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Abstract: Individual cells composing populations have many unique properties that are quantified 10 
to develop a holistic understanding of the population. This can include understanding overall pop- 11 
ulation characteristics, identifying subpopulations, or elucidating outlier characteristics that may be 12 
indicators of disease. Electrical impedance measurements are rapid and label-free for the monitor- 13 
ing of single cells and generate large datasets of many cells at single or variable frequencies. To 14 
increase the accuracy and sensitivity of measurements and define the relationships between imped- 15 
ance and biological features, many electrical measurement systems have incorporated machine 16 
learning (ML) paradigms for control and analysis. Considering the difficulty capturing complex re- 17 
lationships using traditional modelling and statistical methods due to cell heterogeneity, ML offers 18 
an exciting approach to the systemic collection and analysis of electrical properties in a data-driven 19 
way. In this work, we discuss incorporation of ML to improve the field of electrical single cell anal- 20 
ysis by addressing the design challenges to manipulate single cells and sophisticated analysis of 21 
electrical properties that distinguish cellular changes. Looking forward, we emphasize the oppor- 22 
tunity to build on integrated system technologies to address common challenges in data quality and 23 
generalizability to save time and resources at every step in electrical measurement of single cells. 24 

Keywords: machine learning; electrical sensing; single-cell analysis; impedance cytometry; imped- 25 
ance spectroscopy 26 
 27 

1. Introduction 28 

1.1. Motivation to Measure Single Cells 29 
Uniqueness of gene expression and phenotype is inherent in any biological system 30 

and generates the variation of function necessary to maintain homeostasis in our cells and 31 
bodies. Recent work in the field of healthcare has sought to address the need to personal- 32 
ize medicine and design diagnostics that are flexible and sensitive to variations between 33 
patients and between cells making up a single system, especially in the context of re- 34 
source-limited areas [1,2]. An example is the need to identify circulating tumor cells 35 
(CTCs) from the other cells that make up the composition of a blood sample to predict 36 
cancer prognosis [3]. While size can act as a preliminary method for isolating certain com- 37 
ponents of blood, more complex methods need to tease apart the identity and origin of 38 
CTCs from cells with similar size [4]. Even within a single organ, the population of cells 39 
is composed of individuals, each with unique genetic and physiological properties. For 40 
this reason, the measurement of single cells and analysis of population heterogeneity has 41 
become a focus of modern diagnostics research. Beyond the expansion of technology into 42 
resource-limited areas, the movement towards personalized healthcare has been essential 43 
in identifying the benefits of single-cell analysis. A review from Tavakoli et al. describes 44 
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the way recent advances in microfluidics have empowered the study of single-cell appli- 45 
cations in the context of cancer understanding, diagnosis, therapy, highlighting the neces- 46 
sity of individual measurements [5]. Similar efforts studying other diseases have used mi- 47 
crofluidics to isolate and genetically analyze single cells while reducing the equipment 48 
and footprint necessary [6,7].  49 

Cellular heterogeneity comes from variations in genetics or expression of properties 50 
that can be caused by random mutations or as a response to environmental factors. Het- 51 
erogeneity poses many challenges for both measurement and analytical systems. The 52 
measurement system requires the sensitivity to capture specific changes and sufficient 53 
data features and sample sizes to detect these nuances. Similarly, the analytical systems 54 
need to deal with a large volume of data and often need more sophisticated approaches 55 
than purely statistical analysis. When studying a population of single cells, data tends to 56 
be more dispersed, rather than the cleanly defined data belonging to less heterogeneous 57 
systems. In the study of cellular populations, it is important to have the ability to identify 58 
not just important features and trends, but also determine standout or outlier cells in a 59 
population that may not be representative of the whole [8,9]. When looking at consistent 60 
and easy to integrate methods to generate such data rapidly and with minimal resources, 61 
a natural choice is evaluation of the electrical properties.   62 

1.2. High-Throughput Electrical Measurement 63 
For the evaluation of single cells making up a larger population, the necessary num- 64 

ber of measurements is limited by the techniques used to manipulate the cells physically 65 
and measure their properties. Electrical impedance measurements using microfluidic 66 
channels has become a popular mechanism for single-cell handling because of the ability 67 
to design precise control of the cell measurement location and the rapid nature of the elec- 68 
trical signal acquisition [10,11]. These systems also have the potential to add physical, 69 
chemical and immunological cell property measurements using optical systems, and to 70 
probe mechanical, inertial and adhesive characteristics through microfluidic designs for a 71 
rapid and multi-faceted approach to characterization [12]. Although methods exist to look 72 
at individual cell properties using optical and genetic profiling techniques, these tech- 73 
niques are less diagnostically accessible than electrical cell profiling.  Electrical character- 74 
ization has the benefits of not requiring label molecules, rapid sample preparation and 75 
measurement, and low-profile devices that are easily translatable to point-of-care pur- 76 
poses. Although the electrical measurements tend to give less specific information, the 77 
variety of available experimental parameters and variables is ideal for the incorporation 78 
of machine learning algorithm adoption. 79 

