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Key Points: 11 

• Comparable to uniform flow, the combination of flow velocity and clay concentration 12 
influences the clay flow type in non-uniform flows 13 

• Accelerating clay-laden flows adapt faster to velocity changes than decelerating flows; 14 
breaking clay bonds is easier than establishing them 15 

• Adaptation timescales grow with clay concentration for decelerating clay-laden flows 16 
passing through a larger variety of clay flow types 17 

 18 
  19 
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Abstract 20 

Cohesive sediment particles are ubiquitous in environmental flows. The cohesive properties of 21 
clay promote the formation of clay flocs and gels and relatively small suspended clay 22 
concentrations can enhance or suppress turbulence in a flow. Furthermore, flows are naturally 23 
non-uniform, varying in space and time, yet the dynamics of non-uniform open-channel clay 24 
suspension flows is poorly understood. For the first time, the adaptation time and length scales of 25 
non-uniform clay suspension flows were quantified using novel experiments with spatially 26 
varying, but temporally uniform flow. Different levels of turbulence enhancement and 27 
attenuation were identified as the flow decelerates or accelerates. Results highlight that 28 
decelerating clay suspension flows crucially have a longer adaptation time than accelerating clay 29 
suspension flows. This is explained by the longer timescale required for formation of bonds 30 
between cohesive particles in turbulence attenuated flows after deceleration than the rapid 31 
breakdown of bonds in turbulent flows after acceleration of clay suspension flows. This 32 
hysteresis is more pronounced for higher concentration decelerating flows that pass through a 33 
larger variety of clay flow types of turbulence enhancement and attenuation. These different 34 
adaptation time scales and associated clay flow type transitions are likely to affect clay flow 35 
dynamics in a variety of fluvial and submarine settings.  36 

Plain Language Summary  37 

Flows in natural environments, such as rivers, estuaries, seas, and oceans, can transport sediment 38 
in suspension. The suspended sediment can increase or decrease turbulence in a flow, depending 39 
on the sediment concentration. Clay has the ability to form bonds between the individual 40 
particles and therefore even small concentrations are sufficient to alter turbulence levels in a 41 
flow. The amount of alteration of turbulence is known for uniform, constant flow conditions, but 42 
in natural environments, flows are often non-uniform. For example, flow variations can occur 43 
due to changes in river width or bed slope. The influence of these variations on clay suspension 44 
flows is unknown. New physical experiments were conducted where clay suspension flows were 45 
decelerated and accelerated. As the flow decelerates, turbulence in the flow is reduced and bonds 46 
between the suspended clay particles are established. Turbulence increases as the flow 47 
accelerates and clay bonds are broken. Decelerating flow requires more time to adjust to changes 48 
in velocity than accelerating flow, as establishing the bonds between clay particles requires more 49 
time than breaking them. This means that, especially for the decelerating flows, the influence of 50 
a change in velocity is noticeable further downstream.  51 

