little work. First of all, for each p E P, 

p(p) E Aut(c5)i must be a chain automorphism. From (4.1), we define 

for the lower level (note that this should strictly be (p(p) )0 but it will be clear from the 

input into p(p) which level we are working at, so the subscripts can be safely omitted; 

we shall also drop #o for <!: and write multiplication by juxtaposition from now on). 
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At the top level, (4.2) immediately suggests p(p)(ec,q) = ec,qp· However, the top level 

of Aut(c5) is ker8', which is generated by the elements v c,q · Using (4.2) as a guide, 

p(p)(vc,q) = p(p)(ec,q - e1,q) = ec,qp - e1,qp = vc,qp, so define 

It is straightforward to check that p(p) is a chain map on c5 and that the mapping is 

contravariantly functorial. So far we have essentially constructed the right regular group 

representation of P, and as a bonus we also have an action of P on the top level of 

Aut( c5). 

For every (c,p) E C ~ P, there must be a homotopy p(c,p) E Aut(c5)2. Since 

p is to be a functor, it must preserve the source and target of each 2-cell, so we must 

have p( c, p) : p(p) '.:::'. p( fJcp). As a homotopy in Aut( c5) we can specify p( c, p) by its 

source and chain homotopy. The source, as we have seen, must be p(p). The chain 

homotopy will be a map p'(c,p) : K(P) ➔ ker8'. We shall use diagram (4.3) to 

get a tentative definition for p' ( c, p) and then check that this is a functor and satisfies 

the chain homotopy conditions. As with the top level of p(p), the diagram suggests 

p' ( c, p) ( eq) = eqc,qp but we actually want a target in ker 8' so we shall define 

The first thing we shall check is that the chain homotopy conditions are satisfied. At 

the lower level this check is quite straightforward: 

c5p'(c,p)(eq) = bvqc,qp = c5(eqc,qp - e1,qp) = ea(qc)qp - eqp 

= eqacp - eqp = p(fJcp)(eq) - p(p)eq = [p(fJcp) - p(p)](eq), 

For the top level, the idea is the same, but the algebra is somewhat more involved. We 

can start by working in from both ends. 

(4.4) 

and 

(4.5) 
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For the chain homotopy condition to be satisfied, we need (4.4) = (4.5). Equivalently, 

we may show that (4.5) - (4.4) = 0. Now, 

(4.6) 

Since the Vc,p are inker a there are relations (given by equation (3.4) of chapter 3) which 

come from the cocycle relations induced by factoring K( C ><JP) by Jin the cat1-group 

algebra. These relations in ker a will also be called cocycle relations. In particular, the 

relation 

holds inker a, so we can rewrite the right-hand side of (4.6) as 

which is equal to zero by another cocycle relation. Hence p' ( c, p) is a chain homotopy 

as reg uired. 

It remains to show that p is functorial at the level of homotopies . The most difficult 

condition to check is that p preserves horizontal composition. Since p is contravariant 

on the I-cells, we expect this composition to be contravariant also. Therefore we require 

p(cPc',pp') = p[(c,p)(c',p')] = p(c',p')#0 p(c,p) . (4.7) 

It is clear that both ends of this chain of equations are homotopies with source p(pp'), 

so it remains to check that the chain homotopies coincide. We do this by checking their 

action on an element eq E K(P). Firstly, 

'( P' ')() -p CC ' pp eq = V q(cPc') ,qpp' . 

From the formula for the chain homotopy of a horizontal composite given in chapter 1, 

p(c',p')#0 p(c,p) has chain homotopy2 p'(c',p')p(ocp)0 + p(p')ip'(c,p), with 

= V q8cvc' ,q8cpp' + V Qc,qpp'. 

2Note that here, contrary to our usual practice, we have included the subscripts on the levels of the 

chain map p(p) for the sake of clarity. 
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Another cocycle relation in ker iJ gives 

so that ( 4. 7) is satisfied. 

Finally, let (c,p) and (c', ocp) E C ~ P, so that the vertical composite is defined 

((c', 8cp)#1(c,p) := (c'c,p)). Then 

while p(c', 8cp)#1p(c,p) has chain homotopy p'(c', ocp) + p'(c,p), giving 

There is another cocycle relation in ker iJ of the form 

whence 

p[(c', 8cp)#1(c,p)] = p(c', 8cp)#1p(c,p) 

as required. 

Note that the functor p defined above is contravariant in the horizontal direction (at 

both levels) but covariant in the vertical direction. It should therefore be regarded as a 

functor (t0P -t Ch~)' using the convention given in [44] that any 2-category C has a 

dual C0
P which reverses only the 1-cells (and hence affects both 1-cell and horizontal 

2-cell composition) and another dual cco which reverses only the 2-cells (and hence 

affects vertical 2-cell composition). 

This construction can be summarised in the following definition. 

Definition 4.2.1. The right regular representation of a cat1-group <t is the 2-functor 

p : (t0
P -t Ch~) sending each p E P to the chain automorphism 

and each ( c, p) E C ~ P to the homotopy p( c, p) : p(p) -+ p( ocp) with chain homotopy 

where all chain automorphisms and homotopies reside in Aut( c5) for the linear transfor

mation c5 := f Iker a obtained from the cat1-group algebra K( ct) of er. 
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Since the construction may be applied to any cat1-group, it gives us a cat1-group 

version of Cayley's theorem, in terms of linear regular representations. 

Theorem 4.2.2 (Cayley). For any cat1-group ct, the right regular representation, as 

defined in 4.2.1, exists. 
□ 

4.2.2 A Worked Example 

In section 4.1 we found an example of a non-trivial representation by trying several 

possibilities until we found one which worked. Apart from proving that representations 

exist, Cayley's theorem gives us a recipe for constructing a representation for any given 

cat1-group. We can now see how this recipe works in practice by plugging the same 

example ct= ( C2 , I, i, 0, 0) into the machinery of Cayley's theorem. 

As before, we shall start by taking K = C. The first thing we need is <5, which 

is obtained by first forming the cat1-group algebra K(ct) and then restricting the target 

map to the source of the kernel. We have already examined K( ct) for this particular ct 
in section 3.2 and have seen that, over C, it leads to the rather trivial cat1-algebra having 

C as both top group and base, with all maps the identity. Thus a = id and the regular 

representation is trivial. This shows an important difference from group representation 

theory, in that for cat1-groups a regularrepresentation need not be faithful (this particular 

example fails spectacularly). 

If we instead take the base field to be K = Z 2, the situation is quite different. In 

this case, the cocycle ideal is empty so that no relations are induced in the cat1-group 

algebra. In this case iJ(x, y) = x + y = f(x, y) and ker iJ ~ Z 2• This gives <5 : Z2 -+ Z2 

as the zero map. The regular representation becomes p(l) = id on the chain map level, 

while p(l) = (0, id) and p(g) = (g, id) on the homotopy level (taking gas the generator 

of Z 2). In this case, p is a faithful representation. 

