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HIGHLIGHTS 24 

• Mycorrhizae and rhizobacteria led to a higher plant 33P uptake under drought 25 

• 33P facilitation was modulated by the soil water content 26 

• Consortium or only rhizobacteria were more efficient under severe drought  27 

• Under moderate drought conditions, mycorrhizae alone stood out in plant 33P 28 

uptake 29 
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ABSTRACT 31 

The role of arbuscular mycorrhizal fungi (AMF) and plant growth-promoting 32 

rhizobacteria (PGPR) in delivering important ecosystem services and protecting plants 33 

against biotic and abiotic stress is well recognized. Here, we hypothesized that a 34 

combination of AMF and PGPR could enhance P uptake in maize plants under drought 35 

stress. A microcosm experiment using mesh exclusion and a radiolabeled phosphorus 36 

tracer (33P) was established using three types of inoculation: i) only AMF, ii) only PGPR, 37 

and iii) a consortium of AMF and PGPR, alongside a control treatment without 38 

inoculation. For all treatments, a gradient of three water-holding capacities (WHC) was 39 

considered i) 30 % (severe drought), ii) 50 % (moderate drought), and iii) 80 % (optimal 40 

condition, no water stress). Under severe drought conditions, the use of the consortium 41 

(AMF+PGPR) or PGPR alone both increased 33P uptake by 2.4-fold compared to the 42 

uninoculated treatment. In contrast, under moderate drought the use of AMF promoted 43 

the highest 33P uptake by plants, increasing it by 2.1-fold compared to the uninoculated 44 

treatment. Without drought stress, AMF showed the lowest 33P uptake and, overall, plant 45 

P acquisition was lower for all inoculation types when compared to the severe and 46 

moderate drought treatments. Considering the water gradient, the plant physiological 47 

response, such as altering signalling networks and root exudation, may have been decisive 48 

in the success of the plant-microbial interaction investigated here. We found that AMF 49 

colonization, soil electrical conductivity, and the number of spores were the main drivers 50 

which explained plant 33P uptake. In conclusion, this study demonstrates that a one-size-51 

fits-all solution for plant bio-inoculants is an unexpected outcome, where microbial 52 

inoculants, whether constituted of purified strains or in consortia, are apt to vary in their 53 
33P uptake efficiency according to the soil water gradient. 54 

Keywords: Phosphate nutrition, isotope tracer, water shortage, plant symbiosis, soil-55 

dwelling microbes.  56 

INTRODUCTION 57 

According to the Food and Agriculture Organization of the United Nations (FAO), 58 

drought is now recognised as the primary reason for agricultural production losses 59 

globally, costing the sector USD 37 billion overall from 2008-2018. However, other 60 

extreme events caused by climate change, such as floods and heatwaves, are also 61 

contributing to ongoing issues with food security (FAO 2021). Therefore, improved 62 

management approaches are urgently required to improve agricultural sustainability. This 63 



is particularly relevant to the supply and exploitation of soil nutrients which have a finite 64 

supply, such as phosphorus (P), especially given the dramatic rise in fertilizer prices over 65 

the past year (Smith 2022). To overcome the combined impact of drought stress and low 66 

nutrient use efficiency in cropping systems and the design of new management systems 67 

requires a greater fundamental understanding of plant-soil-microbial interactions. In this 68 

context, it has been highlighted that arbuscular mycorrhizal fungi (AMF) and 69 

rhizobacteria may provide an environmentally friendly solution to this combined problem 70 

(Mawarda et al. 2020).  71 

In highly weathered soils where the exchange surfaces are dominated by aluminium 72 

and iron oxides/hydroxides, a large proportion of the applied phosphate fertilizer (ranging 73 

from 15-30 %) becomes rapidly immobilized on the solid phase by adsorption and 74 

precipitation processes (Dhillon et al. 2017; Zavaschi et al. 2020). AMF may provide a 75 

tool to exploit native soil P reservoirs or residual fertiliser-derived P (“legacy P”), that 76 

has accumulated over the past 50 years in these soils (Scrase et al. 2019; Pavinato et al. 77 

2020a; Pavinato et al. 2020b). AMF is a key group of soil microorganisms that form 78 

symbiotic associations with more than 80 % of all land plants and play an important role 79 

in the acquisition of nutrients (Smith and Read 2010). For example, in maize (Zea mays 80 

L.), AMF is more important than root hairs for seedling growth under low P availability 81 

(Ma et al. 2021).  82 

It is widely acknowledged that AMF and plant growth-promoting rhizobacteria 83 

(PGPR) can play an important role in the amelioration of a wide range of plants biotic 84 

and abiotic stresses such as drought, salinity, heavy metal exposure, and soil-borne 85 

pathogens (Pérez-de-Luque et al. 2017; Chukwuneme et al. 2020; Mishra et al. 2021; 86 

Santoyo et al. 2021; Chen et al. 2022). There is also evidence that co-inoculation with 87 

AMF and PGPR can increase plant growth and health through additive and/or synergistic 88 

effects between them (Saia et al. 2015; Battini et al. 2017; Dutta and Neog 2017; 89 

Nanjundappa et al. 2019). Understanding the plant-mycorrhizae-rhizobacteria 90 

interactions is crucial, as plants dedicate 5-30 % of all their photo-assimilate to supporting 91 

microbial growth in soil (Carvalhais et al. 2011; Almeida et al. 2020). A further 20 % of 92 

photo-assimilate is allocated to the maintenance of symbiotic AMF networks (Smith and 93 

