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Summary of Thesis 

We introduce notions of homotopy and cohomology for ordered groupoids . We show 

that abstract homotopy theory can be used to define a suitable notion of homotopy 

equivalence for ordered groupoids ( and hence inverse semigroups). As an application of 

our theory we prove a theorem which is the exact counterpart of the well-known result in 

topology which states that every continuous function can be factorised into a homotopy 

equivalence followed by a fibration. We show that this factorisation is isomorphic to 

the one constructed by Steinberg in his 'Fibration Theorem', originally proved using a 

generalisation of Tilson's derived category. We show that the cohomology of an ordered 

groupoid can be defined as the cohomology of a suitable small category, in doing so we 

generalise the cohomology of inverse semigroups due to Lausch. We define extensions 

of ordered groupoids and show that these provide an interpretation of low-dimensional 

cohomology groups. 
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Introduction 

The aim of this thesis it to apply methods from algebraic topology to inverse semi

groups. 

An important feature of our theory is that it lives not in the category of inverse 

semigroups, but in the category of ordered groupoids. A formal definition of an ordered 

groupoid is given in Chapter 3, but roughly it is a groupoid in the sense of category theory 

equipped with an order on the set of morphisms. It is well-known that the category of 

inverse semigroups is isomorphic to a subcategory of the category of ordered groupoids 

(the construction is given in Section 3.2). The existence of an isomorphism may suggest 

that we should work in the category of inverse semigroups rather than ordered groupoids, 

since the former are better known and easier to handle than the latter. However, in [15], 

Lawson argues persuasively that many constructions involving inverse semigroups can 

best be carried out by working in the larger category of ordered groupoids. Thus this 

thesis is an application of the 'ordered groupoid approach' to inverse semigroups. 

In Part I of this thesis we give the necessary background material from inverse semi

group theory and category theory. In Chapter 1 we quote the necessary definitions and 

results concerning inverse semigroups. Chapter 2 is devoted to background material on 

category theory. In Chapter 3, we examine the category of ordered groupoids and give 

details of the relationship between inverse semigroups and ordered groupoids. 

In Part II of this thesis we set up the framework needed to define the homotopy 

theory of ordered groupoids. To show that our theory has some teeth we are easily able 

to reprove Steinberg's Fibration Theorem [28] using only ideas from homotopy theory. 

Two observations served as motivation for this part of the thesis: 

• Steinberg's Fibration Theorem, which states that every ordered functor between or

dered groupoids factorises into an enlargement followed by an ordered star surjective 

functor. This is strongly reminiscent of the result in topology which states that ev

ery continuous function can be factorised into a homotopy equivalence followed by 

a fibration (see Theorem 2.8.9 of [27]). 

• Philip Higgins pioneered the idea of using groupoids in topology, and of interpreting 

groupoid-theoretic ideas in topological terms. An account of his work can be found 

in his book [7]. In particular, in Chapter 6, he introduces the idea of homotopy 

equivalence for groupoids , although this is nothing other than natural equivalence. 

Higgins approach was developed by Brown [4]. 

Putting these observations together, we show that Steinberg's Fibration Theorem is a 

consequence of the fact that the category of ordered groupoids can be endowed with a 
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cocylinder in such a way that we can do homotopy. 

In Chapter 4, we describe the relevant homotopy theory in its original topological 

setting. In Chapter 5, we outline the necessary homotopy theory of categories; we describe 

how to define a cylinder and a cocylinder on a category, and examine the cubical conditions 

a category must satisfy so that a sensible notion of homotopy exists . In Chapter 6, we 

develop the homotopy theory of ordered groupoids; we examine the notions of homotopy 

equivalence and fibrations of ordered groupoid, as an application we deduce Steinberg's 

Fibration Theorem. 

The cohomology of inverse semigroups was introduced by Lausch [11], who used it 

to classify extensions of inverse semigroups. In [19], Loganathan showed that the coho

mology of an inverse semigroup can be derived as the cohomology of a suitable small 

category. Independently, Renault [25] generalised the cohomology of groupoids to in

verse semigroups, in doing so he obtained a cohomology different to that of Lausch and 

Loganathan. 

In Part III of this thesis we develop a cohomology of ordered groupoids which gener

alises that of Lausch and Loganathan. Following Loganathan's approach, we show that 

we can define the cohomology of an ordered groupoid G to be the the cohomology of a 

small category C ( G). We introduce extensions of ordered groupoids and show that these 

may be used to characterise first and second cohomology groups. Finally, we generalise 

Renault 's cohomology of inverse semigroups to ordered groupoids . We also generalise 

Renaults extensions of inverse semigroups and show that these are special types of the 

extensions already constructed. In this way we show that Renault's second cohomology 

groups are subgroups of those of Lausch. 

Part III is divided into five chapters. In Chapter 7, we outline the cohomology of 

abelian categories that we will use. In Chapter 8 we show how to calculate the coho

mology of small categories. In Chapter 9 we show that the cohomology of an ordered 

groupoid G can be defined as the cohomology of the small category C ( G). In Chap

ter 10, we define extensions of ordered groupoids . We define derivations and factor sets 

for ordered groupoids and show that these classify extensions , we then show that low 

dimensional cohomology groups can be interpreted in terms of extensions. In Chapter 

11 we examine Renault 's cohomology in an ordered groupoid setting, we show that his 

extensions are special extentions having an order-preserving transversal, in this way we 

show that Renault's second cohomology groups are subgroups of the cohomology groups 

obtained by Lausch. 
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Part I 

Background on inverse 

semigroups, categories and 

groupoids 
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Chapter 1 

Inverse semigroup theory 

We begin by giving some basic definitions and results from inverse semigroup theory. Our 

principal sources are books by Howie [8], Lawson [15] and Petrich [23] to which we refer 

the reader for further details. 

1.1 Inverse semigrou ps 

A set S with a binary operation which we denote by concatenation is a semigroup if the 

operation is associative; that is if (xy)z = x(yz) , for all x , y, z E S. An element e E S 

is called an idempotent if e · e = e. We denote the set of idempotents by E(S). If a 

semigroup S contains an element 1 such that l x = x = x l for all x E S, then S is called 

a monoid. A monoid S is a group if for all x E S, there is an element x-1 E S such that 

x- 1x = 1 = xx- 1. 

A subset T of a semigroup Sis said to be closed under multiplication if a, b E T implies 

that ab ET. A non-empty subset T of a semigroup T that is closed under mult iplication 

is called a subsemigroup of S. If S is a monoid, then T is a submonoid of S if it contains 

the identity element of S. A subsemigroup of S which is a group with respect to the 

multiplication inherited from S is called a subgroup of S . 

A function 0 : S ----+ T , where S and T are semigroups, is called a semigroup ho

momorphism if 0(xy) = 0(x)0(y), for all x, y E S. If S and T are monoids, then 0 is a 

monoid homomorphism if it satisfies the additional condition 0(1) = l. A homomorphism 

is called an isomorphism if the function 0 is bijective. In this case, we say that S and T 

are isomorphic. 

Wagner [29] first defined inverse semigroups ( under the label of 'generalised groups') 

as follows: 

Definition A semigroup S is an inverse semigroup, if 
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(ISl) Sis regular, this means to each s E S there is an element t ES, called an inverse, 

satisfying s = sts and t = tst. 

(IS2) The idempotents of S commute. 

Shortly afterwards, Liber [18] showed that Wagner's definition is equivalent to the 

requirement of uniqueness of inverses . We refer the reader to Lawson [15] for proof of 

this result. 

Theorem 1.1 Let S be a regular semigroup, then the idempotents of S commute if, and 

only if, every element of S has a unique inverse. 

■ 

A subset of an inverse semigroup S is called an inverse subsemigroup of S if it is an 

inverse semigroup with respect to the multiplication inherited from S . 

The relationship between groups and inverse semigroups is given by the following 

standard result. 

Proposition 1.2 Groups are precisely the inverse semigroups with exactly one idempo

tent. 

■ 

Let S be an inverse semigroup. If S has an identity which we wish to distinguish, 

then we say that Sis an inverse monoid. If it has an element Osuch that sO = 0 = Os, for 

all s E S, then we say that S is a semigroup with zero. Every (inverse) semigroup may 

be converted into an (inverse) monoid or an (inverse) semigroup with zero by adjoining 

an identity or a zero, as follows. Define S1 = SU {1} and extend the product to S1 by 

defining ls = s = sl, for all s E S, and 11 = l. Then S 1 is a monoid . Similarly, we may 

form a semigroup with zero s0 = SU {O}, with extended product given by Os = 0 = sO, 

and 00 = 0. 

We now list a few properties of inverses in semigroups, for proofs see Proposition 1.4.1 

of [15] . 

Proposition 1.3 Let S be an inverse semigroup. 

(i) For any s ES, both s-1s and ss-1 are idempotents . 

(iii) For any s ES and e E E(S), s- 1es is an idempotent. 
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(iv) If e E E(S), then e-1 = e . 

■ 

Proposition 1.4 shows that homomorphisms between inverse semigroups are simply 

semigroup homomorphisms - we do not require any extra conditions. Proving these 

results is straightforward, but details can be found in [15]. 

Proposition 1.4 Let S and T be inverse semigroups, and 0 S ---+ T a semigroup 

homomorphism. Then 

(ii) If e E E(S), then 0(e) E E(T). 

(iii) If s ES and 0(s) is an idempotent, then there exists e E E(S) such that 0(e) = 0(s). 

(iv) Im(0) is an inverse subsemigroup of T. 

(v) If U is an inverse subsemigroup ofT, then 0- 1 (U) is an inverse subsemigroup of S. 

We conclude this section by describing an example of an inverse semigroup. 

Let G be a group and J a non-empty set. Define 

B ( G, J) = ( J x G x J) u { 0}. 

Define a partial product on B(J, G) as follows: 

(i,g,j)(k,h,l) = (i,gh , l) 

■ 

if j = k and all other product are equal to 0. It is easy to show that B(G, J) is an inverse 

semigroup. Note that 

E(B(G, J)) = {(i, 1, i) Ii E J} U {O}, 

where 1 is the idempotent in G. The semigroups B ( G , J) are called Brandt semigroups. 

When J has cardinality n , we write B ( G, n) instead of B ( G, J), and when the group is 

trivial, we write En= B({l},n). 
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1.2 The natural partial order 

In this section we show that every inverse semigroup has an order structure. We begin 

by defining posets. 

Let X be a set and ~ a binary relation on X satisfying the following conditions: 

1. The operation is reflexive; that is a ~ a, for all a E X. 

2. The operation is anti-symmetric; that is a ~ b and b ~ a implies a = b, for all 

a,b EX. 

3. The operation is transitive; that is a ~ band b ~ c implies a ~ c, for all a, b, c E X . 

Then X is called a partially ordered set or po set, and ~ is called a partial order on X. A 

partial order with the extra property that a ~ b or b ~ a for all a and b in X is called a 

total order on X. A poset is said to be totally unordered if the partial order is equality. 

Any subset of a poset will be regarded as a poset with the induced order. If X is a 

partially ordered set and S is a subset of X such that, for all x E X and s E S, x ~ s 

implies that x E S. Then we say that S is an order ideal of X. 

Let X be a poset and x, y EX. If z EX with z ~ x and z ~ y, then z is said to be a 

lower bound of x and y. If the greatest lower bound of two elements exists, we denote it 

by x I\ y and call this element the meet of x and y . Similarly if x ~ z and y ~ z, then z 

is an upper bound of x and y. We denote the least upper bound of x and y by x Vy (if it 

exists) and call it the join of x and y. A meet semilattice is a poset in which every pair 

of elements has a meet. A join semilattice is a poset in which every pair of elements has 

a join. A poset which is both a meet semilattice and a join semilattice is called a lattice. 

Let X and Y be partially ordered sets. A function f : X ------+ Y is order-preserving 

if a ~ b implies J(a) ~ J(b), for all a, b E X. A bijection of X onto Y is an order 

isomorphism if both f and 1-1 are order-preserving. 

We can define a partial order on every inverse semigroup S. Let s, t E S. Define 

s ~ t ¢::::::? s = te 

for some idempotent e. The following result is proved in [15], Proposition 1.4. 7 and 

Proposition 1.4.8. 

Proposition 1.5 Let S be an inverse semigroup. 

(i) The relation ~ is a partial order on S. 

(ii) For all e, f E E(S) , e ~ f if, and only if, e = ef = fe. 

(iii) Ifs ~ t and u ~ v , then su ~ tv. 
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(v) E(S) is an order ideal of S . 

(vi) E(S) is a meet semilattice. 

■ 

The order defined above is called the natural partial order on S. The next result gives 

some different characterisations of the natural partial order. In particular the side on 

which the idempotent is written is irrelevant. Proof is given in [15] Lemma 1.4.6. 

Lemma 1.6 Let S be an inverse semigroup. The following are equivalent 

(i) s ~ t. 

(ii) s = ft , for some f E E(S) . 

■ 
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Chapter 2 

Category Theory 

In this section we outline the category theory that will be used throughout . Most of the 

theory that we require is given here, for further information we refer the reader to Mac 

Lane's book [21]. 

2 .1 Categories 

A 'category' comprises of 'objects' and 'morphisms ' between objects. Morphisms can be 

composed and composition is associative. Furthermore, every object possesses an identity 

morphism. The following formal definition is taken from [22] . 

D efinition Let C be a class of objects A, B, C, .. . together with two functions , as 

follows: 

(i) A function which assigns to each pair of objects (A, B) of C a set homc(A, B). An 

element f of homc(A, B) is called a morphism of C , with domain A and range B, 

we write f : A--+ B. 

(ii) A function assigning to each triple of objects (A, B, C) of objects of Ca function 

homc(B, C) x homc(A, B) --+ homc(A, C). 

For morphisms f : A --+ B and g : B --+ C, this function is written as (g, j) ~ 

g o f, and the morphism g o f : A --+ C is called the composite of f and g. 

C is called a category if the following axioms hold: 

Associativity: If f E homc(A, B), g E homc(B, C) and h E homc(C, D) are mor

phisms in C , then 

h o (g o f) = ( h o g) o j. 
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Identity: For every object A of C there is a morphism IdA : A -----+ A called the identity 

morphism such that 

f 
g 

for any object Band J E homc(A, B) 

for any object C and g E home ( C, A). 

If there is no risk of confusion, we write hom(A, B) rather that homc(A, B). We also 

denote composition by concatenation. 

A category is small if the class of its objects is a set. This is a subtle distinction 

and we refer the reader to [21] for explanation. We shall mainly be concerned with small 

categories. 

Examples 

1. A category is discrete when every morphism is an identity. A discrete category 

is determined by the set of its objects, alternatively, given a set one can form a 

discrete category by attaching an identity morphism to each element. Thus, discrete 

categories are sets. All sets together with all functions form a category, denoted 

Set . 

2. All (inverse) semigroups together with all homomorphisms of such form a category. 

3. A monoid is a category with one object. All monoids together with all monoid 

homomorphisms form a category. 

4. A group is a category with one object, in which every morphism has a (two-sided) 

inverse under composition. All groups together with all homomorphisms form a 

category, denoted Grp. 

Let C and D be categories, we say that D is a subcategory of C if 

(SCl) Each object of Dis an object of C. 

(SC2) For all objects A and Bin D, homn(A, B) ~ homc(A, B). 

(SC3) Composition of morphisms in D is the same as that for C. 

(SC4) For each object A of D , the identity in homn(A, A) is the identity in homc(A, A). 

Given any category C , there is a category C 0 P, called the opposite category obtained 

by reversing all the morphisms of C , thus C 0 P is defined by: 

• C 0 P has the same objects as C. 
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• For each morphism f A ---+ B of C, there is a corresponding morphism f 0P 

B---+ A of C 0 P. 

• The composite f°Pg0 P = (gf) 0 P is defined in C 0 P exactly when the composite gf is 

defined in C. 

If a concept, definition or result involves purely categorical conditions and methods , then 

there is a dual concept obtained by reversing all morphisms , with valid dual results. For 

a formal statement of the duality principle see Section II.2 of MacLane [21]. 

Since the objects of a category correspond exactly to its identity morphisms, it is 

possible to dispense with the objects and deal only with the morphisms. The category C 

is then thought of as a set equipped with a partial binary operation. From this 'arrows

only' viewpoint a category is defined as follows: 

Definition Let C be a set equipped with a partial binary operation, denoted by con

catenation. If x, y E C and the product xy is defined we write :3xy. An element e E C is 

called an identity if ::lex implies ex = x and ::lxe implies xe = x. C is a category if the 

following axioms hold: 

(Cl) x(yz) exists if, and only if, (xy)z exists, in which case they are equal. 

(C2) x(yz) exists if, and only if, xy and yz exist. 

(C3) For each x EC there exist identities e and f such that ::lxe and ::lf x. 

From axiom (C3), it follows that the identities e and f are uniquely determined by x. 

We write e = d(x) and call it the domain identity, and f = r(x), the range identity. Note 

that ::lxy if, and only if, d(x) = r(y). The set of identities of C is denoted C 0 , observe 

that C 0 is a discrete subcategory of C. 

We do not use either definition of a category exclusively, instead at any time we will 

use whichever definition seems to suit our purpose best . The first definition is most ap

propriate when we are dealing with structures and the morphisms between them, whereas 

the arrows-only approach is best when we wish to regard categories as algebraic structures 

in their own right , generalising monoids. 

We now define a few special types of objects and morphisms in categories. A morphism 

m: A---+ B in C is manic if given any two morphisms f , g: C---+ A as shown below 

f 
c-A~B -g 

then mf = mg implies f = g. In the category Set monies are precisely the injective 

functions. A morphism e : A ---+ Bin C is epi if given any two morphisms f, g : B ---+ D 

16 



as shown below 
f 

A ~ B - D -9 

then f e = ge implies f = g. In the category Set epis are precisely surjections. If 

g : A ---+ B and h : B ---+ A are morphisms in a category C such that hg = IdA, then 

h is called a split epimorphism and g is called a split monomorphism. Morphisms f with 

the property that f 2 = f are called idempotents. 

An object T in C is a weak terminal object if for every object A in C there is at least 

one morphism A ---+ T, if this morphism is unique, then T is said to be terminal. An 

object S is a weak initial object in C if for every object A, there is a morphism S ---+ A, 

if this morphism is unique then S is initial. A zero object in C is an object which is both 

initial and terminal. If C has a zero object , then for any objects A and B in C there 

are unique morphisms f : A---+ Z and g : Z ---+ B , the composite gf is called the zero 

morphism from A to B, and is written 0~ or 0. Any composite with a zero morphism is 

itself a zero morphism. 
0 

A ~ B 
f 9 

If the category Chas a zero object then a kernel of a morphism f : B ---+ C is a morphism 

k : A ---+ B such that f k = 0 and every morphism h : A' ---+ B with f h = 0 factors 

uniquely through k , as shown in the commutative diagram below 

A~o f 

3'h' ~ ~ ___ ____.,.. C 

A' 

Dually, a cokernel of f is a morphism i : B ---+ D which is universal with respect to 

having if = 0. It is easy to see that every kernel is monic and every cokernel is epi. 

2.2 Functors 

Let C and C' be categories. A functor T : C ---+ C' is a pair of functions: 

• An object function which assigns to each object A of Can object T(A) of C'. 

• A mapping function which assigns to each morphism f : A---+ B of C, a morphism 

T(J ) : T(A) ---+ T(B) of C'. 
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These functions must satisfy 

T(IdA) = Idr(A) 

T(gf) = T(g)T(J) 

for each identity morphism IdA in C , 

whenever the composite gf is defined in C. 

It is easy to show that from the arrows-only viewpoint, functors are defined as follows: a 

function T : C --+ D between categories is a functor if 

T(d(x)) = d(T(x)) and T(r( x)) = r(T(x)) 

for all x E C , and T(xy) = T( x) T(y) for all x, y E C for which :l xy. 

All (small) categories together all functors between them form a category, denoted 

Cat. 

A functor T: C --+ C' is an isomorphism of categories if both the object and mapping 

functions are bijective. Equivalently, a functor is an isomorphism if, and only if, it has a 

two sided inverse. A functor T : C --+ C' is said to be full if to every pair A, B of objects 

in C and every morphism g: T(A) --+ T(B) of C', there is a morphism f : A--+ B in 

C such that g = T(J) . Clearly the composite of two full functors if full. A subcategory 

D of a category C is a full subcategory if the inclusion of D into C is a full functor, in 

which case, for all objects A and B of D , we have homn ( A, B) = home ( A, B). A functor 

T : C --+ C' is faithful ( or an embedding) if for every pair A, B of objects in C and 

to every pair Ji, h : A --+ B of parallel morphisms in C , we have that T(Ji) = T(h) 

implies Ji = h- Clearly, composites of faithful functors are faithful. We say that a 

functor T : D --+ C is dense if, for every object A in C, there is a morphism g in D 

with range A whose domain is an object in T(D). A subcategory D of a category C is 

called a dense subcategory if the inclusion functor i : C --+ D is dense. 

Let A be an object in the category C, the set of all morphisms f of C which have A 

as domain is called the star of C at A, denoted Stc(A) . If T: C --+ D is a functor, then 

T induces a function TA from Stc(A) to Stn(T(A)). We say that Tis star injective, star 

surjective, star bijective according as TA is injective, surjective, bijective, for all objects 

A of C . 

Important examples of functors that we shall use later are 'horn-functors'. Let C be 

a category with small horn-sets, thus every horn-set of C is an object in Set. For each 

object A of C there is a functor, called a covariant ham-functor 

homc(A, -) : C --+ Set 

which sends each object B to the set hom(A, B) and each morphism k: B--+ B' to the 

function 

hom(A, k) : hom(A, B) --+ hom(A, B') defined by hom(A, k) : f ~ kj. 
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For each object B of C , the contravariant ham-functor is a functor 

home(-, B) : C 0 P ----+ Set 

which sends each object A to the set hom(A, B) and each morphism g : A' ----+ A of C to 

the function 

hom(g,B): hom(A,B)----+ hom(A',B) defined by hom(g,B): f f------1 Jg. 

2.3 Natural transformations 

Let S , T: C ----+ C' be two functors . A natural transformation T : S ----+ Tis a function 

assigning to each object A of C a morphism TA : S(A)----+ T(A) in C' such that for any 

morphism f : A ----+ B in C we have T(j )T A = TBS(!) as in the commutative diagram 

below. 

S(A) ~ T(A) 

S(J) l l T(J) 

S(B) ~ T(B) 

We also say that TA : S(A) ----+ T(A) is natural in A. 

Let B and C be categories. We describe the category whose objects are functors from 

B to C and whose morphisms are natural transformations. 

Let S , T , R : B ----+ C be functors and let T : S ----+ T and O" : T----+ R be natural 

transformations. We define a composite O"OT with component morphisms (O"oT)A = O" ATA . 

To see that O" o T is natural, let f : A ----+ B be a morphism in B and consider the diagram 

S(A) 
S(J) 

S(B) 

TA TB 

(o-oT)A T (A) 
T(J) 

T(B) (o-oT)B 

!TA !TB 

R(A) 
R(J) 

R(B) 

Since T and O" are natural, both the smaller squares commute, therefore the whole diagram 

commutes. We call O" o T the vertical composite of O" and T . 

.j,.T 
B ------3>- C 

.j,.o-
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Since the composition of morphisms in C is associative, this composition of natural trans

formations is associative. Also, for any identity functor I : B ~ B, there is a natural 

transformation lr : I~ I with components (1:r)A = IdA. Hence the set of functors 

from B to C, together with the natural transformations between them form a category, 

called their functor category, it is denoted cB. 
We now look at a different way of composing natural transformations. Suppose we 

have three categories B, C and D, with functors S , S' , T , T' and natural transformations 

T and T
1

, as shown below. 

s S' 

B .j:r C D 
T T' 

If A is an object of B, the square below commutes since T
1 is natural. 

T~(A) 
S' S(.A) --~ T' S(A) 

S'T(A)---T'T(A) 
T.;...(A ) 

The horizontal composite T
1 

· T of T and T
1 is then defined as this diagonal, that is 

The proof that T
1 •Tis indeed natural is well-known (see MacLane [21]) , as is the verifi

cation of the following law 

This law is in fact a special case of the Godement interchange law, relating horizontal and 

vertical composition of natural transformations, which states that given three categories 

and four natural transformations 

.).T .j.T1 

B----~c----~D 
.).a- .).a-' 

we have that 

( a' o T
1

) • ( a o T) = ( a' • a) o ( T
1 

• T) . 

2.4 Products and pullbacks 

Suppose that B and C are categories, the product category of B and C, denoted B x C, 

is constructed as follows: 
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• The objects of Bx C are ordered pairs (B , C), where Bis an object of Band C is 

an object of C. 

• A morphism in B x C is a pair (!, g) , where f is a morphism in B and g is a 

morphism in C . 

If (f, g) and (!', g') are morphisms in B x C such that 

(f,g): (B,C)--+ (B',C') and (J',g'): (B' ,C')--+ (B" ,C") 

then the composite (f',g')(f,g) is defined in terms of the composites within B and C as 

(J' , g')(f ,g) = (J'J , g'g). 

It is straightforward to show that B x C is a category. 

There are two special functors P and Q on B x C , called the projections of the product 

P:BxC--+B Q:BxC--+C 

such that for any object (B, C) of B x C 

P: (B , C) i-------+ B and Q : ( B, C) i-------+ C 

and for any morphism (f, g) in B x C 

p : (f ' g) 1-------7 f and Q: (f,g) 1-------7 g. 

Definition Given a pair of morphisms f : A --+ B and g : C --+ B in a category C , a 

commutative square 
h D---~C 

k (, 
A----B 

f 

is called a weak pullback of (f, g) if given any other commutative square 

h' D'----C 

k' 1, 
A------,..B 

f 

involving (f , g), there is a morphism <I>: D'--+ D such that h<I> = h' and k<I> = k'. 
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If the morphism ~ is unique with this property, then the weak pullback is a pullback. 

If in a category C , any pair (J, g) of morphisms with common range has a (weak) 

pullback, then we say that C has (weak) pullbacks. 

Lemma 2.1 Pullbacks preserve split epimorphisms. Thus if g is a split epimorphism in 

the pullback square below, then so is k. 

h D---- C 

k 9 

A----B 
f 

PROOF. Since g is a split epimorphism there is a morphism 1 : B ---+ C with g1 = IdB. 

Consider the square 
'Yi A--~C 

9 

A----B 
f 

which commutes since g1 f = f. Hence there is a unique morphism K, : A ---+ D such 

that kK, = Id A. 

■ 

2.5 Adjoints 

Let C and D be categories and let S : C ---+ D and T : D ---+ C be functors. An 

adjunction of S to T is a family of bijections 

a = aA,B : homn(S(A) , B) ~ home(A, T (B)) 

of the sets of morphisms, defined for all objects A of C and B of D , which is natural in 

A and B. Given such an adj unction, the functor S is called a left adjoint of T , and T is 

a right adjoint of S. 

This definition requires some explanation. Recall that for each object A of C , home (A, - ) 

and homn(S(A) , -) are covariant horn-functors. Also, for each object B of D , home(-, T(B)) 

and homn(- , B) are contravariant horn-functors. Naturality of a means that 

and 

a homn(S(A) , -) ---+ home(A, -) 

a homn(-,B)---+ home(-, T(B)) 
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are natural transformations, for all objects A of C and B of D. Thus for all morphisms 

g : B' --+ B of D the diagram: 

B 
°'A,B 

homn(S(A) , B) ----homc(A, T(B)) 

g homo (S(A),g) homc (A ,'T(g)) 

B' homn(S(A) , B') ---~homc(A, T (B')) 
°'A ,B 1 

must commute, and for all morphisms f : A' --+ A the diagram below must commute. 

A 
°'A,B 

homn(S(A) , B) ---- homc(A, T(B)) 

f homo (S(J) ,B ) homc (J,T (B)) 

A' homn(S(A') ,B)---~homc(A' , T(B)) 
°'A 1 ,B 

The most frequently cited example of an adjoint pair is the forgetful functor which 

takes a group to its underlying set , this has as right adjoint the functor which assigns to 

any set the free group on that set . 
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Chapter 3 

Ordered groupoids 

3.1 The category OG 

In this section we shall examine the category of ordered groupoids . Ordered groupoids 

are important because they provide a categorical framework in which to study inverse 

semigroups . We shall therefore be treating each ordered groupoid as an algebraic structure 

and so the arrows-only definition is most appropriate. 

Definition A category G is said to be a groupoid if for each x E G there is an element 

x- 1 E G such that x - 1x = d (x) and xx- 1 = r(x). 

A groupoid with one identity is a group. If G is a groupoid , and e an identity in G, 

then G(e) = {x E GI d(x) = r( x) = e} is a group, called the vertex group ate . 

A morphism between two groupoids is simply a functor. The category of groupoids is 

denoted Grpd. 

Definition Let ( G, ·) be a groupoid, and let ::; be a partial order defined on G. Then 

( G, ·, ::; ) is an ordered groupoid if the following axioms hold: 

(OG 1) x ::;; y implies x- 1 ::; y-1 , for all x, y E G. 

(OG2) For all x, y, u , v E G, if x ::;; y, u::;; v, :lxu and :lyv, then xu ::;; yv. 

(OG3) Let x E G and let e be an identity such that e::; d(x). Then there exists a unique 

element (xl e), called the restriction of x toe , such that (xle) ::; x and d(xle) = e. 

(OG4) Let x E G and let e be an identity such that e ::; r(x). Then there exists a 

unique element (elx), called the corestriction of x to e, such that (elx) ::; x and 

r(elx) = e. 
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An ordered groupoid is said to be inductive if the partially ordered set of its identities 

forms a meet semilattice. 

Proposition 3.1 provides some standard properties of ordered groupoids, for proofs see 

Lawson's book [15]. 

Proposition 3.1 Let (G, ·, :S;) be an ordered 9roupoid. 

(i) If x :S; y , then d(x) :( d(y) and r(x) :S; r(y) . 

(ii) If x, y E G, with x:::;;; y, d(x) = d(y) and r(x) = r(y) , then x = y. 

(iii) Axiom (OG4) is a consequence of axioms (OGl) and (OG3). 

(iv) The set of identities G 0 is an order ideal of G. 

(v) If x, y E G and e E G 0 such that 3xy and e :S; d(y) , then (xyle) = (xlr(yle))(yle). 

■ 

Let (G, •, :S;) and (H, ·,:::;;;)be ordered groupoids , with 0: G----+ Ha functor. Then 0 is 

said to be an ordered functor if for all 91, 92 E G with 91 :( 92 we have that 0(91) :( 0(92) . 

An ordered functor between two inductive groupoids is said to be inductive if it preserves 

the meet operation on the set of identities. It is easy to show that ordered groupoids to

gether with ordered functors form a category, which is denoted OG. Inductive groupoids 

and ordered functors between them constitute a subcategory of OG, as does the category 

of inductive groupoids and inductive functors . If an ordered functor 0 : G ----+ H is just 

subset inclusion, then we say that G is an ordered sub9roupoid of H. An isomorphism 

of ordered groupoids is a bijective ordered functor whose inverse is an ordered functor. 

Ordered functors can also be star injective, star surjective and star bijective. 

We now provide some simple examples of ordered groupoids and ordered functors . 

Examples 

l. Every groupoid can be viewed as an ordered groupoid whose partial order is de

fined as the equality relation. An ordered functor between such groupoids is just a 

groupoid functor. 

2. Given a partially ordered set X, we can form a discrete ordered groupoid XD by 

defining a partial multiplication 3xy if and only if x = y, in which case xx= x . An 

ordered functor between such ordered groupoids corresponds to an order preserving 
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function between posets. Conversely, if G is an ordered groupoid, then G can be 

viewed as a partially ordered set by forgetting the multiplication, and we write GD 

for the discrete ordered groupoid obtained from G viewed as a partially ordered set. 

3. If G is an ordered groupoid with one identity then G is just a group ( G is totally 

unordered since by Proposition 3.l(ii) the order restricted to horn-sets is trivial). 

An ordered functor between two such ordered groupoids is a group homomorphism. 

The following useful result is proved in [15] , Proposition 4.1.2 . 

Proposition 3.2 Let 0 : G ~ H be an ordered functor between ordered groupoids. 

(i) If (xle) is defined in G, then (0(x)l0(e)) is defined in H and 0(xle) = (0(x)l0(e)). 

(ii) If (elx) is defined in G, then (0(e)l0(x)) is defined in H and 0(elx) = (0(e)l0(x)). 

Let 0 : G ~ H be an injective ordered functor such that 

for all 91, 92 E G. Then 0 is called an ordered embedding. 

■ 

Definition Let G be an ordered subgroupoid of the ordered groupoid H. We say that 

H is an enlargement of G if the following axioms hold. 

(GEl) Ga is an order ideal of Ha. 

(GE2) If x EH and d(x), r( x) E G, then x E G. 

(GE3) If e E Ha, then there exists x EH such that r( x) = e and d(x) E G. 

Enlargements were introduced by Lawson [13] . 

Note that the condition (GE2) is equivalent to the requirement that G is a full sub

groupoid of H. The condition (GE3) is equivalent to saying that G is a dense subgroupoid 

of H. 

Observe that if H is an enlargement of G and g E G, h E H with h ::;;; g, then 

d(h) ::::; d(g) and r(h) ::::; r(g) , by Proposition 3.l(i). So, by (GEl), d(h), r(h) E Ga, but 

then h E G, by (GE2). Hence G is an order ideal of H. 

Let G be an ordered groupoid and let A be an ordered subgroupoid of G. Then A is 

called a normal ordered subgroupoid of G if the following conditions hold: 
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(i) G0 = A 0 and d (a) = r(a) for all a E A. 

(ii) gag- 1 EA for all g E G and a EA with d(g) = d(a). 

We describe the quotient groupoid G/A, following Higgins approach [7]. 

The elements of G / A are t he equivalence classes of the equivalence relation given by 

u ~ v ¢:::=} u = avb for some a, b E A. 

We denote the equivalence class containing u by [u]. For each a in A, [a] is the group 

containing a and we can choose a unique identity representative for [a] . Clearly if u ~ v, 

then d(u) = d(v) , so write d[u] = [d(u)], and similarly r[u] = [r(u)]. If u, v E G with 

d(u) = r(v), then the product [u][v] is defined an equal to [uv]. See [7] for proof that this 

is well defined and associative. Now G / A is a groupoid with [uJ- 1 = [u- 1 ] . Comparison 

with Section 3 of Lawson's paper [12] reveals that G / A is precisely G / p, where p is an 

identity-separating ordered congruence. By Theorem 11 of [12], u ~ v if, and only if, 

uv-1 exists and is in A. Also proved in [12] is the fact that G / A is an ordered groupoid 

under the Joubert order defined as follows: [u] ~ [v] if, and only if, for each v' E [v] there 

exists u' E [u] such that u' ~ v' . 

An example of an ordered normal subgroupoid is the 'kernel ' of an ordered functor. 

If 0 : G -----+ His an ordered functor, and e is an identity of H . Then the fibre of 0 at e is 

0- 1 (e) = {g E GI 0(g) = e} 

which is easily seen to be an ordered subgroupoid of G. The kernel of 0 is the disjoint 

union of the fibres 0- 1 (e) taken over all e E H 0 and so is an ordered subgroupoid of G. 

We denote the kernel of 0 by Ker( 0) . It is straightforward to show that Ker( 0) is normal. 

Proposition 3.3 The category OG, of ordered groupoids and ordered functors has all 

products of pairs of ordered groupoids and all pullbacks. 

PROOF. Let G and H be ordered groupoids. On the set G x H define 

d(g , h ) = (d(g) , d(h)) and r (g,h) = (r(g) , r(h)) 

and define a partial product by 

(g,h)(g',h') = (gg',hh') 

if d(g , h) = r (g' , h'). One then has that (g,h)- 1 = (g- 1 ,h-1) . It is easy to check that 

G x H is an ordered groupoid. Define a partial order on G x H as 

(g, h) ~ (g' , h') ¢::::::} g ~ g' and h ~ h'. 
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It is straightforward to show that G x H is an ordered groupoid. The projection functors 

1r1 : G x H ------+ G and 1r2 : G x H ------+ H 

are ordered functors. It is routine to verify that G x H with the above definitions is the 

product of G by H. 

Let G, H and K be ordered groupoids , and let 0 : G ------+ H and ¢ : K ------+ H be 

ordered functors. 

Define a subset of G x K by 

G~ K = G0~¢ K = {(g , k) E G x KI 0(g) = </>(k)} 

Then it is easy to check that G ~ K is an ordered subgroupoid of G x K. The only 

non-trivial verification being the condition (OG3): if (g, k) E G~ Kand (e, f) E G0 ~ K 0 

with (e, f) ::;;; d(g , k) then, by Proposition 3.2 

0(gle) = (0(g)l0(e)) = (¢(k)l¢(f)) = ¢(kif) 

and so ((gle), (kif)) E G~ K. It is routine to check that the restrictions of the projection 

functors 1r1 : G ~ K ------+ G and 1r2 : G ~ K ------+ K are such that 

G--~H 
0 

commutes. It is straightforward to check that this is a pullback. 

3.2 Inductive groupoids and inverse semigroups 

■ 

We shall now describe the correspondence between inverse semigroups and inductive 

groupoids. 

Let S be an inverse semigroup. We define a partial product · on S. Let s, t E S . The 

restricted products· t exists only when s- 1s = tc1, in which case it is equal to st. For 

s ES, we write 

See Proposition 3.1.4 of [15] for proof of the following. 

Proposition 3.4 Every inverse semigroup S is a groupoid with respect to its restricted 

product, we call it the associated groupoid of S. ■ 
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Recall that for an inverse semigroup S, the natural partial order is defined as 

s ~ t-¢::::=} s = te, for some e E E(S). 

The importance of the restricted product and the natural partial order to the structure of 

an inverse semigroup leads to a generalisation of semigroup homomorphisms. A function 

0 : S ---+ T between inverse semigroups is said to be a prehomomorphism if 0(st) ~ 

0(s )0(t) for alls, t E S. The following result implies that every prehomomorphism between 

inverse semigroups induces a functor between their associated groupoids, see Theorem 

3.1.5 of [15] for proof this result. 

Theorem 3.5 Let 0 : S ---+ T be a function between inverse semigroups. Then 0 is 

a prehomomorphism if, and only if, it preserves the restricted product and the natural 

partial order; the composite of two prehomomorphisms is a prehomomorphism. ■ 

Inverse semigroups together with prehomomorphims form a category. 

The following result shows how the usual product can be reconstructed from the 

restricted product and the natural partial order (proof in [15], Theorem 3.1.2). 

Theorem 3.6 Let S be an inverse semigroup. 

(i) Lets E S and e E E(S) such that e ~ s- 1 s. Then a= se is the unique element of 

S such that a ~ s and a- 1a = e. 

(ii) Let s E S and e E E(S) such that e ~ ss- 1 . Then a = es is the unique element of 

S such that a ~ s and aa- 1 = e. 

(iii) Let s , t E S, then st = s' · t' where s' = se, t' = et and e = s-1 stC1 . 

■ 

Proposition 3.4, Lemma 1.6, Proposition 1.5 and Theorem 3.6 can be combined to 

give the following result. 

Proposition 3. 7 Let S be an inverse semigroup, then the groupoid associated with S is 

an inductive groupoid with respect to the natural partial order. 

■ 

The inductive groupoid associated with an inverse semigroup Sis denoted by Q(S). 

As an example, consider the Brandt inverse semigroup B2 = B ( { 1} , 2) , this has ele

ments 

e = (1, 1), u = (l, 2), u-1 = (2, 1) , f = (2, 2) and 0. 
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The ordered groupoid Q(B2) is the groupoid with two non-identity mutually inverse mor

phisms u and u-1 , and three identities e, f, 0 where d( u) = e and r( u) = f. The order is 

given by O ~ e, 0 ~ f and equality otherwise. Put I= Q(B2) \ {O} , I is illustrated below 

This groupoid will play a crucial role in the theory developed in Chapter 6. 

Now let G be an ordered groupoid , and let g, h E G be such that e = d (g) /\ r (h) 

exists. Put 

g 0 h = (gl e) (elh) 

and call g 0 h the pseudoproduct of g and h. It is immediate from the definition that the 

pseudoproduct is everywhere defined in an inductive groupoid. See Proposition 4.1.7 of 

[1 5] for proof of the following result. 

Proposition 3.8 Let (G, ·, ~) be an inductive groupoid. 

(i) (G, 0 ) is an inverse semigroup, which we will denote by S(G) . 

(ii) Q(S(G)) = G . 

(iii) For any inverse semigroup S we have that S(Q(S)) = S . 

■ 

The following crucial result is proved by showing that S and Q give rise to bijective 

functors, see [15] for details. 

Theorem 3.9 (Ehresmann- Schein-Nambooripad) Th e category of inverse semi

groups and prehomomorphisms is isomorphic to the category of inductive groupoids and 

ordered functors ; and the category of inverse semigroups and homomorphisms is isomor

phic to the category of inductive groupoids and inductive functors. 