Since we have been throwing the term "faithful representation" around, we should 

pause to check that we know what it means for cat1-group representations. 

4.3 Faithful Representations 

What makes a representation faithful? Is this a desirable property of representations? 

For groups, a representation is defined to be faithful if every element of the group G 
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has a distinct image; i.e. the representation is a monomorphism. In categorical terms, 

this means that the functor </> : G ➔ VectK is faithful, so that for g, h E G, we have 

</>(g) = </>(h) ⇒ g = h. Thus the terminologies of representation theory and category 

theory coincide for the notion of faithfulness. 

The fundamental purpose of a representation is to reconstruct an abstract group in 

more concrete terms, and faithful representations are particularly useful in this respect 

since they alone preserve the group structure completely. Let</> : G ➔ GLn(K) be a 

linear representation of a group G. Then the fundamental homomorphism theorem tells 

us that 

G/ker</> ~ </>(G) ~ GLn(K). 

If </> is faithful, ker </> = 1 and so G itself is isomorphic to a subgroup of the general 

linear group. If</> is not faithful, the kernel is non-trivial and some collapsing occurs. 

In the extreme case, the trivial representation sends every element of G to the identity 

of K, and this gives us the trivial group as a representation. While considering group 

representations, it may finally be noted that the regular representation is always faithful. 

For, if p(g)(h) := hg then 

p(g)h = p(g')h ⇒ hg = hg' ⇒ g = g'. 

Since a cat1-group representation is given by a 2-functor, the obvious way to define 

a faithful representation is as a faithful 2-functor. This leads to the immediate question 

"what is a faithful 2-functor?". Again, the obvious answer would be a 2-functor </> for 

which </>(a) = </>(f3) ⇒ a = f3 for any 2-cells a, f3 in the source category. This definition 

would encapsulate the I-functor idea of faithfulness, identifying I-cells f and g with the 

2-cells 1 f and 19 . 

Strangely, none of the standard references on 2-categories (for example, [7, 52]) 

seems to give a definition of faithful 2-functors. However, a definition can be pieced 

together from several sources. In their review of 2-category theory [44], Kelly and 

Street mention that a 2-category may be viewed as a Cat-category (that is, a category 

enriched over Cat), and that this definition determines the meanings of 2-functor and 

2-natural transformation. Presumably, then, the definition of a faithful 2-functor should 

also come from enriched category theory. 

Turning to the standard work on enriched category theory, also by Max Kelly [43], a 

V-functor is defined as follows. Let A, B be V-categories, i.e. categories enriched over 
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the monoidal category V. Then the V-functor T : A-+ B consists of an object function 

T : IAI -+ IBI together with maps TA,A' : A(A, A') -+ B(T A, TA') for each pair of 

objects A, A' E I A l. These latter are compatible with composition (itself a V-morphism) 

and identities. AV-functor is fully faithful if each TA,A' is an isomorphism. Implicitly, 

a V-functor is faithful when each TA,A' is a monomorphism; thus, every distinct 1- or 2-

cell in A(A, A') has a distinct image in B(T A, TA'). For V = Cat, this yields precisely 

the definition proposed earlier: 

Definition 4.3.1. A 2-functor </> : A-+ Bis faithful if, for 2-cells a, /3 E A, 

</>(a) = <f>(b) ⇒ a= /3. 

Armed with this definition, we may now define faithfulness of representations. 

Definition 4.3.2. Let([: be a cat1-group. A representation</> : ([:-+ Ch~) is faithful if it 

is faithful as a 2-functor. 

An immediate question is whether the regular representation of section 4.2 is faith

ful. Since at the I-cell level this reduces to the regular group representation, it is clear 

that at this level it must be faithful. However, the examples we considered in 4.2.2 pro

vide a counterexample to the conjecture that the regular representation is always faithful 

on the homotopy level. Fortunately the same examples also show that faithful represen

tations can exist and that the regular representation can be faithful for the right choice 

of base field. 

4.4 Crossed Module Representations 

In section 1.2.1 it was shown that cat1-groups and crossed modules are equivalent, and 

both are ways of viewing 2-groups. We have a definition of representations for a cat1-

group, and this may also be considered as a representation of the corresponding crossed 

module. Therefore we might define a representation of the crossed module X to be a 

representation of er( X) according to definition 2.4.1. 

However, a direct definition of crossed module representations would also be useful 

since it is often more natural and convenient to work with crossed modules than with 

cat1-groups. Since a crossed module is not a category, we should not expect this to be a 

functorial definition, but we might reasonably expect some kind of crossed module map 

where the target is a crossed module of algebras. An important criterion for a definition 
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of crossed module representation is that it should be equivalent to a representation of 

the corresponding cat1-group, as defined above. 

One possible way of proceeding with a direct definition of a representation of the 

crossed module X would be to first pass to the associated cat1-group <r(X) (as suggested 

above) and find a representation for this, whether the regular representation or another. 

Having obtained this representation, which would give us a mapping into the cat1-group 

Aut(o) for our choice of o, we could then pass back to the associated crossed module 

of Aut( o). In principle, this bidirectional exchange between crossed modules and cat1-

groups is straightforward. In practice, the notation and the definition of composition in 

Aut( o) (particularly at the top level) make it quite difficult, and further work is necessary 

to get a practical working definition of crossed module representations by this method. 



Chapter 5 

The Category of Representations 

In which a category consisting of representations and their morphisms is defined, and properties 

of this category explored. 

When faced with a collection of objects, it is natural for a category theorist to look 

for morphisms between those objects, in the hope of finding a new category. Therefore, 

since we are taking a categorical view of representations, an obvious question is whether 

there are morphisms between representations of a cat1-group, and whether we can define 

a category of representations and their morphisms. As usual, the answer for the group 

case suggests an answer for the cat1-group case, so we shall begin by reviewing the 

situation for groups. 

5.1 The Group Case 

A representation of a group G is a functor G -+ VectI< , so it is natural to define mor

phisms of representations to be morphisms of functors; that is, natural transformations. 

This leads to: 

Definition 5.1.1. The category of ( K -linear) representations of a group G is the functor 

category Rep{f := (VectI< )G whose objects are the functors G -+ VectI< and whose 

morphisms are the natural transformations between such functors. 

We shall usually suppress explicit mention of K and just write Repc when this is 

unambiguous. 

