
Bangor University

DOCTOR OF PHILOSOPHY

Real-Time and Interactive Computer Graphics in Grid Environments

Fewings, Ade

Award date:
2006

Awarding institution:
University of Wales, Bangor

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 20. Apr. 2024

https://research.bangor.ac.uk/portal/en/theses/realtime-and-interactive-computer-graphics-in-grid-environments(8b2fe0d0-d30b-42fa-bc80-658fe7ba7360).html

Real-Time and Interactive Computer Graphics in Grid
Environments

Adrian J Fewings

• PRIFYSGOL CYMRU •

UNIVERSITY OF WALES

BANGOR

Thesis Submitted in Candidature for the Degree of

Doctor of Philosophy

February 2006

School of Informatics

University of Wales, Bangor

United Kingdom

Abstract

Abstract

The change in developed society brought about by the computer revolution shows no sign
of abating. The daily utilization of computers and their communication capabilities has
altered the way people communicate with each other and organise their lives. As more
and more of the world around us become reliant on technology, so we are faced with the
challenge of continuing the development of services and ideas whilst managing and adapting
existing facilities.

Computer visualization provides hidden perspective and depth to users. Computer graphics
technology that was, not long ago, hugely expensive now enables anybody to sit at home
and experience a real-time, interactive virtual world of high detail and rea lity. As occurred
with computation some years ago, the desire for ever more power has led to parallelisation of
graphics processing, enabling ever more extraordinary graphics to be produced in real-time.
In line with visualization, the development and spread of networked computing enables the
world to work in fundamentally different ways. We are rapidly transiting to a world of
immense connectivity in which the chal lenge is to offer new and existing services in an
accessible manner. This is the world of Grid computing.

We have developed a system, called jgViz, that provides an end-to-end user experience in
real-time, interactive visua lization in the Grid world. This is an area which is often over
looked by other projects in Grid visualization, which have so far focused on non-interactive
scientific visualization. jgViz uses the Grid information services and runtime components
of the Globus Toolkit, alongside the Chromium parallel graphics system to enable existing
standards-based applications to be used in, and gain from, the Grid environment.

The information model we have designed registers and advertises the presence and capa
bilities of available jgViz servers through an efficient syntax in a number of Meta-Directory
Service (MDS) servers. Our client implementation discovers resources through this hierar
chy and communicates with the jgViz servers themselves in order to learn updated statistics
on server status in terms of loading and network latency. This information is utilised by
the scheduling system of the client to construct a para llel graphics pipeline on available
resources, to suit a user's high-level requirements. The pipeline created is scheduled to
provide best performance in either a sort-first tiled-wall or sort-first readback configuration.
To launch a pipeline, we utilize the Grid Resource Allocation Manager (GRAM) protocol
for job submission, and the GridFTP and Global Access to Secondary Storage (GASS) pro
tocols for data transfer. Once a pipeline is up-and-running, jgViz will monitor it in order
to detect when external factors reduce pipeline performance. When such an event occurs,
jgViz will stop the pipeline, reschedule it among the available jgViz resources and restart
it.

We have carried out an in-depth study of the performance of the jgViz system, in terms
of jgViz-specific capabilities and the limiting factors of such distributed graphics pipelines.
We find several things: network performance is the most critical factor with Fast Ethernet
not offering acceptable jgViz performance and network latency being key; the 'double-hit'

Abstract

of latency alongside slow readback performance in a readback pipeline restricts the usability
of such setups; and that jgViz monitoring does not interfere with the usual operation of
a pipeline but does trigger when pipeline performance is impinged in some way. Given
these limitations, we conclude that a general-purpose, real-time Graphics pipeline can be
provisioned using Grid technologies.

I I

Contents

Abstract II

Contents Ill

Acknowledgements X II

Statements . x 111

1 Introduction

1.1

1.2

1.3

1.4

1.5

1.6

Introduction

Thesis Motivation and Focus

Hypothesis .

Contribution

Thesis Structure

Publications . .

2 Background and Literature Review

2.1 High Performance Visualization

2.1.1

2.1.2

Parallel Visualization

Cluster Visualization .

2.2 The Grid

2.2.1 Origins of the Grid

1

1

2

3

4

4

5

6

6

7

10

17

18

2.2.2

2.2.3

Grid Generations and Middleware Development

Grid Practicalities

2.3 High Performance Visualization over the Grid

2.3.1 Griz

2.3.2 Cactus from LBL

2.3.3 RealityGrid .

2.3.4 GVK .

2.3.5 RAVE

2.3.6 SGI Visualization Area Network and Media Fusion .

2.4 Critical Appraisal

2.5 Conclusions ...

3 The jgViz Grid Information Model

3.1 The Language of Visualization

3.2 Server Nodes .

3.3

3.4

Client .. .

An Example

3.4.1 Server Configurations

3.4.2 Client Configuration .

3.5 Conclusions

4 Scheduling in jgViz

4.1 The Scheduling Process

4.1.1 The Scheduler .

4.1.2 Configuration Script Building .

Contents

21

35

38

40

40

41

42

43

43

44

46

48

49

52

56

57

57

59

60

63

63

64

69

IV

Contents

4 .2 Conclusions . 71

5 The jgViz Grid Runtime

5.1 Pre-launch

5.2

5.1.1

5.1.2

5.1.3

Network Graphics

Network Protocols .

Launching Components

Post-launch

5.2.1 Session Control

74

74

74

78

79

87

88

5.2.2 Monitoring Active Sessions, Dynamic Scheduling and State Tra nsfer 89

5.3 Conclusions . 98

6 Experimentation

6.1

6.2

6 .3

6.4

6.5

6.6

Introduction

Experimental Setup

Experimental Procedure

Base Results

6.4.1

6.4.2

6.4.3

6.4.4

6.4.5

Monitoring Cycle Time

Frame Rate

Pipeline Reschedule Time .

Low-Level Statistics

Network Congestion Effects .

Optimizing jgViz 's Monitoring and Reschedul ing .

Conclusions

7 Conclusions and Future Work

100

100

100

104

106

106

108

110

111

121

133

136

139

V

7.1

7.2

Conclusions

Future Work

A Ethernet Effect

B The jgViz Client GUI - an Implementation Overview

C International Network Topologies

D Poster at Supercomputing

Bibliography

Contents

139

142

146

150

154

161

163

vi

List of Figures

2.1

2.2

2.3

Sort-Last Graphics Pipeline

Sort-First Graphics Pipeline

Chromium Basic Sort-First DAG Configuration .

7

9

12

2.4 Chromium Hybrid Sort-First for Advanced Tiling DAG Configuration 12

2.5

2.6

2.7

2.8

2.9

Chromium Sort-Last DAG Configuration ..

DCV Logica l Configuration (Courtesy IBM)

Layers of the Community Grid Model (from [1])

GRAM Implementation (Adapted from [2]) ...

GR IP protocol data in the LDAP hierarch ica l namespace.

2.10 Early computer gra phics research at Bangor, with Dr Jan Abas at the con-

13

16

22

29

33

sole, in 1977-78 . 39

3.1 Exa mple Chromium confi guration script (for remote/ tiled rendering) 51

3.2 Information components of a jgViz visua lization server node 53

3.3 Server-side structure of jgViz informat ion components alongside LDAP hi-
erarchy . 54

3.4

3.5

Example server configurations .

jgViz finds available server nodes

58

59

3.6 jgViz is configured by the user, whi lst monitoring ava ilable resources in the
background . 60

VII

Contents

3.7 jgViz uses the scheduled data to produce a Chromium script

3.8 Information flow through jgViz

4.1 Information flow through the jgViz scheduling subsystem.

4.2 jgViz client pipeline selection a nd description user panel .

4.3 Subsetting stage one - by confi gurat ion type

4.4 Metric result ranges and their default scores for network latency and node

61

62

64

65

66

load . 67

4.5 Subsetting stage two - by performance metrics . 68

4.6 Pipeline configuration elements for mothership node . 70

4.7 Pipeline configuration elements for application node . 71

4.8 Pipeline configuration elements for network nodes, showing node config
uration for both pipeline types and different SPU configurations for each
pipeline type . 72

5.1 Data items for each node type within the Chromium configuration script . 80

5.2 Components a nd Ordering Involved in Launching a jgViz Session

5.3 The jgViz client reschedules a pipeline

5.4 Graphical represent ation of round-robin vs concurrent test data .

5.5 jgViz client's monitoring process, showing two historical buffers (short and
long) being kept for each of two metrics (network latency and node load)
a long with t he associated ca lculations and parameters, for each of two mon-

82

90

92

itored nodes. 95

5.6 Components of jgViz runtime model

6.1 The Bangor Grid

6.2 Experimental Setup showing Rendering Nodes (see a lso page 172)

6.3 jgViz Monitoring Cycle Time for Tiled Pipeline over Fast and Gigabit Eth-

98

101

103

ernet Networks . 107

VIII

Contents

6.4 jgViz Monitoring Cycle Time for Readback Pipeline over Fast and Gigabit
Ethernet Networks . 107

6.5 jgViz Frame Rate on Tiled Pipelines over Fast and Gigabit Ethernet Networks108

6.6 jgViz Frame Rate on Readback Pipelines over Fast and Gigabit Ethernet
Networks . 109

6.7 Pipeline Reschedule Time of Tiled Pipelines over Fast and Gigabit Ethernet
Networks . 110

6.8 Pipeline Reschedule Time of Readback Pipelines over Fast and Gigabit Eth-
ernet Networks . 111

6.9 CPU Statistics for Client Node Monitoring Tiled Pipeline over Fast and
Gigabit Ethernet Networks . 112

6.10 CPU Statistics for Application Node as part of Tiled Pipeline over Fast and
Gigabit Ethernet Networks . 113

6.11 CPU Statistics for Slave Rendering Node as part of Tiled Pipeline over Fast
and Gigabit Ethernet Networks . 113

6.12 CPU Statistics for jgViz Client Node monitoring a Gigabit Ethernet Network
providing both Tiled and Readback Pipeline Types 115

6.13 CPU Statistics for an Application Node as part of a Gigabit Ethernet Network
providing both Tiled and Readback Pipeline Types 115

6.14 CPU Statistics for a Slave Node rendering as part of a Gigabit Ethernet
Network providing both Tiled and Readback Pipeline Types 116

6.15 CPU Statistics for the Compositor Node in a Gigabit Ethernet Network
providing both Tiled and Readback Pipeline Types 117

6.16 Network Traffic seen by all node types in a Fast Ethernet Network providing
a Tiled Pipeline . 118

6.17 Network Traffic seen by all node types in a Gigabit Ethernet Network pro
viding a Tiled Pipeline . 119

6.18 Network Traffic seen by all node types in a Fast Ethernet Network providing
a Readback Pipeline . 120

6.19 Network Traffic seen by all node types in a Giga bit Ethernet Network pro
viding a Readback Pipeline . 121

IX

Contents

6.20 Client Monitoring Cycle Time in Gigabit Tiled Pipeline with Congested
Client Node . 122

6.21 Visualization Frame Rate in Gigabit Tiled Pipeline with Congested Client
Node . 123

6.22 Reschedule Time for a Gigabit Tiled Pipeline with Congested Client Node 123

6.23 Client CPU Statistics in Gigabit Tiled Pipeline with Congested Client Node 124

6.24 Client Transmitted Network Traffic in Gigabit Tiled Pipeline with Congested
Client Node . 124

6.25 Client Received Network Traffic in Gigabit Tiled Pipeline with Congested
Client Node . 125

6.26 Client Monitoring Cycle Time in Gigabit Tiled Pipeline with Congested Ap
plication Node . 126

6.27 Visualization Frame Rate in Gigabit Tiled Pipeline with Congested Applica-
tion Node . 127

6.28 Reschedule T ime for a Gigabit Tiled Pipeline with Congested Application
Node 127

6.29 Client CPU Statistics in Gigabit Tiled Pipeline with Congested Application
Node 128

6.30 Client Transmitted Network Traffic in Gigabit Tiled Pipeline with Congested
Application Node . 128

6.31 Client Received Network Traffic in Gigabit Tiled Pipeline with Congested
Application Node 129

6.32 Client Monitoring Cycle Time in Gigabit Tiled Pipeline with Congested Ren-
der Slave Node . 130

6.33 Visua lization Frame Rate in Gigabit T iled Pipeline with Congested Render
Slave Node . 131

6.34 Reschedu le Time for a Gigabit T iled Pipeline with Congested Render Slave
Node 131

6.35 Client CPU Statistics in Gigabit T iled Pipeline with Congested Render Slave
Node 132

6.36 Client Transmitted Network Traffic in Gigabit Tiled Pipeline with Congested
Render Slave Node . 132

X

Contents

6.37 Client Received Network Traffic in Gigabit Tiled Pipeline with Congested
Render Slave Node . 133

A.1 Second Gigabit test rig . 147

B.1 jgViz Client Class Structure 153

C.1 Arpanet in 1982 by Jon Postel - The Original 'Internet' in One Picture. 155

C.2 Level3 ISP Internationa l IP Network ' ' 155

C.3 MCI Internationa l IP Network ' 156

C.4 Abilene ' lnternet2 ' Network in the USA 157

C.5 Geant European Academic Backbone . ' . ' .. 158

C.6 Super Janet4 UK Academic Network . ' . ' 159

C.7 Globa l Lambda Integrated Faci lity Collection of Networks 160

0.1 Poster presented at SuperComputing 2004, 6-12 November 2004, Pitts-
burgh, USA 162

XI

Acknowledgements

Acknowledgements

This t hesis written to t he tunes of lots of music, the most reasonable (by my judgement) stuff among which
is as follows: The Cardigans, Flaming Lips, The Simpsons, Norah Jones, Nightmares on Wax, Siobhan
Donaghy, Metallica, Emiliana Torrini, Natalie Imbruglia, Faithless, Goldfrapp, KT Tunstall, Smoove, Husky
Rescue, Mylo, Zero 7

Thanks is due to the following people for the following things (in no particular order):

• Rob for increasing my musical exposure during the last few years.

• T he two Davids in ITS' Networks for the Cat loan, Terence for the GeForce loan, Matthew and John
in Informatics for r319 loan and commandeering over the summer.

• Prof Alan Shore for understanding the difficulties that have been encountered.

• Dr Gareth Roberts for being a realist at an important t ime.

• Rob and Les for assistance setting up ' Informatics Cabling Inc.'

• Rob and Matthew for the consumption of some disk and bandwidth for paranoia-driven backups.

• All in ITS (particularly the bosses, Sim and Julie) for being more than decent with me whilst I've
been writing th is thesis.

• The e-Viz project team - (Manchester - Mark & John), (Leeds - Jason & Ken), (Swansea - Chen,
Mark, David & Nicolas) - it was a pleasure to experience the early stages of the project and learn so
much from you all.

• Rob and Nigel for proof- reading and battling through my dodgy English.

• Franck and Chris for so many UT CTF sessions, good times and the pleasure of being in the same
group as you.

• Nigel for rescuing things from a bad situation. Two years ago, I didn't think I could or would be here
- massive thanks are due for the supervision and for showing me what the PhD process can really
be. ' Indebted' probably doesn't do it justice.

• My colleagues in the Blaise Pascal Lab for the last four years - Nidal, John, Les, Rob - beyond
everything that has happened in the last four years, I will always fondly remember my time in the
lab. It's been interesting, it's been fun - deeply felt t hanks to you a ll.

• Donald, for always making things not seem so bad.

• Mike 'Sandwich' for lunches, laughs and occasional rea lity checks.

• Chris H for the moral support, encouragement, listening to the tails of woe, and pleasantly side
tracking conversations.

• My family, for support and for all those years before and during Bangor. I'm glad you taught me to
work hard.

Document Information

This thesis was prepared using JabRef and Kate in KDE on Solaris Spare. The thesis was compiled using
~TEX 2E: .

xii

"You see, wire telegraph is a kind of a very, very long cat. You pull his tail in
New York and his head is meowing in Los Angeles. Do you understand this?
And radio operates exactly the same way: you send signals here, they receive
them there. The only difference is that there is no cat."

Albert Einstein {1879 - 1955), describing radio [or could it have been the Grid?}

X IV

Chapter 1

Introduction

1.1 Introduction

The last fifteen years has seen a technology revolution in developed society. The extraor

dinary growth in computing, fueled by the emergence of mass-connectivity in the form

of the Internet, has fundamentally changed mankind. Where computers were once large,

loud, expensive and only to be found doing specialized work or scientific computation, most

people could not now imagine a world without daily computer interaction for a ll sorts of

purposes, including work and entertainment. Where once the only way to communicate

with a friend or family member a long way away was to make an expensive phone call or

post a high-latency letter, now emails are delivered in seconds and instant-messaging and

Voice-over-IP applications make involved communication cheap.

However, this is only the beginning. We now carry around devices (or a single device)

in our pockets that allow us to play games, hold thousands of songs, have a face-to

face conversation with someone on the other side of the world, connect to computers the

world-over and enable other people to track our movements. More and more of the things

we interact with on a daily basis are connected to this 'network' - from microwaves t hat

download recipes to Radio Frequency Identification (RFID) based supply-chain management

systems. Computers continue to enable our imaginations through the visualization of fact

and fiction with immensely powerful graphics systems.

We are now faced with a new challenge. Comput ing is part of everyday life, yet, computing

continues to develop. How do we manage this development for users whilst allowing the

Chapter 1 Introduction

development to t ake place? As we go forward, there is a need to adapt to these new

technologies but still be able to retain abilities from one perceived generation of computing

to the next. This thesis is concerned with exactly that.

1.2 Thesis Motivation and Focus

Computer graphics is a field that has come from humble beginnings in computer science to

mainstream use in entertainment, education and research. The ability to visualize immensely

complex structures and ideas can enable mankind to go beyond t he limits of imagination,

both in terms of content and timeliness. Real-time graphics has become particularly pop

ular in recent years, primarily through the development of powerful commodity graph ics

accelerators as used today in the full range of products from supercomputers to ga mes

consoles. As parallel computing was to the processors ava ilable and requirement for com

putation ten or twenty years ago, so parallel graphics is to the graphics accelerators and

desire to visualize today. Parallel graphics processing offers truly unique opportunities to

engage in real-time visualization of extraordinary worlds and models, through t he coupling

of multiple graphics accelerators. In the same way t hat high-performance computation has

become more distributed, so the same is happening with high-performance visualization

and graphics. Increasingly capable networks allow a real-time visualization to occur across

a myriad of machines that may be geographica lly dispersed. Key work from a number of

research groups has built this research area up and it continues to grow - see Chapter 2 for

details.