1 Introduction 52 

Cohesive sediment-laden flows are important in a wide range of natural environments, such as 53 
rivers, estuaries, shallow seas and deep oceans (Whitehouse et al., 2000; Winterwerp and van 54 
Kesteren, 2004), and in industrial settings (Ackers et al., 2001). For example, cohesive sediment 55 
supply to rivers can be increased by high-magnitude, low-frequency events, such as storms, 56 
floods and post-wildfire erosion (Swanson, 1981; Sankey et al., 2017), which occur more often 57 
because of climate change (Geertsema et al., 2006; Reneau et al., 2007; Barbero et al., 2015). 58 
Furthermore, cohesive sediment is common in submarine gravity currents, such as turbidity 59 
currents, hybrid events, mass flows and associated deposits (Talling et al., 2012). The increases 60 
in sediment transport can have major impacts on water quality and aquatic ecosystems, including 61 
fish habitats, and channel morphology (Smith et al., 2011). High suspended cohesive sediment 62 
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concentrations modify flow dynamics by either enhancing (Best et al., 1997; Baas and Best, 63 
2002) or dampening turbulence (Bagnold, 1954; Wang and Larsen, 1994), influencing sediment 64 
transport rates and erosion and deposition patterns (Partheniades, 1965; Metha et al., 1989).  65 
 66 
Cohesive clay particles may collide and form larger particles, or flocs, when the distance 67 
between the particles is sufficiently small (Van Olphen, 1977; Winterwerp and van Kesteren, 68 
2004). Networks of flocs in the flow, i.e., clay gels, enhance viscosity and yield stress, and thus 69 
are a key control on flow turbulence (Baas and Best, 2002). Research into steady, uniform clay 70 
flows indicate a close interaction between turbulent and cohesive forces, controlling the dynamic 71 
structure of clay flows (Baas and Best, 2002; Baas et al., 2009). As the clay concentration 72 
increases, it becomes increasingly difficult to break  the cohesive bonds between particles, 73 
resulting in the formation of a pervasive network of permanently interlinked clay particles; 74 
turbulent energy is dissipated by the high effective viscosity, and the flow becomes laminar. 75 
Conversely, the electrostatic bonds between the clay particles can be broken in regions of high 76 
shear. Thus, an increase in turbulence generation in the flows by, for example, an increasing flow 77 
velocity has the potential to break bonds between the clay particles and reduce the flow viscosity 78 
(Partheniades, 2009). This shifting balance between turbulent and cohesive forces regulates the 79 
dynamic structure of cohesive flows (Baas et al., 2009). 80 
 81 
Baas et al. (2009) defined a clay flow classification scheme based on flume experiments. The 82 
only technique available for velocity measurements in high concentrated flows is Ultrasonic 83 
Velocity Profilers, which are designed to work along a single beam. This allows velocity 84 
measurements to be collected in one flow direction and consequently, Baas et al. (2009) based 85 
the clay flow classification scheme on streamwise velocity measurements instead of a 3D 86 
turbulence field. The clay flow classification scheme consists of five different clay flow types in 87 
order of increasing clay concentration: turbulent flow, turbulence-enhanced transitional flow, 88 
lower transitional plug flow, upper transitional plug flow, and quasi-laminar plug flow (Fig. 1). 89 
Turbulent flow exhibits a logarithmic velocity profile with an associated decrease in turbulence 90 
intensity away from the bed (Nezu and Nakagawa, 1993). The velocity of turbulence-enhanced 91 
transitional flows progressively diminishes, in particular close to the base of the flow, 92 
accompanied by a progressive increase in turbulence intensity over the full flow depth, whilst the 93 
logarithmic velocity profile is maintained. A progressive increase in clay concentration in lower 94 
transitional plug flows results in the formation of a plug, which thickens from the water surface 95 
downwards. This flow type exhibits a decreased near-bed velocity and increased near-bed 96 
turbulence in combination with decreased turbulence intensity in the outer flow. The plug flow 97 
further thickens downwards in upper transitional plug flows with increasing clay concentration, 98 
whilst the maximum turbulence intensity moves away from the bed and decreases. The upward 99 
shift in turbulence production is explained through thickening of the viscous sublayer (Best and 100 
Leeder, 1993; Li and Gust, 2000) and the development of an internal shear layer (Baas and Best, 101 
2002), which separates the near-bed region from the plug flow region. Further increasing the clay 102 
concentration results in fully suppressed turbulence in quasi-laminar plug flows, apart from 103 
minor residual turbulence near the base of the flow in a thin shear layer.  104 
 105 
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 169 
Table 1. Experimental conditions at selected positions in the flume. Q = discharge, based on 170 
velocity measurements at P2 with assumed minimal change in velocity over the flume width; C = 171 
spatial-averaged volumetric concentration, based on an average of suspended sediment samples 172 
over the depth and along the length of the flume; ℎ଴ = standing water depth at P8; T = water 173 
temperature; 𝑈ന = depth-averaged velocity; Fr = Froude number; Re = Reynolds number. The 174 
labelling of experimental runs is defined using D for decelerating and A for accelerating flows 175 
and the value of clay concentration.  176 
Experimental 
run 

Q C  
 

𝒉𝟎 
 

T  Measuring 
point  

𝑈ന 
 

Fr 
 

Re 

 [m3/s] [vol %] [m] [⁰C]  [m/s] [-] [- ⋅ 𝟏𝟎𝟒] 
Decelerating flow 

D1-C0.0 0.021 0.00 0.150 16.0 P2 0.69 0.57 10.3 
     P5 0.52 0.43 7.8 
     P8 0.33 0.27 4.9 
D2-C0.0 0.015 0.00 0.158 17.6 P2 0.49 0.40 7.8 
     P5 0.38 0.30 5.9 
     P8 0.28 0.23 4.5 
D3-C0.9  0.014 0.92 0.150 18.7 P2 0.48 0.39 6.7 
     P5 0.35 0.29 4.9 
     P8* 0.28 0.23 4.0 
D4-C1.5 0.019 1.47 0.150 18.0 P2 0.64 0.53 8.3 
     P5 0.45 0.37 6.0 
     P8 0.33 0.27 4.3 
D5-C2.7 0.016 2.67 0.150 18.0 P2 0.54 0.45 5.8 
     P5 0.42 0.35 4.5 
     P8 0.27 0.22 2.9 

Accelerating flow 
A1-C0.0 0.015 0.00 0.170 17.6 P2 0.45 0.35 7.6 
     P5 0.26 0.20 4.4 
     P8 0.16 0.13 2.7 
A2-C1.4 0.014 1.39 0.170 18.0 P2 0.41 0.32 6.2 
     P5 0.26 0.20 3.9 
     P8* 0.20 0.17 3.0 
A3-C1.5 0.016 1.54 0.185 18.7 P2 0.43 0.32 6.9 
     P5 0.27 0.20 4.3 
     P8* 0.20 0.15 2.3 
A4-C2.8 0.015 2.77 0.180 18.2 P2 0.41 0.31 5.1 
     P5 0.31 0.23 3.8 
     P8* 0.20 0.15 2.5 
* deposition was observed at this location  
 177 
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2.2 Data acquisition  178 