Read 2008).  94 

Some studies have demonstrated the ability of AMF or PGPR alone to promote plant 95 

growth under water shortage events. It has been postulated that AMF mechanisms, such 96 

as improvements in soil aggregation, photosynthetic efficiency, and nutrient uptake are 97 



primarily responsible for this response (Ji et al. 2019; Quiroga et al. 2019; Al-Arjani et 98 

al. 2020). In the case of PGPR, the main purported mechanisms include direct (e.g., 99 

changes in hormonal signalling, P solubilisation, biological nitrogen fixation) and indirect 100 

mechanisms (e.g., antibiotic production, cell wall degrading enzymes, induced systemic 101 

resistance, osmotic adjustment, quorum quenching, and siderophores production) (Glick 102 

2012; Olanrewaju et al. 2017; Naylor and Coleman-Derr 2018; Araújo et al. 2020).  103 

Overall, the majority of crop plant species are responsive to mycorrhizal symbiosis 104 

and rhizobacteria inoculation. This discovery has subsequently led to the search for novel 105 

microbes with the potential to increase crop yields, especially maize, as this represents 106 

one of the most important global crops (Zhao et al. 2017; Li et al. 2021). Recently, the 107 

use of maize has become more inviting due to the current scenario of bio-economy, which 108 

has incentives for production of biofuels to reduce CO2 emissions. Thus, there is the 109 

possibility to intensify the biofuels market, making it more prosperous and stable (Eckert 110 

et al. 2018). 111 

A myriad of early studies (Rhodes and Gerdemann 1975; Jakobsen et al. 1992; Pearson 112 

and Jakobsen 1993; Battini et al. 2017; Jongen et al. 2022) have demonstrated the ability 113 

of AMF hyphae to recover and translocate 32/33P located beyond the immediate root zone. 114 

Nevertheless, these studies do not consider how the efficiency of AMF-mediated P 115 

absorption is affected under a gradient of soil water availability, especially when 116 

considering the presence of PGPR capable of tolerating low water activity. Here, our 117 

investigation was set up to test the hypothesis that the combined use of AMF and PGPR 118 

could enhance P uptake in maize plants under drought stress. For this, we evaluated 33P 119 

uptake in maize plants, the response of soil phosphatase activity, and key soil chemical 120 

attributes, as well as monitoring the abundance and dynamics of soil mycorrhizal and 121 

bacterial communities. 122 

MATERIAL AND METHODS 123 

Experimental design 124 

The microcosm experiment was set up in a completely randomized design, comprising 125 

a double factorial scheme (4 × 3) with three replicates. The first factor was the inoculation 126 

of microorganisms (either only AMF, only PGPR, or the consortium of AMF and PGPR, 127 

besides a control without any inoculation). The second factor was water stress (80, 50, 128 

and 30 % of the water-holding capacity, simulating no drought, moderate drought, and 129 

severe drought, respectively). Each experimental unit comprised a plastic pot (8 cm 130 



internal diameter × 7 cm high), containing 200 g (dry weight) of sterilized soil (at 121 ºC 131 

for 2 h) (Figure 1A and 1B). The soil was obtained from the Ah horizon (0-10 cm deep) 132 

of a field site located in Brazil (22°42' S, 47°38' W) and classified as an Arenosol (WRB-133 

FAO 2015), with low P content (Supplementary Table 1).  134 

Mesh exclusion (45 µm) was utilized to divide the pot into a fertilized compartment 135 

and planted/inoculated compartment, each compartment receiving 100 g of sterilized soil. 136 

This mesh allowed fungal hyphae to pass through and absorb nutrients but prevented the 137 

ingrowth of roots from the planted/inoculated compartment. This approach has been used 138 

to investigate the role of mycorrhizae on plant growth and water supply (Neumann and 139 

Matzner 2013; Scrase et al. 2019; Kakouridis et al. 2020). Nevertheless, we set up a 140 

preliminary experiment (Experiment 1) to confirm that roots were not able to pass through 141 

the mesh, while simultaneously also determining seed germination rate in the soil and the 142 

correction factor needed when calculating water-holding capacity over the course of 143 

subsequent experiments (Supplementary Note 1). 144 

The fertilized compartment received 2.8 mL of 6 mM KH2PO4 (equivalent to 30 mg P 145 

kg-1 soil, as recommended for this type of weathered soil; van Raij et al. 1997) with a 33P 146 

activity of 185 kBq after the soil acclimatization, sowing of seeds and inoculation of 147 

microbes in the planted/inoculated compartment (Figure 1C). Furthermore, we set up an 148 

additional microcosm experiment to determine the distance that phosphorus can diffuse 149 

in the soil to confirm that the presence of 33P in the planted/inoculated compartment could 150 

only occur via microbial transfer. In addition, we also measured P sorption to the soil to 151 

characterize the P-dynamics in this soil (Supplementary Note 2). 152 

Plant material, cultivation, and water-holding capacity management  153 

Uniformly sized seeds of Zea mays L. (cv. BRS Gorotuba) were surface sterilized 154 

twice in 2 % (v/v) sodium hypochlorite solution for 7 min, 70 % (v/v) ethanol for 1 min, 155 

and rinsed thoroughly with sterile MilliQ water. The germination rate of seeds in soil and 156 

