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Abstract

Radiographs of the hand are useful in diagnosing and staging diseases such as rheumatoid

arthritis (RA) and other musculoskeletal diseases. Radiographs are projections of the 3D

anatomy, with the useful information such as pose and pathology becoming lost in the process.

Recovering the 3D pose from a single radiograph allows detailed anatomical analysis in the 3D

space and possible reduction of radiation exposure for the patients. The research area is around

the registration of 3D mesh model to 2D X-ray images for the medical application of automatic

disease diagnosis and treatment planning. The gap in knowledge was that many researches

concentrate on registrations of 3D CT volume to radiographs whereas effect methods that work

on 3D models are limited.

The aim of this thesis is to develop a 3D pose recovery framework for radiographs using a

novel hybrid 3D/2D registration method. Our pose recovery pipeline consists of aligning a

simulated digitally reconstructed radiograph of a 3D mesh model to a real radiograph. Our

method heavily relies on fast X-ray simulations and optimisation algorithms. The method

used to investigate the feasibility and performance of our approach was through conducting

experiments of registrations using synthetic and real clinical data. We evaluated our approach

using publicly available datasets including 15 radiographs of hands from the MURA dataset

and a radiograph of the hip from the VHP, the Visible Man dataset. Results demonstrated that

our approach works well in both registrations of radiographs with two different anatomical

structure.

Our key findings were the registration of 3D mesh model to a single radiograph can be performed

accurately and fast using our registration framework. Once suitable optimisation algorithm

and metrics are identified, our approach tends to be reliable and registration results are similar
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when repeated for several times. Also, our registration method can be easily modified to solve a

specific registration problem where registration of a 3D polygon model to a single 2D image

needs to be performed. The significance of these findings was that it clears the path for further

development of a fully automatic process of clinical diagnoses and treatment planning of hand

diseases. Further inquiry is required to evaluate the applicability and the performance of our

registration approach to other articulated musculoskeletal anatomy, which would lead to the

development of clinical applications for diagnosing and treatment planning of any disease

targeting a particular anatomical region.
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CR correlation ratio

CS chi-square

CT computed tomography

CTC curve-to-curve
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GLSL OpenGL Shading Language

GPU graphics processing unit

IGE image-guided endoscopy

IGRS image-guided radiosurgery

IGRT image-guided radiation therapy

MAE mean absolute error
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MC Monte Carlo

MI mutual information

micro-CT X-ray microtomography

ML machine learning

MR Magnetic Resonance

MRI Magnetic Resonance Imaging

MSE mean square error
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RC rank correlation

RMSE root mean square error
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SA simulated annealing

SDD source-detector distance

SLNC sum of local normalised correlation

SNR signal-to-noise ratio

SOD source-object distance
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SSD sum of squared distance

SSE sum of squared error

SSIM structural similarity index measure

STC surface-to-curve

STDEV standard deviation

XMR X-ray and MR interventional suite

ZNCC zero-mean normalised cross correlation
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Chapter 1

Introduction

1.1 Context

Radiographic (X-ray) views of hands help clinicians diagnose a wide range of conditions from

simple fractures to skeletal maturity, and bone and joint damage due to autoimmune disorders.

Simple radiograph imaging of the hand and wrist are often preferred over volumetric imaging

modalities, such as computed tomography (CT) and Magnetic Resonance Imaging (MRI), due

to lower patient radiation doses and the wide availability of equipment. Hand radiographs are

2D projections of 3D anatomy, therefore one view is often not enough for clinical diagnoses, so

radiologists rely heavily on experience and atlas matching of multiple views to infer often small,

but relevant irregularities. Alternatively, it can be achieved using 3D/2D registration methods

(e.g. [175]) by registering the patient-specific model of hands to radiographs. Furthermore,

a series of patient-specific models can be obtained using hand radiographs at different stages

of the disease. We can monitor and model the changes from time to time for a specific hand

disease in the 3D space. Thus, a fully automatic process of clinical diagnoses and treatment

planning for other patients can possibly be developed. For example, a man is not feeling well

with his hand. He needs to make an appointment with the clinician who will then arrange a

time to take multiple radiographs for assessment. Then he needs to wait for clinical assessment.

After some time, he is diagnosed with a hand disease. He now requires a treatment plan for

the particular hand disease. During the treatment process, he is required to have his hand

radiographs taken for several times until he recovers. The whole process is time-consuming and

requires multiple visits to the clinician. What if only a single radiograph of his hand is required
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to create the 3D hand for automatic diagnosis and treatment planning. It might only require one

extra visit to confirm if he recovers. It would greatly save time and medical resources.

Many research works has been concentrated on registering 3D CT volumes to 2D X-ray images

while a few worked on 3D models (see Table 2.1). This thesis concentrates on developing a

3D/2D registration method that aims to register a 3D triangular model of a generic hand to a

single radiograph. Our proposed 3D/2D registration method relies on fast X-ray simulation and

optimisation algorithms (see Chapter 3). It is not possible to conduct our work in the same

setting without the advanced development of computer hardware which enables the real-time

X-ray simulation. We start with a proof-of-concept study involves synthetic X-ray images to test

feasibility of our method. The performance of our method is assessed using real-world X-ray

images from MURA dataset [117] (see Chapter 3). Techniques that aim to improve registration

accuracy are investigated (see Chapters 4 and 5). Also, the performance of our method is

assessed using another real-world registration problem, which is the registration of a 3D model

to a hip radiograph from VHP dataset [1].

1.2 Research hypothesis

How to solve registration problems that involves accurate and fast registration of 3D polygon

meshes to X-ray radiographs remains unanswered. We identified there is a lack of research

works in this research area. The registration of 3D polygon meshes to X-ray radiographs can be

performed accurately and fast using our method which heavily rely on optimisation algorithms

and X-ray simulation. With recent advances in graphics processing units (GPUs) and the

development of an open-source high-performance X-ray simulation library (gVirtualXRay),

3D/2D registration can be performed fast. Advanced development of optimisation algorithms

generally leads to improved accuracy. Synthetic data can be used to test the feasibility of our

approach and clinical data can be used to evaluate the performance of our approach in the real

world. We summaries questions, and software and research developments with the research

hypothesis.
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By utilising high-performance X-ray simulation library (gVirtualXRay) and

advanced optimisation algorithms, our 3D/2D registration method can be

used to register a 3D model to a single 2D image accurately and fast, although

care must be given to the choices of metrics and optimisation algorithms

which would greatly affect the registration performance.

1.3 Aim and objectives

The aim of this thesis is to develop a 3D/2D registration method that can register a generic

3D hand model to a clinical hand radiograph. The success of this step lays a great foundation

for further development of our method in a wider context: any given problems involving the

registration of a 3D model to a single 2D image can be solved using our method both accurately

and fast.

The objectives are:

• Surveying registration methods (Chapter 2). We review different 3D/2D registration

methods and identify what are commonly used input data (3D and 2D) and objective

function used in their method.

• Surveying optimisation algorithms and image comparison metrics suitable for registration

problems (Chapter 2).

• Proposing a registration method that registers polygon meshes to X-ray radiographs

and Examining our registration method in a controlled test case using simulated

data (Chapter 3). In this way the feasibility of our method can be assessed.

• Examining our registration method in real-world cases using radiographs with

postero-anterior (PA) hand pose (Chapter 3). We assess the performance of our approach

and identify area for improvement in our method.
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• Addressing deficiencies of the proposed method in real-world cases using different

techniques such as image padding and bi-objective optimisation algorithms (Chapter 4).

• Conducting manual registrations and investigating why some images are harder to register

(Chapter 5). Further improvement of our method can be achieved by addressing the

findings from the manual registration. We assess the performance of our improved method

and investigates the relationship between metric pairs in the context of multi-objective

optimisation.

• Extending our method to another real-world registration problem which involves a

different anatomical region to assess the adaptability of our approach (Chapter 5) to other

articulated musculoskeletal anatomy.

1.4 Contributions

• Our proposed registration methods enable the use of fast X-ray simulations in an objective

function, i.e. radiographs of 3D models are generated repeatedly to match the real

radiograph, which was not possible without advanced development of computer hardware

in recent years. Our work is being extended by other researchers (e.g. [159]).

• 3D kinematic configuration of a hand model, i.e. the recovery of the original hand pose

in a PA view radiograph. Due to the large variability in clinical practice, no assumption

is made in the registration on the source-detector distance (SDD), source-object distance

(SOD) and X-ray beam spectrum. The SDD, SOD, rotation angles of all the joints in the

hand are automatically estimated by our registration framework. The knowledge of the

3D pose of a hand in a radiograph will allow us to trivially and accurately solve bone

segmentation and flag clinically relevant (e.g. rheumatoid) differences from a baseline.

• Registration of a highly articulated and anatomically correct 3D mesh model, hereby

referred to as the phantom model, to a real radiograph using a digitally reconstructed
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radiograph (DRR) software (https://sourceforge.net/p/gvirtualxray/) [157],

[161]. Our proposed optimisation process (inside green box in Figure 3.1) consists of

using a single-objective evolutionary algorithm to solve for the articulated 3D pose of

the virtual hand that best fits the real radiograph. This experiment was carried out using

15 radiographs from a public dataset, MURA dataset https://stanfordmlgroup.

github.io/competitions/mura/ [117].

• Image padding and bi-objective optimisation were used to address deficiencies of our

proposed method, i.e. we aim to register images that were not able to registered in previous

experiments (Chapter 3). Also, we compared the registration performance between single-

and bi-objective optimisation algorithms. This experiment was carried out using 15

radiographs from the MURA dataset.

• We enabled the uses of manual registration to study the causes of problems encountered in

earlier experiments (see Chapters 3 and 4) and multi-objective optimisation algorithms to

further improve our registration method. The relationship between different metrics in the

multi-objective optimisations were investigated. This experiment was carried out using 3

radiographs from the MURA dataset and the hip radiograph from VHP dataset [1].

1.5 Outline of the thesis

This thesis is divided into seven chapters. The first chapter discusses the motivation of our

researches, presents aims and objectives, and lists main contributions to science as well as our

published papers. The second chapter introduces the general concept of 3D/2D registration,

discusses traditional 3D/2D registration methods, and lists common metrics and optimisation

algorithms. The third chapter proposes a 3D/2D registration method, tests the feasibility of our

approach and compares the performance between different optimisation algorithms. Also, the

performance of our registration method is assessed in real-world registration problems. The

fourth chapter investigates the effect of image padding in 3D/2D registration and addresses

deficiencies of the proposed method using a bi-objective optimisation algorithm. The fifth
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chapter investigates deficiencies of the proposed method using manual registrations, improves

registration accuracy using multi-objective optimisation algorithms and analyses the relationship

between different metrics in multi-objective optimisation. Our approach is then adapted to

another anatomical region, the hip, which is to test the adaptability of our method. The

last chapter concludes our research work and discusses the limitation of our approaches, and

introduces further research directions.
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Chapter 2

Related work

2.1 Introduction

Registration is the process of transforming one coordinate system to match with another

coordinate system. Solving an image registration problem typically involves the transformation

of a moving dataset (called source) to match a fixed dataset (called target). The transform could

be rigid or non-rigid. While the rigid transform only allows rotation and translation, non-rigid

transform allows free-form mappings but typically imposes some restrictions [177].

3D/2D registration methods concentrate on the registration of the source (e.g. a CT volume)

to the target (e.g. a 2D image). Figure 2.1 illustrates the general concept of establishing the

dimensional correspondence in traditional 3D/2D registration methods. There are four main

components in traditional 3D/2D registration method: i) inputs (the source and the target),

ii) the transform, iii) the objective function and iv) the optimisation algorithm. Changes to

each individual component would result in different performance of the registration methods.

Depending on the registration process, 3D/2D registration methods could be classified as

extrinsic, intrinsic and calibration-based [92]. More details will be discussed in Section 2.2.

Machine learning (ML) is a very popular research topic where deep learning (DL) is the

leader in this field. DL has been widely used in solving complex problems such as image

classification [79] and speech recognition [53]. In recent years, deep learning has been applied
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in solving 3D/2D medical registration problems where the registration of the CT volumes (or a

3D model) to 2D X-ray images is performed [24], [39], [57], [172], [179].

3D/2D registration has many clinical applications such as image-guided radiation therapy

(IGRT) [17], [31], [36], [61], [116], image-guided radiosurgery (IGRS) [22], [41], [112], [113],

[122], [123], image-guided endoscopy (IGE) [93], [134] and motion correction [21], [35], [46],

[72], [88], [90].

The rest of the chapter is organised as follow: Section 2.2 summaries different 3D/2D registration

methods and shows what type of inputs is used in traditional 3D/2D registration methods,

Section 2.3 discusses some image registration methods that utilise deep learning techniques,

Section 2.4 presents similarity and dissimilarity measurements that are used in the objective

function in 3D/2D registration methods, Section 2.5 lists different types of optimisation

algorithms in 3D/2D registration methods and Section 2.6 presents basic information about

X-ray simulation and a library that is used to generate X-ray images.

2.2 Traditional 3D/2D registration methods

In all registration methods, the dimensional correspondence between the source and the target

must be established. There are three strategies that can be used to achieve this goal in traditional

3D/2D registration methods: i) projection, ii) back-projection and iii) reconstruction (Figure

2.1).

Figure 2.2 shows registration methods based on the projection strategy. Source is transformed

and then projected onto a 2D plane. In this way 3D/2D registration becomes 2D/2D. The

distance between the 2D projections of the source and the target is then minimised with an

optimisation algorithm to obtain optimal solutions. Figure 2.3 shows registration methods based

on back-projection strategy. The target is back-projected into the 3D space. The best solution is

found by optimising the distance between the transform of the source and the back-projected 3D

model (or 3D gradient vectors). The reconstruction strategy is similar to the back-projection
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Dimensional
correspondence

Comparison
(3D/3D)

Comparison
(2D/2D)

Transform

Source (3D) Target (2D)

Transform

Figure 2.1: General strategies of establishing the dimensional correspondence in traditional 3D/2D
registration methods. Examples of 3D and 2D data are shown including a 3D hand model and an X-ray
images. The 3D Source can be projected onto a 2D plane where comparison is performed in 2D space.
The 2D Target can be back-projected or reconstructed into 3D space where comparison is performed in
3D space.

strategy where 3D/2D registration becomes 3D/3D. Usually, the target consists of multiple 2D

images (or 2D gradient images) which are then reconstructed to become a 3D model (or 3D

images, or 3D gradient vectors).

2.2.1 Extrinsic methods

Extrinsic methods often require the assist of artificial objects such as stereotactic frames [65]

and fiducial markers [6], [69], [85], [136], [138], [145]. Markers can be implanted into the

human body (e.g. as shown in Figure 2.5). All three strategies can be used to establish the

dimensional correspondence in extrinsic registration methods (Figures 2.2, 2.3 and 2.4). For

example, the projection strategy was used in [69], [136], [138]. Firstly, a fiducial marker that is

made of gold is inserted into the tumour or placed near the tumour. The position of the marker

in the CT image is projected on onto the 2D plane. Registration is performed by minimising
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Image  
Comparison

 Criterion
met?

2D images

Figure 2.2: A diagram of 3D/2D registration methods that utilise the projection strategy. The distance
is minimised between 2D projections of the source and the 2D target.

the distance between projected marker from the CT image and the X-ray image. Tang, Ellis

and Fichtinger [145] proposed a 3D/2D registration method that based on the back-projection

strategy. Virtual X-rays were firstly created to connect markers on 2D images with the X-ray

source. Then the registration was performed by minimising distance between back-projected

markers and virtual X-rays. The reconstruction strategy was applied in [6], [85]. The 3D

markers were reconstructed from multiple radiographs where the position of 3D markers were

determined. The registration was performed by minimising the distance between reconstructed

3D markers and reference 3D markers that are obtained from the CT dataset.

2.2.2 Intrinsic methods

Intrinsic methods concentrate on anatomical structures in the data and unlike extrinsic methods,

in the sense that they solely rely on information contained in the data. Depending on what
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Transform
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3D Source2D Target

Comparison

 Criterion
met?

