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Abstract 25 

Antibiotics and antibiotic resistance genes (ARGs) reach the agricultural soils through 26 

fertilization in the form of livestock manure are the main environmental pollutants at 27 

present. This study discussed the sources and distribution characteristics of antibiotics 28 

and ARGs in global agricultural soils, revealed the main driving factors affecting 29 

antibiotic concentration and ARGs abundance, analyzed the environmental risk, and 30 

environmental impact of typical antibiotics, and summarized the common elimination 31 

methods in current research. We retrieved the papers related to antibiotics and ARGs, 32 

and extracted 2093 observations from 135 papers. The results showed that cattle manure, 33 

chicken manure, swine manure, and sewage sludge were the primary pollution sources 34 

of antibiotics and ARGs in agricultural soils, and sulfonamides, tetracycline, 35 

fluoroquinolones, and their corresponding ARGs were the main pollution types. The 36 

distribution of the antibiotic concentration and the ARGs abundance was affected by 37 

land-use types and soil physicochemical parameters. The mobile genetic elements 38 

(MGEs) play a vital role in promoting the dissemination of ARGs, and sul1 genes 39 

strongly correlate with intI1. The occurrence, fate, and ecotoxicity of antibiotics and 40 

ARGs in agricultural ecosystems have become the most pressing environmental issues. 41 

Our results provide a systematic analysis of the environmental behavior of antibiotics 42 

and ARGs in agricultural soils.  43 

Keywords: veterinary antibiotic; antibiotic resistance genes; agricultural soil; 44 

environmental factors; ecological risk; horizontal transfer  45 
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Synopsis statement: A systematical description for the distribution of antibiotics and 46 

antibiotic resistance genes in agricultural soils worldwide.  47 

Graphical Abstract  48 

 49 

1 Introduction  50 

Antibiotics are widely used in many countries worldwide to treat human diseases and 51 

protect the health of animals in agricultural fields 1,2. Antibiotics cannot be fully 52 

absorbed in animals, and large amounts of antibiotics and their degradation products 53 

were introduced into agricultural ecosystems in the form of fertilization and irrigation 54 

through antibiotic-contaminated manures and sewage sludge 3–5. More importantly, 55 

accounting for selective pressure on the environmental resistome, antibiotics are 56 
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considered to be the driver of increasing antibiotic resistance genes (ARGs) 6.  57 

The increasing use of fertilizers in agriculture poses a rapidly increasing threat of 58 

antibiotic and ARGs contamination 5. Distribution of antibiotic and ARGs abundance 59 

varied greatly under different land-use patterns in soils. It has been documented that the 60 

concentration of antibiotics differs significantly, typically in the μg antibiotic per kg 61 

soil 7. ARGs can spread from animal farms to surrounding agricultural soils, posing a 62 

potential high risk to environmental ecology 8. Remarkably, antibiotics and ARGs 63 

contamination status in vegetable, paddy, and upland soil vary greatly. Continuously 64 

manure fertilization significantly increased the ARGs abundances in typical greenhouse 65 

vegetable production bases, and antibiotic types and vegetable species affected the 66 

distribution of ARGs in soil 9,10. The occurrence and abundance of most ARGs 67 

increased significantly in wheat soils irrigated with wastewater 11. Organic fertilizer 68 

partially replaced mineral fertilizer significantly increased the relative abundance of sul 69 

genes in north China under wheat-maize rotation 12. Long-term application of organic 70 

fertilizer usually increases antibiotic concentration and ARGs abundance in paddy soil, 71 

and paddy soil showed higher ARG accumulation than dryland soil, corresponding to 72 

higher microbial biomass 13,14.  73 

Land-use of livestock and poultry manure is an essential agricultural measure. 74 

Intensive animal husbandry is the main cause of the increasing environmental 75 

contamination of antibiotics and ARGs in soil 15. Antibiotic-resistant bacteria (ARB) 76 

reproduction was induced in soils modified by cow manure 16. The long-term 77 
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application of chicken manure significantly increased the abundance and diversity of 78 

ARGs and various classes of antibiotics in soil 17. The application of untreated swine 79 

manure resulted in antibiotic and ARGs pollution, and changed the composition of soil 80 

microbial community 18,19. Application of antibiotic-contaminated biogas slurry and 81 

residue in the field increased the occurrence of ARB and ARGs 20. Irrigated with tap 82 

water spiked with different concentrations of antibiotics significantly altered microbial 83 

populations in pot experiments 21. Therefore, the pollution of antibiotics and ARGs 84 

caused by manure application is worth pondering.  85 

Soil properties, including pH, soil organic carbon (SOC), total nitrogen (TN), soil 86 

texture, and heavy metals, are the key factors determining the change and distribution 87 

of antibiotics and ARGs. The texture of soil with manure application determines the 88 

persistence of target ARGs, thus influencing the fate of antimicrobial resistance in the 89 

soil 22. The adsorption potential of sulfonamides increases with decreasing pH because 90 

of the abundance of positively charged species capable of electrostatic binding to soil 91 

mineral surfaces under acidic conditions 23. Reducing the manure pH promotes 92 

degradation of sulfonamides and inhibits sul gene-level transfer, which may be a simple 93 

and effective management measure to reduce antibiotic resistance 24. Pot experiments 94 

comparing antibiotic resistance in three typical soils found that soil with the highest 95 