The breathtaking development of networked computing in recent years has created a world in

which goa ls are achieved in radically changed ways. Looking further forward, developments

in areas such as 1Pv6 and wireless networks wi ll create an even more connected world in

which the majority of electrica l items take adva ntage of the network. The combination

of this near fully-connected world and the service infrastructure to support it is what the

next generation is all about. As the first generation of this connected world was widely

known as the Internet and the second as the Web, so the third is the Grid . Grid research

began in the early to mid 1990s as networking technologies matured enough to allow the

efficient and economic transfer of data across larger distances. This enabled compute

clusters at distributed sites to be shared. The early attempts to implement software to

do this gave rise to several key problem areas, including security, resource allocation and

platform heterogeneity, that defi ne the very concept of Grid comput ing. The work of the

Globus team was instrumental in beginning to tackle these problems as the Globus Toolkit

2

Chapter 1 Introduction

was developed towards providing an infrastructure for high-performance computing. Major

developments facilitated by the Globus project tackled providing an information exchange

system and a distributed file system, both to support a supercomputing infrastructure. In

the United Kingdom, the National Grid Service 1 is a production Grid service that grew

out of the prototype UK e-Science Grid and provides computational and data Grid abilities.

e-Science is the term used to represent the global sharing and collaboration required to

tackle new problems in science and engineering. The e-Science programme was launched

in November 2000 as a cross-Research Council funded initiative to develop solutions and

middleware for enabling e-Science and forming a base for future commercial e-business.

A number of projects have brought Visualization and Grid research together. Many have

been aimed at either specialized visualizations or taking advantage of abilities offered only by

Grids, due to their scale and the high-performance facilities involved. There is, however, a

need to enable existing standards-based applications to take advantage of the Grid. OpenGL

is a very widely used graphics standard primarily intended for interactive and real-time

rendering. As it represents a 'gap in the market' this thesis is aimed at taking existing

OpenGL applications and providing an environment for them to run with the advantage of

Grid facilities. We introduced this Grid visualization system first at SuperComputing 2004

[3] and call it jgViz.

1.3 Hypothesis

The combination of Visualization and the Grid leads to many questions. We surmise these

questions, facts and aims with our thesis hypothesis. The jgViz project is an investigation

of this hypothesis.

Through the use of indexing systems, job scheduling and data transport mechanisms, the

Computational Grid can be used to provision a general-purpose, real-time, distributed graph

ics pipeline.

1S ee ,.,.,. . ngs. ac. uk

3

Chapter 1 Introduction

1.4 Contribution

The major contribution of this work is in the design and implementation of a Grid visualiza

tion system that enables existing standards-based applications to function in, and benefit

from, the Grid environment. Through the use of Grid information services, Grid runtime

components and an existing non-Grid parallel graphics system, we produce a unique dis

covery, scheduling and monitoring solution for Grid-based visualization.

1.5 Thesis Structure

In order to position this work within the scope of that which has led to it, a review of

key technologies and developments in presented in chapter 2. The development of Grid

computing is discussed and how this moves through a number of projects and generations

to became modern Grid research. Combining this with the concepts of visualization and

high-performance graphics, we conclude with a review of existing Grid Visualization work.

Chapter 3 begins our discussion of our implemented software, jgViz. There are a number

of component parts that go to make up jgViz and in this chapter we discuss that which un

derpins all others - the jgViz Grid Information Model. We discuss the difficulties associated

with developing a language to describe visualization and explain the basis of the language

we have developed. We discuss the Grid server and client aspects of how a discoverable

resource is made available and provide an example to demonstrate the information path

throughout the jgViz experience.

After information has been learned and resources discovered, the next task is to apply that

information, as we discuss in Chapter 4 on Scheduling. Covering the multi-stage scheduling

process that goes about determining the resources to be used by jgViz, this chapter discusses

the scoring system we use to determine what makes one node more appropriate for the task

than another. We also describe the process by which the scheduled data is converted into

a collection of Grid resources that utilise the Chromium parallel graphics system.

Once resources have been chosen, chapter 5 discusses the pre- and post-launch elements

involved in creating an actual pipeline by utilising Grid protocols for job launching and

control. We cover the mechanisms required for launching jobs and then compare the

scalability of round-robin and concurrent systems for monitoring a number of nodes. We

also deliver explanation of how this fits in with jgViz deciding that a running graphics

4

Chapter 1 Introduction

pipeline has suffered a performance problem, and on the events that such a trigger causes.

We conclude with a discussion on further ways to monitor nodes and the implication thereof.

Chapter 6 presents a study of the performance of distributed graphics pipelines in the jgViz

system. We focus not on the absolute performance of the pipeline, but primarily on the

monitoring and rescheduling features that jgViz provides in order to increase the reliability

of such pipelines. We look at both high and low level performance metrics in idealised and

congested networks and observe the patterns of traffic, the effects of different node types

and the overall scalability of the system. We also give consideration to optimization of the

customizable settings within jgViz to improve the end-user view of a distributed graphics

pipeline. This performance study allows us to develop understanding of the limitations and

speculate on possible technical developments, with regard to jgViz.

Finally, in chapter 7 we present conclusions from the jgViz body of work and discuss future

work. We determine whether or not our hypothesis has been proved.

1.6 Publications

Work from this project has been accepted for publication as follows:

• Visual Supercomputing - Technologies, Applications and Challenges. K A Brodlie, J

M Brooke, M Chen, D Chisnall, A J Fewings, C J Hughes, N W John, M W Jones,

M Riding and N Roard . STAR - State of the Art Report, Eurographics 2004.

• Distributed Graphics Pipelines on the Grid. A J Fewings and N W John. Poster

presentation, Supercomputing 2004.

5

Chapter 2

Background and Literature Review

There are two principle objectives of this chapter - firstly to give the background to the

research, and secondly to report on the literature research undertaken . The scope of the

project has largely been covered in the previous chapter, but it is important to fill in details

on the processes that brought this work to life. The literature review consists of a search for

information on the main contributory technologies to this work. A definite path is followed

through this to build up all the relevant sections to an end-product providing the knowledge

necessary to see from where and how this thesis has evolved.

2.1 High Performance Visualization

Computer graphics and visualization has always used high performance computing facilities .

High Performance Visualization (HPV) is the term used to refer to the latest visualization

techniques being used with High Performance Computing (HPC) resources. HPV tasks

thus normally involve large, high resolution datasets and computationally intensive tasks.

The use of networks, immersive environments and high resolution graphics facilities really

makes HPV what it is today. It is, perhaps, best summarised by this description from

the EPSRC e-Viz project proposal: 'A typical HPV task is a complex feedback process,

involving data collection, visualization design , task parallelisation, immersive visual display

and interfacing with the corresponding data generator such as a simulation engine' 1 . This

thesis is concerned with a particular application of parallel computing techniques within

High Performance Visualization (HPV).

1The e-Viz project can be found on the web at www.eviz.org

Chapter 2 Background and Literature Review

2.1.1 Parallel Visualization

Parallel visualization is broadly divisible into two fundamental types - Object Space and

Image Space (4] . Object Space parallel refers to the decomposition of the visua lization task

into separate parallel parts being carried out on the actual dataset involved. Image Space

parallel refers to the decomposition taking place on the basis of coordinate space in the

resulting image.

Object Space

Within Object Space parallel visualization, each node {individual unit of parallel system,

typically a single machine or processor) is responsible for the rendering of its block of

data, irrespective of whether it may actually be visible at that precise moment. Object

Space parallelization is a lso known as Sort-Last (5]. reflecting the late stage in the graph ics

pipeline at which the graphics primitives are sorted from object-space into t he resultant

image-space (See Figure 2.1). There are three principal data partitioning schemes in Object

Space parallelism.

Graphics Plpellne
Geomelly -> Rastertzallon -> Frame Bulfer

Graphics Plpellne
Application Geomelly -> Rastertzallon -> Frame Buffer

Graphics Plpellne
Geomelly -> Rastertzallon -> Frame Bulfer

Figure 2.1: Sort-Last Graphics Pipeline

Frame
Buffer

Firstly, there is the concept of Complete Data Replication in which each processor holds all

data loca lly. This a llows simple parallelization t hrough the same sequential algorithm on a ll

nodes and also reduces any requirement for communication during processing. However,

the memory overhead is significant and this technique does not sca le well. For example, as a

data set grows then each node requires more memory to hold it and, as t he parallel machine

size grows, then the cost of initial data distribution soon leads to t his approach becoming

impractica l. This approach is also useful for read-on ly data due to the excessive cost in

time and processing of modifying the data on one node and the necessary redistribution to

all nodes in a consistent manner.

7

Chapter 2 Background and Literature Review

Secondly, Object Space data partition ing can be based on sets of object data without

structure. Such a scheme is ca lled Non-Hierarchical and can be of a regular or irregular form.

In both of these, partitioning is typically carried out on a block or slice basis. Regular Block

Decomposition breaks the 3D data set into equal-sized regular blocks whereas Irregular

Block Decomposition produces unequa l sized blocks. The regular form suffers from the

potential downfall of not being well load-ba lanced whereas the irregular form deliberately

produces blocks that contain similar amounts of work. However, the overhead of this can

be significant as it can be an intensive pre-processing task. Regular Slice Decomposition

produces consistent width, full-length slices of the data set in contrast to the differing

widt hs produced by Irregular Slice Decomposition. Producing a sliced decomposition can

give the added advantage of neighbouring nodes processing neighbouring slices, which can

be adva ntageous for data exchange in certain single-layer network structures.

Thirdly, some form of multi- layer structure can be used for the partitioning of data in

t he shape of a Hierarchical Partitioning scheme. The Kd Tree Partitioning approach is

an example of this. Kd trees [6] are used for partitioning from a k-dimensional space

into subvolumes along planes through the dataset. Octree Subdivision [7] [8] represents a

recursive decomposition of object-space into cubes of integer powers-of-2 in size. In most

cases this results in a largely equal partitioning, subject to an even distribution of objects in

the object space [9]. Hence, it is particularly useful with regard to partitioning of a single

object, such as a volume dataset.

Image Space

In Image Space parallel visualization, the parallelism is achieved in the resu ltant visua lization

space. Traditionally, this means that different pixels in the resultant image are computed in

parallel according to some scheme. Image Space parallelization is also known as Sort-First,

describing the sortin g between object space and resultant image space occurring early in

the graphics pipe (See Figure 2.2) .

A basic scheme is Regular Image Space parallelism, in which the individual pixels of the

required output (considering display device and resolut ion) to be produced are placed in a

queue and processed in a farm parallel manner, producing a good load balancing system

with no im pact if a particular pixel takes a substantially longer time to render than oth

ers. However, the extremely fine gra ined parallelism that this represents has a substantial

communication overhead, therefore restricting t he types of parallel machine that can be

used. If the granularity is increased by parallelizing on a scanline or pixel group basis,

8

Chapter 2 Background and Literature Review

Graphics Plpellne

Application

Figure 2.2: Sort-First Graphics Pipeline

the communication overhead becomes less significant. In such a system, the scan lines are

distributed in a round-robin fashion, thus providing some inbuilt load-balancing as some

pixels on a scanline will take longer than others to render. The granularity can be further

red uced by grouping neighbouring scan lines together to a certain block size. Such grouping

techniques can also be applied to create blocks of pixels in a regu larly spaced tiled a rrange

ment. This exploits the data coherence between neighbouring pixels without a substantial

cost for block-to-block communication and allows the s ize of the blocks to be tuned to suit

the granularity of the machine. If some pre-processing is added into this, then irregularly

spaced blocks can be used, improving load-ba lancing in exchange for the relat ively small

initial cost . By subsampling the image plane, the pre-processing stage may cluster small

tiles together to form load-balanced larger tiles. An alternative irregular approach is for each

processor to render a block of small tiles held in its queue and when it finishes, to 'st eal'

tiles from other processors that are sti ll busy. Stompel et al [10] efficiently load balance in

their compositing algorithm on the basis of two factors. Firstly, the data is partitioned so

that each processor is responsible for data throughout the entire viewport. Secondly, the

processed pixels are classified as one of three type: Background Pixels that can be ignored;

Non overlapping Pixels that can be directly delivered to t he display host; and Overlapping

Pixels that require actua l computational compositing.

Sort-First parallel rendering requires a final stage to bring together t he parallel streams to

form the view for the user in a single view. This will often be in the form of a compositing

stage that merges the view section from the parallel render nodes into a single view. This

requires inter-process communication that can often be very data intensive, subject to scene

content. This is a sign ificant performance issue for parallel and distributed visua lization,

depending on how the parallel pipelines are connected to the final frame buffer (for example,

four graphics pipelines in one machine share superior connections than if these components

are on separate machines connected on ly by the network). There has been various work on

producing both software and hardware to optimize the compositing process and there are

9

Chapter 2 Background and Literature Review

many examples that could be cited. Two particularly good examples are: Ma et al [11],

with their new algorithm that load balances the compositing process as much as possible by

compositing all rendering node output simultaneously rather than sequentially; and Yang

et al [12], with their look at three algorithm variations; both of which involve the binary

swap procedure. Hardware compositing devices are effectively networked framebuffers and

are somewhat rarer, but lightning-2 [13] is a prime example. Muraki et al [14] present

particularly interesting work on parallel volume visualization compositing using binary-tree

structure to enhance scalability.

2.1.2 Cluster Visualization

Visualization is considered to be an effective method through which to gain understanding

and insight of otherwise confusing, incomprehensible data sets. However, traditional high

end visualization systems present a number of problems, including high-cost due to their

proprietary nature, restricted scope for upgrades and limited scalability. In recent years,

there has been an explosive birth and growth of commodity graphics accelerators in both

games consoles and workstations, motivated primarily by the gaming community. Also,

a number of new networking technologies have become available facilitating both high

bandwidth and low latency for relatively modest costs. The massive industry investment in

all of these near commodity cost components represents an opportunity to produce a high

end visualization system that no longer suffers from the disadvantages mentioned above.

By building visualization clusters, we can harness off-the-shelf components, remove the

proprietary overhead and also achieve scalable and economically upgradable performance.

The current trends in performance growth will not continue forever, however. As the

physical limitations of silicon are increasingly reached (or, at least, progress is slower),

parallelism becomes increasingly necessary in order to gain improved throughput. This

has been seen happening in the processor market recently, and also the graphics processor

market shows similar signs. In the future, increasing the parallelism will be the way to

improve throughput. Further afield and as cheap as equipment may become, this implies

that distributed parallelism and resource sharing (for example, within a Grid environment)

will be an effective way to increase performance.

10

Chapter 2 Background and Literature Review

Chromium

Cluster rendering systems have typically been constructed as specific algorithms for tackling

specific problems. Chromium is a general-purpose system for enabling cluster visualization

through a stream processing architecture. As the open-source successor to WireGL [15],

Chromium enables sort-first, sort-last and hybrid parallel rendering. Generality is achieved in

Chromium through the use of OpenGL as the underlying language. This enables Chromium

to run existing applications with either little or no modification as well as running customized

Chromium applications that utilise the programmable architecture to provide different al

gorithmic architectures.

A Chromium rendering pipeline is configured as a directed acyclic graph (DAG) of nodes,

where a node is an instance of the Chromium runtime. Generally, therefore, one node is

one machine in a cluster. There are two types of Chromium runtime nodes. Firstly, a client

node hosts applications and either tricks those that use OpenGL in to using Chromium's

libGL instead of the system libGL (by preloading the Chromium library using the runtime

linker environment variable LD_PRELOAD), or hosts directly those that are customized.

Secondly, a server node is one that receives GL command streams and processes them.

This can involve rendering and resolution of ordering issues. The packing, unpacking and

transmission of GL commands between nodes is handled as part of the DAG. The DAG it

self is represented in Python script in which nodes are created and have Stream Processing

Units (SPUs) allocated. SPUs are the basis of the modular Chromium framework. They

are connected by pipes over which they 'converse' in OpenGL commands to handle require

ments in rendering, processing and communication. SPUs are implemented in a hierarchy

and all extend from the 'passthrough' base class, which takes in a GL stream and passes

it out unmodified. Example SPUs supplied with Chromium include: 'tilesort' that divides

up a scene on a grid basis, ' render' that renders an OpenGL stream in a window using

locally available facilities, and 'pack' that packages GL commands for transmission across

a network to other nodes. Through the use of the various SPUs, Chromium can achieve

the different sorting classifications as discussed above. The launching of a pipeline's com

ponents is not a trivial task, due to the potential complexity of configurations amongst so

many components. Chromium solves this by having all pipelines components connect to a

'mothership' additional node to discover their configuration (e.g. what SPUs are required

and where stream data comes from and goes to) as their first task upon execution, hence

the on ly configuration required is the name of the machine that is running the Chromium

mothership. The mothership itself is a simple server that contains the pipeline configuration

in a single file and returns to the correctly named machines their relevant data to inform

11

Chapter 2 Background and Literature Review

them of their function.

Figure 2.3 shows a basic sort-first tiled display configuration, in which a single application

is run through a 'tilesort' that splits up the view to be rendered by the slave servers, each of

which has the relevant screen in the tiled mural attached to it and uses the local graphics

hardware for maximum performance. The potential bottlenecks within this configuration

are twofold. Firstly, the network between the client node and the slave server nodes needs

to be of high enough performance to transport the data twixt the two without limitation.

Secondly, the 'tilesort' can be quite a costly process when carried out on relatively complex

scenes and so requires hardware of capable performance.

UnPack

!PU

UnPacl Rend er
!PU SPU Dis~lay

Figure 2.3: Chromium Basic Sort-First DAG Configuration

Tilesort Pack

SPU SPU

Figure 2.4: Chromium Hybrid Sort-First for Advanced Tiling DAG Configuration

Figure 2.4 shows an advanced sort-first tiling configuration, in which a single application 's

12

Chapter 2 Background and Literature Review

graphics stream is split into sma ller tiles before being fed to a number of servers. However,

these servers now render the relevant ti les of data they have been assigned into their

frame buffers and then issue a g/ReadPixels command to extract the 2D output. This

is the effect of the 'readback' SPU. The result is then sent over the network to a server

with a single screen attached that is responsible for compositing the tiles back together as

appropriate and displaying them . As the pixels are sent over the network as GL commands,

this reassembly process is actually a ' render' SPU . The smaller tiles used in this scheme

lead to a more load-balanced offering across the available readback servers, for example

when the concentration of objects in the view is particularly biased to one corner or side.

The leading diagona l scheme used for splitting up the viewport here is one of a number

that can be arbitrarily implemented. In add ition to the network and ti lesort potential

bottlenecks (which are both more likely to become problem points than in basic sort-first

tiling), the compositing process now takes its place as a potentially very compute and data

intensive task . Also, graphics acceleration hardware has not typically been optimized for

the g/ReadPixels commands and can be a serious restriction on performance. The latest

and future generation of accelerators based on the new PCl-express platform look set to

improve this situation substantia lly, however.

~~~liuliij~ 

~~~litiliij~ 

Read back
SPU

Readback
SPU

Read back
SPU

Display
Pack
SPU

glGetPixels from Display

glOrawPixels to send thru PackSPU

e

Combine images together
using Z or Alpha values

Figure 2.5: Chromium Sort-Last DAG Configuration

Figure 2.5 shows a sort-last configuration. Here, multiple applications (sources of visualiza

tion) are all rendered on a number of client nodes. The pixels resulting from this are sent

over the network to a compositing server. This compositing server then puts the layers of

graphics together in the appropriate order to produce the correct output. To establish the

correct order, either Z or alpha values are sent from the client nodes alongside the pixel

data . For each pixel in the output view, the compositing server can then blend or layer the

13

Chapter 2 Background and Literature Review

input appropriately to produce the correct output.