Back-projections

3D model or
gradient vector

Final solution(s)

Transformed 3D
source

Figure 2.3: A diagram of 3D/2D registration methods that utilise the back-projection strategy. The
distance is minimised between the 3D source and the back-projected 3D model (or 3D gradient vectors)
from the target.

information is determined to be important, Intrinsic methods can be classified as feature-,

intensity- and gradient-based [92]. Feature-based methods concentrate on features such as

points, a set of points that are forming a line, curve, contour or surface. While intensity-based

methods rely on information that is contained in 3D voxels and 2D pixels, gradient-based

methods rely on information that is contained in 3D or 2D gradient vectors.

2.2.2.1 Feature-based methods

Feature-based 3D/2D registration methods are looking to find correspondences between 3D

features and 2D features that are extracted from 3D and 2D dataset by the use of image

segmentation [52]. Image segmentation is a technique that separates the data into different

regions where complexity of data is greatly reduced. A commonly used image segmentation
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Figure 2.4: A diagram of 3D/2D registration methods that utilise the reconstruction strategy. The
distance is minimised between 3D source and the reconstructed 3D model (or 3D image, 3D gradient
vectors) from the target.

technique is thresholding. The simplest form of thresholding approach is binary where pixels

are separated into two classes based on a threshold value. A more complex thresholding

method which partitions the data into many different classes was developed in [5]. Other

segmentation techniques are also developed such as clustering [26] and neural networks [45].

However, segmentation consumes a lot of computational resources (or human resources if

manual segmentation is performed) and inaccurate segmentation would result in reduced

registration accuracy. Depending on the segmentation methods that are used, reduced data

might also lead to loss of some important features. Some methods are developed to reduce the

effect of inaccurate segmentation [76], [173].
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Figure 2.5: An example radiograph of abdomen that contains three cylindrical fiducial markers. Source:
Figure 2 in [23].

Depending on different targeting correspondence pairs between 3D and 2D features,

feature-based 3D/2D registration methods can be classified as point-to-point (PTP),

curve-to-curve (CTC) and surface-to-curve (STC).

PTP methods aim to locate the position of 2D points in a 2D image and corresponding 3D points

in 3D image. The choice of points’ location is usually determined manually by an operator.

For example, corresponding point pairs were marked manually and registration was performed

using an extrinsic registration method as presented in [14]. PTP method is time-consuming and

some important features may lost due to human intervention. However, it is fast and easy to

implement where in some case, it could be used for an initial approximation in a more complex

registration method [10].

CTC methods aim to locate curves in 3D and 2D dataset. A CTC registration method based on

the projection strategy was developed in [50]. The registration was performed by minimising

the distance between the projected 3D curve and the 2D curve. The back-projection strategy was

applied in [37]. 2D curve are back-projected into 3D space and the registration is performed by
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minimising the distance between 3D curve and back-projected 2D curve. The 3D/2D registration

becomes 3D/3D where curve correspondences are established.

STC methods aim to determine correspondences between surface and curve, from the 3D and

the 2D dataset, respectively. A STC registration method was presented in [181] where both

projection and reconstruction strategy were applied. A 3D point distribution model (PDM) was

created and was projected onto the 2D plane. 2D point pairs were obtained by minimising the

distance between projected point sets and 2D points sets in X-ray images. Then 2D point pairs

were then reconstructed into 3D space.

2.2.2.2 Gradient-based methods

Gradient-based methods aim to find the correspondence between 3D and 2D gradient vectors

that are extracted from 3D and 2D dataset, which were firstly introduced in [86], [148]. All

three strategies can be used to establish dimensional correspondence (Figures 2.2, 2.3 and 2.4).

Tomazevic, Likar, Slivnik et al. [148] proposed a gradient-based 3D/2D registration method

that registers a 3D CT or Magnetic Resonance (MR) image to 2D X-ray images. Dimensional

correspondence is established by applying the back-projection strategy. The 3D gradient vector

field was extracted from a 3D CT or MR image and 2D gradient vectors were extracted from

2D X-ray images. Registration is performed by back-projecting 2D gradient vectors in 3D

where the distance (both magnitude and direction) between the 3D gradient vector field and

3D back-projecting gradient vectors is minimised. A gradient-based method based on the

projection strategy was developed in [167] where registration is performed by maximising the

similarity between the projection of the 3D gradient image and the 2D gradient image. Another

gradient-based method that relys on the reconstruction strategy was presented in [91]. The 3D

gradient vector field and 2D gradient vectors were extracted from a 3D CT (or MR image) and

2D X-ray images, respectively. Multiple 2D gradient vectors were used to reconstruct a 3D

gradient vector field. Registration is performed by maximising the similarity between two 3D

gradient vector fields.
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2.2.2.3 Intensity-based methods

Most intensity-based methods are digitally reconstructed radiograph (DRR)-based where

registration is performed using DRRs that are generated from the 3D dataset and 2D X-ray

images. A DRR is a radiographic image that is generated from a CT volume. DRR-based

registration methods rely on similarity or dissimilarity measurements between the generated

DRR and the 2D X-ray image. More details about similarity or dissimilarity metrics will be

discussed in Section 2.4 (also in Table 2.2).

CT DRRs
Projections

X-ray images

Transform
parameters

Criterion met

Criterion 
not met

Optimisation
algorithm

Transform

Figure 2.6: A DRR-based 3D/2D registration method that register a CT volume to X-ray images where
the projection strategy is applied by Gong, Stewart and Abolmaesumi [47].

Table 2.1 gives an overview of inputs that are required in different intensity-based 3D/2D

registration methods. Most methods are concentrating on registering a 3D CT volume to X-ray

images so that the projection strategy is used to achieve the dimensional correspondence. For

example, Gong, Stewart and Abolmaesumi [47] proposed an approach to register a CT volume

to multiple X-ray images with different views (Figure 2.6). Multiple DRRs are generated

from CT data by rigid transformation (rotation and translation). The similarity measurements

between DRR and X-ray image pairs are then optimised which gives a set of metric values.

They argued that information is lost if all metric values are combined into a single metric value.

This is due to the fact that multiple X-ray images with different views are used. Each metric

value in the metric value sets is different from each other. In other words, some metric values
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would impose more weights on the determination of the final metric value than if a single metric

value was used.

Figure 2.7: A DRR-based 3D/2D registration method that registers a 3D model to X-ray images where
the projection strategy is applied by Yao and Taylor (Source: Figure 1. Experiment flow chart [175]).
The 3D model is reconstructed using DRRs from a CT image.

A similar registration approach that utilises the projection strategy is proposed by Yao and

Taylor [175]. Their approach aims to register a 3D statistical model to multiple X-ray images

(Figure 2.7). Firstly, a 3D statistical density model is reconstructed based on contours of the

object from CT images. DRRs are obtained by non-rigid transformation of the 3D statistical

density model. Registration is performed by maximising the similarity measurements between

the DRRs that are generated from the 3D statistical density model and the DRRs that are

generated from a CT dataset. They have identified some factors that might affect the accuracy

of registration:

• Number of 2D projection views. Generally speaking, when number of views increases,

the registration accuracy improves although improvements are not significant when

number of views is greater than three.
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• The angle between two projection views. The accuracy is the highest when two

projections are orthogonal to each other and the accuracy is the lowest when the angle

between two projections is 0 degree.

• Image noise. When the noise level (magnitude) is high, the registration accuracy is

reduced.

• Image distortion. Spatial distortion on X-ray images reduces the accuracy of registration.

• Co-registration error. Registration accuracy decreases when co-registration of DRRs

produces error. Co-registration is the process of registering multiple 2D images with

different views (i.e. radiographs taken at different angles) to determine their relative pose

in relation to a fixed coordinate system.

Other DRR-based registration methods where the 3D model that is represented by tetrahedral

mesh were also developed in [58], [127], [128] and different mesh representation (triangular

mesh) also explored [4], [154]. The related literature can also be found in Table 2.1.

We discussed some DRR-based registration methods that utilise the projection strategy where

3D/2D registration becomes multiple 2D/2D registrations. The reconstruction strategy can also

be applied. For example, Tomazevic, Likar and Pernus [147] proposed a registration method

that is based on the reconstruction strategy. Their approach aims to register 3D images to 2D

X-ray images. The 3D image is reconstructed from multiple 2D X-ray images. Registration is

performed by optimising the similarity measurements between reconstructed 3D image and the

reference 3D image. They argued that valuable information is lost and registration accuracy

might be reduced in DRR-based registration methods where the projection strategy is applied.

2.2.3 Calibration-based methods

Calibration-based methods aim to establish dimensional correspondence by incorporating an

imaging system which combines both 2D and 3D data. For example, Rhode, Hill, Edwards

Related work 20



Table 2.1: Different 3D and 2D data that are used in intensity-based 3D/2D registration methods

Related literature 2D data 3D data

[15], [16], [18], [25], [30], [33], [42], [47], [54], [59], [68],
[73]–[75], [77], [80], [84], [100], [101], [104], [109]–[111],
[120], [121], [124]–[126], [154], [164]–[166], [178], [180],
[182], [183]

X-ray CT

[70] DSA Angiography

[4], [81] X-ray Model
(triangular mesh)

[58], [127], [128], [175] X-ray Model
(tetrahedral mesh)

et al. [118] proposed a registration method that registers MR images to X-ray images. Their

approach relies on X-ray and MR interventional suite (XMR) systems where patients can be

transferred between MR and X-ray systems. Imaging devices are firstly calibrated and a tracking

system is used to determine the relative position of X-ray set, patient and the MR scanner. The

tracking information enables the registration of projections that are generated from the MR

image to X-ray image. Also, registration of CT to digital subtracted angiograph (DSA) can also

be performed by using the calibration-based registration method [60].

2.3 Deep learning-based registration methods

Early development of DL-based registration methods concentrates on incorporating deep

learning techniques into existing registration methods such as intensity-based registration

methods. For example, Wu et al. [171] proposed a registration framework where feature

extraction of 3D MR brain images is performed using a stacked two-layer convolutional network.

Then registration is performed by optimising the similarity metric between two sets of features.

Simonovsky et al. [139] developed a similarity metric based on a convolutional neural network

(CNN) which is then applied into the optimisation process.

In recent years, registration methods that aim to establish correspondences between input data

(the target and the source) are also developed. Miao et al. [96] proposed a rigid registration
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Figure 2.8: The CNN architecture used by Miao et al. Source: Figure 4 in [96].

method which aims to match DRRs of 3D model with X-ray images using CNN. Feature

extraction is performed on original images and residual differences between extracted images

are computed. The difference image is then fed to a six-layer CNN (as shown in Figure 2.8)

where the output layer (F2) corresponds to transformation parameters. Their model is trained

using synthetic images and validation is carried out using a dataset for Virtual Implant Planning

System (VIPS) [155]. Results show that their method outperforms some intensity-based method

such as mutual information (MI) and gradient correlation (GC) both in terms of accuracy and

speed. Similar approaches that concentrate on rigid registration using CNN can be found in

[129], [141].

Cao et al. [20] proposed a deformable registration framework based on CNN which the complex

mappings between input pairs and the deformation field can be found. Their approach is shown

in Figure 2.9. They firstly extract image patches from inputs at same location. Those image

patches are then fed into a CNN to compute displacement vectors. A series of displacement

vectors constitute a deformation field which can be used to perform registration. Also, similarity

measurements between those image patches are used to guide the learning process. They used

the active-points guided sampling strategy which prefers images patches with higher gradient
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Figure 2.9: An input-to-deformation mapping method proposed by Cao et al. Source: Figure 1 in [20].

magnitude and displacement values, i.e. voxels with rich anatomical information would be

more likely to be sampled. Two datasets contains MR brain volumes are used to evaluate

their method including the LONI Probabilistic Brain Atlas (LPBA40) [137] and Alzheimer’s

Disease Neuroimaging Initiative (ADNI) [98]. Although 2D images are used for illustration (as

shown in Figure 2.9), their evaluation is conducted using MR brain volumes. The registration

results show that their approach outperforms some state-of-the-art methods such as SyN [7]

and Demons [153]. The area with better alignment is highlighted by yellow arrows and lines in

Figure 2.10.

Lv et al. [88] also developed a deformable registration method based on CNN where the

registration of abdominal MR images is performed to correct respiratory motion. The input

image pairs are fed into CNN which outputs the displacement vector field where registration

is performed. They used self-acquired dataset for evaluating their method. Their approach

performs well in terms of evaluation metrics and visual assessment by two radiologists. Other

research works that are dedicated to deformable registration methods can be found in [119],

[142], [150].

The first main challenge that DL-based 3D/2D registration methods faces is the requirement of a

large number of annotated training data. However, those dataset might not be easily accessible.
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Figure 2.10: The registration result of their proposed method by Cao et al. Source: Figure 5 in [20].

Also, the training process of the learning model is often time-consuming where advanced

hardware such as high-performance GPU is required, which might not be feasible in some cases.

2.4 Survey of similarity and dissimilarity metrics

Some commonly used similarity and dissimilarity metrics in 2D/3D registration are discussed

in this section. Table 2.2 displays those metrics along with their equation and related literature.

We define two images, the target image Y and the predicted image Ŷ, with same number of

pixels along the horizontal (𝑤) and vertical axis (ℎ). The standard deviations of the pixel values

in target and predicted images are represented by 𝜎Y and 𝜎Ŷ. 𝜎2
Ŷ

are variance of Y and Ŷ.

2.4.1 Normalised cross correlation

Normalised cross correlation (NCC) [15] is a similarity metric. The NCC between two images

Y and Ŷ is defined as:

NCC
(
Ŷ,Y

)
=

1
𝑤 × ℎ

ℎ∑︁
𝑗

𝑤∑︁
𝑖

Ŷ(𝑖, 𝑗)Y(𝑖, 𝑗)
𝜎Ŷ𝜎Y

(2.1)
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Table 2.2: Summary of metrics that are used in 3D/2D intensity-based registration methods

Metrics Equation Related literature Number count
NCC Eq. 2.1 [15], [25], [30], [47], [54], [63], [70], [71], [73], [74],

[77], [80], [83], [99]–[101], [111], [125], [130], [178]
20

MI Eq. 2.4 [25], [33], [54], [71], [73]–[75], [84], [99], [111],
[121], [124]–[126], [130], [180], [182], [183]

18

PI Eq. 2.7 [15], [16], [33], [54], [55], [71], [74], [84], [109],
[111], [120], [125], [140], [164]–[166]

16

GD Eq. 2.8 [19], [54], [59], [71], [74], [94], [105], [109]–[111],
[125]

11

GC Eq. 2.9 [18], [30], [54], [71], [83], [104], [146] 7
SSD Eq. 2.10 [42], [63], [68], [71], [180], [182] 6
EOD Eq. 2.12 [54], [74], [111], [125] 4
SNLC Eq. 2.14 [71], [77], [81], [82] 4

CS Eq. 2.15 [25], [102], [103], [130] 4
CR Eq. 2.16 [25] 1
SRC Eq. 2.17 [15] 1

Zero-mean normalised cross correlation (ZNCC) is a similarity metric and ZNCC between two

images Y and Ŷ is defines as:

ZNCC
(
Ŷ,Y

)
=

1
𝑤 × ℎ

ℎ∑︁
𝑗

𝑤∑︁
𝑖

(
Ŷ(𝑖, 𝑗) − Ŷ

) (
Y(𝑖, 𝑗) − Y

)
𝜎Ŷ𝜎Y

(2.2)

Y and Ŷ are mean pixel value of target and predicted images. ZNCC is easy to interpret. It

ranges from -1 to 1, where i) the value is close to 1, the two images are highly similar which

implies high level of correlation, ii) the value is 0, two images are extremely different which

implies there is no correlation, iii) the value is -1, one image is the negative of the other

image which implies they are anti-correlated or inversely correlated. ZNCC is widely used in

image comparison due to its robustness in template matching [34], [78]: it is robust to linear

transformations, i.e. to gain and bias differences. It means that if Ŷ = 𝑎Y + 𝑏, ZNCC is 1 when

𝑎 > 0 and -1 if 𝑎 < 0.
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2.4.2 Mutual Information

MI compares the statistical information between two images [143]. MI measures of the mutual

dependence between the two random variables and can be used as a similarity metric between

two images Y and Ŷ. It is defined as:

MI
(
Ŷ,Y

)
= H(Ŷ) − H(Ŷ|Y) (2.3)

Where H(Ŷ) is entropy for Ŷ and H(Ŷ|Y) is the conditional entropy for Ŷ given Y. MI is used

to detect non-linear relationship between images. The value of MI is non-negative and is often

hard to interpret. It can be written in the normalisation form:

NMI
(
Ŷ,Y

)
=

H(Ŷ) + H(Y)
H(Ŷ,Y)

(2.4)

Where H(Y) and H(Ŷ) are the entropy for Y and Ŷ, respectively.