The inclusion of multiple types of electronic sensor designs or frequencies also allows 80 
for a highly tunable system design which can maximize the information obtained from 81 
each cell during its travel in the channel [13]. Additionally, microfluidic systems have 82 
been used to isolate chambers for simultaneous measurements of multiple samples. Lopez 83 
et. al, reported a multiple cell sensor capable of measuring constant current stimulation, 84 
constant voltage stimulation, and impedance spectroscopy on roughly 16,500 input elec- 85 
trodes requiring separate analysis [14]. The combination of electrical measurement and 86 
microfluidics is paramount for the development of lab-on-a-chip devices that can incor- 87 
porate the handling, measurement, and analysis of samples. Such inclusive devices have 88 
gained in popularity as accessibility has become a goal in the healthcare field because they 89 
have the potential to function in areas lacking resources in infrastructure, personnel, or 90 
consumables. 91 

1.3. Machine Learning Applications in Studying Complex Variable Relationships 92 
Because cell individuality can influence a variety of cell properties and processes as 93 

summarized in Figure 1, analysis can require spatial, temporal, or multimodal data. The 94 
data required to capture deep understanding of a population lends itself to machine 95 
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learning as an analytical tool, especially in conditions with many input modalities and 96 
when comparing highly overlapping population changes. Machine learning is the study 97 
of learning processes and application of computer-based modeling to fit and predict 98 
trends in large datasets [15]. Exemplifying the capability for machine learning to address 99 
the challenges associated with single cells, Chien et.al, showed that single cells with highly 100 
overlapping electrical opacity can be distinguished visually using clustering and popula- 101 
tion distribution even with no significant difference by statistical analysis, which would 102 
quantitatively benefit from the incorporation of a clustering algorithm or principal com- 103 
ponent analysis [16]. Traditional machine learning using feature selection, classification, 104 
or a combination can give information on both the most important features to identify 105 
changes or inform future iterations of device designs. We exemplify this in our work 106 
showing how single cell frequency features can be identified both visually in spectra and 107 
using a trained nucleus size prediction algorithm based on recursive feature elimination 108 
and support vector machines [17]. Both feature selection and classification as a combined 109 
approach made it possible to distinguish between subpopulations of cells exemplifying 110 
different nucleus size altering treatments which could not be identified statistically. In this 111 
way, different levels of algorithm complexity can be leveraged to generate important in- 112 
sights on any dataset. 113 

 114 

 115 
Figure 1. Summary of individual cell properties that can be measured to distinguish populations. 116 

Beyond basic machine learning algorithms, multilayer artificial neural networks can 117 
add layered decision-making processes to look at more complex relationships, similar to 118 
the way human neurons process information, using variable feature information and con- 119 
text to generate understanding. Deep learning has expanded the capabilities of the ma- 120 
chine learning field to enable smarter and more adaptable algorithms using larger and 121 
more varied sets of data. Deep learning incorporation is key to developing precision and 122 
individualized medicine in a clinical setting as previous work with biological measure- 123 
ments or imaging data has been used to predict disease state for an individual. Deep learn- 124 
ing has also expanded past the scientific fields to incorporation in our daily life in audio 125 
processing, facial recognition, and data retrieval by search engines [18]. The benefit of its 126 
application in comparison to traditional statistical methods is the ability to parse complex 127 
relationships, such as predicting human behavior, between many variables and determine 128 
how the combination of these variables contributes to an overall classification or outcome 129 
[19,20]. The trained model can often be used to generate optimized variable values or im- 130 
prove the visualizations to show distinctions in an otherwise complicated dataset. For this 131 
reason, neural networks are commonly applied to the study of single-cell characteristics 132 
making up larger, often heavily overlapping populations [21–23]. As cellular measure- 133 
ments can include larger amounts of data either in fluorescence in multiple color channels, 134 
optical monitoring over periods of time, or genetic profiling of hundreds of genes, the 135 
need for comprehensive analysis has grown. Both traditional models and neural networks 136 
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are adaptable and may be better applied when addressing specific requirements of model 137 
performance or interpretability of results. 138 

All machine learning paradigms are highly tunable to balance the computational 139 
load of the model, time to run, and performance. Typically, multiple model types are ap- 140 
plied in a given study because although methods like logistic regression (LR), support 141 
vector machines (SVM), and neural networks (NN) are most common, the accuracy per- 142 
formance is often dataset dependent [24]. The models vary in algorithm complexity and 143 
transparency, so based on the necessary computation time and sensitivity, model hy- 144 
perparameters can be tuned to accomplish the desired task. Beyond the classification of 145 
samples, models can focus on the selection of the most important features as a way to 146 
characterize the variable relations. Feature selection methods can determine any correla- 147 
tion or redundancy when examining a large feature set or improve the features given to 148 
an eventual prediction model [25,26]. An overarching goal of any model is the ability to 149 
generalize or extend its use to independent datasets, as such there is a need to ensure a 150 
sample size large enough to prevent overfitting, something easy to achieve using high- 151 
throughput single-cell measurement systems. 152 

 153 

 154 
Figure 2. Structural overview of topics covered over the course of this review. 155 

In this review, we look to cover recent work joining the fields of electrical impedance 156 
sensing and machine learning towards the development of more intelligent single-cell di- 157 
agnostic systems, as shown in Figure 2. To our knowledge, this is one of the first compre- 158 
hensive looks at machine learning on electrical approaches to improve the standardization 159 
and design process for both singular cells measurement and analysis. Our discussion will 160 
include the more explored method of machine learning as an analytical tool to address 161 
common challenges with existing measurement systems. In addition, we will cover sys- 162 
tems where machine learning is used as an iterative approach to more rapid and cost- 163 
effective measurement device development in both microfluidics and sensors, making an 164 
argument for more single-cell applications in this design field. 165 