■ 
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Part II 

The homotopy theory of inverse 
• sem1groups 
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Chapter 4 

Classical homotopy theory 

In this chapter we will outline some homotopy theory in its original topological sett ing. 

All the definitions and results in this section are standard, our main references are the 

books by Brown [3] and Spanier [27]. 

4.1 Some basic topology 

Algebraic topology is largely concerned with finding structures to model the geometric 

properties of spaces. 

Definition Let X be a non-empty set. A topology on Xis a collection of subsets of X , 

called open sets, such that 

(0S1) 0 and X are open sets. 

(0S2) The arbitrary union of open sets is open. 

(0S3) The intersection of finitely many open sets is open. 

The set X together with the collection of its open sets is called a topological space. The 

elements of X are called the points of the space. 

Given a set X , there are two obvious ways of defining a topology on X: 

• Only the sets 0 and X are open. 

• Every subset of X is defined to be open, this is the discrete topology. 

The usual topology on the real line ffi. is given by unions of the open sets 

( a, b) = { x E R I a < x < b}. 
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If A is a subset of a topological space X, then a topology is induced on A by defining 

the open sets in A to be all the sets An U, where U is an open set in X. This is the 

subspace topology on A and we say that A is a subspace of X. Let I denote the closed 

unit interval [O, 1], we shall see later that the space I given the induced subspace topology 

plays a pivotal role in homotopy theory. 

If X and Y are topological spaces, a function f : X --t Y is called a continuous 

map if, for every open subset V of Y, the set f- 1 (V) = {x EX I f(x) EV} is open in 

X. Topological spaces together with the continuous maps between them form a category, 

denoted Top. 

Given a point x in a topological space X, we call a subset N of X a neighbourhood of 

x if there is an open set U ~ N such that x E U. 

Let X and Y be topological spaces, a function f : X --t Y is called a homeomorphism 

if it is bijective and, for all x E X, N is a neighbourhood of x if, and only if, J(N) is a 

neighbourhood off (x). 

Let p : X --t X be a continuous map. An open subset U of X is said to be evenly 

covered by p if p-1 (U) is the disjoint union of open subsets of X each of which is mapped 

homeomorphically onto U by p. We call p a covering projection if each point x E X has 

an open neighbourhood evenly covered by p, in which case X is called the covering space 

and X the base space of the covering projection. 

Suppose that X is a topological space and S is a subset of X. A cover of S is a set 

of subsets A= {Uj I j E J} of X such that S ~ LJjEJ Uj. If the indexing set J is finite 

then A is said to be a finite cover. If each Uj is an open subset of X then A is an open 

cover. If X is a topological space and A is a cover of a subset S of X, then a subcover of 

A is a subset B of A such that B covers S. A subset Sofa topological space X is said to 

be compact if every open cover of S has a finite subcover. 

A standard result is that the unit interval I ~ IR is compact. Proofs are given (for 

example) in [3, 10]. 

Let X and Y be topological spaces and let Y x denote the set of continuous maps 

from X to Y. If A and B are subsets of X and Y respectively, then write 

(A : B) = {f E yx I J(A) ~ B} 

and 

S = { (K : U) I K is a compact subset of X and U is an open subset of Y}. 

We define a topology on Y x with open sets 

{V ~ yX I if f EV, then :3 F1, F2, ... , Fn ES such that f E Fin F2 n · · · n Fn ~ V} 
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this is called the compact-open topology on Y x, first introduced by Fox [6]. 

The problem is to find ways of classifying topological spaces and continuous maps up 

to some sort of 'topological equivalence' . An important ingredient in this is obtained by 

considering 'paths'. 

Definition Let X be a topological space, a path w in X of length r is a continuous map 

w : [O , r ] -----+ X. 

The origin of the path is the point w ( 0) and the end of the path is the point w ( r) . 

One can use paths to make precise the intuitive idea of what it means for a space to 

be connected. A topological space X is path connected if for any x and y in X , there is 

a path in X with origin x and end y. 

Let w : [O, r] -----+ X and w' : [O, r'] -----+ X be two paths, the path sum w' + w is defined 

if and only if w(r) = w'(O) in which case 

(w' + w) : [O, r' + r] -----+ X with (w' + w) : t f---t { w(t) 
w'(t - r) 

if O ~ t ~ r, 

if r ~ t ~ r + r'. 

A point x in X determines a unique constant path of length r with value x, which we 

denote rx. If r = 0 this path is called the zero path at x. If w : [O, r] -----+ X is a path, 

then w + Ow(O) = w and Ow(r) + w = w, so that the zero paths provide a set of left and 

right identities for the sum operation on paths. 

If w , w' and w" are paths in X of length r, r' and r" respectively. Then w" + (w' + w) 

is defined if and only if (w" + w') + w is defined, and both paths are given by 

{ 

w(t) 

t f---t w' ( t - r) 

w"(t - (r + r')) 

if O ~ t ~ r, 

if r ~ t ~ r + r' , 

if r + r' ~ t ~ r + r' + r". 

Hence, for any topological space X , there is a category of paths , denoted Px. 

It is usual to consider only paths of length 1. Since, given a path w : [O, r] -----+ X, 

there is a path w' of unit length, with w'(t) = w(rt), t E [O , l]. Such a path is called 

normalised. Given two normalised paths, w and w' if their sum w' + w is defined then 

it has length 2, however, we can define their normalised sum to be the normalised path 

w' EB w with 

( , ) { w(2t) if O ~ t ~ ½, 
w EB w :tf---t 

w'(2t -1) if½~t~l. 

Clearly any interesting space will contain very many paths. It is therefore desirable 

to be able to classify paths. 
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Definition Let wand w' be (normalised) paths in a space X, with w(0) = w'(0) = x 

and w(l) = w'(l) = y. A fixed-end-point homotopy from w' tow is a continuous map 

such that 
¢(s,0) = w'(s) 

¢(0,t) =x 

¢:JxJ-+X 

¢(s, 1) = w(s) 

¢(1, t) = y 

for s EI, 

for t EI. 

We can think of¢ as a 'deformation' of w' into w, see Figure 1. 

(0,1) (1,1) ~----~ 

(O,Q) (l,Q) 

Figure 1 

0) 

w' 

The concept of fixed-end-point homotopy arises out of the construction of the funda

mental groupoid . One can show that fixed-end-point homotopy is an equivalence relation, 

the resulting equivalence classes are called roads. The fundamental groupoid of a space 

X has objects the points of X, and morphisms its roads, see Section 6.2 of Brown [3] for 

details. 

4.2 Cylinders and cofibrations 

So far we have looked at homotopies of paths, but more generally, one can also consider 

homotopies of maps. 

Definition Let X and Y be topological spaces. A continuous map ¢ : X x [0, q] -+ Y 

is called a homotopy of length q. Given such a map, there are maps 

and 

f:X-+Y 

g:X-+Y 

with 

with 

called the initial and final maps of¢, respectively. 

f : X 1---t cp(x, 0) 

g : X 1---t cp(x, q) 

We say that ¢ is a homotopy from f tog, and write¢: f '.:::' g. 

Again, we think of a homotopy as 'deforming' one map into another: If we define 

</Jt : X -+ Y by </Jt(x) = cp(x, t) , then the homotopy ¢ gives a one-parameter family of 

35 



continuous maps deforming f into g. One thinks of <Pt as describing the deformation at 

time t. 

As before, it is sufficient to consider only homotopies of length 1, because it can be 

shown that there is a continuous surjection A : J ---+ [O , q], and if we let 0 = ¢(Idx x A) 

then 0 is a homotopy of unit length with the same initial and final maps. 

Note that fixed-end-point homotopies of paths are more restricted since the end points 

of the paths are fixed during the homotopy. 

If f : X ---+ Y and g : Y ---+ X are maps such that f g ~ Idy , then we say that g is 

a right homotopy inverse of f , and that f is a left homotopy inverse of g. If g is both a 

left and right homotopy inverse of f, then g is called a homotopy inverse of f , and f is 

called a homotopy equivalence, we then write f : X ~ Y. 

Proposition 4.1 The homotopy relation ~ is an equivalence relation . 

PROOF. To show that it is reflexive, let f : X ---+ Y be a continuous map and define 

¢:XxI---tY by ¢: (x, t) f----t f (x) 

the constant homotopy on f. Clearly ¢ : f ~ f. 
To show that ~ is symmetric, let ¢ be a homotopy from f to g, then define 

?jJ:XxI---+Y by VJ: (x,t) f----t ¢(x, l -t) 

it is then easy to check that ?jJ : g ~ f. 
To show that ~ is transitive, suppose f, g, h : X ---+ Y are continuous maps, and 

¢, ?jJ : X x I ---+ Y are homotopies with ¢ : f ~ g and ?jJ : g ~ h. Then define 

<I>:XxJ---tY by ( ) { 
¢(x,2t) 

<f> : X, t f----r 
1/J(x, 2t - 1) 

if O ~ t ~ ½ 

if½ ~ t ~ l 

which is continuous, since ¢(x, 1) = 1/J(x, 0), and is a homotopy <I>: f ~ h. 

■ 

Given a space X, we can think of Xx I as a 'cylinder' with top face (X, 1) and base 

(X, 0). We can then define maps e'5c and e\- which map X onto the base and top of Xx I 

respectively, as follows: 

and 

e'5c : X ---+ X x I 

e\- : X ---+ X x I 

with 

with 

There is also a collapsing map from Xx I to X 

O'X : X XI---+ X with 
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e3c: x f----t (x,0) 

e\- : x f----t (x , 1). 

O'X : (x, t). f----t X. 



(x,l) 

xx/ 

Figure 2 

The situation is illustrated in Figure 2. 

Given a continuous map f : X --t Y we can define a continuous map 

fxI:XxI--tYxI by f x I: (x, t) f----t (f (x), t). 

It is straightforward to show that there is a functor 

( ) x I : Top --t Top 

which assigns to a space X the space Xx I and to a map f the map f x I. Now if x EX, 

then etf(x) = (f(x) , O) and (f x I)e~(x) = (f x I)(x,O) = (f(x) , O) , so the diagram 

below commutes. 
e~ 

X ---- X X I 

f f x l 

Y----YxI 
e~ 

Thus the maps e~ give rise to a natural transformation 

e0 
: Id --t ( ) x I. 

Similarly, there are natural transformations 

e1 
: Id --t ( ) x I and (5 : ( ) X I --t Id . 

We shall use the notation 

and call I a cylinder on Top. We can use the concept of a cylinder to redefine the notion 

of homotopy. 
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Definition If f, g : X ------+ Y are continuous maps of topological spaces, then f is ho

motopic to g, written f ::: g, if there is a continuous map ¢ : X x I------+ Y with ¢e°x = f 

and ¢e1x_ = g. We call¢ a homotopy between f and g. 

Given a continuous map f : X ------+ Y , the constant homotopy on f is given by 

f <Yx : f::: f • 

We shall use the cylinder construction to describe some properties of subspaces. Let 

A be a subspace of a topological space X , and let i : A ------+ X, with i(x) = x, be the 

inclusion map. We consider whether such a map has left, right or two-sided inverses. 

A subspace A of X is called a retract of X if the inclusion map i has a left inverse in 

the category Top ; that is a map r : X ------+ A, such that ri = IdA. Such a map is called a 

retraction of X to A. 

A subspace A of X is called a weak retract of X if the inclusion map i has a left 

homotopy inverse; that is a map r : X ------+ A, such that ri ::: IdA. Such a map is called a 

weak retraction of X to A. 

Note that an inclusion map i :------+ X never has a right inverse, except in the trivial 

case A= X. However, a subspace A of a space Xis called a weak deformation retract of X 

if the inclusion map i is a homotopy equivalence. A subspace A is called a a deformation 

retract of X if there is a retraction r of X to A such that Idx ::: ir . 

Clearly, a weak retract need not be a retract , however these concepts do coincide 

when A is a suitable subspace of X . This occurs frequently enough to demand special 

consideration. In order to examine this situation we shall consider the conditions which 

A must satisfy in order that a homotopy on A can be extended to a homotopy on X. 

Definition If A is a subspace of X, we say that (X, A) has the homotopy extension 

property with respect to a space Y if for all maps f : X ------+ Y , any homotopy of the 

restriction f I A of f to A extends to a homotopy of f. 

Let u = f IA : A------+ Y , thus u = Ji. A homotopy of u is a map¢: Ax I------+ Y such 

that u = ¢e~ . If A has the homotopy extension property with respect to Y, then there 

is a map 1> : X x I ------+ Y which is a homotopy off, that is f = 1>e°x , and 1>IA xI = ¢ . 
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Hence for given f and ¢ there exists qi making the diagram below commute. 

AxI 

/4 ~ 
A XX I 

~7-
x 

Of particular importance is the case when (X, A) has the homotopy extension property 

with respect to any space, if this happens then we say that the inclusion map i : A --+ X 

is a cofibration. 

P rop osit ion 4 .2 If (X, A) has the homotopy extension property with respect to any 

space, then A is a weak retract of X if, and only if, A is a retract of X. 

PROOF. Let i : A --+ X be the inclusion map and r : X --+ A be a weak retraction. 

Then ri ~ IdA. Let ¢ : A x I --+ A be a homotopy from ri to IdA; then ¢e~ = ri. 

Because (X, A) has the homotopy extension property with respect to A, there is a map 

qi : X x I --+ A such that qi(i x I) = </> and qie'.1x- = r . If we define r' : X --+ A by 

r' = qie1,, we have ir = IdA, Sor' is a retraction of X to A, and qi : r ~ r' . 

■ 

While it is true that the concept of a cofibration arises out of the examination of 

inclusion maps, it is not the case that only inclusions can be cofibrations. The definition 

can be generalised as follows : A continuous map g : X' --+ X is a cofibration if the 

commutative square below is a weak pushout. 

X' 
e~, 

X' XI 

g gxl 

X XX I 
eO 

X 

4.3 Cocylinders and fibrations 

In the previous section, we dealt with situations in which homotopies can be extended. 

In this section we consider whether homotopies can be 'lifted' along a map. Generally, 

if p : E --+ B and f : X --+ B are continuous maps. The lifting problem for f is to 
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determine whether there is a map g : X ----+ Y such that f = gp. That is , whether the 

dotted arrow in the diagram below 

E 
9 :1 I .· tp 

X-B 
f 

corresponds to a continuous map making the diagram commute. If such a map exists 

then we call g a lifting off to E. If the map g is unique with this property, then pis said 

to have the unique lifting property. 

Applying the lifting problem to homotopies, we obtain an analogue of the homotopy 

extension property called the 'homotopy lifting property' defined as follows. 

Definition A map p : E ----+ B is said to have the homotopy lifting property with respect 

to a space X if, given maps f : X ----+ E and ¢ : X x I ----+ B such that ¢e°x = pf, there 

is a map <I> : X x I ----+ E such that <I>e°x = f and p<I> = ¢. The situation is pictured 

below 
f X _ __ ___,.. E 

:1 

p 

X X I---~B 
<P 

The map p is a called fibration if it has the homotopy lifting property with respect to 

every space. For each b EB, p- 1 (b) is called the fibre over b. 

We have seen that paths play an important role in algebraic topology. There is a 

useful class of maps which have the property that they ' lift ' paths. 

Definition Let p : E ----+ B be a continuous map, then p has the path lifting property 

if for any path w in B and point a in E with w(O) = p(a) , there is a path w in E with 

origin a such that pw = w. Furthermore, pis said to have the unique path lifting property 

if given paths wand w' in E such that pw = pw' and w(O) = w'(O), then w = w'. 

The next result shows that t he path lifting property is a special case of t he homotopy 

lifting property. 

Proposition 4.3 If a continuous map is a fibration, then it has the path lift ing property. 
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PROOF. Suppose that p : E ~ B is a fibrat ion and t hat w : J ~ B is a path in B such 

that w(0) E p(E). Let P denote a one-point space, and let i: J ~ P x I be the inclusion 

map. Then w can be regarded as a homotopy w* : P x I ~ B, where w = w* i. A point 

a of E such that p(a) = w(0) corresponds to a map f: P ~ E with pf(P) = w*(P, 0). 

It then follows from the fact that p has the homotopy lifting property with respect to 

P, that there is a map w : P x I ~ E such that eiw = f and pw = w*. Therefore 

Wl : J ~ E is a path in E with wi(0) = w(P, 0) = a and pwl = w* i = w. Hence p lifts w 

to wi . 

■ 

The following result establishes the unique lifting property of covering projections, see 

Theorem 2.2.2 of Spanier [27] for proof. 

Proposition 4.4 Let p : X ~ X be a covering projection and let f , g : Y ~ X be 

continuous maps such that pf = pg. Thus f and g are both liftings of the same map. If 

Y is connected and f agrees with g on some point of Y, then f = g. 

■ 

It follows from the above result that a covering projection has unique path lifting. Propo

sition 4.4 is also used to prove the following result , see Theorem 2.2.3 of Spanier [27] for 

details. 

Theorem 4.5 Every covering projection is a fibration. 

■ 

From the above results, a covering projection is a fibration with unique path lifting. In 

Theorem II.4.10 of [27] it is shown that if the base space satisfies some 'mild hypotheses,' 

then any fibration with unique path lifting is a covering projection. 

We have been examining the paths within a space, we shall now consider spaces which 

themselves consist of paths. Let X be a space, then X 1 denotes the space consisting of 

paths in X equipped with the compact-open topology. We can construct maps c~ and 

c\- assigning to a path w in X its origin and end points respectively 

c~: X 1 ~ X 

c\- : X 1 ~ X 

with 

with 

c~ : w i--------+ w(0) 

c\- : w i--------+ w(l) . 

For any map f : X ~ Y , we can define a map on path spaces 

with fl; Wt--------+ fw. 
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We t hus obtain a functor ( )1 : Top --t Top. Given such a continuous map f, and an 

element w of XI, then c~ f I (w) = f c°x(w) = f (w(O)), and so if c0 is the function which 

assigns to each space X the map c°x, then c0 is a natural transformation co : ( )1 --t Id. 

Similarly there is a natural transformation c1 : ( )1 --t Id. There is also a continuous 

map which takes a point in a space to the constant path at that point , 

sx: x --t xI with sx: X f----------t l x, 

Ifs is the function taking a space X to the map sx then it is easy to show that s is a 

natural transformation s : Id Top --t ( )1. We write P = ( ( )1 , c0 , c1 , s) and call P the 

cocylinder on Top. 

We shall use the cocylinder to reformulate the definition of the path lift ing property 

in t erms of path spaces. Let p : E --t B be a map with the path lifting property. Then 

for any w E BI with ci(w) E p(E), there exists w E EI such that pc~(w) = ci(w) and 

w = pI (w) , t hat is pc~(w) = cipI (w). If Pis a one-point space, then a map </>: P --t BI 

picks out an element w of BI , and a map f : P --t E picks out an element a of E. If 

w(O) = a; that is ci</> =pf. Then the path lift ing property requires that there exists 

w E EI such that c~ ( w) = f ( P) and pI (w) = ¢( P). Thus the path lifting property is 

satisfied by p if there exists a map cl> : P --t EI picking out an element w of EI such 

that the diagram below commutes 

This is a special case of an alternative description of the homotopy lifting property. 

Given a continuous map ¢ : X x I --t Y , for each x E X define 

</>x : I --t Y by </>x : t --t </>(x, t) 

observe that there is a continuous map l x : I --t X x I with l x(t) = (x, t) , and </>x = </> l x; 

it follows that each <l>x is continuous. Thus each <l>x is an element of YI. We can therefore 

define a function 

arp : X --t YI by arp : x f----------t </>x . 

By Theorem 11.1 of Rotman [26], arp is continuous. Now define 

ax,Y : hom(X x I , Y) --t hom(X, YI) by a : ¢ f---------t arp 
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which is clearly injective. Furthermore, if 'lj; : X -----+ Y 1 is a continuous map with 

'lj;(x) = Wx, then the pair (x, t) , where t EI, determines a point wx(t) of Y. Hence obtain 

a function X x I -----+ Y which has image 'ljJ under ax,Y. Hence ax,Y is bijective. The 

family of bijections a can be shown to provide an adjunction between ( ) x I and ( )1. 
If¢: X x I-----+ Y, then ¢e~(x) = ¢(x, 0) and 

c:~ax,Y(¢)(x) = c:~¢x = <Px(0) = ¢(x, 0) . 

Similarly c:}ax,Y(¢)(x) = ¢el,(x) = ¢(x, 1) . So the maps e~ and cy are related by the 

formula 

i E {0,1}. 

Also we have that ax and sy are related by axxUax) = syf. If f,g: X-----+ Y are 

continuous maps with ¢ : f '.::::'. g; that is 

and ,I.. 1 -'1-'eX - g. 

There is a continuous map 'ljJ = a(¢) : X-----+ Y 1 such that 

€~'1/) = f and c:}'l/J = g. 

We think of 1/J as a homotopy from f tog with respect to the cocylinder on Top , we write 

1P : f '.::::'. g. 

We now use the adjunction a to reformulate the homotopy lifting property in the 

cocylinder. 

Proposition 4.6 A continuous map p : E -----+ B is a fibration if, and only if, the square 

pictured below is a weak pullback. 

E---~B p 

PROOF. Let p : E -----+ B be a fibration and let f X -----+ E and 'lj; X -----+ B 1 be 

continuous maps such that pf = c:~'l/J- Since 

a= ax,B : hom(X x I , B) -----+ hom(X, X 1
) 

is a bijection, there is a unique continuous map ¢ : X x I -----+ B such that a(¢) = 'l/J. 
Furthermore c:~'lj; = ¢e~, since c:~a(¢) = ¢e~. Now pf= ¢et so the solid arrows in the 
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diagram below commute. 

Xxl---~B rp 

But p is a fibration so there is a continuous map <I> : X x I -----+ E such that <I>e~ = f and 

p<I> = ¢. Let 

Then c~W = c~ex(<I>) = <I>e~ = f. Now since ex is natural p1exx,E(<I>) = exx,B(p<I>), but 

ex(p<I>) = ex(¢) = '1/J, therefore p1 \J! = 'lj; . Hence the diagram below commutes. 

f 

p 
E----➔ B 

Conversely, let p : E -----+ B be a continuous map and suppose that the square below 

is a weak pullback. 

E----➔ B p 

We show that p is a fibration. Let f : X -----+ E and ¢ : X x I -----+ B be continuous maps 

making the diagram below commute 

f 
X------➔ E 

p 

XX I-----➔ B 

Define 'ljJ = ex(¢) : X -----+ B 1 . Then 

'1/Jci = ex(¢)ci = e~¢ = pf. 
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So the diagram below commutes , 

f 

p 
E-----B 

but the inner square is a weak pullback, so there is a continuous map 'Ir : X -----+ EI 

such that pI W = 'ljJ and EliP = f . Since a is bijective, there is a unique continuous map 

iJ;t : X x I -----+ E such that 

and 

so piP = ¢. Hence the diagram below commutes and p is a fibration . 

f X -------* E 

/ 
/~ p 

XX J----'rB 
¢ 
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Chapter 5 

Abstract homotopy theory 

In this chapter we describe cylinders, cocylinders, homotopies, cofibrations and fibrations 

in general categories. The main reference for this chapter is Kamps and Porter [9]. 

5 .1 Homotopy theory in categories 

Definition Let C be a category. A cylinder I on C consists of a functor 

() xJ: C -------+ C 

called the cylinder functor. Together with three natural transformations 

e0
, e1 

: Ide -------+ ( ) x I and er : ( ) x I -------+ Ide 

such that ere0 = ere1 = Ide . 

Given a cylinder on a category C we can then define a homotopy in C 

Definition If f, g : X -------+ Y are morphisms in C then f is homotopic to g , written 

f c::: g, if there is a morphism ¢ : X x I -------+ Y in C with ¢e°x = f and ¢e}( = g. We call 

¢ a homotopy between f and g. 

Note that for any morphism f : X -------+ Y, the morphism fer x : X x I -------+ Y is a 

homotopy, fer x : f c::: f, called the constant homotopy of f. So -::::: is reflexive, however 

it need not generally be symmetric or transitive. Later, in section 5.2, we shall see what 

conditions need to be imposed on a cylinder in order that -::::: is an equivalence relation. 

Definition A morphism f : X -------+ Y of C is a homotopy equivalence if there is a 

morphism g : Y -------+ X of C such that 

gf c::: Idx and f g c::: Idy 
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such a morphism g is called a homotopy inverse of f. If in addition, g f = Idx, then we 

say that g is a deformation retraction and that X is a deformation retract of Y. 

Given a category with a cylinder, cofibrations are defined as those morphisms along 

which homotopies can be extended. 

Definition Let C be a category with a cylinder I = ( ( ) x I , e0
, e1, er). A morphism 

i : A --+ X of C has the homotopy extention property with respect to an object Y of C 

if for any pair of morphisms of C , ¢: Ax I--+ Y and f : X --+ Y such that ¢e~ = Ji , 
there is a morphism <I> : X x I --+ Y of C such that <I> ( i x I) = ¢ and <I>e1 = f. 

AxI 

/4~ 
A X xI 

~7-
x 

A morphism of C which has the homotopy extention property with respect to any object 

of C is called a cofibration. 

By dualising the notion of a cylinder on a category, we obtain the concept of a co

cylinder. By definition, a cocylinder on a category C is a cylinder on the dual category 

c op_ 

Definition Let C be a category. A cocylinder P on C consists of a functor 

()1:C--+C 

called the cocylinder functor, together with three natural transformations 

and s: Ide--+ ( )1 

such that c:0 s = c:1 s = Ide. 

Homotopy and homotopy equivalence in a cocylinder is defined in much the same way 

as it is in a cylinder. 

Definition Given a cocylinder P = ( ( )1, c:0 , c:1, s) on a category C , two morphisms 

f , g : X --+ Y in C are said to be homotopic, written f '.:::'. g, if there is a morphism 

¢ : X --+ yr in C with c:~¢ = f and c:}¢ = g. We call ¢ a homotopy between f and g. 

Dual to cofibrations ( with respect to a cylinder) one has fibrations ( with respect to a 

cocylinder) defined by the homotopy lifting property. 
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Definition Let C be a category with cocylinder P = ( ( )1, c0 , c1, s). A morphism 

p : E -----+ B in C has the homotopy lifting property with respect to an object Y of C if 

for any pair of morphisms of C 

and f:Y-----+E 

such that ci ¢ = pf, there is a morphism <I? Y -----+ EI of C such that pI <I? = ¢ and 

c~<I? = J. 

A morphism of C is a fibration if it has the homotopy lifting property with respect to 

any object of C . 

We have seen in the category Top that a category may possess both a cylinder and a 

cocylinder. In general, if a category C is equipped with both a cylinder I and a cocylinder 

P then there are potentially two notions of homotopy. We now describe a situation where 

these notions coincide 

Definition Let C be a category, let I = ( ( ) x I , e0
, e1 , a) be a cylinder and let P = 

( ( )I, c0 , c1 , s) be a cocylinder on C. We say that I is left adjoint to P if the functor 

( ) x I is left adjoint to the functor ( )I and if the family of bijections 

ax,Y: homc(X x I , Y) -----+ homc(X, YI) 

which demonstrate the adjunction also satisfy the following two conditions: for all mor

phisms ¢ : X x I -----+ Y and f : X -----+ Y, and for i = 0, 1 we have that 

We refer the reader to Kamps and Porter [9], Proposition II.3.6, for proof of the 

following result. 

Theorem 5.1 Let C be a category equipped with a cylinder I and a cocylinder P such 

that I is left adjoint to P. Then two morphisms of C are homotopic with respect to I if, 

and only if, they are homotopic with respect to P . 

■ 
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Although we have defined fibrat ions with respect to a cocylinder, we have seen that in 

the category Top fibrations can be defined with respect to the cylinder and the notions 

are equivalent . In the abstract we have that following result (Proposition II.3. 7 of [9]). 

Theorem 5.2 Let C be a category equipped with a cylinder I and a cocylinder P such 

that I is left adjoint to P . Then a morphism p : E ----+ B is a fibration with respect to P 

if, and only if, the following homotopy lifting property with respect to the cylinder I holds: 

in each commutative diagram of solid arrows 

f y --------a.- E 
.'1 

p 

YxI-----B 
1> 

there is a morphism <I> : Y x I ----+ E such that p<I> = ¢ and <I>e~ = f . 

■ 

We shall not make explicit all the relationships between cocylinders and cylinders. It 

will suffice to mention the heuristic principle known as Eckmann-Hilton duality which 

assigns to a theorem involving homotopy equivalences, cofibrations and fibrations a dual 

statement obtained as follows: 

• Invert all arrows. 

• Replace fibrations by cofibrations and vice versa. 

• Leave homotopy equivalences unchanged. 

Note that Eckmann-Hilton duality is not exactly equivalent to categorical duality. The 

Eckmann-Hilton dual of a result is not necessarily true, and if it is then a separate proof 

may be required. 

The following result is the Eckmann-Hilton dual of Proposition I.2.7 of Kamps and 

Porter [9]. 

Proposition 5.3 If in the pullback diagram in C , 

i is a fibration and ( l preserves pullbacks, then j is a fibration . 
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PROOF. Suppose that we have morphisms ¢ : Y ------+ C1 and f : Y ------+ Z with c~¢ = j f. 
Now f is a morphism to a pullback, therefore it is uniquely determined by its components 

j f and v f; that is if g : Y ------+ Z is a morphism such that jg = j f and vg = v f, then 

g = f. Consider the diagram below 

Since c0 is natural we have Uc~ = c~ u1 , so the diagram below commutes 

Since i is a fibration, there is a morphism <I? : Y ------+ X 1 , such that u1 ¢ = i1 <I? and 

vf = c1,<P. 

Now, since ( )1 is assumed to preserve pullbacks, the diagram below is a pullback 

and since u1 </J = i1 <I?, we have that there is a unique morphism w : Y ------+ Z 1 such that 

v1 w = <I? and j1 w = ¢. Consider the diagram below 

to show that this commutes, it only remains to verify that c~ w = f. However 

Hence, by uniqueness of f, 4 w = f and j is a fibration. 

■ 
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5.2 Cubical enrichment and Kan conditions 

In a category equipped with a cylinder (respectively, cocylinder) we have defined what 

it means for morphisms to be homotopic. In the category Top this is an equivalence 

relation, but in general all that we can assert is that this relation is reflexive. In order to 

do homotopy in a category with a cylinder (respectively, cocylinder) we therefore need 

extra structure. This is achieved by making explicit a cubical structure induced by a 

cylinder (respectively, cocylinder), we can then impose extra structure by demanding 

that certain conditions - called 'Kan conditions' - are satisfied. To explain this cubical 

enrichment we need to study cubical sets. 

In the category Top consider an element (t1, t2 , . .. , tn-i) of 1n-l (so t i E J). There 

is a continuous map 

with 

inserting a O in the i th position. Similarly, there is a map 1~ which inserts a 1 in the i th 

position. If X and Y are topological spaces, then for e = 0, 1 we can form maps 

with e : f i------+ f (Idx x e~). 

There is also a continuous map 

with 

omitting the /h coordinate, we can then form induced maps 

ct : hom(X x 1n , Y) ----+ hom(X x r +1, Y) with ( : f i------+ f (Idx X (t) . 

This example motivates the definition of a cubical set. 

Definition A cubical set Q consists of a sequence of sets Qn, where n E N, together 

with three families of functions 

where i E {1,2, ... ,n} 

called face operators, and 

a~ : Qn ----+ Qn+l where jE{l, 2, ... ,n+l} 

called degeneracy operators such that, for w, e E {O, 1} , the following identities are satis-

fied: 
(Ql) i j 

en_1wn 
j-1 i 

wn-1 en i < j 
(Q2) i j 

an+1 an 
j+l i 

an+lan i ~ j 

(Q3) i j 
en+1an 

j-1 i 
an-l en i < j 

(Q4) i i 
en+lan Idqn 

(Q5) i j aj ei-1 i > j. en+l an n -1 n 
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The elements of Qn are called n -cubes. 

It is easy to check that the continuous maps ~ and ( above satisfy the axioms (Ql)-

(Q5). 

The following notation will be useful: 

</>v = vf (¢) where ¢ E Qi, v E {O, 1} , 

1/J!=e~('!/J) where 1/J EQn , e E{0, 1} , iE{l,2, . .. ,n}. 

If 1/J E Qn is an n-cube, then 

is called the boundary of 1/J . 

Let Q, Q' be cubical sets. A morphism f : Q ---+ Q' is a sequence of maps, fn : 
Qn ---+ Q~, commuting with face and degeneracy operations, such a morphism is called 

a cubical map. Thus we get a category Cub of cubical sets . 

Cubical sets can best be regarded as expressing the geometric relationships between 

points, line segments, cubes, etc. To see how, let Q be a cubical set. The two maps 

mean that we can regard Q1 as a set of edges and Qo as a set of vertices, thus obtaining 

a directed graph with source function Of and target function If. We represent ¢ E Q1 

pictorially as follows: 
¢ 

¢a •---+---• ¢1 

If a is a 0-cube, we can use the degeneracy operator a5 to form a 1-cube a5(a). However 

condition (Q4) requires that eta5(a) =afor e E {O, 1}, and so we think of a6(a) as being 

a loop at a. 

We call a5(a) a degenerate 1-cube. 

Let 1/J be a 2-cube with boundary (1/J5 ,'!/Jr,1/J5,'!/Jr) . Then by (Ql) we have ('!/J5)i = 

(1/Ji)o. Thus the source of 1Pf is the target of '!/J5. In the same way ('!/J5)0 = (1/Ji)o, 

( 1P6 )i = ( '!/Jr) o and ( '!/Ji )i = ( Vii )i. Thus the 1-cu bes that form the boundary of iµ fit 
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together to form the edges of a square. 

,pf 
• • 

1P6 1Pi 

• • 1P6 

Consequently, we can regard the elements of Q2 as being squares, and the four face maps 

as assigning to each square the edges on its boundary. 

Let ¢ be a 1-cube. Then there is a degenerate 2-cube ai(¢). By (Q4), e!af(¢) = ¢, 

for e = 0, 1, and by (Q5) e~a}(¢) = a6(¢e), for e E {O, 1} . So a}(¢) has boundary 

(¢, ¢, a5¢0, a5 ¢1), which we can depict as follows: 

•---+---• 

•---+---• 

Similarly, there is a degenerate 2-cube aH¢) , as shown below. 

¢ . -----• 

•-----• ¢ 

Let P = ( ( )1 , c:0 , c:1, s) be a cocylinder on a category C. For each pair of objects 

X and Yin C we shall construct a cubical set Qp(X, Y)n, making essential use of the 

cocylinder. First define the iterated cocylinder functor ( )1n by Y 10 = Y , Y 11 = Y 1 and 

y 1n = (Y1n- 1 )1. Let X and Y be a pair of objects in C. Put 

1n 
Qp(X, Y)n = hom(X, Y ). 

We shall show that the sequence of sets Qp (X , Y) = { Qp (X, Y) n I n E N} is a cubical 

set , to do this we need to define the face and degeneracy operators in Qp (X, Y). For 
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e = 0, 1 and i E {1 , . .. , n} define functions 

e~(Y) : yJn --+ yJn -1 

and cr~(Y) : yJn --+ yJn+l 

by 

by 

In Qp(X, Y) define 

e~: Qp(X,Y)n--+ Qp(X, Y)n-1 by e~(J) = e~(Y)f 

and 

er~: Qp(X, Y)n--+ Qp(X, Y)n+1 by er~(!)= cr~(Y)f. 

Proposition 5.4 Let C be a category equipped with a cocylinder P , and let X and Y be 

objects of C . Then with the above definitions, the functions e~ and crl satisfy the axioms 

(Q1) - (Q5). Thus Qp(X, Y) is a cubical set. 

PROOF. We need to show that e~ and crl satisfy the axioms (Ql)-(Q5), to do this, we 

use the Godement interchange law 

(Ql) : Suppose we are given the functors and natural transformations, shown below 

C C C 
Ide Ide 

By the interchange law, we have that for any object A of C 

from this we have that, for i < j 

( w )JJ - 2 ( e )Ji-! ( e )Ji-! (( w )JJ- 2 )J 
Ey1n - j E(y1n-i-!)1 = Ey1 n - i- 1 Ey1n-j , 

h • ( w )JJ - 2 ( e )Ji-I _ ( e )Ji-I ( w )JJ - l H j-1 i _ i j t at lS EyJn-j EyJn-i - EyJn-i-1 Ey1n-j ence Wn- 1 en - en- 1 Wn. 

(Q2): Similar to (Ql). 

(Q3): Applying the interchange law to the situation pictured below 

Ide 

C .j,s C C 
Ide 

we have that, for i < j 

( )
J j-2 ( e )Ji - ! ( e )Ji-! (( )Jj-2 )J 

Sy1n-j+l Ey1n-i = E(Y1n-i)J Sy1n-j+1 , 

h • ( ) J j - 2 ( e ) Ji- ! ( e ) Ji-! ( ) J j - 1 H j - 1 i _ i j t at lS Sy1n-j+1 EyJn-i = EyJn-i+l Sy1n-j+1 . ence O'n-1 en - en+l O'n , 

and (Q3) holds. 
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(Q ) ( e )Ji-1 ( )1i-1 ( e )1i-1 (Id )1i-1 Id 4 : cyin- i+l Sy1n-i+l = cyJn-i+l Sy1n - i+l = y1n - i+ l = y1n 

and so e~+l a-~ = Idqp(X,Y) n . 

(Q5): Similar to (Q3). 

■ 

In a similar way it is possible to construct cubical sets Q1(X, Y) on a category which 

has cylinder I. This dual construction is described in Section I.5 of Kamps and Porter [9] . 

If a category C has a cocylinder P , and f : X ----+ X', 9 : Y ----+ Y' are morphisms in 

C then define 

by 

If X and Y are objects of C , then clearly Idqp(X,Y) = Qp(Idx , Idy). If Ji: X1 ----+ X2 , 

h : X2 ----+ X3 , 91 : Y1 ----+ Y2 and 92 : Y2 ----+ Y3 are morphisms in C and 'T/ E 

Qp(X1, Y1)n, then 

1n ( 1n fop) fop 
92 91 'T/ 1 2 

(9291)/n 'T/(hJi)OP 

Qp ( (hh) 0
P, 9291) ('Tl) · 

Hence there is a functor 

Qp : C 0 P X C ----+ Cub. 

In what follows, we will mainly be concerned with 0-cubes , 1-cubes and 2-cubes. We 

make the above definitions explicit in these cases. The 0-cubes and 1-cubes in Qp(X, Y) 

have simple interpretations. A 0-cube f is simply a morphism f : X ----+ Y. 

If f E Qp(X,Y)i is a 1-cube, then 

Thus a 1 cube f with boundary D f = (Jo, Ji) is nothing other than a homotopy f 

X ----+ Y 1 from Jo = c:~(J) to Ji = c:~(J). Given a 0-cube, or morphism, f : X ----+ Y, a 

degenerate 1-cube is the constant homotopy sy f. 
If f E Qp(X, Y)2, then 

JJ O~(J) = E~ 1 (J) , 

JJ O~(J) = (c:~ )1 (J) , 

fl l~(J) = c:t1 (J) , 

fl l~(J) = (c:~ )1 (J). 
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As illustrated below. 
(€~)I(!) 

• • 

€~[ (!) f €~ [ (!) 

• • (c'?-,)1 (!) 

We shall be interested in those cylinders where the corresponding cubical sets satisfy 

certain conditions known as 'Kan conditions'. To define these conditions we need first 

the notion of a (n , v, k)-box. 

Definition Let Q be a cubical set and let ( n , v, k) be a triple of natural numbers with 

v E {0, 1} and k E {1, 2, ... , n}. An (n, v, k)-box , in Q is a tuple 

(,! I e = 0, 1, i = 1, 2, ... ,n, (e, i)-/- (v,k)) 

of elements of Qn-l satisfying 

e~_ 1,L =w;::::i,!, for i <j and (e,i), (w,j)-/- (v,k). 

An (n , v, k)-box, will be denoted by 

( 1 1 n n) , = 'Yo , ,1 , · · · , - , · · · , 'Yo , 11 , 

where the ' - ' occurs in the (v, k) position. We write Q (n, v,k) for the set of all (n , v, k)

boxes in Q. 

Ann-cube A E Qn is called a filler of I E Q(n,v,k) if A~ = ,! for all (e, i) -/- (v, k). A 

cubical set Q is said to satisfy the Kan condition E(n, v, k) if every (n, v, k) -box has a 

filler. If Q satisfies E( n , v , k) for a fixed n and all v = 0, 1 and k E { 1, . . . , n}, then we 

say that Q satisfies the Kan condition E( n). 

We impose extra structure on a cocylinder P by demanding various Kan filler condi

tions on Qp(X, Y). A cocylinder Pon a category C is said to satisfy the Kan condition 

E(n, v, k) ( v E {0, 1} and k E {1, .. . , n} ) if for any objects X and Y of C , the cubical 

set Qp(X, Y) satisfies the Kan condition E(n, v, k). 

The two results in the theorem below are obtained by dualising Propositions I.5.8 and 

I.5.6 respectively of [9]. 