Synchronization and state are handled by Chromium in two ways [16] . Firstly, Chromium

has a state tracker that can efficiently compare two graphics contexts and generate SPU

calls for every difference. Secondly, Chromium adds two commands to the GL syntax for

the purpose of synchronization over the network [17]. Server nodes use crBarrierCreate and

crBarrierExec to keep the distributed components synchronized. Such server nodes receive

command streams from multiple clients through which they will swap in a round robin style,

waiting on a single stream until a barrier is received. Once all streams are handled, that

particular barrier is satisfied and execution can proceed, probably with the next frame as the

barrier synchronization would typically be called in the renderer prior to a crSwapBuffers.

Chromium additionally has a number of useful features. Firstly, a point-to-point network

abstraction can be utilised by SPUs and custom applications alike in order to communicate

with each other via non-standard routes, for the purposes of creating advanced compositing

hierarchies. Secondly, the inheritance based nature of SPUs enables stylized drawing to be

achieved through the creation of a processing unit that modifies the necessary GL commands

to provide the required look.

Other Research

Staadt et al. present a review of several cluster rendering systems in [18], including data

specifying the immense networking requirements for such work. Their study of OpenSG and

VRJuggler shows absolute frame rates better than those of Chromium, but with associated

longer startup times and modifications to the visualization codes required.

Samantra et al. [19] presents a hybrid sort-first/sort-last system implemented within the

Windows operating system and a detailed study of the performance of this system in viewing

three different geometry models. The dynamic, view-dependent partitioning improves upon

static-partitioning, but at the expense of using a custom application that can only support

static models due to the distribution of the model through the pipeline.

AnyGL [20] is a cluster visualization system built specifically for large-scale graphics ap

plications involving huge scenes. It also implements a hybrid rendering system and a new

state tracker architecture that aids the scalability of the pipeline, particularly between the

geometry distribution and rendering stages of the pipeline.

14

Chapter 2 Background and Literature Review

Winkelholz and Alexander [21] present a virtual environment system that handles media

beyond graphics including a Flock of Birds sensor-set and speech recognition. However,

it takes advantage of the specialised data-flow graphs approach of implementing virtual

environments in order to reduce the rendering load , hence restricting the generality of

the application . It is worth noting that a combination of high-performance compute and

commodity workstations is used in this system.

Lever et al. [22] discusses work carried out between the Manchester Visualization Centre and

Advanced Visual Systems, Inc. on the adaption of the AVS/Express visualization toolkit

to multiple graphics pipe equipped machines. Although this is not cluster parallelism,

the management of delays between simulation code and rendering for real-time immersive

applications is relevant. The use of an intermediate process between the application and

rendering enables the parallelism of such high-end machines to be exploited and protects

against interruption to the virtual experience when the application has not completed a

frame by the time it needs to be rendered. In this latter case, AVS/ Express Multi-Pipe

Edition will re-render the previous frame but from the new viewpoint.

Commercial Products

The commercial market provides a number of offerings that are very relevant to this discus

sion of cluster rendering. However, being commercial, it is more difficult to establish firm

details on some aspects of such systems.

ModViz, Inc. 2 is a company spun out from Siemens in order to provide supercomputer

class visualization using computer clusters. Their core product, known as Virtual Graphics

Platform [23]. is an OpenGL standard based cluster visualization system that, similarly

to Chromium, can operate either transparently to an application or with an application

that can interact with the VGP system . The VGP software takes the OpenGL command

stream and divides it up amongst the available render and compositing nodes as necessary

to provide the display systems available. The render, composite or display components are

dynamically instantiated on cluster nodes as required depending on the job at hand.

Sun Microsystems offers the Sun Fire Visual Grid product. This is a high-end hardware

and software system that makes the power of several of Sun's top-end XVR-4000 graphics

accelerators available as if it were a single system [24]. The software is less advanced than

Chromium and is unremarkable. The hardware platform, however, is well-suited to scientific

2 ModViz can be found o n the web at http://www. modviz. com

15

Chapter 2 Background and Literature Review

visualization, but uses high-cost equipment. A master host runs the application and uses

a Myrinet high-speed network to dispatch the graphics around amongst up to 32 graphics

accelerators in 16 Sun Fire 880Z visualization servers. Each graphics accelerator can then

drive up to two displays, for a maximum of up to 64 displays overall. The Myrinet network

is dedicated to the 3D graphics data and a secondary Gigabit Ethernet is used for all other

data . As the master node can be anything up to a 24 processor machine, the application

using the Visual Grid can be large and complex.

IBM have recently announced their Deep Computing Visualization (DCV) effort. DCV

encompasses an infrastructure for providing visualization in a scalable and manageable

manner [25] . In practical terms, there are two setups that DCV initially supports. One is

utilising a cluster to provide rendering. The other is in enabling remote visualization to a

number of clients (collaborative workers). Again, DCV offers OpenGL support alongside a

customization capability and is very similar to Chromium, as can be seen in Figure 2.6.

DCV Architecture (Logical View)
Compute

Video

TCPnP (GlgE. lnllniBand)
DVl-1

c:::::J DCV Sonware suite

Figure 2.6: DCV Logical Configuration (Courtesy IBM)

IBM distinguish DCV from Chromium through several unique features, of which the non

marketing ones are:

• Support for some additional OpenGL extensions.

• Use of pixel shader blurring for compression .

• Enhanced security, including at the pixel level.

• Improved instrumentation and a performance dashboard .

16

Chapter 2 Background and Literature Review

Other than this, DCV once again offers nothing more than a pre-built and integrated setup

of remarkable similarity to Chromium.

HP's solution will provide the Sepia high-performance compositing card as well as commod

ity hardware. Their end-product, known as the Scalable High-End Visualization System

(SHV), can scale from eight to thousands of nodes through the use of the Sepia hardware

and a dedicated compositing network, instead of software, for gathering the results of the

parallel rendering [26]. Sepia works in much the same way as the old first-generation 3DFX

graphics accelerators did. To overcome the performance limitation of reading back pixel

data from the frame buffer, the DVI video feed goes from the graphics accelerator on a

particular machine to the Sepia card on the same machine, which then outputs directly to

the dedicated lnfiniband compositing network. This also means that the PCI bus of the

machine is not saturated in any way and allows the full rendering power of the machine to

be utilized.

HP's combination of commodity and custom hardware presents a very high-performance

and adaptable solution in which the cost overhead is limited.

A disadvantage of all commercial offerings is the cost of such systems compared to a custom

built Chromium based solution. However, the availability of different pre-built systems will

enable the field to take off, prices to drop and companies and institutions alike to simply

buy-in a complete solution without needing high-end expertise in the area. Of course, even

in such a situation as having expertise available to install and setup such a system, there is

the cost of the manpower involved. Balancing of this cost with the overhead of a bought-in,

pre-built solution will be increasingly even in years to come. As the extraordinary pace in

the development of graphics hardware begins to slow, these solutions will become necessary

for ever greater performance requirements.

2.2 The Grid

As much as the term "the Web" came to represent the second generation of the Internet

enabled world, "The Grid" encompasses a whole host of technologies and ideas that will

be the third. Many of these next-generation ideals may look and handle similarly to the

present-day, but the Grid represents the necessary new way of thinking about what goes

on behind the scenes. The effect will be to make computers and the networks on which

they reside usable in a different, more integrated way than is presently the case. This will

17

Chapter 2 Background and Literature Review

truly represent the "electronic underpinning for a global society in business, government,

research, science and entertainment" [1].

The ultimate future of Grid technologies is to produce large-scale dynamic systems that

couple geographically and architecturally distributed facilities to provide access to compu

tation, storage, instruments and other devices. In order to enable easy-to-use access, a

complex system of software layers is necessary that enables integration with established

real-life policies and practices. Beyond this, the Grid represents an abstraction of the phys

ical facilities into a uniformly accessible virtual system where the limitations are no-longer

imposed by the technology, but by the intricacies of society.

2.2.1 Origins of the Grid

The 1980s was a decade of research on parallel systems. Through the development and de

ployment of hardware, software and algorithms, it soon became apparent that such research

would push the bounds of what was possible on the individual computers of the time. This

resulted in work looking at breaking free of the boundaries of single machines and splitting

tasks across distributed systems. The early 1990s followed up with work on parallel APls

such as PVM, MPI and OpenMP. This work harnessed both shared and distributed memory

systems. The types of parallelism exhibited by certain problems and algorithmic solutions

led to the creation of the first cheap computer clusters , known as "beowulfs". When the

idea of a Grid first came up at this time, it was envisaged as a way to extend parallelism

over more distributed systems in order to create ever large virtual supercomputers.

Alongside all this work in parallelism , the traditional Grand Challenge key problems in science

began to be tackled by researchers from multiple disciplines and across geographical and

institutional boundaries. Interdisciplinary research also blossomed and formed a number of

distinct, new research areas such as bioinformatics [1]. These key ideas led to new ways

of working for large problems. New ideas came forth to tackle the security, accessibility,

coordination and distribution problems created. These are all things that would become

part of the Grid philosophy.

At SuperComputing 95, the first showing occurred of what came to be known as Grid ideas.

The Information Wide-Area Year (I-WAY) [27] project aggregated more than 17 sites in the

US together via the vBNS (very high speed Backbone Network Services) [28] and one of

many pieces of software deployed on I-WAY was an early Grid system providing capabilities

in the areas of accessibility control, security enforcement, resource collaboration and data

18

Chapter 2 Background and Literature Review

distribution. This focus on the very dissimilar Grid concepts was an important stepping

stone from the throws of distributed computing research at the time. The introduction of

new problems and focuses began a new era in research for providing distributed computing

in an integrated and managed way. Grid computing is very much distributed computing for

today's highly-connected world.

I-WAY led on to the creation of much Grid research. Many projects popped up investigating

the full range of services and components of a Grid. The Glob us and Legion projects tackled

the problem of creating an entire Grid infrastructure meeting the requirements initially

considered through and from I-WAY. The high-performance aspect was not lost, however,

as the Condor project tackled high-throughput , distributed scheduling and several other

projects tackled high-performance scheduling (CITES for Apples, APST, MArs, Prophet).

Additionally, the Network Weather Service project began to study resource monitoring and

prediction, the Storage Resource Broker (SRB) began to tackle the problems of data access

and the NetSolve project looked at client-server remote computation.

In the late 1990s, Grid researchers from around the world came together to form the Global

Grid Forum (GGF) 3 . The GGF provides the necessary system for the interchange of ideas

and discussion among Grid researchers in the effort to produce the standards base for Grids.

The GGF also states the following as a high-level description of Grid computing:

Grid computing is increasingly being viewed as the next phase of distributed

computing. Built on pervasive Internet standards, Grid computing enables or

ganizations to share computing and information resources across department

and organizational boundaries in a secure, highly efficient manner.

Organizations around the world are utilizing Grid computing today in such di

verse areas as collaborative scientific research , drug discovery, financial risk

analysis, and product design . Grid computing enables research-oriented or

ganizations to solve problems that were infeasible to solve due to computing

and data-integration constraints. Grids also reduce costs through automation

and improved IT resource utilization. Finally, Grid computing can increase an

organization's agility enabling more efficient business processes and greater re

sponsiveness to change. Over time Grid computing will enable a more flexible,

effici ent and utility-like global computing infrastructure.

The key to rea lizing the benefits of Grid computing is standardization, so that

the diverse resources that make up a modern computing environment can be

3http://'llWY.gridforum.org

19

Chapter 2 Background and Literature Review

discovered, accessed, allocated, monitored , and in genera l managed as a single

virtual system even when provided by different vendors and/or operated by

different organizations.

Requirements of the Grid

There are a number of different views on what services a Grid software layer, or middleware,

should provide. However, there is increasingly broad agreement over the necessary core set.

Indeed, parts of this have been standardised through the GGF, as will be covered later.

Security and Authentication The cross-administra tive domain and multi-layer nature of

Grids presents a difficult problem in authentication and authorization. No longer are

we concerned with a situation where one client authenticates to access the resources

of one server. Instead, we have multiple tiers of systems that act as clients and servers

for each other and within which any individual user may or may not have rights of

access. Take an example where a user on one machine tries to launch a job on a

second machine to process data held somewhere e lse. Firstly, machines one a nd two

must establish some sort of trust that they are some form of collection. Secondly, the

user authenticates as the client t o the server on the second machine in order to la unch

the job. However, the second machine then must authenticate as a client with the

third machine acting as the server to access the data t o process. Whilst simple when

involving just three machines, the task becomes much more complex when sca led

up. The particular requirements [29] are the ability to Single Sign-On (it is absurd

to expect t he user to re-enter a password or such like for each authentication), the

Mapping between such an authentication scheme and loca l operating system authen

tication (crossing administrative doma ins where the operating system has different

users) , Delegation (so that the many layers are able to authenticate and authorize

as necessary, alongside the risks of propagating such information) and Policy (only

certain people and/or groups being able to access cert a in things).

Scheduling and Resource Allocation Managing the allocation of resources such as pro

cessors, memory and storage between t he jobs t hat need to uti lize them in an efficient

way is both an import ant and d ifficult task. To t he user, the schedu ling process should

be transparent and t hey should interact with it on ly to submit jobs [30]. The actual

process would need to involve no single scheduler, but a network of them, a ll inter

acting with local operating system schedulers to allocate resources, create processes

and deallocate resou rces.

20

Chapter 2 Background and Literature Review

Data Transfer and Communication In a system as meshed together as the Grid, there

are three requirements of file systems [31]. (i) Users require access to status infor

mation on many different sites. (ii) Users require access to data and executable files

on many different sites. (iii) Job executables must be able to read and write very

large data sets. Thus, we require consistency, reliability, security and performance

that places unique requirements on both the localised fabric (disks and their access

patterns) and the interconnections between many distributed sites.

Resource Monitoring and Discovery Once again, the scale of production Grids intro

duces new intricacies to established areas of distributed computing. Establishing a

reliable architecture in which to carry out resource information sharing is a difficult

task. The tasks involved include exchange of soft-state data , searching of information

directories and monitoring for failure and of performance.

Heterogeneity The Grid concept is all about virtualization. The user should not know

that there are x machines being contacted for their job - they should just submit

the job and get back the results from the illusionary, single, extremely powerful,

computer. However, the world consists of multiple operating systems and processor

architectures, many different network structures and speeds, and a great variety of

people with different views and policies. If the behavior of the Grid from the user's

perspective were to change due to any of these factors, then the Grid has failed to

act as the single-being, omnipotent/ omnipresent system that is envisaged.

2.2.2 Grid Generations and Middleware Development

The Community Grid Model

Berman, Fox and Hey present the Community Grid Model in [1]. Grid researchers from all

walks of life have moved towards this layered model in order to enable easier development

and integration of the complex systems that comprise Grid resources.

As shown in Figure 2.7, the four horizontal layers here represent a traditional, technical way

of looking at the Grid, akin to other layered approaches. It is fairly easy to understand these

layers and their principal components. However, the two vertical layers represent relative

unknowns that will impact upon the horizontal layers and the Grid that they represent in

the future.

The lowest horizontal layer represents the hardware resources that form the Grid. Thus,

21

Chapter 2 Background and Literature Review

Grid Applications
New Common

Devices Policies

User-focused Grid Mlddleware,
Tools and Services

Sensors
Grid

Economy
Common Infrastructure Layer

(NMI, GGF Standards, 0GSA, etc.)

Wireless
Gloool-Area
Networking

Global Resources

Figure 2.7: Layers of t he Community Grid Model (from [l])

networks, storage, compute and visua lization devices all fit into this layer along wit h other

devices. By definition, services (a Grid service is a facility or resource accessed via Grid

protocols) wi ll come and go in a very dynamic way in the Grid and the machines themselves

will vary enormously in location and performance capability. The two middle layers represent

the software that sits between the hardware and t he user interaction with the Grid. The

lower middle layer represents the software services and standards t hat are followed on a ll

Grid members - such as OGSA and WSRF, as wi ll be discussed below. These community

agreed standards provide for the interaction amongst nodes in order to represent t he Grid

as a virtual machine and share the resources of it. The upper middle layer represents an

abstraction away from the details of the lower middle layer in order to provide services

to applications. This easing of the difficulty of data transfer, remote access, scheduling,

et c. provides a much more convenient environment for actual application development and

deployment. The user parts of middleware sit at t his layer whereas the lower-level, more

technica l parts exist in t he lower middle layer. The top horizontal layer represents the

applications t hat use Grid services and the users thereof. Although a ll the building blocks

of the Grid exist at lower layers, if this layer does not work then t he Grid is useless. The

dependence on the user community establishing how to make use of the services available

to form a Grid application (whether it uses one Grid service or one hundred) cannot be

underestimated and there is much work to do in t his area.

The proliferation of network devices alongside the adoption of key networking technologies

such as 1Pv6 wil l affect a ll the horizontal layers. As such new devices and sensors are

attached to networks that themselves become increasingly dynamic through the provision

of wireless, cellular components, the Grid software will need to adapt to the changi ng

world . At the same time as the Grid itself becomes more and more ubiquitous, there will be

22

Chapter 2 Background and Literature Review

a large requirement for further development in the high-level management facilities available

regarding the impact of a global network and its implications for the global economy and

sharing policy. The socio-economic impact needs to be carefully managed and developed as

we head towards a single global Grid that assimilates such different nations and societies,

even if we don't get all the way there.

Evolution

The previously mentioned I-WAY project led directly into the Globus project. However, it

should be mentioned that I-WAY itself grew out of other projects. The earliest recognisable

efforts were projects to link together the US supercomputing sites in the early to mid

1990s. It was at this time that the term 'metacomputing' came about in association with

the US Gigabit testbed networks and their use in making the high-performance compute

facilities available to a wider audience. It was around this time that the I-WAY project,

and another project called FAFNER (32], began. FAFNER was aimed at factoring RSA130

encryption and was accessed through a CGI web interface. This interface provided a range

of new functionality, including cluster management and live status reports. Additionally,

FAFNER utilised a new factoring method called Number Field Sieve (NFS) that enabled

even desktop computers to carry out usefu l computation, contrary to 1-WAY's use of large

supercomputers and their related resources. The well-known SETl©Home project [33] is an

example of the FAFNER principles taken forward.

The key enabling technologies in moving on to producing what we now call a Grid infras

tructure have been the bandwidth explosion in networking technologies and the cooperation

of separate research groups to produce standards. This has enabled the Grid concepts to

become truly realistic. Foster and Kesselman are rightly thought of as 'the great makers'

and their seminal collection [34] from 1998 is justifiably thought of as a key moment. In

order to provide a heterogeneous, scalable and adaptable Grid, the underlying infrastruc

ture (i.e. within the middle two horizontal layers of the Community Grid Model) needs to

provide a number of main data and computation features, as follows [30]:

Administrative Hierarchy This determines how administrative information distributes through

out the Grid and how far-fetching its effects are.