H(Y) = − 1
𝑤 × ℎ

ℎ∑︁
𝑗

𝑤∑︁
𝑖

Y(𝑖, 𝑗) log
1

Y(𝑖, 𝑗) (2.5)

And H(Ŷ,Y) is the joint entropy (Equation 2.6).

H(Ŷ,Y) = − 1
𝑤 × ℎ

ℎ∑︁
𝑗

𝑤∑︁
𝑖

Y(𝑖, 𝑗)Ŷ(𝑖, 𝑗) log
1

Y(𝑖, 𝑗)Ŷ(𝑖, 𝑗)
(2.6)

The value of NMI is also easy to interpret. It ranges from 1 (uncorrelated) to 2 (perfectly

correlated).
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2.4.3 Pattern intensity

Pattern intensity (PI) is a similarity metric which measures the changes of structural information

on the difference image [165]. A small value is assigned to area within the neighbourhood of

structure such as edges and lines while a large value is assigned to area with little gray-value

variation. PI is defined as:

PI
(
Ŷ,Y

)
=

∑︁
𝑖, 𝑗

∑︁
(𝑖−𝑣)2+( 𝑗−𝑤)2≤𝑟2

𝜎2

𝜎2 + (ΔY(𝑖, 𝑗) − ΔI(𝑣, 𝑤))2 (2.7)

𝑟 and 𝜎 are two parameters set by the user. 𝑟 is used to define the size of area that will be

considered and 𝜎 is the sensitivity that defines the area to be structure or not. ΔY is the

difference image as defined in Equation 2.13. ΔI is the difference image of selected regions

defined by 𝑟.

2.4.4 Gradient difference

Gradient difference (GD) [111] is a dissimilarity (or distance) metric and GD between two

images Y and Ŷ is defined as:

GD
(
Ŷ,Y

)
=

1
𝑤 × ℎ

ℎ∑︁
𝑗

𝑤∑︁
𝑖


𝜎2

Y

𝜎2
Y + Δ 𝜕Y

𝜕𝑖

2 +
𝜎2

Ŷ

𝜎2
Ŷ
+ Δ 𝜕Ŷ

𝜕 𝑗

2

 (2.8)

The value of GD is non-negative and the best value can be achieved is 1 where two gradient

images are same.

2.4.5 Gradient correlation

GC [111] is a similarity metric and it is the average value of Normalised cross correlation

(NCC) between gradient images, where GC between two images Y and Ŷ is defined as follow:
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GC
(
Ŷ,Y

)
=

1
2

{
𝑁𝐶𝐶

(
𝜕Y
𝜕𝑖

,
𝜕Ŷ
𝜕𝑖

)
+ 𝑁𝐶𝐶

(
𝜕Y
𝜕 𝑗

,
𝜕Ŷ
𝜕 𝑗

)}
(2.9)

Where 𝜕
𝜕𝐼

is calculated using Sobel filter. The Sobel filter, or Sobel operator is a technique to

find approximations of the derivatives which is achieve by convolving the a matrix (kernel with

size of 𝑛 by 𝑛) with the original image.

2.4.6 Sum or Mean squared error

Sum of squared error (SSE), also known as sum of squared distance (SSD) is a dissimilarity (or

distance) metric and SSE between [42] between two images Y and Ŷ is defined as:

SSE
(
Ŷ,Y

)
=

ℎ∑︁
𝑗

𝑤∑︁
𝑖

(
Y(𝑖, 𝑗) − Ŷ(𝑖, 𝑗)

)2
(2.10)

Mean square error (MSE) is a dissimilarity (or distance) metric and it is calculated by dividing

SSE with the total number of pixels, denoted by 𝑤 × ℎ.

MSE
(
Ŷ,Y

)
=

1
𝑤 × ℎ

× 𝑆𝑆𝐸 (2.11)

where 𝑤 and ℎ are the number of pixels in Y and Ŷ along the horizontal and vertical axis

respectively. The best values of SSE and MSE are 0 where two images are same. MSE tends to

penalise outliers, i.e. a larger value is assigned to the outlier point. On the other hand, MSE

tends to be unreliable if there is a small number of data points.

2.4.7 Entropy of difference

Entropy of difference (EOD) [74] is a dissimilarity (or distance) metric, which measures entropy

on the difference image ΔY, is defined as:
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EOD
(
Ŷ,Y

)
= − 1

𝑤 × ℎ

ℎ∑︁
𝑗

𝑤∑︁
𝑖

ΔY(𝑖, 𝑗) logΔY(𝑖, 𝑗) (2.12)

where 𝑤 and ℎ are the number of pixels in the difference image ΔY.

ΔY = Y − 𝑠 × Ŷ (2.13)

Where 𝑠 is a scaling factor. Normally, 𝑠 = 1 when images have same size and intensity range.

The best value of EOD is 0 where two images are same.

2.4.8 Sum of local normalised correlation

Sum of local normalised correlation (SLNC) [82] is a similarity metric and SLNC between Ŷ

and Y is defined as:

SLNC
(
Ŷ,Y

)
=

1
|𝑁 |

∑︁
𝑛∈𝑁

𝑁𝐶𝐶 (Ŷ,Y,P𝑛) (2.14)

Where 𝑁𝐶𝐶 (Ŷ,Y,P𝑛) is the normalised correlation coefficient between two images at area P𝑛.

𝑁 is the total number of data points.

2.4.9 Chi-square

Chi-square (CS) [25] is a dissimilarity metric which measures the distance between two images

Ŷ, Y and it is defined as:

CS(Y, Ŷ) = 1
𝑤 × ℎ

ℎ∑︁
𝑗

𝑤∑︁
𝑖

(Y(𝑖, 𝑗) − Ŷ(𝑖, 𝑗))2

Y(𝑖, 𝑗) + Ŷ(𝑖, 𝑗)
(2.15)
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2.4.10 Correlation ratio

Correlation ratio (CR) [25] is a similarity metric and CR between two images Y and Ŷ is

defined as:

CS(Y, Ŷ) = 1 − 1
𝑤 × ℎ

ℎ∑︁
𝑗

𝑤∑︁
𝑖

(Y(𝑖, 𝑗) − Ŷ(𝑖, 𝑗))2

𝜎2
Y

(2.16)

2.4.11 Stochastic rank correlation

Stochastic rank correlation (SRC) [15] is a similarity metric and it is based on Spearman’s rank

correlation coefficient which assesses the rank correlation between two variables. Standard RC

is computed using total number of pixels (𝑛) but SRC concentrates on total number of pixels in

the selected region (𝑅). SRC between two images Y and Ŷ is defined as:

SRC(Y, Ŷ) = 6 ×
𝑅∑︁
𝑟

(Y𝜌𝑟 − Ŷ𝜌𝑟 )2

𝑟 (𝑟2 − 1)
(2.17)

Where 𝑟 ≪ 𝑁 and 𝜌𝑟 is the set of ranks of pixels in the selected region 𝑅.

The rank correlation (RC) between two images Y and Ŷ is defined as:

RC(Y, Ŷ) = 6 ×
𝑁∑︁
𝑛

(Y𝜌𝑛 − Ŷ𝜌𝑛)2

𝑛(𝑛2 − 1)
(2.18)
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2.4.12 Mean absolute error

Mean absolute error (MAE) is a dissimilarity (or distance) metric. The MAE between two

images Y and Ŷ is defined as:

MAE(Y, Ŷ) = 1
𝑤 × ℎ

ℎ∑︁
𝑗

𝑤∑︁
𝑖

��Ŷ(𝑖, 𝑗) − Y(𝑖, 𝑗)
�� (2.19)

where 𝑤 and ℎ are the number of pixels in Y and Ŷ along the horizontal and vertical axis

respectively. MAE is always non-negative and the best value can be achieved is 0. MAE is often

easy to interpret since it has same units of measurement as the data. Also, MAE is less sensitive

to outliers which makes it more suitable for assessing the average model performance [170]

than MSE.

2.4.13 Mean absolute percentage error

Mean absolute percentage error (MAPE) is also known as relative error is also popular to

quantify dissimilarities as it can be expressed as a percentage.

MAPE(Y, Ŷ) = 100%
𝑤 × ℎ

ℎ∑︁
𝑦

𝑤∑︁
𝑥

����Y(𝑖, 𝑗) − Ŷ(𝑖, 𝑗)
Y(𝑖, 𝑗)

���� (2.20)

However, MAPE will be excessively high and unreliable when Y(𝑖, 𝑗) is close to 0.

2.4.14 Practical examples

The similarity or dissimilarity metrics are widely used for comparing two images. However,

the metric value does not always tell the whole story, i.e. sometimes the metric value can be

misleading. For example, Figure 2.11 shows three different images with same size defined by

width and height. The question is which image (2 or 3) is more similar to Image 1. At first

glance Image 2 appears to be more similar to Image 1 visually. Let’s take two metrics (MAE

and RMSE) for statistical comparisons. The MAE between Image 1 and 2 is 0.2 and MAE
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is 0.22 between Image 1 and 3, where it implies that Image 1 and 2 are more similar to each

other. However, RMSE between Image 1 and 2 is 0.63 while RMSE between Image 1 and 3 is

0.6. Image 3 is more similar to Image 1 when RMSE is used for comparison. For both image,

ZNCC equals to zero which indicates that neither Image 2 nor 3 is similar to Image 1.

Image 1
Image 2

MAE = 0.20√
MSE = 0.63

ZNCC = 0.00

Image 3
MAE = 0.22√
MSE = 0.60

ZNCC = 0.00

Figure 2.11: Three images with same size of 10 by 10 (width and height) pixels. Note that ZNCC is
multiplied by 100 which the value is displayed in percentage.

Another example is shown in Figure 2.12. Image 2 is the mean image of Image 1 and Image 3

is computed by subtracting Image 1 by the its mean value. For both metrics (MAE and RMSE),

they believe that Image 2 is more similar to Image 1. However, Image 3 appears to be more

similar to Image 1 visually which is agreed by ZNCC (100% for Image 1 and 3 vs 0% for Image

1 and 2). From those examples we can conclude that a single metric is generally not very reliable

and care must be given to the choice of metrics. Also, visual comparison or assessment can be

helpful but expert knowledge is required if complex data is involved (e.g. medical images).

2.5 Survey of optimisation algorithms

Optimisation is a process of finding the best solution or solutions of a given problem. An

optimisation algorithm is a set of rules (or instructions) that describes the optimisation process.

Optimisation algorithms are often used in solving complex problems that require repetitive
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Image 1
Image 2

MAE = 33.73√
MSE = 38.70

ZNCC = 0.00

Image 3
MAE = 228.85√
MSE = 228.85

ZNCC = 100.00

Figure 2.12: Three images with same size. Image 2 is the mean image of Image 1 and Image 3 is
computed by subtracting Image 1 by its mean value. Note that ZNCC is multiplied by 100 which the
value is displayed in percentage.

computation. The main component in an optimisation algorithm is the objective function which

quantifies the quality of solutions. The objective function is constructed using one or multiple

metrics (see Section 2.4). The goal of optimisation algorithms is to optimise the objective

function which will gives the best solution.

2.5.1 Pure random search

The idea of pure random search (PRS) is simple: i) generate 𝑁 random sample points uniformly

distributed within given boundaries, and ii) select the solution that produce the best metric

value. The best solution must have the lowest metric value (Figure 2.13) or highest metric value

if similarity metrics are used. PRS is simple to use and fast to run, and it is often used as a

baseline to compare with other methods.
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Figure 2.13: A set of solutions in a minimisation problem where the best solution is selected based on
lowest metric values when PRS is used.

2.5.2 Simulated annealing

An unique current solution is used at any one time in optimisation algorithms such as Downhill

Simplex, conjugate gradient (CG) and simulated annealing (SA). However, the introduction of

an acceptance probability enables the SA algorithm to accept solutions worse than the current

one to escape local optima [95] (see Figure 2.14).

SA is based on annealing in metallurgy where a material is heated and cooled down in a

controlled environment. The aim is to reduce defects in the treated material. SA mimics this

behaviour with:

• A high temperature is first used. The aim is to widely explore the search space.

• The temperature is progressively reduced to restrict the search space, hence refine the

results.
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Figure 2.14: Illustration of the optimisation process in SA. Source: Ghasemalizadeh, Khaleghian and
Taheri (2016) [44].

Solutions could possibly be improved by introducing a restart mechanism where the annealing

process is repeated for several times. One disadvantage of SA is that temperature cooling must

be slow, i.e. more computational resources are required.

2.5.3 Evolutionary Algorithms

In evolutionary algorithms (EAs) concurrent solutions are used at each iteration of the

algorithm [8]. An EA relies on the theory of biological evolution proposed by Charles

Darwin [29]. A flowchart of how EA works in the 3D/2D registrations is presented in

Figure 2.15. A solution is called ‘individual’ that is defined by a sequence of genes which is

a set of transform parameters in our case. The performance of each individual is measured

using a fitness function (i.e. the objective function to be optimised). The set of individuals is

called ‘population’. Genetic operators (usually selection, crossover, mutation and elitism) are

repetitively used on the individuals of the population. Individuals with best fitness values are
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given a higher probability to reproduce. At each iteration, a new population of offspring is

generated from the current population (the parents) where least-fit individuals are removed. At

the end of the algorithm, the best individual is obtained. A restart mechanism that repeats the

whole process several times can also be used to increase the chance of getting out of the local

optima. The main advantages of EA are no gradient information is needed and the ability to

approach global optima.

Initial population

Calculate fitness value

Termination  
criterion met?

Best
Solution

Selection

Crossover

Mutation

New population

No

Yes

Figure 2.15: Illustration of the EA algorithm.

2.5.4 Fly algorithm

The Fly algorithm [87] is an evolutionary algorithm that is based on the Parisian approach. All

individuals in the population collaborate toward a common goal rather than compete [27]. It

was initially developed for real-time stereo vision in robotics. The Fly algorithm is implemented
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as any other EA (i.e. with all the common genetic operators such as selection, crossover and

mutation) [49]. It evolves a population of individuals called flies, which correspond to 3D

points in the problem space. Each fly is projected in the object space. The type of projection is

problem-dependent. The fitness function is computed from those projections. In the Parisian

approach there are two levels of fitness function:

1. The local fitness function evaluates the performance of a given fly. It is used during the

selection process. For a fly, improving its local fitness means increasing its chances of

survival and being selected to reproduce.

2. The global fitness function assesses the performance of the whole population. Improving

the global fitness is the goal of the whole population which produces the global optima.

The local fitness can be implemented as a marginal fitness (𝐹𝑚) using the global fitness with the

leave-one-out cross-validation principle (MAE is used in the global fitness function):

𝐹𝑚 (𝑖) = MAE(Y, Ŷ \ {𝑖}) − MAE(Y, Ŷ) (2.21)

where where Ŷ is the projections estimated from the whole population (e.g. it is the sinogram

simulated from the flies in the X-ray microtomography (micro-CT) registration), Ŷ \ {𝑖} is the

projections estimated from the population without Fly 𝑖. The idea behind the leave-one-out

cross-validation is to assess the error metric twice: once with Fly 𝑖 in the population, and once

without it. By comparing the two values (the subtraction in Eq. 2.21) we can determine if

having Fly 𝑖 is beneficial or not for the population:

• If 𝐹𝑚 is positive, the error is smaller when the fly is included: the fly has a positive impact

on the population’s performance. It is a good fly which should be a good candidate for

reproduction.

• If 𝐹𝑚 is negative, the error is larger when the fly is included: the fly has a negative impact

on the population’s performance. It is a bad fly which should be eliminated.
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𝐹𝑚 is therefore a measurement that is maximised by the algorithm whereas the global fitness

MAE(Y, Ŷ) is minimised.