SOC was least affected by swine slurry amendment 25. In general , SOC strongly 96 

influenced the retention of sulfonamides; the higher the SOC content, the higher the 97 

adsorption capacity, and the lower the desorption capacity due to competition for 98 

adsorption sites 26,27. Clay improver greatly influenced the change of original ARB in 99 
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chicken manure compost, and the diversity and relative abundance of ARB in 4% clay 100 

was greater than that in high dose clay 28. The soil TN was positively correlated with 101 

sul1 in the agricultural soils of the Yangtze River Delta, China 29. The soluble organic 102 

nitrogen was a critical explanatory variable for the model to determine the swine 103 

manure-water distribution coefficients of typical veterinary antibiotics 30. Metal 104 

contamination plays an essential selective role in spreading antibiotic resistance 105 

through the co-selection mechanisms 31,32. However, many studies fail to adequately 106 

address the role of soil properties as a factor affecting the distribution of antibiotics and 107 

ARGs in agricultural soils.  108 

Horizontal gene transfer of ARGs is considered a significant contributor to the 109 

spread of antibiotic resistance 33,34. The class I integron-integrase gene (intI1) is a good 110 

proxy for ARGs pollution 35. There is an excellent positive co-occurrence pattern of 111 

ARGs and mobile genetic elements (MGEs) in manure-amended greenhouse soils 36. 112 

The abundance of intI1 increased significantly in the soil exposed to pig manure, and 113 

was positively correlated with ARGs in a long-time field experiment 37. Another study 114 

revealed sub-inhibitory heavy metals widely present in various environments could 115 

promote resistance by promoting the horizontal transfer of ARGs 38. This means that 116 

the analysis of MGEs contamination status is imperative to better understand ARGs 117 

dissemination in the soil.  118 

Until now, numerous reports demonstrate the sources, spatial patterns, driving 119 

factors, and environmental implications of antibiotics and ARGs in global estuarine and 120 
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coastal environments 39,40, no comprehensive study of antibiotics and ARGs in 121 

agricultural soils has been conducted. In this study, we collated the occurrence, 122 

distribution, and risk of antibiotics and ARGs in agricultural soil. The objectives were 123 

to (1) analyze the pollution characteristics of antibiotics and the occurrence of ARGs in 124 

agricultural soil under different land-use modes, and determine the potential ecological 125 

risk of typical antibiotics in soil; (2) analyze the relationship between soil properties 126 

and antibiotic concentration and ARGs abundance, and reveal the key factors affecting 127 

its pollution characteristics; (3) discuss the coexistence mode of ARGs and antibiotics, 128 

and the horizontal transfer of ARGs in the soil, and summarize the common elimination 129 

methods and effects in current researches.  130 

2 Methodology  131 

2.1 Data collection  132 

To survey antibiotics and ARGs in agricultural soil, we performed a systematic search 133 

using the ISI Web of Science (Thomson Reuters, New York, NY, USA), Google Scholar 134 

(Google, Mountain View, CA, USA), and China National Knowledge Infrastructure 135 

(CNKI, Beijing, China). Our search terms included (“soil*” OR “agricultural soil*”) 136 

AND (“antibiotic*” OR “antibiotic resistance gene*” OR “ARG*” OR “resistome*”). 137 

Studies included in this study had to meet the following criteria: (a) both laboratory 138 

field and incubation studies were selected; (b) only studies that had an adequate number 139 

of replicates; (c) the means, standard errors, and replication of the variables could be 140 

extracted directly from the text, tables, or digitized graphs. The following information 141 
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was documented for each study: the type of experiment, site, planting type, 142 

contaminated type, soil physiochemical parameter, type of antibiotic and ARGs, the 143 

concentration of antibiotics, and abundance of ARGs. A total of 2039 observations were 144 

taken from 135 papers (Text S1). The distribution location of observations is shown in 145 

Fig. 1. China accounted for about 85.87% of observations, and other countries, 146 

including Israel, Brazil, Korea, Pakistan, Spain, and the USA accounted for 14.13%.  147 

 148 

Fig. 1 The distribution of data collected from different countries. The point sizes 149 

represent the number of replications, and different colors denote antibiotics and ARGs.  150 

2.2 Ecological risk assessment of antibiotics  151 

A risk quotient (RQ) was used to evaluate the potential risk and calculated as follows 152 

41,42:  153 

RQ =
MEC

PNECsoil
                                           (1) 154 

PNECsoil = PNECwater × Kd                            (2) 155 



10 

 