 166 

2. Machine Learning for Electrical Sensor Data Analysis on Single Cells 167 
Single cell measurements collected using electrical sensors typically fall into the cat- 168 

egories of cytometric or spectroscopic. Cytometric measurements reach high sample num- 169 
bers however are limited in the electrical frequency features that can be collected while a 170 
cell passes the measurement gap and the interaction of a cell with the constant electrical 171 
field is positionally dependent. Alternatively, spectroscopic measurement collects a larger 172 
number of frequency features and properties, however the longer measurement and need 173 
for cell trapping limits the number of cell samples. Machine learning is ideal in both cases 174 
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when compared to traditional statistical methods because of the adaptability to incorpo- 175 
rate and compensate for these confounding and limiting variables. In this section, we will 176 
discuss the ways ML can address the limitations of electrical measurement systems to im- 177 
prove the ability to analytically distinguish between individual cells. 178 

 179 

2.1. Positional Dependency Compensation 180 
One of the factors most crucial in preventing overfitting and later generalization of 181 

machine learning algorithms is the large sample size necessary. For this reason, electrical 182 
impedance measurements in single-cell applications are overwhelmingly conducted us- 183 
ing impedance flow cytometry, which is closely related to the previously mentioned op- 184 
tical flow cytometry. However, because the principles of impedance modeling typically 185 
rely on the assumption that the cell is subject to a uniform electrical field during measure- 186 
ments, positional changes and size heterogeneity in a cell population can impact meas- 187 
urements. Considering the small magnitude of most cellular changes in an electrical sys- 188 
tem, characterizing these factors becomes integral for improving identification of true 189 
properties of the cell versus the measurement system. A summary of recent work using 190 
machine learning to compensate for the positional dependency of flow cytometry meas- 191 
urements can be found in Table 1. 192 

 193 

Table 1. Summary of recent publications using various ML methods to compensate for size and 194 
positional dependency of flow cytometry measurements on single cells. 195 

Learning  
Category 

ML Method 
Achieved  
Accuracy 

Application Citation 

Deep Learning NARX NN 
4.3 × 10-5 

Normalized Mean 
Square Error 

Predicting Particle 
Impedance and Lo-

cation in Sheath 
[27] 

Supervised Linear Regression 
37% improvement in 

size distinction 

Positional Depend-
ency Compensation 

and Size 
[28] 

Supervised Random Forest 
71.4% using size, de-
formability, and po-

larization 

Using position and 
size in addition to 
electrical measure-
ments to enhance 

classification 

[29] 

Supervised Linear Regression 
Accuracy within 1.5 

µm of the height 

Positional and size 
determination using 
opacity and imped-

ance 

[30] 

Deep Learning RNN 

Within 0.09 µm for 
diameter, 2.2% for 
velocity, 2.4 % for 

position 

Predicting cell X and 
Y position based on 
properties of time 

domain curve 

[31] 

 196 

In the category of compensating for cytometric measurement limitations, several pa- 197 
pers in recent years have worked to establish correction factors to monitor cell location 198 
during measurement and improve the classification of particles based on positional com- 199 
pensation. These methods can either rely on the peak amplitude and spacing properties 200 
of the time domain cytometric measurement [31] or extracted parameters calculated from 201 
the initial measurements, such as opacity [28,30]. For these methods, the accuracy of the 202 
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model is typically defined as the closeness to the distributive values of the measured pa- 203 
rameters. Work from Honrado et.al, used a recursive neural network operated in real time 204 
to show that based on impedance measurements, particle diameter could be predicted 205 
within 0.9 microns, velocity could be predicted within 2.2%, and position could be pre- 206 
dicted within 2.4% [31]. Machine learning for this purpose has the ability to assist in mon- 207 
itoring the ability of sheath flow to direct cells to an optimal measurement location [27]. 208 
Inclusion of the size, positional, or biomechanical properties of cells has also been since 209 
shown to improve the classification when considered as features for cells of similar types. 210 
Apichitsopa et. al, generated predictions for similar types of leukemia cells using polari- 211 
zation at three frequencies, size and deformability with an overall accuracy of 71.4% clas- 212 
sification. In this work they showed that increased parameters of the physical properties 213 
and electrical properties improved the accuracy and consistency of the predictions [29]. 214 
Based on the discussion presented, a variety of machine learning methods can be used to 215 
predict and compensate for the positional dependence of impedimetric flow cytometry 216 
readings, making the results of the measurement technique more accurate and reproduc- 217 
ible. 218 

2.2. Analyzing Dielectric Parameters 219 
One of the goals of multi-frequency electrical measurement is the determination of 220 

internal cell properties, most commonly the dielectric properties of the cell membrane and 221 
cytoplasm. Determination of these intrinsic properties is possible due to the differential 222 
scattering of different frequencies of electrical sinusoidal signals. Based on the work of 223 
Foster and Schwan, it is well established that in biological cells and tissue, different com- 224 
partments dominate the signal at different frequencies [32,33]. In subsequent years, these 225 
scattering properties have been further expanded to include specificity of cellular infer- 226 
ences that can be made from each range of scattering [34,35]. Understanding dielectric 227 
properties combats one of the main concerns about electrical measurement, which is the 228 
difficulty explaining what exactly is causing the measured change within the cell to cause 229 
an electrical difference. Dielectric properties can be determined through several methods, 230 
two of the most popular of which are dielectrophoresis or impedance analysis.  231 