Theorem 5.5 Let P = (( )f ,E0 ,E1, s) be a cocylinder on a category C . Then 

(i) If the cocylinder satisfies the Kan condition E(2, 1, 1), then the homotopy relation 

'.:::' is an equivalence relation. 
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(ii) If the cocylinder satisfies the Kan condition E(2), then for each object Y in C the 

morphisms £~ and c::} are fibrations and sy is a homotopy equivalence. 

PROOF. (i) Any morphism is homotopic to itself via its constant homotopy. Thus '.:::' is 

reflexive. 

To show that the '.:::' is symmetric. Let f , g : X ----+ Y be morphisms in C and 

¢: X ----+ Y 1 be a homotopy from f tog; that is£~¢ = f and c::}¢ = g. We show that 

(sy f , - , <p, Sy j) 

is a (2, 1, 1)-box. To do this we need (sy f)o = (sy !)1 and </Jo = (sy f)o. But 

(sy f)o = £~Sy f = f, (sy f)i = c::}sy f = f and </Jo = E~<p = f. 

So (syf, - ,<p,syf) is a (2 , 1,1)-box. Since E(2) holds, this box has filler>.: X----+ Y 12
. 

Put ¢' = Ai = c::t1 (>.). We have 

(¢1)0 = ot>-t = ot1 ~(>.) = 1to~(>.) 

by the cubical condition ( Ql) , therefore 

(¢1)0 = 1i >.5 = li¢ = c::}(¢) = g, 

as we have a box. Hence (¢')o = ¢1 = c::}(¢) = g. Similarly, 

(¢')i = (sy f)i = c::}sy f = f. 

Thus ¢' is a homotopy from g to f as required. The various maps involved are illustrated 

in the following diagram: 
Sy f 

• • 

Sy f ¢/ 

• • 
</> 

To show that '.:::' is transitive, let f, g, h : X ----+ Y be morphisms in C such that there 

is a homotopy ¢ from f to g and a homotopy '1/; from g to h. It is easy to check that 

(<p, - , Sy f, '1/J) 

is a (2 , 1, 1)-box. Thus there is a filler >. : X ----+ Y 12
. 

1P •-----• 

•----+----• 
Sy f 
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It is easy to check that (>-Do = f and (>-!h = h. Thus >-! is a homotopy from f to h as 

required. 

(ii) We prove explicitly that Ei is a fibration; the proof that c} is a fibration is 

similar. Let ¢, f : X ~ Y 1 be morphisms such that Ei<p = Ei f. Then, together with 

Ei(syt:}f) = t:}f, the 4-tuple 

(j , -, <p, SyE} j) 

is a (2, 1, 1)-box in Qp(X, Y)i. Thus by E(2) there is a filler A : X ~ Y 12 such that 

E~1 A = f and (ci )1 A= ¢. It follows that ci is a fibration . 

To show that sy is a homotopy equivalence, we only need to prove that syEi ~ ldy . 

It is easy to check that 

(Idy1, SyEi , SyEi, -) 

is a (2, 1, 2)-box in Qp(Y1 , Y)i. Thus there is a filler A: Y 1 ~ Y 12 such that E~1 A = 

Idy1 and t:} 1 >- = SyEi. Thus syEi and Idy1 are homotopic as required. 

■ 

5.3 The mapping cocylinder factorisation 

In Theorem 5.7 we shall use the Kan conditions introduced in the previous section to 

examine properties of the 'mapping cocylinder factorisation' which we now define. 

Let C be a category equipped with a cocylinder P. Let f : X ~ Y be a morphism 

in C and suppose that the pullback diagram of f and ci illustrated below exists 

Then Mf is called a mapping cocylinder off. Now the diagram below commutes 

Consequently, there is a unique morphism pf : X ~ M f such that 1rf pf = sy f and 

jf pf = Idx . Put if = t:}1rf. Then if pf = t:}1rf pf = t:}sy f = f. It follows that we have 
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constructed the following factorisation of f 

Mf 

;I\ 
X-------s►-y 

f 

It is called the mapping cocylinder factorisation. 

The Eckmann-Hilton dual of the mapping cocylinder is the 'mapping cylinder' which is 

constructed using pushouts. The dual of the following result can be found in [9] (Theorem 

I.5 .11) . 

Proposition 5.6 Let C be a category, with cocylinder P = ( ( )1 , .s0 , .s1, s ), and let f : 

X ----+ Y be a morphism of C which has the mapping cocylinder factori sation pictured 

above. Suppose that ( )1 preserves pullbacks and P satisfies E(2) . Then 

(i) pf is a homotopy equivalence with homotopy inverse jf; in particular, X is a defor

mation retract of Mf. 

(ii) if is a fibration. 

PROOF. (i) We show that pf jf '.::::' IdMJ · 

Define the following three elements of Qp ( M f, Y) 1 

1 JI ·f ro = sxJ ' 

Since jisx = syf, we have that jisxjf = syjjf. Also 

(,5)i .s}(syjjf) = (.s}sy)Jjl = Jjl 

(,{)o .s~1rf = Jjl 

(,5)0 .s~(sy Jjl) = (.s~sy)Jjf = Jjl 

(,J)o .s~(,J) = .s~(,5) = (,5)0. 

Put,= (,J, ,f, ,5, - ) = (JI sxjf, 1rf , sy Jjf , - ). Then we have shown that, is a (2, 1, 2)

box in Qp(Mf , Y). By assumption, P satisfies E(2). Thus there is a filler>-: Mf----+ yI
2 

such that 

, 1 0 , JI ·f 
"O = CyJA = sxJ , '1 1 , f d , 2 ( 0 )I, j ·f JI ·f 

"i = Ey1" = 1r an "o = cy "= sy J = sxJ . 
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By assumption ( )1 preserves pullbacks. Thus the inner square in the diagram below is a 

pullback. But it is easy to check that the solid arrows commute. 

Mf >-

1P 
."-

('1rf)I 
(Mf)1 yJ2 

sxjf 
(jf)I (c:~Jf 

XI 
jl 

yI 

Consequently, there is a unique morphism VJ : Mf ----+ (Mf)1 such that 

and 

We shall prove that VJ is a homotopy from pf jf to IdM 1 . 

We prove first that VJo = pfjf. Consider jfVJo = jf(1/JMJVJ). The diagram below 

commutes since Eo is a natural transformation. 

Thus we have that 

Mf - --~ X 
jf 

Next consider Kf VJo- Again using the fact that Eo is a natural transformation we have 

that 

Hence the diagram below commutes. 

X-----s--Y 
f 
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But the inner square is a pullback. Thus 7/Jo is unique making the diagram commute. 

Hence 7/Jo = pf jf , as required. 

We now prove that 7/Ji = Id Mt. By definit ion 7/Ji = c:~1 7/J. We calculate the composites 

jf 'ljJ1 and nf 'ljJ1 much as before. We have that 

and f 1 .,. _ 1 , _ f 
7r EMf'Y - Ey1A - 7r . 

Thus 'ljJ1 : Mf --+ Mf is the unique morphism so that the pullback diagram below 

commutes. 

Hence 7/Ji = IdMt as required . 

X ----~Y 
f 

(ii) To prove that if is a fibrat ion we now need to show that the diagram below is a 

weak pullback. We know that it commutes because c:0 is a natural transformation. 

(Mf)f 
(if)1 

yI 

co 
Mf 

co y 

Mf 
if 

y 

Let V be an object in C , and let g : V --+ Mf and¢ : V--+ Y 1 be morphisms satisfying 

c:i<p = if g (= <po). Let 

Then it is easy to check that 

(,J)i E~(nf g) = if g = <po, 

(,J)o c:i(nfg) = J/g, 

and 
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Consequently, (,6 ,- ,,5,,r) is a (2,1,1)-box in Qp(V,Y). Since P satisfies E(2) , there 

is a filler >. : V ----t Y 12 satisfying 

0 , 1 f 
€y1A=r□ =7r g, 

and ( c:} l >. = 'Yi = ¢. 

From the above results and the fact that ( l preserves pullbacks , the solid arrows in the 

diagram below commute. 

XI-----yI 
fl 

Thus there is a unique morphism <I> : V ----t ( M f) I such that 

We can now prove that <I> is the morphism we required. Using the fact that c:0 is a natural 

transformation we obtain 

and 

By assumption, the following diagram is a pullback. 

It is straightforward to show that jjf g = c:tnf g. It follows that c~1 <I> = g. It is easy to 

check that 
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Consequently the diagram below commutes 

g 

Hence result. 

■ 

Theorem 5. 7 Let C be a category which has a cocylinder P = ( ( )1 , c:0 , c:1, s) satisfying 

the Kan condition E(2) . Suppose that C has pullbacks and that ( l preserves them. Th en 

there is a functorial factorisation of each morphism of C into a homotopy equivalence 

followed by a fibration. 

PROOF. Since C has a cocylinder and pullbacks, every morphism f of C has mapping 

cocylinder factorisation f = if pf. By Proposition 5.6, if is a fibration and pf is a homo

topy equivalence with homotopy inverse jf . It remains to show that this factorisation is 

functorial. Let Ji : X1 ----+ Y1 and h : X2 ----+ Y2 be morphisms of C and suppose that 

there are morphisms u and v such that the diagram below commutes. 

To show that the mapping cocylinder factorisation is functorial we shall construct a unique 

morphism I from the mapping cocylinder of Ji to the mapping cocylinder of h making 

the diagram below commute 

ph 

63 



Now 

hui1 = vfdh = VE:~
1 
Kh = EtvIKh 

and so the solid arrows in the diagram below commute 

ujh 

Since the inner square is a pullback there is a unique morphism 1 : Mh --t Mh such 

that 

jh, = u/ and Kh, = vIKh. 

The second condition implies that c}
2 
Kh, = c}

2 
vI Kh and so ih, = vEL Kh = vih . 

It remains to show that ,ph = phu. Now 

and so E:~
2 
vI Kh ph = E:~

2 
sy2 hu = hu. It follows that the solid arrows in the diagram 

below commute 

The inner square is a pullback and so there is a unique morphism 

such that 

Khµ = vIKhph and jhµ = u . 

However , Kh,ph = v I Khph and jh,ph = ujhph = u, thus µ 

Kh ph = sy2 ff , therefore 
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but jhphu = u, henceµ= phu. Therefore ,ph = phu, as required. 

■ 

The above result implies that in the category Top every continuous map can be 

factorised into a homotopy equivalence followed by a fibration (proved directly as Theorem 

2.8.9 of [27]). 

Since jf pf = Idx we have that jf is a split epimorphism and pf is a split monomor

phism. By Proposition 5.5(ii) c:~ is a fibration and since ( )1 is assumed to preserve 

pullbacks, jf is a fibration by Proposition 5.3. 
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Chapter 6 

The homotopy theory of ordered 

groupoids 

In this chapter we shall apply some of the abstract homotopy introduced in the previous 

chapter to the category of ordered groupoids, thus obtaining notions of homotopy equiv

alence and fibration for inverse semigroups. We begin by constructing an adjoint cylinder 

and cocylinder satisfying the Kan condition E(2). We then obtain some results about 

homotopy equivalence and fibrations in the category OG and consider some special cases 

and examples . Finally we construct the mapping cocylinder factorisation of an ordered 

functor and show that this is equivalent to the factorisation that appears in Steinberg's 

'fibration theorem'. 

6.1 The cylinder and cocylinder on the category of ordered 

groupoids 

We have seen in Section 4 that in the category of topological spaces and continuous maps, 

the unit interval I can be used to construct an adjoint cylinder and cocylinder. We shall 

now show how the groupoid I , consisting of two identities 0, 1 and two non-identity mu

tually inverse morphisms u and u-1 with d( u) = 0 and r( u) = 1, plays the role of unit 

interval in OG, in that it can be used to define a cylinder and cocylinder on OG. 

We begin with the cylinder. For each ordered groupoid G, we can form the direct 

product ordered groupoid G x I by Proposition 3.3. If 0 : G ---+ His an ordered functor, 

then there is an ordered functor 

0 x I: G x I---+ H x I given by 0 x I: (g , i) f-----t (0(g) , i). 
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It is now evident that 

( ) x I: OG ------+ OG. 

is a functor. Define ordered functors e~, eh : G ------+ G x I by 

e~: g f-----t (g,Ido) eh : g f-----t (g, Id 1). 

It is easy to check that these functors give rise to natural transformations 

e0
, e1 : Idoc ------+ ( ) x I. 

One can show that the projection onto the first factor ac : G x I ------+ G yields a natural 

transformation a : ( ) x I ------+ Idoc. It is straightforward to check that in this way we 

have constructed a cylinder I= (() x I ,e0 ,e1,a). 

We shall now describe a cocylinder on the category OG. To do this we need to examine 

category GI whose objects are the ordered functors from I to G, and whose morphisms are 

the natural transformations between such functors. There is a more convenient description 

of GI. Each ordered functor 0 : I ------+ G is completely determined by its effect on u, and 

so determines an element of G. Conversely, every element of G determines an ordered 

functor from I to G. Thus the objects of QI can be identified with the elements of G; 

that is each 0 in GI corresponds to the element 

0(0) __ e(_u)_ 0(1) 

of G. Now let ¢: I------+ G be another ordered functor, and let a be a natural transforma

tion from 0 to ¢. Then a1 ¢( u) = 0 ( u) ao. Conversely, any elements ao and a 1 of G such 

that a1¢(u) = 0(u)ao determine a natural transformation a from¢ to 0. Consequently, 

we can regard GI as consisting of commutative squares 

92 

94 91 

93 

which we represent by 4-tuples (g4, g3, g2, g1) satisfying the commutativity condition 

g4g2 = g3g1. Clearly 

and 

If g = (g4,g3,g2,g1) and g' = (g~ , g~ , g; , g~) are elements of GI , satisfying r(g) = d(g') , 

then g~ = g4 and their product is 
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which can be represented pictorially by 

91 

Lemma 6.1 Let G be an ordered groupoid. Then the functor category G1 is also an 

ordered groupoid. 

PROOF. Given an element (g4, 93, 92, 91) of G1 , we can form the commutative square 

(91, g31, g2
1, 94) as pictured below 

94 

We may then form the products 

and 

(91, 93
1
,92

1
, 94) (94, 93, 92, 91) = (91 , 9i:193, 92

1
92 , 91) = d (94 , 93, 92, 91) · 

Thus (94, 93, 92, 91)-1 = (91, g3
1, g2

1, 94) and G1 is a groupoid. 

Define an order on G1 by 

if, and only if, 9i ~ g~ for 1 ~ i ~ 4. It is easy to check that ( OG 1) and ( OG 2) hold. To 

prove that (OG3) holds, let (g4,g3,g2,g1) be an element of G1 and let (g,f,e,g) be an 

identity in G1 such that 

Now e is an identity in G, and e ~ d(g1) = d(g2). Thus (g2le) is defined . Also f ~ 
r(g1) = d(g3) . Thus (g3lf) ~ 93 is defined. We can now form the square 

(92le) 

1,,1n, 1n1,J- ' j j, 
(93!!) 
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which is commutative, is less than (94,93 , 92 , 91) and has domain (9 , f,e ,9). It is easy to 

see that it is the unique element of G1 with these properties. 

■ 

Let 0 : G ------+ H be an ordered functor. Define 

It is easy to check that 01 is a well-defined ordered functor. It follows that we have defined 

a functor 

( )1 : OG ------+ OG. 

Let (94, 93, 92, 91) be an element of G1 . Define the ordered functors 

c~ : G1 ------+ G by c~ : (94, 93, 92, 91) f---------1 92 

and 

It is straightforward to check that c0 , c1 : ( )1 ------+ IdoG are natural transformations. 

Define the ordered functor 

sc : G ------+ G1 by sc: 9 f---------1 (r(9) , 9, 9, d(9)) , 

then s : IdoG ------+ ( )1 is a natural transformation. Hence we have constructed a cocylin

der P = (( )1,c0 ,c1,s) on OG. 

Proposition 6.2 In the category of ordered 9roupoids and ordered functors , the cylinder 

I is left adjoint to the cocylinder P. 

PROOF. Let G and H be ordered groupoids. We begin by constructing a bijection 

Oc,H: hom(G x I , H)------+ hom(G, H 1
). 

Let 0 : G x I ------+ H be an ordered functor. Then for each 9 E G, we have that 

(r(9),u)(9 , 0) = (9,u) = (9,l)(d(9),u). 

It follows that we can define a function 0' : G ------+ H 1 by 

0' : 9 f---------1 ( O(c(g),u) j: j 0( d(g),u) l 
0(g ,l) 
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It is easy to check that 0' is an ordered functor. Define Da ,H ( 0) = 0'. It is clear that 

Da,H is injective. To see that Da,H is surjective, let ¢ : G --+ H 1 be an ordered functor. 

Put cp(g) = (h~, hg, ht hf) and define 

¢* : G X I--+ H by ¢* (g, i) f----t 
h~h~ 

hg 

h~(hf)- 1 

if i = u 

if i = 1 

if i = u-1 

We show that¢* is a functor. Let g E G, we shall show that d(¢*(g, i)) = ¢*(d(g,i)) for 

all i E J. Since cp(d(g)) =(hf, r(hf) , d(hf), hf) , we have 

d(hf) if i = 0 
hg if i = u 

cp*(d(g) ,i) = 1 

r(hf) if i = 1 

hg 
1 if i = u-1 . 

Consequently, 

cp*(d(g,i)) = ¢*(d(g),d(i)) = { d(hf) 
r(hf) 

if i = 0, u 

if i = 1, u-1 . 

However 

d(cp*(g,i)) 

Similarly ¢*(r (g , i)) = r( cp*(g, i)). 

d(h~) 

d(h~) 

d(hg) 

d(hg) 

d(hf) 

r(hf) 

if i = 0 

if i = u 

if i = 1 

if i = u-1 

if i = 0, u 

if i = 1, u-1 . 

Next suppose that there exists (g, i) (g' , i') in G x I , we shall show that ¢* (g , i) ¢* (g', i') = 
¢* (gg', ii'), these exist only if ii' is defined, in which case 

¢* (g , i)cp* (g'' i') 
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if (i, i') = (0, 0) 

if (i,i') = (u ,O) 

if (i, i') = (1, u) 

if (i,i') = (u- 1 ,u) 

if (i, i' ) = (1, 1) 

if (i , i') = (u- 1 , 1) 

if (i, i') = (0 , u-1 ) 

if (i ,i') = (u,u- 1 ) 



However 

/4*( I ··I) '+' gg ' ii = 

h9 h
91 

2 2 

h9 h9h
91 

4 2 2 

h9 h
91 

3 3 

h9 h91 (h91
) - 1 

2 2 1 

if (i , i') = (0,0),(u- 1 ,u) 

if (i,i') = (u,O), (1,u) 

if (i , i') = (1, 1), (u,u- 1 ) 

if (i , i') = (u-1 , 1) , (o,u- 1 ) . 

if ii' = 0 

if ii' = u 

if ii' = 1 

if ii' = u-1 . 

Thus ¢* is a functor as required. It is clear that ¢* is ordered, and that Dc,H( ¢*) = ¢. 

To show that 0, is an adjunction, we need to prove that it is natural in G and in H. 

To show that Dc,H is natural in H we need the diagram below to commute for all ordered 

functors ¢ : H ----+ H'. 

H 

H' 

D.c,H 
hom(G x I,H)----hom(G,H1 ) 

hom(G x l,¢) hom(G ,¢1 ) 

hom(G x I , H') -------;.. hom(G, H' 1 ) 
D.G,H 1 

However for any 0 E hom(G x I,H) and g E G 

it is easy to verify that this is equal to (hom(G, ¢1 )Dc,H(0))(g) = (¢1Dc,H(0))(g). Hence 

0, is natural in H. To show that 0, is natural in G we need to prove that for any ordered 

functor 7/J : G' ----+ G the diagram below commutes. 

G 
D.c,H 

hom(G x I ,H)----hom(G, H 1 ) 

hom('lj!x l ,H) 

G' hom(G' x I , H) ---~hom(G',H1 ) 
D,G1 ,H 

Now for 0 E hom(G x I , H) and g E G' , 

((Dc, ,H hom('I/J x I , H))(0))(g) = (Dc, ,H(0(7/J x J)))(g) 
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( 

0('lj)xl)(g,O) l 
0(,Pxl)(,(9),u) j = j 0(,Px l)(d(g) ,u) 

0(1jJx I)(g ,l) 

( 

0( '1jJ(g),O) l 
0(,P(,(g)) ,u) j = j 0( ,P( d(9 )) ,u) 

0(1jJ(g) ,l) 

and 

( 

0( '1jJ(g) ,O) l 
(hom( ,J,, H' )nc,H ( 0)) (g) = ( (nc,H ( 0) ),j, )(g) = e(,(,P(9)),u) l = l B( d( ,P(9)),u) 

0(1jJ(g), l ) 

so D-c,H is natural in H. Consequently D, is an adjunction D,: () x I -----1 ( )I. 

It remains to verify that for i E { 0, 1} , and any ordered functors 7/J : G x I --+ H and 

0 : G --+ H, the function D-c,H satisfies 

If g E G then 

c~D-c,H(1P)(g) = c~ ( ,;(, (9) ,u) j :1,;(d(g),u) l = 1/J (g , 0) = 1/Je~ (g) 

'ljJ (g,l) 

and similarly cJID-c,H(1P)(g) = 1/J(g, 1) = 1/Je~(g) . As for the second condition: 

( 

0cra (g ,O) l 
llc,H (0oa)(g) = 0ua(<(9) ,u) j = j Bua (d(9),u) = (0r(g) , 0(g), 0(g) , 0d(g)) = SH0(g), 

0cra(g ,l) 

■ 

It follows from the above result and Theorem 5.1, that the two notions of homotopy 

defined by the cylinder and cocylinder are equivalent . It follows from Theorem 5.2 that 

fibrations can be defined either by the cylinder or the cocylinder. Later we shall examine 

the notions of homotopy and fibration in the category of ordered groupoids, but first we 

need the following key result. 

Proposition 6.3 Let P = ( ( f, c0 , c1, s) be the cocylinder on the category of ordered 

groupoids and ordered functors. Then 

72 



(i) P satisfies E(2). 

(ii) The cocylinder functor ( f preserves pullbacks. 

PROOF . 

(i) We prove explicitly that every (2, 1, 1)-box has a filler; the remaining cases are proved 

similarly. We shall use the following notation: If 0 : G ---t HI is an ordered functor then 

write 

Let 0, ¢, 'ljJ : G ---t HI be ordered functors such that (¢, -, 0, 'lj}) is a (2, 1, 1)-box in 

Qp ( G, H). By definition 

as illustrated in the diagram below. 

•-----+---• 

•-----• 
0 

From the definition of the cocylinder in OG it follows that 

h7/J - h¢ 2 - 3 and h~ = ht 

and this is illustrated in the diagram below. 

he 
1 

h¢ 
1 

h,f; 
1 

I 
he 

3 1)8 hjt 11 ¢ 
I hr fJ 1P h,f; 

3 

he 
4 

h,f; 
4 

h,f; 
4 

We construct a filler for this box. Such a filler will be an ordered functor 

where 
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such that fJ4fJ2 = fJ 3fJ 1- It follows that 8 maps g into the commutative cube 

in such a way that 

h2 
2 

Now ct1B(g) = ct1( fJ 4, f:) 3, fJ 2, fJ1) = fJ 2, so let fJ 2 = ¢(g) , and 

(c~ f 8(g) = (c~ l (fJ4, fJ 3, fJ 2, fJ1) = (c~( fJ 4), c~( fJ 3), c~ (fJ2) , c~(fJ1)) = (ht ht ht h!) 

so we want the top face of our cube to be 0(g) . Similarly, (c}iY 8(g) = 'lj;(g ) implies that 

the bottom face of the cube 8 (g) is 'l/J(g). 

It follows that we should define 8(g) to be the cube 

where 

To show that 8(g) commutes, it is enough to show that the front face 

commutes. But 
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(ht ht)hf (h:h~)- 1 

ht (ht hf (h~)-1
) (h:)- 1 

ht (hf hf (ht)-1
) (h:)- 1 

hthf(h:)- 1
. 

It is easy to check that 8 defined in this way is an ordered functor, and by construction 

it is a filler for the (2, 1, 1)-box (¢, - , 0, 7/J). In a similar way we can show that any two 

dimensional box has a filler , and so our cocylinder in OG satisfies E(2). 

(ii) That the ordered functor ( )I preserves pullbacks is in fact immediate from Propo

sition 3.3, Proposition 6.2 and standard results in category theory (Theorem V.5.1 of [21]). 

However, we give a direct proof. Let 0 : G ---+ H and ¢ : K ---+ H be ordered functors, 

and let 

be their pullback. The square 

G---__,..H 
0 

GI-----~HI 
01 

commutes since ( )1 is a functor. We prove that it too is a pullback. The ordered groupoid 

(Ge~ ¢, K)I has elements ((94 , k4), (93, k3), (92, k2), (91 , k1)), where 0(9i) = </>(ki), 9i E G 

and ki E K, such that (94, k4)(92, k2) = (93, k3)(91, k1) - It follows that (9492, k4k2) 

(9391 , k3k1) , therefore (94,93 , 92 , 91) E GI and (k4,k3,k2 , k1) E KI_ We also have 

and 

Let a : L ---+ GI and /3 : L ---+ KI be ordered functors such that gI a= ¢I /3. Write 
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Thus 0(9;) = <f>(ki). Define 

It is easy to check that 'l/; is an ordered functor satisfying 7Ti 'l/; = a and 7ri'l/; = (3 . 

Furthermore, it is straightforward to show that 'l/; is the unique such functor. It follows 

that ( f preserves pullbacks. 

■ 

6.2 Homotopy equivalence of ordered groupoids 

The role of Theorem 6.3 is to guarantee that we have the foundations for a reasonable 

homotopy theory of ordered groupoids. In this section we examine homotopies of ordered 

groupoids and construct a few examples. 

Let ¢, 0 : G ----+ H be ordered functors, then ¢ is homotopic to 0 with respect to the 

cylinder on OG if there is an ordered functor 

<I> : G x I----+ H such that <I>(9, 0) = ¢(9) and <I>(9, 1) = 0(9) 

for all 9 in G. 

Equivalently, a homotopy between 0 and ¢ with respect to the cocylinder is given by 

an ordered functor 

for all 9 E G and some 94, 91 EH such that 94¢(9) = 0(9)91. 

Theorem 5.5 and Theorem 6.3 guarantee that this notion of homotopy equivalence is 

an equivalence relation. We shall say that two ordered groupoids G and Hare homotopy 

equivalent if there is a homotopy equivalence between them. By Theorem 3.9 the category 

of inverse semigroups and prehomomorphisms can be embedded as a full subcategory 

of OG , and therefore we can also talk about two inverse semigroups being homotopy 

equivalent. 

In Proposition 6.4 we shall show how to characterise homotopy equivalence in a purely 

algebraic way, but first we need a definition. 

Let G be an ordered groupoid . An order preserving function a : G 0 ----+ G is said to 

be r- coherent if r(a(e)) = e for each e E G 0 • 
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Proposition 6.4 Let 0 : G -r G be an ordered functor on the ordered groupoid G. Then 

0 ::= Ide if, and only if, there is an r- coherent order-preserving function a : G 0 -r G 

such that 0(9) = a(r(g))-1ga(d(g)) for each g E G. 

PROOF. Suppose first that 0 ::= Ide, then from the definition of the cocylinder on OG , 

there is an ordered functor <I> : G -r er such that c~<I> = 0 and 1oh<I> = Ide . Let g E G. 

Then 

where 91 , g4 E Gare such that 991 = 940(9). For any identity e in G, write 

<I>(e) = (xe, e, 0(e), Xe )-

Define 

a: G 0 -r G by a(e) = Xe-

If e :( f then <I> ( e) :( <I>(!) and so Xe :( x J · It follows that a is order preserving. It 

is immediate from the definition of er that r( xe ) = e and so r(a(e)) = e. Now since 

<I>(9) = <I>(9d(9)) = <I>(9)<I>(d(9)) we have that a(d(9)) = 91 , and similarly a(r(9)) = 94. 

Therefore 

Hence a is the required r-coherent function. 

To prove the converse, let a : G0 -r G be an order-preserving function such that 

0(9) = a(r(9))-19a(d(9)) for each 9 E G. We prove that 0 ::= Ide. Define 

<I>: G-r GI by <I>: 9 f-----+ (a(r(9)) ,9, 0(9) ,a(d(9))). 

This satisfies c~ <I> = 0 and ch <I> = Ide, so we only need to show that <I> is an ordered 

functor. It is immediate that ¢ is a well-defined function. The fact that <I> is order 

preserving follows from the fact that 0 and a are order-preserving. It remains to show 

that <I> is a functor. Let 9 E G, it is clear that 

and 

<I> ( d (9)) 

<I>(r(9)) 

(a(d(9)),d(9),0(d(9)) ,a(d(9))) = d(<I>(9)) 

(a(r(9)) , r(9) , 0(r(9)) , a(r(9))) = r (<I>(9)) 

since 0 is a functor. If 9h is defined in G, then d(9) = r(h ) and so <I>(9)<I>(h) is defined 

and is is easy to see that <I>(9)<I>(h) = (a(r(9)) , 9h, 0(9h) , a(d(h))) = <I>(9h) . 

■ 
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The proof of the following is immediate from the above result and the definition of 

homotopy via the cocylinder on OG. 

Proposition 6.5 Let G and H be ordered groupoids. Then G and H are homotopy 

equivalent if, and only if, there are ordered functors 

0 : G -----+ H and ¢ : H -----+ G 

and r- coherent order-preserving functions 

a: Ga-----+ G and /3: Ha-----+ H 

such that for each g E G and each h E H we have that 

¢0(g) = a(r(g))-1ga(d(g)) and 0¢(h) = f3( r(h)) - 1 hf3(d(h)) . 

■ 

The next result provides some simple necessary conditions for two ordered groupoids 

to be homotopy equivalent . 

Proposition 6.6 Let 0 : G -----+ H and ¢ : H -----+ G be ordered functors such that 

¢0 '.:::'. Ide and 0¢ '.:::'. IdH . Then 0 (respectively ¢) is full, faithful and dens e. 

PROOF. By definition, 0¢ '.:::'. IdH means that there is an ordered functor <I> : H -----+ HI 

such that c:t<I> = 0¢ and c:}z-<I> = IdH. Leth E homH(e, J). Then, using the same notation 

as in the proof of Proposition 6.4, we can write 

By the same reasoning ¢0 '.:::'. Ide means that there is an ordered functor 8 : G -----+ GI 

such that for each g E home ( i, j), we can write 

The functor 0 is faithful: to see this let a, b E home ( i , j) and suppose that 0( a) = 0(b). 

Then ¢0(a) = ¢0(b) . However 8(a) is a commutative square and so 

Likewise 8(b) is a commutative square and so 
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Hence a = b as required. 

The functor 0 is dense: to see this let e E H 0 • But then Xe is an element of H satisfying 

d(xe) = 0</>(e) and r( xe) = e, as required. 

By symmetry it is clear that </> is also faithful and dense. 

The functor 0 is full: to see this let h E homH(0(e),0(f)). We shall find an element 

in home(e, J) which maps to h. Consider the element x = x1</>(h)x;1 in G. The square 

G(x) commutes and so x = x1</>0(x)x;1. It follows that </>(h) = </>0(x). But</> is a faithful 

functor and so h = 0(x), as required. 

■ 

Recall from Section 3 that the categories Grpd of groupoids and groupoid functors, 

and Grp of groups and group homomorphisms, are all full subcategories of the category 

OG. Hence the adjoint cylinder and cocylinder on OG give rise to notions of homotopy 

on the categories Grpd and Grp. In the following result we obtain some properties of 

homotopy equivalence in these special cases. 

Proposition 6. 7 (i) Let G be a group regarded as an ordered groupoid with a unique 

identity and let 0 : G ----+ G be a group homomorphism. Then 0 '.::'. Ide if, and only 

if, 0 is an inner automorphism. 

(ii) Let G be a connected (unordered) groupoid, then G is homotopy equivalent to each 

of its vertex groups . 

PROOF. (i) Recall that an inner automorphism of a group G is the group homomorphism 

obtained by conjugating each element of G with an element x E G 

Suppose that 0 '.::'. Ide, then there is an ordered functor 

q>: G----+ G1 with 4> : 9 i-----+ (94, 9, 0(9), 91) 

for some 94,91 E G such that 940(9) = 991· Since d(9) = r (9), we have d(4> (9)) = r(4> (9)) 

and so 91 = 94 = x, say. Hence x0(9) = 9x, thus 0(9) = x-19x. Now let 91 be another 

element of G. By the above argument we have 

for some y E G. To show that 0 is an inner automorphism it remains to show that x = y . 

Since 919 is defined it follows that 4>(91)4>(9) is defined, but this is only the case if x = y. 
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The converse is immediate. 

(ii) This result is just Corollary 1 to Theorem 6.2 of [7]. However we give a direct 

proof. 

Let e be an identity in G and let i : G ( e) ----+ G be the inclusion functor. We shall 

construct its homotopy inverse. Since G is connected, for any identity f E G0 we can 

choose 9J Ehorn(!, e), in particular 9e = e. Define 

which is clearly a functor and its restriction to G ( e) is Ida( e) · It remains to show that 

Ide :::::: ip, however, the functor 

<I>: G----+ GI with <I>: g f--t (9r(g),p(g),g,gd(g)) 

provides the required homotopy. 

■ 

In the next result we obtain two further examples of homotopy equivalence. First we 

need a definition. In topology a space is called contractible if it is homotopic to a space 

with only one point (see Section I.3 of [27]). By analogy, we define an ordered groupoid G 

to be contractible if it is homotopic to an ordered groupoid consisting of just one identity. 

Thus contractible groupoids are homotopically as simple as possible. 

Proposition 6.8 (i) If an ordered groupoid is contractible, then it is connected and 

has trivial vertex groups. 

(ii) The Brandt semigroup B(G, J) is homotopic to G0 , the group G with a zero adjoined. 

PROOF. (i) Let G be an ordered groupoid which is homotopic to the ordered groupoid 

P consisting only of an identity *· Thus G is contractible and there is a homotopy 

equivalence 0 : G ----+ P with homotopy inverse ¢ : P ----+ G. Clearly 0(g) = * for all 

g E G and ¢( *) = e for some identity e in G, therefore 0¢ = Idp. Since ¢0 '.::::'. Ide, there 

is an ordered functor 

<I> : G ----+ GI with <I> : g f--t (gg' , g, e, g') 

for some g' E G. It is evident that G is connected. To see that it has trivial vertex 

groups , let f be an identity and suppose that g E G(J) . Now <I>(J) = (h, f, e, h) for 

some h E hom(e,J), and <I>(g) = (gh',g , e,h') for some h' E hom(e,J). Since gf is 

defined <I>(gf) = <I>(g)<I>(J) is defined, and so h = h'. Similarly, since f g is defined, 
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<P(jg) = <P(J)<P(g) implies gh' = h. Therefore h' = gh' and so g = r(h') = f. Hence C(j) 

is trivial. 

Note that by Proposition 6.7 the converse of this result holds in the category Grpd. 

(ii) Recall from Section 1 that B(C, J) = (J x C x J) UO, where J is a non-empty set 

and C is a group. The product of (i,g,j) and (k,h , l) is zero unless j =k in which case 

it is (i,gh,l). Consider the natural partial order on B(C, J). Suppose that (i,g,k) and 

(k,h,l) are elements of B(C,J) such that (i ,g,j) ~ (k,h,l), then 

(i,g , j) = (k,h , l)(l,l,l) = (k,h,l) or (i ,g,j) = 0. 

So the element O is beneath every element and the order is equality on B ( C, J) \ { 0}. The 

set of idempotents of c0 is E(C0 ) = {O, 1}. Under the natural partial order O is beneath 

every element and the order is equality on C. We shall henceforth view B ( C , J) and c0 

as ordered groupoids under the natural partial order. 

Choose n E J and keep it fixed . Define a function 1/J: c0 ----+ B(C, J) by 

1/J(g) = (n, g, n) and 1/J(0) = 0, 

and define a function ¢ : B ( C , J) ----+ c0 by 

cp (i , g, j) = g and ¢(0) = 0. 

It is straightforward to check that both 1/J and ¢ are ordered functors. Observe that 

¢1/J = Id0 o. We prove that 1/;¢ '.::::: IdB(G,J) · To do this we need to define an ordered 

functor <P: B(C,J)----+ B(C,J)1 such that <P: 1/;¢ '.::::: IdB(G,J)· Let (i,g,j) E B(C,J), 

then 1/Jc/>(i,g,j) = (n,g,n). It follows that we should define <f, by 

( 

(n,g,n) ) 

<P , ( i, g, j) >----+ (i ,l,n) j = j (j,l ,n) 

(i,g,j) 

and <P(0) = (0, 0, 0, 0). 

We show that <Pis an ordered functor. Let (i,g,j), (j , h,k) E B(C, J), then 

( 

(n,g,n) (n,h,n) ) ( (n,gh,n) ) 

<P( ( i, g, j) (j, h, k)) = (i,l,n) j (j,(,n) j (k,l,n) = (i,l,n) l = l (k,1,n: 

(i,g ,j) (j,h,k) (i ,gh ,k) 

Which is equal to <P(i , gh, k) . As for identities, 

( 

(n,l,n) l 
<P(d(i,g,j)) = <P(j, 1, j) = (j,l,n)j=j(j,l ,n) = d (<P(i,g,j)), 

(j,l,j) 
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and similarly cf?(r(i , g,j)) = r(cf?(i , g,j)). It is clear that cf? is order preserving. Hence cf? 

is the required homotopy. Thus B ( G, J) is homotopic to G0 . 

■ 

The final result in this section can be deduced from Proposition 6.6 and Corollary 2 

to Theorem 6.2 of [7]. However we give a direct proof. 

Proposition 6.9 If G and H are homotopy equivalent ordered groupoids, then there is 

a bijection between the sets of connected components of G and H such that corresponding 

components have isomorphic vertex groups. 

PROOF. Denote by G9 the connected component of G containing the element g. Let Ge 

denote the set of connected components of G. An ordered functor 0 : G ----+ H induces a 

function 

which is clearly well-defined since 0 is a functor. 

Suppose that 0 is a homotopy equivalence from G to H with homotopy inverse ¢. By 

definition of the cocylinder on OG there is an ordered functor 

8: G----+ G1 with G(g) = (g4,g ,¢0(g) , g1) 

where 94,91 E Gare such that 991 = g4cp0(g). Hence G9 = G<l>B(g)_ Similarly, Hh = HB <l>(h) 

for all h EH. 

We show that ec is bijective. To see that ec is injective, let g, g' E G be such 

that ec ( G9) = ec ( Gg'). Thus HB(g) = HB (g') . Since ¢C is well-defined, we then have 

cpc (HB(g)) = qP (HO(g')), that is c<t>B(g) = c <t>O(g') . Hence G9 = G9'. To see that ec is 

surjective, let h EH. Then cpc(Hh) = Q</>(h) and ec(G<l>(h)) = HO¢(h) = Hh. 

We now consider the effect of 0 and ¢ on vertex groups. Let e be an identity in G. 

The restriction of 0 to G(e) is a group homomorphism 

G(e) ----+ H(0( e)) with g 1-----t 0(g). 

We show that this restriction of 0 is bijective. One can perform a similar operation for ¢. 

Using the same approach as for Proposition 6.7(ii), it is easy to show that for all a E G(e) 

where x E homc(¢0(e) , e) is fixed. We show first that 0lc(e) is injective. Let a, b E G(e) be 

such that 0(a) = 0(b). Then ¢0(a) = ¢0(b), thus x-1ax = x-1bx and so a= b. To see that 
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0lc(e) is surjective, let h E H (0(e)). We know that </>(h) E H( </>0(e)) and 0</>(h) = y- 1hy 

for some fixed y E homH(0</>0(e), 0(e)). In particular 0¢(0(e)) = y- 10(e)y, but 

Therefore y = 0(x). Put g = x</>(h)x- 1 E G(e), then 

Hence 0l c(e) is bijective. 

0(g) 0(x)0</>(h)0(x) - 1 

0(x) (0(x) )- 1 h0(x) (0(x) )-1 

h. 

■ 

In the case of inverse semigroups Sand T, the above result translates into the follow

ing: there is a bijection between S / V and T / V such that corresponding V-classes have 

isomorphic 1-l-classes. See Howie [8] for the necessary definitions. 

6.3 Fibrations of ordered groupoids 

In this section we establish some properties of fibrations m the category of ordered 

groupoids, we also introduce ordered covering functors and obtain some properties of 

such. By Proposition 6.2 and Theorem 5.2, the cylinder definition of fibration is equiva

lent to that on a cocylinder, so for each result we shall use the definition which gives the 

easiest proof. 

We saw in Section 4.3 that in the category of topological spaces and continuous maps, 

fibrations are defined using the homotopy lifting property, and the path lifting property 

is a special case of this. 

If G is an ordered groupoid, then ordered functors I ----+ G are bijective with elements 

of G. By analogy with the topological case we think of ordered functors I----+ Gas being 

paths in G. Star surjectivity of an ordered functor 0 : H ----+ G can thus be interpreted as 

a path lifting property. The following result is therefore the counterpart of the topological 

result Proposition 4.3. 