PNECwater = EC50/AF                                  (3) 156 

where MEC is the actual measured concentration in the environment (µg kg-1), PNECsoil 157 

is the predicted no-effect concentration in soil (µg kg-1), and PNECwater is the predicted 158 

no-effect concentration in water, and which represents the maximum drug 159 

concentration that will not have an adverse effect on the microorganisms or the 160 

ecosystem in the environment under the existing cognition (µg L-1). Kd is the soil-water 161 

partition coefficient (L kg-1). EC50 is the half-maximum effect concentration (mg L-1). 162 

EC50 is all obtained from the literature. AF is the evaluation factor, which is the 163 

recommended value of the European Water Framework Directive (1,000). The 164 

ecological risk parameters of antibiotics are summarized in Table S1.  165 

RQ was used to assess the ecological risk of the target antibiotic. The RQ values 166 

were mainly divided into four levels: RQ ≥ 1 high risk; 0.1 ≤ RQ < 1 medium risk; 0.01 167 

≤ RQ < 0.1 low risk; RQ ≤ 0.01 no risk 43.  168 

2.3 Statistical analysis  169 

The mean concentrations of antibiotics and ARGs abundance were either provided in 170 

the publications or calculated using the original data. Concentrations that were “not 171 

detected” or “below detection limit” were entered as zero values. To minimize the 172 

differences in background bacterial abundances, the absolute number of all detected 173 

genes was further normalized to that of the ambient 16S rRNA gene. We used linear 174 

mixed-effects models to test the fixed effects of planting type, contaminated type, type 175 
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of antibiotic, and ARGs on the concentration of antibiotics and the ARGs abundance, 176 

respectively. Study ID was included as a random effect. The “nlme” package was used 177 

to conduct linear mixed-effects models in R version 4.0.3 (R Core Team, 2020). 178 

Multiple comparisons were made using the Tukey HSD test. The network analysis was 179 

visualized on the Gephi platform (version 0.9.2).  180 

3 Results  181 

3.1 Antibiotics in agricultural soils  182 

3.1.1 Distribution characteristics of antibiotics in agricultural soils  183 

The concentrations of antibiotics in soil samples are shown in Fig. 2. In this survey, 184 

beta-lactam, sulfonamides, tetracyclines, and fluoroquinolones classes were the 185 

dominant antibiotics with a concentration of 364.16, 241.17, 176.98, and 112.02 µg kg-186 

1, respectively, much higher than others (Fig. 2A). Simultaneously, tetracycline, 187 

chlortetracycline, oxytetracycline, sulfamethoxazole, norfloxacin, and ciprofloxacin 188 

have higher concentrations, and their concentrations differed in several orders of 189 

magnitude (Fig. S1). Applications of different manure could make a difference in the 190 

contamination status of antibiotics. Soil applied with cattle, chicken, and swine manure 191 

contains higher concentrations of antibiotics, followed by sewage sludge and mix 192 

manure (P < 0.05; Fig. 2B). Concentrations of antibiotics in vegetable and paddy soil 193 

were significantly higher than other planting types (P < 0.01; Fig. 2C).  194 
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 195 

Fig. 2 Concentrations of antibiotics in global agricultural soils. Violin plots show the 196 

concentration of antibiotics (A) for each type of antibiotics, (B) in the soil with different manure 197 

applied, and (C) from different land-use types. Different lowercase letters in each panel indicate 198 

significant differences between groups. The solid line inside the box represents the median.  199 

3.1.2 Correlation between antibiotics and soil physicochemical parameters  200 

The correlations between the major environmental variables and the concentration of 201 

antibiotics were analyzed for all studied data. A significant positive correlation was 202 

observed between antibiotics and SOC (P < 0.05) and several heavy metals (e.g., Pb, 203 

Hg, and Na) (P < 0.01; Fig. 3), respectively. In contrast above factors, the concentration 204 

of antibiotics indicated negative correlations with clay, TN, Cd, and As (P < 0.01).  205 

In detail, sulfonamides and tetracyclines showed strong negative correlations with 206 

TN and pH (P < 0.01), respectively. We also observed that most heavy metal contents 207 

were significantly correlated to the two antibiotics, but they show opposite correlations 208 

with most heavy metals (e.g., Cu, Cd, Na, Ca, and Mg). Beta-lactam and 209 
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fluoroquinolones antibiotic showed a significant positive correlation with pH (P < 0.05), 210 

while showed a significant negative correlation with TN (P < 0.05). Moreover, the 211 

strongly negative relationship between macrolides and clay, and several heavy metals 212 

(e.g., Cu, Zn, and Pb), the significant correlation between aminoglycosides, 213 

amphenicols, and environmental factors existed in the soils in this study.  214 

 215 

Fig. 3 Spearman correlations between antibiotics and environmental factors in soil. 216 