Use of the principles of dielectrophoresis (DEP) is a common way to distinguish be- 232 
tween cells with different dielectric properties, often without the need for circuit model- 233 
ling. Dielectrophoresis can determine a unique crossover frequency at which a repulsive 234 
or negative DEP signal changes to an attractive or positive DEP signal. Without the use of 235 
models to differentiate between cell types, work in the DEP field has shown the ability to 236 
distinguish stages in both colon cancer models [36] and glioblastoma models [37]. Char- 237 
acterizing this unique frequency change in different cell types and cells under different 238 
conditions including after differentiation or drug treatment has also been extensively de- 239 
scribed in previous work [38]. DEP measurements have also been combined with shell 240 
modelling as described in the next section to develop more interpretable results and ex- 241 
tract parameters of the nucleus [39]. Although discrimination is clearly possible based on 242 
electrical properties independent of the dielectric property simulation, machine learning 243 
may help enhance our understanding of the correlations between dielectric properties and 244 
the physiological properties of different cell types.  245 

Dielectric properties are determined using impedance measurements through a cir- 246 
cuit and shell model, wherein the cell is considered a combination of mixtures which can 247 
be polarized with unique properties to define the membrane, cytoplasm, and nucleus.  248 
These models are computationally intensive to run, especially in more complex shell mod- 249 
els to examine the nucleus and it is often difficult to determine the appropriate parameters 250 
for simulation. Despite the complexity of designing and fitting these models, it remains 251 
important to expand the understanding of electrical spectroscopic measurements. With- 252 
out an understanding of dielectric properties, it is difficult to rationalize or justify a choice 253 
to shift diagnosis, considering the lack of specificity to a particular intracellular target. 254 
Applying an understanding of how these change with certain disease makes the attempts 255 
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to classify cells less of a black box model, where only the inputs and outputs are fully 256 
realized.   257 

In the age of rapid diagnostics and high throughput, there is a need for similarly 258 
improved speed in parameter extraction for both dielectrophoretic and impedance mod- 259 
els. Neural network models have been used to predict dielectric parameters based on raw 260 
impedance values in cytometry systems based on previous simulation fittings in real-time 261 
for individual cells [40]. In another work, similar neural network classification strategies 262 
have been shown to quickly generate dielectric parameters as a precursor to a rapid clas- 263 
sification model to identify cell types. In one example, Tan et. al showed that cytometric 264 
constriction channels combined with a feedforward neural network can distinguish dif- 265 
ferent types of similarly size leukocyte cell lines based on four frequency impedance val- 266 
ues [41]. In a more complex application of the neural network approach, Caselli et.al ap- 267 
plied a multi-layer recurrent neural network (RNN) for initial data segmentation followed 268 
by a classification scheme using multiple convolution neural network (CNN) structures 269 
to identify red blood cells and nearly identical ghost red blood cells [42]. In this work, 270 
impedance measurements at eight frequencies were evaluated to accurately predict cell 271 
radius, membrane capacitance, cytoplasm permittivity, and cytoplasm conductivity and 272 
classification using these parameters identified the cell types with an accuracy of 96.6%. 273 
A comparative summary of these recent works can be found in Table 2. 274 

 275 

Table 2. Summary of recent work using various ML methods to predict dielectric parameters of 276 
mammalian cells. 277 

Learning  
Category 

ML Method 
Achieved  
Accuracy 

Application Citation 

Shallow Learning FCN 94.6% 

Predicting dielectric 
parameters in real-
time to identify cell 

type 

[40] 

Shallow Learning Feedforward NN 90.5% 

Determining dielec-
tric parameters in 

constriction micro-
channel and identify-

ing cell type 

[41] 

Deep Learning RNN, CNN 96.6% 
Predicting dielectric 
parameters in real 

time for classification 
[42] 

Unsupervised KNN 98.9% 

Using Extracted Die-
lectric Parameters to 
train classification 

model 

[43] 

 278 
Alternatively, recent work from Tang et. al uses maximum length sequence (MLS) 279 

system to analyze 512 broadband frequency impedance measurements to calculate the 280 
impedance magnitude and phase for each cell [43]. The most easily distinguished range 281 
of frequency magnitude and phase were then analyzed using a k-Nearest Neighbor 282 
(KNN) learning model to classify adenocarcinoma cells compared to white blood cells 283 
with an accuracy of 98.9%. Based on the models discussed in this section, a variety of 284 
learning schemes can be used to (1) improve the real-time identification of cells based on 285 
extrapolated dielectric properties from limited frequency information and (2) improve 286 
classification between groups based on measured dielectric properties to identify the most 287 
relevant frequency regions. 288 
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2.3. Classification of Cell Differences 289 
Remembering that the ultimate goal of most electrical impedance measurement sys- 290 

tems is improving the speed, cost, and overall accessibility of diagnosis, one of the most 291 
important challenges to address in measurement is the sensitivity to distinguish popula- 292 
tions. The applications of this can include identifying healthy from diseased cell states 293 
[44–47], determining the proliferation of patient cells for clinical study [48,49], or quanti- 294 
fying the response of cells to a potential treatment [50–52]. In each case, there exist multi- 295 
ple populations representing different changes that can be difficult to determine, espe- 296 
cially in cases where cells each have individual responses to treatment or levels of disease. 297 
A summary of recent work identifying changes in cellular condition using various ma- 298 
chine learning for data analysis can be found in Table 3. The benefits of the methods em- 299 
ployed in this section is the model training and fitting on data without model fitting, re- 300 
ducing the computational burden and time to prediction. 301 