Proposition 6.10 Every fibration in the category of ordered groupoids is star surjective. 

PROOF. We shall use the cylinder definition of fibrations. 

Let 0 : G ----+ H be an ordered functor which is a fibration . Let e be an identity in G 

and let h E H be such that 0(e) = d(h). We shall show that there is an element g E G 

such that d(g) = e and 0(g) = h. 
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Let P denote the ordered groupoid consisting of exactly one identity *· Clearly there 

is an isomorphism, : P x I ~ I. The set of ordered functors from P to G is in one to 

one correspondence with the set of identities Go, since a functor P ----+ G picks out an 

identity in G. Similarly there is a bijection between the set of ordered functors I ----+ H 

and the non-identity elements of H. Hence there is a unique ordered functor f : P----+ G, 

with f ( *) = e, and there is a unique ordered functor ¢ : J ----+ H such that ¢( u) = h. 

The diagram of solid arrows below commutes. 

p X I~ I ---- H q> 

Since 0 is a fibration, there is an ordered functor <I> : J ----+ G such that <I>(0) = e and 

0<I>(u) = ¢(u) . Put g = <I>(u),then d(g) = <I>(d(u)) = e and 0(g) = h. Therefore 0 is star 

surjective as required. 

■ 

In the following result we prove that the converse of Proposition 6.10 holds in the 

category of groupoids . 

Proposition 6.11 Let G and H be groupoids (regarded as ordered groupoids with trivial 

ordering) and let 0 : G ----+ H be functor. Then 0 is a fibration if, and only if, it is star 

surjective. 

PROOF. This result is easiest to prove using the cocylinder definition of a fibration, see 

Proposition 2.1 of Brown [4] for a proof using the cylinder. 

Suppose that 0 is star surjective. Let X be a groupoid and let ¢ : X ----+ H 1 and 

f : X ----+ G be functors making the diagram below commute. 

We shall construct a functor <I> as illustrated above . Let x E X and write ¢(x) = 
(hi,h1,h~,hf_). Thus ¢(d(x)) = (hf,r(hf_) ,d(hf_) ,hf_), so d(hf_) = ct¢(d(x)), but since 
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0J = lk¢, we have hf E StH(0J(d(x))). Since 0 is star surjective there is an element ax 

of Stc(J(d(x))) such that 0(ax) = hf. Similarly, there is an element bx of Stc(J(r(x))) 

such that 0(bx) = hf Define <I> : X -+ G1 , to be the function which assigns to each 

x EX the commutative square in G shown below. 

f(x) 

b,J(x)a; 1 

The fact that <I> is a functor is immediate once we have noted that we can choose aa(x) = 

ax = ba(x) and ar(x) = bx = ba(x). It is also immediate that 01 <I> = ¢ and c~<I> = J. Hence 

0 is a fibration. 

■ 

On the basis of Proposition 6.11, the terms 'fibration' and 'star-surjective' are used 

synonymously in the category of groupoids. See [4] for a detailed examination of fibrations 

of groupoids. By analogy, Steinberg [28] uses these terms interchangeably in the category 

of ordered groupoids. However the functor <I> constructed in the proof of Proposition 6.11 

need not be an ordered functor and therefore we see no reason to suppose that all star 

surjective ordered functors are fibrations. 

Recall that in topology there is an important class of fibrations called coverings, and 

for spaces satisfying various connectivity conditions, these correspond exactly to fibrations 

with unique path lifting. By analogy we make the following definition in the category 

OG. 

Definition Let 0 : G -+ H be a fibration of ordered groupoids. We call 0 an ordered 

covering functor if for any ordered functor w : I -+ H and identity e in G with w(0) = 
0(e), there is a unique ordered functor w such that w(0) = e and 0w = w . Thus 0 lifts the 

'path' w to the unique path win G. 

G 

w 
0 

I--w-...,..H 

Proposition 6.12 An ordered functor is an ordered covering functor if, and only if, it 

is star-bijective. 
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PROOF. Let 0 : G --+ H be an ordered functor. 

Suppose first that 0 is an ordered covering. Thus 0 is a fibration and by Theorem 

6.10 it is star surjective. We show that 0 is star injective. Let e be an identity in G and 

let x, y E Ste ( e) be such that 0 ( x) = 0 (y) = h, say. Since the set of ordered functors 

from I to H is bijective with the set of elements of H, there is a unique ordered functor 

w : J --+ H such that w(u) = h. Since 0 has the unique path lifting property, there 

is a unique ordered functor w : J --+ G such that 0w(u) = h and w(u) E Stc(e). But 

0(x) = 0(y) =hand so x = y = w(u) . Thus 0 is star bijective. 

Now suppose that 0 is star bijective, we show first that it is a fibration. This is easiest 

using the cocylinder definition of fibration, an alternative proof using the cylinder method 

is given as Proposition 4.8 of [17]. Let ¢ : X --+ H 1 and f : X --+ G be ordered functors 

such that 0f = c~¢. Proceeding as in the proof of Proposition 6.11 , we write ¢(x) = 

(hl,h5,h5,,hf) and since hf E StH(0j(d(x))), there is a element ax E Stc(J(d(x))) such 

that 0(ax) =hf. Similarly there is en element bx E Stc(J(r(x))) such that 0(bx) = hi. 

We have seen that 

<l? : X--+ G1 given by <l?: x f----------t (bx, bxf (x)a-;;1, J(x), ax) 

is a functor satisfying 01 <l? = ¢ and c~<l? = f. To prove that 0 is a fibration, it remains 

to show that <l? is ordered. This will be achieved by proving that if x :::;; y in G, then 

ax :::;; ay and bx :::;; by. Since ¢ is ordered, ¢(x) :::;; ¢(y) and thus hf :::;; h1- Since f is 

ordered, d(ax) = j(d(x)) :::;; j(d(y)) = d(ay) - Therefore by (OG3), there is a unique 

element (aylf (d(x))) E G which is less than ay and has domain d(ax)- By Proposition 

3.2(i) 

0(aylf(d(x))) = (0(ay)l0f(d(x))) = (hf l0J(d(x))) . 

Thus, by uniqueness of restriction (hfl0J(d(x))) = hf. Put 9x = (aylf(d(x))), then 

ax,9x E Stc(J(d(x))) and 0(gx) = 0(ax) = hf. Therefore ax= 9x, since 0 is star

injective. But 9x :::;; ay, thus ax :::;; ay. In a similar way we can show that bx :::;; by . Hence 

0 is a fibration. 

It remains to show that 0 has the unique path lifting property. Let w : J --+ H be an 

ordered functor such that w(O) = 0(e) for some e E G0 . Let P be the ordered groupoid 

consisting only of one identity *· We saw in Proposition 6.10 that there is a unique 

ordered functor f : P--+ G with f(*) = e and an obvious isomorphism 1 : P x I ~ I. 
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The diagram of solid arrows below commutes. 

p f 
G 

~ 

-yei w 0 

I w H 

We have seen that 0 is a fibration so, by the definition of fibration in the cylinder, there is 

an ordered functor w: J--+ G such that w(O) = e and 0w = w. Suppose that a: J--+ G 

is an ordered functor such that a(O) = w(O) and 0a = w. Then, a(u),w(u) E Sta (e) and 

0(a(u)) = 0(w(u)), so by star injectivity of 0, a(u) = w(u), hence a = w. Therefore w is 

the unique lifting of w. 

■ 

On the basis of the above result the terms 'ordered covering' and 'ordered star bijec

tion ' are used synonymously. 

The following result is taken from [4], Propositions 1.2 and 2.3. 

Proposition 6.13 A fibration is an ordered covering functor if, and only if, it has dis

crete kernel. 

PROOF. Let 0 : G --+ H be a fibration. 

Suppose first that 0 is star injective (we know that it is star surjective by Proposition 

6.10). Let f be an identity in H, and suppose that g is an element of G such that 0(g) = f. 
We show that g is an identity. Clearly 0( d(g)) = f, thus 0(g) and 0( d(g)) are elements 

of StH(J) . By star injectivity g = d(g) . 

Conversely, suppose that 0 has discrete kernel. By Proposition 6.10 we only need show 

that 0 is star injective. Let e be an identity in G and suppose that a and b are elements 

of Sta(e) such that 0(a) = 0(b). Then (0(b))- 1 = 0(b- 1 ), so 0(a)(0(b)) - 1 = 0(ab- 1 ) is an 

ident ity in H . Hence ab- 1 E ker 0. But ker 0 is discrete and thus ab- 1 is an indentity in 

G. Therefore a= b. 

■ 

6.4 Enlargements and deformation retracts 

Enlargements of ordered groupoids were introduced by Lawson [14] as corresponding to 

enlargements of semigroups. In t his section we examine the relationship between defor

mation retracts and enlargements in the category OG. Higgins [7] studied deformation 
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retracts of unordered groupoids. In Theorem 6.5.13 of [3] Brown shows that deforma

tion retracts of unordered groupoids correspond to full, dense subgroupoids, although his 

approach differs somewhat from ours . 

Proposition 6.14 Let 0 : G --+ H and ¢ : H --+ G be ordered functors such that 

¢0 = Ida and 0¢ '.c::'. IdH. Thus G is a deformation retract of H. Then 0 is an ordered 

embedding and H is an enlargement of 0( G). 

PROOF. We begin by showing that 0 is an ordered embedding. It is clear that 0. is an 

injective ordered functor because ¢0 = Ida . Suppose that 0(g) ~ 0(g' ) for some g, g' E G. 

Then ¢0 (g) ~ ¢0 (g' ), since ¢ is an ordered functor. Thus g ~ g' , and so 0 is an ordered 

embedding. 

Before proving that H is an enlargement of 0( G) we make two observations. 

Firstly, since 0 is an ordered embedding, 0( G) is an ordered subgroupoid of H iso

morphic to G. In particular, 0 ( G) is closed under restriction and corestriction. We prove 

the former; the proof of the latter is similar. Let 0(e) be an identity in 0(G) such that 

0(e) ~ d (0(g)) , for some g E G. Then 0(e) ~ 0(d (g)) . Hence e ~ d(g), thus (gle) is 

defined. But by 0(gle) ~ 0(g) and d (0(gle)) = 0(e). It follows that 0(g le) = (0(g) l0(e)), 

as required. 

Secondly, because 0¢ '.c::'. IdH, there is an ordered functor <1? : H --+ HI such that 

ct<D = 0¢ and Ej:j-<D = IdH, Leth E hom(e, !), then we can write 

where Xe,XJ E Gare such that x10¢(h) = hxe. 

Now let f E G0 be any identity; we prove that x0(J) E 0(G) . Note that since <1?(0(1)) 

is an identity in HI, we deduce immediately that x0u) is a loop at 0(1) . Now observe 

that <l?(x0u)) is a commutative square and that writing down the maps in this square we 

obtain 0¢(x0u)) = x0(J), and so x0(J) E 0(G) as required. 

We can now show that His an enlargement of 0(G). Condition (GE2) holds because 

0 is a full functor by Proposition 6.6. Also by Proposition 6.6 , the condition (GE3) holds 

since 0 is dense. It remains to show that the condition (GEl) holds. Let e ~ 0(1) , where 

f E G 0 . We shall prove that e E 0(G). By assumption, <1? is an ordered functor, and so 

<l?(e) ~ <1?(0(1)). Thus Xe~ x0(J)· Also d (xe) = 0¢(e). It follows that 

88 



But we have proved that x0(f) E 0(G). Hence Xe E 0(G). But r(xe) = e, and so e E 0(G), 

as required. ■ 

The next result shows that in the category Grpd the converse of the above result 

holds. 

Proposition 6.15 Let G and H be (unordered) groupoids. Then G is a deformation 

retract of H if, and only if, there is an injective functor 0 : G -1- H such that H is an 

enlargement of 0( G). 

PROOF. Suppose that 0 is an injective functor and H is an enlargement of 0(G). To 

show that 0 is a homotopy equivalence, we shall define its homotopy inverse. Let f be an 

identity in H , by (GE3) we can choose an element x EH with d(x) E 0(G) and r(x) = f. 
Let r : H 0 -1- H be a function which assigns such an element to each identity in H, 

with the requirement that the restriction of r to the set 0(G 0 ) is the identity on 0(G0 ). 

If h EH write xh = I'(d(h)) and Yh = I'(r(h)). Thus y-;: 1hxh has domain d(xh) E 0(G) 

and range d(yh) E 0(G). Hence by (GE2), y-;: 1hxh E 0(G). Define 

7/J: H -1- 0(G) by 

note that the restriction of 7/J to 0 ( G) is the identity on 0 ( G). 

We show that 7/J is a functor. If h E H , then 7/J(d(h)) = d(xh) = d('l/;(h)) and 

7/J(r(h)) = d(yh) = r('l/J(h)). If the composite h'h is defined in H then r(h) = d(h') and so 

Yh = xh', also xh'h = xh and Yh'h = Yh', it is now easy to show that 7/J(h')'l/;(h) = 'l/;(h'h) 

Hence 'ljJ is a functor. Since 0 is injective, there is a functor 0-1 : 0(G) -1- G. Consider 

the composite 0- 1 7/J : H -1- G, we shall show that this is the homotopy inverse of 0. 

Now, for any g E G, 0-17/J0(g) = 0-10(9) = g so (0- 1'ljJ)0 = Ida. Since 0(0- 17/J) = 7/J, it 

remains to show that 7/J '.:::'. ldH. The required homotopy is given by the ordered functor 

defined by 

■ 

The natural question to ask at this point is whether or not the above result holds in 

the general category of ordered groupoids . This problem was essentially considered by 

Lawson [12] without the topological framework provided here. The key point is that the 

functor 7/J defined above need not be ordered, although in Lemma 16 (iv) of [12] some 

limited order-preserving properties were established. 
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6.5 The mapping cocylinder factorisation of an ordered func

tor 

We can now prove the direct analogue of the theorem in topology which states that every 

continuous map can be factorised into a homotopy equivalence followed by a fibrat ion 

(Theorem II.8.9 of [27]) . 

Theorem 6.16 L et 0 : G --t H be an ordered functor between ordered groupoids. Then 

there is a functoria l fa ctorisation of 0 

G------H e 

and an ordered functor l : Me --t G such that j°pe = Ide, pej° ::::: IdMe and ie is 

a fibration . In particular, Me is an enlargement of pe ( G) and ie is an ordered star 

surjection. 

PROOF. By Proposition 3.3, the category OG has all pullbacks. By Theorem 6.3 , 

the cocylinder P satisfies the Kan condition E(2) and the cocylinder functor preserves 

pullbacks. Thus by Proposition 5.6 and Theorem 5.7, every ordered functor has a mapping 

cocylinder factorisat ion 0 = iepe which is functorial, where j°pe = Ide, pe j° ::::: Id Me and 

ie is a fibration. By Proposition 6.14, Me is an enlargement of pe(G), and by Proposition 

6.10, ie is star surjective. 

■ 

We shall now describe the ordered functors involved in the mapping cocylinder fac

torisation. By definition, Me is the pullback of the ordered functors 0 : G --t H and 

c:'1 : HI --t H in the diagram below. 

G ---~ H e 

Thus from the construction of the pullback given in Proposition 3.3, we have that 
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with order and product inherited from G x HI , and we have that 

1r0 : Mo ---+ HI is given by 1r0 : (g, (h4, h3, 0(g), h1)) f-----t (h4, h3, 0(g), h1) 

and j8 : M 0 ---+ G is given by J° : (g, (h4, h3, 0(g), h1)) f-----t g. 

Define 

a: G---+ Mo by a : g f-----t (g, (0(r(g)) ,0(g),0(g),0(d(g)))). 

It is easy to check that a is an ordered functor, j8 a = Ida and 1r0 a = s H0. But these are 

the properties which characterise p0 . Thus a= p0 . By definition i0 = 1ok1r0. Thus 

6.6 Steinberg's construction 

In Theorems 5.2 and 5.3 of [28], Steinberg proves the following result . 

Theorem 6.17 (Fibration Theorem) Let 0 : G ---+ H be an ordered functor, then 

there is an ordered enlargement 1, : D ---+ Der( 0) >4 H (with a right inverse) such that 

0 = i'lj;, where 'ljJ is the semidirect product projection and is star surjective. 

■ 

In this section we show that this factorisation and the mapping cocylinder factorisation 

of an ordered functor described in the previous section are equivalent. We first need to 

recall some definitions from [28]. The reader should be alerted to the fact that whereas 

we compose functions from right-to-left, Steinberg composes from left-to-right. We have 

therefore modified his definitions and results accordingly. 

Let G and H be ordered groupoids , a left action ( 1r, A) of H on G consists of two 

ordered functors 

1r: G---+ Ho and 

where we write A(h, g) = hg, and -=,hg if d(h) = 1r(g). These ordered functors must satisfy 

the following conditions: 

(A3) 1r(g)g = g. 
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Given a left action (1r, A) of an ordered groupoid Hon an ordered groupoid G. Their 

semidirect product is defined as the set 

G )<I H = G7r~r H = {(g , h) E G X HI 1r(g) = r(h)}. 

There is a partial product on G ><1 H defined as follows: if (g1, h1), (g2, h2) E G ><1 H, and 

there exist h2h1 and g2(h2g1), then 

(g2, h2)(g1, h1) = (g2(h2g1), h2h1). 

If (g, h) E G ><l H then it is straightforward to show that d(g , h) = (h-\d(g)), d(h)) 

and r(g ,h) = (r(g),r(h)). By Proposition 3.3 of [28] one has that G ><l His an ordered 

groupoid with the order inherited from G x H . 

Let 0 : G -----+ H be an ordered functor. The derived ordered groupoid Der ( 0) of 0 is 

the set 

Der(0) = Hr~0d G = {(h,g) EH x GI r(h) = r(0(g))} 

endowed with the following ordered groupoid structure (for proofs see [28]). The partial 

order is the one inherited from H x G. We describe the groupoid structure. Let (h, g) E 

Der(0), then 

d(h , g) = (h0(g),d(g)) and r(h,g) = (h,r(g)). 

So if (h, g), (h', g') E Der(0) with d(h, g) = r(h' , g'), then h' = h0(g) and r(g') = d(g). In 

which case the product is defined as 

(h, g) (h', g') = (h, gg'). 

Let 0 : G -----+ H be an ordered functor. Steinberg defines a left action of H on the 

ordered groupoid Der( 0) as follows: 

7r : Der( 0) -----+ H0 1r(h, g) = r(h) 

and A: HDd~7r Der(0)-----+ Der(0) 

by 

by A(h', (h,g)) = (h'h,g). 

As a result of this action, we can define a semidirect product ordered groupoid Der( 0) ><l 

H. The underlying set is 

Der(0) )<I H = Der(0)7r~r H {((h,g),h') I 1r(h,g) = r(h') , d(h) = r(0(g))} 

{((h,g) , h') I r(h) = r(h') , d(h) = r(0(g))}. 

Thus elements of Der(0) ><l H can be illustrated as shown below. 

g --
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We examine the product in Der(0) ><1 H. Let ((h1, 91), hD and ((h2, 92), h;) be elements 

of Der(0) ><1 H. For ((h2, 92), h;)((h1, 91), h~) to be defined we need 3h;h~ in which case 

d(h;) = r(h~) = r(h1) = 1r(h1,91) and so A(h;, (h1,91)) = h;(h1,91) is defined. We 

also require :l(h2,92)(h;(h1,91)), that is, :l(h2 ,92)(h;h1,91) in Der(0), for this we need 

h;h1 = h20(92) and 39291, in which case 

Thus 

( (h2, 92), h;) ( (h1, 91), h~) = ( (h2, 9291), h;h~). 

So given ((h1,91),h~) and ((h2,92),h;) in Der(0) ><1 H such that the diagram below com

mutes 
92 91 

-+---+--

then the composite is defined and is illustrated by the diagram below. 

9291 
-+--

We now define three functions linked to this semidirect product as follows 

i: G ---t Der(0) ><1 H with i(9) = ((0(r(9)),9),0(9)), 

'i/J: Der(0) ><1 H ---t H with 'l/J((h, 9), h') = h', 

and T: Der(0) ><1 H ---t G with T((h,9),h') = 9. 

Steinberg shows that i is an ordered embedding and that Der( 0) ><1 H is an enlargement of 

0( G) in Propositions 3.8 and 4.9 respectively, of [28]. In Proposition 4. 7 Steinberg shows 

that the projection 'i/J is an ordered star surjective functor. Clearly n = Ide and 0 = 'l/Ji, 

this is Steinberg's factorisation. 

Der(0) ><1 H 

/~ 
G-------~H 

0 

We now show that our factorisation is isomorphic to Steinberg's. 
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Proposition 6.18 There is an isomorphism of ordered groupoids I': Der(0) ><1 H --t M 0 

such that 

PROOF. Define 

r: Der(0) ><1 H--t M 0 by r: ((h,g),k) ~ (g , (h , k ,0(g),k- 1h0(g))). 

This function is pictured below. 

g 
+---

g 
+---

0(g) 
+---

hl lk- lh0(g) 

+---
k 

It is easy to check that r is well-defined. We show that r is a functor. Let ( (h , g), k) E 

Der(0) ><1 H, then 

and 

f(d((h,g) , k)) = r(k-\d(h,g)) , d(k)) 

= r(k-
1
(h0(g), d(g)) , d(k)) 

= f ( (k-1 h0(g), d(g)) , d(k)) 

= ( d(g) , (k-1 h0(g), d(k) , 0( d(g)), d(k) - 1 k- 1 h0(g)0( d(g) )) ) 

= ( d(g) , (k- 1 h0(g), d(k) , 0(d(g)) , k- 1 h0(g))) 

d(I'((h , g), k)) = <l(g , (h, k, 0(g), k- 1 h0(g))) 

= d ( d(g) , (k- 1 h0(g), d(k) , d(0(g) ), k- 1 h0(g))) 

so d(f((h,g) ,k)) = f(d((h,g),k)). Now for the range identities, 

I'(r((h, g), k)) = I'(r(h , g), r(k)) 

= I'((h , r(g)), r(k)) 

= (r(g) , (h , r(k) , 0(r(g)) , r(k)-1 h0(r(g)))) 

= (r(g) , (h,r(k),0(r(g)),h))) 

can easily be shown to be equal to r(f((h, g) , k)). Now examine the effect of r on 

composites. Let ((h2 , g2), k2) and ((h1 , g1 ) , k1 ) be elements of Der(0) ><1 H , their composite 
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f ( ( (h2, 92), k2) ( (h1, 91), ki)) = f ( (h2, 9291)k2k1) 

= ( 9291, (h2, k2k1, 0(9291), (k2k1)-1 h20(9291))) 

= ( 9291, (h2, k2k1, 0(9291), k11 ( k21 h20(92) )0(91))) 

= (9291, (h2 , k2k1 , 0(9291), k11h10(91))), 

but f((h2,92),k2)f((h1 ,91),k1) is equal to 

(92 , (h2, k2, 0(92), k21 h20(92))) ( 91, (h1, k1, 0(91), k11h10(91))). 

Thus 

which is equal to r(((h2,92),k2)((h1,91),ki) ). Therefore r is a functor. It is clearly 

ordered and injective. To see that r is surjective, let m = (9 ,(h4,h3,0(9) ,h1)) E Me, 

then it is easy to check that ((h4,9),h3) E Der (0) ><1 H with f((h4,9),h3) = m. Thus r 

has inverse 

which is also clearly an ordered functor. Consequently Der(0) ><1 H and Me are order 

isomorphic. 

To complete the proof, observe that 

fl(9) = f((0(r(9)),9)0(9)) 

= (9, (0(r(9)),0(9)0(9),0(9)-10(r(9))0(9))) 

= (9, (0(r(9)) , 0(9) , 0(9 ), 0( d(9)))) 

= P°(9), 

for any 9 E G. Also 

and 

}°f((h,9) ,k) = J°(9, (h , k,0(9) ,k-1h0(9))) = 9 = T((h ,9),k), 

for any ((h, 9), k) E Der(0) ><1 H. 

■ 
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Part III 

Cohomology of ordered groupoids 
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Chapter 7 

Background on cohomology 

Homology, like homotopy theory, arose out of attempts at constructing topological invari

ants for spaces, but was adapted to classify other mathematical objects such as groups. 

In this chapter we outline some of the theory we will use. 

7.1 Abelian categories 

We shall describe some homology in abelian categories. Later we shall apply these meth

ods to the category of actions of ordered groupoids . For more on abelian categories we 

refer the reader to [5 , 21 , 24 , 31]. 

In this section we shall think of categories in terms of objects and morphisms. 

A category A is called an Ab-category if every horn set homA(A, B) in A is an additive 

abelian group and if f, f': A-----+ B, g, g' : B-----+ Care morphisms in A then 

(g + g')(J + !') = gf + gJ' + g'J + g'J'. 

An additive functor ¢ : A -----+ B between Ab-categories A and B is a functor such 

that each induced function homA(A, A') -----+ homB(B , B') is a group homomorphism. 

An object Z of a category A is called a zero object if for any objects A and B of A , 

there are unique morphisms f: A-----+ Zand g: Z-----+ B, the composite gf is called the 

zero morphism from A to B and is written 0~ or 0. Any composite with a zero morphism 

is itself a zero morphism. 

An additive category is an Ab-category A with a zero object and direct sums, that is 

for every pair A, B of objects in A there is an object A EBB and four morphisms forming 

a diagram 
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with P1 i1 = ldA, p2i2 = ldB and i 1P1 + i2p2 = ldAEB B . We say that A is complete if the 

product of any set of objects exists in A. 

In a category A which has a zero object, a kernel of a morphism f : B --t C is a 

morphism k : A --t B such that f k = 0, and k is universal with this property; that is, for 

any morphism h : A' --t B with f h = 0, there exists a unique morphism h' : A' --t A 

such that h = kh' , as shown in the commutative diagram below 

A~o I 

3!h' ~ ~ ___ ____,.. C 

A' 

Dually, a cokernel of f is a morphism c : C --t D, which is universal with respect to 

cf = 0. 

Lemma 7 .1 Let f : B --t C be a morphism in a category C and let k : A --t B and 

k' : A' --t B be kernels for f. Th en A and A' are isomorphic objects. Th e dual result 

holds for cokernels. 

PROOF . Since k is a kernel there exists a unique morphism h : A' --t A such that 

k' = kh, similarly there is a unique h' : A --t A' such that k = k' h' . Therefore k = k hh'. 

But since k is a kernel ldA is the unique morphism with k = kldA. Hence hh' = ldA. 

Similarly h' h = ldA' . Hence A is isomorphic to A'. 

The dual result for cokernels is proved similarly. 

■ 

We now examine monies and epis an additive categories A . Recall that a morphism 

m : A --t B is monic if given any two morphisms f , g : C --t A, mf = mg implies 

f = g. Clearly if m is monic, then 

mf = 0 ==> f = 0. 

Conversely, let m : A --t B be a morphism in A , and suppose t hat mf = 0 implies 

f = 0. We show t hat mis monic. Let f, g : A --t B , and suppose that mf = mg. Then 

mf - mg= 0. So m(J - g) = 0, since A is an Ab-category. Therefore f - g = 0, so m is 

monic. 

Similarly, an epi e : A --t B in an additive category is a morphism such that he= 0 

implies h = 0, for every morphism h : B --t B' of A . 
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Monies and epis allow us to define sub- and quotient objects. Let f : X --t Y and 

g : X' --t Y be monies, we write g ~ f if there exists a morphism f' : X' --t X such 

that g = ff'. If g ~ f and f ~ g then we write f = g, it is easy to show that this 

is an equivalence relation. The corresponding equivalence classes are called subobjects 

of Y. For convenience we shall say that a particular equivalence class representative is 

a subobject. These subobjects correspond to the usual subobjects in Ab, Grp , Grpd 

etc. For example, let S be a subgroup of a group G, the inclusion 1, : S '---+ G is manic. 

If µ : T --t G is another manic and there exist homomorphisms 0 and ¢ making the 

diagram below commute. 

Then 1, = µ0 = i¢0, but 1, is a monomorphism so ¢0 = Idr. Similarly 0¢ = Ids. 

Therefore S ~ T, that is any subobject equivalent to 1, has domain isomorphic to S. 

Dually, a quotient of an object X is the obvious equivalence class of epis having domain 

X. Let X be a subobject of Y, that is there is a manic m: X --t Y. The quotient of X 

and Y is an epi e : Y --t Q such that em = 0, we call Q the quotient object and often 

write Q = X/Y. This definition is consistent with the familiar quotients in Grp, Grpd , 

etc. 

Let A be an Ab-category. Suppose that f : X --t Y and g : X' --t Y are subobjects 

of an object Y of A. Suppose further that g ~ f. Let q : Y --t Q be a quotient for 

X and Y; that is an epi. We say that q is the quotient off and g if qg = 0, we write 

q = f jg. 

Definition An abelian category is an addit ive category A satisfying the following addi

tional conditions: 

1. Every morphism in A has a kernel and a cokernel. 

2. Every manic in A is the kernel of its cokernel. 

3. Every epi in A is the cokernel of its kernel. 

The most commonly used abelian category is the category of abelian groups. 

Proposition 7.2 The category Ab of abelian groups is an abelian category. 

PROOF. Let A and B be abelian groups. Addition in hom(A, B) is defined pointwise. 

Thus for group homomorphisms 0, ¢: A --t B , the homomorphism 

0 +¢:A --t B is given by (0 +¢)(a)= 0(a) + ¢(a). 
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It is immediate that this addition is associative and commutative. The homomorphism 

0: A---+ B given by O(a) = OB, where OB is the identity in B 

has the property that 0 + 0 = 0 = 0 + 0. For each homomorphism 0 : A ---+ B, define 

-0: A---+ B by (-0)(a) = -0(a). It is clear that 0 - 0 = 0 = -0 + 0. Hence each 

hom(A, B) is an additive abelian group. For group homomorphisms, 0, 0' : A---+ Band 

¢, ¢': B---+ C, and each a EA, we have 

(¢ + ¢')(0 + 0')(a) 

Hence Ab is an Ab-category. 

(¢ + ¢')(0(a) + 0'(a)) 

¢(0(a) + 0'(a)) + ¢'(0(a) + 0'(a)) 

¢0(a) + ¢0'(a) + ¢'0(a) + ¢'0'(a) . 

The zero object in Ab is the group consisting only of an identity. The zero homomor

phism from a group A to a group B is the homomorphism O defined above. The direct 

sum of two abelian groups A and B is the cartesian product A x B with the canonical 

inclusion and projection maps. Hence Ab is an additive category. 

The kernel of a homomorphism 0 : A ---+ B is the inclusion /<i, : Ker(0) ---+ A 

where, as usual , Ker(0) is the subgroup of A consisting of those elements which 0 maps 

to the identity in B. The cokernel of 0 is the projection p : B ---+ B / Im( 0). Let 

0 be monic. In Ab , monies are precisely the monomorphisms, therefore there is an 

isomorphism 0* : A~ Im(0). But Ker(p) = Im(0). Hence every monic is the kernel of its 

cokernel. A dual argument shows that every epi in Ab is the cokernel of its kernel. 

■ 

The following important result is well-known. 

Proposition 7.3 Let A be an abelian category and C an arbitrary small category. The 

functor category Ac is an abelian category. 

PROOF. Let 0 and ¢ be functors from C to A and let Nat(0, ¢) denote the set of 

natural transformations a, j3 : 0 ---+ ¢. Let X be an object in C. There are morphisms 

ax, f3x: 0(X)---+ ¢(X) in A. Since A is abelian, hom(0(X), ¢(X)) is an abelian group. 

We can therefore define 

(a+ f3)x : 0(X)---+ ¢(X) by (a+ j3)x =ax+ f3x. 

To see that a+ j3 is a natural transformation, let f : X ---+ Y be a morphism in C. Then 

¢(f)(a+f3)x = ¢(j)(ax+f3x) 
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¢(!)ax + ¢(f)/3x 

ay0(f) + f3y0(f) 

( ay + /3y )0(!). 

Hence the addition is well-defined in Nat(0 , ¢). It is immediate that this addition is 

associative and commutative. The identity in Nat(0, ¢) is the natural transformation 0 

which has each Ox the identity in hom(0(X) , ¢ (X)). For functors 0, ¢, 'f : C -----+ A, 

natural transformations a, /3 E Nat(0 , ¢) and 1 , 8 E Nat(¢, 'f ), and any object X of C , 

we have 

( ( r + 8) ( a + /3)) x (, + 8)x(a + /3)x 

bx+ 8x)(ax + /3x) 

,xax + ,x/3x + 8xax + 8xf3x 

(ra)x + (rf3)x + (8a)x + (8 f3)x. 

Hence (r + 8)(a + /3) = 1a + 1/3 + 8a + 8/3, making Ac an Ab-category. 

We now show that Ac is an additive category. Let O denote the functor from C to A 

which maps every object of C to the zero object of A, and every morphism of C to the 

identity at the zero object. It is easy to show that O is a zero object for Ac. To see that 

Ac has direct sums, let 0, ¢ : C -----+ A. Since A is abelian, we may define the sum of 0 

and ¢ component-wise, that is 

(0 EB ¢)(X) = 0(X) EB ¢(X) 

for every object X of C and 

(0 EB ¢) (f)(X) = (0 EB ¢)(f(X)) = 0(f(X)) EB ¢(f(X)) 

for every morphism f : X -----+ Y of C. To see that 0 EB¢ is a functor , let g : Y -----+ Z be 

another morphism in C. Then 

(0 EB ¢)(g f)(X) 

Hence Ac is an additive category. 

(0 EB ¢)(gf(X)) 

0(gf(X)) EB ¢(gf(X)) 

0(g)0(f)(X) EB ¢(g)¢(f)(X) 

(0 EB ¢ )(g)(0(f)(X) EB ¢(J)(X)) 

(0 EB ¢) (g)(0 EB ¢ )(f)(X). 

To show that Ac is an abelian category we need to define kernels and cokernels for 

each natural transformation a E Nat(0, ¢). For each object X of C, let kx : Kx -----+ 0(X) 
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be a kernel for the morphism ax. Let f : X ----+ Y be a morphism in C. Since a is a 

natural transformation the diagram below commutes. 

K x __ k_x - 0 ( X) __ a_x_.,.. ¢( X) 

0(!) <t>(f) 

Ky--ky--s--0(Y)--a-y-~¢(Y) 

Thus ay0(j)kx = ¢(f)axkx, but axkx is the zero morphism, and every composite with 

a zero morphism is zero, therefore ay0(f)kx = 0. Since ky is a kernel for ay, it follows 

that there is a unique morphism ""J : Kx----+ Ky such that 0(f)kx = ky""J· Define 

7/J: C ----t A by 7/J(X) = Kx and 7/J(f) = ""J 

for objects X and morphisms f of C . To see that 7/J is a functor, let f : X ----+ Y and 

g : Y ----+ Z be morphisms in C. There is a unique morphism 7/J(gf) = ""gf such that 

0(gf)kx = kzr.,gf· Now 

kzr.,9 r.,J = 0(g)kY""J = 0(g)0(f)kx = 0(gf)kx, 

hence r.,9 r.,f = ""gf, that is 7/J(gf) = 7/J(g)?jJ(f). It is now clear that 7/J is a functor. It is 

immediate that the morphisms kx : 7/J(X) ----+ 0(X) define a natural transformation k 

from 7/J to 0. We shall show that k is a kernel for a . Let 7/J' : C ----+ A be a functor and 

suppose a E Nat(?jJ', 0) is such that aa = 0. For each object X of C the solid arrows in 

the diagram below commutes 

7/J' (X) 

~ 
:i!O"'x 0(X) --- ¢(X) 

~ 
7/J(X) 

Since kx is a kernel for ax, there is a unique morphism a'x : 7/J' (X) ----+ 7/J(X) in A making 

the diagram commute. To see that the morphisms a'x define a natural transformation, 

let f : X ----+ Y be a morphism in C. It is required to show that the left-hand square in 
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the diagram below commutes 

ax 

VJ' (X) 
a' X VJ(X) 

kx 
0(X) 

ax 
</>(X) 

1/J'(J) 1/J(J) 0(J) ¢(I) 

a' ky 
VJ' (Y) 

y 
VJ(Y) 0(Y) </>(Y) ay 

ay 

Now ay0(f)ax = <j>(f)axax = 0. Since ky is a kernel foray, there is a unique morphism 

h: VJ1(X) ~ VJ(Y) making the diagram below commute 

VJ'(X) 

~ 
:l!h 0(Y) ------ rp(Y) 

~o 
VJ(Y) 

Now kyVJ(f)a'x = 0(f)kxa:y = 0(f)ax, so h = VJU)a'x . But kya'yVJ'(f) = ayVJ'(f) = 
0(J)ax. Hence h = VJ(f)a'x = a'yVJ'(f), so a' E Nat(VJ', VJ) . It is clear that VJ 1 is unique , 

since each morphism VJ'x is unique. We have therefore proved that k is a kernel for a. 

Similarly, for each object X of C we can choose a cokernel ex : </>(X) ~ Cx for a. 

A dual construction to that above shows that the morphisms ex define a morphism in 

Ac which is a cokernel for a . 

We have therefore shown that every morphism a in Ac has a kernel and a cokernel. 

Now let rJ E Nat(0, ¢) be monic in Ac and let a E Nat(VJ, 0) be such that TJCY is the 

zero morphism from VJ to ¢. Then a is a zero morphism. But then for each object X of 

C, rJxax = 0 in A, and ax = 0. Hence each TJX is monic in A. Let e E Nat(¢,¢') be a 

cokernel for T/ , that is each ex : </>(X) ~ </>'(X) is a cokernel for TJX : 0(X) ~ <j>(X) in 

A . But A is an abelian category and TJX is monic, so TJX is a kernel for ex . Hence rJ is a 

kernel for e in Ac. Similarly every epi in Ac is the cokernel of its kernel. 

■ 

Recall from Lemma 7.1 that kernels and cokernels are unique up to isomorphism. For 

every morphism f : X ~Yin an abelian category we pick a kernel which we denote by 

ker(J) : Ker(!) ~ X. Thus ker(f) denotes a morphism and Ker(!) an object. We use 

the similar notation coker(f) : Y ~ Coker(!) for the cokernel off . 

The fo llowing result is well-known, and is proved in Proposition VIII.3.1 of [21]. 
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Proposition 7.4 In an abelian category A , every morphism f : X ~ Y has a factori

sation f = me with m manic and e epi; moreover, 

m = ker(coker(f)) and e = coker(ker(f)). 

Furthermore, such a factorisation is unique up to isomorphism. 

■ 

From the above factorisation, the image off is defined as m = im(f) : Im(!) ~ Y , 

similarly, e is called the coimage of f. 

7. 2 Exact functors 

Let f : X ~ Y be a morphism in an abelian category A. In the previous section, we 

discussed the kernel ker(f) , cokernel coker(f) and image im(f). Given another morphism 

g : Y ~ Z, we can form the sequence 

X __!__.,._ Y ____!!__. Z. 

We say that such a sequence is exact at Y if ker(g) = im(f) . The following sequence is 

exact at X if, and only if, f is a monic 

f 

0 - X - Y. 

Dually, f is epi if, and only if, the fo llowing sequence is exact at Y 

We shall say that the sequence 

f 
X-Y-0. 

f g o-x-y-z-o (7.1) 

is a short exact sequence if it is exact at each object of the sequence. Equivalently, if X 

is a subobject of Y and Z = Y/X. 

Let F : A ~ B be an additive functor between abelian categories, we say that F is 

an exact functor if for each short exact sequence (7 .1 ) in A , the sequence 

0 - F(X) !'J!l F(Y) ~ F(Z) - 0 

is exact in B. 
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Exact functors represent the 'ideal' against which we measure other functors that fail 

to be exact to some extent. We now define two examples of functors which are 'nearly 

exact'. An additive functor F : A ----+ B between abelian categories is said to be left 

exact if, for each short exact sequence (7.1) in A , the sequence 

0 - F(X) !J!l F(Y) ~ F(Z) 

is exact. We say that F is right exact if the sequence 

F(X) !J!l F(Y) ~ F(Z) - 0. 

is exact. Clearly an additive functor is exact precisely when it is both left and right exact . 

The above definitions apply to covariant functors but can also be applied to con

travariant functors. For example, if F is contravariant from A to B , we say that F is 

exact if for each short exact sequence (7.1) in A , the sequence 

o- F(X) ~ F(Y) ~ F(Z) -o 

is exact in B . 

The following result gives two examples of left exact functors, one covariant and the 

other contravariant. Proofs are given, for example, in Weibel [31] Proposition 1.6.8 and 

Corollary 1.6.9. 

Proposition 7.5 Let A be an abelian category. 

(i) The covariant hom functor hom(X, - ) is a left exact functor for every object X of 

A . 

(ii) The contravariant hom functor horn(-, X) is a left exact functor for every object X 

of A. 

■ 

It can be proved that an additive functor F : A ----+ B is left exact if whenever 

o-x-y-z is exact in A, then o-F(X)-F(Y)-F(Z) IS 

exact in B. (Exercise 1.6.3 of [31]). With a dual result for right exact functors . 