Pairwise comparisons are shown, with a color gradient denoting spearman’s correlation 217 

coefficient. *** P < 0.001, ** P < 0.01, and * P < 0.05. Cu, copper; Zn, zinc; Pb, lead; Cd, 218 

cadmium; Ni, nickel; Cr, chromium; As, arsenic; Hg, mercury; Na, sodium; Ca, calcium; Mg, 219 

magnesium.  220 

3.1.3 Potential ecological risk of antibiotics  221 

To better elucidate the ecological risk of antibiotics in agricultural soils, the RQ values 222 

of concentrations of sulfonamides, tetracyclines, and fluoroquinolones classes in soil 223 

were analyzed (Fig. 4). In this study, the RQ of the three antibiotic classes detected were 224 

all less than one. The RQ of norfloxacin is significantly higher than the other antibiotics 225 
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of all target compounds and may present a relatively higher ecological risk, followed 226 

by the sulfadiazine. Contrarily, the RQ values of other antibiotics examined here were 227 

below 0.1 poses a low or no environmental risk. We can speculate that the soil was 228 

seriously polluted with antibiotics, leading to ARGs contamination and potential 229 

ecological risks.  230 

 231 

Fig. 4 Risk quotient values of various antibiotics in agricultural soil. The RQ values could 232 

be divided into four levels according to the European Commission: RQ ≥ 1 high risk; 0.1 ≤ RQ 233 

< 1 medium risk; 0.01 ≤ RQ < 0.1 low risk; RQ ≤ 0.01 no risk. The dotted line in the figure 234 

represents the values of 0.01 and 0.01, respectively. RQ values greater than one is not shown in 235 

the figure for clearer display (6% of total observations).  236 
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3.2 ARGs in agricultural soils  237 

3.2.1 The abundance of ARGs in agricultural soils  238 

The abundance of ARGs varied greatly across soils. ARGs conferred resistance to 239 

multidrug, sulfonamide, and tetracycline classes were the most abundant ARG subtypes 240 

in samples, while other ARGs were found at much lower levels (Fig. 5A). Additionally, 241 

the abundance of the sul1 and sul2 genes was higher than that of other sul genes, the 242 

tetM, tetW, tetO, and tetX were the most abundant across tet genes, and intI1 was the 243 

most abundant integron genes (Fig. S2). The abundance of ARGs was found at much 244 

higher levels in soil applied with cattle, chicken, swine manure, and mixed manure (P 245 

< 0.05; Fig. 5B). It is noteworthy that a similar distribution pattern was observed for 246 

ARGs among planting types compared with antibiotics (Fig. 5C).  247 

 248 

Fig. 5 The abundance of ARGs in global agricultural soils. The abundance of ARGs in soil 249 

(A) for each type of AGRs, (B) in the soil with different manure applied, and (C) from different 250 

land-use types. Different lowercase letters in each panel indicate significant differences 251 

between groups. The solid line inside the box represents the median.  252 
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3.2.2 Correlation between ARGs and soil physicochemical parameters  253 

Correlation analysis showed that the abundance of target ARGs in soil was positively 254 

correlated with the clay content generally but negatively correlated with the SOC, TN, 255 

and metallic elements (e.g., Cd, Ni, Cr, As, and Hg) (P < 0.01; Fig. 6).  256 

Specifically, sulfonamide and tetracycline classes exhibited significant negative 257 

correlations with pH (P < 0.05). Almost no correlations were found between most heavy 258 

metals and sulfonamide ARGs except for Na, Ca, and Mg (P < 0.05). Cu, Zn, and Pb 259 

are correlated positively with tetracycline ARGs (P < 0.01). However, we found an 260 

opposite trend between other various heavy metals and tetracycline ARGs. Moreover, 261 

none of the ARGs detected above in samples showed a significant correlation with SOC, 262 

TN, and clay.  263 

Unlike the above two ARGs, the analysis revealed that beta-lactam and multidrug 264 

ARGs were significantly and positively correlated with pH. A stronger correlation was 265 

found observed between beta-lactam and pH (P < 0.01) than between multidrug and pH 266 

(P < 0.05). Our results did not show statistically significant correlations between the 267 

beta-lactam and multidrug ARGs with SOC and clay. Beta-lactam ARGs showed a 268 

significantly negative correlation with TN but a significantly positive correlation with 269 

various heavy metals (P < 0.01). Furthermore, the MGEs were positively correlated 270 

with Ni (P < 0.05), while other soil physicochemical parameters were less intensely or 271 

even not associated.  272 
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 273 

Fig. 6 Spearman correlations between abundance of ARGs and environmental factors in 274 

soil. Pairwise comparisons are shown, with a color gradient denoting spearman’s correlation 275 

coefficient. *** P < 0.001, ** P < 0.01, and * P < 0.05. Cu, copper; Zn, zinc; Pb, lead; Cd, 276 

cadmium; Ni, nickel; Cr, chromium; As, arsenic; Hg, mercury; Na, sodium; Ca, calcium; Mg, 277 

magnesium. 278 

3.2.3 Correlations between ARGs and intI1  279 

Based on the correlation analysis between the most prevalent mobile genetic elements 280 