Petri dishes was around 90 %. Seeds inoculated with PGPR or for consortium treatments 157 

were soaked in the bacterial suspension for 2 h, whilst seeds for AMF and uninoculated 158 

treatments were soaked in 0.85 % (w/v) saline solution for the same time (Kavamura et 159 

al. 2013). Two seeds were sown in each pot and thinning was done when one of the 160 

seedlings presented two true leaves. Soil bacterial inoculation was performed 21 days 161 

after sowing, in PGPR or consortium treatments, when pots were reduced to 30 % of the 162 

water-holding capacity according to the water content management described below. At 163 



the same time, 0.85 % (w/v) saline solution was applied to the AMF, and uninoculated 164 

treatments 165 

Plants were cultivated in a controlled environment chamber (Conviron Adaptis® CPM 166 

6010) at the Environment Centre Wales, Bangor University, United Kingdom (53º13’ N, 167 

4º7’ W), under a day/night cycle of 16/8 h, 25/20 °C, 70 % relative humidity, receiving 168 

artificial lighting at a photosynthetic photon flux density of 500 μmol m−2 sec−1. Hoagland 169 

solution (without phosphorus) was applied 17 days after sowing, to keep nutritional 170 

balance of the plants. The final solution of pH 5.5 was composed of 4 mM Ca(NO3)2, 6 171 

mM KNO3, 2 mM MgSO4, 1 mM Fe-EDTA, and 1 mM trace elements (Hoagland and 172 

Arnon 1950). 173 

The microcosms were randomized daily to ensure equal growth conditions and were 174 

weighed for 35 days, and the desired moisture was maintained with the addition of 175 

deionized and sterilized water when needed. At the beginning of the experiment, all 176 

microcosms (n = 36) were kept at 80 % water-holding capacity to ensure seed 177 

germination. Ten days after sowing, 2/3 of the microcosms (n = 24) were reduced to 50 % 178 

water-holding capacity. Finally, twenty days after sowing, 1/3 of the microcosms (n = 12) 179 

were reduced to 30 % water-holding capacity (Figure 1C).  This approach was used to 180 

better understand the potential of inoculated microbes in the context of a decreasing 181 

gradient of soil water content (Ahmad et al. 2018; Czarnes et al. 2020; Lopes et al. 2021). 182 

After 35 days of growth, the plants were harvested and separated into above and 183 

belowground material, whilst the soil was separated into fertilized and planted/inoculated 184 

compartments. In addition, soil was sampled in the planted/inoculated compartment five 185 

days after changing the water holding capacity (i.e., on the 15th and 25th day after sowing) 186 

to monitor soil bacteria and mycorrhiza total abundance via quantitative polymerase chain 187 

reaction (qPCR).  188 

Fungal and bacterial inoculum 189 

Fungal and bacterial strains were previously isolated from Serra do Ouricuri, Petrolina, 190 

Pernambuco, Brazil (39°3' S, 8°28 W) in the Caatinga Biome, where a bio-prospecting 191 

program was developed to find microbes with the potential of helping crop plants to 192 

tolerate drought stress (Kavamura et al. 2013). Initially, a pool of fungi and bacteria was 193 

isolated from the rhizosphere of Tripogonella spicata (Nees) plants, the so-called 194 

resurrection grass, due to its surprising rehydration capacity (Fernandes-Júnior et al. 195 

2015; Aidar et al. 2017). Then, they were selected for their plant growth-promoting 196 



properties, such as the ability to grow under reduced water availability (ca. 0.9 Aw) 197 

(Hallsworth et al. 1998), indole-3-acetic acid (IAA) production (Bric et al. 1991; Kuss et 198 

al. 2007) and calcium phosphate solubilization (Verma et al. 2001). 199 

Bacillus sp. was grown in 10 % (w/v) TSB (trypticase soy broth) culture medium at 200 

30 °C and 150 rpm for 48 h. The inoculum was homogenized at OD550 = 0.2 and washed 201 

twice in a 0.85 % (w/v) saline solution to obtain the bacterial suspensions (at 108 CFU 202 

mL-1). A second bacterial inoculation (3 mL pot-1 at 108 CFU mL-1) was done when the 203 

water-holding capacity was changed to 30 % (i.e., twenty days after sowing). The same 204 

amount of saline solution was provided to the AMF and control treatments (Figure 1C). 205 

Rhizophagus clarus spores were obtained from the pure trap culture, using maize as 206 

host plant, and transferred to the soil after disinfection, directly under the seeds, in the 207 

form of 5 mL of sterile water containing 50 spores at the time of sowing. The germination 208 

rate of R. clarus spores in the soil was around 85 % according to our third additional 209 

microcosm experiment, as reported in Supplementary Note 3. 210 

Analytical procedures 211 

At the end of the experiment (i.e., 35 days after sowing), the shoot was cut off at the 212 

soil surface and dried at 80 ºC in paper bags for 16 h to quantify dry weight. The roots 213 

were separated from soil by gently shaking them and rinsing them with water. Then, 5 g 214 

of roots were placed in a Falcon tube with 70 % ethanol for analysis of mycorrhizal 215 

colonization percentage, and the remainder was dried to obtain the dry weight. For 216 

phosphorimager analysis to visualize the 33P, dried plant tissue was placed in a 20 × 25 217 

cm cassette for 1 h, and then analyzed in a Bio-Rad Molecular Imager® FX. 218 

Soil available phosphorous was extracted using 0.5 M acetic acid (1:5 w/v) according 219 

to Fisher et al. (1998). Samples were extracted by shaking (200 rpm for 30 min at room 220 

temperature), centrifuging for 15 min (18,000 g), filtering and the supernatant was 221 

recovered for analysis. 33P activity of the samples was determined in counts per minute 222 