At the start of each run, the water temperature was measured with a thermometer and the water 179 
depth was measured with a ruler at P8. A vertical rack of siphon tubes was used to 180 
synchronously collect 60 ml samples over a duration of 2 minutes at five different heights in the 181 
water column and at three locations for the decelerating (P3, P5, P9) and accelerating (P1, P5, 182 
P7) flows (Fig. 2b, c). The three locations covered the longest lengths possible in the flume for 183 
development of either decelerating or accelerating flow. Hence, the measurement locations 184 
included the first measurement point upstream of the tapering section (P3 for decelerating flow, 185 
P7 for accelerating flow), the middle of the tapering section (P5) and the furthest measurement 186 
point downstream of the tapering section (P9 for decelerating flow and P1 for accelerating flow). 187 
The collected samples were weighed and dried to determine their volumetric clay concentration. 188 
The horizontal flow velocity was measured at nine locations along the flume using Ultrasonic 189 
Velocity Profilers facing upstream (Fig. 2b, c) (Takeda, 1991, Best et al., 2001). Ultrasonic 190 
Velocity Profilers measure flow velocity using the Doppler shift, which relies on the use of 191 
pulsed ultrasound echography. A short emission of ultrasound is transmitted from a profiler, and 192 
the same profiler receives the echo reflected from suspended particles in the flow. To determine 193 
the flow velocity, the Doppler shift frequency is determined from several repeated ultrasound 194 
pulses. In these experiments, five 4 MHz probes were stacked on top of each other with a 195 
distance of 14 mm between their centres. The probes collected velocity data for 500 cycles with 196 
a 50 ms delay between probes to avoid measurement interference. The probe array was shifted 197 
vertically to three different heights during the experiment to cover the full flow depth, resulting 198 
in a total of 15 measurement elevations per location (Fig. 2c). Depending on the experimental 199 
conditions, these settings resulted in measurement durations of 174 to 330 s at a temporal 200 
resolution of 2.9 to 1.5 Hz. Velocity measurements taken at 0.03 to 0.05 m from the probe head 201 
were used in the analysis. An overview of the settings of the Ultrasonic Velocity Profilers used 202 
in these experiments is provided in the Supporting Information.  203 

2.3 Data processing  204 

Artificial noise was removed from the velocity signal by eliminating values three standard 205 
deviations away from a temporal moving mean measured over 31 datapoints. On average, these 206 
spikes accounted for less than 3% of the data. Datapoints were excluded where deposition 207 
occurred. The temporal mean flow velocity, 𝑈ഥ, and its standard deviation, 𝑅𝑀𝑆(𝑢ᇱ), were then 208 
calculated from the time series of instantaneous velocity data at each measurement height (Baas 209 
et al., 2009):  210 

 𝑈ഥ = 1𝑛 ෍ 𝑢௜௡
௜  (1) 

 𝑅𝑀𝑆(𝑢ᇱ) = ඩ1𝑛 ෍(𝑢௜ − 𝑈ഥ)ଶ௡
௜  (2) 

where 𝑛 is the number of velocity measurements. The coefficient of variation is used as a 211 
dimensionless measure for turbulence intensity (e.g. Baas et al. 2009):  212 
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 𝑅𝑀𝑆(𝑢ᇱ)଴ = 𝑅𝑀𝑆(𝑢ᇱ)𝑈ഥ ⋅ 100 (3) 

Depth-averaged velocity was calculated by integrating the time-averaged velocities over the 213 
depth. The integral was numerically evaluated; velocities were set to zero at the bed and 214 
velocities at the water surface were assumed to have the same value as the first measurement 215 
position below that level:  216 

 𝑈ന = 1ℎ଴ න 𝑈ഥ𝑑𝑧௛బ଴  (4) 

where 𝑧 is height above the bed. Depth-averaged turbulence intensity was calculated by 217 
integrating the turbulence intensity values over the depth.  218 

 𝑅𝑀𝑆(𝑢ᇱ)଴തതതതതതതതതതതതത = 1ℎ଴ න 𝑅𝑀𝑆(𝑢ᇱ)଴௛బ଴ 𝑑𝑧 (5) 

 219 

In the rare occasion that the reflected signal strength of a Ultrasonic Velocity Profiler is not 220 
sufficient to collect accurate velocity measurements, the velocity measurements can result in 221 
unexpected strong velocity fluctuations. A moving mean is not guaranteed to remove these errors 222 
and a second stage of data cleaning is required. These outliers in the processed velocity dataset 223 
were excluded as follows. Data was identified as an outlier when either the flow velocity, 𝑈ഥ, or 224 
its standard deviation 𝑅𝑀𝑆(𝑢ᇱ), was 40% higher or lower than the median value of the six 225 
immediately surrounding measurement points from the nearest upstream and downstream 226 
locations: 227 