2.5.5 Covariance matrix adaptation evolution strategy

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [51] is a widely used optimisation

algorithm. Other optimisation algorithms could be used for further evaluations of our approaches

such as multi-objective optimisation algorithms [151]. CMA-ES is a special evolution strategy

with adaption of covariance matrix. It is used to solve complex problems that require

derivative-free optimisation. An evolution strategy is inspired by biological evolution. The idea

is: initialising individuals (a set of solutions), recombination and mutation is used to create

new individuals, best individuals are then selected based on their fitness value to become the

parents of next generation of individuals. This process is repeated until satisfactory results (set

termination criterion) are found (illustration is shown in Figure 2.16). In Evolution Strategies

(ES), new individuals are created by sampling from the probability distribution. In CMA-ES,

however, sampling is achieved through the use of a covariance matrix of the distribution. This

gives CMA-ES great advantages in ill-conditioned problems where small changes of input

variables result in large change of output. CMA-ES is generally not suitable for large-scale

optimisation problems due to high space and time complexity [66].

2.5.6 Non-dominated Sorting Genetic Algorithm II

Non-dominated Sorting Genetic Algorithm II (NSGA-II) is a multi-objective EA [32]. Unlike

algorithms that are introduced in previous sections (such as SA, EA, CMA-ES, etc.), NSGA-II

optimises multiple objectives at the same time. Initially, a random population is created.

Another offspring population is created by using binary tournament selection, recombination

and mutation operators. These two population sets are formed as the initial population which is

then sorted based on non-domination. Each individual is assigned a rank value and individuals

with low rank values are more likely to be selected. Then the crowded-comparison operator is

used to select a list of individuals. Crowded-comparison is the process where the crowding

distance between individuals of the population is calculated. The crowding distance is the
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Figure 2.16: Illustration of CMA-ES on a two-dimensional problem. Points represent individuals in the
population and dotted spheres represent the distribution of the population. Source: Wikipedia [169].

average distance between an individual and its neighbours. Individuals with extreme objective

values are assigned distance values of infinity. In this way the diversity of the population is

maintained. Finally, a new population is formed with the same number of individuals as the

initial random population. The above procedure is repeated until optimal solutions are found.

Usually, there are more than one solution and those solutions are termed as pareto front (PF) or

Pareto-optimal set. The PF is a list of non-dominate solutions where every solution is as good as

others. To understand the concept we can start with a simple bi-objective optimisation problem.

ZNCC and MAE are used to construct the objective function. The goal of the optimisation

process is to find a solution with high value of ZNCC and low value of MAE. We obtained

a set of 10 solutions (Figure 2.17). Clearly, there is a PF set containing 6 solutions that are

represented by black squares. The rest 4 points (red triangles) are excluded because they can

always improve on both metrics, i.e. there is always another solution with lower MAE and

higher ZNCC. However, solutions in the PF can not be improved further.
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Figure 2.17: An example set of 10 solutions using NSGA-II with two metrics. The PF contains 6
solutions (black square) and the rest 4 solutions are not in the PF (red triangle).

2.6 X-ray simulation

X-ray simulation is extensively studied in physics; with application in medicine and material

science. Physically-based simulation codes are available [2], [9], [13], [40]. The most popular

technique relies on the Monte Carlo (MC) method. It is often used in dosimetry for radiotherapy

due to its high level of accuracy. MC-based simulation codes implement probabilistic X-ray

interaction models for the transport of photons in matter. X-photons cross matter. During their

path into the object, they can interact with matter. Photons can reach the detector without

any interaction (see ‘1’ in Figure 2.18). They can be absorbed, in which case they do not

reach the detector and do not contribute to the X-ray projection (see ‘2’). Scattered photons

decrease the image quality with noise and blur (see ‘3’). Photons can also be scattered then

absorbed (see ‘4’), or even be scattered multiple times. At each iteration of the MC algorithm,

interaction events may occur between each photon and the material it is crossing based on these

probabilistic models. For some applications this approach leads to excessive computation time

due to the stochastic nature of MC methods. Days if not weeks may be required to simulate

a single X-ray projection with an acceptable signal-to-noise ratio (SNR). For transmission
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Figure 2.18: X-photons/matter interactions.

imaging (inc. radiography, CT, cone beam computed tomography (CBCT), and fluoroscopy),

deterministic calculation using the Beer-Lambert law (also known as attenuation law) might be

considered as a sufficient description for the expected value of the number of photons that did

not interact with the objects:

𝑁𝑜𝑢𝑡 (𝐸) = 𝑁𝑖𝑛 (𝐸) exp

(
−

∑︁
𝑖

`𝑖 (𝐸, 𝜌, 𝑍) 𝐿𝑝 (𝑖)
)

(2.22)

with 𝑁𝑖𝑛 (𝐸) the number of incident photons at energy 𝐸 , 𝑁𝑜𝑢𝑡 (𝐸) the number of transmitted

photons of energy 𝐸 , `𝑖 the linear attenuation coefficient (in cm−1) of the 𝑖th object and 𝐿𝑝 (𝑖)

the path length of the ray in the 𝑖th object. `𝑖 depends on 𝐸 the energy of incident photons, 𝜌

the material density of the object, and 𝑍 the atomic number of the object material.

When material composition of scanned object is homogeneous, the total energy 𝐸𝑜𝑢𝑡 (𝑥, 𝑦) that

is received at the detector pixel position (𝑥, 𝑦) can be derived:

𝐸𝑜𝑢𝑡 (𝑥, 𝑦) = 𝐸 × 𝑁𝑖𝑛 × exp

(
−

𝑖<𝑜𝑏 𝑗 𝑠∑︁
𝑖=0

`(𝑖, 𝐸)𝐿𝑝 (𝑖, 𝑥, 𝑦)
)

(2.23)
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Where 𝑜𝑏 𝑗 𝑠 is the total number of scanned objects, 𝐿𝑝 (𝑖, 𝑥, 𝑦) is the path length of the ray in

𝑖𝑡ℎ objects where the ray is formed by connecting the point source with the position of pixel

(𝑥, 𝑦) on the detector, `(𝑖, 𝐸) is the linear attenuation coefficient at energy E for the 𝑖𝑡ℎ object.

In a polychromatic case where there are different energies 𝑀 in the incident beam spectrum,

the total energy 𝐸𝑜𝑢𝑡 (𝑥, 𝑦) can be defined as:

𝐸𝑜𝑢𝑡 (𝑥, 𝑦) =
𝑗<𝑀∑︁
𝑗=0

𝐸 𝑗 × 𝑁𝑖𝑛 (𝐸 𝑗 ) × exp

(
−

𝑖<𝑜𝑏 𝑗 𝑠∑︁
𝑖=0

`(𝑖, 𝐸 𝑗 )𝐿𝑝 (𝑖, 𝑥, 𝑦)
)

(2.24)

When a set of points is used to construct the X-ray source (instead of a single infinitely small

point), the total energy 𝐸𝑜𝑢𝑡 (𝑥, 𝑦) becomes:

𝐸𝑜𝑢𝑡 (𝑥, 𝑦) =
𝑘<𝑝∑︁
𝑘=0

𝑗<𝑀∑︁
𝑗=0

𝐸 𝑗 × 𝑁𝑖𝑛 (𝐸 𝑗 ) × exp

(
−

𝑖<𝑜𝑏 𝑗 𝑠∑︁
𝑖=0

`(𝑖, 𝐸 𝑗 )𝐿𝑝 (𝑖, 𝑘, 𝑥, 𝑦)
)

(2.25)

In the X-ray simulation three inputs need to be defined to generate X-ray images:

X-ray source is defined by by its shape, position, orientation, and incident photon beam. The

shape can be a single infinitely small point, a set of points, or others. The incident photon beam

is determined by its spectrum (i.e. a list of photons) where it can either be monochromatic

(same energy) or polychromatic (different energies).

X-ray detector is defined by the number of pixels along the horizontal and vertical axes, its

position and orientation. Usually, the number of pixels along both axes are the same but it is

not always the case. The direction of X-rays are perpendicular to the detector in most cases

although it doesn’t have to.

Scanned objects are defined by its shape that is represented by polygon meshes and their

material properties in term of density and chemical composition. Hounsfield values can be
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assigned to each polygon mesh where those values can be converted into density and chemical

composition [133]. Material properties of objects are provided by the XCOM database from

the National Institute of Standards and Technology (NIST) [11].

In this case, methods based on the ray-tracing principle are often used as a fast alternative to MC

methods [40]. To speed-up computations, GPU can be used, but often focusing on radiotherapy

and voxelised data [12], [64]. For this 3D/2D registration problem, we rely on the simulation

of X-ray images from polygon meshes. We make use of gVirtualXRay, a cross-platform

Open-Source library [156], [161]. It implements a multi-pass renderer to solve one of three

equations (2.23, 2.24 and 2.25). It is written in C++ using OpenGL and the OpenGL Shading

Language (GLSL) to provide real-time performance. Wrappers to other popular languages are

also provided. Here we use the Python3 wrapper. Technical details can be found in [157], [158],

[161]. gVirtualXRay has been used in various medical applications where speed and accuracy

are both requirements, including radiograph generation from dynamic polygon meshes (to

simulate patient posing and respiration) [144], [158] and the simulation of CT data acquisition

and reconstruction including beam hardening or motion artefacts due to the respiration [160].

gVirtualXRay has been validated against results that are obtained MC simulation toolkit

developed by the European Organization for Nuclear Research (CERN): Geant4 [3]. Simulated

X-ray images are almost identical where NCC between two images is 99.747%. Other validation

tests have been conducted [157], [161]. More recently, we submitted a journal article where

the CT scan of the Lungman phantom is segmented to extract polygon meshes. A simulated

radiograph is then registered on a real digital radiograph of the same phantom. The ZNCC

between two radiographs with anteroposterior (AP) view is 99.36%.

2.7 Discussion and Conclusion

We have discussed the general concept of registration and different strategies that are used

to establish dimensional correspondences in 3D/2D registration methods. Different types of

3D/2D registration methods were presented including intensity-based registration methods that
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utilise the projection strategy. The main drawback of intensity-based registration methods is

insufficient number of projection views would affect the registration performance. However,

improvements on registration accuracy became marginal when number of views exceeds three.

We have also discussed how deep learning techniques can be applied to solve registration

problems, which refers to DL-based 3D/2D registration methods. Deep learning has been

successfully deployed to solve many complex problems. However, there are some disadvantages

of DL-based methods such as the requirements of large amount of training data and computational

resources. For real-life complex problems, a lot of transformation parameters are required.

This means the amount of annotated training data is vast even if synthetic images are used,

e.g. Miao et al. used 25,000 synthetic image for 6 transformation parameters (see Section 2.3).

The X-ray source and detector are fixed. If one of them moves, additional training data will be

required. Also, registration methods that rely on extracting features from original images might

not perform well when the position of X-ray source and detector is unknown. The object in the

image might become too small to work with which might lead to bad registration performance.

Some popular similarity and dissimilarity metrics that are used to construct the objective

function are presented. Traditional optimisation algorithms such as PRS, more advanced

single-objective optimisation algorithms such as fly algorithm and CMA-ES and bi- or

multi-objective optimisation algorithms such as NSGA-II that aim to optimise the objective

function were also presented. Single-objective optimisation algorithms are often easier to use

comparing with bi- or multi-objective optimisation algorithms especially in choosing the best

solution from the PF. It is necessary to consider techniques that can help with solution selection.

In the next chapter we will introduce our 3D/2D registration method which heavily relies on

some of optimisation algorithms and objective functions that are presented in this chapter.
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Chapter 3

Registration of synthetic and clinical

X-ray radiographs

3.1 Introduction

In the previous chapter we have discussed the concept of 3D/2D registration and different

types of 3D/2D registration methods. In a 3D/2D registration problem, one dataset has to be

transformed into the same coordinate system to match another. It is achieved through establishing

the dimensional correspondence between 3D and 2D data. There are three strategies can be

applied. The projection strategy transforms 3D data onto 2D plane where 3D/2D registration

becomes multiple 2D/2D registrations. The back-projection strategy and the reconstruction

strategy transform 2D data into 3D space where 3D/2D registration becomes multiple 3D/3D

registrations. Some registration methods based on deep learning has been discussed. We also

discussed some similarity and dissimilarity measurements for matching the DRR that generated

from a 3D dataset with an X-ray image. Registration results were obtained by minimising the

dissimilarity metric or maximising the similarity metric between the DRR and the X-ray image.

Some popular optimisation algorithms were presented.

Computational methods of disease tracking and progression prediction based on the analysis

of medical imagery is receiving heightened attention in recent years. Chronic diseases of the

human musculoskeletal system caused by autoimmune processes lead to progressive, irreversible

anatomical changes over time. In the case of rheumatoid arthritis (RA), a chronic inflammatory
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Figure 3.1: Registration pipeline based on X-ray simulation and CMA-ES.

disorder with largely unknown pathogenesis, patients often present to the clinician with swelling

of the hands. If left untreated, the disease progresses in distinct stages, from joint pain, swelling,

stiffness to cartilage loss, bone erosion, deformities and total loss of joint function [106].

Plain radiographic imaging (X-rays) of the hands is done routinely for diagnostic and tracking

purposes, as routine care for RA patients. Since hand radiographs are relatively inexpensive

and low-risk, they provide clinicians with baselines, and visible changes over time. The rate of

disease progression is modulated by treatment and lifestyle choices, but distinct deformations

have been documented [108], [131]. Typical deformities include boutonnière, swan-neck,

hitchhiker’s thumb and claw toe. Other, less obvious changes, include bone erosions, induced

by the inflammation of the synovial membrane, as shown in Figure 3.2a.

Radiographs are projections of 3D structures, hence much information is lost. The anatomy of

the hand varies among different individuals, e.g. the ratio of the lengths of the long bones is not

always consistent. Using this observation and the ability to speedily create DRRs, we propose a

method to register a 3D mesh model of a hand to PA view hand radiograph.

Anomaly detection in hand radiographs is important for disease staging and monitoring.

Our registration method is a pre-processing step for algorithms that modify the mesh model

using domain-specific knowledge to better track disease-induced changes without expensive
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Figure 3.2: a) Erosions induced by RA inflammatory processes visible around the red asterisks. Image
source [131]. b) Naming of hand fingers and bones. Source: The MURA dataset.

volumetric scans that clinicians may not be equipped with or are cost-prohibitive. Time-series,

patient-specific information regarding the progression of a disease is critical for treatment

planning and drug effectiveness monitoring.

In this chapter we present a 3D/2D registration method where the 3D model is transformed so

that their corresponding X-ray projection(s) finely match an input image. It is based on the

projection strategy (Figure 2.2). Our framework heavily relies on optimisation techniques for

the tuning of transformation parameters and on fast X-ray simulation on GPU for the generation

of X-ray projections. In most 3D/2D registration problems, the source corresponds to a 3D

volume (e.g. voxels from a CT or MRI dataset) and the target is a 2D image (e.g. an X-ray

image) (Table 2.1).

In our application the source is a scenegraph containing multiple 3D triangular models, and the

target corresponds to an X-ray radiograph or a sinogram (a collection of projections at different

angles). Every 3D model can be deformed in the nonrigid framework. Our hypothesis is that

fast X-ray simulation from polygons on the GPU can be embedded in objective functions to
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transform 3D surface models using black-box optimisation. We firstly perform the registration

of a 3D hand model to synthetic (or simulated) radiographs as a proof-of-concept study. Then

we perform registrations on clinical radiographs to demonstrate the feasibility of our method in

real-life cases.

The rest of the chapter is organised as follows: Section 3.2 describes our method and presents

preliminary results on registering synthetic images, Section 3.3 describes changes to our method

including the data used and data pre-processing, and presents results on registering real clinical

radiographs and Section 3.4 summaries our findings and discuss further research direction.

3.2 Preliminary study using synthetic X-ray images

3.2.1 Introduction

Figure 3.3: Registration pipeline based on X-ray simulation and black-box optimisation techniques.

Figure 3.3 provides a summary of our approach. It corresponds to a 3D/2D registration problem

where a moving dataset (called source) is deformed to match another one, which is fixed (called

target). In most 3D/2D registration problems, the source corresponds to a volume dataset

(e.g. from a CT or MR images) and the target is a 2D image. In our application the source is a

scenegraph containing 3D triangular models, and the target is a simulated 2D image (X-ray

radiograph or sinogram). The 3D models are deformed using rigid body transformations applied

on the triangular meshes. The parameters of the transformations are finely tuned to minimise
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the difference between the target and the image simulated using the deformed models. This

parameter tuning is achieved using black-box optimisation. Note that it is also possible to

maximise the correlation (or any other measurement of similarity) between the two images.