(CPM) of 33P using 1 mL of soil extract and 4 mL of HiSafe 3 Scintillation cocktail 223 

(PerkinElmer Inc., Waltham, MA, USA) and analyzing in a liquid scintillation counter 224 

with an automated quench correction (Wallac 1404 liquid scintillation counter, 225 

PerkinElmer Inc). For plant tissue, the extract was obtained by placing 0.2 g in a muffle 226 

furnace and ashing at 500°C overnight. Later, this was dissolved in 1 mL of 20 % HCl 227 

and 9 mL of deionized water was added, according to Adrian (1973). The colorimetric P 228 



determination in soil and plant tissue was determined according to Murphy and Riley 229 

(1962). 230 

The soil pH and electrical conductivity were determined according to Thomas (1996), 231 

whereby 10 g of 2 mm-mesh sieved soil was mixed with 25 ml of water, placing it on an 232 

orbital shaker for 10 min at 200 rpm, and then allowing the sample to settle for 10 min 233 

before taking measurements with standard electrodes. 234 

The acid and alkaline phosphatase activities (EC 3.1.3.2 and EC 3.1.3.21, respectively) 235 

were measured using the methodology described by Marx et al. (2001). For evaluation of 236 

AMF root colonization, the roots were prepared according to Vierheilig et al. (1998), with 237 

the roots dispersed in a Petri dish with a grid background and scored using a 238 

stereomicroscope according to Giovannetti and Mosse (1980).  239 

Molecular analysis 240 

Soil (0.25 g) was utilized for DNA extraction using DNeasy® PowerSoil® Pro Kit 241 

(QIAGEN Inc., Germany) according to the manufacturer’s protocol. Extracted DNA was 242 

stored at -80 °C before quantitative PCR analysis. DNA concentrations were determined 243 

using the Qubit quantification platform with Qubit 1X dsDNA HS Assay Kit (Invitrogen, 244 

Carlsbad, CA, USA). 245 

The quantitative PCR (qPCR) was used to determine gene copy number per gram of 246 

soil for bacteria (16S rRNA) and AMF (LSU rDNA region), using the StepOnePlus™ 247 

Real-Time PCR System (Applied Biosystems Inc., Carlsbad, CA, USA) with the 248 

fluorescent marker GoTaq® qPCR Master Mix (Promega, Madison, WI, USA). All 249 

samples were analysed in triplicate.  250 

16S rRNA reactions were run in 10 µL comprising 5 µL of GoTaq® qPCR Master Mix, 251 

received 1 μL (5 µM) of each primer (Eub338 5’-CCTACGGGAGGCAGCAG-3’ and 252 

Eub518 5’-ATTACCGCGGCTGCTGG-3’), 0.1 µL de CXR Reference Dye, 2 μL of 253 

DNA template, and 0.9 µL nuclease free sterile water in the same conditions as described 254 

by Muyzer et al. (1993). Standard curves were obtained using 7-fold serial dilutions of 255 

purified PCR (102 to 108 copies) containing the targeted gene. The reliability of the 256 

standard curves was controlled by verifying reproducibility of the Ct values, the quality 257 

of the dilution series, and the efficiency (101.42 %, R² = 0.993). The specificity of the 258 

primers was confirmed by melting curves analysis. 259 

AMF reactions were run in 10 µL comprising 5 µL of GoTaq® qPCR Master Mix, 260 

received 1 μL (5 µM) of each primer (FLR3 5’-TTGAAAGGGAAACGATTGAAG T-261 



3’ and FLR4 5’-TAC GTCAACATCCTTAACGAA-3’), 0.1 µL de CXR Reference Dye, 262 

2 μL of DNA template, and 0.9 µL free sterile water. FLR3 is localized between the D1 263 

and D2 domains of LSU rRNA, whilst FLR4 is in the D2 domain (Gollotte et al. 2004). 264 

Standard curves were obtained using 7-fold serial dilutions of purified PCR (102 to 108 265 

copies) containing the targeted gene. The reliability of the standard curves was controlled 266 

by verifying reproducibility of the Ct values, the quality of the dilution series and the 267 

efficiency (101.46 %, R² = 0.975). The specificity of the primers was confirmed by 268 

melting curves analysis. 269 

Data analyses 270 

Data were tested for normal distribution using the Shapiro-Wilk test, followed by the 271 

homogeneity of variances tests, using the Bartlett test. Having met the criteria (residuals 272 

normality and variance homoscedasticity), a two-way analysis of variance (ANOVA) was 273 

performed and, when appropriate, Tukey’s posthoc pairwise comparison (cut-off 274 

significance at p < 0.05) was applied to determine individual differences between means. 275 

Principal components analysis (PCA) was performed using the statistical packages 276 