 ห𝑚𝑒𝑑𝑖𝑎𝑛 ൫𝑈ഥ௝ିଵ,௜ିଵ, 𝑈ഥ௝,௜ିଵ, 𝑈ഥ௝ାଵ,௜ିଵ, 𝑈ഥ௝ିଵ,௜ାଵ, 𝑈ഥ௝,௜ାଵ, 𝑈ഥ௝ାଵ,௜ାଵ൯ − 𝑈ഥ௝,௜ห𝑈ഥ௝,௜ ⋅ 100 > 40 (6) 

with i = point, j = height. Here, the median was used to avoid weighting from outliers. At the 228 
outer locations, P1 and P9, the points in the narrow (P2 and P3) or wide (P7 and P8) section were 229 
used to include a sufficient number of measurement points in the determination of the median, 230 
e.g. for outer location P1: 231 

 ห𝑚𝑒𝑑𝑖𝑎𝑛 ൫𝑈ഥ௝ିଵ,௉ଶ, 𝑈ഥ௝,௉ଶ, 𝑈ഥ௝ାଵ,௉ଶ, 𝑈ഥ௝ିଵ,௉ଷ, 𝑈ഥ௝,௉ଷ, 𝑈ഥ௝ାଵ,௉ଷ൯ − 𝑈ഥ௝,௉ଵห𝑈ഥ௝,௉ଵ ⋅ 100 > 40 
(7) 

Near the bed, larger changes in 𝑈ഥ and 𝑅𝑀𝑆(𝑢ᇱ) are likely and therefore, the lowest measurement 232 
elevation was excluded from this outlier analysis. To make sure no outliers are left near the bed, 233 
the lowest measurement elevation was compared only to the nearest upstream and downstream 234 
locations at the lowest measurement elevation. The second stage of data cleaning , discarded as 235 
little as 1% and up to 7% of the datapoints from an experimental dataset. To maintain enough 236 
datapoints over the depth, the full measurement location (P1-P9) was deemed invalid if >50% of 237 
the data was classified as outliers over the full flow depth. The bed height, 𝑧௕, was defined as the 238 
lowest valid measurement elevation. To compare the same elevation in different flows, the flows 239 
are plotted against normalized height adjusted to the deposit level.  240 
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 �̃� = (𝑧 − 𝑧௕)/ℎ଴ (8) 

Following Wan (1982), the dynamic viscosity, 𝜂 [𝑁/(𝑠/𝑚ଶ)], of the suspensions was estimated  241 
from the measured suspended sediment concentration:  242 

 𝜂 = 0.001 + 0.206 ൬ 𝐶100൰ଵ.଺଼
 (9) 

Then, the Reynolds number was calculated as:  243 

 𝑅𝑒 = 𝑈നℎ଴𝜈௘  (9) 

where, the effective viscosity of the suspension, 𝜈௘, was calculated from the ratio of dynamic 244 
viscosity over the density of the clay suspension, 𝜌௠:  245 

 𝜈௘ = 𝜂/𝜌௠ (10) 

The identified adaptation length, L, and time scales, T, are calculated in dimensionless form with 246 
the standing water depth as characteristic length scale and the discharge as characteristic time 247 
scale, for which the velocity at P2 is representative.  248 

 𝐿 = 𝑙/ℎ଴ [-] (11) 

 𝑇 = 𝑡 ⋅ ℎ଴/𝑈௉ଶ [-] (12) 

where l is the identified adaptation length in the flume and t the identified adaptation time in the 249 
flume.  250 

3 Results  251 

The results section provides an overview of the collected measurements. This includes 252 
suspended sediment concentrations (Section 3.1) and streamwise velocity and turbulence 253 
intensity profiles along the flume for decelerating flows (Section 3.2) and accelerating flows 254 
(Section 3.3). 255 