90 
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Suppose </>, 7/J are K-linear representations of G with representation spaces V and V' 

respectively. Then a natural transformation CJ : </> ➔ 'I/; is a linear transformation such 

that 

(5.1) 

for every g E G, i.e. the following diagram commutes: 

V--u-V' 

., j !·· 
V--u--V' 

Such a CJ is sometimes referred to in representation theory as an intertwining opera

tor [52], so Rep0 may be thought of as the category whose objects are the K-linear 

representations of G and whose arrows are the intertwining operators between such rep

resentations. 

If CJ is a linear isomorphism, then (5.1) may be rewritten as: 

(5.2) 

By considering matrices for '1/;(g), <f>(g) and CJ, it is clear that 'I/; and</> yield equivalent 

matrix representations. Hence, they are the same linear isomorphism, up to a change of 

basis. 

5.2 Onwards and Upwards 

Since a representation of a cat1-group is a 2-functor, the obvious definition of a mor

phism of representations is as a 2-natural transformation. Therefore we may expect 

to get a functor category (Ch~~)f. However, the 2 dimensional structure of Ch~~) al

lows for arrows between the 2-natural transformations; these are modifications, which 

provide a 2-category structure for (Ch~)f. For the general theory of 2-functor 2-

categories, a standard reference (e.g. [7, 52]) may be consulted. Following the defini

tion of the 2-category of representations below, we shall consider the structure of the 

2-functor 2-category in this special case. 
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Definition 5.2.1. The 2-category of ( K-linear) representations of a cat1 -group <tis the 

2-functor 2-category Repr := (Ch~lf having as objects the 2-functors (representa

tions) <t-+ Ch}p, as 1-cells the 2-natural transformations between them, and as 2-cells 

the modifications between the 2-natural transformations. 

As with group representations, we shall usually leave K implicit and simply write 

Repe;. 

If ¢, 'I/; : <t -+ Ch~) are two representations of <t with representation complexes 6 

and 6' respectively, a 2-natural transformation CJ : ¢ ⇒ 'I/; is a map CJ : 6 -+ 6' such that 

the diagram 

commutes, i.e. 'l/;(c,p)<J = <J</>(c,p) . Isomorphisms between representations are 2-

natural isomorphisms (i.e. CJ is invertible). These function as intertwining operators on 

the representations, just as natural isomorphisms are intertwining operators for group 

representations. 

In the same way that intertwining operators exist for group representations precisely 

when there equivalent matrix representations, the 2-natural isomorphisms in Repe; offer 

a way of defining equivalence for cat1-group representations, namely: 

Definition 5.2.2. Representations ¢ and 'I/; are said to be equivalent if there is an inter

twining operator CJ E (Repe;)i such that 

Suppose CJ, r : ¢ ⇒ 'i/J are 2-natural transformations (not necessarily invertible). 

Then a modification 2 : CJ ~ r has a single component1, also denoted 2 , which is a 

1 For a general modification, there is one such two-cell for each object in the source category of¢ and 
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2-cell 

(1 

~ 
8 JJ = 61 

~ 
T 

which commutes with¢ and '1/J in the following way. Suppose (c, p) is a 2-cell in It, then 

S #o¢(c,p) = '1/J (c, p)#oS. (5.3) 

This can be shown in the following diagram, although it is debatable whether this actu

ally clarifies the situation: 

{/ ,/J(p) 8' 

0/411 0/ 
II ,1.cp) 
81
-- -8' 

/ / 
6 <P(8cp) 6 

The top and bottom faces show that CJ and T respectively are natural transormations. The 

remaining faces are all 2-cells. Both the left and the right face are equal to S (a 2-cell in 

Repc;), while the front and back are respectively ¢(c,p) and 'l/J(c,p). Condition (5.3) is 

interpreted as the commutativity of front and right with left and back faces . 

The modifications in Repc; may be thought of as homotopies between morphisms of 

representations. 

5.3 Properties of Rep<r 

Upon discovering a new category, the category theorist will naturally ask questions 

about the properties of that category, viz. is it complete or cocomplete? is it addi

tive, or abelian? is it monoidal? if so, is it strict and symmetric? is it cartesian closed? 

and so on. 

The fact that Repc; is a 2-functor 2-category enables us to use the general theory of 

functor categories to get a quick answer to several of these questions. Borceux [7, 8] 
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gives some results for functor categories which generalise in a straightforward manner 

to 2-functor 2-categories. Several of these results require the source category (in our 

case It) to be a small category. In this situation, several properties of the target category 

(Ch~) for us) are inherited by the functor category (Repc:). 

Proposition 5.3.1. The category Ch}~) is: 

(i) complete, 

(ii) cocomplete, 

(iii) abelian, 

(iv) monoidal. 

Proof: 

First of all it may be remarked that these are all well-known properties of Vectg. By 

standard category theory [52], a category is complete if it has all equalisers and products, 

and cocomplete if it has all coequalisers and coproducts. 

(i) The product of vector spaces is just the usual Cartesian product, so that the prod

uct of a family Vi, Vi, .. . of vector spaces is the vector space Vi x Vi x .... This con

struction generalises immediately to Ch~). Suppose fP : C1 --+ C0 and 8D : D 1 --+ Do 

are in Ch}~). Then the product is 8c x 8D : C1 x D1 --+ C0 x D 0 . The product of an 

arbitary collection of chain complexes is defined likewise. 

For two linear transformations f, g : V --+ W, the equaliser is the subspace ker (!, g) 

of V given by ker (!, g) = { v E V : f (v) = g(v)}. Now suppose 8c and 8D are two 

elements of Ch}~) as before, and f, g : 8c --+ 8D are chain maps. This gives the picture: 

h 
ker U1, g1) C1 D1 

,er~'"·"' j ,c j 
91 

]•" Jo 
ker Uo , go) Co Do 

90 

Suppose v E ker(fi, 91) ~ C1. Then fi(v) = g1(v) . Now f08c(v) = 8D fi(v) 

8D g1 (v) = g08c (v), so 8c (v) E ker (!0 , g0 ). This gives us an equaliser for f, g E Ch}~) 

(it is, of course, unique up to isomorphism). 

Since Ch}~) has products and equalisers, it follows that the category is complete. 
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(ii) Coproducts and coequalisers also exist for VectK, These can be extended to 

coproducts and coequalisers for Ch~) in the same way as for their duals considered 

above. Therefore, Ch~) is also cocomplete. 

(iii) VectK is abelian2 since it has a zero object, products, coproducts, a kernel and a 

cokemel for every arrow, and every monomorphism is a kernel while every epimorphism 

is a cokernel. 

We have seen above that products and coproducts can be constructed in Ch~) from 

those in VectK by doing the construction levelwise. Similarly, a zero object, kernels and 

cokemels can be constructed in Ch}~) . Since a monomorphism in Ch}~) is a chain map 

for which both levels are monomorphisms in VectK, it follows that every monomor

phism is a kernel; similarly epimorphisms are always cokernels. Hence Ch}p is abelian 

as required. 