Communication Services The requirements of networks in the Grid era include the full

range of modern networking technologies. Point-to-point, multicast and broadcast

23

Chapter 2 Background and Literature Review

links, both in reliable and unreliable forms alongside various Quality of Service pa

rameters are needed.

Information Services Such is the dynamism of services in a Grid that we need informa

tion exchange services to provide sharing of service status, location and resource

requirements.

Naming Services Whilst related to Information Services, Naming Services are different in

that they provide a uniform namespace over the entire Grid environment.

Distributed File Systems It is key that Grid applications have access to data among

many servers. In order to enable such an environment, we need a uniform file system

enabling data access in potentially varied and optimized ways to any user-machine

combination in the Grid that has the necessary security credentials.

Security A Grid environment requires all aspects of security to be tackled. Data confiden

tiality, authentication of users and machines, authorization of users and machines,

and accounting are all critical.

Monitoring Systems To enable high performance and reliability, it is necessary to monitor

and report upon Grid services at layers from middleware up to application.

Resource Scheduling To handle the resources available in a Grid in an efficient, fair and

policy-controlled manner, it is necessary to have advanced, yet transparent, scheduling

between the user and resources. The layers of such scheduling systems from operating

system all the way up to Grid application must interact sensibly.

As these formal Grid efforts intensified in the late 90s, the second-generation of the Grid

came about, initially in the form of the Globus project. The first Grid standards reference

implementation produced was built on the standard Unix services of SSH (the Secure

SHell), LDAP (the Lightweight Data Access Protocol) and FTP (the File Transfer Protocol)

with some enhancements, principally to do with authentication. Known as the Globus

Toolkit, the software implements the basic Grid services in a modular way to provide a

single virtual machine. Through the provision of these basic services and well-defined

Application Programmer Interfaces (APls), a wide variety of applications can be developed

based on different methodologies and not any single one such as the Object-Oriented (00)

model. Version 1 of the Globus Toolkit evolved from the I-WAY project and contained the

basic set of services. Version 2 became more of a standard and continues to evolve and be

used today as a result of the level of takeup. The work on this thesis is implemented with

GT2, as this has been and continues to be the basis of the UK e-Science Grid .

24

Chapter 2 Background and Literature Review

Within the same time frame as the Globus project was becoming successful in the United

States, the UNiform Interface to COmputer REsources (UNICORE) project [35] was created

in Germany. This has become more established in Europe and has been key to the creation

of the EUROGRID and GRIP projects. UNICORE is unlike the earlier versions of Globus in

that it is a much more integrated system. From an external viewpoint, UNICORE considers

all the necessary Grid components but it also utilises existing web technology and the Java

language to provide a uniform, familiar graphical user interface. At a lower level, application

jobs within a UNICORE Grid take the form of recursive objects containing groups of tasks

and also contain additional information specifying dependencies and destination systems.

This dual high and low level structure is attained through the encapsulation and serialization

abilities that Java provides in order to allow the authentication and initial access at the

byte-layer and the job transfer at the object-layer.

Also around the same time period, there were a number of significant other pieces of

work taking place. Legion [36], from the University of Virginia , is an object-based system

for accessing distributed , high-performance computers. Legion presents the user with a

single virtual infrastructure, irrespective of the actual underlying hardware and differentiated

from Globus by being object-based. Legion has been commercialised as part of the Avaki

company. A number of job submission systems were also around at t his time. Five popular

ones are:

Condor [37], which has been in development for many years and is a tool for harnessing

the power of idle workstations and scheduling submitted job across them. Condor

can also handle checkpointi ng and process migration as jobs must be linked against

the Condor libraries t hemselves.

The Load Sharing Facility (LSF) 4 is a commercia l system used for distributed batch

submission and load balancing in a heterogeneous environment.

The Portable Batch System (PBS) 5 is another batch queueing system that provides

particularly good control over administrative policy including time policy and access

policy.

Sun Grid Engine (SGE), 6 formerly developed as Codine, is another very similar product

from the user's perspective. SGE allows the user to specify the requirements for

4http://www.platform.com/Products/Platform.LSF.Family/
5http://www.openpbs.org
6http://www.sun.com/software/gridware/

25

Chapter 2 Background and Literature Review

the job they wish to submit in a fairly complex way and then allocates that job

appropriately.

Load Leveler is a parallel job scheduling system produced by IBM for AIX and Linux. It is

aimed at dynamically scheduling, optimizing utilization and providing control of jobs

submitted to a Load Leveler cluster - a group of machines running the Load Leveler

daemons.

In summary, the second generation of Grid software made the key moves in bringing Grid

development into the mainstream. Evolving from the original versions of the Globus Toolkit

through to GT2.4 provided the integration required for moving from compute intensive jobs

through to more open deployments. As part of this, various software was created to provide

higher- level services.

Third generation Grid technology has moved on. In order to provide the desired component

architecture and information resources, it was necessary to adopt a more service-oriented

model and pay more attention to metadata [30]. This goes on to have significant impli

cations for the underlying technologies. Such changes re-focused middleware development

away from solely thinking about massive compute resources towards the users and the ma

chines on their desks. This, in turn , has further effects. The increased likelihood of failure

led to more work in recovery and failover. A larger number of machines requires more

work on coordinating the resources available. This has all come together to form a more

automated Grid that no longer requires human interaction as humans would not longer be

able to cope with the scale of things now involved.

In 2002, the Globus Consortium worked alongside IBM to create this third generation Grid .

The result of this relationship was the Open Grid Services Architecture that combines web

services and Grid technology. OGSA now defines core services as such [l]:

• Systems Management and Automation

• Workload/Performance Management

• Security

• Availability /Service Management

• Logical Resource Management

• Clustering Services

26

Chapter 2 Background and Literature Review

• Connectivity Management

• Physical Resource Management

This change of emphasis morphs middleware into a service framework in which all resources

are virtualized as Grid services and accessed through the Web Services Definition Lan

guage (WSDL) [38]. Instead of the focus being on interfacing with resource controllers,

the increased user-centric nature of Grid third generation shifts to focus on the hosting

environments (often portal like) for accessing Grid services [39]. This in turn radically

changes the environment in which Grid developers operate - now, the principal tools are

web based, in particular Apache AXIS and Microsoft .NET. The Globus implementation of

OGSA, which included AXIS , was called Globus Toolkit 3 (GT3) and intended to preserve

functionality from GT2 as far as possible. 2003 saw the GGF produce the first Open Grid

Services Infrastructure (OGSI) standard, which moved beyond those relevant standards laid

down previously in order to further integrate the web services approach into the Grid.

However, things didn't stabilise there. Microsoft joined the team of Globus and IBM to

produce Grid generation 4 - the Web Services Reference Framework (WSRF) [40] - in order

to better deal with the requirements of business, consumers and scientists together. The

most significant differences between WSRF and OGSA are that WSRF allows access to

resources (as GT2 did) through a web services infrastructure and that WSRF services do

not have state whereas OGSA services did. Continuing tradition, the Globus Toolkit version

4 (GT4) [41] reached alpha status in late 2004 and final release on the 29th April 2005. The

current stable release is 4.0.1. WSRF is arguably less revolutionary and more evolutionary,

but sensibly so. All the work that business and academia has put into the web in the past

years is not without value in a Grid environment and should accelerate take-up of the Grid,

even if people do not actively realise what they are getting into. GT2 still remains very

popular precisely because of the advantage it has for science and the volatility in what

comprised the next generation Grid standard. Perhaps GT4 can finally change that in the

years to come.

Underneath the Globus 2 Hood

Whilst it is important to remember that the three significant generations of the Globus

Toolkit (2, 3 and 4) have all been seeded by different Grid standards, it is also important to

note that the component based architecture implies some commonality. We cover here the

components that comprise our UK e-Science based Globus Toolkit 2 working environment.

27

Chapter 2 Background and Literature Review

GSI Globus utilises the Grid Security Initiative (GSI) to provide security at the various

interfacing stages that occur 7 . GSI is an implementation of the Generic Security

Service (GSS) described in [42] that itself provides an application programmer inter

face to access its own standard procedures for credential exchange, authentication

and encryption. GSS sits on top of established systems such as SSL in order to pro

vide these functions in a standardized manner and Globus implements GSS so that

different underlying security mechanisms can be used simultaneously. Globus also

provides the ability to query what security mechanisms are available in order to select

one to use. GSI therefore is one of the Globus core components.

Grid Resource Allocation The Globus Resource Allocation Manager (GRAM) is the core,

low-level service that is responsible for resource allocation and control. The fine de

tail of making resources available according to some policy is typically handled by

an underlying resource management system, such as Condor or LSF. Submitting and

executing any job that does not use one of the compatible/ integrated job managers

or requires its own execution environment (e.g. Java, Perl, Python) is very difficult

and often restricted by this lack of integration. A GRAM provides access to a group

of resources controlled by the same policy, for example a cluster as a whole managed

by Condor. GRAMs represent the standardized interface to accessing resources in a

Grid. The Resource Specification Language (RSL) is used to express requirements

for a job (for example, x free processors) and the RSL produced by a Grid application

may involve the necessary use of several GRAMs. The RSL is therefore handled by

a resource broker that is responsible for splitting it up and extracting the specifics of

GRAM submission(s) from the high-level RSL syntax. Multiple brokers may be in

volved in a single request through the use of application-specifi c brokers to translate

an application's requirements into specific individual resources and then resource bro

kers to locate suitable resources. These specifications are then passed to co-allocators

that are responsible for passing all components of the request onto individual resource

managers. These are the components that talk to local job managers and recognise

two types of parameters:

• MDS attribute names express resource requirements.

• Scheduler attributes express job requirements.

Hence, a multi-resource RSL request, as described in [2], may look something like:

+((&(count=5)(memory>=256M)

(executable=ls)
7 For example, authentication when connecting to a remote resource.

28

Chapter 2 Background and Literature Review

C

(resourcemanager=escher.sees.bangor.ac.uk :4000))

(&(count=2)(cpus>1)

(executable=w)

(r esourcemanager=ainur. bangor.ac.uk :4000)))

Grid Appllcation1+..:L.;;;o,_ca;;,;;te;;..;.,;re_,so_u;;,;r,_ce;;;:s_ ►, MDS

Resource reques

Site Boundary

Gatekeeper

/
GSI)

Job Manager

RSL Parser

Query resource
status

Figure 2.8: GRAM Implementation (Adapted from [2])

Figure 2.8 shows GRAM in implementation. GRAM may either be extensively used

to provide service t o a Grid application or such an application may choose to do

more work for itself. When utilising GRAM, it provides a client API library that

can be used by an application t o authenticate with a remote site and transfer a job

request (2] . This takes place via a gatekeeper that acts at a site to authenticate

requests and launch job managers as the local users. In the case of the UK e-Science

approach , GSI public keys are mapped to Unix users on a site-by-site basis. This

is a time-consuming, inefficient and non-scala ble approach that is the subject of an

entire branch of research . Once the job manager is lau nched at t he remote site, it

is responsible for creating the necessary processes to fulfil t he req uest; be it through

submission to something like Condor or a simple fork. It then monitors running jobs

and notifies the application of st ate and termination. Once the job finishes, the job

manager also completes. The GRAM reporter shown on the diagram is responsible

for updating the information in the Grid information system and always runs, even

when no jobs are.

GridFTP Grid FTP (43] is an extension of the FTP protocol to provide a high-quality data

29

Chapter 2 Background and Literature Review

transfer mechanism within Data Grids, which are Grids with applications based around

large amounts of data being accessed intensively. A typical example application

is a large-scale, distributed physics application in which sizable facilities (such as

experiments producing data and supercomputers processing it) need to share data.

GridFTP aims to provide a reliable and high-performance system for such uses and

also provide support for replication of data amongst a server hierarchy. GridFTP

integrates with the Grid Security Infrastructure of Globus and can also provide striped

data transfer (i.e. sourcing from multiple servers) for improved performance 8 . The

replication capabilities consists of several software layers to provide management,

consistency and rollback. A GridFTP server is a standard component of a Globus

Grid installation.

Grid Data Storage It is an implicit part of Grid computing that jobs will execute on

machines at a widely dispersed set of sites. It is therefore necessary to move the data

for such jobs around among these sites fast enough to not limit high-performance

jobs. The Global Access to Secondary Storage (GASS) [44]system aims to provide

this by satisfying the following defined Grid 1/0 requirements:

Uniform access to files - overcoming the complexities of authentication, commu

nication protocols, naming, etc to provide the same access mechanisms to data ,

irrespective of location.

Diverse data sources - providing access to a variety of data sources including HTTP,

FTP, etc.

Dynamic resource set - allowing for the potentially very dynamic set of users and

services.

Support for streaming 1/0 - providing Unix command-line like streams access in

order to allow existing applications to be more easily transferred to a Grid envi

ronment and chaining together of the components thereof.

Little or no program modification - to reduce the cost of deploying Grid versions

of existing software.

Support for programmer-directed performance optimization - allowing applica

tion programmers to override efficient default 1/0 strategies in order to optimize

performance for their specific application.

Existing distributed file systems are often time-consuming and complex to deploy. For

example, the Andrew File System (AFS) 9 is a kernel-level service (leading to relatively

8500MBit/sec reported in t he year 2000!
9http : //www.openafs.org

30

Chapter 2 Background and Literature Review

high performance) in which matching file access permissions in a multi- institution

environment would be exceptionally difficult. The Prospero File System provides a

focus on management and organization of files, but not the level of performance

required. GASS does not aim to support all types of data access, but instead focuses

on 1/ 0 patterns that are used in high-performance computing. These four patterns

are:

• Read-only access to an entire file, e.g. for multiple database users.

• Append-only write access to a file, e.g. for monitoring via log files.

• Non-consistent shared write access to a file, e.g. in which any of the writes from

a multiple of writers is valid.

• Unrestricted read / write access to a file, e.g. in which only one process is ac

cessing the file at a time.

GASS utilizes file locks and local secondary cacheing alongside pre-staging and post

staging in order to handle access to both large and small files in a high-performance

manner. Some file accesses will simply be streams over a network and so will not be

cached. However, GASS allows the user to control some of the details of cacheing

when it does occur, including the location where a file may be cached, which can have

performance advantages. From the Grid application perspective, GASS controlled file

access is performed using standard Unix methods. At its most basic, read and write

calls need not be modified , but open and close calls will have URLs passed to them

rather than file specifiers. However, GASS does provide more complex lower-level

APls for those Grid applications which choose to use it, in order to optimize cache

management, client access details (e.g. proxies, duplication, Maximum Transmission

Unit sizes) and server details. The Globus Toolkit 2's native command line tools

utilize GASS for basic functionality. The base globusrun command uses GASS to

handle standard output and error streams and to stage scripts and executables. This

stream management has the advantage of making use of the GASS cache in order

to provide buffering. Tests have shown [44] that GASS's file locking leads to slightly

lower performance than AFS for small files but also that GASS performs better in

dealing with larger data files, as would typically be the case with a high-performance

job.

Grid Information Services The Grid allows geographically dispersed access to and use of

resources. Some of these resources are well-known and permanent, others are highly

dynamic and very temporary. Enabling users and potential Grid applications to have

knowledge of the resources that are made available within their Virtual Organization

31

Chapter 2 Background and Literature Review

is a non-trivial task. This is why Grid Information Services (GIS) exist - to provide

discovery of, information about and monitoring of available Grid resources. These are

vital to provide a dynamic Grid that supports resources appearing and disappearing,

scheduling amongst such resources and observation of the performance of resources

being used. GIS provides a Lightweight Data Access Protocol (LDAP) based archi

tecture for tackling these problems composed of two basic elements:

Information Providers, that provide information about resources in an LDAP struc

tured model of attribute-value pairs.

Directory Services, that collect and provide information gained from information

providers. Specifically, Aggregate Directory Servers that collect virtual organi

zation scale information and provide views and searching capabilities through

LDAP interfaces.

The Globus Toolkit 2's standard GIS component is the MetaDirectory Services 2

(MDS-2). MDS-2 consists of an information provider component called a Grid Re

source Information Service (GRIS) and an aggregate directory service component

called a Grid Index Information System (GIIS) . In order to provide a timely system,

M DS-2 requires that information providers are light and provide suitable time-related

information alongside their resource-related data. To ensure a robust system, MDS-2

specifies that the failure of any component should not restrict information sharing

on other parts of the system. This requires that information providers are highly dis

tributed and preferably located in the same place as the services they report on and

that all components assume failure to be the rule rather than the exception. Ensuring

that an MDS-2 system is implementable in reality necessitates that policy controls

can be put into place in order to restrict certain privileged information and also to

contribute to the scalability of such a system. The multi-tiered virtual organization

hierarchy simplifies this.

MDS-2 contains two protocols that form the basis on which all information is ex

changed [45]. Firstly, the GRid Information Protocol (GRIP) is used to access infor

mation on actual resources from a GRIS, and secondly the GRid Registration Protocol

(GRRP) that is used to register such a provider with a GIIS server. The GIIS uses

GRIP and GRRP to obtain information on a resource from a GRIS, store such informa

tion and provide a query interface for searching. Because of their aggregating nature,

GIISs provide both scalability and scope to information within virtual organizations.

The use of LDAP as the GRIP protocol gives several advantages, as discussed below.

Object classes represent names for different types of resources (filters) and distin

guished names provide the structure and hierarchy that groups object classes together

32

Chapter 2

dn: Hds-Host-hn•alnur.bangor.u.uk,
Hds-Vo-name-bangor,o-Grld

objectClass: MdsComputer
objectClass: MdsCpu
objectClass: MdsNet
objectClass: MdsO s

Mds-Computer-Platform: ia64
Mds-Cpu-Total-Count 12

Mds-Net-addr: 147.143.5. 17
Mds-Os-name: Linux

d n: Mds-Software-De ployme nt=MDS,
Mds-Host-hn=ainur.bangor.ac.uk,

Mds-Vo-name=bangor,o=Grid

O bjectClass: MdsSoftware
O bjectClass: MdsServiceldap

Mds-Service-Port 2135
Mds-Service-Ldap-timeout: JO

Mds-Validfrom: 20050211 1436312
Mds-valldto: 200502 1 120363 I Z

Background and Literature Review

n: Hds-Host-hnaescher.bangor.ac.uk,
Hds-Vo-nameabangor,o-Grld

objectClass: MdsComputer
objectClass: MdsCpu
objectClass: MdsNet
objectClass: MdsOs

Mds-CompUter-Platform: sun-4u
Mds-Cpu-Total-Count 2

Mds-Net-addr: 147. 143.9.26
Mds-Os-name: SunOS

dn: Mds-Software-Oeployment-=jobmanager.fork,
Mds-Host-hn=escher.bangor.ac.uk,

Mds-Vo-name=bangor,o=Grid

ObjectClass: MdsService
ObjectClass: MdsServiceGram

Mds-Service-Gram-schedulertype: fork
Mds-Service-protocol: 0.1

Mds,Service-url: x-gram1/escher.b>ngor .ac.uk:2 I 19tj0bmwger•
forl</C=UK/O=eScience/OU=BangorlL=SOI/CN=esch<r •.