3.1 Clay concentration  256 

The suspended sediment concentrations for the decelerating flows were nearly uniform over the 257 
flow depth (Fig. 3a). The exception is run D3-C0.9, which contained a higher clay concentration 258 
at the lowest sampling point in the wide section (P9) of the flume. This may be explained as D3-259 
C0.9 has the slowest recorded velocity at P9, of the decelerating flows, and thus the greatest 260 
likelihood for deposition from suspension of the cohesive sediment (Fig. 5a). The suspended 261 
sediment concentrations for the accelerating flows were non-uniform over the flow depth, with 262 
higher near-bed sediment concentrations, particularly in the wide section of the flume (Fig. 3b). 263 
These higher concentrations were in the deposit level of the flows (�̃� < 0).  264 
 265 
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decreases in the widening section (P4 to P6), the turbulence intensity increases, initially near the 316 
bed, and then progressively higher in the flow downstream. This results in an increase in vertical 317 
gradient of turbulence intensity in the widening section followed by a decrease in vertical 318 
gradient into the wide section. Towards the end of the wide section, at P9, the turbulence 319 
intensity shows a steep vertical gradient for flows D3-C0.9 and D4-C1.5. The turbulence 320 
intensity for flow D5-C2.7 remains high between P7 and P9. Despite the decrease in velocity, the 321 
depth-averaged turbulence intensity at P9 is 3.6 times higher than at P2 for D3-C0.9, 4.3 times 322 
higher for D4-C1.5 and 1.8 times higher for D5-C2.7. Towards the end of the wide section, at 323 
P9, the turbulence intensities remain non-uniform, suggesting that the length of the flume is 324 
insufficient to establish equilibrium after the widening section. Despite, both the clear water and 325 
clay-laden decelerating flows not reaching equilibrium flow conditions in the wide section, 326 
distinct differences in patterns of increase in turbulence intensity can be identified, which 327 
determines clay flow type, discussed below in Section 4.1.  328 
 329 
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Figure 7. Depth-averaged velocity magnitudes (𝑈ന) and time-averaged streamwise velocity 384 
profiles (𝑈ഥ) along the flume for the accelerating clay-laden flows a) A2-C1.4, b) A3-C1.5 and c) 385 
A4-C2.8. Depth-averaged turbulence intensities (𝑅𝑀𝑆(𝑢ᇱ)଴തതതതതതതതതതതതത) and time-averaged streamwise 386 
turbulence intensity profiles (𝑅𝑀𝑆(𝑢ᇱ)଴) along the flume for flows d) A2-C1.4, e) A3-C1.5 and 387 
f) A4-C2.8.  388 
 389 

4 Discussion 390 

The discussion includes the interpretation of downstream changes in clay flow types in the 391 
experimental runs (Section 4.1). Based on the distance between the different clay flow types in 392 
the flume, the length scale of adaptation of clay flows is assessed in Section 4.2. The length 393 
scales of decelerating and accelerating clay-laden flows are compared and further implications of 394 
the present study are discussed in Section 4.3. 395 

4.1 Clay flow types 396 

To determine the clay flow types at the nine measurement locations along the flume initially 397 
without influences of flow deceleration or acceleration, the difference in turbulence intensity is 398 
assessed between clay-laden flows and clear water flows. Figure 8 shows the profiles of 399 
turbulence intensity (RMS(uᇱ)଴) for the five clay flow types identified by Baas et al. (2009) with 400 
an added dashed line indicating the turbulence intensity profile of a clear water turbulent flow. 401 
Additionally, Figure 8 shows the difference profiles of turbulence intensity (ΔRMS(uᇱ)଴) 402 
between the five clay flow types and clear water turbulent flow. When compared with turbulent 403 
clear water flow, the difference in turbulence intensity is negligible if the clay-laden flow is 404 
classified as turbulent flow. Turbulence-enhanced transitional flows show higher turbulence 405 
intensity over the full flow depth and thus, if compared with turbulent flow, the difference profile 406 
(ΔRMS(uᇱ)଴) results in positive values over the full flow depth. The plug flow formation below 407 
the surface for lower transitional plug flows results in negative ΔRMS(uᇱ)଴ values below the 408 
surface in the difference profile. However, increased ΔRMS(uᇱ)଴ values are found near the bed, 409 
since lower transitional plug flow exhibits increased near-bed turbulence. With the thickening of 410 
the plug flow in upper transitional plug flows, negative ΔRMS(uᇱ)଴ values expand towards the 411 
bed. Fully suppressed turbulence in quasi-laminar plug flows results in a negative difference 412 
profile over most of the flow depth. 413 
 414 
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In the narrow section (P1 to P3), the increased clay concentration in flow D5-C2.7 is inferred to 448 
cause the observed positive Δ𝑅𝑀𝑆(𝑢ᇱ)଴ values (Fig. 9b). This suggests that flow D5-C2.7 begins 449 
as a turbulence-enhanced transitional flow (Fig. 8; Table 2; Baas and Best, 2002). The 450 Δ𝑅𝑀𝑆(𝑢ᇱ)଴ values progressively increase through the widening section and beyond, suggesting 451 
the development of stronger turbulence-enhanced transitional flow (Baas et al., 2009). While the 452 
mean velocity profile of flow D5-C2.7 appears reliable, the heterogeneous vertical pattern of 453 Δ𝑅𝑀𝑆(𝑢ᇱ)଴ above a relative depth of 0.4 at position P9 (Fig. 9b) may arise from artefacts in the 454 𝑅𝑀𝑆(𝑢ᇱ) measurements of this flow. This hinders a reliable inference of flow type at this 455 
location, but the decrease in Δ𝑅𝑀𝑆(𝑢ᇱ)଴ below the relative depth of 0.4 between P8 and P9 456 
combined with a decrease in Δ𝑅𝑀𝑆(𝑢ᇱ)଴ near the top of the flow between P8 and P7 may 457 
indicate a change from turbulence-enhanced transitional flow via lower transitional plug flow to 458 
upper-transitional plug flow in the wide section (P7 to P9). 459 
 460 
Table 2. Identified clay flow types at the measurement positions in the flume, P9 to P1. The 461 
labelling of the clay flow types in the table is as follows: TF = Turbulent flow; TETF = 462 
Turbulence-enhanced transitional flow; LTPF = Lower transitional plug flow; UTPF = Upper 463 
transitional plug flow; QLPF = Quasi-laminar plug flow.  464 
Experimental 
run 