(intI1) and ARGs (Fig. 7), there were strong positive correlations between intI1 and the 281 

abundance of sulfonamide ARGs (sul1) in soils (P < 0.01) and weaker correlations with 282 

the rest of ARGs. This might indicate that sul1 is generally located on the more readily 283 

disseminated class I integron and a lower frequency of horizontal gene transfer caused 284 

by intI1 for other types of ARGs. This is not surprising given that these correlations do 285 

not entirely reflect variations in ARGs dissemination based on existing data.  286 
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 287 

Fig. 7 Spearman correlations between the abundance of intI1 and ARGs in soil. Pairwise 288 

comparisons are shown, with a color gradient denoting spearman’s correlation coefficient. *** 289 

P < 0.001, ** P < 0.01, and * P < 0.05.  290 

4 Discussion  291 

4.1 Effects of land-use on the distribution of antibiotics and ARGs  292 

The distribution characteristics of antibiotics and ARGs were significantly affected by 293 

land-use patterns. Our finding provides evidence that both the concentration of 294 

antibiotics and the abundance of ARGs were higher in the paddy fields than that in 295 

uplands, which may be attributed to differences in the degradation of antibiotics and 296 

the migration capacity of ARGs in soil under different planting types. The rate of 297 

transformation and degradation of antibiotics in the soil largely depends on many 298 
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abiotic factors, and anaerobic conditions significantly prolonged the half-life of 299 

antibiotics 44. Paddy soil generally showed a higher accumulation of ARGs due to 300 

higher microbial biomass that host populations of ARGs under anaerobic conditions 14. 301 

Increasing the amount of manure in a paddy-upland rotation system resulted in a sharp 302 

increase in soil ARGs; however, the high moisture content may block the path of contact 303 

from the manure-improved soil to the phyllosphere, thereby affecting the dissemination 304 

of ARGs 45,46. Therefore, it should be fully considered that multiple soil factors may 305 

drive the distribution of antibiotics and ARGs to confirm the different fates of them in 306 

the soil introduced by manure under aerobic and anaerobic conditions.  307 

Prior studies that have noted the behavior of antibiotics and ARGs proved to be 308 

governed by the combination of soil and plants under the real planting conditions 47. 309 

Further analysis showed that vegetable species had a significant effect on the content 310 

of antibiotics and ARGs in the soil, and the soil planting pakchoi accumulates more 311 

than other vegetables (Fig. 8). Antibiotics and ARGs absorbed by plants are further 312 

harmful to human health as they travel up the food chain. Therefore, it is may represent 313 

higher health risks than other vegetables when consumed pakchoi by humans. Plant 314 

root exudates indirectly affect the fate of antibiotics by changing soil properties during 315 

vegetable growth 10. Antibiotics accumulate in plants through passive absorption by 316 

water 48, which is the main reason for dissipation and removal of antibiotics effects 317 

differed in the soil of different vegetable growing types. The growth of plant roots alters 318 

the soil microbial composition, and the selectivity of plants to environmental bacteria 319 

may be an important factor leading to the difference of distribution of ARGs 49,50. 320 
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Additionally, different types of antibiotics are absorbed and accumulated in different 321 

parts of plants 51,52. Although this aspect is not involved in this study, the environmental 322 

behavior of complex types of antibiotics in agricultural soils warrants more exhaustive 323 

investigation.  324 

 325 

Fig. 8 Concentrations of antibiotics and abundance of ARGs in vegetable soils. Violin plots 326 

show the concentration of antibiotics (A) and abundance of ARGs (B) for each type of vegetable. 327 

Different lowercase letters in each panel indicate significant differences between groups. The 328 

solid line inside the box represents the median.  329 

4.2 Effects of fertilization on the distribution of antibiotics and ARGs  330 

The contamination of antibiotics and ARGs in the soil is related to fertilization methods 331 

and local farming practices. The amount of antibiotics taken by farm animals varies by 332 

livestock species and region, and the abundance of ARGs is related to the amount of 333 

antibiotics used by these animal species 53. Previous studies found significant 334 

differences in the abundance of ARGs in different types of farm soils, with the highest 335 



21 

 

concentrations in pig farm soils 54. This also accords with our observations above that 336 

swine manures generally had higher levels of ARGs, followed by soils applied cattle 337 

and chicken manure, and the ARGs contamination caused by the mixed-use of manure 338 

should not be ignored. Pork production is the main pillar industry of animal husbandry, 339 

and antibiotics are widely used in pig breeding due to the disease types and incidence 340 

rate of pigs being relatively high compared with other animals 55. Metagenomic 341 

sequencing indicated that the long-term application of swine manure could increase 342 

microbial diversity and reshape ARGs in agricultural soils 56. Cattle manure is widely 343 

used as fertilizer because it is an excellent source of nutrients, they exhibit more 344 

abundant ARGs than poultry manure, and the application of fresh cattle manure may 345 

lead to a greater transmission potential of antimicrobial resistance genes in the soil 57. 346 