Figure 2.9: GRIP protocol data in the LDAP hierarchical namespace.

in a queryable way. Such searches can then be filtered and only selected attribute

subsets retrieved . Figure 2.9 shows the hierarchy and application of object classes to

different components of that hierarchy. The GRRP protocol dictates that messages

contain va lidity timesta mps so that the information wi ll eventual ly be dropped by a

directory unless refreshed , effectively determining that a fai lure has occurred without

having to be notified explicitly as such. Through t he multi-layered application of

the GRRP protocol, MDS-2 produces a hierarchy of aggregate directory servers. In

the same way that a GRIS registers its information with a GI IS, that GI IS can then

register its information with a higher up GIIS . Such higher up directories will not

maintain all the data, but will know where it can be obtained from and be able to

retrieve it shou ld they be asked for it. This has the advantages of lowering storage re

quirement and machine load for a higher-level directory as well as allowing specialized

policy to be implemented on them, for example querying known trouble-spots earl ier

33

Chapter 2 Background and Literature Review

than t hose that have been more reliable. Security in an MDS-2 setup is provided by

the standard GSI, in order to have public-key authenticated communication between

clients and servers. By utilising OpenLDAP for MDS-2, such security is easily imple

mented through the plugable Simple Authentication and Security Layer (SASL) and

its provision of the GSS-API. GRISs are implemented as OpenLDAP backends that

ca ll information providers and then merge and maintain that information, which is

typically for the host on which it is running. The information providers are called via

either Unix shell scripts or through loadable modules that run within the server itself

and not in a subshell. The loadable modules option is more efficient but also more

difficult to implement. Information ga ined wi ll be held for an administrator-configured

time before being refreshed. GIISs are also OpenLDAP backends. However, the ad

ministrator sets these up to col lect together information from information providers

and other GI ISs and merge this together into an LDAP tree that is then navigated

using distinguished names.

Commodity Grid Toolkits The areas of commodity computing and high-performance com

puting have evolved in parallel for many years. However, with t he importance of the

Grid clearly likely to increase in the future, more of a commodity nature needs to be

brought in to make it more accessible. However, these two fields have evolved with

very different targets. The Commodity Grid project was created to combine these

two areas together to the advantage of both. The use of commodity components

and ideas within Grids wi ll ease and enable development of Grid applications. The

ava ilability of what comprises the Grid will enhance commodity computing by defi

nit ion. Whilst the Commodity Grid project intended to produce toolkits for va rious

commodity platforms, including Perl, Python, CORBA and DCOM [46], at this time

t here are toolkits for Java, Python, Matlab and Portal development. Java was an

obvious first choice for toolkit development. Commodity computing has taken on new

meaning with the advent of Java - where code can run on such a diverse selection

of hardware platforms and operating systems. Indeed, the reasons for Java being a

good language for Grid development are fairly obvious and provide comparison with

C/ C++ as follows:

The Java Class Library - is a large, deep resource of elements that provide func

tionality from SSL to GU ls. C/C++ also has an extensive library of largely

compatible (subject, principally, to the evolution of the language standards and

compi lers) libraries that provide equally diverse abilit ies.

JavaBeans - provide a component based architecture for development and deploy

ment.

34

Chapter 2 Background and Literature Review

Bytecode Deployment - to enable cross-platform development and deployment of

code very easily. This compares with the machine architecture and operating

system specific binaries of C/C++.

Performance - approaching that of C and Fortran, when used in an optimized man

ner and with the HotSpot capable compiler. The overhead of running a Java

VM produces slowdown, however.

Popularity & Diversity - with Java appearing in hardware from PDAs and mobile

phones to Java Cards (credit card sized chip cards with Java technology) and

web pages. In particular, Java applets enable ease of creation of Grid portals.

The Commodity Grid Toolkits are mappings of Grid functionality into commodity

computing frameworks and environments [47]. In the case of the Java CoG, there are

four levels of components that each utilise the abilities of those below:

Low-level Grid Interface - components to allow direct Java language interfacing

with MDS, GRAM, GASS and GridFTP through GSI.

Low-level Grid Utilities - components to carry out common functions through easy

calling within Java. For example, searching an MDS to find resources matching

a specific RSL.

Low- level GUI Components - graphical components for common functions. For

example, LDAP browsers, RSL editors and GSI public-key passphrase entry sys

tems.

Application GUI Components - graphical applications that show Grid functionality

and may be used to interact with it. An example here is the Grid Desktop

that allows the user to drag various components between LDAP windows, RSL

submission windows and machine representations (e.g.: an icon) in order to

launch the said jobs on those machines.

It is through this structure that the commodity grid toolkits enable t he more rapid

pickup of Grid technologies and deployment of Grid applications. They are certainly

useful and crucia l to Grid work and are being developed onward for the new generation

of the Grid - itself a lot more commodity based as it is.

2.2.3 Grid Practicalities

Grid research has been primarily based in academic and scientific facilities. As such, cutting

edge compute and network facilities have been part of the research and the Grids that have

35

Chapter 2 Background and Literature Review

been implemented. As the field blossoms, increasing numbers of commercial interests

naturally become involved and Grid research permeates more into every day use.

As High Performance Computing Facilitators The Top 500 Supercomputers list, now

in its 25th revision, continues to represent the massive investment in scientific research

computers around the world. Some of the supercomputers on this list are components of

Grids today and will be so increasingly in the future. Whilst many of these are not currently

available within a Grid (or even on the Internet), they give some idea of the level of facilities

that will be available in the future. The current top three supercomputer are as follows:

The Earth Simulator - An NEC machine in Japan, the Earth Simulator appeared by sur

prise to take the lead in the Top 500 from the traditional holders of the title, the

ASCI computers in the USA, in June 2002. Consisting of 5120 NEC vector proces

sors, it achieves 35.86 Teraflops Linpack performance against a theoretical maximum

of 40.96 Teraflops over a crossbar network that directly connects each of 640 pro

cessor nodes to every other via one of 128 switch units, involving over 83 thousand

interconnecting cables.

Nasa Columbia - Named in tribute to the shuttle and crew lost in space shuttle mission

STS-107, Columbia [48] is a cluster of 20 SGI Altix 512-processor systems with 20

Terabytes of total memory. It achieved a Linpack result of 51.87 Teraflops (vs 60

Teraflops theoretical maximum performance) and connects the 20 nodes together

using lnfiniband networking.

IBM BlueGene - Developed by IBM for the US Department of Energy at Laurence Liver

more Laboratories, BlueGene makes use of massive parallelism of slower processors.

The current BlueGene/ L [49] uses 65 thousand processors to provide a Linpack re

sult of 136.8 Teraflops against a theoretical maximum of 183.5 Teraflops. The final

machine will have a peak performance of 360 Teraflops.

Over High-Performance Networks Grids are based on ideas of sharing and connectivity.

The future connected world will therefore rely on ever higher performance networks and

the crossover between industry and academia has been particular apparent in developing

them. The balance of performance between desktop links and transcontinental links remains

fairly similar although it seems fair to say that bandwidth has increased at a rate beyond

the demand for it. Latencies , however, are unlikely to improve much due to the limits of

present-day physics.

36

Chapter 2 Background and Literature Review

The UK, USA and Europe each have networks that exhibit the same 10 Gigabits/second

performance in the forms of Super Janet 4, Abilene and GEANT. See figures in Appendix C

for topology diagrams of these networks. Between these networks, there are also large pipes

and increasing capacity. The Global Terabit Research Network (GTRN) aims to provide

Tera bit performance between many of these regional area networks in 2006, but is just one

example. It is telling, however, that the requirements documentation for the next version

of the Super Janet UK academic network 10 places more focus on adaptability and diversity

of use than on absolute performance. This is indicative of the utilization that has been

seen with regard to Super Janet 4 and reflects the changing ways of using networks, with

technologies such as multicast reducing the level of infrastructure necessary to support a

certain number of users. Of course, as an ever-growing number of networks exist, massive

global performance (see Figure C.7) comes to enable the future of the connected world.

The present-day Global Lambda Integrated Facility [50], is an example of this that is closely

associated with Grids and thus demonstrates the integration of the two fields.

Real Grids Real-world 'production' Grids have been created in a number of environments.

Good examples are the UK National Grid Service (previously known as UK e-Science Grid)
11 and the Nasa Information Power Grid 12 . A Grid is the connection of geographically and

organisationally distributed resources to facilitate large-scale scientific research. As detailed

in [51], the construction of a Grid depends on its intended use, such is the component nature

of Grid software. However, a Grid will have its own Virtual Organization and Certificate

Authority, require consideration of data-locality and communication issues, and need a great

deal of cooperation between the involved real organizations. These relatively early Grids

provide valuable experience of deployment realities that is relevant to all Grid research and

has been relevant to us as we set up our small part of the UK e-Science Grid. Many

present-day Grids are application specialised. The general-purpose Grids, such as the UK

NGS and TeraGrid in the USA, are not financially solvent [52] and, as a result, a 'market

economy' for trading of facilities in and amongst Grid operators is a solution. By enabling

application-focused Grids to share and interact in this manner, the capabilities offered to

users of such a federated Grid are extended .

Grid Futures The field of Grid research continues to develop and diversify. As well as the

finalisation of the transition to the Web Services Framework leading to increased application

development, there are a number of particularly interesting other possibilities. Firstly, the

Grid will surely come into its own as more devices become attached, including devices

10S uper Janet 5, due in 2006
11http://wwv.research- councils.ac.uk/escience
12http://wwv.ipg.nasa.gov

37

Chapter 2 Background and Literature Review

that one perhaps wouldn't immediately think of as connection candidates. From a user's

perspective it is this, alongside improved interfaces to access Grid resources such as web

portals, that will make the biggest difference. From a system administrators' point-of

view, they must very much "bridge technological , political and social boundaries" [1] and

IBM 's Autonomic Computing should ease the management of such large systems through

autonomous adaption of components to the demands being placed upon them [53]. From a

developer's viewpoint, creating and debugging Grid applications is the key factor in accessing

the capabilities of Grid middleware. Lee and Talia [54] summarise the key issues here and

discusses various solution models, including shared-state models (e.g. JavaSpace) , message

passing models (e.g. MPI), remote procedure call methods (e.g. Java RMI) and hybrids of

the three (e.g. JXTA). The one thing that appears certain is that as networks and Grids

continue to grow, no single solution will do and ideas from many projects will be needed.

2.3 High Performance Visualization over the Grid

Ever since the first high performance computing resources became available, scientists have

needed to visualize their data through graphics, for example, Figure 2.10 shows some of

the first use of visualization to take place at the University of Wales, Bangor. In those

early days, line plots evolved into vector graphics libraries that used the high performance

{particularly in floating point operations) of machines such as the Cray-1 13 . The switch to

raster graphics that occurred brought about the first instance of dedicated hardware being

used for interactive visualization of a computation running on a Cray being visualized on a

Gould system [55]. Further on, as processors increased in speed and number within HPC

machines, parallel polygon rendering was given significantly more attention. Parallelisation

of polygonal rendering algorithms has very much lead us to where we are today with HPV

using miscellaneous HPC facilities. The co-development of high performance networking

has provided the means for connecting HPC facilities with visualization facilities and so, as

with the rest of the computing field, high performance visualization has become increasingly

based around networks and distributed systems. However, a scientific visualization is usually

characterisable as either being visualized on a user workstation after transferring the results

of processing, or as visualization being performed on a server and streamed over the network.

Both of these approaches lack the flexibility that the Grid aims to provide, and introduce

delays and compromises that are far from ideal. That trend continues today with the very

latest technology bringing forth and enabling Grid environments in which visualization will

13W ikipedia presents a particularly good detailing and discussion of the Cray-1 at http: //en. wikipedia.

org/wiki/Cray-1

38

Chapter 2 Background and Literature Review

play an important part.

Figure 2.10: Early computer graph ics research at Bangor, with Dr Jan Abas at the console,

in 1977-78

The pioneering projects discussed below have discovered many implications and issues sur

rounding the prospect of using a Grid for visua lization. It has become accepted that Grids

that are built may not be a "one size fits all" scenario. At the very least, sub-grids wi ll

be structured in substantially different ways depending on how their resources are to be

utilised. Visualization is one incarnation that has quite specific requirements in structure,

alongside other examples such as large data platforms (e.g. CERN Large Hadron Collider
14). Issues that arise in particular in visualization applications include real-time simulation

delays, security of data, synchronization of distributed resources, interactive latencies and

overcoming the heterogeneity of systems15 . User interaction with visualization tasks is

taken as a given. This has effects on the frame rates required, but does not fit in easily

with the concept of virtualization of resources, as in the Grid. Network latencies provide

another challenge in that the round-trip time may vary as the network changes end-to-end

routes dynamically. Sophisticated components are therefore required to allow interactive

14http://lhc.web.cern.ch/lhc
15The heterogeneous nature of computing resources was highlighted by Benoist, Hewitt and John in

[56], and tackled through the use of CORBA in the provision of a standardized network for the creation

of heterogeneous virtual environments. Although not strictly Grid work, the similarities in some areas are

notable, particularly in regard to harnessing the power of different machines in work for which they are

individual ly optimized.

39

Chapter 2 Background and Literature Review

elements to be reflected back from the user to the various processes running within the

Grid.

2.3.1 Griz

Griz is best described as a demonstration of remote rendering over a very high performance

network infrastructure. It is the natural combination of a number of technologies discussed

above. Utilising so-called "Lambda" network technologies such as WDM (Wave Division

Multiplexing) and DWDM (Dense WDM) to allow optical fibres to carry seemingly infinite

data alongside commodity PC clusters, Griz adopts techniques from cluster computing in

order to drive high-resolution, remote screens over great distances. As with other work,

the TCP reliable data transport protocol is found to be unsuitable for this for two reasons.

Firstly, the latency introduced by having to do a full round trip for packet acknowledgement

and secondly, because the loss of even only a single packet can have a detrimental effect

on the performance of a high speed network (lOGB/Sec) for many hours [57]. Utilization

of the unreliable UDP is free of such problems and allows all the available bandwidth to be

harnessed, within CPU bounded limits. Griz made use of the QUANTA networking toolkit 16

to achieve high-performance networking in order to transport data from a rendering cluster

in Chicago to a display in Amsterdam. The rendering cluster utilised technology similar to

that of WireGL to run a single application across four graphics pipes. The pixels rendered

were read back from the framebuffers using g/ReadPixe/s and reasonable performance of

more than 51Hz was found to be achievable on fairly modest rendering hardware [58].

These pixels were then transmitted over the high-performance network, occupying up to

1.5Gbps for an image of total resolution (four tiles) 1600x1200 at interactive frame rates

(16-23fps) . The Griz authors observe some interesting effects in bandwidth utilization as

resolution increases, most likely explainable by read back inefficiency. Griz's demonstration

of interactive remote rendering utilising high performance networks establishes an important

precedent that such systems are possible and realistic.

2.3.2 Cactus from LBL

Cactus is a project a little out of place here. It is actually a problem-solving environment

that consists of many modules. However, Cactus is designed for easy parallel work and col

laborative development, and integration with Globus and the Grid has reached a developed

16http://www.evl .uic .edu/cavern/quanta

40

Chapter 2 Background and Literature Review

stage. Additionally, Cactus provides for code development in a number of variants of C

and Fortran, and for cross-platform code development and execution. Cactus produces an

abstracted layer above the Grid middleware through its provision of 'thorns' (Cactus com

ponents) that implement different execution methodologies on the Grid [59], for example an

MPI thorn. 1/ 0 is handled in basically the same way. Cactus can also link to visualization

products such as Amira 17 to produce some stunning graphics. Using Cactus' socket-based

data streaming capabilities, remote visualization of live computations can be made. The

collaborative environment is enabled through the ability of Cactus to send a data stream

to multiple clients simultaneously [60]. A number of additional tools have been developed

for Cactus in the Grid for purposes including checkpointing of distributed simulations and

remote application steering, as well as in developing portals to access Grid services.

2.3.3 RealityGrid

The RealityGrid project is aimed at facilitating computational studies of complex condensed

matter systems. By improving scientists' capability to interact with the massively expensive

hardware they use for this work, RealityGrid aims to enhance scientific productivity. Instead

of an off-line, batch controlled computation, RealityGrid enables a scientist to interact with

their simulation whilst it is running through computational steering. In order to understand

how to interact with it, the scientist views a visualization targeted to the hardware they have

available, from workstation to PDA. RealityGrid applications are built in a 3 component

structure of simulation, visualization and steering client. The steering framework utilises the

third generation Grid standard OGSI. A small steering service sits between the simulation

and the steering client in order to provide the required Grid service. The discovery of the

steering service by the steering client is achieved by having the service register its presence

within a Registry that the client later consults [61]. As the communication requirements

between the client and the simulation are not intense, this traffic can travel as Simple

Object Access Protocol (SOAP) via HTTP. However, the intensity between the simulation

and the visualization is far greater and hence requires high-performance transport, such as

disk based 1/ 0 or the socket based Globus 1/0 [62]. The TeraGyroid Experiment showcased

RealityGrid at SuperComputing 2003. This used GRAM and Grid FTP to launch the various

components of RealityGrid and tie together high-performance resources on both sides of

the Atlantic, including those at CSAR and Argonne. TeraGyroid utilized the AccessGrid to

multicast the generated video streams between the component sites as rendered through

Chromium and transmitted via the FLXmitter library. Alongside SGI OpenGL VizServer (see

17http: //w.TW. amiravis. com

41

Chapter 2 Background and Literature Review

later) and VNC, this was transmitted over standard production networks. The specially

provided high-performance networks procured for the experiment were used to transmit

the datasets between the sites. TeraGyroid also demonstrated some of the difficulties to

be experienced in requiring sites in one Grid scheme to trust the certificate authorities of

others and in attaining the theoretical levels of performance of high-performance networks.

However, all the many problems were overcome by "heroic efforts" to provide a telling

demonstration of future possibilities.

2.3.4 GVK

The Grid Visualization Kernel (GVK) [63] is a middleware extension that allows the in

terconnection of the various parts of a scientific visualization - data sources, simulation

processes and visualization clients. GVK is capable of dynamically changing this visual

ization pipeline without user knowledge, according to changing network conditions. By

performing various rendering techniques between the computation server and visualization

client, GVK can dynamically change the nature of the visualization. To construct this setup,

GVK is implemented as input and output modules for a number of visualization packages

including OpenDX and AVS. The fact that each of these packages is based on data-flow

and a custom API makes it possible for these extension modules to provide the necessary

capability. To utilise GVK, it is only necessary to use an input interface at the simulation

server and an output interface at the visualization client. The user also specifies the char

acteristics of the visualization (e.g. resolution, colour depth, etc) and some details on the

nature of what is being visualized. GVK uses the possible pre-defined states to optimize

its pipeline. GVK then schedules and creates the pipeline with appropriate components in

what it defines as sensible places, traditionally one of:

• Client: Filtering, Visualization and Rendering.