Clay flow type 
 

 P9 P8 P7 P6 P5 P4 P3 P2 P1 
Decelerating flow 

D3-C0.9  LTPF LTPF LTPF TETF TETF TETF TF TF TF 
D5-C2.7 UTPF LTPF TETF TETF TETF TETF TETF TETF TETF 

Accelerating flow 
A2-C1.4 LTPF LFTP LTPF LTPF TETF TETF TETF TETF TETF 
A4-C2.8 UTPF UTPF LTPF LTPF LTPF TETF TETF TETF TETF 
 465 
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Figure 9. Difference in depth-averaged turbulence intensities (Δ𝑅𝑀𝑆(𝑢ᇱ)଴തതതതതതതതതതതതത) and time-averaged 467 
streamwise turbulence intensity profiles (Δ𝑅𝑀𝑆(𝑢ᇱ)଴) along the flume for decelerating flows a) 468 
D3-C0.9 minus D2-C0.0 and b) D5-C2.7 minus D2-C0.0.  469 
 470 
Figures 10a and 10b show the difference in time-averaged streamwise turbulence intensity 471 
profiles (Δ𝑅𝑀𝑆(𝑢ᇱ)଴) and in depth-averaged turbulence intensities (Δ𝑅𝑀𝑆(𝑢ᇱ)଴തതതതതതതതതതതതത) along the flume 472 
for accelerating flows A2-C1.4 and A4-C2.8 versus flow A1-C0.0, and Table 2 shows an 473 
overview of the identified clay-flow types. Differences between the normalized turbulence 474 
intensity, 𝑅𝑀𝑆(𝑢ᇱ)଴ over the normalized flow depth z ̃ allows the assessment of relative 475 
influence of clay concentration on non-uniform accelerating flow conditions and allows the 476 
interpretation of clay flow types. Upstream, in the wide section and at the start of the narrowing 477 
section (P9 to P6), Δ𝑅𝑀𝑆(𝑢ᇱ)଴ values are relatively close to zero in the upper half of the flow 478 
and increase downwards to 15 in the lower half of flow A2-C1.4. The high near-bed Δ𝑅𝑀𝑆(𝑢ᇱ)଴ 479 
values, in combination with the low values in the upper half of the flow, are typical of lower 480 
transitional plug flow (Fig. 8; Baas et al., 2009). As the flow accelerates through the narrowing 481 
section (P6 to P4), the near bed Δ𝑅𝑀𝑆(𝑢ᇱ)଴ values progressively decrease from 10 to c. 2.5. In 482 
the narrow section (P3 to P1), the absolute turbulence intensity values of flow A2-C1.4 are low 483 
(Fig. 7d), but the Δ𝑅𝑀𝑆(𝑢ᇱ)଴ values are increased to around 2.5. This enhanced turbulence 484 
intensity suggests weakly turbulence-enhanced or turbulent flow (Fig. 8). Flow A3-C1.5 shows 485 
comparable turbulence intensity patterns and values (Fig. 7d and 7e) and similar flow types can 486 
be identified. 487 
 488 
Upstream, in the wide section (P9 to P8), Δ𝑅𝑀𝑆(𝑢ᇱ)଴ values are up to 2.5 in the lower half of the 489 
flow and down to -2.5 in the upper half for flow A4-C2.8 (Fig. 10b). This profile suggests upper 490 
transitional plug flow, where turbulence enhancement near the bed is lower than for lower 491 
transitional plug flows (Fig.8; cf., flow A2-C1.4 in Fig. 10a). Similar to flow A2-C1.4, 492 Δ𝑅𝑀𝑆(𝑢ᇱ)଴ values of flow A4-C2.8 between P7 and P6 are relatively close to or below zero in 493 
the upper half of the flow and are as high as 15 in the lower half of the flow, suggesting lower 494 
transitional plug flow (Fig. 10b). Between P4 and P1, the depth-averaged Δ𝑅𝑀𝑆(𝑢ᇱ)଴ values are 495 
between 2.5 and 5 and vertical Δ𝑅𝑀𝑆(𝑢ᇱ)଴ profiles are strictly positive, suggesting turbulence-496 
enhanced transitional flow (Fig. 8). 497 
 498 
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Figure 10. Difference in depth-averaged turbulence intensities (Δ𝑅𝑀𝑆(𝑢ᇱ)଴തതതതതതതതതതതതത) and time-averaged 500 
streamwise turbulence intensity profiles (Δ𝑅𝑀𝑆(𝑢ᇱ)଴) along the flume for decelerating flows a) 501 
A2-C1.4 minus A1-C0.0 and b) A4-C2.8 minus A1-C0.0.  502 