FactoMineR and factoextra in the R® program (R Core Team 2017). In PCA, to meet the 277 

premise of multivariate normality, the data were transformed into log (x+1) and the 278 

attributes subject to collinearity were removed (Ramette 2007). Additionally, using k-279 

means clustering algorithm, an unsupervised machine learning method of identifying and 280 

grouping similar data points, we classified our variables into groups (Jansson et al. 2022).  281 

RESULTS 282 

In both soil compartments (i.e., planted/inoculated and fertilized compartments) we 283 

determined their 31P and 33P content alongside soil pH, electrical conductivity, and soil 284 

acid and alkaline phosphatase activity. In addition to plant P content, AMF root 285 

colonization and number of spores for the planted/inoculated compartment were 286 

determined. Here, we primarily concentrate on the results from the planted/inoculated 287 

compartment, while results from the fertilized compartment are presented in the 288 

supplementary material. Data is reported on P uptake by arbuscular mycorrhizal hyphae, 289 

as revealed by the use of radioactive P (33P), added to fertilized compartment.  290 

33P uptake by plants, biomass, and soil P content  291 



Soil water content greatly affected 33P uptake by the plants, with the highest 33P uptake 292 

(0.4 kBq.plant-1, on average) observed in moderate drought (50 % WHC) with the lowest 293 

uptake (0.2 kBq.plant-1, on average) observed in the absence of drought (80 % WHC) 294 

(Figure 2A and 2B). Overall, for the planted/inoculated compartment, the highest levels 295 

of 33P activity in soil were observed in the presence of mycorrhizal inoculum under severe 296 

or moderate water stress, but this was not observed in the fertilized compartment 297 

(Supplementary Figures 1A and 1B). In addition, for shoot biomass, the main difference 298 

among the inoculum types occurred in severe drought, with the highest biomass found in 299 

the presence of bacterial inoculum. This same pattern could be detected for morphological 300 

traits, such as height and diameter (Supplementary Figure 2). 301 

Under severe drought (30 % WHC), 33P uptake in shoot was 2.4-fold greater (p ≤ 0.05) 302 

in the PGPR and AMF+PGPR treatments than in uninoculated control. Whilst under 303 

moderate drought (50 % WHC), 33P uptake in shoot of AMF treatment was 2.1-fold 304 

greater (p ≤ 0.05) than uninoculated control, outperforming the other inoculation types. 305 

On the other hand, under optimal conditions (80 % WHC), the highest (p ≤ 0.05) 33P 306 

uptake in shoot was found in AMF+PGPR and the lowest (p ≤ 0.05) in AMF treatment 307 

(Figure 2A, Supplementary Figure 3). The same pattern of 33P uptake was observed in the 308 

root (Figure 2B, Supplementary Figure 4). 309 

The total shoot P content was modulated by the water-holding capacity and inoculation 310 

type, with the lowest values (p ≤ 0.05) observed under severe drought (18.6 µg P plant-1, 311 

on average) and the highest values (p ≤ 0.05) under moderate drought (28.3 µg P plant-1, 312 

on average), almost reflecting the results of those for 33P uptake (Figure 2C). However, 313 

this did not occur in the roots, in which there was an increase in P content with the increase 314 

of water content (Figure 2D). Under severe drought, the highest shoot P content was 315 

observed in the PGPR treatment (p ≤ 0.05), whilst under moderate drought the 316 

uninoculated control was, in general, superior to the other inoculation types. Under no 317 

water stress, shoot P content in AMF+PGPR and PGPR was 1.7 and 1.5-fold greater than 318 

in the AMF treatment (Figure 2C). Overall, soil P contents were higher in the 319 

planted/inoculated compartment than in the fertilized compartment (Supplementary 320 

Figures 1C and 1D). 321 

Mycorrhizal root colonization and number of spores in soil 322 

AMF root colonization was higher under severe (20.9 %, on average) and moderate 323 

water stress (21.8 %, on average) than in no drought (6.4 %, on average). Under severe 324 



drought, the AMF treatment showed a higher (p ≤ 0.05) AMF root colonization 325 

percentage (56.7 ± 7.4) than the AMF+PGPR treatment (26.7 ± 16.1). Whilst under 326 

moderate and no drought, there was no difference (p > 0.05) between them (Figure 3A). 327 

The number of spores differed only between the AMF and AMF+PGPR treatments under 328 

severe drought (p ≤ 0.05), where the highest value was found in the AMF treatment (18 329 

± 6). Overall, the water-holding capacity did not influence (p > 0.05) the number of spores 330 

(Figure 3B). 331 

According to the microscopy results, a different pattern in WHC response occurred in 332 

the presence of AMF structures inside the roots. Considering a severe drought in the AMF 333 

treatment, there was a large presence of hyphae (60 %), whilst in the AMF+PGPR 334 

treatment, we observed only about 40 % of hyphae and 20 % of vesicles (Figure 3C and 335 

3D, respectively). On the other hand, under a moderate drought, for AMF treatment, there 336 

was a higher presence of vesicles (50 %), hyphae (35 %), and arbuscules (10 %) (Figure 337 

3E). Considering the AMF+PGPR treatment, there was the presence of spores inside the 338 

root (20 %), as well as hyphae (20 %) and vesicles (30 %) (Figure 3F). Without water 339 

stress, in the AMF treatment, there was a higher presence of arbuscules (25 %), while in 340 

the AMF+PGPR we only noticed the presence of hyphae (20 %) (Figure 3G and 3H, 341 

respectively). 342 

Soil pH and electrical conductivity, soil phosphatases activity, and microbial 343 

monitoring over sampling time   344 

The water-holding capacity did not influence the soil pH (p > 0.05), but it did influence 345 