The implementation of the registration is written in Python using the minimize package

provided by SciPy [67] and the implementation of stochastic optimisation methods available on

GitHub [89]. We aim to demonstrate that the choice of optimisation methods is critical when

developing a registration framework.

We model the registration as a black-box optimisation problem where a simulated image (called

𝑠𝑜𝑢𝑟𝑐𝑒) should accurately match a given input image (called 𝑡𝑎𝑟𝑔𝑒𝑡). These image correspond

to a radiograph for the hand problem. The parameters used to simulate the X-ray projections

are finely tuned by an optimisation algorithm using an objective function. In minimisation,

the objective function corresponds to a distance metrics between the 𝑠𝑜𝑢𝑟𝑐𝑒 and 𝑡𝑎𝑟𝑔𝑒𝑡. The

optimisation algorithm aims to lower its value as much as possible. In maximisation, similarity

or correlation metrics are used instead and the optimisation algorithm aims to increase its value.

In black-box optimisation, no assumption is made on the shape of the objective function and no

gradient information is used, which is the case in our registration problems.

As the objective of this section is to find suitable optimisation algorithms, the metrics must be

robust and easy to implement. There are two popular metrics for comparing true and predicted

values: one is MSE (see Section 2.4.6) and another one is MAE. MAE is more favourable than

MSE since MSE relies on squared values which penalise outliers (large values). The objective

function that we minimise corresponds to the MAE is shown in Equation 2.19. For the purpose

of comparison, lower MAE values can typically be interpreted as better predictions: MAE is

equal to zero when Y and Ŷ are strictly identical.

3.2.2 Results

The hand registration problem is a toy problem to assess the feasibility of our framework. The

scenegraph of a 3D hand model is used (see Figure 3.4). Some of the nodes, including the root
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Figure 3.4: Original and target hand poses for registration.

node, are arbitrary rotated so that the fingers are now close to each other and the whole hand is

tilted. We chose this pose to check the ability of the optimisation algorithms to retrieve subtle

changes. The SDD and SOD are set. The corresponding X-ray radiograph is then computed: it

is the target image in the registration. The transformations mentioned above, including SDD

and SOD, are now ‘forgotten’. The aim of the registration is to retrieve all these parameters.

For fair comparison, each methods are stopped after the objective function is called 500 times,

except for SA where the objective function is called 508 times. In EA, 25 individuals are

generated and running for 20 generations.

Figure 3.5 shows the performance of each method performing on the hand registration problem

over 15 runs. EA outperforms others with lowest median value of distance. The highest MAE

for EA is still lower than the lowest distance for SA, PRS and CG. It also has good stability,

which is at an advantage in medical field. Nelder-Mead provides good results but comes with a

higher standard deviation, which means it can fail to find the global optimum when it gets stuck

in a local optimum. SA performs close to Nelder-Mead but comes with narrow spread. It might

be a better alternative for variation-sensitive problems. Both PRS and CG do not provide very

good results in this problem.

To further refine our analysis, the visualisation of the error map between target and prediction

(median solution) for each method is provided in Figure 3.6. The error maps are normalised

between 0 and 1, and visualised using the ‘thermal’ colour look-up table provided by Fĳi [132].

Our aim is to highlight in each figure, independently from one another, where the error is the

highest. EA and Nelder-Mead provide the best median results in term of MAE. EA’s error
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Figure 3.5: Overall performance over 15 runs of each method on the hand registration problem. Each
optimisation algorithm called the objective function about 500 times. A good algorithm to solve this
problem proves a low MAE and exhibits a small spread over the 15 runs (in other words it consistently
provides results of good quality).
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map shows that the error is concentrated in the thumb. The fingers are now close to each

other as in the target image. For Nelder-Mead, the error is concentrated in the middle and ring

fingers. SA provides acceptable results. CG and PRS clearly provide the worse results, which

are in line with our expectations. Although the value of MAE are similar for CG and PRS, the

predicted images varies slightly. This shows the limit of comparison metrics as discussed in

Section 2.4.14.

3.3 Registration of clinical radiographs

3.3.1 MURA dataset

The MURA dataset, freely available on GitHub at https://stanfordmlgroup.github.io/

competitions/mura/, contains 40,561 musculoskeletal radiographs from 14,863 clinical

studies of 12,173 different patients [117]. It focus on upper extremities of human body, including

elbow, finger, forearm, hand, humerus, shoulders and wrist. Each radiograph is manually

labelled as normal or abnormal. 15 radiographs (Figure 3.7) are selected to test the performance

of our approach (Section 3.3.4.1), which only require a single radiograph.

Unlike typical medical images such as Digital Imaging and Communications in Medicine

(DICOM) [48], radiographs in the MURA dataset are in Portable Network Graphics (PNG)

format in which a lot of information is missing (Table 3.1). To adapt to the data to use in

our experiments, those radiographs are pre-processed to improve the structural difference

between the object and other areas. More details about image pre-processing is presented in

Section 3.3.2.

3.3.2 Image pre-processing

Although the MURA dataset was created for the purpose of abnormality detection, it is also

useful for testing the performance of our registration framework. We focus on hand radiographs

with PA views. We manually pre-processed 15 different radiographs as follows (illustration is

displayed in Figure 3.8):
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Table 3.1: Information needed to simulate X-ray radiographs that are present in typical medical imaging
file formats such as DICOM but missing in the PNG files from the MURA dataset.

Properties PNG DICOM
X-ray tube voltage plausible energy beam known

Quantisation 8-bit 16-bit
SOD need to estimate known
SDD need to estimate known

Pixel spacing (mm) need to estimate known
Object location need to estimate known

Object orientation need to estimate known

1. each radiograph is cropped so that only the hand part remains,

2. the left or right marker is removed and the area surrounding the hand is “cleaned” (to

have same pixel values),

3. the skin around finger is removed as much as possible,

4. the radiographs, which are negative images, are inverted to match the positive images

generated by X-ray simulation, and

5. all images are re-scaled to the same size of simulated X-ray images.

Corresponding images are shown in Figure 3.9. In each image, we define the name of each

finger (from left to right): thumb, index finger, middle finger, the fourth finger and little finger,

as shown in Figure 3.2b.

3.3.3 Optimisation

CMA-ES [51] is a widely used optimisation algorithm which provides a great baseline result.

Other optimisation algorithms could be used for further evaluations of our approaches such as

multi-objective optimisation algorithms [151]. CMA-ES is a special evolution strategy with

adaption of covariance matrix. It is used to solve complex problems that require derivative-free
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Table 3.2: Rotation and re-scaling parameters to be optimised and corresponding ranges.

Parameters
Bones Whole

hand Thumb Index Middle Fourth Little

Rotation range
(degrees) [-20, 20]

MCt: [−10, 10]
[−20, 0]

PPt: [−10, 10]

PPi:
[−10, 10]
[−20, 0]

IPi:
[−20, 0]

DPi:
[−20, 0]

PPm:
[−10, 10]
[−20, 0]

IPm:
[−20, 0]
DPm:

[−20, 0]

PPf:
[−10, 10]
[−20, 0]

IPf:
[−20, 0]

DPf:
[−20, 0]

PPl:
[−10, 10]
[−20, 0]

IPl:
[−20, 0]

DPl:
[−20, 0]

Rescaling ratio - [0.9, 1.1] [0.9, 1.1] [0.9, 1.1] [0.9, 1.1] [0.9, 1.1]

optimisation. An evolution strategy is inspired by biological evolution. Further details about

CMA-ES can be found in 2.5.5. The optimisation process is shown in Figure 3.1 (green box).

Before the optimisation, all images are normalised to have zero-mean and unit-variance. This is

to prevent that some features becoming too dominant during optimisation while other features

would be less relevant. We use MAE to construct the objective function, i.e. as the fitness

function to be minimised by CMA-ES. MAE is the sum of absolute errors between samples and

then divided by total number of samples (Eq. 2.19). The best number, that can be achieved is

zero. Typically, lower MAE value indicates better optimising result.

Our registration problem is considered to be complex both in terms of number of parameters

and the corresponding data range. There are 38 parameters that need to be optimised including

2 distance parameters: SOD and SDD. SOD is a ratio of SDD with a value between 0.7 and

0.95. By using ratios, we make sure that the distance between the source and the object, is

always less than the distance between the source and the detector. SDD ranges between 10 and

1000 centimetres. There are 22 rotating angles and 14 rescaling factors, which are shown in

Table 3.2. The rotation range is determined based on the modelling of rotations of the real hand

except the whole hand, which is determined by a priori knowledge of the PA pose but adding

some degrees of complexity.
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Table 3.3: Registration results for 15 different target images along with corresponding metric values.

Image number

& Metrics
Target Prediction Error map

Number of objective

function calls

1

& MAE=0.3937

ZNCC=0.7060

2050

2

& MAE=0.3497

ZNCC=0.7378

1964

3

& MAE=0.4060

ZNCC=0.7264

1934

4

& MAE=0.3953

ZNCC=0.7051

2056

5

& MAE=0.4398

ZNCC=0.6603

2050

6

& MAE=0.3947

ZNCC=0.7179

2056

7

& MAE=0.4029

ZNCC=0.7012

2055

Continued on next page
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Table 3.3 – continued from previous page

Image number

& Metrics
Target Prediction Error map

Number of objective

function calls

8

& MAE=0.3765

ZNCC=0.7202

1886

9

& MAE=0.4356

ZNCC=0.6130

2119

10

& MAE=0.4790

ZNCC=0.6503

2308

11

& MAE=0.4167

ZNCC=0.7094

2186

12

& MAE=0.4073

ZNCC=0.7156

1817

13

& MAE=0.3903

ZNCC=0.7218

2016

14

& MAE=0.4464

ZNCC=0.6535

1898

Continued on next page
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Table 3.3 – continued from previous page

Image number

& Metrics
Target Prediction Error map

Number of objective

function calls

15

& MAE=0.4206

ZNCC=0.7409

2027

3.3.4 Results

There are two ways to assess the effectiveness of our method in solving the registration

problem. In any case, several runs must be performed to gather statistically meaningful data. In

Section 3.3.4.1, we selected 15 different radiographs and tested our method once on each of

the radiographs. The emphasis is on data and simulation variability: For different input

images, does the algorithm always provide outputs of similar quality? In Section 3.3.4.2,

we selected the images of the worse, median and best registrations of Section 3.3.4.1. The

registration is then repeated 15 times for these three images. The emphasis is on optimisation

algorithm variability: For a given input image, does the algorithm always provide a similar

output? We also aim to determine if some images harder to register than others.

3.3.4.1 Data and simulation variability

Here, we aim to determine if the algorithm always provide outputs of similar quality on different

input images. 15 registrations using 15 different real X-ray images were performed, i.e. one

registration per image, due to computational demand (about 4 hours per registration on a single

Intel Core i5-8400 (2.80GHz) central processing unit (CPU) and a single NVIDIA GeForce

GTX 1070 Ti GPU).

The 15 pre-processed images that we used are shown in Figure 3.9. MAE is used to compare

target and predicted images during registration because it is relatively faster to compute. ZNCC

is used for visual analysis of the predicted images after registration. It is a measurement of
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similarity between two images. Since it is hard to interpret the value of MAE, ZNCC is very

helpful to analyse the performance of the registrations.

To compute ZNCC (see Eq. 2.2), the target and predicted images are normalised first, which is

subtracting all pixels by the mean value and divided by standard deviation. Normalised target

and predicted images are then multiplied. Finally, all values are added and divided by total

number of pixels. ZNCC primarily concentrates on template matching and completely different

images might have very high scores.

Table 3.3 lists results from 15 registrations. By looking at predictions and associated error

maps, there are 6 registrations that successfully recovered all 5 fingers, where ZNCC is all

above 0.7. There are 6 registrations that successfully recovered 4 fingers, where ZNCC is all

above 0.7 except image 14. There are 3 registrations that recovered 1 finger, where ZNCC is all

below 0.7. It is clear from Table 3.3 that Images 5, 9, 10 and 14 are visually worse than the

other images. This trend is not necessarily visible in Figure 3.10a (bar chart of the MAE for

each registration). However, Figure 3.10b clearly show two groups: Images 5, 9, 10 and 14

exhibit a significantly lower ZNCC than the other images.

Results demonstrate that our approaches perform well. However, there are some problems that

need to be addressed in future researches:

1. Some fingers are not within images. For example, Registration 4, 12 and 14 have the

middle finger extended outside the image space. Registration 10 has middle finger and

fourth finger extended outside the image space.

2. In 3 registrations (5, 9 and 10) only the thumb is recovered, the middle finger is matched

with the target’s index finger, the fourth finger is matched with the target’s middle finger,

and the little finger is matched with the target’s fourth finger.
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3. A finger is overlapped with another finger. In Registrations 4 and 8, the little finger is

overlapped with the fourth finger. In Registration 9, the index finger is overlapped with

middle finger.

3.3.4.2 Optimisation algorithm variability

Here, we aim to determine if the algorithm always provides outputs of similar quality on the

same input image. We selected the best, median and worse results from the previous subsection,

i.e. Images 2, 3, and 10. We perform another 14 registrations on each image and included their

previous results (i.e. a total of 15 results per image) to test the variability of the algorithm,

CMA-ES, when the input data is the same. Then we compute the mean and standard deviations

(STDEVs) of MAE, ZNCC and number of calls to objective function over the 15 runs. The data

is summarised in Table 3.4. It shows that CMA-ES provides registrations of consistent quality,

both in terms of MAE and ZNCC, for Images 2 and 3 (low standard deviations). However, the

standard deviations are much higher for Image 10 (the worse registration of Section 3.3.4.1).

The MAE is higher than for the other two images, and the ZNCC lower. It indicates that,

somehow, Image 10 is a lot harder to register than Images 2 and 3. Also, differences in those

images such as different position of hands might lead to different error being computed, i.e. the

position of hands is fixed which only rotation, translation and rescaling is allowed, so any

exiting misalignment of hands (e.g. bones on the palm) can lead to greater error. The scatter

plot in Figure 3.11 shows the MAE (circles) and ZNCC (triangles) plotted as a function of

the number of generations. Green and purple marks are aligned and form horizontal lines:

CMA-ES produces consistent registrations for Images 2 and 3. Blue marks are scattered over

the plot: CMA-ES does not produce consistent registrations for Image 10.

CMA-ES can produce registrations of good quality consistently for some images. For other

images, CMA-ES may fail. Further research is needed to comprehend what makes Image 10

hard to register compared to Images 2 and 3 as the three images are visually similar.
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Table 3.4: Results for 15 registrations on Images 2, 3 and 10.

Image number MAE
(mean ± STDEV)

ZNCC
(mean ± STDEV)

Number of objective
function calls

(mean ± STDEV)
2 (best run in Table 3.3) 0.3460 ± 0.0055 0.7426 ± 0.0074 2105 ± 189

3 (median run in Table 3.3) 0.4076 ± 0.0019 0.7227 ± 0.0035 1954 ± 132
10 (worse run in Table 3.3) 0.4701 ± 0.0218 0.6597 ± 0.0184 2137 ± 162

3.4 Discussion and conclusion

Our research hypothesis was that 3D/2D registration of 3D triangular meshes onto a 2D image

can be performed using optimisation and fast X-ray simulation on GPU. We have implemented

a registration framework in Python using open-source technologies, namely SciPy (conjugate

gradient and Nelder-Mead) and our own implementation of pure random search, simulated

annealing, evolutionary algorithm and Fly algorithm for the optimisation, and gVirtualXRay

for the X-ray simulation on GPU. The framework has been successfully tested using synthetic

radiographs to perform hand registration for a rheumatoid arthritis application.

To evaluate our pipeline, each optimisation has been repeated 15 times to gather statistically

meaningful results. The outcome shows that:

• Care must be given when choosing an optimisation algorithm as some traditional and

popular techniques may lead to unreliable results due to local optima;

• Stochastic algorithms such as simulated annealing and evolutionary algorithm can

outperform conjugate gradient and Nelder-Mead in term of accuracy and/or reliability;

• X-ray simulations can be repeatedly computed in objective functions thanks to the

computational power provided by modern GPUs.