(iv) VectK is a symmetric monoidal category with the usual tensor product. This 

construction can be applied level wise to Ch}p, so that this too is a symmetric monoidal 

category. □ 

As remarked above, any functor category inherits the properties of (co)completeness, 

abelianity and monoidality from its target category, provided this is small (as Ch}~) is). 

Therefore we get the following result for free: 

Corollary 5.3.2. Rep([, is complete, cocomplete, abelian and monoidal. 
D 

5.4 Degree 

Every finite group representation over a field is partially characterised by its degree, 

which is defined as the dimension of the representation space; equivalent representations 

must have the same degree, although the converse is false. It is natural to ask whether 

this concept generalises to representations of cat1-groups. Before we turn to this ques

tion, however, let us consider why the degree is a useful tool in group representation 

theory, and which aspects of it we may hope to preserve for cat1-group representations. 

2We use the definition of abelian category given by Borceux [8] which at first sight is more general 

than that of MacLane [52] as it does not explicitly require the category to be preadditive. However, 

Borceux goes on to show that an abelian category by his definition can always be given an additive 

structure. 
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Although the degree offers only a partial characterisation of group representations, it 

can be quite useful. For one thing, as with topological invariants for homeomorphism, it 

provides a quick check whether two representations could possibly be equivalent. Also, 

the possible degrees of irreducible representations are constrained by the degree of the 

group they are representing. We shall return briefly to this fact in section 6.1, once we 

have seen the definition of an irreducible representation. 

It is not immediately clear how the notion of degree could be defined for a cat1-group 

representation, since there is no single concept of dimension for the representation com

plex. However, one possibility is to observe that a representation of a cat1-group con

sists of representations of the base and top group (both ordinary group representations) 

tied together by some compatibility conditions, and therefore to consider the list of the 

degrees of the top group and base representations. 

Definition 5.4.1. Let ct = ( C ><i P, P, s, t, i) be a cat1-group and </> : ct ➔ Ch}~) a 

representation. The degree list of</> is defined to be the list (deg <f>(C ><i P), deg </>(P)). 

This is a very tentative definition , and it is not yet clear whether it provides a useful 

invariant for representations. 



Chapter 6 

The Structure of Representations 

In which we break a representation down into bite-sized chunks, in order to examine its structure. 

An important strand of the elementary theory of group representations is the notion 

of reducibility - breaking up a representation into smaller (and simpler) parts, much as 

an integer may be factorised. We shall remind ourselves of some of the basic definitions 

for group theory and then examine how these might be generalised to cat1-groups. The 

ultimate goal of this chapter, which we shall not reach, is a cat1-group analogue of 

Maschke's theorem. It is not yet completely clear exactly what form such a theorem 

should take, so here we shall limit ourselves to exploring the background and some 

tentative results leading to an understanding of the structure of 2-group representations. 

6.1 Reducible and Irreducible Group Representations 

The basic definitions come from module theory, and may be found in, for example, [24]. 

We repeat them here for convenience, and to fix our notation. Let R be a commutative 

unitary ring. 

Definition 6.1.1. An R-module M is said to be reducible if it has a proper submodule 

0-=/- N-=/- M. Otherwise, Mis irreducible. 

Remark: Irreducible modules are also called simple modules. The analogy with sim

ple groups is clear. The irreducibility condition imposes strict limits on the maps that 

can be defined into or out of a module [38]; this leads to the result that the endomor-
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phism ring EndR(M) of an irreducible module, M, is a division ring (Schur's Lemma). 

As the foregoing remark suggests, the definition of irreducibility is actually a rather 

strong one. Another useful notion, and one which is somewhat easier for a module to 

satisfy, is indecomposability. 

Definition 6.1.2. An R-module Mis decomposable if it can be written as a direct sum 

of two non-trivial submodules. Otherwise M is indecomposable. 

This definition also holds more generally for objects in any preadditive category [61] 

(Popescu's definition of irreducible, however, is quite different from the one adopted 

here). 

Clearly, if Mis an irreducible module it has no proper submodules and hence cannot 

be written as a direct sum of non-trivial submodules. Therefore any irreducible module 

is automatically indecomposable. However, the converse is false in general: there exist 

indecomposable modules which have proper submodules. 

If a module is decomposable, it can be split up as a direct sum of submodules which 

may themselves be decomposable or not. A Krull-Remak-Schmidt decomposition (or 

K.R.S. decomposition, for short) of a module M is a direct sum EBi Mi ~ M where 

each Mi is an indecomposable submodule of M. In general, a K.R.S. decomposition 

need not be unique (unless the module is itself indecomposable, in which case the de

composition is trivial), but the Krull-Schmidt theorem1 states that if both the ascending 

and descending chain conditions hold for modules over the ring R, then the K.R.S. 

decomposition of any R-module is unique. 

If a module is decomposable it can be expressed as a direct sum of submodules. 

However, not every submodule is necessarily a direct summand. The following defini

tion captures the stronger condition in which every submodule is a direct summand: 

Definition 6.1.3. Let M be an R-module. Then M is completely reducible if every 

submodule N < Mis a direct summand of M, i.e. there exists a submodule N' < M 

such that M =NEB N' . 

Clearly any irreducible module is completely reducible, since it has no proper sub

modules to fail. A module which is both reducible and completely reducible is decom

posable. However, a decomposable module need not be completely reducible. 

1 Sometimes this result is referred to as the Krull-Remak-Schmidt theorem, or some other permutation 

of the names of mathematicians who contributed to its discovery. 
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Remark: A module is completely reducible if and only if it is a (direct) sum of ir

reducible submodules. Because of this, a completely reducible module is also called 

semisimple. 
These definitions, of course, make perfect sense when R is not just a ring but an 

algebra. In particular, we can speak of irreducible or reducible K( G)-modules, where 

K( G) is the group algebra over a field K. Theorem 1.4.7 motivates the following: 

Definition 6.1.4. A representation ¢ : G ➔ G L(V) is reducible if V is a reducible 

K( G)-module. The other terminology for modules (completely reducible, indecompos

able etc.) is similarly extended to cover representations. 

Clearly, the submodules of a module are important to the structure of the module. 

Since K(G)-modules correspond to representations of G, it is natural to look for a 

representation theoretic analogue of K ( G)-submodules. Suppose ¢ : G ➔ G L(V) is 

a representation of G, and W is a K( G)-submodule of V. Then, since W is itself a 

K(G)-module, ¢(g)(w) E W for every w E W. 

Definition 6.1.5. Let ¢ : G ➔ G L(V) be a representation of G, and let W be a sub

module of the K(G)-module V. Then ¢w : G ➔ GL(W), given by ¢w(g) = q;(g) lw, 
is a subrepresentation of¢. 