 302 
 303 

Table 3. Summarized recent works applying various ML methods to identify cellular responses to 304 
disease or treatment. 305 

Data Type 
Learning 
Category 

ML Method 
Achieved 
Accuracy 

Application Citation 

Impedance 
Cytometry 

Supervised SVM 95.9% 
Identifying the efficacy of 
drug treatment on cancer 

cells 
[53] 

Impedance 
Cytometry 

Unsupervised KNN 98.4% 
Identify drug treatment ef-
ficacy using electrical and 

optical flow cytometry data 
[50] 

Impedance 
Cytometry 

Supervised, Deep 
Learning 

LR, KNN, DT, 
SVM, RF, BPNN 

91.7% using RF 
and SVM 

Distinguish cancerous and 
healthy bladder cells 

[44] 

Electrical 
Impedance 

Spectroscopy 
Supervised 

QDA, SVM, En-
semble Bagged 

Tree 

99.5% using 
Ensemble Tree 

Detecting Surface Protein 
in Severe Endometriosis 

[45] 

Electrical 
Impedance 

Spectroscopy 
Shallow Learning LSTM RNN 91% 

Identifying proliferating 
and differentiated patient 

cells 
[49] 

Electrical 
Impedance 

Spectroscopy 

Supervised, Shal-
low Learning 

MLE, LDA, BPNN 100% 
Identifying strains of gram-
negative bacteria that com-

monly contaminate food 
[46] 

Impedance 
Cytometry 

Supervised SVM 
9.2% Detection  

Error 

Identification of antibiotic-
susceptible bacteria in real 

time 
[51] 

Impedance 
Cytometry 

Shallow Learning BPNN 98% 

Identify MCF-7 cell with 
treatments based on electri-
cal and biophysical proper-

ties 

[52] 
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Impedance 
Cytometry 

Unsupervised Clustering 
1-3% Deviation 

from True  
Proportions 

Identifying proportion of 
blood cells in AML patients 

and healthy controls 
[48] 

Impedance 
Cytometry 

Supervised Gaussian SVM 99.8% 
Identify CTC from WBC in 
focused serpentine channel 

[47] 

 306 
The effectiveness of classification schemes typically relies on the data type and pre- 307 

processing applied as well as the hyperparameters given to the model. The cyclical pro- 308 
cess of optimizing a model for the data type and the evaluation required to make predic- 309 
tions on new data can be seen schematically in Figure 3. The need for this thorough char- 310 
acterization of multiple methods of accuracy is exemplified in work by Jeong et. al where 311 
they compared the classification accuracy of normal and cancerous cells using a micro- 312 
EIS device taking rapid cytometric measurements [44]. The work compared the prediction 313 
accuracy of 5 different supervised machine learning schemes as well as a deep learning 314 
structure, showing the best accuracy using RF and SVM. In applications identifying the 315 
effects of drugs on cells using cytometry, measurements on the same cell type can be dif- 316 
ficult to differentiate, requiring processing to both generate appropriate features from the 317 
initial signals and determine which features are most effective when given to a classifica- 318 
tion model. The cyclical nature of these processing steps is readily exemplified in the con- 319 
text of classifying the effectiveness of a treatment on cancer cells from Ahuja et. al [53]. In 320 
this work, the signal amplitude changes at four frequencies were used as features to train 321 
an SVM classifier and compared using traditional live/dead staining using trypan blue, 322 
showing impressive correspondence between the two methods. 323 

 324 
Figure 3. Schematic demonstrating basic processing in ML classification model training and to de- 325 
termine final performance on a population of treated cells. 326 

There are three overarching machine learning approaches that have been applied to 327 
address raw electrical population differences: unsupervised clustering, supervised learn- 328 
ing models, and neural networks, among others. The least computationally demanding of 329 
these is clustering, an approach that can be either unsupervised for the purposes of visu- 330 
alization or supervised to apply a classification using known data labels. Using a cluster- 331 
ing approach, cells become grouped based on proximity to a predicted central position in 332 
a feature space. In a similar fashion, support vector machine models generate a decision- 333 
making plane in a projected feature space and classify based on where new samples 334 
would project to. Many of these classifications are done by artificial neural networks as 335 
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mentioned earlier, which model the decision-making process of human neurons wherein 336 
each node gets multiple inputs and the output is established based on whether the 337 
weighted inputs reach an established threshold [54]. ANNs are especially useful for learn- 338 
ing hierarchies and tackling more complex non-linear problems or feature relationships 339 
[54]. Artificial neural networks can improve model flexibility and accuracy for complex 340 
fitting problems, however they tend to be limited in interpretation, as they are generally 341 
approached as a black box model.  342 