These preliminary results demonstrated the validity of our approach as the registrations were

performed successfully.
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The second part of this chapter concentrated on evaluating the performance of our method

using 15 real clinical X-ray images. We used CMA-ES, a popular evolutionary algorithm for

non-linear or non-convex continuous optimisation problems. Results showed that registrations

are not always with the same quality but CMA-ES produces similar results with low variability

during 15 runs on the same image. This demonstrate that the stochastic nature of CMA-ES is

not a concern in our case. It also indicates that some images are harder than others to register.

In the future, we will use this work as an initialisation step in a pipeline that tweaks the geometry

of a phantom model to match the pathology seen in real radiographs, such as those afflicted by

RA. This will allow clinicians access to clean (already segmented) volumetric rendering of

pathological skeletal anatomy without the high doses of ionising radiation typically associated

with CT scans, or where there is no access to volumetric scans.

In the next chapter, we are planning to address some of the problems discussed in previous

section:

• We can pad white spaces (same pixel values as background) around images to make them

bigger. The alternative way is to impose constraints on parameters where fingers are not

allowed to extend outside images.

• There are some images (e.g. Image 5) where fingers are mis-matched or overlapped. We

can look into multi-objective optimisation algorithms with both MAE and ZNCC as

objectives. ZNCC is very helpful for shape matching. The algorithm are working by

minimising MAE and maximising ZNCC at the same time.
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Figure 3.6: Comparing individual result for each method on the hand registration problem (median
solution over 15 runs, i.e. solution corresponding to the green bars in Figure 3.5).
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Figure 3.7: 15 selected hand radiographs taken from the MURA dataset without data processing. Images
are numbered from image 1 (top left) to image 15 (bottom right). Top row: image 1-5, middle row: image
6-10, and bottom row: image 11-15.
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Figure 3.8: Illustrations of image pre-processing.
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Figure 3.9: 15 selected hand radiographs from the MURA dataset after pre-processing. Images are
numbered from Image 1 (top left) to Image 15 (bottom right). Top row: Images 1-5, middle row: Images
6-10, and bottom row: Images 11-15.
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Figure 3.10: Bar charts for quantitative results shown in Table 3.3. All data is sorted on MAE and the
median result is highlighted in red.
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Figure 3.11: Scatter plots of results for 15 registrations on Image 2, 3 and 10. Circles represent MAE,
triangles represent ZNCC and different colours represent different images.
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Chapter 4

Registration of real radiographs using

bi-objective optimisation algorithms

4.1 Introduction

The previous chapter demonstrated that the registration of a 3D hand model to real clinical X-ray

images can be performed. We started with a simple test case where synthetic X-ray images

are used. This is helpful in developing our method where different optimisation algorithms

are investigated. Among those optimisation algorithms, EA performed the best in terms of

accuracy and stability, which is a good choice to include in our registration method. Then we

progressed to registration of real clinical radiographs using CMA-ES, a type of EA that aims to

solve difficult non-linear black-box optimisation problems. Registration performance is good in

most cases where fingers are recovered.

Unlike many other registration methods [4], [58], [127], [128], [154], [175], our method only

requires a single X-ray image. It is very helpful in medical applications. For example, diagnosis

of hand disease such as RA often requires multiple X-ray images of hands that are taken by

radiologists. The patient can be exposed to high level of X-rays. Our method brings the

analysis of a single 2D projection into 3D space. Our approach rely on fast X-ray generation

(by gVirtualXRay) and optimisation algorithms to tune deformation parameters that transform

the 3D hand model to finely match input images.
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In this chapter we investigate the effect of integrating a bi-objective optimisation algorithm into

our registration framework. A bi-objective optimisation is a special case where two metrics

are used to construct the objective function. Multi-objective optimisation has been applied

in solving many engineering problems such as flight planning [43], building design [176]

and agricultural system management [174]. Recently, multi-objective optimisation is also

applied in image registration problems [28], [114], [135]. In a multi-objective optimisation

problem, multiple metrics are being optimised at the same time. As we discussed in previous

chapters one metric is often not enough for complex registration problems such as our hand

registration problem. However, as more metrics are computed at each iteration during the

optimisation process, more computational resources are required. We use NSGA-II along with

two conflicting metrics to solve our hand registration problem.

The main contribution of this chapter is the use of bi-objective optimisation algorithms to

address deficiencies of our proposed method, i.e. we aim to register images that were not

registered successfully in the previous chapter. Also, we compare the registration performance

between single- and bi-objective optimisation algorithms.

The rest of the chapter is organised as follow: Section 4.2 describes our methods and techniques

about the bi-objective optimisation. Section 4.3 describes our results as well as quantitative and

qualitative evaluation. Section 4.4 provides conclusions and describes future work.

4.2 Bi-objective optimisation

We use NSGA-II as the optimisation algorithm. NSGA-II is a multi-objective EA [32]. Further

details about NSGA-II can be found in Section 2.5.6. Before the optimisation, all images are

normalised to have zero-mean and unit-variance in the same way as in previous experiments.

We use MAE and ZNCC to construct the objective function, i.e. as the fitness function to be

optimised by NSGA-II. MAE is the sum of absolute errors between samples and then divided

by total number of samples (Eq. 2.19). The best number can be achieved is zero. Typically,

lower MAE value indicates better optimising result. ZNCC is a measurement of similarity
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between two images. To compute ZNCC (see Eq. 2.2), the target and predicted images are

normalised first, which is subtracting all pixels by the mean value and divided by standard

deviation. Normalised target and predicted images are then multiplied. Finally, all values

are added and divided by total number of pixels. ZNCC primarily concentrates on template

matching. Further details about ZNCC can be found in Section 2.4.1.

Our registration problem is considered to be complex both in terms of number of parameters

and the corresponding data range. Full details about parameters and their ranges were presented

in Table 3.2

Typically, in a single-objective optimisation problem, the solution with best objective value is

chosen. For example, it can be a solution with the lowest MAE or a solution with the highest

ZNCC. However, it is not possible in the bi-objective optimisation. There is always a scenario

where one solution have the lowest MAE) but their ZNCC is lower than others. To compare

the performance of CMA-ES and NSGA-II, we need to determine which solution is most

suitable to reflect the performance of NSGA-II. There are some performance measurements

that measure the quality of a PF [38], [107], [152]. However, it is not useful in our case since

we use different images in the bi-objective optimisation. Generally speaking, solutions with

with extreme objective values are not suitable since they tend to provide extremely good or bad

results. The solution with median objective value is more suitable since they have more balance

between different objectives.

4.3 Results

Two metrics are used in the objective function: MAE and ZNCC. MAE is a dissimilarity metric

and ZNCC is a similarity metric. Since one can minimising MAE or maximising ZNCC, there

should be a way to optimising both. In our case we minimise both MAE and the negative of

ZNCC. NSGA-II is used as the optimisation algorithm. The experiment set-up is the same as

discussed in that experiment except there is no restart mechanism in this experiment. Intuitively,

NSGA-II are expected to perform not worse than CMA-ES and we observed that the objective
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is not improving after 500 iterations from CMA-ES. We set number of iterations at 1,000 in

NSGA-II. If NSGA-II can have similar performance using only half of the computing time

than CMA-ES and have no restart, then NSGA-II is preferred to be included in our registration

framework.

4.3.1 Selection of individual in a Pareto-front

To compare with results obtained from the previous experiment the following solutions are

selected:

• The solution with the lowest MAE (NSGA-II).

• The solution with the highest ZNCC (NSGA-II).

• A solution with median MAE and ZNCC (NSGA-II).

• The solution with the lowest MAE (CMA-ES).

• The solution with the highest ZNCC (CMA-ES).

In Figure 4.1 we plot the PF at the last iteration from NSGA-II and 5 solutions listed above. For

better visualisation and comparison, 5 images (3 from NSGA-II and 2 from CMA-ES) for each

registration (15 in total) are displayed. In all 15 registrations, three chosen individuals provided

similar results (Figure 4.1). Selecting the solution with median objectives is appropriate in our

case. Next, we use the solution with median objectives in NSGA-II to compare with the best

solution in CMA-ES.

4.3.2 Computational performance

Figure 4.2 shows two objectives against number of iterations for both CMA-ES and NSGA-II

for 15 registrations. Results from CMA-ES are restated and only MAE is used to construct the

objective function. ZNCC is computed between final predicted images and reference images.
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Both MAE and ZNCC are used to construct the objective function in NSGA-II. The average

value of MAE at each iteration is computed and is represented by red solid line in Figure 4.2.

The average value of ZNCC at each iteration is computed and is represented by red dotted line

in Figure 4.2. As shown in the figure both red and black lines are flat, i.e. both algorithms has

converged. Thus, it is not unfair to compare two algorithms directly since sufficient number of

iterations (running time) are given.

NSGA-II has achieved higher ZNCC (red dotted line in Figure 4.2) in almost all registrations

(except 14) than CMA-ES. NSGA-II has achieved lower MAE (red line in Figure 4.2) in three

registrations (4,10,11). In Registration 10 NSGA-II has clearly outperformed CMA-ES with

marginal improvements of MAE and ZNCC. Also, by looking at the change of slope of lines

(black and red), NSGA-II tends to converge faster and requires lower number of iterations.

Overall, NSGA-II has better performance than CMA-ES with the benefit of fast convergence

and better (or similar) objective values.

4.3.3 Visual performance

In Figure 4.1, points located at the top left corner is considered better since they have lower

MAE and higher ZNCC than points located at the right bottom corner since they have higher

MAE and lower ZNCC. Based on this observation, there are three registrations (4,10,11) that

NSGA-II should perform better than CMA-ES. All points from NSGA-II are located at the top

corner and two points from CMA-ES are located at the right bottom corner. By comparing

actual predicted images, NSGA-II fixed the problem of finger overlapping in Registration 4 and

fixed the problem of finger mis-matching in Registration 10. In Registration 11, two algorithms

have similar performance. Generally speaking, individuals with lower MAE and higher ZNCC

tends to have better results. However, it is not always the case. For example, CMA-ES should

perform better than NSGA-II in Registration 14. The results are not visible in the figure. Better

images are provided in Table 4.1. From the table NSGA-II is actually performing better than

CMA-ES where the problem of finger extended outside of the image is fixed.
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Table 4.1 displays 6 images per row: the target image, the predicted image with lowest MAE

from CMA-ES, the predicted image with highest ZNCC from CMA-ES, the predicted image

with lowest MAE in a PF from NSGA-II, the predicted image with highest ZNCC in a PF

from NSGA-II and the predicted image with median MAE and ZNCC in a PF from NSGA-II.

From the table, we can clearly see that there are 4 registrations (4,10,12,14) that NSGA-II

produces better results comparing to CMA-ES. NSGA-II have similar performance comparing

to CMA-ES in the rest of registrations. Overall, NSGA-II has better performance than CMA-ES

in terms of qualities of predicted images. We also notice that both algorithms seem to have

wrong alignments in some registrations, e.g. in Registration 5, the fingers are all moving towards

to left hand side. One possible reason is that the hand might not be centred in the target

image. For example, CMA-ES provided similar result in Registration 5 and 10 while NSGA-II

corrected the wrong alignment in Registration 10 but not in Registration 5 (row “Image 5" and

“Image 10" in Table 4.1). The hand is appearing to be more centred in Image 10 comparing

with Image 5. Further investigation is necessary to identify the cause of this problem.

Table 4.1: Display target images and predicted images from CMA-ES and NSGA-II. Images are the
same as displayed in Fig. 4.1 (excluding target images).

Target
CMA-ES

best MAE

CMA-ES

best ZNCC

NSGA-II

best MAE

NSGA-II

best ZNCC

NSGA-II

Pareto Front

Image 1

MAE=

ZNCC=

0.3937

0.7060

0.4099

0.7137

0.4005

0.7173

0.4045

0.7216

0.4023

0.7207

Continued on next page
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Table 4.1 – continued from previous page

Target
CMA-ES

best MAE

CMA-ES

best ZNCC

NSGA-II

best MAE

NSGA-II

best ZNCC

NSGA-II

Pareto Front

Image 2

MAE=

ZNCC=

0.3497

0.7378

0.3540

0.7405

0.3503

0.7457

0.3523

0.7474

0.3511

0.7471

Image 3

MAE=

ZNCC=

0.4060

0.7264

0.4068

0.7269

0.4071

0.7283

0.4094

0.7298

0.4083

0.7289

Image 4

MAE=

ZNCC=

0.3953

0.7051

0.3991

0.7056

0.3912

0.7115

0.3940

0.7126

0.3922

0.7123

Continued on next page
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Table 4.1 – continued from previous page

Target
CMA-ES

best MAE

CMA-ES

best ZNCC

NSGA-II

best MAE

NSGA-II

best ZNCC

NSGA-II

Pareto Front

Image 5

MAE=

ZNCC=

0.4398

0.6603

0.4449

0.6639

0.4401

0.6613

0.4437

0.6667

0.4417

0.6657

Image 6

MAE=

ZNCC=

0.3947

0.7179

0.3952

0.7183

0.3968

0.7209

0.4022

0.7348

0.4010

0.7342

Image 7

MAE=

ZNCC=

0.4029

0.7012

0.4064

0.7079

0.4037

0.7080

0.4080

0.7146

0.4062

0.7131

Continued on next page
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Table 4.1 – continued from previous page

Target
CMA-ES

best MAE

CMA-ES

best ZNCC

NSGA-II

best MAE

NSGA-II

best ZNCC

NSGA-II

Pareto Front

Image 8

MAE=

ZNCC=

0.3765

0.7202

0.3780

0.7223

0.3791

0.7315

0.3822

0.7338

0.3809

0.7318

Image 9

MAE=

ZNCC=

0.4356

0.6130

0.4446

0.6229

0.4387

0.6272

0.4440

0.6349

0.4410

0.6332

Image 10

MAE=

ZNCC=

0.4790

0.6503

0.4935

0.6529

0.4423

0.6909

0.4480

0.6958

0.4459

0.6950

Continued on next page
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Table 4.1 – continued from previous page

Target
CMA-ES

best MAE

CMA-ES

best ZNCC

NSGA-II

best MAE

NSGA-II

best ZNCC

NSGA-II

Pareto Front

Image 11

MAE=

ZNCC=

0.4167

0.7094

0.4211

0.7146

0.4108

0.7315

0.4136

0.7346

0.4118

0.7337

Image 12

MAE=

ZNCC=

0.4073

0.7156

0.4083

0.7171

0.4115

0.7237

0.4137

0.7256

0.4123

0.7250

Image 13

MAE=

ZNCC=

0.3903

0.7218

0.3910

0.7237

0.3911

0.7261

0.3932

0.7283

0.3923

0.7275

Continued on next page
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Table 4.1 – continued from previous page

Target
CMA-ES

best MAE

CMA-ES

best ZNCC

NSGA-II

best MAE

NSGA-II

best ZNCC

NSGA-II

Pareto Front

Image 14

MAE=

ZNCC=

0.4464

0.6535

0.4478

0.6547

0.4716

0.6449

0.4757

0.6513

0.4740

0.6502

Image 15

MAE=

ZNCC=

0.4206

0.7409

0.4322

0.7452

0.4223

0.7424

0.4295

0.7527

0.4259

0.7458

4.4 Discussion and conclusion

We investigated the effect of bi-objective optimisation that aimed to improve the registration

accuracy. Registrations of 15 different radiographs were performed in the bi-objective

optimisation where NSGA-II was used. The objective function was constructed by using

two conflicting metrics: MAE and ZNCC. We investigated how to select the best solution

from PF in the context of the bi-objective optimisation. In our hand registration problem,

the choice of the best solution have little impact on final results, i.e. all predicted images

from those solutions are similar to each other. We then compared the performance of single-

and bi-objective optimisation algorithms using both computational (objective values and

convergence of optimisation) and visual (the quality of predicted images) comparisons. Use of
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NSGA-II greatly improves the registration performance where lower MAE and higher ZNCC

were recorded and faster convergence of the optimisation in most cases. NSGA-II has achieved

better or similar results on all test images comparing to CMA-ES from the visual comparison.

Overall, NSGA-II is a better choice over CMA-ES in solving our hand registration problem.