If¢ is decomposable, then V ~ WEB W' with W < V and W' ~ V/W, so¢ has 

a subrepresentation ¢w. Since Wis a proper submodule, dim(W) < dim(V), so the 

degree of the subrepresentation is smaller than the degree of the representation. 

Turning to the matrix formulation of¢, let {Vi, ... , VmVm+i, . . . , vn} be a basis for 

V such that {Vi, ... , vm} is a basis for W, and { Vm+i, . .. , Vn } is isomorphic to a basis 

for W' as a K-vector space. Then, for any vi E Wand g E G, 

and hence the corresponding matrix <I>(g) must be of the form: 

where A, B, Care respectively m x m, m x (n - m) and (n - m) x (n - m) matrices, 

and O is the (n - m) x m zero matrix. 

If ¢ is completely reducible, then so is V = EBk=i Wk. A basis { Vk
1 

••• vkmk : 1 ~ 

k ~ n} can be found for V such that { vk1 ••• vkmk} is a basis for Wk for each k. Then 
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the matrix for¢ is block diagonal: 

0 

0 0 An 

Clearly, completely reducible representations are particularly handy, since they can 

be broken up completely into a series of subrepresentations. Therefore, the following 

result is not only very nice but also very useful: 

Theorem 6.1.6 (Maschke). Let G be a group and K a field of characteristic p which 

does not divide the order of G. Then every K ( G)-module is semisimple. 
D 

A sketch of the proof is given in [25]. Due to the correspondence between K ( G)

modules and rings, Maschke's theorem can be reformulated directly in the language of 

representations. This is the version given (with proof) in [24], but it can also be derived 

as an easy corollary of theorem 6.1.6. 

Corollary 6.1.7 (Maschke's Theorem - Representation Version). Let G be a group 

and¢ : G ➔ GLn(K) a representation, where K is afield of characteristic pf [G[. 
Then ¢ is completely reducible. 

D 

While we are on the subject of reducible and irreducible group representations, we 

may now return to briefly consider the relationship between degree and irreducibility 

alluded to in section 5.4. The key result is the following. 

Theorem 6.1.8. Let G be a finite group and K an algebraically closed field of char

acteristic zero. Then the degree of any K-linear representation of G is a divisor of 

/G/ . 
D 

A proof of this theorem in a slightly more general form can be found in [24] (where 

it appears as theorem 33.7). The version given here is slightly simplified to avoid the 

need for introducing further definitions which we shall not need. 
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6.2 Towards a Maschke Theorem in Dimension 2 

Given a cat1-group C!: = (G, P, i, s, t), a cat1-subgroup of C!: consists of a cat1-group 

'.D = (H, Q, i', s' , t') where H ~ G, Q ~ P and the structural morphisms i', s', t' are 

restrictions of the corresponding morphisms in C!:. In the same way, subobjects of cat1-

algebras, cat1-modules and other cat1 structures can be defined. We can then define 

reducible/irreducible and completely reducible cat1-modules (ie. modules over a cat1-

ring) according to whether they have proper submodules or not, etc. 

With these definitions in place, the definitions for reducible representations etc. 

should be immediate from the equivalent modules over the cat1-group algebra. A ver

sion of Maschke's theorem should state that under fairly general conditions, such mod

ules (and hence also representations) should be completely reducible. The exact nature 

of the conditions needs investigation, since the idea of group order doesn't immediately 

generalise to cat1-groups (presumably the condition will be that the order of the base 

field is coprime to something, although it is not quite clear what). 

As we have seen, notions such as reducibility can be interpreted in an abstract, mod

ule theoretic way or more concretely in te1ms of matrices. It should be possible also to 

derive a matrix formulation for the structure of cat1-modules and representations. Judg

ing by the pattern of the matrix formulation in chapter 2, we would expect matrices for 

both levels, with some compatibility conditions linking the two. The exact nature of 

these conditions will require further investigation. 



Chapter 7 

Further Directions 

In which we survey the results accomplished, and consider possible further directions in which 

this research could continue. 

In a finite amount of time, only a finite amount of work can get done, so thjs thesis 

represents in no way a complete account of every possible facet of 2-group represen

tation theory. Instead it may be considered as an introductory survey of a new area of 

research in higher dimensional algebra. It is my aim in this chapter to consider what has 

been achieved so far (section 7.1), and to make some suggestions as to possible areas for 

further research (section 7.2). This latter section is not intended to be an exhaustive list, 

but only to highlight some of the questions raised by my work so far which I have not 

had time to explore fully as yet. Some open questions are posed, or hinted at, in ear]jer 

parts of this thesis (in particular, the question of degree in section 5.4 and the issue of 

reducibility in chapter 6), so here we shall concentrate on other possible avenues. 

7.1 The Story So Far 

In order to begin worbng on two-dimensional representation theory it was necessary 

to familiarise myself both with the classical one-dimensional representation theory of 

groups and with the techniques of higher-dimensional algebra. Indeed it was while 

exploring the latter, and considering groups as a way to understand 2-groups, that the 

idea for studying representations of 2-groups developed. 

While cat1-groups and their analogues are by now reasonably well-known and un-
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derstood, there is a lack of detailed elementary presentations suitable for newcomers 

to the area who want more than just a definition of the structures. The early part of 

this thesis, therefore, has a strong emphasis on the exposition of this material as a way 

of bridging this gap, in the hope that it will be accessible to readers without a strong 

background in this area of algebra. In this way, the thesis may also be of interest to 

people whose main concern is not with representation theory. Similarly, the other ma

terial of chapter 1 and to a large extent the exposition of cat1-algebras in chapter 3 is 

not groundbreaking new material but is difficult to find in a straightforward presentation 

elsewhere. 

As remarked in section 1.3, the category Ch}~) can be recovered from a construc

tion given by Gabriel and Zisman [30). It also crops up under a different name in a 

paper by Baez and Crans [4], which appeared sometime after my account of Ch}P was 

completed (see also section 3.3). The construction of Aut(o) detailed in chapter 2 is a 

subcategory of Ch~) and is what we really need for describing representations. How

ever, the more general discussion of Ch~) (which was completed before the need for an 

explicit treatment of Aut( o) was realised) has been retained since this better illustrates 

the connection with vector spaces, and also generalises easily to the higher-dimensional 

case Ch which would be required for a more general representation theory of higher

dimensional n-groups. 

The cat1-group algebra is a new construction. The need to factor out the cocycle 

condition was unforeseen when the construction was first attempted. This adds an extra 

degree of subtlety and interest to the construction. The cocycle condition is necessary 

for the construction of the regular representation to work (in order for the top level 

of p to be a functor and a homotopy), and in fact it was in attempting to verify this 

construction that the need for the cocycle condition was first brought to light. 