7.3 Complexes 

In the previous section we discussed pairs of morphisms 

X __!__. Y ~ Z. 
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over an abelian category A , which are exact at Y . In particular, this means that the 

composite gf is the zero morphism. This leads us to study sequences (7.2) such that 

gf = 0 but which need not be exact. In this case gim(J) = 0, so there is a unique 

morphism h such that im(J) = ker(g)h, that is im(J) ~ ker(g). One can therefore form 

the quotient object Ker(g)/Im(J) . 

In an abelian category A , a complex e• is a sequence of composable morphisms 

d- 1 do dl d2 . e-1-eo-e1-e2-e3-

with dn+ldn = 0. The morphisms dn : en-l ~ en are called differentials. The sequence 

need not be exact. A measure of how the complex fails to be exact at each object e n is 

the n th cohomology object 
H n(e) = Ker(dn) _ 

Im(dn-l) 

We call Ker (dn) an n-cocycle object and Im(dn-l) an n-coboundary object. Observe that 

e• is exact precisely when every H n(e) = 0. 

If e• is a complex and en = 0 for all n < 0, then e• is called a positive complex. If 

en = 0 for all n > 0, then e• is called a negative complex. A positive complex is called a 

cochain complex, a negative complex is called a chain complex. For chain complexes the 

following notat ion is used: 

Let e• and D• be two complexes over an abelian category A . We denote the differ

entials of e and D by d0 and dD respectively. A morphism of complexes u : e• ~ D• 

is a collection of morphisms un : e n ~ Dn such that un+ 1d0 = dDun, for all n. That 

is, such that the diagram below commutes 

If u : e• ~ D• is a morphism between chain (respectively cochain) complexes, then we 

call u a chain (respectively cochain) map. 

Complexes over an abelian category A , together with their morphisms form a category, 

denoted Ch(A) . It can be shown that this category is abelian (Theorem 1.2.3 of Weibel 

[31]). 

We refer the reader to Section 7.1 of [5] for proof of the following. 
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Proposition 7.6 Let e• and n• be complexes over an abelian category A , and let 

u : c• ---+ n• be a morphism of complexes. For all n, there is a morphism Hn( u) : 

Hn(C) ---+ H n(D) in A , so that Hn: Ch(A) ---+ A is a functor. 

■ 

In order to classify morphisms of complexes, there is a notion of homotopy. Let 

u, v : e• ---+ n• be morphisms in an abelian category A. A homotopy s from u to v is a 

family of morphisms Sn : en ---+ nn-l , one for each dimension n, such that 

or, dropping the superscripts for clarity, ds + sd = u - v. We write s u 

situation is illustrated below 

v. The 

We say that a morphism of complexes u : e• ---+ n• is an equivalence if there is a 

morphism u : D• ---+ e•, and homotopies s : uu :::::: Ide •, t : uu :::::: IdD•. If such an 

equivalence exists, then we say that e• and n• are homotopic. See Proposition 7.1 of [5] 

for proof of the following. 

Proposition 7. 7 Let u, v : e• ---+ n• be morphisms of complexes in some abelian cate

gory. If there is a cochain homotopy s : u::::: v, then 

■ 

We let o• denote the zero complex 

· -~o~o~o~o~ 

Let c• be a complex. Define O : e• ---+ e•, where 

on : en ---+ e n is given by on(c) = 0, 

for all CE en. 
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We say that a complex c• is contractible if it is homotopic to the zero complex o• , 
or equivalently, if Ide • ::::'. 0. Thus c• is contractible if there is a family of morphisms 

Sn : en ---+ cn-l such that 

We call the homotopy s a contracting homotopy. The following is immediate from Propo

sition 7. 7. 

Proposition 7.8 If a complex c• is contractible, then it is exact. 

■ 

This result is useful because in order to show that a complex c• is exact, it is sufficient 

to construct a contracting homotopy for c•. 

7.4 Resolutions 

Let A be an abelian category. An object P of A is called projective if it satisfies the 

following universal lifting property: given a morphism a : P ---+ C, and an epi g : B ---+ 

C, there is at least one morphism /3 : P ---+ C such that a = g/3. The situation is 

illustrated below 

We say that the category A has enough projectives if for every object A, there is an epi 

P ---+ A with P projective. Dually an object I is said to be injective if, for every monic 

f : A ---+ B , and morphism, : A ---+ I , there is a morphism 8 : B ---+ I , such that 

8 f = , , as illustrated below 

B-A-0 
f 

We say that A has enough injectives if for every object A of A , there is a monic A ---+ I 

with I injective. 

The following is immediate. 

Lemma 7.9 Let I be an object of an abelian category A. Then I is injective in A if, 

and only if, I is projective in A op. ■ 
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See Example 2.3.13 of Weibel [3 1] for a proof of the following. 

Proposition 7.10 Let A be an abelian category and C a category. If A is complete and 

has enough injectives, then Ac has enough injectives. A dual result holds for projectives. 

■ 

Let A be an object of A. A left resolution of A is an exact sequence 

If each Pi is projective then it is called a projective resolution of A . We write P. ~ A . 

Dually, a right resolution of an object A is an exact sequence 

8 d d 
O- A -1°-11 - 12 -

If each Ji is injective t hen it is called a injective resolution of A. We write A_.!__,... 1• . 

The first part of Lemma 7.11 is proved as Lemma 2.2.5 of [3 1], the second part is t he 

dual case. 

Lemma 7.11 Let A be an abelian category. 

(i) If A has enough injectives then every object in A has an injective resolution . 

(ii) If A has enough projectives then every object in A has a projective resolution. 

■ 

The orem 7.12 (Comparison Theorem for injective resolutions ) Let A_.!__,... r 
be an injective resolution of an object A in an abelian category A , and let J' : A ---+ B be 

a morphism in A . Then for every right reso lution E • ~ B of B , there is a cochain 

map r : E • ---+ r lifting J' in the sense that bf' = f 0 TJ . The map r is unique up to 

cochain homotopy equivalence. 

11 d d 
O-B-E0 -E1 -E2 -

f' l 3f0 '3fl j3J2 
y y y 

0 - A - JD - J l - 12 -8 d d 

■ 

T here is a dual result for projective resolutions. (See T heorem 2.2.6 of [31]). 

109 



7.5 D erived functors 

Let F : A ------+ B be a left exact functor between two abelian categories . We assume that 

A has enough injectives. For every object A of A we may, by Lemma 7.11 , choose an 

injective resolution 

0 A o d l d 2 0-A-I -I -----+-I -A A A 

is a cochain complex, which we shall denote by F(IA)9. 

We construct a sequence of functors from the category A to the category B . For each 

n? 0, define 

We now show how to define Rn F on morphisms. Let J' : A ------+ B be a morphism in 

A. By the Comparison Theorem, we can choose a cochain map r : IA ------+ 13. Hence 

there is a cochain map 

By Proposition 7.6 , there are morphisms Hn(F(J)) : Hn(F(IA)) ------+ Hn(F(IB)) , for all 

n ? 0. Thus we may define 

If g' : A ------+ B is another morphism of A, then by the Comparison Theorem the cochain 

maps r and g• are homotopic. It is then evident that the cochain maps F(f )9 and F(g )9 

are homotopic. Thus by Proposition 7.7 Hn(F(J)) = Hn(F(g)) ; that is (RnF)(J') = 

(RnF)(g'). 

It is immediate that ( Rn F) ( uv) = ( Rn F) ( u) ( Rn F) ( u) . Hence each Rn F is a functor 

from A to B . These functors are called the right derived functors of F . 

The definition of the functors Rn F appears to be dependent on the choice of injective 

resolution. However , with the help of the Comparison Theorem, it can be proved that 

if a different injective resolution is chosen, then each resulting functor K F is naturally 

isomorphic to Rn F. Thus the definition of Rn F is independent of the choice of injective 

resolution used. 

Proposition 7.13 Let F A ------+ B be a left exact functor and let A have enough 

injectives. Th en 
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(i) R° F ~ F. 

(ii) If Q is an injective object in A then (Rn F) ( Q) = 0, for all n ~ l. 

(iii) If F is exact then (Rn F) (A) = 0, for all objects A of A and all n ~ l. 

PROOF. 

(i) By definition (R°F)(A) = H 0 (F(IA)) = Ker(F(d0 ))/Im(F(d- 1)), but F(IA)9 is a 

cochain complex, so d- 1 = 0. Hence (R° F)(A) = Ker(F(d0 )) . Now 

is exact and F is a left exact functor . Hence the sequence 

is exact . Therefore Ker(F(d0
)) = Im(F(cA)), but Im(F(cA)) ~ F(A). Hence F(A) ~ 

(R° F)(A). 

(ii) For an injective object Q one has that 

IdQ 
o-Q-Q-0-0-0-

is an injective resolution of Q. It is immediate that this resolution yields (Rn F) ( Q) = 0, 

for all n ~ l. 

(iii) If F is exact, then the whole sequence 

is exact, therefore every Ker ( F ( dn+ 1)) / Im ( F ( dn)) = 0. ■ 
Dual to right derived functors are 'left derived functors'. Let F: A------+ B be a right 

exact functor between two abelian categories and suppose that A has enough projectives. 
A 

For each object A of A , choose a projective resolution P.A ~ A . Applying F to P. 

yields a chain complex F(PA) • . Define 

For each morphism f' : A ------+ B in A , there are chain maps f. 
F(f). : F(PA). ------+ F(PA) •. Define 

These functors are called the left derived functors of F. 
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Let F : A -----t B be a left exact functor , where A has enough injectives. We can 

construct right derived functors Rn F. Now F also defines a right exact functor F 0 P : 

A op -----t B 0 P , and A op has enough projectives. Thus we can construct left derived 

functors LnF0 P. An injective resolution A -----t r of A in A is a projective resolution of 

A in A 0 P . Thus 

Therefore all the results about right derived functors apply to left derived functors. In 

particular, the objects (LnF) (A) are independent of the choice of projective resolution, 

LoF ~ F, and (LnF)(P) = 0 whenever Pis projective and n =/= 0. 

Let A and B be abelian categories. For objects A and B of A , we have seen that the 

covariant horn functor hom(A, - ) is a left exact covariant functor and the contravariant 

horn functor horn(- , B) is a left exact contravariant horn functor. Let us assume A has 

enough injectives. We may construct the right derived functors 

where Rn hom(A, -)(B) and Rn horn(-, B)(A) are isomorphic. (Remark: there is a pre

cise sense in which this isomorphism is natural, see Weibel [31]). Define 

We may compute Extn(A, B) in two ways: 

1. via an injective resolution of B. 

2. via a projective resolution of A; that is an injective resolution of A in A op . 

7.6 Simplicial sets 

One way of constructing cochain complexes is via simplicial sets. 

Definition A simplicial set K is a family of sets Kn, n E N together with functions 

for each 1 ~ i ~ n, which satisfy the following conditions: 

(SSl) d i dj = dj-ldi for i < j, 
(S82) diSj = Bj - ldi for i < j, 
(S83) diSj = IdKn for i = j or i = j + 1, 

(S84) d i Sj = Sjdi-1 for i > j + 1, 

(S85) SiSj = Sj+1Si for i ~ j. 
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We picture K as shown below. 

Ko ~ Ki l== K2· - ~ 

The elements of Kn are called n -simplices. The functions di are called face maps, and 

the functions Si are called degeneracy maps. If each of the Kn and each of the di and Si 

are in a category C, then K is called a simplicial object over C. 

We describe two examples of simplicial sets. 

1. A simplicial set arising from a poset Let X be a partially ordered set, and 

let PNern(X) denote the set of totally ordered sequences of n elements of X . If x E 

PNern(X), we write 

X = (x1 ::,;; X2 ::,;; · · · ::,;; Xn)-

The i th face map di : PNern(X) ------+ PNern-l removes the element Xi from x; that is 

The i th degeneracy map Si : PNern(X) ------+ PNern+l (X) repeats t he element Xi; that is 

2. The nerve of a category Let C be a small category. Define Ner0 (C) = C0 and 

Thus Nern ( C) is the set of composable sequences of n elements of C. An n-simplex in 

Nern(C) may be pictured as 

The face maps do,d1 : Ner1 (C)------+ Nero(C) on 1-simplices are given by 

do(a) = r (a) and d1(a) = d (a) . 

For n > l , t he i th face map is 

(an, an- 1, ... , a2) 

(an, an-I, . .. , ai+lai, . . . , a1), 

The degeneracy maps Si: Nern(C)------+ Nern+1(C) are given by 
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7. 7 A cochain complex from a simplicial set 

Let K be a simplicial set. We shall construct a cochain complex over the category Ab 

of abelian groups. Let A be an abelian group. Let xn(K, A) denote the set of functions 

from Kn to A, where A is regarded as a set. 

Consider the face maps di : Kn+l ----+ Kn , i = 0, ... , n . These give rise to functions 

Define 
n 

dn : xn(K,A)----+ xn+1(K,A) by 2)-ltdi(¢). 
i=0 

Proposition 7.14 For any abelian group A and simplicial set K, we have that x•(K, A) 

is a cochain complex over Ab. 

PROOF. It is straightforward to show that each xn(K, A) is an abelian group under 

pointwise addition. We show that each dn is a homomorphism. It is clear that dn(On) = 
On+l· Let¢, 'ljJ E xn(K, A) . Then for i = 0, ... , n, and x E Kn+l 

di(¢+ 'I/J)(x) (¢ + 'I/J)di(x) 

¢(di(x)) + 'ljJ(di(x)) 

di(<P)(x) + d"!('I/J)(x) 

(di(¢)+ di('I/J))(x). 

It follows that dn(¢ + 'ljJ) = dn(¢) + dn('ljJ). To see that dn+ldn = 0, let ¢ E xn(K, A). 

Then 

n 

dn+1 ( L(-l)idi (¢)) 
i=0 

n+l n 

L(-l)jd7J+1 
( L(-l)idi(¢)) 

j=0 i=0 
n+l n 

L I:(-l) i+jd1J+ldi (¢) 
j=0i=0 
n+l n 

L I:(-l)i+j¢didj 
j=0i=0 
n+l n i n 

L I:(-l) i+j¢didj + LL(-l)i+j¢didj 
j=i+l i=0 j=0i=0 
n+l n i n 

L I:(-l)i+j¢dj-ldi + I:I:(-l)i+j¢didj by (SSl) 
j=i+l i=0 j=0i=0 

114 



n n n 

L I)-l) i+k+1¢dkdi + L L(-l)i+j¢didj where k = j - l 
k=i i=O j=Oi=O 

n n i n 

- LL(-l)i+k¢dkdi + LL(-l)i+j¢didj 
k=i i=O j=Oi=O 

■ 
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Chapter 8 

Cohomology of categories 

In this chapter we shall describe the standard cohomology of categories. In Section 8.1 , 

we define the cohomology of groups, this will motivate the definition of cohomology of 

categories given in Section 8.2.l. 

8.1 Cohomology of groups 

We use shall use the machinery outlined m Chapter 7 to define cohomology groups 

Hn(G, A) where G is a group acting on the abelian group A. 

Let G be a group. A right action of G on an abelian group A assigns to each pair 

( a, g) E A x G an element a · g in such a way that the following conditions are satisfied. 

(i) a · 1 = a . 

(ii) a· (gh) = (a · g) · h. 

(iii) (a+ b) • g =a· g + b · g. 

Note that 0 · g = (0 + 0) · g = 0 · g + 0 · g. Hence g · 0 = 0. If G acts on abelian groups A 

and B, we say that a homomorphism a : A --t B is a G-morphism if 

a(a · g) = a(a) · g for all a EA. 

It is easy to show that G-actions and G-morphisms form a category. 

Alternatively, an act ion of G on A can be thought of as a collection of homomorphisms 

0(g) : A --t A, with 0(g)(a) = g · a. Note that 0(1) = IdA, Thus an action 0 is a functor 

from G to Ab, where G is regarded as a category with one object *· Let 0, ¢ : G --t Ab 

be functors. A natural transformation from 0 to ¢ is a homomorphism a : 0( *) --t ¢( *) 
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such that the diagram below commutes for all g E G 

That is a(0(g)(a)) = ¢(g)(a(a)), for all a E 0(*). Hence a(g · a) = g · a(a). Therefore 

for any group the category of G-actions and G-morphisms is the functor category Abe, 

which we also denote by A. 

By Proposition 7.2, Ab is an abelian category, but then by Proposition 7.3, A. is an 

abelian category. 

In order to calculate cohomology groups in A. we need to show that this category has 

enough injectives. 

See Theorem 3.3 of Popescu [24] for proof of the following. 

Proposition 8.1 The category Ab has enough injectives. 

■ 

Hence A. has enough injectives by Proposition 7.10. 

We now construct a left exact functor from A. to Ab. Let G act on A. Define 

A0 = {a EA I a· g = a, \:Jg E G}. 

It is immediate that A 0 is a subgroup of A. Let a: A----+ B be a G-morphism. Define 

to be the restriction of a to AG. This is clearly well-defined because for a E AG and 

g E G we have 

a(a) · g = a(a · g) = a(a) . 

It is easy to check that (- )0 is a functor. We show that it is left exact. Let 

°' f3 
o-A-B--► c-o 

be a short exact sequence in A. It is required to show that the sequence 

G (JG 

o-AG~ BG -cc 
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is exact. Since a is a monomorphism, we have that ac is a monomorphism, so the 

sequence is exact at Ac. We need to show that Ker(,BG) = Im(ac). Let b E Im(ac). 

Then b = a(a) for some a E Ac, therefore ,B(b) = ,Ba(a), but ,Ba= 0, hence ,B(b) = 0. 

Thus Im(aG) ~ Ker(,Bc) . Now let b E Ker(,Bc). Then ,B(b) = 0, that is b E Ker(,B) , hence 

b E Im(a). Therefore b = a(a) for some a E A, it remains to show that a E Ac. Let 

g E G. Then 

a(a · g) = a(a) · g = b · g = b, 

since b E Be . But b = a(a), hence a(a· g) = a(a) . But a is a monomorphism, so a· g = a. 

Hence a E Ac . It follows that Im(aG) = Ker(,Bc ). We have therefore constructed a left 

exact functor (-)G : A --t Ab. 

We are now able to define cohomology groups of G. Let G act on A . Since A has 

enough injectives , there is an injective resolution A~ IA . Applying the left exact 

functor (- )G to IA yields a cochain complex which in turn yields cohomology groups. 

Hence we define 

to be the n th cohomology group of G with coefficients in A. 

By Proposition 7.13(i), R0 (-)c ~ (-)c . Therefore H0 (G ,A) ~ Ac . 

To explicitly compute cohomology groups one must construct appropriate resolutions. 

The standard resolution is the 'bar resolution '. The construction is given in [2, 20]. It 

can be proved [2] that: 

• The first cohomology group H 1 (G, A) is isomorphic to the group of functions d : 

G --t A such that 

d(gh) = d(g) · h + d(h), for all g, h E G, 

modulo the subgroup of functions G --t A of the form g 1----t a - a · g, for some 

fixed a EA. 

• The second cohomology group is the group of functions f : G x G --t A such that 

f (g , h) · k + f (gh, k) = f (h, k) + f (g, hk) for all g, h, k E G, 

modulo the subgroup of functions 8c : G x G --t A of the form 

8c(g, h) = c(g) · h + c(h) - c(gh), 

where c : G --t A is a function . 
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We shall now look at the definition of group cohomology from a different angle that 

will be useful in generalisation. 

Let G be a group and A an abelian group. Let T(A) denote the abelian group A 

with the trivial action of G on A , that is a · g = a for all g E G and a E A. For any 

homomorphism 0 : A --t B define 

T(0) : T(A) --t T(B) by T(0)(a) = 0(a). 

It is immediate that T: Ab --t A is a functor. Note that (T(A))G = A. 

Proposition 8.2 The functor (- )G is right adjoint to T. 

PROOF. Let A be an abelian group and B a G-module. Let a T(A) --t B be a 

G-morphism. For a EA and g E G we have 

a(a) · g = a(a · g) = a(a), 

so a( a) E BG. Hence we can define a function 

TA ,B: homA(T(A), B) --t homAb(A, BG) by TA ,B(a)(a) = a(a). 

It is immediate t hat T A,B is bijective. It remains to show that T is natural in A and 

B. Let /3 : B --t C be a G-morphism and 0 : A --t A' a group homomorphism. It is 

straightforward to show that the conditions 

hold. It follows that T is natural. 

■ 

If we put A equal to the group of integers Z with the trivial G-action. Then 

Hence we obtain t he following result. 

Proposition 8.3 The left exact functor (- )G is naturally isomorphic to homA(Z, - ) . 

■ 
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8.2 Cohomology of categories 

8.2.1 Definition of the cohomology functor 

In this section we generalise the cohomology of groups given in the previous section to 

obtain a cohomology of categories . The cohomology of small categories is due to Watts 

[30], for more on the cohomology of categories, we refer the reader to [1]. Let J be a small 

category. We can form the functor category AbJ, since Ab is abelian so too is AbJ by 

Proposition 7.3 . Consider the diagonal functor 

which sends each abelian group A to the constant functor 6..(A) ; the functor which has 

the value A at each object of J and the value IdA at each morphism of J. A limit for a 

functor F : J --+ Ab consists of an abelian group L = Lim(F) together with a natural 

transformation v: 6..(L) --+ F which is universal among natural transformations. Since 

6..(L) : J --+ Ab is the functor with constant value L , the natural transformation v 

assigns to each object J of J a homomorphism VJ : L--+ F(J) so that the triangle below 

commutes 

L VJ F(J) 

~ F(j) 

F(J') 

for any morphism j : J --+ J'. The universal property means that for any other abelian 

group A and natural transformation T : 6..(A) --+ F , there is unique homomorphism u 

such that VJU = TJ, for all objects J of J. The situation is pictured below. 

U

LX"' v,/F(J) 

F(j) 

/ 
A TJI F(J') 

We now show how to define Lim on the morphisms of AbJ. Let F, G : J --+ Ab 

be functors and a : F --+ G a natural transformation. There are universal natural 

transformations v : 6. (Lim( F)) --+ F and 'T/ : 6. (Lim( G)) --+ G such that the diagram 
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below commutes 

Lim(F) __ v_J_~F(J) __ °'_J _.,..G(J)--71-J--Lim(G) 

F(j) G(j) 

F(Y)--°'-J-, -G(Y) 

for any morphism j : J ---+ J' of J. Now av : 6.(Lim(F)) ---+ G is a natural trans

formation, so by the universal property of T/ there is a unique homomorphism Lim(a) : 

Lim(F) ---+ Lim(G). By uniqueness of Lim(a) it is easy to show that Lim: AbJ---+ Ab 

is a functor. Furthermore Lim is right adjoint to 6., see page 88 of MacLane [21] for 

details. By the dual of Theorem IV.1.3 of [21], Lim is an additive functor. By Theorem 

2.6.1 of Weibel [31], Lim is left exact. Hence we arrive at the following result. 

Proposition 8.4 Lim : AbJ ---+ Ab is a left exact additive functor which is right adjoint 

to the diagonal functor 6.. 

■ 

Let A be an abelian group and F: J ---+ Ab a functor. By adjointness we have 

Let A= Z. Then 

Hence we have the following result. 

Proposition 8.5 The left exact functor Lim(-) is naturally isomorphic to homAbJ (6.(Z), - ) .. 

■ 

Proposition 8.5 generalises the group case, Proposition 8.3. 

Definition Let C be a small category. A left C-module is a (covariant) functor from 

C to Ab. A right C -module is a contravariant functor from C to Ab; that is, a functor 

from C 0 P to Ab. So a right C-module is a left C 0 P-module. If A and B are two left 

(right) C-modules, a left (right) C-morphism a from A to Bis a natural transformation 

a: A---+ B. Let ModL(C) denote the category of left C-modules and left C-morphisms 
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and let ModR(C) denote the category of right C-modules and right C-morphisms. Thus 

ModL( C) is the abelian category A c and ModR ( C) is the abelian category A cop . 

The functor Lim: A cop ----+ Ab is an additive left exact functor. We define 

to be the n th cohomology group of C with coefficients in A. 

8.2.2 Free right C-modules 

In this section we shall define free objects in the category AbC
0

P of r ight C-modules . 

Let X be a set viewed as t he discrete category. An X -set is a functor. 

T : X ----+ Set . 

We can view T as a disjoint union of sets 

T = lJ T(x). 
xEX 

If T, R : X ----+ Set are two X -sets, an X -morphism from T to R is a natural transfor

mation 

a: T----+ R. 

Since X is a discrete category, a simply assigns to each element x of X a function 

ax: T(x) ----+ R(x). The category of X-sets and X-morphisms is t he category Setx. 

For a small category C, any (right or left) C-module is clearly a C0 -set. Given a 

C0 -set T the problem is to construct C-module which is 'free' over T in some sense. 

We begin with free objects in SetC
0
P. The starting point is the forgetful functor 

which assigns to each C-module, its underlying C0 -set. We need to define a functor in 

the opposite direction which is left adjoint to U Let T : C0 ----+ Set be a C0 -set . We 

shall const ruct a functor IF(T) : C 0 P ----+ Set . For each e E C0 define 

IF(T)(e) = {(t , x) I x EC such that d(x) = e, and t E T(r(x))}, 

and for each element f ~ e of C, define a function 

IF(T)(a) : IF(T )(e) ----+ IF(T)(J) by IF(T)(a) : (t, x) f-----+ (t, xa). 

This is a well-defined function. 

Proposition 8.6 IF(T) : C 0 P ----+ Set is a functor, for any C0 -set T. 
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PROOF. If e E C0 and (t, x) E lF(T)(e), then lF(T)(e)(t, x) = (t, xe) = (x, t), so lF(T)(e) is 

an identity. If :lab in C and r(b) = e, then 

lF(T)(a)lF(T)(b)(t, x) = lF(T)(a)(t, xb) = (t , xba) = lF(T)(ba)(t, x). 

So lF(T) : C 0 P ------+ Set is a functor. ■ 
Let T be a Ca-set . We shall define a Ca-morphism 'f/T from T to lF(T), where we 

regard lF(T) as a Ca-set. Define 

'f/T : T ------+ lF( T) by 'f/T ( t) = ( t, e) 

where t E T(e). 

Theorem 8. 7 Let F : C0 P ------+ Set be a functor together with a Ca-function i from T 

to F, where F is regarded as a C0 -set. Then there is a unique natural transformation 1 

from lF(T) to F such that the following diagram commutes in the category of Ca-sets. 

PROOF. For each e E C0 define a function 

,e: lF(T)(e) ------+ F(e) by ,e(t,x) = F(x)(ir(x) (t)). 

It is immediate that each ,e is well-defined. We show that , is a natural transformation. 

Let f ~ e be an element of C, we need to show that the diagram below commutes. 

e lF(T) ( e) __ ,e_---c1>- F( e) 

a IF(T)(a) F(a) 

f lF(T) (J) --,J---a>- F(j) 

Let (t ,x) E lF(T)(e), then 

and 

,jlF(T)(a)(t,x) = ,1(t,xa) = F(xa)(ir(x) (t)). 
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Hence , is a natural transformation. Furthermore, for e E C0 and t E Te we have 

re'f/r(t) = ,(t, e) = F(e)(ie(t)) = le(t), 

in the category of C0 -sets. Hence r'r/T = i. 

It remains to show that I is unique. Let c, : JF(T) --+ F be a natural transformation 

such that CJ'f/T = i. Let e ~ f in C and t E T(j); that is ( t, x) E JF(T) ( e), also 

rJr(t) = (t,f) E JF(T)(j) and JF(T)(x)(t,f) = (t , x). The diagram below commutes since 

c, is a natural transformation. 

f JF(T)(f) _rr_1 -F(f) 

X IF(T)(x) F(x ) 

e lF(T)(e) --<re-~ F(e) 

Thus F(x)c,1(t,f) = CJelF(T)(x)(t,f) = c,e(t,x). But c,J(t,f) = CJJ'rfr(t) 

assumption. Therefore 

CJ e ( t, X) = F ( X) CJ f ( t , f) = JF( T) ( X) ( l f ( t)) = re ( t, X). 

i 1(t) , by 

■ 

By part (ii) of Theorem IV.1.2 of MacLane [21], it follows that lF is the object part of 

a functor 

which is left adjoint to U The functor lF is defined on morphisms as follows. Let T and 

R be C0 -sets and f3 : T--+ Ra C0 -function. The natural transformation 

JF(f3) : JF(T) --+ JF(R) is given by C-morphisms JF(f3)e : (t, x) ~ (f3(t), x). 

Now consider the forgetful functor 

This has a left adjoint <G which assigns to each e E C0 the free abelian group on F(e), 

where F : C 0 P --+ Set is a functor. For a morphism e ~ f of C, <G(F)(x) is the 

homomorphism induced by JF(x) and for a natural transformation a: F--+ Gin SetC
0
P, 

each <G(a)e : <G(F)e --+ <G(G)(e) is the homomorphism induced by ae. 
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We thus have the following diagram of forgetful functors U, V and left adjoints IF, G. 

V 1lJ 

<G lF 

Let 

by Theorem IV.8.1 of MacLane Z is left adjoint to W. 

Definition Let F : C0 P ---+ Ab be a functor and T : C0 ---+ Set a C0 -set. Let 

r; : T ---+ F be a C0 -morphism, regarded as a C0 -set. We say that F is a free right C

module on T if for any functor F' : C0 P ---+ Ab, and C0 -morphism r;' from T to F' , there 

is a unique natural transformation a : F ---+ F' such that the diagram below commutes 

in the category of C0 -sets. 

T 

Let T be a C0 -set. The functor Z(T) = QF(T) : C0 P ---+ Ab assigns to each identity 

e of C the free abelian group generated by the set IF(T)(e), and to each x in C the 

homomorphism induced by the function IF(T)(x). 

The following is immediate from Theorem 8. 7 and properties of free groups . 

Proposition 8.8 The functor Z(T) : C0 P ---+ Ab is a free right C -module over T, for 

any C 0 -set T. 

■ 

Corollary 8.8.1 Let C be a category, T a C 0 -set, F a C-module and (3 : T ---+ F a 

C0 -morphism. The unique C-morphism a : Z(T) ---+ F such that ar; = (3 is defined on 

the generators of Z(T) by 

a(t, x) = F(x)(f3(t)). 

■ 

Corollary 8.8.2 Let C be a category, T a C 0 -set and F a C-module. Define 
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to be the function which assigns to each C-morphism a: Z(T)-----+ F , the C0 -morphism 

w(a) : T-----+ F given by w(a) : t f-----t a(t, e) 

where t E T( e) . Then w is bijective. 

PROOF. The C0 -morphism 

'r/T: T-----+ Z(T) is defined by rJr(t) = (t , e), 

where t E T(e). So w(a) = arJ. Since Z(T) is free over T , every C-morphism a : 'lf(T) -----+ 

Fis uniquely determined by w(a), so that the diagram below commutes 

T 

With this information it is straightforward to show that w is injective and surjective. 

■ 

Proposition 8.9 Free right C-modules are projective in AbC
0
P. 

PROOF. Let P be a free C module over a C0 -set T , and let rJ: T-----+ P be a C0 -morphism, 

where P is regarded as a C0 -set. Suppose that A, B : C 0 P -----+ Ab are right C-modules, 

g : A -----+ B is a C-epimorphism and , : P -----+ A a C-morphism. We need to construct 

a C-morphism from P to A. Since g is a C-epimorphism, the functions ge : Ae -----+ Be 

are surjective for every e E C0 • Therefore we can choose functions fe : Be -----+ Ae such 

that 9efe = Id 3,. Hence there is a C0 -morphism f : B -----+ A in the category of C0 -sets, 

with gf = ld3. Let f/1 = ff'r/ which is a C0 -morphism from T to A , regarded as a C0 -set. 

Since Pis free over T there is a unique C-morphism a : P -----+ A such that arJ = rJ1
• It 

remains to show that the diagram below commutes in AbC
0

P 

Since P is free over T, 1 is the unique C-morphism from P to B making the diagram 

below commute in SetC0 

126 



But 

garJ = grJ' = gqrJ = ,rJ, 

hence,= ga. ■ 

8.2.3 Computing the cohomology of categories 

The aim of this section is to construct a cochain complex for a category C, which will 

enable us to calculate cohomology groups. 

An example of a C-module is the constant module over Z, given by the diagonal 

functor 6.Z: C 0 P ---+ Z. This has value Idz at every element of C. Thus 6.Z(e) ~ Z for 

all e E Ca, We write ne for elements of 6.Z(e) , and for each element x of C, we have 

6.Z(x) : 6.Z(r(x))---+ 6.Z(d(x)) given by 6.Z(x)(nr(x)) = nd(x)· 

For any small category C, we can form the simplicial set Ner( C), introduced in Section 

7.6. The set Ner0 (C), is the set of identities of C. For n ~ l , elements of Nern(C) are 

composable sequences of elements of C , denoted (xn, Xn-1, .. . , x1). For each integer 

n ~ 0, Nern(C) is a Ca-set with 

We shall construct the free C-module on the Ca-set Nern(C). The functor 

lF(Ner n ( C)) : C 0 P ---+ Set 

is defined on objects by 

lF(Nern(C))(e) = {((xn, ... ,xi),y) E Nern(C) x CI d(y) = e, d(xi) = r(y)} 

but then (xn,··. ,x1,Y) E Nern+1(C)(e), so lF(Nern(C))(e) = Nern+1(C)(e). We shall 

write elements of lF(Nern(C))(e) as (xn, · .. ,x1,xo). Fore-!!....+ fin C, we have 

lF(Nern(C))(y) : lF(Nern(C))(J) ---+ lF(Nern(C))(e) 

given by 

lF(Nern(C)) is a functor with the universal property of Theorem 8.7. The functor 

Z(Nern(C)) : C 0 P---+ Ab 

assigns to each e E Ca the free abelian group generated by lF(Nern(C))(e), and to each 

e-!!....+ f the homomorphism induced by lF(Nern(C))(y) . The Ca-morphism 

rJn : Nern ( C) ---+ Z(Nern( C)) is given by rJn : (xn, . .. , x1) f-----t (xn, . .. , X1, d(xi)), 
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where 2(Nern(C)) is regarded as a Ca-set. 

For each integer n ~ 0, the face maps Nern+i ( C) f--t Nern ( C) give rise to Ca-functions 

dn: Nern+i(C) ----r 2 (Nern(G) ) given by 

n 

dn : (xn+l, ... , xi) f--t (xn+l , ... , xi) + 2:)-l)j (xn+i, ... , Xj+1Xj, ... , Xi, d(xi)) 
j=i 

+ (-1t+i(d(Xn+1), Xn, ... , Xi, d(xi) ) 

Since 2(Nern+i(C)) is freely generated by Nern+i(C), there is a unique C-morphism dn 

from 2 (Nern+ i ( C)) to 2 (Nern ( C)) such that the diagram 

1)n 

commutes in the category of Ca-sets. By Corollary 8.8.1, dn is defined on the generators 

of the free abelian group 2(Nern(C)) by 

n 

(xn+l, ... , xixo) + 2:)-l)j (xn+i , ... , Xj+iXj, .. . , xi, xo) 
j=i 

+ (-1t+i ( d (xn+i), Xn, ... , xi, xo). 

That is 

n 

dn(Xn+i, ... , xo) = :Z::)-l)j (xn+i, . .. , Xj+iXj, ... , xo) + (-lt+l ( d( Xn+i), Xn, ... , xo). 
j=i 

Define a Ca-function 

"t : Nero(C) ----r .6.2 by "t : e f--t l e. 

This gives rise to a C-morphism c: 2 (Nero(C)) ----r .6.2 such that ErJn = "t . 

Proposition 8.10 For any category C , the sequence 

(8.1) 

is a projective resolution of .6.2 in the category of right C -modules. 
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PROOF. The C-modules Z(Nern(C)) are free by construction, so by Proposition 8.9, each 

Z(Nern(C)) is a projective object in AbC
0

P . It is routine to show that dndn+I = O; the 

calculation is similar to that given in the proof of Proposition 7.14. By uniqueness of the 

C-morphisms dn, it is immediate that dndn+I = 0. Hence 8.1 is a chain complex. 

We need to show that the sequence 8.1 is exact. By Proposition 7.8 , to show that a 

sequence is exact, it is enough to construct a contracting homotopy. Define C0 -morphisms 

a'n: lF(Nern(C)) -t Z(Nern+1(C)) by 

Now lF(Nern(C)) generates Z(Nern(C)) freely as an abelian group. Hence a'n extends 

uniquely to a C0 -morphism CTn : Z(Nern( C)) -t Z(Nern+l ( C)), such that each al (Z(Nern( C)) (e)) 

is a group homomorphism. 

In addition, we define a C-morphism 

T: 6.Z -t Z(Nero(C)) by T: ne f------t n(e). 

To show that a and T define a contracting homotopy, it is required to show that 

for all n;;:: 1. The first condition is immediate. Let (x) be a generator for Z(Ner0 (C)). 

Then 

(n + doao)(x) = T(lct(x) ) + do(x ,d( x)) = (d(x)) + (xd(x)) - (d(x)) = (x). 

So Tc+ d1ao = Idz(Nero(C))· Let (xn, ... , xo) be a generator for Z(Nern(C)). Then 

and 

n-1 
a(:I)-l)i(xn, ... , Xi+1Xi, ... , xo) 

i=O 

+(-lt( d( xn), Xn-1, ... , xo)) 

n-1 
I)-l)i (xn , ... , Xi+1Xi, . .. , xo, d(xo)) 

+(-lt(d(xn), Xn-1, ... , xo, d(xo)) 

dn(Xn, ... , xo, d(xo)) 

(xn , ... , X1, xod(xo)) 
n-1 
""""' +1 + L.)-1 )1 (xn, ... , Xi+1Xi, . . . , xo, d (xo)) 
i=O 
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(xn, . .. 'xo) 
n-1 

- 2 ) - l)j (xn , . .. , Xi+1Xi, . . . , xo, d (xo)) 
i =O 

-(-lt(d (xn-1, ... , xo, d (xo)) 

■ 

Let A be a right C-module. We apply the right exact functor horn(- , A) to the 

projective resolution constructed above. This yields a cochain complex 

where K n(C, A) = hom(Z(Nern(C)) , A) and d~ is defined by d~(¢ ) = ¢dn. 

The nth cohomology group of the category C with coefficients in A is defined to be 

the group 
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Chapter 9 

Cohomology of ordered groupoids 

In t his chapter we show that the cohomology of an ordered groupoid can be defined as 

the cohomology of a small category. 

9.1 Actions of inverse semigroups 

The material in this section provides motivation for the definition of actions of ordered 

groupoids. 

Let S be a semigroup. A right action of S on a set X is a function 

XxS--tX denoted (x,s)f------+x·s 

satisfying x · (st) = (x · s) · t , for all s, t E Sand x EX. If S happens to be an inverse 

semigroup, then we get left actions of inverse semigroups. However this definition is often 

not sufficient for inverse semigroups because it doesn't respect all the extra structure; 

in particular , we require t he action to take account of the natural partial order and the 

structure of the associated groupoid. In this section we define a special class of left actions 

which will be the basis for our definition of left actions of ordered groupoids. 

Definition Let (X, ::::;) be a poset regarded as a category in which there is an arrow 

x --t y if x ::;;; y. A presheaf on X with values in a category C is a functor 

¢ : X 0 P --t C. 

If x ::;;; y then we write 

</>t : ¢(y) --t ¢(x). 

Clearly, ¢~ = Idx(e) and ¢;¢1 = ¢'!/v, for w ::;;; x ::;;; y. 
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Let S be an inverse semigroup. Then E(S) is a meet semilattice with respect to the 

natural partial order. Let F be a presheaf of sets over E(S). Put 

X = lJ F(e) = lJ Xe. 

eEE(S) eEE(S) 

For e , k E E(S) with k ~ e there is a function ¢% : X e ------+ Xk. A partial right action of 

S on the presheaf X is a family of functions 

one for each s E S, satisfying the following conditions 

(SAl) If e E E(S), then f e = Idxe• 

(SA2) Ifs , t ES with d(s) = r(t) , then ftfs = !st· 

(SA3) Ifs , t E S with t ~ s then ¢~/;j fs = ft¢;g]. 

If we write x · s = fs(x) , then the conditions (SAl) and (SA2) become 

x · e = x and x · (st) = ( x · s) · t 

respectively. The condition (SA3) amounts to the square pictured below being commu

tative, 

Xd(s) ~ Xr(s) 

</>d(s) I l </>r (s) 
d (t) t r (t) 

Xd(t ) -+------ Xr(t ) 
ft 

that is ¢~/;](x · s) = 1>;g](x) · t. This condition shows that the action is compatible with 

the natural partial order. 

It is important to notice that each element of S acts partially on X. In fact fs : 

Xr(s) ------+ Xd( x ) is bijective, this is because 

Hence each f s is a partial bijection of X. 