(p ≤ 0.05) the soil electrical conductivity (EC). The highest soil EC values were found 346 

under severe drought (86.1 µS.m-1, on average), and the lowest for moderate (64.7 µS.m-347 
1, on average) and no drought (61.4 µS.m-1, on average). A subtle difference was found 348 

in soil pH between inoculum types, within the same soil water-holding capacity. 349 

Compared with the other treatments, the AMF treatment showed the lowest pH value 350 

under severe and moderate stress (p ≤ 0.05), whilst non-water restriction showed the 351 

highest pH value (p ≤ 0.05). The main difference in electrical conductivity (EC) was 352 

found under severe drought, where the AMF+PGPR treatment presented the lowest EC 353 

(Table 1). 354 

The highest soil acid phosphatase activity was found in the uninoculated treatment 355 

without any water restriction, which was on average 3-fold higher than the other 356 

treatments. There was no difference between treatments under severe drought, whilst 357 



under moderate drought, the uninoculated and PGPR treatments showed higher values 358 

compared to other inoculation types. For soil alkaline phosphatase activity, the highest 359 

values were found both under moderate and non-stress conditions. An opposite behaviour 360 

was observed in the AMF+PGPR treatment, in which, under moderate stress, there was 361 

higher phosphatase activity, whereas in non-stress was the lowest compared to the others 362 

treatment with the same water-holding capacity (Table 1). The results for pH, EC, acid, 363 

and alkaline phosphatase in the fertilized compartment are presented in Supplementary 364 

Table S2. 365 

Overall, water-holding capacity influenced the total soil bacterial and mycorrhizal 366 

abundance over time (Supplementary Table S3 and Table S4). Soil bacterial abundance 367 

increased from 15 days after sowing (DAS) to 25 DAS and decreased from 25 DAS to 368 

35DAS (Supplementary Table S3). Whilst mycorrhizal fungal abundance decreased from 369 

15 DAS to 25 DAS (only in severe and moderate drought) and increased substantially 370 

from 25 DAS to 35DAS (Supplementary Table S4). For both, bacterial and mycorrhizal 371 

inoculum, the highest abundances were found under severe and moderate drought. 372 

Principal components analysis (PCA) 373 

Principal component analysis (PCA) was conducted to address relationships between 374 

water-holding capacity and inoculation type and to determine the major trait components 375 

that explain the variation in the original data. 376 

The water-holding capacity and inoculum type influenced the attribute dynamics 377 

according to the visualization of residuals in the PCA, which explained about 48 % in the 378 

first two components (Figure 4A). Overall, fungal parameters (AMF root colonisation 379 

and number of spores), and 33P uptake, besides soil EC and pH, were more correlated to 380 

the inoculum type under severe drought (square dots). Whilst plant parameters (biomass, 381 

diameter, and height), phosphatase dynamics, and phosphorus contents were more 382 

correlated with moderate stress and non-drought (triangular and circular dots, 383 

respectively). Despite the dispersion within the replicates, a subtle difference was evident 384 

in relation to the inoculum type, where the AMF+PGPR, only PGPR, and uninoculated 385 

treatments showed better clustering than AMF treatment.  386 

According to the results of the k-means clustering algorithm, three clusters of variables 387 

were identified, the first being composed of AMF root colonization, soil electrical 388 

conductivity, number of spores and 33P activity (in soil and plant), which was more 389 

correlated to AMF+PGPR treatment under severe drought. The second was composed of 390 



plant parameters (diameter and height) and plant P content, while the third was composed 391 

of phosphatases activity and soil pH (Figure 4B). We assessed the most important 392 

variables in explaining the variability in our data set according to the contribution level. 393 

The variables that contributed the most to the definition of the principal component 1 394 

were AMF root colonisation (12.81 %), plant height (12.75 %), root P content (10.65 %), 395 

soil 33P activity (10.31 %), and number of spores (10.24 %) (Figure 4C). Whilst for the 396 

principal component 2, the most important variables were root and shoot 33P activity 397 

(26.53 % and 25.57 %, respectively) (Figure 4D).  398 

DISCUSSION 399 

Inoculated plants outperformed the uninoculated plants in terms of 33P uptake, 400 

especially under drought stress. The enhanced drought tolerance promoted by AMF 401 

inoculated plants can be ascribed to several mechanisms. For instance, Quiroga et al. 402 

(2019), when utilizing maize inoculated with Rhizophagus irregularis, under drought 403 

conditions, demonstrated an increase in stomatal conductance in the shoots and, thereby, 404 

enhanced photosynthesis. Other mechanisms were extensively detailed by Li et al. (2019), 405 

Ji et al. (2019), Al-Arjani et al. (2020), Chen et al. (2021), and Zhang et al. (2021). Also, 406 

we showed a synergistic effect of the consortium (AMF+PGPR), which significantly 407 

increased 33P uptake under severe drought. More importantly, we provide evidence that 408 

AMF responsiveness in a hostile environment may be due to the presence of PGPR. 409 

Therefore, our results demonstrated that the presence of AMF-helper bacteria (i.e., 410 