The current study found that a lower bacterial diversity in poultry litter might be linked 347 

to the higher total solids 58, which in turn affects the abundance of ARGs in the soil. 348 

Taken together, it is essential to reasonably control the abuse of antibiotics in livestock 349 

and poultry breeding.  350 

Applied sewage sludge increased soil microbial activity, thereby contributing to 351 

the risk of the spread of ARGs and MGEs 59,60. Peri-urban agricultural plots were 352 

irrigated with treated wastewater and groundwater from rural organic farms suggested 353 

the agricultural practices and water quality for irrigation influenced microbial 354 

communities and associated resistances 61. However, in reviewing the literature, the 355 

study did not reveal the risk of sludge improvement associated with the development 356 

of antibiotic resistance in an agricultural field trial 62. Our study demonstrated that 357 
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antibiotics and ARGs pollution caused by sewage sludge were not significant compared 358 

with other fertilization methods. Hence, it should be inferred carefully due to the 359 

different sludge quality and application practices in various agricultural regions.  360 

4.3 Effects of soil environmental factors on the distribution of antibiotics and 361 

ARGs  362 

The sorption ability is stronger at a lower pH value and higher clay fraction in the soil 363 

63. Although the effects of pH on the occurrence of soil antibiotics and ARGs have been 364 

studied extensively, no unified results have been formed. Our results indicated that pH 365 

was not strongly correlated with antibiotics and ARGs, and the effects of pH on them 366 

were not consistent. Only beta-lactam and tetracyclines and their corresponding ARGs 367 

were significantly positively and negatively correlated with pH, respectively. The 368 

adsorption mechanism and degradation performance of antibiotics were significantly 369 

different in soils with different pH values. Hydrophobic interaction and cation exchange 370 

might be the primary mechanism of tetracyclines adsorption in acidic and alkaline soil, 371 

respectively 64. Studies on the effects of pH on the adsorption capacity of 372 

sulfamethoxazole in pasture soils showed that the adsorption capacity decreased when 373 

pH increased 65. pH value is an essential parameter of the hydrolysis process of 374 

antibiotics; the hydrolysis rate of base catalysis was significantly higher than that of 375 

acid catalysis and neutral pH and altered the fate of antibiotics 66. Moreover, pH also 376 

strongly affected the bacterial diversity and shaped the ARGs profiles, given that 377 

bacteria were the dominant carriers of ARGs 67. Positive correlations between sorption 378 
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coefficients and clay content were found for several antibiotics 68. Contrary to the 379 

results, this study did not detect evidence for the phenomenon, which may relate to the 380 

type of antibiotics we analyzed. The findings observed a significant positive correlation 381 

between ARGs and clay content in this study mirror those of the previous studies that 382 

soil texture was the top edaphic factor that correlated with the abundance of ARGs 69.  383 

Nutrient factors in fertilized soil affected the distribution of ARGs, with SOC and 384 

TN being contributed significantly to the distribution of ARGs 70–72. In general, soils 385 

with higher SOC showed higher adsorption for antibiotics, dissolved organic matter 386 

released from farmland straw may reduce the ecological risk of sulfamethoxazole by 387 

inhibiting the migration of antibiotic pollutants 73. The removal of SOC by calcination 388 

results in a sharp decrease in the adsorption capacity of antibiotics 74. This finding 389 

supports the result that there was a significant positive correlation between SOC content 390 

and antibiotics. However, the risk is serious in soils with lower SOC because antibiotics 391 

adsorption is limited 75. TN was significantly positively correlated with the abundance 392 

of target ARGs in wastewater contamination of coastal waters 76. Our study suggested 393 

that TN showed a significant negative correlation with ARGs. This somewhat 394 

contradictory result may be due to promoting soil microbial degradation of antibiotics 395 

under high TN content 77. More research on this topic needs to be undertaken before 396 

the association between soil physical and chemical properties, and distribution of 397 

antibiotics and ARGs is more clearly understood.  398 

Large amounts of heavy metals are used in large intensive livestock and poultry 399 
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farms worldwide to promote growth and control disease 78. As mentioned in the 400 

literature review, an obvious co-selection mechanism between heavy metals and ARGs 401 

includes co-resistance, cross-resistance, co-regulation, and biofilm phenotypes 31. In the 402 

first instance, a positive correlation between ARGs and high metal concentrations, some 403 

antibiotic-resistant bacterial strains also showed tolerance to high concentrations of 404 

heavy metals 79,80. In the next place, most ARGs and heavy metal resistance genes are 405 

carried on MGEs, which contributes to their spread and reproduction in contaminated 406 

soils. Heavy metal resistance genes are thought to play an essential role in the 407 

proliferation of ARGs 81. Furthermore, heavy metals can trigger the proliferation of 408 

ARGs by increasing the abundance of MGEs or altering the bacterial community 409 

structure 82.  410 

Specifically, there was a significant positive correlation between tetracycline 411 