For work identifying the composition of cells in a solution, clustering or segmenta- 343 
tion-based learning methods are the most effective at partitioning the populations. Schütt 344 
et. al showed that clustering methods can be used to identify the proportion of myelo- 345 
blasts compared to the regular blood proportions in samples from patients with acute 346 
myeloid leukemia (AML) [48]. This rapid nano-impedance cytometer used impedance 347 
measurements and peak analysis to compare the population proportion with results from 348 
several optical and electrical techniques including fluorescence-activated cell sorting 349 
(FACS) and electrical impedance spectroscopy (EIS), among others. Through both feature 350 
selection and classification methods, machine learning can assist in the identification of 351 
specific effects of different treatments or classes of cells. 352 

 353 

3. Machine Learning for Intelligent Design of Microfluidics and Sensors 354 
A unique and emerging application of machine learning is to predict the performance 355 

of new measurement paradigms and conditions to streamline the prototyping process. In 356 
this way, less time and resources can be spent fabricating and characterizing sensors that 357 
may not provide optimal results for the final measurement design [55]. In the process of 358 
creating most microfluidic channels or sensing systems in general, there are many steps 359 
to identify the production of a physical system based on a simulated design including 360 
characterizing the size, surfaces, and any surface treatment efficacy. Machine learning can 361 
be applied to the process of design to predict the outcome of certain variable changes 362 
without the need to run the physical manifestation through an experiment. The applica- 363 
tion of this overcomes traditional laboratory limitations in resources and time to develop 364 
a successful design. In this section, we will organize the history of machine learning de- 365 
sign driven design processes in the tangential fields of microfluidics and electrical sensing 366 
to show the potential for adopting these principals for single-cell problems. While ma- 367 
chine learning for design optimization has played a role in the adjacent fields of microflu- 368 
idics and electronic sensor design, it remains largely untapped in the promising field of 369 
single cell analysis. Going forward, there may well be a place for the improvement of the 370 
design processes to create and produce single-cell focused microfluidics for both manip- 371 
ulation and analysis. 372 

3.1. Microfluidics Design and Control 373 
Microfluidic systems are integral for the study of single cells and the development of 374 

diagnostic tools that are both rapid and portable. Machine learning can be either applied 375 
to the design of these systems or automating the operation of specific fluidic control com- 376 
ponents [56,57].  Using machine learning in the design of these systems often relies on 377 
deep learning and the incorporation of some mathematical model, either based purely on 378 
the governing equations of fluid dynamics or software simulation using a program like 379 
COMSOL. The incorporation of machine learning is typically a function of reducing the 380 
computational load necessary through repetitive simulation of various parameters in the 381 
channel with examples typically including the flow rate, channel width, or protruding 382 
features. It is also necessary to mention that a key benefit of automating these systems is 383 
device translation between research settings so that similar devices and control systems 384 
can be created for differing applications [58].  385 
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Machine learning and microfluidics have been combined in a variety of applications 386 
in the field of medicine. Intelligent microfluidic design allows the simultaneous control 387 
and analysis of more complex systems, which has been applied mostly in the realm of 388 
optical characterization rather than electrical diagnostics. One example is the develop- 389 
ment of a multiplexing assay to identify Lyme disease using a streamlined process to se- 390 
lect relevant antigens on an optically analyzed device [59]. In another instance, an applied 391 
assay based on a digital microfluidic sensor was tuned by identifying the features to op- 392 
timize a particular reaction or yield in each channel. Notably, this was shown using both 393 
linear regression and neural networks, showing that either model complexity can charac- 394 
terize and predict the same outputs [60]. Similarly, in the study of bacteria, unique learn- 395 
ing-based design systems were used to automate the culture of thousands of microwells 396 
to monitor the growth of genetically modified bacteria [61] and monitor the chemotaxis 397 
of members in a bacterial community [62]. In addition to these, there have been efforts to 398 
incorporate quantitative system pharmacology methods into the more efficient design of 399 
organ-on-a-chip systems in which systemic effects of circulation and bodily interactions 400 
are modeled on a small scale to better predict the complex relationships between cham- 401 
bers [63,64]. The incorporation of various analytical learning methods into the develop- 402 
ment of microfluidics promises to revolutionize all small-volume sensing applications, 403 
however, currently remains understudied in single-cell electrical systems. 404 

Considering that typically, single-cell electrical analysis systems involve the design 405 
of microfluidics to isolate the individual cells over a particular sensing region there is a 406 
need to incorporate machine learning based methodology to develop more integrated sys- 407 
tems. By using smart design choices to create standard practices, every part of the sensing 408 
process including control, measurement, and the eventual processing of the impedance 409 
measurements from the individual cells can be incorporated. 410 

3.2. Electrical Sensor Design and Control 411 
Parallel to the push to incorporate smarter design processes into the realm of micro- 412 

fluidics, electronic sensors are constantly moving to become smaller, faster, and more ac- 413 
cessible in the digital world. Inclusion of machine learning to design systems has been 414 
emphasized as the critical next step to develop lab-on-a-chip sensors that are sized for 415 
easy transport and user friendly enough to move into healthcare environments [65]. The 416 
automated and improved design of even commercial mechanical sensors has long been 417 
posited as the solution to connecting the sensor with the monitored process, enabling 418 
more rapid response to system changes and better data retrieval [66]. In this way, the in- 419 
vestment using machine learning at the beginning of the sensor production process can 420 
reap dividends in its output incorporation with modern smart systems. While this has 421 
been shown in biosensor design applications at several levels, the ML-directed design of 422 
single-cell sensors has been slower to be adopted.  423 