Bacillus sp. screened from an extreme environment), contributes to 33P uptake and maize 411 

growth. Thus, we confirmed our initial hypothesis that inoculation of AMF and PGPR 412 

enhances plant nutrient acquisition in treatments with increased frequency of drought. 413 

We found that either bacterial (Bacillus sp.) or microbial consortia (Rhizophagus 414 

clarus and Bacillus sp.), under severe drought, enhanced 33P uptake 2.4-fold more 415 

intensely, than R. clarus alone. In a similar approach, Battini et al. (2017) found that AMF 416 

inoculated plants showed higher 33P uptake when also co-inoculated with bacteria. 417 

According to Jiang et al. (2021), mycorrhizas can control the interaction with the bacteria 418 

and actively recruit, transport and stimulate it to mineralize organic nutrients with benefit 419 

to the fungi, mainly in a region called mycorrhizosphere (a microhabitat in soil where 420 

plant roots are surrounded by fungal hyphae (Johansson et al. 2004)). Conversely, the 421 

bacteria benefit from the released of carbon in hyphal exudates, representing cooperation 422 

between them, which is allied with the symbiosis between the AMF and plant. However, 423 



this cooperation seems to be closely dependent on the soil water level since, under 424 

moderate drought, R. clarus alone showed higher 33P uptake as compared to co-inoculated 425 

treatment. Thus, this efficiency may vary substantially with species identity of both fungi 426 

and plants, host phenology, soil nutrients or root exudation, which significantly impacts 427 

rhizosphere/mycorrhizosphere microbial community (Pauwels et al. 2020; Jongen et al. 428 

2022; Pérez Castro et al. 2019; Ulrich et al. 2019). 429 

Although we have evidence of the ability of inoculation to increase 33P uptake, this 430 

may not be related to the potential of mitigation of drought effects on maize growth, since 431 

we did not observe great differences in biomass production. Therefore, higher 33P plant 432 

uptake did not necessarily translate into higher growth. Perhaps, under highly stress 433 

conditions more P is utilized by the plant to support the given conditions, such as 434 

supporting the mycorrhizae-rhizobacteria interaction, whilst under less stress conditions 435 

the plant can utilize the more absorbed P for growth.   436 

We observed higher AMF colonization under severe and moderate water stress. 437 

However, the prevalence of arbuscules was observed under no drought. Our results may 438 

indicate a close association between the R. clarus and the maize genotype (Zea mays L. 439 

cv. BRS Gorotuba), with the determination of C allocation to the different fungal 440 

structures driven by the severity of drought stress. The effectiveness of plant–AMF 441 

interaction can lead to a plant physiologic improvement and, consequently, to a higher C 442 

supply to the fungi even under drought stress, with severe drought increasing the C 443 

allocation to hyphae, and moderate drought to vesicles, and no stress investing in 444 

arbuscules (Kiers et al. 2011; Jongen et al. 2022). Overall, arbuscules have a rapid 445 

turnover and are the exchange structure in mycorrhizal symbiosis (Smith and Read 2008). 446 

Interestingly, although the highest presence of arbuscules was found under no drought 447 

stress, the highest 33P uptake occurred under drought stress conditions (both severe and 448 

moderate). However, the arbuscules in the treatments under drought would probably be 449 

formed and functional during earlier stages of the plant–AMF interaction, mainly due to 450 

the moment of water shortage experienced, explaining the observed AMF effects on the 451 
33P uptake.  452 

The assessment of soil enzymes is crucial to understand the potential functioning 453 

response of the plant-microbe system since they are involved in nutrient cycling. Thus, 454 

soil phosphatase activities (e.g., acid and alkaline) strongly control phosphorus biotic 455 

pathways (Margalef et al. 2017). Here, we observed an inverse relationship between 456 



enzyme activity and 33P uptake by plants, which was somehow expected, since the P 457 

source considered in our study (mono-potassium phosphate [KH2PO4]) is an inorganic 458 

compound, and the production of these enzymes in the soil is used to perform the 459 

acquisition of phosphate ions from organic molecules (Margalef et al. 2021). Indeed, the 460 

high presence of inorganic P can repress the expression of pho genes, inhibiting soil 461 

phosphatase activities (Nannipieri et al. 2011). 462 

 In general, we observed that there was an increase in soil acid phosphatase activity 463 

with increasing soil water content, especially for the uninoculated treatment, which may 464 

be due to the high demand for P by plants since there was no microbial inoculation to 465 

facilitate the 33P uptake. This result is interesting, considering that plants, although 466 

developing their adaptation to alleviate most biotic and abiotic stresses in nature, also rely 467 

on their microbial partners when they are present to absorb nutrients such as P (Hassani 468 

et al. 2018). Overall, for soil alkaline phosphatase, the lowest activity was found in the 469 

presence of microbial inoculation with AMF alone, which may be related to the 470 

facilitation of phosphorus nutrition promoted by AMF via hyphal network, which reflects 471 

the 33P uptake results obtained in our experiments.  472 

Regarding changes in soil pH and electrical conductivity (EC), our results showed that 473 

the EC was dependent on water content, whereas pH was not affected. Soil EC increased 474 

with decreases in the soil water content, which may be due to other factors, since soil EC 475 

is also modulated by a combination of soluble salts, and soil temperature, for example 476 

(Bai et al. 2013). Pankaj et al. (2020), using PGPR to improve plant growth and crop yield 477 

of Bacopa monnieri (L.), observed that soil EC and pH decreased in inoculated soils. 478 