Our definition does not look much like a semigroup action. However, it can be ex

tended so that each s E S acts on all of X. Let x E X be arbitrary, say x E X e. Put 

f = r(s) I\ e = r(s) e, then r(Js) = f and ¢j(x) E XJ· We can therefore define 

x o s = ¢j(x) · (J s ), 

note that f s = es. 
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Proposition 9.1 Given a partial right action of a semigroup S on a presheaf X, the 

action of S on X defined above is a right action in the usual semigroup sense. 

PROOF. We show that (x o s) o t = x o (st). Let x E Xe. Then 

an element of Xd(es)· Now x o (st)= ¢:r(st)(x) · (est), and 

Observe that 

now 

hence 

(x o s) o t = ¢~/::\r(t)(¢~(es)(x) ·(es))· d(es)t. 

¢~/::~(t)/¢~(es)(x) · (es)) 

¢;/::~(t))(¢~(es)(x)) · (esr(t)) by (SA3) 

¢~(esr(t))(x) · (esr(t)) since¢ defines a presheaf, 

r(esr(t)) ( esr(t)) ( esr(t) )-1 

esr(t)r(t) s-1e 

estC1 S-l 

er(st), 

¢~/::\r(t)(¢~(es)(x) · (es))= ¢:r(st)(x) · (esr(t)) . 

We substitute this into (9.1) to get 

(xos)ot 

as required. 

(¢:r(st)(x) · (esr(t))) · d(es)t 

¢:r(st)(x) · (esr(t)d(es)t) 

¢~(est)(x) · (est) 

X o (st), 

(9.1) 

■ 

Thus actions of inverse semigroups on presheaves of sets are special kinds of actions 

on sets in the usual sense. 
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Example Let S be an inverse semigroup. Recall that the £-class at an idempotent e 

of S is the set 

Le= {x ES I d(x) = e}. 

We write L = lJeEE(S) Le. If e, 1 E E(S) with 1::;,; e and x E Le, then xl E LJ, So we 

can define 

¢j : Le ----+ L J by ¢j : x f-----7 xf. 

This makes the set of £-classes a presheaf over E(S). We shall define a left action of S 

on L. Let s ES and x E Lr(s)· Then xs E Lct(s), we can therefore define 

ls : Lr(s) ----+ Ld(s) by ls : X ----+ XS. 

It is immediate that this action satisfies the conditions (SAl) and (SA2), to see that 

(SA3) holds let t ::;_; s and x E Lct(s), then 

1t¢;W(x) 

and ¢~/:; ls(x) 

ft(xr(t)) = xr(t)t = xt 

¢~W(xs) = xsd(t) = xt . 

Hence S acts on the presheaf L. We now examine the corresponding global action. Let 

x E L e, and s E S be arbitrary. The action of s on x is 

x o s = ¢:r(s)(x) ·(es)= (xr(s))es = xs. 

Therefore the global action is simply right multiplication. 

9.2 The category C( G) 

In [16], Lawson proved the following result. From each inverse semigroup (with zero) 

S a left cancellative category C(S) can be constructed together with a right action of 

C(S) on a set X which satisfies a number of conditions. From the pair (C(S),X) an 

isomorphic copy of S can be constructed. Thus inverse semigroup theory becomes the 

study of certain types of category actions. In [19], Loganathan showed that a cohomology 

of an inverse semigroup Scan be calculated as the cohomology of the category C(S). We 

shall therefore examine the category C(S) from an ordered groupoid perspective. 

Let G be an ordered groupoid . Put 

C(G) = {(e, g) E G 0 x GI r(g) ::;,; e} . 

We shall define a partial product making C ( G) into a category. Define 

d(e,g) = (d(g),d(g)) and r(e,g) = (e,e) 
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for all (e , g) E C(G). If (e,g), (f,h) E C(G) with d(e,g) = r(f ,h) , that is d(g) = f then 

define the product 

(e, g)(f, h) = (e, (gJr(h))h) 

this is illustrated below. 

e 

it 

. ...:;:: ......... . ~ . 
(gl r (h)) h 

g -where * indicates that h ~ g. -h 

Proposition 9.2 C( G) is a lejt-cancellative category. If G has a maximal identity, then 

C ( G) has a weak terminal object 

PROOF. It is easy to see that C ( G) is a category, and that the identities are as indicated. 

To show that it is a left cancellative category, suppose that 

(e, g)(f , h) = (e, g)(J' , h'). 

Thus d(g) = f = J' and (e,g®h) = (e,g ® h'), so g ® h = g ® h'. That is 

(gJr(h))h = (gJr(h'))h'. 

It follows that r(gJr(h)) = r(gJr(h')) , therefore 

(r(g Jr(h))Jg) = (gJr(h)) = (gJr(h')) , 

by uniqueness of corestrict ion. Hence (gJ r(h))h = (g Jr(h))h' , and so h = h' , as required. 

Now suppose that G has a maximal identity l. Let e E G0 • Then (1, e) is an element 

of C(G) with 

d(l , e) = (e , e) and r (l, e) = (1 , 1). 

Thus (1 , 1) is a weak terminal object in C(G). 

■ 

9.3 Abelian ordered groupoids 

Let A be an abelian ordered groupoid. For all a E A, d (a) = r (a), thus each connected 

component of A is an abelian group. 

Abelian ordered groupoids are examples of presheaves which we discussed in Section 

9.1. 
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Proposition 9.3 Let (X, ~) be a poset. Presheaves on X with values in the category 

of additive abelian groups are precisely those abelian ordered groupoids whose poset of 

identities is X. 

PROOF. Let ¢: X ~Abbe a presheaf on X, having values in Ab. For each x EX, 

let A x denote the abelian group ¢(x) and put 

A= lJ Ax 
xEX 

Let x, y E X with x ~ y. Define an order on A as follows: if a E Ax and b E Ay, then 

We show that this relation is indeed a partial order. Since ¢ is a functor ¢~ = Id A., , so 

the relation is reflexive. It is clearly anti-symmetric. For x, y, z E X with x ~ y ~ z, 

we have ¢t¢; = ¢~ , since ¢ is a functor, this condition implies that the order relation is 

transitive. To show that A is an ordered groupoid, it remains to show that the conditions 

(OG1)- (0G3) of Section 3 hold. The conditions (OGl) and (OG2) follow from the fact 

that each ¢t is a homomorphism. It is easy to see that (OG3) holds with (aly) = ¢t(a), 

for any x ~ y and a E Ay. 

Conversely given an abelian ordered groupoid A, define for each e E A0 ¢( e) = { a E 

A I d(a) = e}, for each e E A 0 • For e,f E G0 withe~ f, define 

¢(!, e): ¢J ~ ¢e by ¢(!, e)(a) = (ale). 

It is immediate that ¢ : G0 ~ Ab is a functor. Hence ¢ is a presheaf of abelian groups 

over G0 . 

We have therefore shown that every presheaf of abelian groups determines , and is 

determined by an abelian ordered groupoid. It is straightforward to show that this cor

respondence is bijective. 

■ 

Let X be a poset and A an abelian group. We let .6.(A) denote the presheaf of abelian 

groups given by .6..(A)(x) = A, for all x EX, and .6.(A)t(a) = a for all x ~yin X. We 

call .6..(A) a constant abelian ordered groupoid. 

9.4 Actions of ordered groupoids 

Let G be an ordered groupoid and A an abelian ordered groupoid, such that there is an 

order-isomorphism 0 : G0 ~ A0 . The components of A are abelian groups , one for each 
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identity in G. We write Ae = {a E A I d(a) = 0(e)} . We call A a (right) G-module if 

for each pair (a, g) EA x G such that d (a) = 0(r(g)), there is an element a· g of A with 

d(a · g) = 0(d(g)). This operation must satisfy the following axioms: 

(GMl) If 3gh in G and 3a · g, then (a· g) · h =a· (gh). 

(GM2) If a and bare elements of the same component of A, and 3a · g, then (a+ b) · g = 

(a · g) + (b · g). 

(GM3) If e is an identity in G, then a· e = a, for all a E Ae. 

(GM4) For all gin G, 0(r(g)) · g = 0(d(g)). 

(GM5) If 3a · g, b · h where a::,; band g::,; h, then a · g::,; b · h 

Comparing this definition with the inverse semigroup actions defined in Section 9.1, it is 

clear that ordered groupoid actions generalise action of inverse semigroups. 

Where there is no risk of confusion we write Oe instead of 0 ( e). 

The following properties of G-modules will be useful. 

Lemma 9.4 Let A be a G-module. 

(i) If3a·g , then3(-a)·g and(-a)·g=-(a·g). 

(ii) If 3a · g and h ::,; g, then (a· gjOd(h)) = (alOr(h)) · h. 

PROOF. If 3a · g, then d(a) = Or(g), but A is abelian so d(a) = r(a) = d(-a). Hence 

d(-a) = Or(g) therefore 3(-a) · g. Now (a - a) · g = a· g + (-a) · g by (GM2), but 

a - a= Or(g), so (a - a) · g = Or(g) · g = Od(g) by (GM4). Hence a· g +(-a)· g = Od(g), 

that is (-a)· g =-(a· g). 

We now show that (ii) holds. Since 3a · g, we know that d(a) = r(a) = Or(g)· We also 

know that Or(h) ::,; Or(g) , because h::,; g. Therefore there exist (a!Or(h) ) and (alOr(h)) · h. 

Since (alOr(h))::,; a, we have (alOr(h)) ·h ::,; a ·g, by (GM5). The result follows by uniqueness 

of restriction. 

■ 

Let G be an ordered groupoid, let A and B be G-modules with order-isomorphisms 

0 : G0 ~ A0 and ¢ : G0 ~ B 0 , respectively. An ordered functor a : A --+ B is called a 

G-morphism if is satisfies the following conditions: 

(i) a(0(e)) = ¢(e) for all e E G0 • 

(ii) a(a · g) = a(a) · g, for all a EA and g E G with d(a) = 0(r(g)). 

137 



Note that the condition (i) implies the existence of a(a) ·gin (ii). 

It is straightforward to show that G-modules together with G-morphisms from a 

category, which we denote by Mod(G). 

Recall from Section 9.2 that each ordered groupoid G gives rise to a small category 

C(G). The following correspondence between G-modules and right modules of the small 

category C( G) is the generalisation to ordered groupoids of Lemma 2.6 of Loganathan 

[19]. 

Theorem 9.5 Let G be an ordered groupoid. There is an isomorphism between the cat

egory of left G-modules, and the category of right C ( G)-modules. 

PROOF. Let A be a left G-module. Define A: C(G) 0 P ---+ Ab as follows: fore E G0 , 

A(e) = Ae , for each (e,g) E C(G) define 

A(e, g) : A(e) ---+ A(d(g)) by A(e, g) : a f-----t (alOr(g)) · g. 

We show that A( e, g) is a homomorphism. 

and for a, b E Ae 

A(e,g)(a + b) =(a+ blOr(g)) · g = (alOr(g)) · g + (blOr(g)) · g = A(e,g)(a) + A(e,g)(b). 

We now prove that A is a contra variant functor. Let ( e, g) E C ( G) with d(g) = f, for 

a E AJ we have 

A(d(e,g))(a) = A(J,J)(a) = (alOJ) · f = a 

so A(d(e,g)) = IdAf' Similarly A(r(e,g)) = IdAe· Now let (e , g) , (J ,h) E C(G) with 

d(g) = f, for a E Ae we have 

and 

A((e, g)(f , h))(a) = A(e, g ® h)(a) = (alOr(g®h)) · (g ® h) , 

A(f, h)A(e, g)(a) A(J, h)((alOr(g)) · g) 

(((alOr(g) ) · g)IOr(h) ) · h 

((alOr(g lr(h) )) · (glr(h))) · h by Lemma 9.4 (ii) 

(alOr(glr(h))) · ((glr(h))h) by (GMl). 

(alOr(g®h)) · (g ® h). 

Hence A is a contravariant functor; that is A is a right C( G)-module. 
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Conversely, let A: C(G) 0 P------+ Ab be a right C(G) module. We shall construct a left 

G-module A. For each e E Ga define 

p(e) = A(e). 

If e, J E G withe~ J, define 

p[: p(J)------+ p(e) by p[: a r-7 A(J, e)(a). 

It is immediate that p : Ga ------+ Ab is a functor, where the poset Ga is regarded as a 

small category. That is , p is a presheaf of abelian groups . By Proposition 9.3, p defines 

an abelian ordered groupoid A where Ae = p(e) = A(e) for e E Ga , and 

(alOe) = A(J, e)(a), where a E AJ and e E G withe~ f. 

To make A into a G-module we need to define an action of G on A. Let a E A and 

g E G with d(a) = Or(g)· Define 

a· g = A(r(g),g)(a). 

The conditions (GM1)- (GM4) are immediate from the fact that A is a functor. To show 

that A is a G-module it therefore remains to show that (GM5) holds . Let a, b E A and 

g, h E G such that ::lg· a, h · b. Suppose that b ~ a and h ~ g. From the definition of the 

order on A we have b = A(r(g),r(h))(a). Now 

b · h A(r(h), h)(b) 

A(r(h), h)(A(r(g), r(h))(a)) 

A((r(g) , r(h))(r(h),h))(a) since A is a contravariant functor 

A(r(g), h)(a) 

A( ( r(g), g) ( d(g), d( h))) (a) 

A(d(g), d(h))(A(r(g) , g)(a)) 

A(d(g) , d(h))(a · g) 

that is b · h ~a· g. Thus A is a G-module. 

We have therefore shown that every G-module determines and is determined by a 

C(G)-module. Let r : Mod(G) ------+ Mod(C(G)) assign to each G-module A the corre

sponding C(G)-module A constructed above. Let a: A------+ B be a G-morphism, and let 

A= r(A) and B = r(B) . Define 

r(a) : A------+ B by r(a) : a r-7 a(a). 
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We show that r(a) is a C(G)-morphism. Let a E A(e) and let (e,g) E C(G). Then 

B(e, g)(I'(a)(a)) = B(e,g)(a(a)) = (a(a)IOr(g)) · g, 

and 

I'(a)(A(e,g)(a)) = r (a) ( ( a I Or(g)) . g) 

= a((alOr(g)) · g) 

= a(a lOr(g) ) · g 

= (a(a)IOr(g)) · g. 

Hence the diagram below commutes 

A(e) r (a) B(e) 

A (e, g) l l B(e,g) 

A(d(g)) ~ B(d(g)) 

so r(a) is a C(G)-morphism. It is easy to check that r: Mod(G) ----+ Mod(C(G)) is a 

functor . 

Conversely, for each C(G)-module A, let r'(A) = A, the G-module constructed above. 

Let ¢ :A----+ B be a C(G)-morphism, and let A= I''(A) and B = I''(B). Define 

r'(¢) : A----+ B by r'(¢ ): a i-------+ ¢(a). 

We show that I''(¢) is a G-morphism. Suppose that e , f E Ga withe ~ f , let a E Ae and 

b E AJ with a ~ b; that is a= A(f, e)(b) in A. Then 

r'(¢)(a) = ¢(A(! , e)(b)) = B(f, e)(¢ (b)) , 

that is f'(¢)(a) ~ f'(¢(b)). It is immediate that f'(¢(0e)) = Oe, for all e E Ga, Now let 

g E G and a E Ad(g) · Then 

(r'(¢ )(a)) · g = A(r(g) , g)(¢ (a)) = ¢(B(r(g),g)(a)) = r'(¢)(a • g). 

Hence r'(¢ ) is a G-morphism. 

It is straightforward to show that r' : Mod(C(G)) ----+ Mod(G) is a functor , and 

that it is inverse tor: Mod()----+ Mod(C(G)). 

■ 
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9.5 The cohomology of an ordered groupoid 

By Proposition 9.5, the category of G-modules is isomorphic to the abelian category 

Mod(C(G)) = AbC(G)
0

P, of right C(G)-modules. In Section 8.2 we showed how to com

pute the cohomology of modules of small categories. We therefore define the cohomology 

of a G-module to be the cohomology of the corresponding C(G)-module. 

Explicitly, let A be a G-module and let .A-denote the corresponding C( G)-module. 

In Section 8.2.2, we constructed projective modules of categories. Therefore, by Lemma 

7.11, we can construct a projective resolution of .A. Also there is a left exact functor 

Lim : AbC(G}°P ~ Ab which is is naturally isomorphic to hom(b.(Z), -). Applying 

this functor to a projective resolution of .A enables us to compute cohomology groups 

Hn(.A, C(G)). We define the n th cohomology group of the G-module A to be the n th 

cohomology group of the corresponding C( G)-module .A; that is 
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Chapter 10 

Extensions of ordered groupoids 

In this section we shall work towards an interpretation of the first and second cohomology 

groups of an ordered groupoid. 

10.1 Definitions 

We introduce extensions of ordered groupoids which generalise the notion of extensions 

of inverse semigroups due to Lausch [11]. 

We say that an ordered functor ¢ : G ~ H is an identity-separating if it induces an 

order-isomorphism between G 0 and H 0 . 

D efinition Let G be an ordered groupoid and A an abelian ordered groupoid. An 

extension of A by G is a triple E = (l, U, a-) where 

• U is an ordered groupoid. 

• a : U ~ G is a surjective ordered functor, which is identity-separating. 

• l : A ~ U is an injective ordered functor, such that the image of l is isomorphic 

to the kernel of a; that is l(A) ~ Ker(a). 

We picture the extension E as shown below 

A'-----*U--~-----G. 

It is clear that l(A) is a wide subgroupoid of U . Furthermore l(A) is a normal ordered 

subgroupoid of U because if a EA and u EU with d(l(a)) = d(u) , then 

because a(a) E G 0 . Thus ui(a)u- 1 E Ker(a). 
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We can therefore form the quotient groupoid U / i(A). Recall that the elements of 

U / i(A) are the equivalence classes of the equivalence relation given by 

u ~ v {:::::=} u = i(a)vi(b) for some a, b EA. 

If :luv in U, then :l [u][v] in U/i(A), and [u][v] = [uv]. The order in U/i(A) is defined as 

[u] ~ [v] if, and only if, for each v' E [v] there exists u' E [u] such that u' ~ v'. 

Proposition 10 .1 Let A~ U ~ G be an extension of an abelian ordered groupoid 

A by an ordered groupoid G. 

(i) The groupoid i(A) is an ordered normal subgroupoid of U . 

(ii) Th ere is a unique isomorphism 7/J : U / i(A) ~ G such that a = 7/J pq, where pq : U -----+ 

U/i(A) is the natural map defined by pq(u) = [u]. 

We have already dealt with (i). 

Condition (ii) can be obtained from the First Isomorphism Theorem for ordered 

groupoids (Theorem 7 of [12]) , but we give a direct proof. It is straightforward to show 

that pq is a functor. To see that pq is ordered , let u, v E U with u ~ v and let v' E [v]; 

that is v' = i(a)vi(b) , for some a, b EA. Then (v'ld(u)) ~ v' and 

(v'ld(u)) = (i(a)lr(u))(vld(u))(i(b)ld(u)) = (i(a)lr(u))u(i(b)ld(u)) 

so (v'ld(u)) ~ u, hence [u] ~ [v] . It is straightforward to show that pq is identity

separating and surjective. Define 7/J: U/i(A)-----+ G by 7/J [u] = a(u) . This is well-defined 

because if u' = i(a)ui(b) for some a, b EA, t hen a(u') = ai(a)a(u)ai(b) = a(u). To see 

that 7/J is injective, suppose that a(u) = a(v) for some u,v EU. Then a(d(u)) = a(d(v)), 

but er is identity-separating, so d(u) = d(v). Thus uv- 1 is defined and 

hence uv-1 E A and so [u] = [v]. Since a is surjective so also is 7/J. The condition 7/J pq = a 

is immediate. 

■ 

Let A be an abelian ordered groupoid and G an ordered groupoid . Two extensions 

£ = ( i, U, a) and £' = ( i' , U' , a') are said to be congruent if there is an ordered functor 

µ : U -----+ U' such that µi = i' and a= a'µ as shown in t he commutative diagram below. 
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We writeµ: E ~ £'. 

Lemma 10.2 Ifµ: E ~ £' as above, thenµ is an isomorphism. 

PROOF. To see thatµ is injective , let u,v EU and assume µ(u) = µ(v) . Then a'µ(u) = 

a'µ(v) , and so a(u) = a(v). Since a is identity separating d(u) = d(v), so :luv- 1 . Now 

so uv- 1 E Ker(a) , thus uv-1 = i(a) for some a EA. Now 

so µ(i(a)) is an identity. But µ(i(a)) = i'(a), so a E A 0 since i' is an isomorphism. It 

follows that i(a) E U0 , that is uv- 1 E U0 , hence u = v . 

To see that µ is surjective, let u' E U' and write g = a' ( u'). Since a is surjective, there 

is an element u of U with a(u) = g. Clearly a(d(u)) = d (g) = a'(d(u')). Since d(u) is 

an identity, there is an e E A 0 such that i(e) = d (u), then i'(e) = µi( e) = µ(d(u)). Now 

a'i'(e) = a'µ(d(u)) = a(d (u)) , but then a ' (d (u' )) = a'(i'(e)). So d (u') = i'(e) since a' is 

identity separating, thus d(u') = µ(d(u)). Hence :lµ(u)u' - 1 . Now 

so µ(u)u'- 1 E i' (A) . Write i' (a) = µ(u)u' - 1 , then 

Hence µ is surjective as required. 

■ 

Corollary 10.2.1 Congruence of extensions of ordered groupoids is an equivalence rela

tion. 

■ 

Let £ = (i, U, a) be an extension of an abelian ordered groupoid A by an ordered 

groupoid G. Since a is surjective, for each g in G we can choose an element l(g) of U 

with a(l(g)) = g. Thus for each extension£= (i, U, a) of A by G, we can pick a function 

l : G -t U satisfying 

al= Ida. 

We call such a function a transversal for the extension. 

The following results on transversals will be useful. 
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Lemma 10.3 Let l be a transversal for an extension £ = (i, U, a-) of A by G. Suppose 

that g, h E G with r (h) ~ d (g). Then r(l(h)) ~ d (l(g)). 

PROOF. Consider 

o-(d (l(g))) = d (o-l(g)) = d (g) and o-(r(l(h))) = r (o-l(h)) = r (h) . 

Therefore o-(d (l(g))) ~ o-(r(l(h))) . But a- is an order-isomorphism on identities, so 

d (l(g)) ~ r (l(h)) . 

■ 

Corollary 10.3.1 If 3gh in G , then 3l(g)l(h). 

■ 

Lemma 10.4 Let£ = (i, U, a-) be an extension of an abelian ordered groupoid A by an 

ordered groupoid G, and let l : G ----+ U be a transversal for £. Let u E U and put 

g = o-(u). Then there is a unique a EA such that u = l(g)i(a). 

PROOF. Let g = o-(u). Consider 

o-(r (l(g))) = r (o-l (g)) = r (g) and o-(r (u)) = r (o-(u)) = r (g), 

but a- is identity-separating, so r (u) = r (l(g)), hence 3l(g)- 1u. Now 

so l(g) - 1u E Ker(o-) . Thus 3a EA, such that i(a) = l(g) - 1u. Clearly a is unique, since i 

is injective. 

■ 

Proposition 10 .5 Let£ = (i, U, a-) be an extension of an abelian ordered groupoid A by 

an ordered groupoid G, and let l : G ----+ U be a transversal for £ . For each element (g, a) 

of G x A satisfying o-i(d (a)) = r (g), define a· g by 

Then this gives A the structure of a G-module which is independent of the choice of 

transversal l. 
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PROOF. If cn(d(a)) = r(g) , then i(d(a)) = r(l(g)) , by Corollary 10.3.l. So the groupoid 

product l(g)- 1 i(a)l(g) exists. Define 

It is clear that 0 is an order-isomorphism, since a is identity-separating. If a E A and 

g E G with d(a) = 0(r(g)), then l(g)- 1i(a)l(g) is an element of i(A), since i(A) is an 

ordered normal subgroupoid of U by Proposition 10.1 (ii). To prove that the definition 

is independent of the choice of transversal, let l' : G --+ U be another transversal. By 

Lemma 10.4, there is a unique element b of A such that l(g) = l'(g)i(b), so 

but l'(g) - 1 i(a)( l'(g)) E i(A) by normality, and A is abelian so 

To see that (GMl) holds, let g, h E G such that ~gh. Let a EA with i(d(a)) = 0(r(g)). 

By Corollary 10.3.1, l(g)l(h) is defined. Now a(l(g)l(h)) = gh = al(gh), so by Lemma 

10.4, there is a unique element J(g, h) of A with l(g)l(h) = l(gh)if (g , h). Hence 

i((a-g)-h) (l(g )l (h) )- 1 i(a)l (h)l (g) 

= (l (gh)if (g, h) )-1 i( a)l (gh )if (g, h) 

= if(g, h)- 1 l(gh)- 1 i(a)l(gh)if(g, h) 

= if (g, h)-1if (g, h)l(gh)-1 i(a)l(gh) 

l(gh)- 1 i(a)l(gh) 

i(a · gh). 

To see that (GM2) holds, let g E G and a, b EA such that (a+ b) · g exists. Then 

l (g )-1 
i (a) i ( b) l (g) 

= l (g )- 1 l (g) l (g )-1 i (a) i ( b) l (g) 

l (g )-1 i (a) l (g) l (g )- 1 i ( b) l (g) 

i(a · g)i(b · g) 

i(a·g+b-h) 

To see that (GM3) holds, let a EA and write e = a(i(d(a))). Then 
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To see that(GM4) holds, Let g E G. Then 

So 0(d(g)) · g = 0(d (g)). 

To see that (GM5) holds, let g, h E G with g ~ h. Let a, b E A, such that a ~ b, ::la· g 

and ::lb · h. We need to show that a · g ~ b · h. We cannot assume that l (g) is beneath 

l (h), however, there is an element (l(h) ld(l (g))) ~ l (h). Furthermore 

a(r(l(h)ld(l(g)))) = r(al(h) la(d (l(g)))) = r(hld(g)) = r(h) , 

and a(r(l (g))) = r(g). Hence r( l ( h) Id ( l (g))) = r ( l (g)), since a is identity-separating. The 

situation is illustrated below 

(l(h) l<l (l(g))) 
. ·4, ~ j;- . . 

g · a : ~ • a 

l(g) 

Define a function 

l' : G ~ U by l': x 1--7 { l( x) if x -=f- g 
( l ( h) Id ( l (g))) if X = g 

which is clearly a transversal for £ . Since the action is independent of the choice of 

transversal, we have 

■ 

For each e E G0 we write 0(e) = Oe as before. 

The following result is essentially Proposition 7.2 of Lausch, generalised to ordered 

groupoids. 

Proposition 10.6 Let £ = (i , U, a) and £' = (i', U' , a' ) be congruent extensions of an 

abelian ordered groupoid A by an ordered groupoid G . The arising G-module structures 

defined above are identical. 
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PROOF. Since [and[' are congruent, there is an order-isomorphismµ : U ~ U' . Let l and 

l' be transversals for the extensions [ and[' respectively. Let g E G and write u = l(g) , 

u' = l'(g). Now a'(u') = g = a(u) = a'(µ(u)). Therefore d(µ( u)) = d(u'), since a' is 

identity-separating. So :lu'µ(u)- 1 . Furthermore, a' (u'µ (u)- 1 ) = a' (u' )a(u) - 1 = gg- 1 , 

thus u'- 1µ(u) E i'(A). Let a E Ar(g), we will show that µ(u - 1i(a)u) = u'i'(a)u' . Now 

as required. 

µ( u)- 1 i' (a)µ( u) 

u'- 1u' µ( u)- 1 i' (a)µ( u) 

u'- 1 i ' (a)u' µ( u)-1 µ( u) 

u'-1 i' (a)u' , 

■ 

Now let [ = (i , U, a) be an extension of an abelian ordered groupoid A by an ordered 

groupoid G. Let l : G--+ A be a transversal for[. The following result tells us that the 

ordered groupoid U can be recovered from A, G and l. 

Proposition 10. 7 Let [ = (i, U, a) be an extension of A by G and let l be a transversal. 

Define 

G *A= {(g,a) E G X A I d(a) = Or(g) }-

Then there is a bijection 

G *A--+ U given by (g, a) --+ l(g)i(a). 

If g, h E G with r (h) ::;;; d(g), then there is a unique ((g, h) EA such that 

i((g, h) = l(g ® h)-1 ® l(g) ® l(h) . 

Furthermore 

(i) If u = l(g)i(a) , v = l(h)i(b) and :luv. Then 

uv = l(gh)i(((g , h) +a· h + b). 

(ii) Let u = l(g)i(a) and v = l(h)i(b). Then v::;;; u if, and only if, 

h ::,;; g and b = (alOd(h)) + ((g, d (h)) - ((d (h), d (h)). 
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PROOF . By Lemma 10.4, every u E U can be uniquely written as a groupoid product 

u = l(g)l(a), where (g , a) E G * A. Therefore the assignment (g, a) 1--r l(g)l(a) is a 

bijection from G * A to U. 

Now if g, h E G and r(h ) ~ d(g) , then :lg ® hand, by Lemma 10.3, :ll(g) ® l(h). Now 

O"l(g ® h) = g ® h = O"(l(g) ® l(h)). 

So by Lemma 10.4, there is a unique ((g, h) EA such that l(g) (8) l(h) = l(g (8) h)l(((g, h)). 

To prove (i) , suppose that u = l(g)l(a) , v = l(h)l(b) and :luv; that is :lgh. Then 

UV = l (g) l (a) l ( h) l ( b) 

= l(g)l(h)l(h)- 1 l(a)l(h)l(b) 

= l(g)l(h)l(a · h)l(b) 

= l(g)l(h) l(a · h + b) 

= l(gh)l(((g , h))l(a · h + b) 

= l(gh)l(((g , h) +a· h + b) . 

So (i) holds. 

It remains to show that (ii) holds . Let u = l(g)l(a) , v = l(h) l(b) and v ~ u. Then 

O"(v) ~ O"(u); that is h ~ g. Furthermore, 

l(h)l(b) = (l(g)l(a)ld(l(h))) = (l(g)ld(l(h)))(l(a)ld(l(h))). 

So l(b)(l(a)ld(l(h)))- 1 = l (h) - 1 (l(g)ld(l(h))); that is 

l(b - (al0d(h))) = l(h)- 1 
(8) l(g) 

= l(g ® d(h) )-1 ® l(g) 

= ((l(g) ® l(d(h)))l(((g, d(h)))- 1 )-1 (8) l(g) 

= l(((g, d(h))) (8) l(d(h)) - 1 (8) l(g) - 1 (8) l(g) 

= l(((g, d(h))) (8) l(d(h))- 1
. 

But l(d(h)) ® l(d(h)) = l(d(h))l(((d(h), d(h))) , so l(((d(h), d(h))) = l(d(h)). Hence 

l(b - (a!0d(h))) = l(((g , d(h)) - ((d(h) , d(h)) , 

so (ii) holds . 
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10.2 Split extensions 

In this sect ion we study the simplest class of extensions, but we begin by reviewing 

semidirect products of ordered groupoids . 

Let A be a G-module. We construct the semidirect product of A by G. 

Put Gt>< A = {(g,a) E G x A I d (a) = Od(g)}- Let (a,g), (b,h) E Gt>< A. If 3gh , then 

define the product 

(g,a)(h,b) = (gh,a-h+b). 

Proposition 10.8 Let G be an ordered groupoid and A a G-module . Then G t>< A is an 

ordered groupoid with the above product and order inherited from G x A . 

PROOF. We begin by locating the identities of G t>< A. Suppose that (g, a) E G t>< A 

and 3(g,a)(g,a) = (g,a); that is (gg,a · g + b) = (a,g). Then g is an identity, thus 

a· g +a= a, that is a + a = a. So the identities of Gt>< A are of the form (e , Oe), where 

e E G0 . There is an obvious bijection between (Gt>< A) 0 and G0 • It is easy to check that 

for (g,a) E Gt>< A, (d (g),Od(g)) and (r (g),Or(g)) are respectively left and right identities 

for (g, a) . We therefore define 

d (g,a) = (d (g),Od(g)) and r(a,g) = (r(g),Or(g))-

We show that the product in Gt>< A is associative. Let (g1, a1), (g2, a2), (g3 , a3) E Gt>< A, 

and suppose that 3g1g2g3. Then 

and 

Hence G t>< A is a category. 

(g1,a1)(g2g3,a2 · g3 + a3) 

(g1g2g3, a1 · (g2g3 ) + a2 · g3 + a3) 

(g1g2g3, (a1 · g2 + a2) · g3 + a3) . 

To see that Gt>< A is a groupoid, let (g, a) E Gt>< A . Then 3(-a) • g-1 , so (g- 1 , -(a. 

g- 1)) E G t>< A. Furthermore 

(g' a) (g-1' - ( a . g-1)) 

and (g - l, - ( a • g - l)) (g, a) 

(gg- 1 ,a • g-1 - (a· g-1)) = (r (g),Or(g)) 

(g- 1g, -(a· g - l) · g + a) = (d(g), Od(g))-

Hence Gt>< A is a groupoid with (g, a)-1 = (g-1, - (a . g-1 )). 
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We show that G IX A is an ordered groupoid. Let (g, a), (h, b) E G IX A with 

(g,a) ~ (h,b) that is a~ band g ~ h. 

Then a-1 ~ b- 1 and g- 1 ~ h- 1 . So by (GM5), (-a) · g-1 ~ (-b) · h- 1 . Hence (g,a)- 1 ~ 

(h , b)- 1 , and (OG 1) holds. To see that (OG2) holds, let (g, a) ~ (h, b) and (g', a') ~ (h' , b') 

in G IX A, and suppose ?igg', ?ihh'. By Lemma 9.4, a · g' ~ b · h' , so a· g' +a'~ b · h' + b', 

thus (g , a)(g',a') ~ (h,b)(h',b'), and (OG2) holds. Now let (g,a) E G 1X A and e E Ga 

withe~ d(g); that is (e, Oe) ~ d(g , a) . It is easy to see that (OG3) holds with 

((g, a)l(e, Oe)) = ((gle), (alOe)) . 

■ 

The semidirect product, provides an example of an extension. Let A be a G-module, 

and let 1r : G IX A ---+ G be the canonical projection onto G. Clearly 1r has kernel Ga ><l A. 

Define i : A ---+ G IX A by i(a) = (e, a), where e is the unique element of Ga with 

d(a) = Oe, It is immediate that 

A'-----+- G IX A __ 1r ___ G 

is an extension of A by G. 

An extension £ = (l, U, CT) of an abelian ordered groupoid A by an ordered groupoid 

G splits if CT has a right inverse; that is, if there is an ordered functor T : G ---+ U with 

CTT = Ida. Such a functor T is called a splitting for the extension £. 

The semidirect product above splits with splitting 

T: G---+ G IX A given by T(g) = (g, Or(g) ) -

The following result tells us that semidirect products are precisely split extensions . 
CT 

Proposition 10.9 Any split extension £: A~ U :=:: G is congruent to the semidi-
T 

rect product extension arising from the G-module A. 

PROOF. Recall from Proposition 10.5 that the G-module structure of A is given by 

Oe = l- 1 (CTIU0 )-
1 (e) and l(a · g) = T(g)- 1 l(a)T(g). We need to construct an ordered 

functorµ: U---+ G IX A making the diagram below commute. 
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Letu beanelementofU. ThenTO'(u- 1)u E i(A), byLemmal0.4. Defineµ: U----+ Gt><A 

by 

Let a EA and write e = O'i(a). Then 

so µi = i . It is clear that 1rµ = Cl. Hence the diagram above commutes. It remains to 

show thatµ is an ordered functor. Let u and v be elements of U with d (u) = r(v). Then 

µ(u)µ(v) ( Cl( U) , l -l ( TO'( u-1 )u)) ( Cl( V), l -l ( TO'( v-1 )v)) 

(Cl(u)O'(v) , l-l (TO'(u- 1)u) · O'(v) + l- 1 (TO'(v- 1 )v)) 

(Cl(uv), l- 1 (TCl(v)- 1TO'(u- 1)uTO'(v)) + l- 1(TO'(v- 1 )v)) 

( Cl( UV), l - l ( TO'( V )- 1TO'( u- 1 )uTO'( V )TO'( v- 1 )v)) 

(Cl(uv), i- 1 (TO'(u- 1v- 1)uv)) 

µ(uv). 

Hence µ is a functor. Since T and O' are both order preserving, so also is µ. 

■ 

The above result tells us that there is only one split extension of G by A ( up to 

equivalence) associated to the given act ion of G on A. Nevertheless, there is a classification 

problem involving split extensions: given that an extension splits, classify all possible 

splittings. 

Definition Let G be an ordered groupoid and A a G-module. A derivation of A is an 

order-preserving function ¢ : G ----+ A such that 

(Dl) cp(g) E Ad(g), for all g E G. 

(D2) cp(gh) = cp(g) · h + ¢(h), for all g, h E G such that 3gh. 

Note that if e E G0 , then by (D2) 

¢(e) = ¢(ee) = ¢(e) · e + ¢(e). 

So ¢(e) = Oe, 

We shall now show that derivations may be used to classify splittings. 

Lemma 10.10 Every splitting of a split extension determines, and is determined by, a 

derivation . 
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PROOF. By Proposition 10.9 we may assume that the split extension in question is the 

semi direct product extension ( i, G t>< A, 1T). Let T : G --t G t>< A be a function such that 

1TT = Ide. Then T(g) = (g, 'r(g)) , where 'r(g) is an element of A such that d('r(g)) = Od(g) , 

thus T satisfies (Dl). To see that (D2) holds, let g, h E G such that 3gh. Then 

T(g)T(h) = (g , 'r(g))(h , 'r(h)) = (gh , 'r(g) . h + 'r(h)), 

so T will be an ordered functor if, and only if, T is order-preserving and satisfies (D2) . 

Conversely, if ¢ : G --t A is a derivation, then ( ¢(g), g) E A ~ G by (D 1). Define 

¢*: G --t A~ G by ¢*(g) = (¢(g),g), 

it is easy to check that ¢* is a splitting. 

Let Z 1 (G, A) denote the set of all derivations of a G-module A. 

Lemma 10.11 Z 1 (G, A) is an abelian group under pointwise addition. 

PROOF. Let¢, 'lj; E Z 1 (G, A). Then 'ljJ +¢is defined by 

To see that this is well-defined, suppose 3gh in G. Then 

('l/J+</J)(gh) 'lj;(gh) + ¢(gh) 

'lj;(g) · h + 'lj;(h) + ¢(g) · h + ¢(h) 

('lj;(g) + ¢(g)) · h + ('lj;(h) + ¢(h)) 

( ( 'ljJ + ¢) (g)) · h + ( 'ljJ + ¢) ( h). 

■ 

Thus 'ljJ + ¢ is a derivation. The operation + is clearly associative and abelian. The 

identity in Z 1 (G, A) is the function O: G --t A defined by O(g) = Od(g)· As for inverses, 

let¢ E Z 1 (G, A) and g E G. Define 

-¢: G --t A by (-¢)(g) = - ¢(g). 

To see that -¢ is a derivation suppose that 3gh in G. Then 

(-¢)(gh) = -(¢(g) · h + ¢(h)) = -(¢(g) · h) - ¢(h) = (-¢ (g)) · h- ¢(h). 

It is immediate that¢ - ¢ = 0 = - ¢ + ¢ . Hence Z 1 (G, A) is an abelian group. 

■ 
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The following result provides an important class of derivations. 

Le m ma 10.12 Let A be a G-module and 6: G 0 --t A an order-preserving function such 

that o(e) E Ae. The function 

85: G --t A defined by 85: g f---t o(r(g)) · g - o(d (g)) 

is a derivation. 

PROOF. It is immediate that (Dl) holds . To see that (D2) holds, suppose that 3gh in G. 

Then 

85(g) · h + 8o(h) (o(r(g)) · g - o(d (g))) · h + (o(r (h)) · h - o(d (h))) 

o(r (g)) · (gh) - o(d (g)) · h + o(r (h)) · h - o(d (h)) 

o(r(g)) · (gh) - o(d (h)) 

85(gh). 

■ 

We call derivations of the form 86 principal derivations. Denote the set of all principal 

derivations of a G-module A by B 1 (G, A). 

Lemma 10.13 B 1 (G, A) is a subgroup of Z 1 (G, A). 

PROOF. To see that the sum of principal derivations is principal, let 6, E : G0 --t A 

be order-preserving functions such that o(e), c(e) E Ae . The function 6 + E : G0 --t A 

defined by (5 + c)(e) = 8(e) + c(e) is order-preserving and 8 + E E Ae . It is routine to 

check that 8(8+c) = 85+&. To see that the identity derivation O is principal, let g E G. 

Consider 

80(g) = Or(g) · g - Od(g) = Od(g) - Od(g) = Od(g), 

so 80 = 0. For any principal derivation 88, define -8 : G0 --t A by (- 8)(e) = -8(e), it 

is immediate that 8(-8) = - 88. 

■ 

Derivations provide an easy way of characterising splittings. In order to classify split

t ings we introduce the notion of 'A-conjugation'. Let £ be a split extension of A by G 

and let T and >- be two splittings of£ with corresponding derivations T and "X respectively. 