One particular problem observed is that there are similar wrong alignments of fingers in both

registrations (e.g. in Registration 5) using different optimisation algorithms. It indicates that

the problem might lies on the target images. Further investigation is necessary to identify the

cause of the problem.

In the next chapter we plan to investigate why some images are harder to register than other by

conducting manual registrations, i.e. manually tuning the transformation parameters so that the

2D projection is finely matched to input image. If two images can be matched manually, our

expectation is that optimisation algorithms are able produce good results as well. We also plan

to extend our method using another dataset that involves different musculoskeletal anatomy to

test the adaptability of our method.
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Figure 4.1: Plots of results from CMA-ES and NSGA-II for 15 images. Image displayed: two individuals
with best metric value (lowest MAE and highest ZNCC) and one individual with median metric value
in a PF from NSGA-II. Two individuals with best metric value (lowest MAE and highest ZNCC) from
CMA-ES. Individuals with lowest MAE and highest ZNCC are located in the top left corner in the figure.
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Figure 4.2: Plot MAE and ZNCC at each iteration for both CMA-ES and NSGA-II. The dotted line
represents the change of ZNCC over iterations. The solid line represents the change of MAE over
iterations. CMA-ES is marked using black colour and NSGA-II is marked using red colour. In CMA-ES
a single objective function is called at each iteration. In NSGA-II two objective functions are called at
each iteration and the average value of two metrics in a Pareto-front is computed at each iteration.
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Chapter 5

Registration of real radiographs using

multi-objective optimisation algorithms

5.1 Introduction

In the previous chapter we investigated the effect of two techniques including image padding

and bi-objective optimisation aimed to improve the registration accuracy using fifteen test-cases.

The use of image padding could affect the registration accuracy to some degree. However,

there was no clear indication that the registration accuracy is improved after padding. Also,

more computational resources were required to complete the registration where it might not be

feasible in some cases. The use of NSGA-II generally had positive impact on registration results,

i.e. NSGA-II tends to produce better or similar results compared with CMA-ES on all fifteen

test-cases. However, three radiographs were not registered successfully, which demonstrated

the complexity of our registration problem.

This chapter concentrates on further improvements of our registration framework. Firstly,

we conduct manual registrations to investigate why some images are harder to register than

others. Manual registration is the process of matching target and predicted images by tuning

transformation parameters by hand. In this way, based on information that is obtained from the

manual registrations, different techniques can be applied to improve our registration method. As

discussed in the previous chapter, both CMA-ES and NSGA-II tend to produce similar wrong

alignment in registering same images. This might indicates that the optimisation algorithms is
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not the problem for failed registration. The problem might lies on the input images, i.e. hands

in both images might not be able to match due to their position in the image. Through manual

registrations the underlying cause can be identified.

Also, we adapt our registration framework to another registration problem, which is the

registration of a 3D model to the hip radiograph with Anterior Posterior (AP) views. This

helps us to further test the flexibility and general adaptability of our registration framework. In

previous chapters we mainly focus on advances of optimisation algorithms which improved

registration accuracy in some cases. In this chapter different similarity and dissimilarity metrics

would be evaluated in the context of multi-objective optimisation, which can help us to identify

suitable metrics that can be used together in solving the hand registration problem.

The main contribution of this chapter is enabling the use of manual registration to understand

the causes of problems encountered in previous experiments (Chapters 3 and 4). The findings

are used to address deficiencies of our registration method and for further development of

our method. We also investigate the use of multi-objective optimisation algorithms and the

relationship between different metrics.

The rest of the chapter is organised as follow: Section 5.2 discusses the manual registration

process, another dataset and the multi-objective optimisation, Section 5.3 presents registration

results for both hand and hip registrations and Section 5.4 summaries our findings.

5.2 Methods and materials

5.2.1 Manual registration

Manual registration is a way to investigate why some images are harder to register than others.

In the manual registration process, parameters are tuned by a human operator where the 3D

hand model is transformed to match the input image. Each manual registration takes around 5

minutes. We concentrate on three images (5, 8 and 9 as shown in Figure 3.9) where registrations
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Figure 5.1: The alignment of hands (Image 5) by tuning transform parameters manually instead of using
optimisation algorithms.

of hands were not successful. An example of manual registration of Image 5 is shown in

Figure 5.1. All fingers except the thumb are not able to be registered. We also conduct manual

registrations for both Images 8 and 9. Similar problems are observed and our main findings are

summarised as follow:

1. The rotation of the whole hand is not able to recover the position of the wrist. This is

because the wrist of the hand is not centred in the target image which results in different

position of hands. Thus, the registration of other part of the hand is not possible.

2. The boundary ranges of some parameters are not wide enough. We determined the

boundary range based on real-life observations of finger movements (see Table 3.2).

However, during manual registration we identified that some fingers actually need more

rotation to recover the correct position. This might due to the fact that clinical hand

dataset we used might contains abnormal radiographs.

3. The edge of finger bones is not as sharp as other bones. This might be caused by removal

of skins during pre-processing of raw images. By highlighting the edges of bones, the

chance of successful registration is greater.

To solve these problems, we consider three techniques:
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Figure 5.2: Surface models extracted from the labelled data (taken from cadaver).

1. We can make use of image padding technique. Instead of padding around the image, we

only pad images on the right hand side so that the wrist is roughly centred in the target

image.

2. We can ease the boundary range for particular parameters.

3. We can add a sharpening filter where details are enhanced. A sharpening filter is a

technique to highlight area of interest and enhance those regions.

5.2.2 Visible Human Project (VHP)

The Visible Human Project (VHP) is created by National Library of Medicine (NLM) that

aimed to provide “publicly-available complete, anatomically detailed, three-dimensional

representations of a human male body and a human female body” [1]. The male dataset, the

Visible Man was released in 1994. The female dataset, the Visible Woman was released in

1995. The Visible Human Male data set includes MRI, CT, X-ray radiographs (Figure 5.3) and
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Figure 5.3: Radiographs with AP pelvis view (taken alive) from the Visible Man. The linear scale is
used on the left hand side and the log scale is used on the right hand side.

cross-sectional cryosection, which were made from the male’s cadaver. Voxel-Man’s Segmented

Inner Organs (SIO) is a model composed of a set of segmented volumetric images obtained

from the original cross-sectional cryosection [56], [115]. The 3D surface model can be created

by extracting surface meshes from segmented anatomic structure in the SIO dataset.

There are some difficulties to use the SIO data. For example, some errors still present in the

surface meshes such as missing triangles or inconsistent normal vector orientation, which would

lead to artefacts in the simulated X-ray images. Secondly, both hands are presented in front

of the pelvis in the SIO data (Figure 5.2) but only the right hand in the radiograph with AP

view (Figure 5.3). The radiographs were taken when the man was alive, the SIO when he was

dead. A mismatch of anatomy is therefore to be expected. Lastly, since the data was acquired

in the 90s, a film screen might be used to acquire the images rather than a digital equipment

and detector. The acquisition parameters used to acquire this radiograph are also unknown and

therefore these have been estimated based on those used clinically for the same body parts.

Tube voltage, SOD, SDD, cassette orientation, pixel resolution (space between two successive

pixels) in the digital image and film sensitivity would have to be guessed.

Our approach is shown in Figure 3.1. To overcome the registration problem, the source

is the pelvis of the Visible Man model (Figure 5.2 and blue trace in Figure 3.1) and the
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target is the pelvic anterior-posterior (AP) radiographic view (Figure 5.3 and red trace in

Figure 3.1) The optimisation algorithms will choose different combinations of parameters until

a stopping criterion is met (green trace in Figure 3.1). At the end of the registration process, the

corresponding simulated images should match the real radiograph.

5.2.3 Multi-objective optimisation

In all registration problems including registration of hands and hips, Non-dominated Sorting

Genetic Algorithm III (NSGA-III) is used as the optimisation algorithm. NSGA-III is a well

known multi-objective EA. NSGA-III is a many-objective algorithm based on the popular

non-dominated sorting approach of NSGA-II [62]. A diversity preservation technique and a

survival mechanism are used to ensure the exploration of the Pareto front. Previously, we have

demonstrated that NSGA-II has better performance than CMA-ES in terms of performance

and speed (Section 4.2). Two metrics (MAE and ZNCC) were used to construct the objective

function. Here, we introduce four more popular metrics including structural similarity index

measure (SSIM), root mean square error (RMSE), MI and MAPE (further details can be found

in Section 2.4). NSGA-III is expected to have better or similar performance comparing to

NSGA-II. SSIM measures the structural information between two images [163]. The value

ranges between 0 and 1. When SSIM equals to 0, there is no correlation between two images.

When SSIM equals to 1, two images are perfectly correlated. RMSE measure differences

between two images. Unlike SSIM which focuses on structural information, RMSE consider

pixels that are independent to its neighbours. RMSE is always non-negative and best value is 0

where two images are identical. MI is a popular metric in traditional registration problems (see

Section 2.2). MI measures the similarity between histograms of two images. MI ranges from 1

(perfectly uncorrelated image values) to 2 (perfectly correlated image values).

How the choice of objective function will affect the result of the registration is investigated here.

To align with other metrics which are to be minimised, SSIM, ZNCC and MI are re-written as:

1 − SSIM(Y, Ŷ)
2

(5.1)
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Figure 5.4: Manual registration of Image 5 by hand after padding, widen boundary ranges and adding
a sharpening filter.

1 − ZNCC(Y, Ŷ)
2

(5.2)

2 − MI(Y, Ŷ)
2

(5.3)

All six metrics are used to construct the objective function which is to be minimised by the

optimisation algorithm in both registration problems. For hand registration problem, parameters

and their corresponding value range would have to be determined after manual registration is

conducted. For hip registration problem, there are 8 parameters including rotation of model (2

parameters), the position of the X-ray source (3 parameters) and the position of the detector (3

parameters).

The same stopping criteria are used. The termination tolerance is 1E-5 for both the solution

and the function value. Also, the maximum run time for the optimisation process is 20 minutes.
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Figure 5.5: Manual registration of Image 8 by hand after padding, widen boundary ranges and adding
a sharpening filter.
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Figure 5.6: Manual registration of Image 9 by hand after padding, widen boundary ranges and adding
a sharpening filter.

5.3 Results

5.3.1 Hand registration

5.3.1.1 Manual registration of hands

After tuning parameters by hand and utilising the trial-and-error approach, all fingers are able

to be recovered in three registration problems. Although image padding was not helping when

padding around images, it is still a useful technique. For example, in our case we pad images on

the right-hand side to ensure the alignment of hands can be performed at the same position. This

is the main reason why different optimisation algorithms tend to have same wrong alignments

in previous chapters. Results are shown in Figures 5.4, 5.5 and 5.6. Based on those results,

these changes are made in our framework:
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Table 5.1: Rotation and re-scaling parameters to be optimised and their corresponding ranges after
manual registration of hands.

Parameters
Bones Whole

hand Thumb Index Middle Fourth Little

Rotation range
(degrees) [-2, 2]

MCt: [−40, 10]
[−20, 0]

PPt: [−10, 10]

MCi: [−2, 2]
[−2, 2]

PPi:
[−30, 10]
[−20, 0]

IPi:
[−20, 0]

DPi:
[−20, 0]

MCm: [−2, 2]
[−2, 2]
PPm:

[−10, 10]
[−20, 0]

IPm:
[−20, 0]
DPm:

[−20, 0]

MCf: [−2, 2]
[−2, 2]
PPf:

[−10, 10]
[−20, 0]

IPf:
[−20, 0]

DPf:
[−20, 0]

MCl: [−2, 2]
[−2, 2]

PPl:
[0, 30]
[−20, 0]

IPl:
[−20, 0]

DPl:
[−20, 0]

Rescaling ratio - [0.9, 1.1] [0.9, 1.1] [0.9, 1.1] [0.9, 1.1] [0.9, 1.1]

• Padding: 200 pixels are padded on the right hand side for both the target image and

predictions in Registration 5, and 100 pixels are padded on the right hand side for both

the target image and predictions in Registration 8 and 9.

• Parameters: The boundary range of MCt is changed from [-10,10] to [-40,10]. The

boundary range of PPi is changed from [-10,10] to [-30,10]. The boundary range of PPl

is changed from [-10,10] to [0,30]. We also add rotation parameters for bones including

MCi, MCm, MCf and MCl where we aim at better alignment of those bones.

• Enhance region of interest (ROI): A sharpening filter is applied on both target image

and predicted images to increase the difference between edges of finger bones and finger

bones.

The rotation and re-scaling parameters and their corresponding ranges are summarised in

Table 5.1. Distance parameters including SOD and SDD are unchanged (details can be found in

Section 3.3.3).

5.3.1.2 Registration of hands
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Table 5.2: Individual solutions with best metric values for Image 5, 8 and 9. Target and predicted
images are cropped so that they are comparable with previous results. Same individual solutions for
Registration 5 are labelled as: a) the solution with the lowest DZNCC, MAR, RMSE and DMI, b) the
solution with lowest MAPE and c) the solution with lowest DSSIM. Corresponding solutions are also
labelled in Table 5.3.

Target and predictions Registration 5 Registration 8 Registration 9

Target

Prediction

(best MAE)
a)

Prediction

(best RMSE)
a)

Prediction

(best MAPE)
b)

Prediction

(best ZNCC)
a)

Prediction

(best SSIM)
c)

Continued on next page
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Table 5.2 – continued from previous page

Target and predictions Registration 5 Registration 8 Registration 9

Prediction

(best MI)
a)

A priori knowledge of why some images are hard to register was obtained by conducting manual

registrations. All three images could be registered in the manual registration. Our hypothesis

was “if registration can be successfully performed by a human operator, our registration method

can achieve similar results and the registration accuracy is expected to be improved". Table 5.2

presents registration results where solutions have extreme metric values in the PF. The second

column shows the target and predicted images with best metric value for three registrations.

Those solutions with best metric value are obtained from the PF at the last iteration. In

Registration 5 the visible improvement was observed in terms of qualities of predicted images

except predicted images with best SSIM, comparing with previous results (see Table 4.1). The

position of thumb is not able to be recovered with the solution with best MAE. Note those

results are solutions with extreme values (best metric values) in the PF. The third and fourth

column show the target and predicted images with best metric values for Registration 8 and

9, respectively. All solutions with best metric values produce similar results and has better

performance comparing with registration results in Table 4.1. Next, we compare the candidate

solutions with best metric value and with median metric values.

The extreme solution is usually not suitable and the ideal solution should be balanced between

different metrics, i.e. the solution with median metric values is more appropriate. Results of

solutions are displayed in Tables 5.3, 5.4 and 5.5. In Registration 5 two candidate solutions

can be selected: one solution with four best metric values (lowest DZNCC, MAE, RMSE

and DMI) and one solution with median metric values. Predicted images of two solutions are

presented in Figures 5.7a and 5.7b. Both images are similar to each other. In Registration 8
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Table 5.3: Solutions for Registration 5 with six metrics including DZNCC, DSSIM, MAE, RMSE, MAPE
and DMI. Corresponding solutions in the second column of Table 5.2 are displayed: a) the solution with
the lowest DZNCC, MAR, RMSE and DMI, b) the solution with lowest MAPE and c) the solution with
lowest DSSIM. Metrics with lowest value is highlighted in bold.

Solutions DZNCC DSSIM MAE RMSE DMI MAPE
0.1916 0.1578 0.4066 0.8754 0.4621 0.0796
0.1925 0.1569 0.4146 0.8776 0.4622 0.0851

c 0.2037 0.1548 0.4205 0.9026 0.4611 0.0855
a 0.1823 0.1575 0.3932 0.8539 0.4597 0.0822
b 0.1915 0.1639 0.4056 0.8751 0.4634 0.0771

two candidate solutions with median metric values can be selected (Figure 5.8). Solutions are

sorted by the value of DZNCC and other metrics can also be used except DSSIM as discussed

previously. While two candidate solutions produce similar images for Registration 8, two

candidate solutions produce different images for Registration 9. The index finger in one image

(Figure 5.9a) is slightly longer than another (Figure 5.9b). Generally speaking, the chosen

candidate solutions produce similar images in all three hand registration problems.

(a) (b)

Figure 5.7: Corresponding images of two selected solutions for Registration 5. Solutions are labelled as:
a) the solution with four best metric values, and b) the solution with median metric values (see Table 5.3).