• Server: Filtering

Client: Visualization and Rendering.

• Server: Filtering and Visualization.

Client: Rendering.

• Server: Filtering, Visualization and Rendering.

By adapting this balancing to network conditions, GVK becomes adaptive to the real world.

However, GVK can also place more advanced function into the nodes it uses [64], including

42

Chapter 2 Background and Literature Review

level-of-detail filtering and occlusion-culling, in order to further optimize to the network

bandwidth and latency. GVK utilises a typical Grid approach of providing middleware

and hiding the maximum amount of low-level functionality from the user as possible. By

manipulating the graphics pipeline and applying traditionally non-distributed techniques

behind the scenes, GVK adjusts to changing network conditions with minimal effect for the

user. This is a novel and worthwhile approach.

2.3.5 RAVE

The Resource Aware Visualization Environment (RAVE) [65] is an on-going research project

at Cardiff University and the Welsh e-Science Centre aimed at enabling collaborative sharing

of resources on the Grid. RAVE supports a wide variety of devices from PDAs to high-end

visualization systems (such as an SGI Onyx or Prism) and can place different parts of the

rendering process in different places to suit resource distribution. This enables multiple

users to collaborate in work from wherever they are using whatever interface is available to

them - for example, the user in the office with the large visualization machine may utilize

a large wall-style display and may be collaborating with a user who is on a PDA where the

rendering is actually done by a remote server and the pixel-image is transmitted for display

on the PDA. RAVE implements a central data server for the distribution of necessary data

to users, two clients for the users (one active doing rendering itself, and one 'thin ' using

remote rendering) and a render service for performing remote rendering which operates

in the background and does not interfere with the console of the executing machine [66].

RAVE is based on the Web Services Framework Grid standard and is being integrated with

a selection of applications, including molecular dynamics and galaxy simulation.

2.3.6 SGI Visualization Area Network and Media Fusion

The SGI Visualization Area Network (VAN) is another idea aimed at removing the physical

barriers to collaborative and remote visualization. VAN aims to makes the power of large

SGI visualization servers available to individuals and teams in disparate locations. It uses

OpenGL VizServer to provide the rendering power of the servers back to the users. This

effectively works in the same way as similar products, by transporting the 2D pixel data for

a rendered image from the VizServer server to be displayed on a VizServer client, perhaps

running on a far less powerful desktop system or in a remote projection theatre. VizServer

can make use of the multiple graphics pipelines in such a high-end SGI box in a separate

43

Chapter 2 Background and Literature Review

or coupled manner. VAN itself represents a holistic approach by encompassing storage,

compute, networking and visualization hardware alongside the software element.

Media Fusion represents the next step on from how the computing field has been in the

past to a future with different balances in hardware and networks. The Media Fusion Envi

ronment [67] represents a 3-stage pipeline of ingestion, fusion and distribution that treats

the pixel as the base data element and handles multiple pixel streams simultaneously. The

ingestion stage consumes the multiple pixel streams (for example from a local application,

over a VAN or some form of video stream) and buffers it in memory. The fusion stage is then

capable of compositing pixels together and processes the streams appropriately to enable

multi pipe rendering and other filtering of the data. Both ingestion and fusion require mul

tiple high-performance CPUs and ingestion requires sophisticated input capabilities. The

distribution stage is concerned with passing out appropriate fused media streams via local

or remote rendering to provide an lmmersive Virtual Environment to collaborating users. A

visualization 'portal' has also been proposed as a future development of the Media Fusion

idea in which heterogeneous user terminals utilise the abilities provided by Media Fusion

servers in order to harness the power of the full system - storage, compute and network -

which sounds like a Grid resource description.

2.4 Critical Appraisal

In assessing the Grid Visualization solutions and contributions detailed above, the four most

prevalent questions are: why was this project attempted?, how was it attempted?, what

were the results?, and what does this mean? Many of these details have been covered

above, but we draw them together here in an appraisal and comparison of the different

solutions.

Why? The solutions detailed above address various different areas that tie in to Grid and

Visualization work. Griz and the SGI VAN/ Media Fusion architecture both demonstrate

high-performance visualization and express future possibilities. However, they are bespoke

solutions and have been designed independently of the Grid initiative. This is in contrast

to the other four projects identified , which are to some extent Grid based. We see that

all four are broadly aimed at scientific visualization, principally through their use alongside

traditional Problem Solving Environments. Cactus and GVK are both used clearly in this

way, whereas RealityGrid and RAVE are specifically aimed at Grid based visualization. Ad

ditionally, as a result of their focus on the Grid, RealityGrid and RAVE both offer native

44

Chapter 2 Background and Literature Review

collaboration techniques, whereas such techniques are separate to the Grid and Visualization

components of GVK and Cactus.

How? The origins of each of the above projects is seen clearly in how they have been

implemented. Specialised (and thus, expensive and not generally available) networks of

various scales are used to enable the work, over the large scale with Griz, RealityGrid and

RAVE, but over a smaller scale with the SGI VAN/Media Fusion. Cluster-based rendering

is enabled by Griz and RAVE in particular, although parallel rendering is a significant part of

the SGI solution. Use of Grid standards is complete in the RealityGrid and RAVE projects,

and an additional part of the Cactus thorn that provides such capabilities as part of the

Cactus 'pipeline'. The now previous-generation of OGSI, GRAM, GridFTP and Globus 10

are used for RealityGrid, whereas current Grid technolgies WSRF and UDDI are used in

RAVE. However, it is worth noting that momentum may be moving away from UDDI at

this time 18 .

What? The results of these projects are highly-relevant to the future of Visualization and

Grid software, and the interaction thereof. Griz finds that TCP is poor for supporting

the level of data implicit in remote visualization over large distances, but also that high

performance networks make trans-continental interactive visualization a realistic proposi

tion. RealityGrid demonstrates this principle through the use of dedicated networks to

provide a distributed scientific visualization with computational steering. Grid protocols are

found to be usable in this, with certain traffic types suited to certain protocols. RAVE shows

that a heterogeneous architecture of systems can be used in providing the visualization, and

that such work can be carried out using conventional networks. However, the performance

demonstrated by RAVE on the whole is not good enough for interactive applications. GVK

tackles performance issues through dynamic movement of pipeline components behind the

scenes, but does not do so over the same levels of distribution. Cactus and GVK share

some similarity in that they are implementing Grid Visualization as a plugin for a pre-existing

scientific environment.

So? Interpreting the ideas, work and results of the above six projects shows great achieve

ments and some shortcomings in the areas targetted in this thesis, primarily due to the

different focus of the various projects. Considering use of and suitability for a Grid en

vironment, it is obvious that Cactus, RealityGrid and RAVE integrate well with existing

Grid standards. However, the rapid advance of Grid protocols and standard does suggest

18See the news story at http://www. techworld. com/applications/news/index. cfm?NewsID=5030,

which reports that Microsoft, IBM, and SAP are discontinuing the UDDI Business Registry (UBR) project

for Web services in early 2006.

45

Chapter 2 Background and Literature Review

that parts of these solutions will require frequent updating. GVK, Griz and the SGI Media

Fusion architecture are not aimed at the Grid in the same way, and so do not use stan

dard Grid middleware. The use of WSRF by RAVE fits in with the latest generation of

Grid standards. Another key area in this thesis is support for real-time, interactive visual

ization. Whilst we see that the six projects are considerate of this, it is not key to their

operation as their primary focus is on the science of the visualized simulation and making

it available in the relevant form. Support for existing, standards-based applications is also

limited to current work. SGI Media Fusion, as a development and utilization of SGI VAN,

obviously offers compliance with and support for OpenGL based applications. Griz utilizes

a WireGL-like system for its parallel rendering, implying its support for standard graphics

APls. However, RealityGrid, Cactus, GVK and Rave do not provide support for such exist

ing standards-based applications in a Grid environment, instead supporting either custom

written simulations or simply 'tagging-on' as a component of an existing system. On the

whole, we believe that whilst these projects offer excellent functionality, there are clear areas

lacking and a number of non-scalable solutions implied (for example with non-commodity

network connections). However, we certainly can imagine that a future all-encompassing

visualization system based on Grid technologies would exhibit characteristics from all the

projects. It is for this reason that key parts of existing research are highly relevant to our

work in this thesis, whereas our novel approach produces many new challenges that, as

we've seen, have not been fully addressed.

2.5 Conclusions

There are two key fields that feed into this work. Firstly, the field of high-performance

visualization, in which an increasing amount of attention is being given to the performance

of commodity graphics accelerators. Such devices give such levels of performance that

they have been used on the small-scale in desktop PCs, and on the large-scale in parallel

within high-performance SM P machines. When put alongside the increased performance

seen in Local Area Networks, with l00Mb/ Sec as a minimum and Gigabit Ethernet being

highly affordable and increasingly widespread, the concept of graphics clusters becomes

very enticing, as evidenced by the work now going on in this area . The second field is that

of Grid research. The Grid clearly represents the connected future and an architecture to

provide services over future networks. Along with the ever-improving national and inter

national networks, it will be possible to provision high-bandwidth services over increasingly

distributed areas.

46

Chapter 2 Background and Literature Review

Hence, is it possible to bring these two areas together to provide the power of parallel

graphics in an easy-to-use and, in the future, increasingly distributed environment? As

discussed here, there are a number of projects tackling such an idea. However, these tend

to focus on delivery of new applications in a way that is well-suited to the Grid environment.

We believe that the Grid is not the revolution that this implies but is actually part of the

evolution, and as such it needs to support current ways of working well. Hence, we see a need

for research into running real-time, interactive, standards-based (OpenGL) visualizations

over parallel systems, and doing so with the ease-of-use that a Grid environment should

provide. Effectively, we want to make a Grid visualization system and study such a system

in a conventional (rather than purpose-built, high-performance) environment. There is no

point in reinventing the wheel, so we have chosen to use Chromium as the visualization

element and pair it with Globus, the standard Grid middleware, for this project.

47

Chapter 3

The jgViz Grid Information Model

Distributed systems on the scale of Computational Grids present many unique problems and

challenges. Such systems involve numerous different services running on a wide variety of

machines in distant and disparate locations. In order to utilize them, it is necessary to be

able to both find them and find out about them. We need some structure for discovering

available systems that provides a mechanism for querying the current status and services

offered by that system and is be able to react dynamically to any change in status of the

services. Our Java-enabled Grid Visualization System (jgViz) represents our work on grid

visualization, of which such an information model is a key part.

The jgViz information model utilises available Grid capabilities to provide a scalable and

capable system in as efficient a way as possible. The jgViz Grid Information model is one

of the key contributions to the field resulting from this thesis. jgViz discovers available

resources and combines them with various inputs to create a distributed graphics pipeline

on the Grid. jgViz consists of two primary components to achieve this. Firstly, a server

component runs on all the machines that are making graphics resources available, and

secondly, a client that the user interacts with in order to find and utilise the available

resources. However, a vital component is the language in which the components converse.

The exchange of relevant and current information obviously plays a defining role in how

well the end-product turns out.

Chapter 3 The jgViz Grid Information Model

3.1 The Language of Visualization

It has long been acknowledged that it is difficult to describe a general-purpose visualization

system [68]. Products such as IRIS Explorer and Open DX provide the ability to link together

modular graphical components, but do so within a relatively strict set of interfaces and a

single project. We need to be able to express both the available visualization resources on a

machine and the resource requirements of a job. In addition to providing such information,

'live' data on current utilization and other changeable values are needed in order to perform

time-sensitive scheduling. We therefore require some sort of active work on those machines

that are advertising capabilities to provide this information.

There are many options in terms of both the dictionary and the grammar of the language

used to describe visualization resources. The gViz project [69] studied the representation

of such data in XML format at three levels: the conceptual layer that loosely explains

the structure for visualization and collaboration; the logical layer, at which the concepts

are mapped to software entities; and the physical layer, at which the logical structure is

mapped to a grid environment. The skml language [70] this forms is used in the gViz

extension to IRIS Explorer that sets up a pipeline on Grid resources. However, stemming

from Molnar et al [71] and the splitting of the graphics pipeline into separate sections

for parallelisation, our language needs to focus on providing the elements to create parallel

rendering in a distributed environment and not the contained components of a package such

as IRIS Explorer. All the work that has gone into parallel visualization research and the

increasing number of commercial solutions gives us options and shows us that we shouldn't

reinvent where unnecessary. The commercial products mentioned previously are principally

very proprietary and more concerned with hardware than software. However, there are

several interesting research projects. AnyGL, from Yang et al, presents a system that offers

some novel features (such as global sharing of textures and display lists) and performs

well [20], but is also not open source and provides a pipeline structure that is difficult to

distribute effectively. Winkelholz and Alexander present a system in [21] that is focused on

virtual environments through the Virtual Reality Modelling Language (VRML) and so not

as versatile and general-purpose as we would like. Vo et al [72] and Bethel et al [73] both

present particularly interesting work on parallel scene-graph visualization with consideration

of the memory-based distribution problems presented involved. Whilst Bethel et al make

use of Chromium for their work, the targeting of scene-graphs puts both of these pieces

of work into too specialized a category for this research. Chromium on its own, however,

presents a good balance of the many aspects we require. Chromium operates primarily in

the real-time space of OpenGL based applications and provides performance known to be on

49

Chapter 3 The jgViz Grid Information Model

an equal footing with other such systems [18] that provide less functionality. Additionally,

the general-purpose nature of the Chromium framework, with its different classes of 'node' ,

provides a dynamic and highly-customisable structure that we can utilise.

Chromium utilises its own syntax in configuring the nodes and stream processing units that

comprise a parallel graphics pipeline, and we therefore use this as a base to work from . The

two fundamental configuration elements within a Chromium session are nodes and Stream

Processing Units (SPUs). This concept maps straight into our Grid based structure by

allowing machines to advertise themselves as nodes that are capable of providing service

with a set list of SPUs. Also, Chromium's modular architecture means that it is easy

to implement extensions that may improve operation in a distributed environment (e.g.

compression of network streams). With the exception of the finer points of launching a

Chromium session, the designation of Chromium nodes as either clients or servers is not

relevant. However, the launching and structure of a Chromium session clearly implies a

relevant classification of nodes being either mothership, application or server nodes. For

the purposes of launching on the Grid, jgViz treats these all as different nodes whether or

not they are on the same physical machine. The mothership node is that on which the

Chromium mothership runs and which all other nodes need to talk to initially to discover

their function. The application node runs the application in question and fakes it to use

Chromium's libgl , the output of which is processed and sent over the network as necessary.

The process of 'faking' the application involves setting the LO_L/BRARY_PATH system

variable to cause the run-time linker to preload the Chromium libgl in place of the system

libgl so that OpenGL calls are intercepted and fed to the Chromium SPU chain instead of

the local graphics hardware. Chromium's SPUs will make use of the system libgl at a later

stage in order to harness the power of that hardware. It is therefore a good idea for this

node to be 'near' (in network terms) to the servers it is feeding with graphical data. These

server nodes are the slaves that do the actual rendering and thus the machines that we are

really interested in automating the discovery and launch of, as there may be many of them.

Chromium pipelines are 'programmed' as Python scripts extended from the mothership base

to represent a directed acyclic graph. This use of a scripting language to setup the graphics

pipeline allows Chromium startup scripts to contain functional sections involving loops and

decision making constructs. Such a mechanism of modelling the pipeline components as

objects that need to be instantiated, configured and then called in a certain way, provides

a diverse configuration ability that we can make use of in constructing distributed graphics

pipelines. A simple annotated example Python script is shown in fi gure 3.1.

As the placement and configuration of the mothership and application nodes is subject to

50

Chapter 3 The jgViz Grid In format ion Model

import sys
sys.path.append(' .. /server')
from mothership import *

Inherit the Chromium mothership

if len(sys.argv) > 3 or len(sys.argv) < 2:
print 'Usage: %s <demo> [spu)' % sys.argv[0]
sys.exit(-1)

demo= sys.argv[l]

if len(sys.argv) == 3:
clientspuname = sys.argv[2]

else:
clientspuname = 'pack'

server_spu = SPU('render')
elient_spu = SPU (clientspuname)

W =500
H =500

Check Job launch and
setu ro rlate

server_spu.Conf('window_geometry', [100, 100, W, HJ)
server_spu.Conf('swap_master_url'. "')

Server (rendering)
node

server_node = CRNetworkNode()
server_node.AddSPU(server_spu)

if (clientspuname == 'tilesort'):
server_node.AddTile(0, 0. W. H)

elient_node = CRApplieationNode()
client_node.AddSPU(client_spu)
client_spu.AddServer(server_node, 'tepip')
elient_node.SetApplieation(demo)
client_node.StartDir(erbindir)

er= CR()
cr.MTU(1024*1024)
c r.AddNode(client_node)
er.AddNode(server_node)
er.Go()

Application node
and details

Create an actual Chromium
session (mothershie)

Figure 3.1: Example Chromium configuration script (for remote/ t iled rendering)

51

Chapter 3 The jgViz Grid Information Model

different requirements from those of server nodes, these are configured separately by the

user in jgViz. There are three types of data that jgViz will deal with for server nodes.

Firstly, in order to construct a distributed pipeline, jgViz needs to discover the information

that is required to configure each server component thereof. This is termed the Chromium

Configuration Data. Secondly, for the purposes of the construction of the pipeline by jgViz,

other information is needed to cover details such as position in a tiled display. This data

is termed the Additional Server Data. Third and final is information relating to external

factors such as machine load, as used for scheduling by jgViz. This is termed the Server

Status Data.

3.2 Server Nodes

The server component of jgViz is that which executes on those machines making themselves

available as visualization resources. It acts to advertise both the presence and capabilities

of the machine. As shown in figure 3.2, there are three types of data that need to come

from such machines. This data is sourced from multiple places.

Figure 3.3 shows that there are several components involved in providing the Grid informa

tion on a server node. The principal component is an OpenLDAP server (a GRIS) that is

configured to read a core LDAP schema and additional schema files as necessary. These

schemas form the server's language (an LDAP tree hierarchy). To populate the individual

sub-trees defined in the LDAP schemas {for example, the viz sub-tree), the OpenLDAP

server calls a number of executable files (so-called Information Providers) that return

LDAP Data Interchange Format {LDIF) data on the standard output stream. This LDIF

data is 'consumed' by the LDAP server (called slapd), which it then makes available for

searching. The jgViz information provider is a simple C program that outputs the LDIF

data for each of the configurations setup by the administrator. A (-compiled executable is

used here due to the lightweight overhead of launch and execution. Java, for example, has

too much overhead in terms of creating the Java virtual machine, particularly for such a

process that is going to be launched very frequently but will only execute for short periods.