We say that T and A are A-conjugate if there is an order-preserving function 8 : G 0 --t A 

such that 8(e) E Ae and 

7'(g) = 8(r(g)) · g + °X(g) - o(d(g)) 

for all g E G. The following result is immediate. 
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Lemma 10.14 Two derivations correspond to A-conjugate splittings if, and only if, their 

difference is a principal derivation. 

■ 

Theorem 10.15 For any ordered groupoid G and G-module A, the A-conjugacy classes 

of splittings of the split extension 

are in one-to-one correspondence with the elements of the quotient group of derivations 

modulo principal derivations. 

PROOF. By Lemma 10.10 there is a bijection between the set of splittings of a split 

extension and the group Z 1(G, A) of derivations of A. By Lemma 10.13 the set B 1(G, A) 

of principle derivations is a subgroup of Z1(G, A). By Lemma 10.14 two splittings are A

conjugate precisely when the corresponding derivations are in the same coset of B1 ( G, A) 

in Z 1 (G, A). 

■ 

10.3 Factor sets 

In this section we shall classify extensions of ordered groupoids by defining factor sets for 

G-modules. 

Let G be an ordered groupoid, and n ~ 1. An n -staircase over G is an n-tuple 

(9n, ... , 92, 91) , where 9i E G and r(9i) ~ d(9i+1), for i = 1, ... , n - 1. We denote the set 

of n-staircases over G by Sn ( G). 

Definition Let G be an ordered groupoid. A factor set for a G-module A is a function 

satisfying the following conditions: 

(FSl) ((9, h) E Ad(h), for all (9 , h) E S2(G). 

(FS2) For all (9, h, k) E S3(G), (((9, h)IOr(k)) · k + ((9 0 h, k) = ((9, h 0 k) + ((h, k). 

The following result will be useful. 

Lemma 10.16 Let ( be a factor set for a G-module A. Then 
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(i) ((d(g) , d(g)) = ((g , d(g)) , for all g E G. 

(ii) ((r(g) , r(g)) · g = ((r(g),g) , for all g E G. 

(iii) ((g,g-1 ) · g + ((r(g) , g) = ((g, d(g)) + ((g- 1 , g) , for all g E G. 

(iv) If e, f E G0 with f :( e, then (((e, e)IOt) = ((e, !). 

(v) If g, h E G with h :( g, then (((g , d(g))!Oct(h)) = ((d(g) , d(h)). 

(vi) If g, h E G with h :( g, then ((g , d(h)) · h-1 + ((h, h- 1 ) = ((g, h-1 ) + ((d(h), h-1
) . 

(vii) Ifg , h E G withh :( g, then (((g,g- 1 )10r(h))+((r(g) , r(h)) = ((g, h- 1)+((g-1 , r(h)). 

( viii) If g, h, k E G with k :( h :( g, then 

(((g , d(h)) !Oct (k) ) + ((h , d(k)) = ((g , d(k)) + ((d(h) , d(k)). 

(ix) If g, g' , h , h' E G are such that 3gg' , 3hh' , h :( g and h' :( g' . Th en 

( ( (g , g') IOct (h' )) + ( (gg') d(h')) = ((g , h') + ( (g' ) d(h')). 

(x) If g, g', h, h' E G are such that 3gg', 3hh' , h :( g and h' :( g' . Th en 

((g , r(h')) · h' + ((h , h') = ((g , h') + ((r(h') , h'). 

PROOF. To show that (i) holds , apply the condition (FS2) to the 3-staircase (g , d(g) , d(g)) . 

This gives 

((g, d(g)) +((g, d(g)) = ((g , d(g)) +((d(g) , d(g)) , 

as required. To prove (ii) , apply (FS2) to the 3-staircase (r(g), r(g), g) . To prove (iii), 

apply (FS2) to the 3-staircase (g , g-1 , g). To prove (iv), apply (FS2) to the 3-staircase 

(e, e, !). To prove (v) , apply (FS2) to the 3-staircase (g, d(g), d(h)). To prove (vi) , apply 

(FS2) to the 3-staircase (g, d(h) , h- 1 ). To prove (vii) , apply (FS2) to the 3-staircase 

(g , g- 1 ,r(h)). To prove (viii) , apply (FS2) to the 3-staircase (g, d(h),d(k)). To prove 

(ix) , apply (FS2) to the 3-staircase (g , g', d(h')). To prove (x) , apply (FS2) to the 3-

staircase (g , r(h'), h'). 

■ 

Suppose that E is an extension of an abelian ordered groupoid A by an ordered 

groupoid G. Let l be a transversal for E and let (g , h) E S2(G). By Lemma 10.3 , the 

products l(g) ® l(h) and l((g ® h)-1) ® l(g) exist. By Corollary 10.3.1, 3l(g ® h)-1 ® l(g). 
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Proposition 10.17 Let E = (i , U, a) be an extension of an abelian ordered groupoid A 

by an ordered groupoid G, and let l : G ---+ U be a transversal for E. Define 

(: S2(G) ---+ A by i(((g , h)) = l(g @ h)- 1
@ l(g) @ l(h). 

Th en ( is a fa ctor set. 

PROOF. The function ( is well-defined since, by Proposition 10.7, each ((g, h) E A is 

unique. (FSl) is immediate. To see that (FS2) holds , let (g, h, k) E S3(G). We compute 

l(g) @ l(h) @ l(k) in two ways . Consider 

( l (g) l8l l ( h)) l8l l ( k) 

On the other hand 

l (g @ h) l8l i( (g, h) l8l l ( k) 

l(g @ h) @ r(l(k)) @ i((g , h) @ l(k) 

= l (g @ h) l8l l ( k) l8l l ( k )-1 l8l i( (g , h) l8l l ( k) 

= l(g @ h @ k) @ i((g@ h , k) @ l(k)- 1 @ i((g, h) @ l(k) 

= l(g @ h @ k)i((g @ h, k)l(k) - 1 i(((g , h) IOr(k)) l(k) . 

l(g) @ (l(h) @ l(k)) = l(g) @ l(h @ k) @ i((h , k) 

= l(g @ h @ k) @ i((g, h @ k) @ i((h , k) 

= l(g @ h @ k)i((g, h @ k)i((h , k). 

Since both factorisations of l(g) @ l(h) @ l(k) are equal, we have 

That is i(((g @ h, k) + (((g, h) IOr(k) ) · k) = i((g, h @ k) + ((h, k) ). The result follows , since 

i is injective. 

■ 

Note that if the transversal l is an ordered functor , then l(g Q9 h) = l(g) @ l(h). Thus 

we can think of the factor set constructed above as a measure of how l fails to be an 

ordered func tor. This idea is made precise in the following Lemma. 

Lemma 10 .18 Let E be an extension of an abelian ordered groupoid A by an ordered 

groupoid, let l be a transversal for E and let ( be the factor set defined by l(g) @ l(h) = 
l (g Q9 h) i ( ( (g , h)) . Then l is an ordered functor if, and only if, ( (g , h) = Oct(g), for all 

(g , h) E S2(G). 
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PROOF. Suppose that l is an ordered functor and let (g, h) E S2(G). Then 

l(g ® h) = l((glOr(h))h) 

Hence ((g , h) = Od(h) · 

l(g lr(h))l(h) since l is a functor 

= (l(g)ll(r(h)))l(h) since l is a order-preserving 

= l(g) ® l(h) . 

Conversely, suppose that ( (g , h) = Od(h) for all (g , h) E S2(G) . Let g, h E G where 3gh. 

Then l(g)l(h) = l(gh)((g , h) = l(gh) , so l is a functor. To see that l is order-preserving 

let g, h E G with h ~ g. Then 

l(gld(h)) = l(g ® d (h)) = l(g) ® l(d (h))i((g, d(h)) = l(g) ® l(d(h)) = (l(g)ll(d(h)) 

as required . 

■ 

Proposition 10.17 tells us that an extension together with a transversal determines a 

factor set. We now consider the relationship between the factor sets given by different 

transversals. 

Proposition 10.19 Let£ = (i , U, a) be an extension of an abelian ordered groupoid A 

by an ordered groupoid G and let l, l' : G --+ U be transversals for £ . Consider the factor 

sets ( , (' : S2 ( G) --+ A defin ed by 

i((g, h) = l(g ® h) - 1 ® l(g) ® l(h) and i((g, h) = l'(g ® h) - 1 ® l'(g) ® l'(h). 

There is a fun ction E: : G--+ A defin ed by ic(g) = l(g) - 1l'(g) , and 

PROOF. Let g E G. Since a(l(g)) = a(l'(g)) , by Lemma 10.4, there is a unique element 

c(g) of A such that 

l'(g) = l(g)i(c(g)). 

Let (g , h) E S2(G) . Then 

l'(g) ® l' (h) = l(g) ® i(c(g)) ® l(h)i(c(h)) 

l(g) ® i(c(g)) ® l(h) ® l(h)- 1 ® l(h) ® i(c(h)) 

l(g) ® l(h) ® l(h)- 1 ® i(c(g)) ® l(h) ® i(c(h)) 

= l(g) ® l(h) ® i(c(h)) ® l(h)- 1 ® i(c(g)) ® l(h) 
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l(g ® h) ® i((g, h) ® i(c:(h)) ® l(h)- 1 ® i(c:(g)) ® l(h) 

l(g ® h)i((g, h)i(c:(h))l(h)-l (i(c:(g))IOr(h))l(h) 

l(g ® h)i((g, h)i(c:(h))i((c:(g)IOr(h)) · h) 

l' (g ® h)i(c:(g ® h) )-l )i( (g , h)i(c:(h) )i( (c:(g) IOr(h)) · h) 

l'(g ® h)i(((g , h) - c:(g ® h) + c:(h) + (c(g) IOr(h) ) · h) 

So by Lemma 10.4, ('(g, h) = ((g, h) - c: (g ® h) + c: (h) + (c(g)IOr(h)) · h. 

The definitions in the following result are motivated by Proposition 10.7. 

■ 

Proposition 10.20 Let G be an ordered groupoid and A a G-module. Suppose that ( is 

a factor set for A. Let 

G * A= {(g,a) E G x A I d(a) = Od(g) }

If (g, a), (b, h) E G * A and 3gh, then define 

(g , a)(b, h) = (gh , ((g , h) +a· h + b) . 

Define an order on G * A as follows: 

(b , h) ~ (g , a) ¢:::=? h ~ g and b = (a lOd(h) ) + ((g , d(h)) - ((d(h) , d(h)). 

Th en G * A is an ordered groupoid. Furthermore, if we define 

i : A----+ G * A by i : a f-----t (e, a - ((e, e)) , a E Ae, 

and let 1r : G * A ----+ G be the canonical projection. Then 

A~ G * A~ G 

is an extension of A by G which induces the given action of G on A. 

PROOF. We begin by showing that G * A is a groupoid. 

It is clear that the partial product is well-defined. To locate the identities of G * A, 

suppose that (g,a) E G * A and 3(g, a)(g,a) = (g , a) , that is 

(gg ,( (g , g) +a · g+a) = (g , a) . 

Clearly g is an identity, hence a -g =a.Therefore a= a+a+((g, g), that is, a= -((g ,g). 

Hence the the identities of G * A are of the form (e, - ((e, e)), where e E G0 . There is an 
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obvious bijection between ( G * A) 0 and A 0 . Now 

(g , a)(d(g) , -((d(g), d(g))) = (g , ((g , d(g)) +a· d(g) - ((d(g), d(g))) 

= (g , ((g, d(g)) + a - ((g , d(g))) by Lemma 10.16(i) 

= (g, a). 

Therefore we define 

d(g, a)= (d(g) , -((d(g), d(g))) . 

Similarly, 

r(g , a) = (r(g) , -((r(g) , r(g))). 

To see that the product is associative, let (g , a), ( h, b), ( k, c) E G * A where ?ighk. Then 

((g, a)(h, b))(k , c) = (gh, ((g, h) +a· h + b)(k , c) 

= (ghk , ((gh, k) + (((g, h) +a· h + b) · k + c) 

= (ghk, ((gh, k) + ((g, h) · k +a· (hk) + b · k + c) 

and 

(g, a)((h, b)(k, c)) = (g , a)(hk, ((h, k) + b · k + c) 

= (ghk, ((g, hk) +a· (hk) + ((h, k) + b · k + c). 

So associativity follows from the condition (FS2): ((g, h) ·k+((gh, k) = ((h, k) + ((g, hk). 

To find the left inverse of (g , a) E G * A solve the equation 

(g-1
, b)(g, a)= (d(g), -((d(g) , d(g))) . 

That is 

-((d(g) , d(g)) = ((g- 1, g) + b · g + a. 

Sob= -((d(g)d(g)) · g-1 - ((g-1,g) · g-1 - a· g-1. To find the right inverse of (g ,a) 

solve (g , a)(g- 1
, b') = (r(g) , -((r(g) , r(g))) . That is 

- ((r(g) , r(g)) = ((g , g-1) +a• g- 1 + b'. 

So b' = -((r(g), r(g)) - ((g, g-1) - a· g. To show that (g , a) has a two sided inverse, we 

need to prove that b = b'. Now 

b' = -((d(g),d(g)). g-1 - ((g- 1, g). g-1 - a. g-1 

= - ( ( (g, d (g)) + ( (g- 1
, g) + a) . g - l by Lemma 10 .16 ( i) 

= -(((g,g-1) . g + ((r(g),g) +a)• g-1 by Lemma 10.16(iii) 

= -(((g, g-1). g + ((r(g), r(g)) • g + a) . g-1 by Lemma 10.16(ii) 

= ((g,g-1) - ((r(g),r(g)) - a· g- 1 

== b. 
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Hence each (g, a) E G * A has a two sided inverse 

We have therefore proved that G * A is a groupoid. 

We now show that G * A is an ordered groupoid. Firstly we need to show that the 

order we have defined is in indeed a partial order. 

Let (g, a) E G * A. To show that the order is reflexive we need 

a= (alOct(g)) + ((g, d(g)) - ((d(g), d(g)) . 

This is immediate from Lemma 10.16(i). 

To show that the order is anti-symmetric, let (g, a) , (h , b) E G * A and suppose that 

(h, b) :::; (g , a) and (g, a) :::; (h , b). Then h :::; g and g :::; h, so h = g. Now (g, a) :::; (g, b) 

implies that 

a = (blOct(g)) + ((g, d(g)) - ((d(g), d(g)) 

= (blOct(g)) + ((g, d(g)) - ((g, d(g)) 

= (blOct(g)), 

so a:::; b. Similarly (g , b) :::; (g, a) implies that b:::; a. Hence a= bas required. 

We now prove that the order is transitive. Let (k, c), (h, b), (g, a) E G *A, and suppose 

that (k, c) :::; (h, b) and (h, b) :::; (g, a). It is immediate that k:::; h:::; g. From (k, c) :::; (h, b) , 

we have that 

C = (blOct(h)) + ((h, d(k)) - ((d(k), d(k)), 

and since (h, b) :::; (g, a), we have 

b = (alOct(h)) + ((g , d(h)) - ((d(h) , d(h)). 

It is required to show that 

c = (alOct(k)) + ((g, d(k)) - ((d(k), d(k)) . 

Now 

C (blOct(k)) + ((h , d(k)) - ((d(k), d(k)) 

(((alOct(h)) + ((g, d(h)) - ((d(h) , d(h)))IOct(k)) + ((h, d(k)) - ((d(k) , d(k)) 

= (alOct(k)) + (((g, d(h))IOct(k)) - (((d(h), d(h))IOct(k)) + ((h , d(k)) - ((d(k) , d(k)) 

= (alOct(k)) + ((g, d(k)) + ((d(h), d(k)) 

- ( ( ( d(h) , d(h)) IOct(k)) - ( ( d(k) , d(k)) by Lemma 10.16( vii) 

(alOct(k)) + ((g, d(k)) - ((d(k) , d(k)) by Lemma 10.16(iv) 
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as required. 

To prove that G*A is an ordered groupoid, we need show that it satisfies the conditions 

(OG1)- (OG3) given in Section 3. To see that (OGl) holds, let (g , a), (h, b) E G * A with 

(h, b) ~ (g, a). To show that (h, b) - 1 ~ (g, a)- 1 , we need 

- ((h, h- 1
) - ((r (h) , r(h)) - b · h-1 = ((((g, g- 1

) - ((r(g) , r(g) ) - a · g- 1)I0r(h)) 

+ ((g- 1 , r(h )) - ((r (h) , r(h)). (10.1) 

Since (h, b) ~ (g, a), we have b = ( a l0a(h)) + ((g, d (h)) - ( ( d (h) , d(h)) . So the left-hand 

side of (10 .1) is equal to 

-((h, h- 1
) - ((r(h) , r(h)) - ((al0ct(h)) + ((g , d(h)) - ((d(h) , d (h))) · h- 1 

= -((r(h) , r (h)) - (a · g- 1 I0r(h)) - ((h,h- 1
) -((g, d (h)) · h- 1 + ((d(h), d (h)) · h- 1 

= - ((r(h) , r (h)) - (a · g- 1 I0r(h)) - ((g, h- 1
) 

- ((d(h) , h- 1
) + ((d (h), d(h)) · h- 1 by Lemma 10.16(vi) 

= - ((r(h), r(h)) - (a· g- 1 10r(h)) - ((g,h- 1
) 

- ((d(h) ,h-1 ) +((d(h) ,h-1 ) by Lemma 10.16(ii) 

= -((r(h) , r(h)) - (a· g- 1 l0r(h)) - ((g, h- 1
) . 

The right-hand side of (10.1) is equal to 

- (a· g- 1 I0r(h) ) - ( (r(h), r(h)) - (((g, g- 1 )I0r(h)) - (((r(g) , r(g))I 0r(h)) + ((g-1
, r (h)) 

= -(a· g- 1 10r(h)) - ((r(h), r(h)) + ((r(g), r (h)) - ((g,h- 1
) 

-((g- 1, r(h)) - (((r(g) , r(g))I0r(h)) + ((g- 1 ,r(h)) by Lemma 10.16(vii) 

= -(a· g- 1 10r(h) ) -((r(h) , r(h)) - ( (g,h- 1
) + ((r(g) , r(h)) - (((r(g),r(g))I0r(h)) 

= -(a· g- 110r(h)) - ((r (h), r(h)) - ((g, h- 1
) by Lemma 10.16(ix). 

So (10 .1) holds. Hence (OGl) is satisfied. 

We now show that G*A satisfies the condition (OG2) . Let (g, a) , (g' , a') , (h , b) , (h' , b') E 

G * A , where 3gg',hh' and (h , b) ~ (g ,a), (h' , b') ~ (g',a'). We need to prove that 

(h,b)( h' , b') ~ (g,a)(g',a'). Now 

(g ,a)(g' ,a') = (gg' ,( (g , g') + a · g' + a') 

and 

(h , b)(h' , b') = (hh' ,((h,h' )+b·h'+b'). 

It is immediate that hh' ~ gg' . We need to show that 

((h, h') + b · h' + b' = ((((g, g') +a· g' + a') I0ct(h') ) + ((gg', d (h')) - ((d(h') , d(h') ). (10.2) 
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Since (h,b) ~ (g,a) and (h',b') ~ (g',a') we have 

b = (al0d(h))+((g,d(h))-((d(h),d(h)) and b' = (a'I0d(h'))+((g1,d(h1))-((d(h1),d(h1
)) 

respectively. Substituting these into the left-hand side of (10 .2) gives 

((h, h') + ((al0<l(h)) + ((g, d(h)) - ((d(h), d(h))) · h' 

+ (a'I0d(h')) + ((g'd(h')) - ((d(h'), d(h' )) 

= (a· g'IOd(h')) + (a'I0d(h')) - ((d(h') , d(h')) 

+ ((h, h') + ((g, d(h)) · h' - ((d(h), d(h)) · h' + ((g'd(h')) 

= (a · g'I0d(h')) + (a'I0d(h')) - ((d(h'), d(h')) + ((h, h') + ((g, d(h)) · h' 

- (( d(h) , d(h)) · h' + ( ((g, g') I0<l(h')) + ((gg', d(h')) - ((g, h') by Lemma 10.16(ix) 

((a· g' + a' - ((g,g'))I0d(h')) + ((gg',d(h')) - ((d(h'),d(h')) 

+ ((h, h') + ((g, d(h)) · h' - ((d(h), d(h)) · h' - ((g , h') 

= ((a· g' + a' - ((g,g'))I0d(h')) + ((gg',d(h')) - ((d(h'),d(h')) 

+ ((h, h') + ((g, d(h)) · h' - ((r(h'), h') - ((g, h') by Lemma 10.16(ii) 

= ((a· g' + a' - ((g, g'))I0d(h')) + ((gg', d(h')) - ((d(h') , d(h')) by Lemma 10.16(x) 

which is the right-hand side of (10.2) . Hence (OG2) holds. 

Now let (g, a) E G * A and e ~ d(g) . To show that (OG3) holds , we need to define 

the restriction of (g, a) to (e, -((e, e)) . Define 

((g, a)l(e, -((e, e))) = ((gle), (al0e) + ((g, e) - ((e, e)). 

It is clear that d((g, a)l(e, -((e, e))) = (e, -((e, e)) and ((g, a)l(e, -((e, e))) ~ (g , a). 

Hence (OG3) holds. 

We now show that 

A~G*A~G 

is an extension of A by G. Where i is defined by i(a) = (e, a - ((e, e)) for a E Ae, and 1r 

is the canonical projection. It is immediate that i is an injective functor and that i1r = 0. 

It is clear that 7f is surjective and an order isomorphism on identities. 

It remains to show that the extension above gives rise to the given action of G on A. 

Let l : G ---+ G * A be a transversal for the extension, let g E G and let a E Ar(g) · We 

need to show that i(a · g) = l (g )-1i( a)l (g) . Since 1rl = Ida, l(g) is of the form l (g) = (g, a), 

where a E Ad(g). Now 

l(g)- 1 i(a)l(g) 

= (g, (a) )- 1 ( r(g) , a - ( (r(g), r(g))) (g, (a)) 
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= (g-1, -((g, 9- 1) - ((r(g) , r(g)) - a. g-1) (r(g) , a - ((r(g) , r(g)))(g , ( a)) 

= (g-1, ((g- 1, r(g)) - ((g , 9- 1) - ((r(g), r(g)) - a • g-1 + a - ((r(g) , r(g)))(g, a) 

= (g-1,((g-lr(g)) -((g, g-1) _ ((g-1 , r(g)) 

- a . g- 1 + a - ((r(g), r(g)))(g, a) by Lemma 10.16(i) 

= (g-1, -((g, 9- 1) - a . 9- 1 + a - ((r(g) , r(g)))(g , a) 

= (d(g),((g-1,g)-((g,g-1)-g-((r(g),r(g)) ·g-a+a·g+a) 

= (d(g) , ((g-1,g)-((g,g-1)-g-((r(g) , r(g)) ·g+a·g) 

= (d(g) , -((g, d(g)) +a· g) by Lemma 10.16(iii) 

= (d(g) ,a · g-((d(g) , d(g))) by Lemma 10.16(i) 

= i(a · g) 

as required. 

■ 

Theorem 10.21 Let £ = (i, U, er) be an extension of an abelian ordered groupoid A by 

an ordered groupoid G. Let l be a transversal for £ and let ( be the factor set constructed 

in Proposition 10.11. The extension of A by G constructed from ( as in Proposition 10. 20 

is congruent to £. 

PROOF. The factor set (: S2(G) --+ A is defined by l(g) 0 l(h) = l(g 0 h)i(((g, h)). We 

shall construct an ordered functor µ : U --+ G * A. By Lemma 10.4, each u E U can be 

written uniquely as u = l(g)i(a) where a EA and g = cr(u) , so the function 

µ: U--+ G * A with µ: l(g)i(a) 1----t (g , a) 

is bijective. To see thatµ is a functor let u = l(g)i(a) and v = l(h)i(b) be elements of U. 

The product uv exists if, and only if, d(g) = r(h), in which case 

so 

uv = l(g)i(a)l(h)i(b) 

= l (g) 1, (a) l ( h) l ( h )- 1 l ( h) 1, ( b) 

= l(g)l(h)l(h)- 1 i(a)l(h)i(b) 

= l(gh)i(((g , h)))i(a · h)i(b) , 

µ(uv) = µ(l(gh)i(((g , h) +a· h + b)) = (gh , ((g, h) +a · h + b) 

Nowµ( u)µ( v) = (g , a) (h , b) = (gh , ((g , h) +a· h+b). Henceµ( uv) = µ( u)µ(v) as required. 
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To see that µ is order-preserving, let u = l(g)i(a) and v = l(h)i(b) be elements of 

U and suppose that u ( v . We need to show that (g , a) ( (h , b). Now a : U ----+ G is 

order-preserving so a(u) ( a(v); that is a(l(g)i(a)) ( a(l(h)i(b)) , so g ( h. By Lemma 

10.3, d(l(g)) ( d(l(h)). To prove that (g , a) ( (h , b), we need 

Now 

and 

a= (bJOd(g)) + ((h, d(g)) - ((d(g) , d(g)). 

i(a) = l(g)- 1u 

= l (g )- 1 ( l ( h) l ( b) j d ( l (g))) 

= l (g )-1 ( l ( h) j d ( l (g))) ( l ( b) j d ( l (g))) 

= l (g )-1 
( l ( h) 0 ( l ( b) J d ( l (g)))) 

= l(g)- 1 0 l(h) 0 (i(b)Jd(l(g))), 

i(((h, d(g)) - ((d(g) , d(g) ) + (bJOd(g))) 

= i((h, d(g))(i((d(g) , d(g)))-1 i(bJO<l(g)) 

= (l (h 0 d(g) )- 1 0 l (h) 0 l ( d(g))) (l ( d(g) )- 1 l ( d(g) )l ( d(g)) )-1 (i(b) Jd(l (g))) 

= l(g) - 1 0 l(h) 0 l(d(g)) 0 l(d(g))-1 0 (i(b)Jd(l(g))) 

= l(g)- 1 0 l(h) 0 (i(b)Jd(l(g))) 

= i(a). 

Hence µ(u) ( µ(v) as required. 

It remains to show that the diagram below commutes. 

~u~ 
A ~ µ G 

~ / 
A*G 

Let b E A, and write d(b) = Oe. Then there is a unique a E A such that i(b) = l(e)i(a). 

So 

µi(b) = (e, i-1 (l(e)- 1i(b))) = (e, -i- 1 l(e) + b). 

But i((e, e) = l(e)- 1l(e)l(e) = l(e), so µi(b) = (e , -((e, e) + b). Which is equal to i(b). 

Therefore µi = i . To see that a= 1rµ, let u = l(g)i(a) be an element of U. Then 

1rµ(u) = 1r(g,a) = g and a(u) = a(l(g)i(a)) = a(l(g))a(i(a)) = g. 
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Hence result. ■ 
Let G be an ordered groupoid and A a G-module. Denote the set of factor sets by 

Z 2 (G, A). 

Define addition on Z 2 (G,A) pointwise. That is for ( , rJ E Z 2 (G,A) 

( + ry: S2(G)-+ A is defined by (( + ry)(g, h) = ((g, h) + ry(g, h) 

Lemma 10.22 With the above addition Z 2 (G, A) is an abelian group. 

PROOF. We begin by showing that ( + rJ is a factor set. It immediate that (FSl) holds. 

To see that (FS2) holds, let g,h,k E S2(G). Then 

((( + ry)(g, h)IOr(k)) · k + (( + ry)(g 0 h, k) 

((((g,h) +ry(g,h))IOr(k)) · k+((g ® h,k) +ry(g®h,k) 

(((g, h)IOr(k)) · k + ((g ® h, k) + (ry(g, h)IOr(k)) · k + ry(g ® h, k) 

((g, h ® k) + ((g, h) + ry(g, h ® k) + ry(g, h) 

(( + ry)(g, h ® k) + (( + ry)(g, h). 

As required. Hence the addition is well-defined. It is clear that the addit ion is associative 

and commutative. 

Define a function 

It is easy to show that O is a factor set satisfying 

0 + ( = ( = ( + 0, 

for all ( E Z 2 (G, A). 

For each factor set ( define 

-(: S2(G) -+ A by (-()(g, h) = -((o(g, h)). 

It is straightforward to show that -( is a factor set satisfying 

Hence Z 2 (G,A) is an abelian group. 

■ 
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By Proposition 10.17, every extention E of of an abelian ordered groupoid A by an 

ordered groupoid G, together with a transversal l determines a factor set for the G-module 

A. Let l and l' be two transversals for E, and let ( and ( ' denote the resulting factor sets . 

By Proposition 10.19, there is a funct ion c:: G---+ A defined by ic(g) = l(g)- 1l'(g) , and 

('(g, h) = ((g, h) - c(g ® h) + c(h) + (c(g) IOr(h)) -

Generally, for any G-module A and function c: : G ---+ A such that c(g) = Oct (g), for all 

g E G. Define 

We call the function & a principal factor set for A. Denote the set of principal factor 

sets by by B 2 (G, A). The following is immediate. 

Proposition 10.23 Let E = (i , U, a) be an extension of an abelian ordered groupoid A 

by an ordered groupoid G and let l, l' : G ---+ U be transversals for E. Consider the factor 

sets ( , ( ' : S2 ( G) ---+ A defined by 

i((g , h) = l(g ® h)-1 ® l(g) ® l(h) and i('(g , h) = l'(g ® h) - 1 ® l'(g) ® l'(h). 

Then there is a principal factor set & such that 

('(g, h) = ((g, h) + &(g, h). 

■ 

Lemma 10.24 B 2 (G ,A) is a subgroup of Z 2 (G, A). 

PROOF. We begin by showing that principal factor sets are factor set . Let c: : G ---+ A 

be a function from such that c:(g) E Ad(g), for all g E G. Let & be the corresponding 

principal factor set . It is immediate that & satisfies (FSl). To see that (FS2) holds , let 

(g , h, k) E S3(G). Then 

(&(g, h)IOr(k)) · k + &(g ® h, k) 

(((c(g)IOr(h)) · h + c(h) - c:(g ® h))IOr(k)) · k 

+ (c(g ® h)IOr(k)) · k + t: (k) + c:(g ® h ® k) 

(c(g)IOr(h@k)) · (h ® k) + (c(h)IOr(k) ) · k - (c: (g ® h)IOr(k)) · k 

+ (c:(g ® h)IOr(k)) · k + t: (k) - c(g ® h ® k) 

(c: (g)IOr (h@k)) · (h ® k) + (c(h) IOr(k)) · k + c(k) - c:(g ® h ® k) , 
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and 

&(g, h 0 k) + &(h, k) 

(c(g)IOr(h®k)) · (h 0 k) + c(h 0 k) - c(g 0 h 0 k) + (c(h)IOr(k)) · k + c(k) - c(h 0 k) 

(c(g)IOr(h®k)) · (h 0 k) + (c(h)IOr(k)) · k + c(k) - c(g 0 h 0 k). 

Therefore (FS2) holds. Hence B 2 (G, A) is a subset of Z2(G, A). 

The function O : G -----+ A is defined by O (g) = Od(g) . Let (g, h) E N er2 ( G). Then 

So O E B 2 ( G, A) . It remains to show that B2 ( G, A) is closed under addition. Let 

c : G -----+ A and 6 : G -----+ A be functions satisfying c(g), 6 (g) E Ad(g). The function 

c + i5 : G -----+ A is defined by ( c + <5) (g) = c(g) + 6 (g). We show that 8( c + <5) is a principal 

factor set . Let (g, h) E S2 ( G). Then 

(& + aa)(g, h) (c(g)IOr(h)) · h + c(h) - c(g 0 h) + (J(g)IOr(h)) · h + b(h) - 6(g 0 h) 

((c(g)IOr(h)) + (i5(g)IOr(h))) · h + c(h) + 6(h) - c(g 0 h) - 6(g 0 h) 

((c + i5)(g)IOr(h)) · h + (c + b)(h) - (c + b)(g 0 h) 

8(c + <5) . 

Thus B 2 (G, A) is a subgroup of Z2(G, A). 

■ 

The following result shows that extensions are classified by factor sets and principal 

factor sets . 

Theorem 10.25 Let G be an ordered groupoid and A a G-module. There is a bijec

tion between the set of all congruence classes of extensions of A by G and the quotient 

group Z 2(G , A)/B2(G,A). Under this correspondence the class of the semidirect product 

extension corresponds to the identity. 

PROOF. Let Ext(G, A) denote the set of congruence classes of extensions of factor sets. 

Let ( be an element of Z2 ( G, A) and let 

be the extension of A by G constructed in Proposition 10.20. Define 

w: Z 2 (G , A)/B2 (G , A)-----+ Ext(G,A) by w((+B2 (G,A)) i-------+ [£(]. 
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To see that w is well-defined, let 'f/ be in the same coset as (. That is ( = 'f/ + & , for some 

c : G ~ A satisfying c(g) E Act(g) · Define 

We shall prove that µ is a congruence of extensions. 

We show that µ is a functor. Let (g , a) E ( G * A k Then 

and 

But 

d(µ(g , a)) = d(g, a+ c(g)) = (d(g), -'fJ(d(g), d(g))), 

µ(d(g , a)) = µ(d(g), -((d(g), d(g))) = (d(g), -((d(g), d(g)) + c(d(g))). 

'fJ(d(g), d(g)) = ((d(g), d(g)) - &(d(g), d(g)) 

= ((d(g), d(g)) - c(d(g)) - c(d(g)) + c(d(g)) 

= ((d(g) , d(g)) -c(d(g). 

Hence d(µ(g ,a)) = µ(d(g,a)) . Similarly r(µ(g ,a)) = µ(r(g ,a)) Now let (g,a) , (h , b) E 

(G * A) ( with d(g) = r(h). Then 

and 

but 

µ((g ,a)(h ,b)) = µ(gh ,((g,h)+a·h+b) 

= (gh , ((g ,h)+a·h+b+c(gh)) 

µ(g,a)µ(h , b) = (g,a+c(g))(h ,b+c(h)) 

= (gh , 'fJ(g , h) +a· h + c(g) · h + b + c(h)) 

((g , h) + c(gh) = 'fJ(g, h) + &(g, h) + c(gh) 

= 'fJ(g , h) + c(g) · h + c(h) - c(gh) + c(gh) 

= 'fJ(g, h) + c(g) · h + c(h). 

Hence µ is a functor. 

To see thatµ is order-preserving, let (g , a) , (h , b) E (G * A)( with (h , b) ~ (g , a), that 

is g ~ hand b = (alOct(h)) + ( (g, d(h)) - ( (d(h) , d(h)). Now 

h + c(h) = (a lOct(h)) + ( (g , d(h)) - ((d(h) , d(h)) + c(h) 

= (al Oct (g) ) + 'fJ(g , d(h)) + &(g, d(h)) - 'fJ(d(h) , d(h)) - &(d(h) , d(h)) + c(h) 
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= (alOd(h)) + 'f/(g, d(h)) + (c(g)ld(h)) + c(d(h)) - c(h) 

- 'f/(d(h), d(h)) - c(d(h)) - 1o(d(h)) + c(d(h)) + c(h) 

= (alOd(h)) + 'f/(9, d(h)) - 'f/(d(h), d(h)) + (c(g)IOd(h)) 

= ((a+ c(g))IOd(h)) + 'f/(g,d(h)) - 'f/(d(h),d(h)) 

so (g ,a+c(g)) ~ (h,b+1o(h)), thusµ is order-preserving. 

It is immediate that the diagram below commutes . 

Therefore µ is an congruence of extensions. Hence w is well-defined. 

To see that w is injective, let ( and 'f/ be factor sets and let µ : Ee ~ £71 be an 

equivalence of the resulting extensions . We show that ( and 'f/ lie in the same coset. Let 

g E G, then (g,Od(g)) E (G * A)c. Since 1rc = 1r71 µ, we have 

for some c(g) E Ar(g) · It is clear that c : G ----+ A is a well defined function. Let 

(a, g) E (A* G)c. Observe that 

(g, Od(g))(d(g), a - ((d(g) , d(g))) = (g, ((g, d(g)) + a - ((d(g), d(g)) = (g, a), 

by Lemma 10.16(i). Hence 

µ(g, a) = µ(g , Od(g) )µ( d(g) , a - (( d(g ), d(g))) 

= (g, c(g))µic(a) 

= (g ,c(g))i71 (a) 

= (g, 1o(g))(d(g) , a - 'f/(d(g), d(g))) 

= (g , 'f/(g , d(g)) + 1o(g) + a - 'f/(d(g), d(g))) 

= (a , g) 

by Lemma 10.16(i). Let (g , a), (h , b) E (G * A)c , were ~gh. Then 

µ(g , a)µ(h, b) = (g, a+ c(g))(h, b + c(h)) 

= (gh, 'f/(g, h) +(a+ 1o(g)) · h + b + c(h)). 
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But 

µ((g, a)(h, b)) µ(gh, ((g, h) +a· h + b) 

(gh , ((g, h) +a· h + b + c(gh)). 

Hence rJ(g,h) +a· h+ c(g) · h+b+c(h) = ((g,h) +a· h+b+E(gh), that is 

((g, h) = rJ(g, h) + E(g) · h + c(h) + E(gh) . 

So ( = rJ + &, as required. Hence w is injective. 

Let £ = ( i, U, a) be an extension of A by G. We can choose a transversal l for £. 

By Proposition 10.17, £ and l give rise to a factor set ( and by Proposition 10.21 £ is 

congruent to £(. By Proposition 10.23, a different choice of transversal gives rise to a 

factor set in the same coset as( . That is w(( + B 2 (G, A))=[£]. Hence w is surjective. 

We have thus constructed a bijection w from the group Z 2 (G,A)/B 2(G,A) to the 

set Ext(G,A). The semidirect product extension (i,A ~ G,1r) is split and so has the 

identity O as one of its factor sets by Lemma 10.18, conversely, any extension which 

has O as a factor set is congruent to the semidirect product by Proposition 10.9. Thus 

w(B2 (G, A)) = w(O + B 2 (G , A))= [£0] = [(i, A~ G, 1r)] . 

■ 

10.4 Cohomology and extensions 

In this section we show that the second cohomology group of an ordered groupoid with a 

maximal identity, can be characterised by means of extensions. 

Theorem 10.26 Let G be an ordered groupoid which has a maximal identity 1, and let 

A be a G-module. Th en 

(i) The first cohomology group H 1(G, A) is in bijective correspondence with the set of 

A-conjugacy class es of split extensions of A by G. 

(ii) The second cohomology group H 2 ( G, A) is in bijective correspondence with the set 

of congruence classes of extensions of A by G. 

PROOF. We will work in the category AbC(G)
0

P . Recall that the cohomology of the G

module A is defined as the cohomology of the corresponding right C( G)-module, which 

we denote by A. We shall calculate the cohomology groups by constructing a projective 

resolution of the free right C(G)-module 6-Z . 
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1. We construct some free C(G)-modules 

Consider the C ( G) 0 set defined by 

K(e) = { © 
{*} 

if e -/- 1 

if e = 1. 

We shall construct the free C( G)-module over K , using the construction of Section 8.2.2. 

Consider the functor IF(K) : C(G) 0 P --+ Set constructed in Proposition 8.6. Since 

(1,g) E C(G) for all g E G, we have that 

IF(K)(e) = {(*, (1 ,g)) I d(g) = e}. 

We write elements of IF(K)(e) as (g) rather than(*, (1,g)). Thus IF(K)(e) is the £-class 

of G at e. For each element ( e, g) of C ( G), the function 

IF(K)(e,9): IF(K)(e)--+ (K)(d(g)) is given by IF(K)(e,g) : (h) f-----t (h 0 9). 

We let '1L£ = 'lL(K) denote the free C(G)-module over K . That is, '1L £ is the free abelian 

group generated by the £-class 

Le = {9 E G I d(g) = e }, 

and for each (e,g) E C(G), '1L£(e,9) is the homomorphism induced by the function 

IF(K)(e,g). The C(G) 0 -morphism 

7/ : K --+ '1L £ 

is given by 7/( *) = 1, and is the empty function otherwise. 

To construct some more free C(G)-modules, let n ~ 1, and let Sn( e) denote the 

n-staircase over G starting at the identity e. That is 

Sn(e) = {(gn, ... ,g1) E G x .. · x GI d(90) = e and r(gi) :( d(gi+1) , i = 1, ... , n - 1}. 

Clearly Sn is a C(G) 0 -set. We shall construct the free C(G)-module over Sn . Let Sn= 

IF(Sn) : C(G) 0P--+ Set denote the functor constructed in Proposition 8.6. Then 

Sn(e) = {((gn, ... , g1), h) E Sn X G I d(h) = e, r(h) :( d (91)}. 

It is clear that Sn ( e) = Sn+l ( e). We therefore write elements of Sn as (gn, ... , g1 , 9o). 

Let ( e, h) E C ( G). The function 

Sn ( e, h) : Sn ( e) --+ Sn ( d ( h)) is given by Sn ( e, g) : (gn, ... , go) f-----t (gn , ... , go 0 h). 

Let 'lLSn denote the free C(G)-module over Sn. The abelian group 'lL Sn(e) is generated 

by the set Sn(e) . For each (e ,g) E C(G), the homomorphism 'lLSn(e , 9) : 'lL Sn(e) --+ 

'1LSn(d (9)) , is induced by the function Sn(e , h) . The inclusion C(G) 0 -morphism 

7/n: Sn--+ 'lLSn is given by 7/n: (gn , ... , 91) f-----t (gn , ... ,g1, d(gi)) . 