While many of the calculations contained within this thesis are at a fairly elementary 

level, they often contain a number of details to keep track of (and to trip up the unwary 

mathematician), as well as being susceptible to confusion between the different ways 

of viewing the various entities involved. Because of this, performing actual calcula

tions with representations of cat1-groups is still quite tedious, even for reasonably small 

examples. 

The subject of group representation theory is a vast one, and there are many different 

directions in which to explore any generalisation to higher dimensions. In this thesis we 

have travelled a number of roads to a greater or lesser extent, but have certainly not 
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reached the end of any of them. 

7.2 The Road Ahead 

From any crossed module X, there is an induced crossed module with the kernel as the 

top group and a coinduced crossed module with the image at the top (both share the same 

base as X). These are of the form of some of our first generic examples. Presumably 

the associated cat1-groups should also be related to each other in the same way. It 

might be possible to reconstruct representations of X (or lr(X)) from a knowledge of 

the induced and coinduced crossed modules on the kernel and image. Such a result 

would be particularly nice (and useful) if these generic example types have restricted 

possibilities for their representations. Perhaps the interplay between top and bottom 

groups imposes severe restrictions on the possible representations. It may even be that 

every representation can be built from representations of the kernel and image. If there 

is only a small list of possibilites for each, crossed module representations will be easily 

characterisable. 

It was remarked in section 1.4 that a group algebra has a naturally occurring Hopf 

algebra structure. It seems plausible, therefore, that there should be some kind of cat1-

Hopf algebra structure on the cat1-group algebra. Any associative algebra naturally 

gives rise to a Lie algebra by defining the bracket [x, y] := xy - yx (see, for example, 

[36]). The same trick in the next dimension works to give a cat1-Lie-algebra from 

any cat1-algebra, including K(t). In the group case, there are adjunctions between 

the categories of groups, Hopf algebras and Lie algebras (given in the first place by the 

group algebra functor and its right adjoint the unit group functor, and in the second place 

by the universal enveloping Hopf algebra of a Lie algebra together with its adjoint [65]). 

These adjunctions should carry through to the cat1 case in much the same way as we 

earlier saw the adjointness of the group algebra/unit group functors (in 1.4) extending 

to the cat1-group algebra (in 3.2.3). The details of the interactions between these three 

structures would be an interesting subject for fm1her study. 

As intimated in previous chapters, a desire to facilitate computation of actual ex

amples was one of the main motivating factors behind this work. In order to do this 

practically, it would be necessary to enlist the help of computer algebra packages. The 

calculations developed in this thesis, and extensions of them, could be implemented in 
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GAP or another such package. 

A recent paper by Baez and Lauda [5] details the theory of weak and coherent 2-

groups. These are 2-groups in which inverses work only up to isomorphism. A nke 

theorem is that every weak 2-group is equivalent to some coherent 2-group, although 

these are not in general equivalent to strict 2-groups. Representation theory, which in 

this thesis is only developed for strict 2-groups, could be extended to cover coherent 

2-groups as well. It seems reasonable to expect that in this case a weak version of Ch~~) 

would be required, and lax functors would have to be considered. 

As mentioned in the introduction, the representation theory could be extended both 

to still higher dimensions and to groupoids with more than one object. Also, permutation 

representations of 2-groups would be worth exploring. It is likely that, as with the group 

case, these could be modelled successfully by linear representations, but even so they 

might be of intrinsic interest. The 2-dimensional analogue of permutations on a set 

would quite probably be automorphisms of a graph. Some work on automorphisms of 

graphs has been done by R. Brown and his collaborators in [10, 15]. 



Appendix A 

Matrices for Ch~ 

In which the matrix formulation for Ch }P is dissected with the aid of some examples. 

This appendix contains some examples of matrices corresponding to the ceHs of 

Ch~), as discussed in section 1.3.6. For ease of computation, we shall work over JR, 

with the standard basis for each ]Rn . Some of the following calculations have been given 

in detail; others are left as an easy (and hopefully pleasant) exercise for the reader. 

Let A , B, C be the following 2 x 3 matrices: 

A= (1 0 0) 
0 1 0 ' 

B=(O 1 0) 
1 0 0 ' 

Then A, B, C are afforded by linear transformations JR3 ➔ JR2 , which are objects 

in Ch~). For the sake of convenience, we may slightly abuse language and refer to 

the matrices themselves as objects of Ch~ ) - this presents no problems as long as the 

bases are fixed. Similarly, the 1- and 2-cells of Ch~) are pairs of linear transformations, 

called chain maps and homotopies respectively, satisfying given conditions; the pairs of 

matrices which arise from these will also be referred to as chain maps and homotopies. 

Chain maps between each pair of the objects A, B , C will be pairs consisting of a 

3 x 3 matrix and a 2 x 2 matrix that satisfy the commutativity condition (1.8). For 

example, one chain map is F : A ➔ B with 

Fo = (~ ~), F1 = (~ ~ ~) 
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The commutativity condition in this case is F0A = BF1. It is easy to check that this 

condition is satisfied and in fact F0A = BF1 = B. We could replace F1 by the matrix 

or indeed by any matrix with the same top two rows and an arbitrary bottom row, and 

the commutativity condition would still be satisfied. Another chain map from A to Bis 

F': 

I (1 0) 
Fa= 0 l ' 

This time we get F6A = BF{ = A. A final example of a chain map A ➔ B, using 

slightly more adventurous coefficients, is F": 

Here, F6' A = BF{' = (6 g 8 ) . 
Some examples of chain maps B ➔ C now follow: 

(~ 
1 

~), Go= (1 O) G1 = 0 GoB = CG1 = B. 
0 1 ' 

0 

(i 
0 

~), ~) G'=(O 1) G~ = G' ' (1 0 
1 oB = CG1 = l o 1 1 ' 1 
0 

(; 
1 

~), G ~) G' = (1 2) G~= G~B =CG~ = 
1 

3 0 3 4 ) 3 
0 



APPENDIX A. MATRICES FOR CH¼) 108 

Chain homotopies between these chain maps are linear transformations IR2 ➔ JR3 , so 

the corresponding matrices are 3 x 2. These must satisfy the chain homotopy conditions 

of (1.9). A chain homotopy between F and F' is given by: 

It is straightforward to check that the homotopy conditions are satistied: 

( 1 -1) BH = = F~ -F0 ; 
-1 1 

Therefore H : F '.'.:::'. F', as claimed. Similarly, the following are chain homotopies 

between some of the other pairs of chain maps above: 

Note that in order to fully specify a homotopy, it is necessary to give both the chain 

homotopy and its starting point. This is because the same chain homotopy may function 

for different pairs of chain maps. A trivial example of this is the identity homotopy 

id f : f ⇒ J for any chain map f. In every case, the chain homotopy is the zero map ( or 

its corresponding zero matrix). 