Machine learning incorporation into biosensor-based devices has been previously re- 424 
viewed for the analysis of biological molecules and tissues in several publications [67–69]. 425 
Recent highlights in the incorporation of machine learning designed devices includes the 426 
work from Govindaraju et. al, which identifies white blood cell count on a smartphone 427 
integrated system for ease of measurement display [70]. Alternatively, machine learning 428 
was used to both design the monitoring system and development of tissue growth on a 429 
bioscaffold using electrical impedance spectroscopy by Shohan et. al [71]. The design of 430 
this system was critical in its ability to not impact the tissue health, making it a viable 431 
option for the analysis of patient cultures for future graft or transplant applications. By 432 
saving time and resources in the production of clinical devices, there is more room to 433 
adapt to developing clinical needs during the process of translation. 434 

While point-of-care (POC) devices remain one rationale behind single-cell electrical 435 
sensing, the field most remains at the research phase. Newer generations of diagnostic 436 
devices result in the production of more information and necessitates more stringent 437 
standards of accuracy, safety, and understanding as automation becomes incorporated. 438 
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The combination of device and computational systems allows scientists to actively parse 439 
this information, however practical device design and control becomes critical for them to 440 
translate from benchtop to the doctor’s office. Reyes et. al, explains the need for practical 441 
standards in microfluidics to bridge this gap and also increase the accessibility for diag- 442 
nostic devices that anticipate non-expert users [72]. The improvement of the design that 443 
machine learning could create for single-cell measurement and analytics is essential for 444 
the standardization that would be necessary to create any commercialized medical sys- 445 
tem. 446 

4. Machine Learning Analysis of Non-Electrical Single-Cell Measurements 447 
In the past few years, single-cell characterization methods have experienced pushes 448 

to incorporate machine learning for data analysis, most notably in the fields of Raman 449 
spectroscopy, optical flow cytometry, and genomic profiling. The success in these similar 450 
single-cell processing fields provides an aspirational framework for the adaptation of 451 
standardized data processing and machine learning methods in the electrical field. While 452 
not yet perfected in any field, the widespread use and greater historical context experi- 453 
enced in these other single-cell measurement types shows the advantage of comparable 454 
data to enhance the study of wider populations. 455 

Raman spectroscopy is a method that uses the vibrational properties of a material to 456 
generate a spectrum that describes the chemical composition of the cell [73]. Machine 457 
learning has been combined with this data type for the purpose of classifying differing 458 
cell types, both mammalian [74,75] and bacterial [76]. Optical flow cytometry is a method 459 
that relies on images of rapidly moving cells, typically characterized by either deforma- 460 
bility, size, or intensity of a targeted fluorescent label. Several reviews have covered the 461 
combination of this method with machine learning to automate the detection of specific 462 
subpopulations [77,78], improve high-speed analytical throughput [79], and address the 463 
accessibility of cancer diagnosis in clinician-limited settings [80]. Many algorithms and 464 
applications have been developed to address the analysis of single cells in these non-elec- 465 
trical fields while the measurement technology has struggled to become more cost-effec- 466 
tive and higher throughput. This directly opposed the concerns seen in the field of elec- 467 
trical measurement where the devices are already developing the throughput and cost- 468 
effectiveness to address the data needs, but there is a distinct need for standard algorithms 469 
and analysis methods. 470 

 471 

 472 
Figure 4. Visualization using partition-based graph abstraction (PAGA) of different levels of cell 473 
property clustering during the process of differentiation as reproduced from Lähnemann et. al 474 
[81,82]. 475 

Genomic profiling in the ‘-omics’ field can incorporate analysis of genomic, tran- 476 
scriptomic, proteomic, or epigenomic data to track the changes in both genetic content 477 
and expression in singular cells belonging to the same population. A vast array of papers 478 
on this topic have been published in recent years, there have also been several reviews to 479 
summarize the work in this field [83–85]. Genetic analysis of individual cells using RNA 480 
has been used to map associated changes within many cell types affected by acute myeloid 481 
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leukemia [86] and analyze the quality of laboratory derived macrophage treatments [87]. 482 
Incorporation of methods such as t-distributed stochastic neighbor embedding (t-SNE)  483 
or partition-based graph abstraction (PAGA), as seen in Figure 4, for visualization has also 484 
enabled the comparison of properties shared among cell types across all stages of devel- 485 
opment from fetal stem cells to differentiated adult cells using genetic information [81]. 486 
As previously mentioned, there are many standard algorithms for ‘-omic’ analysis of sin- 487 
gle-cell data which have been established and published online, making this single-cell 488 
method one of the most accessible after obtaining the expensive sequencing equipment. 489 
The success of RNAseq and similar algorithms in the field of genetic sequencing shows 490 
the ability of a field to adopt, standardize and communicate these more complex data 491 
analysis methods and points the direction the electrical single-cell analysis field can aspire 492 
to. 493 