ARGs and Cu, Zn, and Pb, which was confirmed by related studies 83,84. As and Cd as 412 

common heavy metals pollution types had a relatively high accumulation proportion in 413 

the soil, the strong positive correlation between Cd, As, and beta-lactam ARGs in this 414 

study were found. Cd stress in sludge compost increased the relative abundance of 415 

target ARGs in rhizosphere soil, which exacerbated the risk of ARGs transferring from 416 

the underground to the aboveground part of plants 85. As (III) may coexist with ARGs 417 

on the mobile genome as a co-selection driver in paddy soils 86. Notably, long-term 418 

exposure to far below the minimal inhibitory concentration of certain metals also 419 

increases bacterial resistance to antibiotics, demonstrating that even low concentrations 420 

of heavy metals may pose a considerable risk to the transmission of ARGs 87. 421 
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Additionally, the occurrence of co-selection is also related to soil characteristics; Hg-422 

driven ARGs were observed in alkaline soils but not in neutral pH soils 88. More 423 

seriously, multiple antibiotics form complexes with metal cations (e.g., Cu and Zn) that 424 

impede (or enhance) antibiotic activity 89. In this study, the significant positive 425 

correlation between amphenicols, tetracyclines, and heavy metals may be due to the 426 

complexes promoting the adsorption of antibiotics in the soil 90,91. Therefore, 427 

controlling heavy metal pollution is crucial to reducing the adsorption, transfer, and 428 

diffusion of antibiotics and ARGs in agricultural soils.  429 

4.4 Coexistence of antibiotics, MGEs, and ARGs in agricultural soils  430 

The abundance of ARGs is associated with the overuse and misuse of antibiotics in the 431 

soil. To determine the association between antibiotics and ARGs in agricultural soils, 432 

we performed network analysis on the antibiotics and ARGs data of the same treatment 433 

(Fig. 9). Specifically, tetracyclines are closely related to tetB, tetX, tetM, tetL, tetW and 434 

tetO, but the correlation between sulfonamides and sul1 and sul2 is weak, although they 435 

are the main ARGs. Pot experiment showed that the abundance of sul1 in 436 

sulfamethoxazole-contaminated soil increased significantly 92. The emergence of 437 

tetracycline and quinolone resistance genes was consistent with the results of antibiotic 438 

risk assessments in farm soils fertilized with animal manure 93. It is interesting to note 439 

that an antibiotic can be closely associated with the generation of different types of 440 

ARGs, which may cause more significant risks to the farmland environment and is 441 

worth our vigilance. Assessment of the relative contributions of antibiotics to ARGs in 442 
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a natural farming environment suggests that sulfonamides are significantly associated 443 

with multiple genes and dominate the spread of ARGs 94. However, studies have 444 

questioned there was no clear correlation between the presence of targeted antibiotics 445 

and the relative abundance of ARGs in the soil irrigated with treated wastewater 95. 446 

Hence, the distribution factors of ARGs in the soil should be considered 447 

comprehensively to assess its environmental impact more accurately.  448 

The integrase gene intI1 that can be horizontal transferred between bacteria is 449 

usually closely associated with ARGs 37,96. The positive correlation between ARGs and 450 

integrase genes confirmed that the application of manure fertilizer increased the 451 

possibility of ARGs transmission in agricultural soils 97–99. Once ARGs are integrated 452 

into successful gene delivery elements, they can persist and spread even without 453 

antibiotics 2. The positive correlation between intI1 and sul1 in estuarine sediments 454 

suggested that intI1 may be involved in the occurrence and reproduction of 455 

sulfonamides resistance genes 100, which is consistent with our results (Fig. 7). In 456 

addition, the correlation between intI1 and beta-lactam ARGs (blaTEM, blaOXA-58, and 457 

blaCTX-M-32) was also strong, although these results were not statistically significant (Fig. 458 

7). Simultaneously, this study provides evidence that intI1 was significantly positively 459 

correlated with a variety of ARGs (e.g., tetB, cmlA, and qnrA), which further confirmed 460 

the role of intI1 in promoting the transmission of ARGs (Fig. 9).  461 
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 462 

Fig. 9 Network visualizes the antibiotics and ARGs in soils. A connection represents a strong 463 

Spearman's correlation coefficient ρ > 0.7 with statistical significance (P < 0.05). The nodes 464 

were colored according to antibiotics and ARGs types. The blue and red lines represent positive 465 

and negative correlations, respectively. Node size is proportional to the number of connections, 466 

and edge thickness is proportional to the correlation coefficient.  467 

4.5 Environmental implications and mitigation strategies of antibiotics and ARGs   468 

The antibiotics and ARGs burden have serious implications for human health and the 469 

agricultural environment. In most cases, agricultural management adopts the repeated 470 

use of manure-containing antibiotics, whereas little is known about the long-term 471 

effects of this measure on natural microbial communities in the soil, which plays a 472 

crucial role in ecological processes such as the nitrogen cycle in the soil 3,101,102. A more 473 

sophisticated analysis of the fate and effects of antibiotics accounting for 474 

spatiotemporal variability of microorganisms in agricultural soils is necessary. In 475 
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addition, The obvious consequence of antibiotic release is the emergence of resistant 476 

bacteria with the increasing use of antibiotics in the natural environment, and the high 477 

mortality caused by multidrug-resistant bacterial infections is of particular concern 103–478 