We have therefore constructed free C( G)-modules '1L £ and 'lLSn, for n ~ 1. 
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2. We construct a chain complex. We shall define C(G)-morphisms between the 

C( G)-modules constructed above, to obtain a chain complex. 

Define 

and the empty function otherwise. Since 'll, [, is free over K , the C(G) 0 -morphism l 

extends uniquely to a C(G)-morphism f : 'll, [, i--+ 6.Z such that er; = E. By Corollary 

8.8.1, € is defined on the generators of Z£( G) by 

Now define a C(G) 0 -morphism 

do: S1 ~ Z£(G) by do: (g) i--+ (g) - (d(g)). 

Since ZS1 is free over S1, there is a unique C(G)-morphism do from ZS1 to Z£. By 8.8.1 

do is given by 

by 

do(g, h) = (g 0 h) - (d(g) 0 h) = (g 0 h) - (h). 

For each n ~ 1 define a C ( G) 0 -function 

n 

+ I)-1 )j (9n+l, · · · , 9j+l 0 9j , • • • , 91, d(g1)) 
j=l 

+(-lt+1(gn, · · · , 91, d(g1)) 

Since Z Sn+l is free over Sn+l, there is a unique C(G)-morphism dn : Z Sn+l ~ Z Sn 

making the diagram below commute. 

n 

By Corollary 8.8.1 , dn is defined on the generators of the free abelian group Z(Nern(C)) 

by 

n 

(9n+l , • • •, 91 0 go)+ I)-l)j (9n+l, • • • , 9j+l 0 9j, • • •, 91, go) 
j=l 

+ ( -1 t+ 1 (gn, • • • , 91, 90) · 
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That is 
n 

dn(9n+l, •••,go) = L(-1)1 (9n+l, • • •, 9j+l Q9 9j, •••,go)+ (-It+l(gn, •••,go). 
j=O 

We have therefore constructed the following diagram of C( G)-modules and C( G)

morphisms 

We shall prove that this is a chain complex. To see that Edo = 0, let (g, h) be a generator 

for ZS1. Then 

Edo(g, h) = E((g Q9 h) - (h)) = ld(h) - ld(h) = od(h)· 

To see that dod1 = 0, let (g, h, k) be a generator for ZS2. Then 

do((g , h ® k) - (g ® h, k) - (h, k)) 

((g®h®k)- (h ® k))- ((g®h®k)- (k)) + ((h ® k)- (k)) 

Od(k) · 

We omit the proof that dn+l dn = 0 in general. 

3 We show that the sequence is a projective resolution The C(G)-modules Z£ 

and ZSn are free by construction. Hence by Proposition 8.9, each C(G)-module in the 

sequence 
d1 do E 

· · · -zs2-ZS1-Z£-6.Z-o 

is a projective object in AbC
0

P . To prove that the sequence is a projective resolution, 

it remains to show that the sequence is exact . The sequence is a chain complex, so by 

Proposition 7.8, to show that the sequence is exact, it is enough to construct a contracting 

homotopy. 

Define a C(G) 0 -morphism 

T : 6.Z-+ Z£ by T(ne) = n(e). 

Clearly Tl6.Z(e) are group homomorphisms. Now define a C(G) 0 -morphism o-0 : Z£-+ 

ZS1 on the generators of Z£ by 

o-o: (g) .----+ (g,d(g)). 

It is straightforward to show that o-olZ£(e) is a group homomorphism for all e E G0 . 

Let n::::: l. Define a C(G) 0 -morphism 

a'n : Sn -+ ZSn+l by O"n : (gn, ••• , go) f---t (gn, • • •, 90, d(go)). 
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Since ZSn is freely generated by Sn, an extends to a unique C ( G) 0 -morphism er n 

Z Sn(G) -----+ ZSn+i(G), such that each ernlZSn(e) is a group homomorphism. 

To show that er and T define a contracting homotopy, it is required to show that 

The first condition is immediate. We show that TE+ doero = Idz s 0 • Let (g) E Z So . Then 

(TE+ doero)(g) = TE(g) + dicro(g) = T(ld(g)) + do(g, d(g)) = (d(g)) + (g) - (d(g)) = (g). 

To show that dnern + ern-ldn-1 = Ididzsn, let (gn, .. . , go) be a generator for ZSn. Then 

and 

n-1 
ern-ldn- 1 (gn , •••,go) = er ( 'I)-l)i (gn , • • •, 9i+l ® 9i, •••,go) 

i=O 

+(-lt(d(gn),9n-1, ••• ,go)) 

n-1 
L ( -1) i (gn, • • • , 9i+l ® 9i, • • • , 9o , d (go)) 
i=O 

dn(9n , • • •, 90, d(go)) 

(gn , ... ,x1,god(go)) 
n-1 
~ +1 + L..,(-1)1 (gn , • .. , 9i+ l ® 9i, • • •, 90, d(go)) 
i=O 

+(-1t+l ( d(gn), 9n-1, • • • , 90, d(go)) 

(gn, •••,go) 
n-1 

- L ( -1 )1 (gn, • • • , 9i+l ® 9i , ... , go , d (go)) 
i=O 

Hence dnern + ern-ldn-1 = Idz(Nern(C)) · 

Therefore ZS. is a projective resolution. 

4 The corresponding cochain complex We apply the left-exact functor horn(-, A) 

to the projective resolution constructed above. Thus we obtain a cochain complex 

do dl d2 
hom(Z .C( G) , A) ~ hom(ZS1 , A) ~ hom(ZS2, A) ~ hom(ZS3, A) - · 
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where d~(a) = adn . 

T his complex has a simpler description, which we now give . Define 

x 0 (G, A) = {c:: Ga--+ A I c:(e) E Ae and if e ~ f, then c(e) = A(e, J)(c(J))} . 

We will prove that x 0 (G, A) in bijective correspondence with hom(ZL (G), A) . Let 

o:: ZL(G)--+ A be a C(G)-morphism. We shall construct an element of X 0 (G, A). Now 

ZL(G) is the free C(G)-module over the C(G)a-set K . So by Corollary 8.8.1, a defines 

and is defined by a C(G)a-morphism 

a: K--+ A where a(g) = A( l ,g)(a(*)). 

Define 

& : Ga--+ A by & : e f----t A( l , e)(a(*)). 

This is clearly a C(G)a-morphism. Furthermore, if e, f E Ga and e ~ f, then 

&(e) = A(l,e)(a(*)) = A((l,J)(j,e))(a(*)) = (J,e)(l,J)(a(*)) = A(J,e)&(J). 

So & E x 0 ( G, A) . Conversely, let c E x 0 ( G, A). We shall construct an element of 

hom(ZL(G) , A). Define 

Since ZL is free over K, there is a C( G)-morphism 

By Corollary 8.8.1, c:*(g) = A(l,g)c:'(*); that is 

c:*(g) = A(r (g),g)A(l, r (g))(c(l)) = A(r (g),g)(c:( r (g))). 

We shall now show that (&)* = o: and (c:*) = c:, for all o: E hom(ZL (G), A) and c E 

x 0 (G, A) . Let g E G. Then 

Now let e E Ga. Then 

(&)*(g) = A(r (g) ,g)(&(r(g))) 

= A(r(g),g)A(l,r(g))(a(*)) 

= A(l,g)(a(*)) 

a(g). 

(c:*)(e) = A(l, e)(c:*(*)) 

= A(l, e)c(l) 

= c:(e) . 
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Hence there is a bijection between X 0 (G, A) and hom(Z.C(G), A) . 

Now define 

that is xn( G, A) is the set of G0 -morphisms from the set of n-staircases over G to A. 

By Corollaries 8.8.1 and 8.8.2, there is a bijective correspondence between the group 

hom(ZSn,A) and the set xn(G,A), in which a C(G)-morphisms a : ZSn--+ A corre

sponds to the C(G) 0 -morphism a: Sn--+ A given by 

The C(G)-morphism a can be recaptured from a and A as 

Now consider the homomorphism 

d~ : hom(Z.C, A)--+ hom(ZS1, A) given by d~(a) = ad0 . 

We shall construct a function a0 : x 0 (G ,A)--+ X 1(G,A). 

Let E: G0 --+ A be an element of x 0 (G, A). Recall that E is determined by a C(G) 0 -

morphism E1
: K--+ A where c(e) = A(l ,e)(c(*)). Also recall that E corresponds to the 

C(G)-morphism 1o* : Z .C--+ A given by 1o*(g) = A(l,g)1o'(*). By Corollary 8.8.2 , the 

C(G)-morphism d~(1o*): ZS1 --+ A determines, and is determined by, a C(G) 0 -morphism 

Now 

1o*do(g, d(g)) 

c*((g) - (d(g))) 

E*(g) - c*(d(g)) 

A(l , g)(1o'(*)) -A(l,d(g))(1o'(*)) 

A(r(g), g)A(l, r(g))( 1o' (* )) - A(l , d(g)) (c' (*)) 

A(r(g) ,g)E(r(g)) - E(d(g)). 

We have therefore defined a function 

arising from d~. 
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Now let n ~ l. We shall construct a function an : xn(G,A)--+ xn+ 1 (G,A), arising 

from the homomorphism 

d~ : hom(ZSn, A.) --+ hom(ZSn+l, A.). 

Let a : Sn --+ A. be a C ( G) a-morphism. Since Z Sn is free over Sn, there is a unique 

C(G)-morphism a* : ZSn--+ A. such that a= a*'T/ni that is 

Furthermore 

by Corollary 8.8.l. 

Consider the C( G)-morphism 

Define 

The situation is illustrated below. 

Since ZSn+l is free over Sn, d~(a*) is the unique morphism extending an(a). We have 

therefore defined a C ( G) a-function 

corresponding to d~. Let (9n+l, ... , 91) E Sn+l· Then 

a* dn'f/n+l (9n+l , • • •, 91) 

a*dn(9n+l , • • • , 91) 

a* ( (9n+ 1 , • • • , 92, 91) 
n 

+ :Z)-l)j(9n+l, · · · ,9j+l Q9 9j, · · · , 91,d(91)) 
j=l 

+(-lt+1(9n, ... , 91 , d(91))) 

a*(9n+l, • • • , 92 , 91) 
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n 

+ 2 )-l)Ja*(9n+l, • • •, 9j+l ® 9j, • • • , 91, d (91)) 
j=l 

+( -1 t+1a* (9n, . .. , 91, d (91)) 

A( d (92), 91) ( a(9n+l, • • • , 92)) 
n 

+ I )-l)ja(9n+l, • • • ,9j+l ® 9j, • • • , 91) 
j=l 

+( -1t+1a*(9n, ... ,91). 

We have therefore shown that the cochain complex 

is a simpler representation of the complex hom(ZS. , A). 

5 The first cohomology group We now calculate the first cohomology groups arising 

from the cochain complex x • (G,A). Let (9 , h) E S2 and a E X 1(G, A). The funct ion 

81 : X 1(G,A)--+ X 2(G,A) is defined by 

81 (a)(9, h) = A(d (9), h)(a(h)) - a(9 ® h) + a(9). 

Therefore a is an element of Ker( 81) if 

a(9 ® h) = A(d (9), h)(a(9)) + a(h) . 

In G-module notation, the 1-cocycles are therefore those functions a : G --+ A such that 

a(9) E Aa(g) and 

a(9 ® h) = (a(9) IOr(h)) · h + a(h). 

Note that , if e E G0 then 

a(e) = a(e ® e) = (a(e)IOe) · e + a(e); 

that is a(e) = Oe. To prove that 1-cocycles are the derivations of the G-module A, it 

remains to show that a is order-preserving. Let 9, h E G with h ~ 9. Then (9, d (h)) E S2, 

so 

a(9 ® d (h)) = (a(9)IOa(h)) · d (h) + a(d (h)). 

Hence a(h) = (a(9)IOa(h)) - We have therefore shown that the 1-cocycles of our complex 

are precisely the derivations of the G-module A. 

We now calculate the 1-coboundaries of the complex. Let c be an element of x 0 (G , A). 

Then E: G0 --+ A is a C(G) 0 -morphism such that c:(e) = A(f, e)(c:(f)) for all e, f E G0 
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such that e ~ f. In the G-module corresponding to A , this last condition becomes 

c ( e) = ( c(f) I Oe); that is c is order-preserving. Now let g E G, then 

a0 (c)(g) = A(r(g) ,g)(c(r(g))) - c(d(g)). 

Thus in G-module notation, the 1-coboundaries are functions 8°c: G-----+ A such that 

a0c(g) = c(r(g)) · g - c(d(g)). 

Where c : G0 -----+ A is an order-preserving function such that c(e) E Ae. Hence the 

1-coboundaries of the complex are precisely the principal derivations of the G-module A. 

We have therefore shown that the group H 2 (G,A) = Ker(81)/Im(8°) is precisely the 

quotient group of derivations modulo principal derivations. By Theorem 10.15, this group 

is in one-to-one correspondence with the set of A-conjugacy classes of splittings of the 

canonical split extension ( i, G 1>< A, 1r). 

6 The second cohomology group We now calculate the second cohomology group 

of the cochain complex x•(G, A) . 

To calculate the 2-cocycles, consider the function 

Let a E X 2 (G, A), and (g , h, k) E S3 . Then 

82 (a)(g, h, k) = A(d(h), k)(a(g, h)) - a(g, h ® k) + a(g ® h, k) - a(h, k). 

If a is a 2-cocycle (an element of Ker(82)), then, in G-module notation , 

(a(g, h)IOr(k)) · k + a(g ® h, k) = a(h, k) + a(g, h ® k) . 

Hence the 2-cocycles are precisely the factor sets of the G-module A. 

Let c E X 1 (G, A) and (g, h) E S2 . Then 

So in the G-module A, the 2-coboundaries are functions 

where c : G -----+ A is such that c(g) E Ad(g) · Hence the 2-coboundaries are precisely the 

principal factor sets of A. 

We have therefore proved that the second cohomology group H 2 (G, A) is the quotient 

group of factor sets modulo principal factor sets. By Theorem 10.25, there is a bijection 
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between this group and the set of all equivalence classes of extensions of A by G. Hence 

result. ■ 

Now suppose that G is an ordered groupoid (which may or may not possess a maximal 

identity). In order to apply the previous result to this situation we adjoin a maximal 

identity as follows. Let 1 1, G be a symbol, and let { 1} be the singleton group consisting 

only of the identity l. Define 

the disjoint union of the groupoids G and { 1}. The order on G is extended to an order 

on G1 by defining 

e ~ 1, for all e E Ga, 

Note that g ® 1 = g = 1 ® g, for all g E G. 

Let A be a G-module. We define a G1-module A0
. Let 

A0 = A LJ {0i}, 

where 01 1, A is a symbol and {0i} is a singleton group. Now A= LJ eEGo Ae is a presheaf 

of groups over Ga, If we write A1 = {0i} , then it is clear that A0 = LJ eEGb Ae, is a 

presheaf of groups over G;. We extend the order on A to an order on A0 by defining 

That is, 01 is a maximal identity in A0 . The action of G on A is extended to an action 

of G1 on A0 as 

It is clear that A0 is indeed a GI-module 

Theorem 10.27 Let G be an ordered groupoid and A a G-module. The second cohomol

ogy group H 2 ( GI, A 0 ) is in bijective correspondence with the set of congruence classes of 

extensions of A by G. 

PROOF. Since G1 has a maximal identity, we can apply Theorem 10.26, to obtain the 

cohomology group H 2 (G1, A0 ). The 2-cocycles of the cochain complex constructed in 

Theorem 10.26 are precisely the factor sets of A0 . We shall prove that the factor sets of 

A0 are in bijective correspondence with the factor sets of A. 

Let ( be a factor set for the G-module A. That is a function ( : S2 (G) -----+ A such 

that ((g, h) E Ad(h) and 

(((g, h)J0r(k)) · k + ((g ® h, k) = ((g, h ® k) + ((h, k) , 
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for all (g,h,k) E S3(C). 

We shall extend ( to a factor set for the C1-module A0 . Clearly the only 2-staircases 

over C1 which involve 1 are (1 , 1) and (1 , g), for any g EC. Define 

{ 

( 1(g, h) = ((g , h) for all (g, h) E S2(C) 

( 1 : S2(C1) ---+ A0 by ( 1(1 , h) = od(h) for all h EC 

( 1(1, 1) = 01 

It is straightforward to show that ( 1 is a factor set for AO. 

Conversely, every factor set for A0 has the form of the factor set ( 1 above. To see 

why, let ry be a factor set for the C1-module A0 . Consider the 3-staircase (1, l ,g) . By 

(FS4), we have 

(ry( l , l)I0r(g)) · g + ry (I ® l ,g) = ry(l, l ® g) + ry(l ,g), 

that is ry(ry(l , l)I0r(g)) · g = ry(l, g). But ry(l , 1) EA~ , so ry(l, 1) = 01 . Therefore ry(l , g) = 
Od(g). It is now clear that the factor sets for A are in bijective correspondence with the 

factor sets for AO• 

We now show that the principal factor sets of A are exactly the principal factor sets 

of AO• Let 8c be a principal factor set for A . That is 

&(g, h) = (E(g)I0r(h)) · h + c(h) - E(g ® h), 

for all (g , h) E S2 ( C), where E : C ---+ A is a function satisfying E(g) E Ar(g). We extend 

8c to a principal factor set for A0 by defining 

Then 8c 1 is a principal factor set for AO. 

Conversely, if 88 is a principal factor set for AO. Then 8 ( 1) E A 1, which is a singleton 

group. Thus 8(1) = 01. Hence 88 has the same form as & 1 above. It is now clear that 

t he principal factor sets of A0 are in bijective correspondence with the principal factor 

sets of A. 

By Theorem 10.25, the set of congruence classes of extensions of A by C is in bijective 

correspondence with the quotient group of factor sets of A modulo principal factor sets . 

But we have just seen t hat this group is the group of factor sets of A0 modulo principal 

factor sets of A0 . By Theorem 10.26, this group is precisely the second cohomology group 

■ 
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Chapter 11 

Renault's cohomology 

In [25], Renault adapts the cohomology of groupoids to inverse semigroups. The resulting 

cohomology theory differs from the approach taken by Lausch in several important ways . 

In this section we describe Renault's construction of extensions and factor sets for inverse 

semigroups. 

11.1 An alternative approach to factor sets 

In this section we shall obtain an alternative characterisation of factor sets, which will be 

useful when we examine Renault 's cohomology. 

Let G be an ordered groupoid. Recall that Ner2(G) is the set of composable pairs of 

elements of G and define PNer2(G) to be the set of pairs of elements (h,g) of G, where 

h ~ g. The following result provides an alternative characterisation of factor sets. 

Proposition 11.1 The group of factor sets of a G-module A is in bijective correspon

dence with the set of pairs of functions 

(o: Ner2(G) ----t A and (1 : PNer2(G) ----t A 

satisfying the following conditions: 

(i) (o(g, h) E A ct (h), for all (g, h) E Ner2(G) . 

(ii) (1(h,g) E A ct (h), for all h ~ g. 

(iii) If (g, h, k) E Ner3(G), then (o(g, h) · k + (o(gh, k) = (o(g, hk) + (o(h, k). 

(iv) If k ~ h ~gin G , then ((1(h,g)I0ct(k)) = (1(k,g) -(1(k, h) . 
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((o(g2, g1)10d(h1 )) - (o(h2, h1) 

= (1(h2,g2) · h1 + (1(h1,g1) - (1(h2h1,g2g1) -(1(r(h1) , r(g1)) · h1. 

PROOF. Let ( : S2 ( G) --t A be a factor set. Recall that ( satisfies the conditions 

(FSl) ((g, h) E Ad(h), for all (g, h) E S2(G). 

(FS2) (((g, h)I0r(k)) · k + ((g@ h, k) = ((g, h@ k) + ((h, k), for all (g, h, k) E S3(G). 

Define functions 

and 

(1: PNer2(G) --t A by (1: (h,g) f-----t ((g,d(h)) -((d(h) , d(h)). 

We show that ((o, (1) satisfy the conditions (i)- (vi) above . 

It is immediate that (i) and (ii) hold, since ((g,h) E Ad(h), for all (g,h) E S2(G). 

Let (g,h,k) E Ner3(G) . Applying (FS2) to the 3-staircase (g,h,k) gives 

((g, h) · k + ((gh, k) = ((g, hk) + ((h, k). 

So (iii) holds. 

To see that (iv) holds, let k ~ h ~ g in G. Then 

((1(h,g)I0d(k)) - (1(k,g) + (1(k,h) 

= ((((g, d(h)) - ((d(h), d(h)))I0<l(k)) - ((g, d(k)) 

+ ((d(k), d(k)) + ((h, d(k)) - ((d(k), d(k)) 

= (((g, d(h))I0d(k)) - (((d(h), d(h))I0d(k)) - ((g, d(k)) + ((h, d(k)) 

= ((d(h),d(k)) - (((d(h),d(h))I0<l(k)) by Lemma 10.16(viii) 

= ((d(h) , d(k)) - ((d(h) , d(k)) by Lemma 10.16(iv) 

as required. 

To see that (v) holds, consider the elements of G pictured below 

92 91 
-+---- -+----
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Consider 

(1(h2,g2) · h1 + (i(h1,g1) - (1(h2h1,g2g1) 

= (((g2, d (h2)) - ((d(h2), d(h2))) · h1 + ((g1, d(h1)) 

- ((d(h1), d(h1)) - ((g2g1, d(h1)) + ((d(h1), d(h1)) 

- ( (g2, d(h2)) · h1 - (( d(h2), d(h2)) · h1 + ((g1, d(h1)) - ( (g2g1, d(h1)) 

= ((g2, d(h2)) · h1 - ((r(h1), h1) + ((g1, d(h1)) - ((g2g1, d(h1)) by Lemma 10.16(ii) 

= ((g2, d(h2)) · h1 - ((r(h1), h1) + ( ((g2, g1) IOa(hi)) - ((g2, h1) by Lemma 10.16(ix) 

= ((g2,d(h2)) · h1 -((r(h1) ,h1) + (((g2,g1)10a(h1 )) 

- ((g2, r(h1)) · h1 - ((h2, h1) + ((r(h1), h1) by Lemma 10.16(x) 

= (((g2, g1)IOa(h1 )) - ((h2, h1) 

Hence (v) holds. 

Conversely, let 

be functions satisfying the conditions (i)- (v) above. We shall construct a factor set . 

Define 

(: S2(G) ~ A by ((g, h) = (1 ((glr(h)), g) · h + (o((glr(h)), h). 

It is clear that ((g, h) E Aa(h) · We shall show that the condition (FS2): 

(((g, h)IOr(k)) · k + ((g 0 h, k) = ((g, h 0 k) + ((h, k), 

holds for all (g, h, k) E S3(G) . We write x = (gjr(h)), y = (hlr(k)) and z = (xlr(y)), as 

illustrated below 
g 

+---

+--- +--- +---
z y k 

The right-hand side of (FS2) is equal to 

(1 (z, g) · yk + (o(z, yk) + (i(y, h) · k + (o(Y, k). (11.1) 

The left-hand side of (FS2) is 

(((1 (x, g) · h + (o(x, h))IOr(k)) · k + (1(zy, xh) · k + (o(zy, k) 

= ((1(x,g)IOr(y)) · yk + ((o(x, h)IOr(k)) · k - +(1(zy, xh) · k + (o(zy, k) 

= ((1(z,g) - (1(z, x)) · yk + ((o(x, h)IOr(k)) · k + (1(zy, x h) · k + (o(zy , k) by (iv) 

= ((1(zy,xh) + ((o(x,h)IOr(k)) - (1(z,x) · y) · k + (1(z,g) · yk + (o(zy,k) 

= ((o(z,y) +(1(y,h)) ·k+(1(z,g)-yk+(o(zy,k) by (v) 

= (o(z, yk) + (o(Y, k) + (1 (y, h) · k + (1 (z, g) · yk by (iii) . 
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Which is (11.1). Hence (FS2) holds, so ( is a factor set. 

We have therefore shown that every factor set ( determines, and is determined by 

a pair of functions ( (o, ( 1 ) satisfying ( i )-( v). We now prove that this correspondence is 

bijective. 

Let ( be a factor set, and ((o, ( 1 ) be the pair of functions constructed from(. Thus 

(o(g,h) = ((g,h) and (1(h ~ g) = ((g,d(h)) -((d(h),d(h)). 

Let ( be the factor set constructed from ((o, (1) . Then 

((g, h) (1 ((glr(h)), g) · h + (o((glr(h)), h) 

((g, r(h)) · h - ((r(h) , r(h)) · h + (((g lr(h)) , h) 

((g, r(h)) · h - ((r(h) , h) + (((g lr(h)) , h) by Lemma 10.16(ii) 

((g, h) by Lemma 10.16(x). 

Conversely, given a pair of functions ((o, ( 1 ) . Let ( be the factor set constructed from 

( (o, ( 1), and let (( 0 ,( 1) be the pair obtained from (. Then 

( 0 (g, h) = ((g, h) = (1 (g , g) · h + (o(g, h). 

But if we apply condition (iv) to g ~ g ~ g, we get 

So ( 0 (g, h) = (o(g, h). It remains to show that ( 1 = (1. Now 

( (g, d(h)) - (( d(h) , d(h)) 

(1 (h, g) + (0 (h, d(h)) - (1(d(h), d(h)) + (o(d(h), d(h)) 

(1(h, g) + (o(h, d(h)) + (o(d(h), d(h)). 

But if we apply the condition (iii) , to (h , d(h) , d(h)) , we obtain 

(o(h , d(h)) = ((d (h), d(h)). 

Hence ( 1(h ~ g) = (1(h ~ g), as required. 

■ 

The above result means that we can think of a factor set ( as a pair of functions. A 

'groupoid ' function (o and an 'order ' function ( 1 . This is the approach we shall take for 

the remainder of this chapter. 
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We saw in Proposition 10.17, each extension of an abelian ordered groupoid A by an 

ordered groupoid G, together with a transversal, determines a factor set of a G-module 

A. We now examine the relationship with our new characterisation of factor sets. 

Let (i, U, a) be an extension of A by G, and let l: G --1 Ube a transversal for£. By 

Proposition 10.17, there is a factor set ( defined by 

i((g, h) = l(g ® h)- 1 ® l(g) ® l(h). 

Consider the corresponding functions 

constructed in Proposition 11.1. Now 

i(o(g , h) = i((g , h) = l(gh)-1l(g)l(h) 

for all (g , h) E Ner2(G) , and 

i(((g, d(h)) - ((d(h) , d(h))) 

l(g ® d(h)) - 1 ® l(g) ® l(d(h)) ® (l(d(h)) - 1 ® l(d(h)) ® l(d(h))) - 1 

l(h)-1 ® l(g) 

l (h )- 1 (l (g) IOd(h) ). 

Proposition 11.2 Let E be an extension of an abelian ordered groupoid A by an ordered 

groupoid, let l be a transversal fo r E and let ( (o, ( 1) be the fa ctor set defined by 

Then 

(i) l is a fun ctor if, and only if(o(g,h) = Od(h), for all (g,h) E Ner2(G). 

(ii) l is order-preserving if, and only if(1(h, g) = Od(h), for all h :::;; gin G. 

PROOF. To prove (i) , suppose that every (o(g, h) = Od(h) · Then, for all e E G0 , 

((e , e) = Oe = l( e) - 1l(e)l(e) = l(e). 

If 3gh in G, then l(g)l(h) = l(gh)(o(g, h) = l(gh). Hence l is a functor. Conversely, if 

l is a functor , then l(g)l(h) = l(gh). But l(g)l(h) = l(gh)i((o(g , h)). So i((0 (g , h)) = 
l(gh) - 1l(gh ) = i(Od(h) )· 

It is immediate that (ii) holds . ■ 
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Now let ((0 , ( 1 ) be a factor set for a G-module A. Consider the extension of A by G 

constructed in Proposition 10.20. 

A~ A * G ~ G 

Recall that 

G*A= {(g ,a) E G X A I a E Ar(g)}-

If (g, a) , (b , h) E G * A and 3.gh, then 

(g , a)(b, h) = (gh , ((g , h) +a · h + b) . 

The order on G * A is defined by 

(b , h)::,;;(a,g) ¢::==> h ::,;; g and b=(a!Oct(h))+(1(h, g) . 

Factor sets form an abelian group under pointwise addition. The following result gives 

the addition for our new characterisation of factor sets . 

Lemma 11.3 Let ((o, (1) and (770 , 771) be factor sets for a G-module A. Then 

where the sums (o + 770 and (1 + 771 are defin ed pointwise. 

PROOF. Let (, 77 : S2 ( G) -----+ A be defined by 

((g, h) = (1 ((glr(h)), g) · h + (o((glr(h) , h)) 

and 

77(g , h) = 771 ((glr(h)), g) · h + 77o((glr(h) , h)) . 

Then 

(( + 77)(g, h) = ((g , h) + 77(g, h) 

= (1 ((glr(h)), g) · h + (o((glr(h) , h)) + 771((glr(h)) , g) · h + 77o((glr(h) , h)) 

= ((1 ((glr(h)) , g) + 771((glr(h)) , g)) · h + (o((glr(h) , h)) + 77o((g lr(h) , h)) 

= (((1 + 771)((glr(h)) , g)) · h + ((o + 77o)((glr(h), h)) . 

The result follows . 

■ 
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We conclude this section by examining principal factor sets. Let & : S2 ( G) -----+ A be 

a principal factor set for A. That is 

&(g, h) = (c(g)lr(h)) · h + c(h) - 1o(g ® h) 

for some function c: G-----+ A such that c(g) E Ad(g)· Let (&o , &1) be the corresponding 

pair of functions given by Proposition 11.1. Then 

&o : Ner2 ( G) -----+ A 

is given by 

&o(g, h) = &(g, h) = c(g) · h + c(h) - c(gh) , 

and the function & 1 : PNer2(G) -----+ A is given by 

&(g, d(h)) - a(d(h), d(h)) 

(c(g)IO<l(h)) + c(d(h)) - c(h) - c(d(h)) + c(d(h)) - c(d(h)) 

(c(g)IOd(h) ) - c(h). 

11. 2 G-sheaves 

For an inverse semigroup S, Renault defines S-sheaves of abelian groups. The following 

is our generalisation of Renault's definition to ordered groupoids . 

Definition Let G be an ordered groupoid. A G-sheaf of abelian groups is a pair of 

functors 

p : Ga -----+ Ab and ¢ : G0 P -----+ Ab. 

Were Ga is regarded Ga as a category in which there is a morphism f -----+ e if e ~ f. We 

write p(e) = Ae, and let Oe denote the identity in Ae. These functors must satisfy the 

following conditions: 

• p is injective on identities. 

• p(e) = ¢(e), for all e E G0 • 

• If g ~ h in G, then the diagram below commutes 

A </>(g) A 
r(g)-- d(g) 

r (g) I I d (g) 
Pr(h) + vd (h) 

Ar(h) ~ Ad(h) 
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Where we use G-modules , Renault uses G-sheaves . The following result tells us t hat 

we two approaches are equivalent . 

Proposition 11.4 Every G-sheaf determin es and is determined by a G-module. 

PROOF. Let (p, cp ) be a G-sheaf. Now pis a presheaf of abelian groups, so 

is an abelian ordered groupoid , by Proposition 9.3. Where PJ(a) = (a lOJ), for f ~ e in 

G0 and a E Ae. Since p is injective on identities, the assignment e f-----+ Oe is a bijection 

from G0 to A0 • Let e ~ f be an element of G and let a E Ar(g)· We write 

cp(g)(a) =a· g. 

To prove that A is a G-module we need to show that the conditions (GM1)- (GM5) of 

Section 9.4 hold . 

Since ¢ is a functor , the condit ion a · (gh) = (a · g) · h holds whenever ~gh. Also the 

condition a · e holds for all a E Ae. Hence (GMl) and (GM3) hold . 

For all g E G, cp(g) is a homomorphism. Therefore cp(g ) ( Or(g)) = Od(g); that is Or(g) · g = 

Od(g). So (GM4) holds. Also 

cp (g)(a + b) = cp (g)(a) + cp (g)(b) 

for all a, b E Ar(g)· That is (a+ b) · g = a · g + b · g. So (GM2) holds. 

Suppose that g ~ hand let a E Ar(h)· Then 

that is (alOr(h)) · h = (a· glOd(h) )- So (GM5) holds . 

Therefore every G-sheaf determines a G-module. Conversely, let A be a G-module. 

Define p : GO ----+ Ab by 

p(e) = Ae and PJ(a) = (alOJ) , 

for f ~ e in G0 . Define ¢ : G0 P ----+ A by cp(e) = Ae for all e E G0 , and 

cp(g) : Ar(g) ----+ Ad(g) by c/>(g )(a) =a· g. 

It is straightforward to show that (p, cp) is a G-sheaf. 

■ 
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11.3 Rigid extensions of ordered groupoids 

Renault's definition of extensions of inverse semigroups (and hence ordered groupoids) 

differs from that of Section 10.1 in that he insists that every extension must have an 

order-preserving transversal. We now define this formally. 

Let A~ U ~ G be an extension of an abelian ordered groupoid A by an or

dered groupoid G. The extension is said to be rigid if there is a transversal k : G ---t U 

which is order-preserving. 

Lemma 11.5 If£ = (l, U, a-) and£'= (l1
, U', a-') are congruent extensions of an abelian 

ordered groupoid A by an ordered groupoid G and £ is rigid, then £' is rigid. 

PROOF. Let µ : £ ~ £' be a congruence and let k : G ---t U be an order-preserving 

transversal for £. The situation is pictured below. 

Put k' = µk , then 

a-' k' (g) = a-' µk (g) = o-k (g) = g for all g E G 

and 

So k' is a transversal for £'. It is clear that k' is order-preserving. 

■ 

The following is now immediate. 

Proposition 11.6 Congruence of rigid extensions is an equivalence relation. For each 

abelian ordered groupoid A and ordered groupoid G , the set of congruence classes of rigid 

extensions of A by G is a subset of the set of congruence classes of extensions of A by G. 

■ 

11.4 Rigid factor sets 

We have seen that factor sets correspond to extensions. In this section, we examine the 

factor sets which correspond to rigid extensions. 
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Definition Let G be an ordered groupoid. A rigid factor set for a G-module A is a 

function 

satisfying the following conditions: 

(RFSl) ((g , h) E Ad(h), for all (g, h) E Ner2(G). 

(RFS2) If (g, h, k) E Ner3(G) , then ((g, h) · k + ((gh, k) = ((g, hk) + ((h, k). 

(RFS3) If (h1,h2),(g1,g2) E Ner2(G) with h1 ~ 91 and h2 ~ 92 . Then ((h1,h2) ~ 

((91, 92). 

We shall show that rigid extensions correspond to rigid factor sets, but first we show 

that rigid factor sets are indeed factor sets. 

Proposition 11. 7 Let ( : Ner2( G) ------+ A be a rigid factor set for a G-module A. Define 

Then ( (, 01) is a factor set. Conversely, if ( (o , (1) is a factor set, and (1 = 01. Then (o 

is a rigid factor set. 

PROOF. To prove that ((, 01) is a factor set, we show that it satisfies conditions (i) - (v) 

of Proposition 11.1. By (RFSl) ((g, h) E Ad(g), so (i) holds. 

It is immediate that (ii) holds. 

The condition (RFS2) is the same as condition (iii) of Proposition 11.1. 

It is immediate that 01 satisfies (iv) . 

To see that (v) holds, let 91, 92, h1, h2 E G with 3h2h1 , 39291 , h2 ~ 92 and h1 ~ 91-

Then 

and 

Now let ((o , 01) be a factor set. We show that (o is a rigid factor set. It is immediate 

that (RFSl) and (RFS2) hold. Let g1, 92 , h1 , h2 E G, with 3g2g1 , 3h2h1,h1 ~ 91 and 

h2 ~ 92· The condition (v) of Proposition 11.1 becomes 

that is 
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Hence (RFS3) holds. ■ 

From now on we shall identify each rigid factor set ( with its corresponding factor set 

((, 01). Let RZ2 (G, A) denote the set of rigid factor sets of a G-module A . It is straight

forward to show that, under pointwise addition, RZ2 (G,A) is a subgroup of Z 2 (G,A). 

Proposition 11.8 Let [ : A~ U ~ G be a rigid extension of ordered groupoids 

and let k : G ----+ U be an order-preserving transversal for [. The factor set constructed 

from [ and k according to Proposition 10.17 is a rigid factor set. 

Conversely, let ( be a rigid factor set for a G-module A. The extension of A by G 

constructed from ( according to Proposition 10. 20 is a rigid extension. 

PROOF. Let ((o, (1) be the factor set for£ and k constructed in Proposition 10.17. Then 

(1 = 01 by Lemma 10.18 (ii), and so the factor set is rigid by Proposition 11.1. 

Now suppose that ( is a rigid factor set . The extension constructed from ( using 

Proposition 10.20 is A~ G *A~ G. Where 

with product 

(g ,a) + (h , b) = (gh,((g,h) +a · h+b) 

and order (a, g) ~ (b, h) if g ~ h and a = (bl0r(g)) + 01 (g, h) = (bl0r(g)), that is a ~ b. 

The ordered functor 7r is the canonical projection map. Define k : G ----+ A * G by 

k (g) = (g, 0d(g)), then k is clearly order-preserving and 7r k = Ida. Hence the extension is 

rigid. 

■ 

We have therefore shown that each rigid factor set determines, and is determined by 

an extension together with an order-preserving transversal. We now consider the effect 

of changing the choice of transversal. 

Let £ be a rigid extension of an abelian ordered groupoid A by an ordered groupoid 

G. Let k and k' be order-preserving transversals for £. Denote the corresponding rigid 

factor sets by ( and ( ' respectively. Define 

E: G----+ A by lE(g) = k(g)- 1 k'(g), 

so E is order-preserving and c(g) E Ad(g) · We saw in Section 10.3 that the factor sets 

((, 01) and ((', 01) differ by the principal factor set (&o , & 1) where 

&o(g, h) = c:(g) · h + c(h) - c:(gh) 
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and 

By Proposition 11.1, & is a rigid factor set. Generally, we define a rigid principal factor 

set to be a function 

& : Ner2(G) --+ A given by &(g, h) = c(g) · h + c(h) - c(gh), 

where c: G--+ A is order-preserving and c(g) E Ad(g) · 

We have therefore shown that the effect of changing the choice of order-preserving 

transversal has the effect of modifying the corresponding rigid factor set by a rigid prin

cipal factor set. Hence we arrive at the following result . 

Theorem 11.9 The set of congruence classes of rigid extensions of an abelian ordered 

groupoid A by an ordered groupoid G is in bijective correspondence with the quotient group 

of rigid factor sets modulo rigid principal factor sets. 

■ 

11.5 The cochain complex 

We conclude this section by looking at the cochain complex Renault uses for his cohomol

ogy. In Proposition 7.14 we saw that any simplicial set gives rise to a cochain complex. 

So for any ordered groupoid G and G-module A, we can use the simplicial set Ner(G) 

to obtain a cochain complex, the n-cochains of which are G0 -functions from Nern(G) to 

A. This cochain will give the cohomology of the groupoid G with the order playing no 

part in the construction. To compensate for this Renault demands that each n-cochain 

¢ : Nern(G) --+Ahas the following order preserving property: 

Let en( G, A) denote the group of such n-cochains under pointwise addition. Renault's 

complex is 

(11.2) 

where 

a0 ¢(g) = ¢(d(g)) - ¢(r(g)) · g 

and 
n-1 

an(¢)(gn, .. . , 91) = ¢(gn, ... , g2) · 91 + I: ¢(gn, .. . , 9i+l9i , . . . , 91) 
i= l 
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The n th cohomology group of the complex is Ker( an) / Im( an-l). 

Let c: E C1 ( G, A) . Thus c: : G ----+ A is an order-preserving function such that 

c E Ad(g). Then 

81c(g , h) = c(g) · h - c(gh) + c(h). 

So the 2-coboundaries of the complex (11.2) are precisely the rigid coboundaries of the 

G-module A. 

To see that the 2-cocycles of the complex are the rigid factor sets of A consider the 

function 82 given by 

82¢(g, h, k) = cp (g , h) · k - cp (g, hk) + cp(gh , k) - ¢(h, k). 

A function (: Ner2(G) ----+ A is an element of Ker(82) if it satisfies the following condi

tions: 

(i) If ~gh in G, then ((g, h) E Ad(g)· 

(ii) If (g, h, k) E GNer3(G) , then ((g, h) · k + ((gh, k) = ((g, hk) + ¢(h , k) . 

Thus the 2-cocycles of the complex (11.2) are precisely the rigid factor sets of the G

module A. 

Combining the above argument with Theorem 11.9 yields the following. 

Theorem 11.10 Th e set congruence classes of rigid extensions of an abelian ordered 

groupoid A by an ordered groupoid G is in bijective correspondence with the second coho

mology group of the cochain complex {11.2). 

■ 
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