Any data that the server sees that is not within the language it knows of is ignored. Hence,

when jgViz related data is passed to a non-jgViz enabled server, it does no damage and is

silently dropped . The output format is shown below:

dn: Mds-Software- Deployment=jgviz 0, Mds-Software-deployment=viz,

Mds-Host- hn=node01.sees.bangor.ac.uk, Mds-Vo-name=local, o=grid

52

Chapter 3

Hostname (fully qualified)

Chromium base path

Default shell path

Window 'ontop', 'borderless', title, resizabl

Render to application window option

OpenGL path (libgl)

Network protocol

Extract alpha configuration

Extract depth configuration

Node type

Tile group name

Tile group position identifier

l /5/15 minutes load values

Min/mean/max ping times

Number of CPUs

Date and time of last update

LDAP base distinguished name

The jg Viz Grid Information Model

Chromium
Configuration Data

Additional
Server Data

Figure 3.2: Information components of a jgViz visualization server node

53

Chapter 3 The jgViz Grid Information Model

Mds-Host-hn=escher.sees.bongor.oc.uk

Mds-Oevice-groop-nome=processors Mds-Oevice-groop-oome=nelworo Mds-Sollware-Deployment=jobmOl1ager-lofl: Mds-Sollware-Oeploymenl=viz

Mds-Oevice-nome=ql'J 0

r Md,-Cpu-SpeedMHz=IO.IO

t ~~s-~::ocM~m=am

Mds-Device-nome=cpu I

r Mds-Cpu-SpeedMHz=IO.IO

t :~s:::.ocM-12~=8m

Mds-Device-nome=efil

r Mds-Nel-oddr-147.143.9.26

t Mdl-Nel-nelodd=l47.143.9.0n4

Mds-Oevice-nome=qleO

r Mds-Nel-oddr-10.0.0.250

t ~::~~':°.~,o~IO.O.O.On4

Mds-Oevice-nome=hmeO

r Mds-Nel-oddr-192.168.0.1

t =~~l:~lodd=l92168.0.0n4

Mds-Job-Attribule-nome=i'JI ottribules

r Mds-Job-Allribule-Nome,,Jd:n

t ~lds-Job-Allnbvle-N1J11e0libray_polh

Mds-Softwore-Deploymen1°jgviz0

r Mds-Viz-crpolh0 /home/ode/c1

t Mds-Vu-lype0 sortfirst-mosler

Mds-Soflware-Deploymenl0 jgviz I

r Mds-Viz-crpolh0 /u~/10col/cr

t Mds-Va-lype0 sortfirsl-slove

Mds-Soltware-Oepioymenl=jgviz 2

r Mds-Vwpolh0 /home/ode/cr

t ~~:~u~=~~oodbock-~e

Figure 3.3: Server-side structure of jgViz information components alongside LDAP hierarchy

54

Chapter 3 The jgViz Grid In formation Model

objectclass: MdsVizData

Mds-Viz-FQDN : node01.sees.bangor.ac.uk

Mds-Viz-Date: Wed Mar 9 16:30:26 GMT 2005

Mds-Viz-Type : sortfirst-slave

Mds-Viz-0nTop: 1

Mds-Viz-Borderless : 1

Mds-Viz-GLPath: /usr/lib/tls

Mds-Viz-Protocol: tcpip

Mds-Viz-CrPath: /home/ade/cr

Mds-Viz-Path: /bin:/usr/bin : /usr/l ocal /bin: /usr/X11R6/bin

Mds-Viz-WinTit le: cr_t ile_render_node01

Mds-Viz-ExtractAlpha: 0

Mds-Viz-ExtractDepth: 0

Mds-Viz-RenderToAppWindow: 0

Mds-Viz-Resizable: 0

Mds-Viz-Load-0ne: 0.00

Mds-Viz-Load-Five: 0 . 00

Mds-Viz-Load-Fifteen: 0.00

Mds-Viz-TileGroup-Name: pipe1©bangor

Mds-Viz-TileGroup-Number : 1

Mds-Viz-Processor-Quantity: 1

The configurations that the administrator of a potential server wishes to make available are

defined in a number of uncomplicated text files. The jgViz information provider executable

will read configuration files and advertise configurations from Oto n, so the administrator

can configure as many setups as they wish. Additiona lly, the information provider adds

certain live data for items such as Mds-Viz-Load-One. When multiple configurations are

present, they are advertised in a hierarchy as shown in figure 3.3. The tree structure splits

into n branches, each representing a different available configuration for that server. In

this way, the administrator retains tight control over how their machine is used, as it may

be important to enforce control over its use. Example problems that may otherwise occur

include hijacking of a server that is meant to be used in a tiled display group and use of a

non-compatible OpenGL library.

If the GRIS server that is advertising a jgViz setup is configured so as to upload to a GIIS

server then, providing the GI IS server knows the jgViz LDAP schema, the GI IS becomes an

aggregator of a number of different jgViz machines ava il able. This aggregation works at al l

55

Chapter 3 The jgViz Grid Information Model

higher layers of the index hierarchy through the Grid Information Services standard. The

objectc/ass attribute also shown above is a feature of the LDAP format. It defines a 'type'

for the data record it applies to. We have created MdsVizData as the objectclass for jgViz

data records.

3.3 Client

The jgViz client takes the form of a graphical user interface written in the Java language

and using the Commodity Grid Toolkit. This allows it to make use of the Grid capabilities

as required. It is necessary that the machine running the client is a 'grid-enabled' machine.

The processes of resource discovery and configuration are carried out together using the

Grid Information Services structure of GRIS and GI IS servers. jgViz allows the user to find

the available configurations on a single machine (via a GRIS) or on a collection of machines

(via a GIIS), or pick out an individual configuration from a single machine if required.

In order to do this, the jgViz client communicates with the LDAP server and queries for

all objects of objectclass 'MdsVizData' . This is termed the search filter. The jgViz client

then recurses through the search results and extracts the individual node entries. The client

maintains a Java Vector of the resources found which then represents available server nodes

of all types.

As previously mentioned, it is most likely that the jgViz user will have some idea of where

they want to run their application (often localhost) and where they want to set up their

Chromium mothership (possibly localhost). For this reason, jgViz allows the settings in

volved in both of these instances to be user defined, with sensible defaults preset. De

pending on the nature of the application involved, it may need to run on a particular

high-performance compute facility or with particular, unique options. Also possible is that

the mothership and/or application may need to be started on particular machines in order

to be available to a number of private networks that are not routable otherwise.

Once all the available resources have been found, the user specifies the type of graphics

pipeline they want to use, how many server nodes they wish to use, etc. and scheduling

takes place to pick the best resources. This requires more up-to-date data than is necessarily

available in the last LDAP lookup we made as well as other additional information. We

therefore carry out some active processing both inside and outside of the GIS in order to

obtain this data.

56

Chapter 3 The jg Viz Grid Information Model

There are two pieces of dynamic data involved here. Firstly, the load of the target machine

relative to its capability, thus representing how busy it is, which is obtained by getting an

up-to-date value from the GRIS server directly on the target server. Secondly, we also need

to establish data on the network connections involved, for which we send a number of ICMP

ECHO (ping) packets to the target machine and utilise the output accordingly.

The output of the scheduling process is another vector, this time containing the chosen

nodes to use for the graphics pipeline. This is passed to another part of the jgViz client

in order to generate a Chromium python configuration script. Depending on the type of

graphics pipeline to be created, the vector will take one of two forms. The data passed

takes a slightly different form depending on whether a readback or tiled pipeline is used

(see chapter 4). The configuration building algorithm implements the necessary subset of

the complex Chromium configuration language in order to produce our distributed graphics

pipelines. This is then passed on to the runtime component of the client.

3.4 An Example

The best way to understand many of the details explained in this chapter is through a

real-world example. Here, we present just such an example - in this case, the use of two

simple workstations for all parts of the pipeline to produce a two display tiled output. There

are, however, three machines involved as a third grid node runs the jgViz client in addition

to the main two grid nodes .

3.4.1 Server Configurations

The jgViz information provider is called by the OpenLDAP backend. To produce the

required LDIF data, the provider reads as many configuration files as it can find , one for

each potential configuration the administrator of the said machine decides to make available.

This file needs to be created with a simple syntax. In our simple example, the two jgViz

servers offer the configuration shown in figure 3.4.

So, we see in figure 3.4 that the machine node02.sees.bangor.ac.uk makes available three

configurations including one as a tiled display slave. node0l.sees.bangor.ac.uk also makes

available two configurations. These two machines are both part of the Bangor sub-grid

of the UK e-Science Grid and so both pass their data to the local Bangor GIIS indexing

57

Chapter 3 The jgViz Grid Information Model

node02 jgViz configurations

gridviz.conf.0 grldviz.conf.1 gridviz.conf.2
fqdn node02.sees.bongor.oc.uk Jqdn node02.sees.bongor.oc.uk fqdn node02.sees.bongor.oc.uk
lype sartrirst-slove lype reodbock-stove type reodbock-moster
onlop I onlop I onlop I
borderless I borderless I borderless I
glpolh /usr/lib/llS glpolh /usr/lib/lls glpolh /usr/lib/11s
protocol lcplp prolocol lcpip prolocol rcpip
crpolh /home/ode/er crpolh /home/ode/er crpoth /home/ode/er
path /bin:/usr/bin:/usr/locol/bin:/usr/X l 1 R6/binpoth /bin:/usr/bln:/usr/locol/bin:/usr/XI I R6/bin polh /bin:/usr/bin:/usr/locol/bin:/usr/X 11 R6/bin
w inlille cr_tile_render_node02 winlille cr_reodbock_node02 winlille reodbock_render_node02
extrocto lpho O extroclolpho O extroclolpho o
exlrocldeplh O exlrocldepth O extrocldepth 0
rendertoappwindow O rendertoappwindow O rendertoappwindow I
resizoble O resizobte O resizoble 1
tilegroupnome pipe l@bongor lilegroupnome pipe2@bongor lilegroupnome none
lilegroupnumber O lilegroupnumber O lilegroupnumber 0

nodeOl jgViz configurations
grldvlz.conf.O
fqdn node01 .secs.bongor.oc.uk
lype sorrnrst-stove
ontop I
borderless 1
glpoth /usr/lib/tls
prolocol lcpip
crpolh /home/ode/er
polh /bin:/usr/bin:/usr/tocol/bin:/usr/Xl 1 R6/bin
winlille cr_tile_render_nodeOI
exlroctolpho O
exlrocldeplh 0
renderlooppwindow 0
resizable 0
lllegroupnome pipe l @bongor
lilegroupnumber t

grldvlz.conf.1
fqdn nodeO I .sees.bongor.oc.uk
type reodbock-slove
onlop 1
borderless I
g lpolh /usr/lib/lls
prolocol lcpip
crpolh /home/ode/er
polh /bin:/usr/bin:/usr/locol/bin:/usr/X 11 R6/bin
wintille cr_readback_node02
extroclolpho O
extroctdeplh 0
rendertooppwindow 0
resizobleO
lilegroupnome pipe2~ bongor
lilegroupnumber 1

Figure 3.4: Example server configurations

58

Chapter 3 The jgViz Grid Information Model

~ Wit -•••x , .. SeairchNodt_ search lndex- Dt1cOYer from Index_
Moehet"shlp r Appllcallon- --- Sc- r c-. Scrip! I~

BaseON ADrlbuw Value
0 MdS•Software-D11>lovment=JovtzO, Mds-So .. .

Mstname darlus su s.bangor ac.uk
crpatn ome/adt/cr , ... ln:tusrlbln-J\.lsr.Bocalfbln/lJ s1JX11R6Jbln
dale mu Mar 17 1S27.12OMT2005
ljp8 sortllrst-slave
ontop 1
bordlrllSS 1 .
gJpath usrlltbffls
protnco1 lcplp
wlnbUI cr_ble_render_darfus
exiractalpha 0
enracldeplh 0
rendul1oappwindow 0
restzable 0
loadl 001
load5 o.o,
Ioad15 001
nurnbercfprocusors

1 Mds-So~ar•OepllM'Tlenl=Jgvlz 1, Mds-So .
hOstname d,trlus.sees bangor ac uk
crpath 1/home/ade/cr ~ln1usrlbln.tusrnocallblrr./usrlX11 R61bln
date Thu Mar 17 16.27 .12 GMT 2005

""' readbat k•Slavt
ontop 1
bordelllSS 1
glpath j/Us1nlb/lls
prolocol tcplp
ivrrintitle cr_readbacl(_darlus
extractatpha 0

- .

Figure 3.5: jgViz finds available server nodes

server. As these machines have been configured to understand the jgViz LDAP Schema,

they make such data available in a searchable manner. As the UK nationa l GIIS server

has not been configured to understand it, such data is silently dropped and kept local to

Bangor only. The timeout va lues defined by jgViz for the various pieces of data in the GI IS

are short enough (20 seconds) that when a potential server goes away, the data wi ll quickly

disappear from the indexes and hence the resource will not be discovered again.

3.4.2 Client Configuration

When the user wishes to make use of a distributed graphics pipeline, they start up the jgViz

client and enter (or load from a saved file) the details for the mothership and application

nodes. Both come with sensible default va lues so it wi ll typically only be the hostname that

requires entry. In order to discover the graphics resources available, the user simply needs

to enter the name of the GI IS for the local site. A search is performed and all avai lable

resources are found and located.

Now that the jgViz client has learned and acquired knowledge about all the available nodes,

the user progresses to the 'scheduling' section where they specify what type of graphics

pipeline they require in terms of both structure and number of server nodes. The user also

specifies the output resolution and jgViz then performs the tiling of the resulting scene

59

Chapter 3 The jg Viz Grid In formation Model

,;;=:; 011 -■ •Ix
Fllo Search Node_ Se•ch lnde><-. Dtscowr from lndeX- -Mothership r-•1<1n- r-- r Sc- I Cortlo SctlpC IGiiiiiiiiiil

ActlOns --
.

[ActlOns

I -Sc-- II Adiust l hreshold Vtlun I I
,-G-aphk:s Pipe r.,..

@ Sor1-Fk'st Tied O Sort.first Readback O SorU .. ast ('Ft.Curt) O tt,ukt (FUlure)

I '°' Setup

Wldlh (plxlls) ~ -(plxals) ~ -«rows I• 1-«coluoms ~

r<Mnced Tlllng for Sort.f1rst-•

• -,, Round Q Splil.Venlcal Q Splil lz ... al Q Splil N-w .. V.tl Ol•-- I -
Node Monkorlng

~ hls.sees.bangof'.ac.uk cr_tltJ endef_darius
~ an Net Latency (ms) I 0
IJl■rallon ('I,) I ""'
~ark1s.sees.bangor .ac,uk er Jeadback_darlus
~ an Net Latency (ms) I 0
µ■za<l<ln('I,) I o,
pa,kn.sees.bangor,ac,uk readbackJendef _dadus
~ an Net Latency (ms) I 0 I

µ■zallOn ('J') I

Figure 3.6: jgViz is configured by the user, whilst monitoring available resources in the

background

automatically.

Wh ilst the user is doing this, the client is monitoring the load and network latency of the

nodes that it has available so that it has current and consistent data when the user chooses

to hit the Schedule button to form a pipeline. Once the scheduling process has taken

place, the Configuration Script tab of the client generates a Chromium configuration script

based on the scheduling output . This script is then passed through to the jgViz runtime

component.

3.5 Conclusions

The information gained from various resources and used within jgViz follows a linear and

transparent path through the server and client components. In chapter 4, we deal with the

more involved parts of this process. Figure 3.8 gives a diagrammatic overview of the entire

production and consumption of the information, all the way through to the runtime stage.

Major information flow during resource discovery is through the Grid Information Services

index servers hierarchy with additional data discovered directly from nodes when scheduling

amongst them.

60

Chapter 3

~ MB
Fie Search Node- Searchlndex.

~Mo1=-hor"'s111p=•-7-=".,'"1on=..,..=-,~-= --=-c..,._=.,.•-, SC- Coollg Salpt

spus(OI Conf("bbo~tlne_wfdtr\",O)
pus(OIMdServer(noae,111, protocol=tcplp', port::7001)

spusl01.Add8erver(nodes(21, protocol:'tcplp', port::7002)
odtSIO).AddSPU(spusJ0D

nerwork nodH(I I= column o rr:r# O
pus"' range(1)
pus101 = SPU('rend11)
pus!OI Conf("on_top•, 1)
pus[OI.Conrrwinctow_geometr(, 10, O, 1024, 7880
pus(OJ Conf("bo,aerless", 1)
pusJOJ Conf("system_g1_path·, ·1usrn1bJlls1

r~~::::::::.~~ri~~~f,. ,es>

onf('on_top•, 1)

onf("'Wlndow_geometr(', (0, O, 1024, 7680
onf('boraetltsS-, I)
onf('system_gl_path·, ·1usrlllblds")

.AddSPU(spuston

.AddTl!e(I 024, 0, 1024, 769)

Refresh

The jgViz Grid Information Model

- a X

otscCMtr rrom Index.- -

Figure 3.7: jgViz uses the scheduled data to produce a Chromium script

61

Chapter 3 The jgViz Grid In formation Model

jgViz Grid Node

0

jgViz Client

jgViz
Config.

File

GRIS
OpenLDAP

GIIS

jgViz
LDAP

Schema

User
requirements 1-----t1 .. Scheduling

triggers
Python

Config. Script Config.
Generation 1-m-a-ke•sM Script

Figure 3.8: Information flow t hrough jgViz

62

Chapter 4

Scheduling in jgViz

Distributed systems on the scale of Computational Grids present many unique problems

and challenges. With the vast number and range of systems that are likely to be available

for utilization in a Grid environment, as discovered for us by jgViz's Information Model

subcomponents, how do we decide which to use to provide optimal performance? The

process of scheduling, or deciding upon a group of resources according to some criteria,

tackles this and is the subject of this chapter.

jgViz's scheduling is subject to a number of restrictions and requirements. At its most basic,

it must extract a list of suitable resources for use from a larger list of available resources

previously discovered. However, this process needs to have some intelligence associated

with it. It makes sense to utilise the subset that gives the best performance, and the

most sensible way to achieve this in the changeable Grid environment is to assess a set

of dynamically changing metrics. Once measurements have been taken, then the available

server resources can be subsetted to obtain the best performance subset to use.

4.1 The Scheduling Process

jgViz's scheduling is a multi-stage process that takes in a list of available resources and

outputs a list of active resources. Involving the measurement and scoring of resources, the

scheduler must make significant (if not substantial) use of the network itself. In jgViz,

the scheduling stage also involves the process of building a Chromium configuration script.

Figure 4.1 shows the scheduling information flow.

Chapter 4

Scheduler
TIied

t i
Network

- ----.J!'-'I~

Scheduling in jgViz

Cr Script Builder
Tiled

Cr
Script

Figure 4.1 : Information flow through the jgViz sched uling subsystem.

We now tackle each of these e lements in turn , covering the important technical and other

wise issues for each component of the scheduling subsystem.

4.1.1 The Scheduler

The schedul ing part of the jgViz system takes place within the client. The o utput of the

resource discovery process is the collection of Available Nodes, which a re the machines

located t hrough the Grid index search. Once the discovery phase has ended (at the user's

d iscretio n), the client begins to periodically upd ate the ' live' data e lements for each discov

ered node.