105. The presence of antibiotics in agricultural soils can adversely affect plant growth 479 

and productivity, their absorption, and accumulation in crops, and ultimately affect 480 

human health through the food chain 106–108. Antibiotic compounds were ubiquitous in 481 

soil samples from organic vegetable farms. The norfloxacin is a typical quinolone 482 

antibiotic which could pose a high risk in vegetable soils 109,110. This study further 483 

confirms the ecological risk of norfloxacin. Sulfanilamide and tetracycline are most 484 

common in farms, wastewater treatment plants, and soil, and the highest concentrations 485 

were above 10 mg kg-1 in agricultural soils from multiple feedlots 111,112. These findings 486 

seem to be consistent with our research, and this may be due to unique structure of them 487 

affecting the degradation and migration processes in the soil. Hence, it is necessary to 488 

understand the fate and transmission mechanisms of antibiotics and ARGs and develop 489 

effective technologies to minimize the risk of antibiotic resistance.  490 

In general, anaerobic and aerobic digestions of compost, manure, or sludge are 491 

reasonable disposal measures to reduce antibiotic resistance in agricultural soils at 492 

source 113. The removal effect of ARGs, ARB, and transposon genes was pronounced 493 

after aerobic composting 114. Anaerobic digestion can reduce the relative abundance of 494 

macrolide-lincosamide-streptogramin and tetracycline resistance genes in biogas slurry 495 

20. Adsorbent materials such as biochar used as a soil amendment can effectively 496 

remove antibiotic residues in feces and reduce the ecological risk of their release into 497 
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the environment 115–117. In addition, constructed wetlands are considered an economical 498 

and efficient ecological restoration technology are emerging in recent years. Their 499 

performance in removing antibiotics is superior to many traditional wastewater 500 

treatment technologies under certain conditions 118. With the increasing pollution of 501 

antibiotics and ARGs in agricultural soils, it is necessary to grasp the mechanisms of 502 

their adsorption, migration, and degradation. It is imperative to understand the 503 

expression and inhibition of ARGs for the study of their removal mechanisms.  504 

Regulated management in the treatment of antibiotics and ARGs prior to exposure 505 

to the soil is lacking. The Ministry of Agriculture and Rural Affairs of the People’s 506 

Republic of China formulated the National Action Plan for the Reduction of Veterinary 507 

Antimicrobial Use (2021-2025). This plan aims to effectively improve the ability and 508 

level of the safe, standardized, and scientific use of veterinary antimicrobials in 509 

livestock and poultry breeding and establish a sound and strict implementation of a 510 

management system for the safe use of veterinary drugs. China faces the most severe 511 

challenge of any country in dealing with antimicrobial resistance due to the large 512 

production and usage of antibiotics. In fact, the long-term effects of antibiotics and 513 

ARGs on natural microbial communities and agricultural ecosystems are still largely 514 

unknown. The transmission of antibiotic-resistant bacterial might occur on a worldwide 515 

scale 119. The widespread nature of antibiotics and ARGs in agricultural soils is well 516 

documented in countries. Nevertheless, limited researches from low-income countries 517 

hinder a comprehensive understanding of antibiotics and ARGs, and this knowledge 518 

gap limits our ability to assess the risk of antibiotic resistance outbreaks in agricultural 519 
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ecosystems 39. As such, antibiotics and ARGs should be treated as a global health issue 520 

that all countries strive to solve.  521 

5 Conclusions  522 

In summary, this study systematically described the distribution of antibiotics and 523 

ARGs in agricultural soil. Cattle manure, chicken manure, swine manure, and sewage 524 

sludge are the primary sources of antibiotic pollution in agricultural soil. For ARGs, the 525 

pollution caused by the application of mixed manure cannot be underestimated. 526 

Sulfanilamide, tetracyclines, fluoroquinolones, and corresponding ARGs were the main 527 

pollution types, and the abundance of multidrug resistance was also high in agricultural 528 

soil. Land-use types and environmental variables regulated the distributions of 529 

antibiotics and ARGs. There were significant differences in antibiotic concentration and 530 

ARGs abundance under different planting types and soil physicochemical parameters 531 

(e.g., pH, SOC, clay content, TN, and heavy metals). It is worth emphasizing that the 532 

intI1 plays a vital role in promoting the dissemination of ARGs. In addition, it is 533 

necessary to find appropriate conditions and scientific management methods for the 534 

removal of antibiotics and ARGs to play a greater efficiency. Hence, a more 535 

sophisticated analysis of the occurrence and fate of different antibiotic and ARGs 536 

classes to combat this type of increasingly serious pollution.  537 
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