4.2 Observed adaptation length scales  503 

The length scales needed by clay flows to adapt to non-uniform conditions can be estimated 504 
using the data presented in Fig. 9 and 10. The length scales are based on the identified clay-flow 505 
types (Table 2) and the distance between the measurement points at locations where a change in 506 
velocity is experienced, i.e. these estimations involve length scales downstream of the start of the 507 
widening section for the decelerating flows and the narrowing section of the accelerating flows, 508 
as well as in the wide section for the decelerating flows and in the narrow section for the 509 
accelerating flows. The adaptation length scale in the wide (decelerating flow) or narrow section 510 
(accelerating flow) is determined by the distance required to develop (nearly) uniform 511 
conditions. The adaptation length and time scales are made dimensionless using the standing 512 
water depth and the depth-averaged velocity at P2 as characteristic length and time scales (eq 513 
11,12).  514 
 515 
For decelerating flows, the adaptation length scales are determined at the widening section and in 516 
the wide section as the flow adapts to the change in velocity. As the flow decelerated at the start 517 
of the widening section (P3), flow D3-C0.9 changed from turbulent flow to turbulence-enhanced 518 
transitional flow, without a significant adaptation length at this position (Fig. 9a; Table 3). 519 
Throughout the wide section (P7 to P9), the flow adjusted from turbulence-enhanced transitional 520 
flow to lower transitional plug flow. Towards the end of the wide section, at P9, 521 Δ𝑅𝑀𝑆(𝑢ᇱ)଴ remained non-uniform, suggesting that the length of the flume was insufficient to 522 
establish uniform conditions after the widening section (Fig. 9a). Hence, the minimum 523 
adaptation length needed to change from turbulence-enhanced flow to lower transitional plug 524 
flow was 1.4 m, the full distance between P7 and P9 (Fig. 2b). At the depth-averaged velocity of 525 
0.28 m/s in the wide section (Table 1), this adaptation length corresponds to a minimum 526 
adaptation time of 5.0 s. 527 
 528 
Flow D5-C2.7 started to change from a relatively weak to a stronger turbulence-enhanced 529 
transitional flow at position P4, i.e., 0.7 m into the widening section (Fig. 5f), whereas 530 Δ𝑅𝑀𝑆(𝑢ᇱ)଴തതതതതതതതതതതതത started to increase at P3 in flow D2-C0.0, i.e., at the start of the widening section 531 
(Fig. 4d). The maximum adaptation length this high-concentration clay flow needed after starting 532 
to experiencing flow widening was therefore 0.7 m (distance between P3 and P4, Fig. 2b). This 533 
is equivalent to an adaptation time of 1.4 s at a mean depth-averaged flow velocity of 0.52 m/s 534 
between P3 and P4 (Table 1). Flow D5-C2.7 changed from turbulence-enhanced transitional 535 
flow via lower transitional plug flow to upper transitional plug flow in the wide section (P7 to 536 
P9), without apparently reaching uniform flow conditions (Fig. 9b). This is equivalent to a 537 
minimum adaptation time of 5.2 s at a depth averaged flow velocity of 0.27 m/s (Table 1) 538 
through the 1.4-m long wide section (Fig. 2b).  539 
 540 
For accelerating flows, the adaptation length scales are determined at start of the narrowing 541 
section and in the narrow section as the flow adapts to the change in velocity. Flow A2-C1.4 542 
changed from lower-transitional plug flow at P6 to turbulence-enhanced transitional flow at P5 543 
in the narrowing section. The distance between P6 and P5 is 0.6 m and with a depth-averaged 544 
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velocity of 0.26 m/s, this results in an adaptation time of 2.3 s. At the start of the narrow section, 545 
P3, flow A2-C1.4 established uniform turbulence-enhanced transitional flow (Fig 10a) and show 546 
no adaptation in the narrow section itself. Hence, within the spatial resolution of the experiments, 547 
the adaptation length in the narrow section was at or close to zero.  548 
 549 
Flow A4-C2.8 started to change from upper transitional plug flow to lower transitional plug flow 550 
at the start of the narrowing section, at P7 and showed no signs of additional adaptation in the 551 
narrowing section (Fig. 10b) Hence, the change in clay flow type also lacked a significant delay 552 
at this location. At the start of the narrow section, P3, flow A4-C2.8 changed from lower 553 
transitional plug flow to turbulence-enhanced transitional flow. Flow A4-C2.8 established 554 
uniform turbulence-enhanced transitional flow at the start without additional adaptation in the 555 
narrow section. Hence, the change in clay flow type also lacked a significant delay at this 556 
location.  557 
 558 
Table 3. Observed dimensional and calculated dimensionless adaptation length scales, l and L, 559 
and time scales, t and T.   560 
Experimental 
run 