Understanding the relationship between the performance of different metrics in the

multi-objective optimisation is important, due to the fact that not all metrics have equal

performance. For example, SSIM has the worst performance (visually) among all six metrics

in Registration 5. A scatter matrix plot can help us to visualise the relationship between each
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Table 5.4: Solutions for Registration 8 with six metrics including DZNCC, DSSIM, MAE, RMSE, MAPE
and DMI. Corresponding images of labelled solutions a) and b) are displayed in Figures 5.8a and 5.8b.

Solutions DZNCC DSSIM MAE RMSE DMI MAPE
0.2033 0.1659 0.4195 0.9019 0.4596 0.0854
0.1962 0.1717 0.4076 0.8859 0.4603 0.0946
0.1968 0.1677 0.4070 0.8873 0.4581 0.0895

b 0.1967 0.1654 0.4099 0.8869 0.4580 0.0877
0.1971 0.1664 0.4093 0.8880 0.4580 0.0966
0.1934 0.1680 0.4032 0.8796 0.4579 0.1029
0.1925 0.1647 0.4095 0.8775 0.4578 0.0981
0.2034 0.1695 0.4160 0.9019 0.4602 0.0858
0.1909 0.1726 0.4040 0.8738 0.4598 0.0921
0.2009 0.1687 0.4178 0.8964 0.4605 0.0863
0.1907 0.1707 0.4037 0.8734 0.4591 0.0970

a 0.1965 0.1713 0.4054 0.8865 0.4595 0.0899
0.1913 0.1690 0.4055 0.8749 0.4586 0.0962
0.1948 0.1691 0.4047 0.8826 0.4587 0.0993
0.1971 0.1713 0.4102 0.8879 0.4598 0.0867

metric pairs. We plot the scatter matrices of all six metric pairs for Registrations 5, 8 and 9 in

Figures 5.10, 5.11 and 5.12. All individuals in the PF are included and represented by points

in these plots. SSIM, ZNCC and MI are in the form of minimisation (Equations 5.1, 5.2 and

5.3) which are presented as DSSIM, DZNCC and DMI. RMSE and DZNCC has the perfect

linear relationship, i.e. a straight line can be drew by connect all points in the plot. The value of

RMSE and DZNCC increase (or decrease) at the same time. This relationship is observed in all

scatter matrix plots for Registration 5, 8 and 9 (subplots of DZNCC-RMSE or RMSE-DZNCC

in Figures 5.10, 5.11 and 5.12). The metric pairs of MAE and DZNCC, and MAE and RMSE

tend to increase (or decrease) at the same time in Registration 5 (subplots of MAE-RMSE

or RMSE-MAE in Figure 5.10) although it is not linear. The relationship becomes less clear

in Registration 8 and 9 (Figures 5.11 and 5.12). There seems to be no relationship between

SSIM and other metrics, and between DMI and other metrics. MAPE seems to have inverse

relationship with other metrics including DZNCC, MAE, RMSE where the value of MAPE

increases, the value of DZNCC, MAE, RMSE are in a downward trend.
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Table 5.5: Solutions for Registration 9 with six metrics including DZNCC, DSSIM, MAE, RMSE, MAPE
and DMI. Corresponding images of labelled solutions a) and b) are displayed in Figures 5.9a and 5.9b.

Solutions DZNCC DSSIM MAE RMSE DMI MAPE
0.2090 0.1767 0.4250 0.9144 0.4654 0.0873
0.2098 0.1723 0.4213 0.9161 0.4635 0.0880
0.2070 0.1792 0.4168 0.9098 0.4646 0.0926
0.2054 0.1760 0.4164 0.9064 0.4639 0.0940
0.2068 0.1730 0.4149 0.9094 0.4626 0.0981
0.2047 0.1783 0.4134 0.9048 0.4646 0.0957

a 0.2071 0.1817 0.4202 0.9102 0.4657 0.0898
0.2128 0.1697 0.4292 0.9227 0.4642 0.0876
0.2138 0.1725 0.4226 0.9248 0.4633 0.0893
0.2044 0.1745 0.4131 0.9043 0.4628 0.0974
0.2081 0.1700 0.4168 0.9123 0.4627 0.0906

b 0.2075 0.1708 0.4091 0.9110 0.4609 0.0922

5.3.2 Hip registration

The registration of the VHP male model to a single radiograph with the AP view is more

complex than initially expected. The mismatch of anatomy in the VHP male model and the

radiograph with AP views would result in pre-exist error in the registration process. Also, the

pixel spacing of the film and all parameters that are used to acquire the radiograph are unknown.

Table 5.6: Solutions in hip registration with six metrics including DZNCC, DSSIM, MAE, RMSE, MAPE
and DMI. Images of labelled solutions are displayed in Figure 5.14:a) the solution with four best metric
values including DZNCC, DSSIM, MAE and RMSE, and b) and c) are solutions with median metric
values sorted using DZNCC.

Solutions DZNCC DSSIM MAE RMSE DMI MAPE
b 0.2585 0.4333 0.8434 1.0168 0.4709 0.1646

0.2638 0.3979 0.8371 1.0272 0.4806 0.2192
a 0.2499 0.3792 0.8082 0.9999 0.4803 0.2722
c 0.2617 0.4224 0.8247 1.0231 0.4728 0.1899

0.2582 0.4136 0.8334 1.0162 0.4698 0.1806
0.2801 0.4302 0.8579 1.0585 0.4722 0.1658
0.2554 0.4221 0.8251 1.0107 0.4722 0.1826
0.2854 0.3881 0.8362 1.0685 0.4787 0.2316

Figure 5.13 shows the registration results where DZNCC, DSSIM, MAE and RMSE performs

relatively better than DMI and MAPE. Three candidate solutions can be selected (see Table 5.6):
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(a) (b)

Figure 5.8: Corresponding images of two selected solutions (median DZNCC) selected in Registration 8
in Table 5.4.

one solution with four best metric value (best DZNCC, DSSIM, MAE and RMSE) and two

solutions with median metric value of DZNCC among its PF. Unlike what we observed in hand

registration problems, only one solution with four best metric values can be selected in the

hip registration problem. A scatter metric plot of the PF at the last iteration is presented in

Figure 5.15. Similar behaviour is observed where DZNCC and RMSE are in a linear relationship

where they both increase (or decrease) at the same time. Other metric pairs seem to have little

or no relationship.

5.4 Discussion and conclusion

We have demonstrated that our registration method is robust and can generate results accurately

with limited computational resources (∼ 20 minutes). We have tested our registration framework

on two different problems including registration of hands and hips. Registration of an articulated

hand model to the hand radiograph was performed in two steps. Manual registrations of three

images were firstly performed to investigate why some images are harder to register than others.
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(a) (b)

Figure 5.9: Corresponding images of two selected solutions (median DZNCC) selected in Registration 9
in Table 5.5.

A priori knowledge was obtained and few techniques were applied to improve our registration

framework. Better registration accuracy was achieved using NSGA-III on three test-cases where

they were not able to be registered in previous registrations. Registration of hips was performed

using NSGA-III where the VHP male model were successfully registered to the radiograph with

AP views. This demonstrated the adaptability of our registration method to other registration

problems involves different musculoskeletal anatomy.

We have demonstrated that best solutions can be selected in multi-objective optimisation

problems. The choice of the best solution varies on two registration problems. In the hand

registration problem, solutions with median metric value can be selected as the best solution.

However, in the hip registration problem, the best solution is selected has four best metric values.

The solutions with median metric value produces unreliable results. One possible reason is that

all registrations were performed only once.
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The choice of metrics was also investigated. Scatter matrix plots were used to investigate the

relationship between different metric pairs. In both hand and hip registrations, we observed that

ZNCC has an inverse linear relationship with RMSE, i.e. they are better to be used together than

any other metric pairs such as ZNCC and MAPE, or ZNCC and MI. There seems to be little

or no relationship between remaining metric pairs. A more thorough analysis of relationships

between each metric pair is necessary. One way to achieve that is performing registrations using

NSGA-III with different metric pairs. For example, comparing the performance of one objective

function constructed by using MAE and ZNCC, with another objective function constructed by

using RMSE and ZNCC.

One drawback of our approach was the lack of quantitative analysis. In the multi-objective

optimisation problem, there were many solutions with different metric values where they

produce similar predicted images. The best solution could not be automatically selected based

on metric values.
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Figure 5.10: A scatter matrix plot of solutions in a PF for Registration 5. SSIM, ZNCC and MI are in
minimisation form (Equations 5.1, 5.2 and 5.3) which are presented as DSSIM, DZNCC and DMI.
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Figure 5.11: A scatter matrix plot of solutions in a PF for Registration 8. SSIM, ZNCC and MI are in
minimisation form (Equations 5.1, 5.2 and 5.3) which are presented as DSSIM, DZNCC and DMI.
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Figure 5.12: A scatter matrix plot of solutions in a PF for Registration 9. SSIM, ZNCC and MI are in
minimisation form (Equations 5.1, 5.2 and 5.3) which are presented as DSSIM, DZNCC and DMI.
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Target DZNCC DSSIM MAE

RMSE DMI MAPE

Figure 5.13: Target and predicted images with best metric values in hip registration with six metrics
including DZNCC, DSSIM, MAE, RMSE, DMI and MAPE.

(a) (b) (c)

Figure 5.14: Corresponding images of three selected solutions for the registration of hips. Solutions are
sorted based on the value of DZNCC and are labelled as: a) the candidate solution with four best metric
value, and b) and c) are two candidate solutions with median metric values (see Table 5.6).
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Figure 5.15: A scatter matrix plot of the PF with different metrics including DZNCC, DSSIM, MAE,
RMSE, DMI and MAPE at the last iteration.
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Chapter 6

Discussion and conclusion

6.1 Discussion and limitations

Registration of 3D polygon models to a single image can be achieved using our registration

method. Our method relies on fast X-ray simulations, suitable metrics and optimisation

algorithms. We have presented both qualitative and quantitative analysis of our method using

different datasets. We firstly conducted a proof-of-concept study using two simple test cases

and then progressed to registrations of real-world hand radiographs (Chapter 3). Lastly, a lot of

effort was devoted into improving our registration method (Chapters 4 and 5) by addressing

deficiencies that observed from previous experiments. Different techniques were tested including

image padding, sharpening filters and tailored boundary conditions for specific registration

problems. Image padding is useful for positioning the hand in the centre of the image. Tailored

boundary conditions are proven to be important because limited search space may leads to

failure of the whole optimisation process due to the clinical nature of radiographs. Also, we

extended our method to another problem, which is the registration of a 3D model to a hip

radiograph.

Our registration method can be easily modified to solve any registration problem that requires

registration of a 3D polygon model to a single image to be performed. We tested our method

on a variety of data such as synthetic hand radiographs, and real clinical radiographs from

MURA dataset and VHP dataset. Our registration method performed well in solving real-world

problems in terms of both speed and accuracy. However, there are some limitations:
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• Our registration method was specifically designed for registration of a 3D model to a

single image. Thus, it might not suitable to use in the some cases (e.g. registration of a 3D

CT image to X-ray images). Any 3D data must be converted to a 3D model represented by

meshes. The development of a 3D model is often time-consuming and requires extensive

knowledge in the related research field. Thus, extensive evaluations of our methods in

different real-world problems were not possible due to the lack of datasets. One solution

is creating a dataset that contains 3D models and related radiographs (e.g. A 3D model of

the whole human body and the related radiographs).

• There was no skins presented in our 3D hand model. Normally, hand radiographs

contains both bones and skins. We removed skins as much as possible without affecting

bones in the real hand radiograph. However, there were still some skins left in the real

hand radiographs which resulted in pre-existing errors before registration. There are

two ways to address this problem. The first one is adding a skin model to the existing

hand model and skins are kept in the hand radiographs. However, by adding skins

to both real and simulated hand radiographs, the complexity of the problem increases

since the optimisation algorithms will have to match both skins and bones. Also, we

have to taken into account the development of a skin model itself. An alternative way

is automatically removing the skins using segmentation techniques. In this way the

optimisation algorithms would only need to match bones in both real and simulated hand

radiographs. However, segmentation might produces errors. For example, a small section

of bones might be removed along with skins.

• In our registration method only a single radiograph with PA view is used. This might

cause a problem which is known as depth ambiguity where registration of the same

radiograph leads to recovered 3D hands with different sizes (depth of bones). One

way to fix this problem is to register the same radiograph but with the lateral view (or

ball-catching poses) so that the missing depth information could be obtained.
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• Bi- and multi-objective optimisation algorithms generally performed better than

single-objective optimisation algorithms. The best solution from a single-objective

optimisation can be easily identified. However, this was not the case for bi- and

multi-objective optimisations where a list of candidate solutions (PF) was available. We

considered two cases to select one best solution. The first one is relatively easy. If

selected solutions provide different results, then the best solution is the one produces

an image that best matches the target image. The second one is, if selected solutions

provided similar results, the solution with median metric values is chosen as the best

solution. In both cases manual comparison is required to identify the best solution such as

the use of error maps or other image comparison techniques. Human interventions might

not be possible if thousands or more registration processes are performed, which prevents

a thorough evaluation of our method to be conducted, i.e. testing our methods using

thousands of available images to gain statistically reliable analysis is not possible. Also,

all registrations need be repeated for several times (e.g. 15 times) to gather statistically

meaningful results.

6.2 Conclusion and future work

In this thesis we reviewed the concept of registration and 3D/2D registration. Also, related

3D/2D registration methods, metrics and optimisation algorithms were presented and discussed.

We identified that the registration of polygon meshes has been overlooked and we proposed to

address this. We proposed and evaluated our 3D/2D registration method that aims to register

a 3D polygon model to a single image using a variety of datasets and different metrics and

optimisation algorithms. Our method is found to be robust and produces good results. However,

there are some drawbacks of our method as discussed in the previous section. We plan to

address those problems in the future and provide an insight of further researches:

• Further evaluation of our registration method (see Chapter 5) on all 15 images and

repeating the registration for 15 times for each image. Comparisons between the

results with six metrics and with different metric pairs are necessary, i.e. comparing the
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performance of registration using 6 metrics with 2 metrics. In this way best metric pairs

might be used in further experiments and reduces time required to do the optimisation.

Total number of registrations when 6 metrics are used is 15 and is 225 when different

metric pairs are used. By repeating all registrations for 15 times, the total number of

registrations becomes 3600. It will take roughly 50 days using our computer where

hardware specifications were presented in Section 3.3.4.1. More powerful computers

(e.g. Supercomputing Wales, available at https://www.supercomputing.wales/) is

required to shorten the registration process.

• Making use of image segmentation techniques to pre-process the real hand radiographs

automatically (e.g. iterative thresholding [162]) and developing a visualisation tool using

graphing libraries (e.g. Plotly, available at https://github.com/plotly) which could

speed up the selection process in the multi-objective optimisation.

• We could create a dataset that contains 3D mesh models and their corresponding

radiograph with PA view or radiographs with multiple views. There are available datasets

containing 3D volumetric data (e.g. Mosmed-1110 including 1110 3D CT scans of

patients [97]). The 3D mesh models can be created from those data using deep learning

techniques (e.g. Voxel2Mesh [168]). Also, fast DRR generations from 3D volumes can

be achieved [149]. This dataset will be very useful for testing, evaluating and improving

our method and for evaluating the applicability of our approach to other articulated

musculoskeletal anatomy.
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3D Triangular Models to 2D X-ray Projections Using Black-box Optimisation and X-ray

Simulation. In CGVC (pp. 105-113).

• Wen, T., Mihail, R. and Vidal, F., 3D-2D Registration Using X-Ray Simulation and

CMA-ES. In Applications of Evolutionary Computation: 24th International Conference,

EvoApplications 2021, April 7–9, 2021, Proceedings (Vol. 12694, p. 453). Springer

Nature.

• Pointon, J.L., Wen, T., Tugwell-Allsup, J., Sújar, A., Létang, J.M. and Vidal, F.P., 2023.

Simulation of X-ray projections on GPU: Benchmarking gVirtualXray with clinically

realistic phantoms. Computer Methods and Programs in Biomedicine, 234, p.107500.

• Pointon, J.L., Wen, T., Tugwell-Allsup, J., Létang, J.M. and Vidal, F.P., 2023.

gVirtualXray (gVXR): Simulating X-ray radiographs and CT volumes of anthropomorphic
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