We now have enough chain maps and homotopies to explore the matrix versions of 

the compositions. Composition of chain maps corresponds simply to multiplication of 
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matrices at both levels: 

These are both chain maps A -t C. 

The vertical composite of two homotopies is found by adding the conesponding 

matrices. Thus: 

(

- 1 

H' + H = ~ F~' - Fo = B(H' + H) , F{' - F1 = (H' + H)A. 

These give, as we would expect, (H' + H) : F '.::: F" and (K' + K) : G '.::: G". 

Prewhiskering c01responds to multiplying the homotopy with the bottom matrix of 

the chain map, while postwhiskering corresponds to multiplying the top matrix of the 

chain map with the homotopy. For example: 

FF~ = (-1 1) (1 0) (-1 1) 1 0 = 1 0 . 
0 1 

0 0 0 0 

Both of these give homotopies, respectively G F '.::: G F' and G F' '.::: G' F'. These 

homotopies may be added together (i.e. composed vertically) to give the horizontal 
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composite of Hand K: 

To verify that this is a homotopy G F '.:::= G' F', check the homotopy conditions: 

The horizontal composite of H' and K' is formed similarly. The reader may like to 

check that: 

and the homotopy conditions are satisfied. 

We may now verify that the interchange law holds for the four basic homotopies that 

we have so far defined. Composing first vertically, then horizontally: 

Composing first horizontally, then ve1tically: 

These two matrices are the same, just as we would expect. 

Previously we took two chain maps and searched for a chain homotopy between 

them. Working this way round, we cannot guarantee finding a suitable matrix, for not 
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all chain maps between a given pair of objects are homotopic to each other. To prove 

this claim, consider the following example. Let F = (Fi, F0 ) : A -+ B be the chain 

map defined above and E = (Ei, E0) : A-+ B the following chain map: 

Suppose1 H E IB.3 •
2 is a chain homotopy. Then we must have AH = E0 - F0 , whence 

H is of the form: 

for some a, b E IB.. For any choice of a, b, we get: 

in which the lower right hand comer entry is 0. However, the lower right hand corner 

entry of Ei -Fi is 12, whence it is impossible to find a matrix H satisfying the homotopy 

conditions. Thus, F '/:- E . 

Conversely, we may start with a chain map F (not neccesarily the one defined above) 

and a potential chain homotopy Hand look for another chain map F' such that (H, F) : 

F ~ F' is a homotopy. In this case a suitable matrix may always be found. Suppose 

F: A-+ B with A, BE IB_m,n . Put 

These are both defined since all the matrices involved are the tight shape. Rearranging 

these formulae, the chain homotopy conditions are automatically satisfied. It remains to 

verify that (F{, F~) is a chain map. Now, 

F~A = (BH + F0 )A = (BH )A + F0 A 

= B(HA) + BFi = B(HA + Fi) 

= BF{, 

1 Recall that Rm,n is notation for the vector space of all m x n matrices over Ill 
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as required. Hence every n x m matrix is a chain homotopy for a suitably chosen pair 

of chain maps. 

We turn now to consider the question of inverses for chain maps and homotopies. 

It is clear from the definition that a chain map will be invertible precisely when the 

linear transformations at both level are invertible. In matrix terms, this means that F = 
(F1 , Fa) is invertible if and only if both F1 and Fa (which are always square matrices) 

are non-singular. For homotopies, inverses always exist for vertical composition. Since 

this composition is simply addition in the matrix formulation, it is easy to see that the 

inverse for vertical composition of a chain homotopy matrix is the additive inverse of 

that matrix. For horizontal composition, (H, F) is invertible when both the source F 

and the target F + !:iH are invertible. 

In our examples, most of the chain maps are not invertible, since the top level ma

trices include a column of zeros. The exception is the chain map E , for which both E0 

and E 1 are non-singular. 



AppendixB 

A Dictionary of the Analogy Between 

Group and Cat1-Group 

Representations 

In which we summarise some of the principal structures and results for group representation 

theory and their analogues in the next dimension. 

The representation theory of cat1-groups contained within this thesis has largely 

been developed by analogy with the classical theory of group representations. It is help

ful to summarise the analogy between these two theories . The following table shows 

some of the principal structures involved in group representation theory and the cor

responding structures in the cat1 case. Throughout we shall assume that K is a field, 

although a commutative unitary ring could be substituted with minimal changes in the 

terminology and notation. 

G 

V 

Vectg 

Groups 

group 

K-vector space 

category of vector spaces 
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Cat1-groups 

e: cat1-group 
0 

C : C1 ~ Co length 1 chain complex 

(a.k.a. linear transformation) 

of vector spaces 

2-category of length l chain 

complexes 
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GL(V) group of linear automor- Aut(o) 2-group of chain automor-

phisms on V phisms on o and homotopies 

between them 

¢ : G ➔ GL(V) linear representation of G ¢ : <!: ➔ Aut(o) linear representation of <!: 

(group morphism) (cat1-group morphism) 

V representation space of ¢ 0 representation complex of ¢ 

¢: G ➔ VectK linear representation of G ¢: <!: ➔ Ch}P linear representation of <!: (2-

(functor) functor) 

K(G) group algebra of G K(l) cat1-group algebra of<!: 

It will be observed that the representation ¢, both for groups and cat1-groups, ap

pears twice in the table. It occurs initially as as a morphism of (cat1- )groups, then as a 

(2-)functor (interpreting Gas a category and Q: as a 2-category, both with a single object 

and inve1tible morphisms). Similarly, V and 6 both appear twice. The first time is their 

definition (note that we use 6 and C interchangeably for the length 1 chain complex 

which is the cat1 analogue of a vector space), while the second is their appearance in the 

representation, as the object on which the (cat1- )group elements are realised as linear 

isomorphisms (chain isomorphisms/homotopies). 

As well as the structures themselves, many of their properties have analogies be

tween the two cases. For example, a faithful representation can be defined as one in 

which the (2-)functor ¢ is faithful. The degree of a group representation is defined as 

the dimension of the representation space, while the degree of a cat1-group representa

tion is related to the degrees of the terms in the representation complex, although this 

definition is not yet fully worked out. 

Many of the results in group representation theory also have more-or-less direct 

analogues in cat1-group representation theory. For example, in both cases, Cayley's 

theorem states that representations exist and provides a construction of right regular 

representations. The cat1 analogue of Maschke's theorem, which we have not yet suc

ceeded in establishing completely, will be a structure theorem along the lines of the 

classical Maschke theorem, and is likely to involve a similar condition on the character 

of the base field and the orders of the groups involved. 