Location Point(s) 
included in 
adaptation 

Flow regimes 
 

l L 
 

t 
 

T 

    [m] [-] [s] [-] 
Decelerating flow 

D3-C0.9  Widening 
section  

P3 Turbulent flow to  
turbulence-enhanced 
transitional flow 

0 0 0 0 

 Wide 
section  

P7 to P9 Turbulence-enhanced 
transitional flow to lower 
transitional plug flow 

≥1.4 9.3 ≥5.0 2.1 

D5-C2.7 Widening 
section  

P3 to P4 Weak to strong turbulence-
enhanced transitional flow 

0.7 4.7 1.4 0.4 

 Wide 
section  

P7 to P9 Turbulence-enhanced 
transitional flow to upper 
transitional plug flow 

≥1.4 9.3 ≥5.2 1.4 

Accelerating flow 
A2-C1.4 Narrowing 

section 
P6 to P5 Lower transitional plug 

flow to  
turbulence-enhanced 
transitional flow 

0.6 3.5 2.3 0.9 

 Narrow 
section  

P3  Uniform turbulence-
enhanced transitional flow  

0 0 0 0 

A4-C2.8 Narrowing 
section 

P7 Upper transitional plug 
flow to lower transitional 
plug flow  

0 0 0 0 

 Narrow 
section  

P3 Lower transitional plug 
flow to turbulence-
enhanced transitional flow  

0 0 0 0 

 561 
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570 
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 583 
The research focus here is on adaptation of flow dynamics of non-uniform clay-laden flows, but 584 
the length and time scales of flow adaptation can also be reflected in the depositional product 585 
(Dorrell and Hogg, 2012). Here, non-uniformity on spatial deceleration and acceleration in clay-586 
laden open-channel demonstrates that these adaptation scales in mud-rich flows fundamentally 587 
differ between decelerating and accelerating regimes, due to the time required to form or break 588 
cohesive bonds between particles. These results are based on streamwise velocity measurements, 589 
due to the limitations of Ultrasonic Velocity Profilers, which are designed to work along a single 590 
beam. Further developments in technology are needed to fully resolve the turbulent motion of 591 
highly concentrated flows.  592 
 593 
Additional research in the sedimentological record is required to determine how deposits of non-594 
uniform clay suspension flows can be recognized in fluvial, estuarine and submarine systems. 595 
For example, after a sediment supply increase in a river following wild-fire related erosion 596 
(Renau et al., 2007; Sankey et al., 2017; Nyman et al., 2019), flow deceleration can occur 597 
following for example, a reduction in bed slope or widening of the river channel. The flow 598 
deceleration reduces the turbulent forces in the flow and allows the establishment of cohesive 599 
bonds between clay particles. The adaptation to stronger turbulence attenuated clay flow types 600 
requires time due to the formation of clay bonds and consequently, the deposits associated with 601 
the clay flow type form over the adaptation length scale downstream of the location of flow 602 
deceleration. In an industrial setting such as downstream of dam flushing or venting events flow 603 
acceleration can occur (Antoine et al., 2020), increasing the turbulent forces in the flow, which 604 
has the potential to break up bonds between clay particles. This study shows that the adaptation 605 
of the clay flow type to a stronger turbulent flow occurs more rapidly and consequently the 606 
associated deposits with clay flow type occur near the location of acceleration. Additionally, the 607 
different adaptation length and time scales are of particular relevance in interpreting the shape of 608 
submarine deposits, such as unconfined submarine lobes (Spychala et al., 2017) and hybrid event 609 
beds deposited around diaripirs (Davis et al., 2009; Patacci et al., 2014). It is anticipated that the 610 
depositional record of decelerating flows reflects the time scales required to form interparticle 611 
bonds, delaying the depositional response to the associated changes in flow conditions. For 612 
accelerating flows it is anticipated that changes in deposit properties associated with bond 613 
breakage occur more rapidly, such that they are more closely associated with the areas where 614 
acceleration occurs. 615 

5 Conclusions 616 

This research investigated the influence of suspended cohesive clay on changing flow dynamics 617 
under non-uniform flow conditions, using decelerating and accelerating open-channel flows in a 618 
recirculating flume. These flows may evolve through different clay flow types with different 619 
associated degrees of turbulence enhancement and attenuation depending on the clay 620 
concentration and whether the flows decelerate or accelerate. Decelerating flows have a longer 621 
adaptation time than accelerating flows, as establishing cohesive bonds between clay particles 622 
requires more time than breaking the clay bonds. This hysteresis is more pronounced for higher-623 
concentration flows that change from the turbulence-enhanced transitional flow type to the lower 624 
and upper transitional plug flow types than for lower-concentration decelerating flows that 625 
change from the turbulent flow type to the turbulence-enhanced transitional flow type. 626 
Differences in adaptation time likely influence the distribution and character of deposit in 627 
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sedimentary environments. The associated deposits with clay flow type of decelerating flows are 628 
likely spread over a larger distance than of accelerating flow due to the elongated adaptation time 629 
of decelerating flows.  630 
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