Likewise, Al-Enazy et al. (2018) demonstrated the inoculation of maize plants with 479 

Azotobacter chroocococcum, Bacillus megaterium and Pseudomonas fluorescens also 480 

decreased soil EC and pH.  481 

Over time, we observed an increase in the bacterial abundance from 15 DAS to 25 482 

DAS, which may be attributed to the soil bacterial inoculation that occurred at 21 DAS 483 

to assist the plants when the water-holding capacity decreased during a severe drought. 484 

After that, the bacteria abundance decreased from 25 DAS to 35 DAS, indicating a 485 

transient rather than persistent effect. At the same time, i.e., 25 DAS and 35 DAS, we 486 

observed an increase in AMF abundance, evidencing the complementary and synergistic 487 

effects provided by R. clarus and Bacillus sp. According to Mawarda et al. (2020), when 488 

inoculants are delivered into soil, they have low persistence due to a combination of high 489 



levels of competition from the native microbial community and a lack of available 490 

resources (e.g., C, water, nutrients). This transient effect, however, does not necessarily 491 

imply a lack of lasting legacy on plant growth. Therefore, the inoculant effects may not 492 

necessarily be due to the size of the inoculant populations, since various changes in soil 493 

community structure and functioning can be found, even though the number of inoculant 494 

cells declined following introduction into the soil. Florio et al. (2017) using rhizosphere 495 

soil from an experiment with maize seeds inoculated with Azospirillum lipoferum CRT1, 496 

under field conditions, could not detect the inoculated strain by qPCR at 37 DAS. Indeed, 497 

these authors maintain that, in general, bacterial inoculants stimulate root growth and 498 

modify plant metabolism at very early stages, and generate lasting effects on the root 499 

system, disappearing quickly, usually after a few weeks. Likewise, Silva et al. (2021), 500 

using bulk soil from an experiment with sugarcane, inoculated with a bacteria consortium, 501 

observed that bacterial abundance remains constant over time, whilst changes occur in its 502 

composition and functions.  503 

In our study, a higher bacteria abundance was detected in the AMF treatments, 504 

even though the spores were previously disinfected, suggesting that the bacteria were 505 

located inside the spore walls. Indeed, bacteria belonging to the order Bacillales, which 506 

include the Bacillus strain used here, are found to be intimately associated with AMF 507 

spores, increasing the AMF activity. Furthermore, they are often embedded in the outer 508 

or inner of the spore wall layers or the microniches formed by the peridial hyphae 509 

interwoven around the spores of various Glomus species, now assigned as Rhizophagus 510 

(Walley and Germida, 1995; Filippi et al. 1998; Rouphael et al. 2015; Selvakumar et al. 511 

2016). On the other hand, other authors maintain that bacteria belonging to the order 512 

Acidobacteriales can suppress AMF activity (Svenningsen et al. 2018). In addition, it is 513 

important to take into account that seeds have their microbiota, which comes from the 514 

flower microbiota (so-called anthosphere) and, therefore, bacteria can reside in and on 515 

seeds (Nelson, 2018; Johnston-Monje et al. 2021). In our investigation, as the seeds were 516 

sterilized, the bacteriome that lives inside the seeds may have contributed in some way to 517 

our results. However, there is still insufficient knowledge allowing us to determine which 518 

specific bacterial species would be helping AMF, as it will strongly depend on the 519 

associated soil and plant microbiome.  520 

Our investigation is a breakthrough in the topic of dual microbe inoculation, 521 

shedding light on the beneficial use of Rhizophagus clarus and Bacillus sp. (potential new 522 



species) to increase the 33P uptake by maize plants under drought stress. Furthermore, 523 

given that our obtained dataset was composed of three clusters of variables according to 524 

the k-means algorithm, we concluded that AMF root colonization, soil EC, and the 525 

number of spores (first cluster) were the main drivers to explain the 33P uptake, especially 526 

using AMF+PGPR under severe drought and, therefore, reinforcing the synergism 527 

between mycorrhizae and bacteria. 528 

CONCLUSIONS  529 

We conclude that Rhizophagus clarus and Bacillus sp. inoculation offers one potential 530 

strategy to promote nutrient acquisition by plants in the context of the increasing 531 

frequency of drought seen in most cropping regions of the world. This is supported by the 532 

enhanced uptake of 33P in all inoculated plants at all moisture regimes in comparison to 533 

the uninoculated plants.  534 

The synergistic response of Rhizophagus clarus and Bacillus sp. increased under drought 535 

conditions, representing greater stress tolerance. This supports the future use of microbial 536 

consortia as an inoculation technology to alleviate drought stress under future climate 537 

change scenarios, as expected in the coming future, resulting in longer dry periods and a 538 

decrease in rains in certain areas of the world. 539 

Thus, future investigations should be carried out to test whether the microbes that have 540 

emerged here under water scarcity events can respond in the same way considering the 541 

presence of indigenous microbial communities. In addition, recent research has revealed 542 

the potential of microbes, especially bacteria, associated with Brazilian Caatinga biome 543 

plants as an inoculant in promoting plant growth under drought conditions. Therefore, the 544 

microbes tested in our investigation are potential candidates for a microbial inoculant in 545 

the near future, combining both bacteria and mycorrhizae. 546 
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