Of course, an analogy can only be taken so far. For example, there is nothing in the 

construction of the group algebra K ( G) to indicate the problem of the cocycles in the 

cat1 case, which necessitates factoring out the cocycle ideal to get a cat1-algebra. 



List of Notation 

The table below indicates some of the notation employed in this thesis, together with a 

short description and a reference to the place where the notation is defined (or the first 

page on which it is used, for things not defined here). 

Notation Description Page 

Cat Category of (small) categories and functors 3 

Set Category of (small) sets and functions 3 

VectI< Category of K-vector spaces and linear transformations 3 

GL(V) Group of linear automorphisms of a vector space V 8 

GLn(K) General linear group (invertible n x n matrices over K) 8 

N Natural numbers {O, 1, 2, .. . } 33 
N+ N\ {O} = {1,2 ... } 9 
ex C \ {O} ~ GL1(C) 9 

X Crossed module of groups (C, P, 8, a) 12 

v: G---+ G/N Natural map g M g + N where N <l G and g E G 13 

(also for rings, modules etc.) 

Z(G) { c E G : cg = gc Vg E G}, centre of G 14 

Aut(G) Group of automorphisms G ---+ G 14 

XMod Category of crossed modules (of groups) 16 

BX Classifying space of the crossed module X 16 

Q.: Cat1-group (G , P,i, s, t) 16 

Catl = CatlGr Category of cat1-groups 16 

C!:( X) Cat1-group associated to crossed module X 18 

X( C!:) Crossed module associated to cat1-group Q.: 18 

Be!: Classifying space of the cat1-group Q.: 19 

coker (!, g) Coequaliser of morphisms f, gin a category 19 

#o (horizontal) composition across common 0-dimensional boundary 20 
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LIST OF NOTATION 

Notation 

#1 
Ch(l) 

K 

invCh(l) 
K 

Top 

C0I 
Ch(n) 

K 

Ch 

Xa 
Gr 

AlgK 

K(G) 

U(A) 
EndK(V) 

Aut(o) 
Km,n 

¢: ~ -t Ch}~) 

A a Xr B 

CatlA1gK 

K ( <!:) 

K-Mod 

p : <[OP -+ Ch~) 

Rep~ 

Repf 

Description 

(vertical) composition across common I-dimensional boundary 

2-category of length 1 chain complexes over VectK 

Sub-2-groupoid of invertible elements of Ch}p 

Category of topological spaces and homeomorphisms 

Cylinder on the chain complex CE Ch~) 

(n + 1)-category of length n chain complexes over VectK 

Gray-category of arbitrary length chain complexes over VectK 

Underlying set of group G 

Category of groups and homomorphisms 

Category of K-algebras and K-linear transformations 

Group algebra of G over a field K 

Unit group of a K-algebra, A 

K-algebra of linear transformations V -+ V 

Automorphism cat1-group of linear transformation o 
m x n matrices with coefficients in field K 

Representation of<!: 

Pullback over morphisms a : A -+ C and T : B -+ C 

Category of cat1 -algebras 

Cat1-group algebra of<!: over K 

Category of K -modules (K a commutative ring) 

Right regular representation of <!: 

Category of K-linear representations of group G 

2-Category of K-linear representations of cat1-group <!: 
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21 

23 

23 

23 

24 

32 

33 

35 

37 

37 

37 

37 

39 

42 

45 

58 

62 

64 

72 

77 

86 

90 

91 

We generally adopt the following convention with regard to choice of letters for 

homomorphisms, linear transformations and matrices. Lowercase Roman letters are 

used for homomorphisms of groups, lowercase Greek letters for linear transforma

tions and uppercase Greek letters for matrices. Where there is a correspondence be

tween homomorphisms and linear transformations, or between linear transformations 

and matrices, we shall use the corresponding letters of the different alphabets. Suppose 

for example f : G ---+ H is a group homomorphism, then the linear transformation 

K(f) : K(G) ---+ K(H) is usually written as ¢. A matrix afforded by</> would be 

written as g?, or g?v if it is necessary to make the basis V explicit. 
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automorphism cat1-group, 42 

boundary, 13 

cat1-algebra, 62 

cat1-group, 2, 16 

cat1-group algebra, 72 

cat1-subgroup, 101 

catn-group, 16 

categorical group, 16 

category of representations 

cat1-group, 91 

group, 90 

Cayley's theorem, 80, 86 

central extension, 14 

chain complex, 22 

chain homotopy, 25 

chain isomorphism, 23 

chain map, 22 

change matrix, 46 

classifying space 

cat1-group, 19 

crossed module, 16 

cocycle, 70 

cocycle ideal, 70 
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cocycle relation, 72, 84 

completely reducible module, 98 

composition 

horizontal, 20, 29, 43 

vertical, 21, 27, 44 

computer algebra package, 45, 47 

crossed module, 2, 12 

crossed module morphism, 15 

decomposable module, 98 

degree, 9, 95 

degree list, 96 

differential, 22 

endomorphisms 

algebra, 39 

emiched category, 32, 87 

equivalent representations, 91 

equivariance, 13 

faithful representation, 9, 86 

group 

general linear, 8, 34 

group algebra, 35 

homology, 23 

homotopy, 23 

of chain complexes, 24 

Hopf algebra, 37, 104 

horizontal composition, see composition 
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identity condition 

cat1 -group, 17 

indecomposable module, 98 

integral representation, 12 

interchange law, 21, 31, 62 

internal category 

in Algg, 62 

in Gr, 19 

in Vectg, 76 

intertwining operator, 91 

involution, 65 

irreducible module, 97 

K-linear representation, see linear rep

resentation 

kernel condition 

cat1-algebra, 62 

cat1-group, 17 

Krull-Schmidt theorem, 98 

Lie algebra, 104 

linear representation, 1, 9 

Maschke's theorem, 12, 100 

matrix 

change of basis, 46 

matrix representation, 10 

equivalent, 11 

modular representation, 12 

module 

over algebra, 39 

over cat1-algebra, 76 

Moore complex, 19, 81 

nerve, 19 

Peiffer identity, 13 

permutation representation, 1 

postwhiskering, 28 

precat1-algebra, 64 

precat1-group, 17 

precrossed module, 13 

prewhiskering, 29 

reducible module, 97 

representation 

cat1-group, 59 

group, 1 

irreducible, 99 

reducible, 99 

regular, 80 

representation complex, 59, 82, 96 

representation space, 9, 95 

Schur's Lemma, 98 

sernidirect product, 17 

sernisimple module, 99 

simple module, 97 

simplicial algebra, 81 

simplicial group, 19 

source, 17 

structural morphism, 17, 62, 76 

target, 17 

units 

group of (algebra), 37 
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vertical composition, see composition 

whiskering, 28 