5. Conclusions and Future Outlooks 494 
Many challenges exist when meeting the criteria required for adopting single cell 495 

analysis to new applications both in research and clinic settings. These include the need 496 
for a sufficient number and distribution of samples to capture the true properties of the 497 
entire population. Additionally, there is a need to ensure reproducible measurements 498 
from the systems that can be used to consistently train and validate the machine learning 499 
models. The collection of repositories of consistent and sizeable data structures is a critical 500 
next step to generating new integrated methods of design and analysis to compare the 501 
complex property changes in single cells biophysically, genetically, and metabolically. 502 
Growth in this field and the compilation of larger datasets could enable an electrical pro- 503 
filing capability on par with the development of the human genome project, however gen- 504 
erating a data type easier to collect and analyze in a point-of-care setting.  505 

Future research in the combination of machine learning paradigms with electrical 506 
single-cell sensing can leverage the design principles and processes to branch into wider 507 
applications of electrical sensing. Most research around this population analysis of single 508 
cells is centered around flow cytometry, due to the large sample number that can be col- 509 
lected and the established measurement processes and equipment. However, as discussed 510 
in the design section, iterative design prediction could be used to create more rapid spec- 511 
troscopic measurement systems wherein larger numbers of frequencies or smaller foot- 512 
print devices can improve the data quantity or accessibility of diagnostic tools eventually. 513 
In addition, real-time classification of samples, especially in blood testing, could be in- 514 
credibly useful in a clinical setting to validate or increase the speed of processing to diag- 515 
nostic results, which machine learning can produce rapid and accurate classification of 516 
individual cells. This would be incredibly useful for identifying circulating tumor cells in 517 
blood samples or identifying alterations in blood cell properties to indicate disease. The 518 
future is especially bright considering the incorporation into interpretable AI to address 519 
the black-box model concerns and improve the accessibility of machine learning models 520 
for the general public.  521 

A main challenge that integrated and standardized practices can also help address is 522 
the individual nature of the performance of different machine learning categories with 523 
each dataset. The performance depends highly on the features measured themselves, the 524 
complexity of the relationship between the variable features, and the amount of compu- 525 
tational power required to address the classification challenge. As shown in Table 4 below, 526 
each method does have associated pros and cons, making different paradigms ideal for 527 
different problems and types of impedance information collected or fitted. Methods that 528 
handle deeper complexity of relationships are typically more computationally demanding 529 
and less interpretable. These are more generalized evaluations, and the performance is 530 
generally dependent on the data itself, making a wide-sweeping, thoughtful, and eventu- 531 
ally standardized approach uniquely beneficial for future efforts in this field.  532 

 533 
 534 
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Table 4. Summarized pros and cons of mentioned machine learning classification methods 535 

ML Method Pros Cons 

Support Vector  
Machine 

Complexity 
Interpretability 

Computational Demand 

Neural  
Networks 

Complexity 
Computational Demand 

Interpretability 

K-Nearest Neighbor 
Clustering 

Interpretability  
Computational Demand 

Complexity 

Decision  
Trees 

Interpretability 
Computational Demand 

Complexity 

Random  
Forest 

Complexity 
Interpretability 

Computational Demand 

Logistic  
Regression 

Interpretability  
Computational Demand 

Complexity 

 536 
 537 
Electrical single-cell sensing remains one of the most viable options for accessible di- 538 

agnostic systems, especially in resource limited settings where permanent infrastructure 539 
or trained personnel may be limited. Machine learning enables the incorporation of anal- 540 
ysis into more inclusive, small footprint devices and systems that make it easy to take a 541 
rapid and accurate tool for diagnosis anywhere in the world. While the incorporation of 542 
these analysis methods has revolutionized the information gained and interpreted from 543 
traditional electrical sensing fields, there remains the potential to revise device and meas- 544 
urement schemes based on machine learning involvement in the design process. This 545 
could include iteratively determining the frequencies of interest and adjusting measure- 546 
ment design accordingly or automating control systems in a way that reacts to common 547 
problems in microfluidic systems like clogging or balancing throughput with measure- 548 
ment quality. By learning from the applications already supplied in general microfluidic 549 
or assay design, the field of single-cell electronics has the potential to move into smaller, 550 
inclusive, and accurate tools for diagnosis, using intelligence to overcome the posed chal- 551 
lenges. 552 
 553 
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Appendix A 559 

Table 5. Summary of abbreviations in this work. 560 

Abbreviation Extended Phrase 
AI 

ANN 
BPNN 
CNN 

Artificial Intelligence 
Artificial Neural Network 

Back-Propagation Neural Network 
Convolution Neural Network 
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CTC 
DEP 
DT 
EIS 

FACS 
FCN 
FNN 
KNN 
LDA 
LR 

LSTM 
ML 

MLE 
NARX 

NN 
PAGA 
POC 
QDA 

RF 
RNN 
SVM 
t-SNE 

Circulating Tumor Cells 
Dielectrophoresis 

Decision Tree 
Electrical Impedance Spectroscopy 
Fluorescence-Activated Cell Sorting 

Fully Convolutional Network 
Feedforward Neural Network 

K-Nearest Neighbor 
Linear Discriminatory Analysis 

Logistic Regression 
Long Short-Term Memory Network 

Machine Learning 
Maximum Likelihood Estimation 

Nonlinear Autoregressive Exogenous Model 
Neural Network 

Partition-Based Graphical Abstraction 
Point of Care 

Quadratic Discriminatory Analysis 
Random Forest 

Recurrent Neural Network 
Support Vector Machine 

t-Distributed Stochastic Neighbor Embedding 
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