What to Measure?

Taking each of t he Available Nodes and choosing t he most appropriate subset to use for the

graphics pipeline presents a number of opposing issues. There are two principal elements

- t hat of configuring the pipeline and that of optimizing performance. This is actually a

two-stage s ubsetting process. The first stage extracts those nodes that provide relevant

component capabilities for the chosen pipe line type. The second stage then extracts from

these the 'best performi ng' nodes to provide the optimum available fac ilities.

As previously discussed, jgViz server nodes advertise multiple possible configurations a nd ,

hence, multiple types of configurations. The user is required to specify a few basic requests

regarding the pipeline they would li ke to use. Mandatory are the type of pipeline (either a

64

Chapter 4 Scheduling in jgViz

~ ,m -•••x ... Sear eh ffOdt_ search lndtx.. OlsccMw from hdeX-

"""' (MOIUMlflhlp r Appl(:Mkln Node 7 ~ NodeS I ~ . I Conl'lg Script f <ifkl Run r Monlor Runnng 7
Actions

I I [Ad~s
1-- II _,.,1v v , I

I r'a,,Nc• Plpt T~

II .!) Son-ArSI Tied U Sort.First Aeac:IIKk CJ Son-Last (fuC!Jtl O l~ld (Ft.ewe) r~--~
I _ -•(plxe111 @==::::J -(plxe111 i• ...,_.,,ows @==::::J ...,_.,,...,.,, @==::::J

r-edTlllnglo,Sortn"Ro-
~ L•lldina~"' I ., iJ Round-Robin Q Sptil-Vertlcal O Split-Horlzonlal Q Splil H-wayV1H

i--

I ~
Figure 4.2: jgViz client pipeli ne selection and description user panel

ti led wall or a readback to a single screen1
), the number of server nodes required and the

output resolution. Figure 4.2 shows the GU I for specifying these.

For a tiled display graphics pipeline, there is only one relevant type of slave node t ermed

sortfirst-slave. For readback considerations, the two types readback-master and readback

slave represent the compositing node and slave render nodes. However, only the readback

slave type represents a rendering slave and is used here. The machine to display the

composited readback on (the readback-master) is chosen by the user from a list of those

avai lable when the user elects to schedule the pipeline. The jgViz client matches only the

relevant configuration type server resources in the available nodes to produce subset 1.

Figure 4.3 shows this by means of an example.

In order to optimize performance of the resulting pipeline, it makes sense to try and choose

the individual com ponents that are most likely to lead to this. To establish such a collection,

jgViz considers two basic data categories - the remote system load as a proportion of its

capability and the network latency. To obtain load information , a query is made of the GRIS

server on the remote node, thus bypassing any GI IS servers that may have been involved

in the initial discovery thereof. The GRIS server running on OpenLDAP allows different

cache timeouts to be set for a ll the data items it 'knows' about. The default setting for

1
a tiled pipeline being one in which a 'd isplay wall ' is used and each tile (screen) is generated by a different

machine, and a readback pipeline being one in which seperate tiles a re gene rated by different machines and

then readbac k to a sing le compositing node for display on a single screen

65

Chapter 4

Available Nodes

Node 0
sortfirst-slave

Node 0
readback-slave

Node 1
sortfirst-slave

Node2
readback-slave

Subsetting

Scheduling in jgViz

Subsetl Nodes

Tiled Pipeline

Node 0
sortfirst-slave

Node 1
sortfirst-slave

Node 0
readback-slave

Node2
readback-slave

Figure 4.3: Subsetting stage one - by configuration type

time-sensitive data such as load averages is therefore set by default to be low enough so

that we can be sure of receiving current data through a refresh of the data we originally

discovered.

The other data that needs to be discovered is the status of the network connections involved.

Presently, jgViz bases this on latency alone as it is assumed that enough bandwidth exists

within the point-to-point links of the network infrastructure being used . jgViz continually

and repeatedly launches a small shell script to send ICMP ECHO packets to measure the

latency. We must use a shell script as Java (our preferred implementation language for

jgViz) cannot natively send such ping packets, but it can call a host operating system

executable to do so for it. We then take the output from the shell script to obtain values

of minimum, mean and maximum latencies and we keep multiple copies of these items in

order to calculate consistent averages over time. This approach also avoids placing any

load on the target machine and so not interfering and presenting a false view during the

process of discovery and scheduling. As we only use the fork 2 job launching system to

launch jobs immediately for an instant graphics pipeline, it is critical for this data on which

2
fork is the default Glob us job manager. A job manager is the remote component that talks t he GRAM

protocol and handles the job submitt ed. fork simply starts the submitted job immediately, whereas other job

managers (such as the Sun Grid Engine manager) submit the jobs into batch queueing systems for handling

as-and-when the batch system schedules it.

66

Chapter 4

Node load

I
5

10

20

40

%

60

80

100

Score Network latency

ms

0

5

10

20

40

60

100

Scheduling in jgViz

Score

Figure 4.4: Metric result ra nges and their defa ult scores for network lat ency a nd node load

we base our schedul ing decisio ns to be current .

The two performance metrics are measured and scored independent ly for each node ac

cording to a set of metric-specific result ra nges. jgViz contai ns pre-defi ned scores for each

of t hese ranges, but they a re runtime custo miza ble. The node score is defined as the sum

total of t he two metric scores. Lower score eq ua ls 'better' nodes . Figure 4 .4 shows this

d iagra mm atically.

In orde r to schedule a para lle l readback system , jgViz will s imply choose t he 'best' selectio n

of machines it has ava ila ble . In order to schedule a ti led display, jgViz wi ll g rou p together

a nd then average the scores of al l t he nodes involved . The judgement as to what comprises

a 'better' solution than a nother is t he same simple scoring system as above. T he subset ted

machines now become t he Active Nodes. Once the slaves have been scheduled as necessary,

jgViz offers the user the select ion of all com positing display (readback-master) nodes it

fou nd , a nd t he user selects which o ne they wish to use. Th is machine is 'tacked ' o nto the

end of the Active Nodes. Figure 4.5 shows t he second stage of this process.

67

Chapter 4 Scheduling in jgViz

4.1.2 Configuration Script Building

Once the tiled-groups or individual nodes have each been scored, jgViz simply chooses the

required number with lowest score to become Active Nodes. In order to actually launch

a Chromium session, it is necessary to produce a Chromium configuration script (written

in Python) to be executed as the mothership (by using library inheritance to gain and

customize mothership abilities). This is responsible for configuring all other Chromium

components (all Chromium components contact the mothership immediately when started

to establish what they are supposed to do and what other components they are linked

to). jgViz generates this configuration script from the discovered resource data (including

ordering a tiled display correctly), depending on the chosen graphics pipeline type, to be

passed to the runtime component.

In order to make the configuration script the only data-passing method between the discov

ery /scheduling process and the pipeline launching process, data not relevant to the actual

Chromium system but needed for the launch of the pipeline is 'hidden' in the configuration

scripts. This is in the form of specifically tagged comments in the Python configuration

script. Therefore, Chromium will ignore the comments, but the jgViz client's runtime com

ponents can pick out the necessary details. A typical example of such a configuration

setting would be the canonical path to the Chromium system on the target machine, as

advertised by its jgViz GRIS information provider - Chromium components implicitly know

this, but jgViz does not and the location can often vary.

As previously detailed, there are three types of Chromium node - motherships, application

nodes and network nodes. The mothership takes no active role in the running pipeline and

is solely responsible for configuring the components of the pipeline at their startup time via

a network connection. There is only ever one mothership for a pipeline. Figure 4.6 shows

the configuration script elements for the pipeline, most notably including the application to

be executed and the details of Python and Chromium locations on the mothership node.

The application node hosts the application to be executed and takes the GL graphics output

into the Chromium system. jgViz enables only sort-first pipelines in this first iteration,

and so only allows one application node (graphics source) in the pipeline. Chromium

contains abilities to do sort-last pipelines with multiple applications (or, at least, multiple

input graphics streams) , but these are a highly specialised and rare case. jgViz configures

application nodes in the same way, irrespective of whether they are involved in a tiled

or readback display environment. Besides the application, this configuration also involves

69

Chapter 4

Mothership (Tiled/Readback)
Chromium configuration built by jgViz
this is for mothersh!p host 'darius.sees.bangor.ac.uk'
Mothership has chromium palh '/home/adelct'
Mothership has path '/usr/bfn'
Mothe!Shlp has python path '/usrllocallbinlpython'
import string
import sys
sys,palh,append("/home/adela/mothe!Sh;plse!W<" }
from mothership import ~

MOTHERSHIP _OPTIONS= [
("MTU", 1048576),

I
DEFAULT_APP = "/usrnocaVrc/binlrolle~

c,= CR()

#THIS IS A .. ,

nodes :,; range(14)

Set mothership parameters
for (name, value) In MOTHERSHIP _OPTIONS:

cr.Conf(name, value)
Cf.Go()

~
Conngure tho rnothership opllons and
start Chromlu,'.'.'

Scheduling in jgViz

Figure 4.6: Pipeline configuration elements for mothership node

configuring the tilesort Stream Processing Unit and the links from it to all render nodes. The

operations involved in this process for a live data stream can be computationally intensive,

so the application node is typically the most capable machine involved in the pipeline. See

figure 4. 7 for the script components.

Network nodes form the real backbone of a parallel pipeline as they are responsible for the

actual rendering. Such nodes are configured differently depending on whether they are part

of a tiled or readback pipeline. In a tiled system, they are responsible for the display of one

tile from the entire scene, so they are configured with a 'render' SPU. In a readback system,

they are responsible for rendering their tile of the scene and then reading back the pixel data

using glReadPixels() and dispatching this over the network to the compositing node, which

is the last network node defined. This is carried out using two Chromium SPUs. Firstly, the

'readback' SPU renders the tile and performs the glReadPixels() command. Secondly, the

'pack' SPU bundles the resulting GL data together for network transit. So, the definition of

a network node is the same in both tiled and readback setups, but the SPUs configured into

them are different. Additionally, a readback configuration requires an extra network node

to composite and display the image (the display node) . This need only be configured with a

'render' SPU to accept the GL commands containing the rendered pixels from the network

slaves and render them. Where we had to put in a 'pack' SPU previously to send data

over the network, a network node has an 'unpack' SPU by default and so does not require

manual addition . Figure 4.8 shows the various combinations of components necessary in

the configuration script for network nodes and clearly shows the viewport size configured

for both 'readback' and 'render' SPUs as well as the path to the OpenGL library (libgl) to

70

Chapter 4 Scheduling in jgViz

Application Node (Tiled/Readback)
nodes(O) = CRApplicalionNode('r319hw26.sees.bangor.ac.uk')

node(O) application node has application '/usrllocaVro'bin/rolef'
node(O] application node has chromium path '/usr/locaVa'
nodo(OJ application node has path '/usrlbin'

nodes(O).Conf("applicatlon", DEFAULT _APP)
nodes(O).Conf("start_dir', "/usr/locaVrc/bin")
nodes(OJ.Conf("show_cur,or', 1)
nodes(O).Conf("track_window_size•. 0)

ct.AddNode(nodes(O))

application nodes[OJ

spus = range(1)

spus(O) = SPU('tilesort')
spus(O).Conf("bbox_llno_widlh",O)

spus(O(.AddServer(nodes(1). protocol='tcpip', port=7001)
spus(OJ.AddServor(nodes(2), protocot='tcpip', port=7002)
spus(OJ,AddServer(nodes(3), protocot='tcplp', port=7003)
spus(OJ.AddServer(nodes(4), protocot='tcpip', port=7004)
spus(OJ.AddServer(nodes(S). protocol='lcplp', port=7005)
spus(OJ.AddSer,er(nodes(6), protocol='lcpip', port=7006)
spus(OJ,AddSer,er(nodes(7), protocol"tcpip', port=7007)
spus(OJ.AddSer,er(nodes(S), protocol='tcpip', port=7006)

nodos(OJ.AddSPU(spus(O))

Descriptive comment for human reading

Only one stream processing unit for lhls node

Add the SPU to the opp!lcollon node

Figure 4.7: Pipeline configuration elements for application node

be used on each machine.

4.2 Conclusions

The optimal scheduling of Grid jobs varies greatly. Graphics jobs specifi ca lly can have very

difficu lt req uirements depending on the nature of what t hey intend to do. However, most

graphics jobs are likely to have a degree of interactivity associated with them (even if they

are not real-time) and so implicitly have t ighter timing requirements than non graphics jobs.

Add itionally, whereas compute jobs can often be submitted to batch queues for execut ion

as and when resou rces become ava ilable, a graphics job will most likely require prompt

execution so that the intended 'viewers' can be in the right place at the right time.

The scheduling process within jgViz shares some common functiona lity with the monitoring

process described in chapter 5, in the form of measuring metrics associated with graphics

nodes. Schedu ling uses these metrics in association with discovered configuration data

to develop a pipeline to su it t he user's requirements. Depending on the type of pipeline

chosen by the user, nodes are either treated as part of a collective group (a tiled display)

or individually {for readback purposes). Due to the nature (and in comparison to what we

see in chapter 5), t he scheduling process cannot adversely affect t he machines it 'observes'

as they may be busy, so round-robin sched uling is used here to lower t he measurement

71

Chapter 4 Scheduling in jgViz

Network Node (Tiled/Readback)
nodes[41 = CRNetwor11Node('r319hw27.sees.bangor.ac.uk') an Chromium network node

network node path '/bln:/usr/btn:Jusrlk>cal/bin:/usr/X11R&lbin'
network node crpath 'lusr/locaVa'
networt. node glpath '/usrnib'

.1,
Comments containing Information for jgVlz
runtime to extract and use for launching purposes

cr.AddNode(nodcs(4])

Network Node (Tiled SPUs
network nodes(8] = column 3 row 1

spus = range(1)

spuslOJ = SPU('rendof)
spus(OJ.Conf("on_top", 1)
spus(OJ.Conf("window_geometry", 10, 0, 1280, 10241)
spus(OJ.Conf("borderless· , 1)
spus(OJ.Conf("systom_gl_palh", "/usrnlb")

nodeslBJ.AddSPU(spus[O])
nodes(8J.AddTile[1280, 3072, 1280, 1024)

'i,

node la lhe pipeline

Network Node (Readback slave SPUs)
network nodes[12) = readback node

spus = range(2)

spus(OJ = SPU('roadback')
spus(OJ.Conf("on_top", 1)
spus[OJ.Conf("\,indow_geometry", [0, 0, 1280, 10241)
spus(OJ.Conf("bofdcrless", 1)
spus(O].Conf("syslem_gl_path", "/usrAlb")
spus(O(.Conf("tiUe","cr_readback_r319hw3r)
spus(O(.Conf["extract_alpha", 0)
spus(O(.Conf("oxtract_depth", 0)
spus(O(.Conf("roslzable", 0)

nodes[12J.AddSPUlspus(OI)

spus(1 I = SPU['pack')
nodes[12(.AddSPUlspus[11)

spusl1J.AddSorver(nodes{13J)
nodes(12J.AddTile(1065, 512, 213, 512)

Network Node (Readback compositor SPUs)
network nodes(13) = render node

spus = range(1)

spus(OJ = SPU{'rende()
spuslOI.Conf{"on_top•. 1)
spus(O(.Conf{"window_geometry•. 10,0.1280, 10241)
spus(O].Conf("borderless·, 1)
spuslOJ.Conf("system_gl_path". "/us,Aib")
spus(OJ.Conf{"tiUe", "readback_rcnder_r319hw40")
spus(O(.Conf("ronder_to_app_\,indow", 0)
spus(OJ.Conf("resizablo". OJ

nodes(13J.AddSPU(spus(OI)

Figure 4.8: Pipeline configuration elements for net work nodes, showing node configuration

for both pipeline t ypes and different SPU configurations for each pipeline type

72

Chapter 4 Scheduling in jgViz

frequency. We have shown how the scheduling process takes two steps - firstly selecting

the resources capable of offering the required configuration from the rendering resources

discovered, and secondly selecting the 'best' of those for use. The output of the scheduling

process is an augmented configuration script that is passed to the runtime system but can

also be exported for separate use.

The scheduling performed within jgViz 1s a custom process that uses data gained from

the LDAP-based, MOS indexing system. This compares with the RAVE project [65] that

performs scheduling on the basis of an available server list found in the Universal Description,

Discovery and Integration (UDDI) 3 service and the status interrogation of each of the

servers found, and the selection amongst available resources discovered from an OGSl

based registry in the RealityGrid system.

In summation, the scheduling process represents the vital link between information gather

ing and runtime. jgViz's scheduling automates this interface, and optimizes the resulting

solution.

3http://vww.uddi.org/.

73

Chapter 5

The jgViz Grid Runtime

Distributed systems on the scale of Computational Grids present many unique problems

and challenges. Alongside the information exchange that takes place within the Grid (as

covered in a previous chapter), jgViz makes further direct and extensive use of Grid proto

col functionality at runtime. There are several stages involved in the process of taking the

output of the scheduling process and turning this into the necessary running Grid compo

nents. However, these are best split into two classifications - that of pre-launch and that

of post-launch.

Pre-launch is responsible for launching the required graphics pipeline elements on the rel

evant machines and all tasks necessary to do that, including the establishment of Grid

security rights. Post-launch is the smaller task of monitoring the running jgViz graphics

pipeline and taking appropriate actions with regard to maintaining optimum performance,

for example reacting to changing network conditions. Both of these collections of tasks are

necessary in order to provide a dynamic and adaptable distributed graphics pipeline.

5.1 Pre-launch

5.1.1 Network Graphics

Accessing remote graphics resources can be problematic. The Xll protocol [74] is a

network-transparent client-server system for the display of graphics on remote machines.

This is contrary to the design of systems such as Microsoft Windows, which have not been

Chapter 5 The jgViz Grid Runtime

designed with remote abilities in mind. The display that is being used runs the X server

and applications that utilise such a display are X clients. The X server maps the abilities of

the operating system and graphics hardware that it is running on into the X protocol which

is accessed by a client application through use of the Xlib library.

Graphics Pipeline Access and Ownership

Whilst the X system does provide great possibilities, it is also a potential security trouble

spot. A number of designs have evolved for providing such security. A brute force mech

anism is the simple locking down of the X server to only accept data from certain hosts.

Using the xhost [75] command, the user can make their local X server accept traffic from

other hosts through a simple +/-host syntax and, without arguments, can view current

privileged machines. However, this mechanism opens up the X server to all traffic from the

remote host which, if it is a multi-user machine, grants full access to the X server to other

users and allows them to open windows, kill windows, log key-presses and obtain snapshots

of the current display.

A common solution to the above problem is a program called xauth [76]. xauth requires

a secret string (called a cookie) to be known to the client for the server it wishes to ta I k

to. This is kept on a per-user basis, so does not cause opening up of an X server to abuse

from any users on a particular client host. Technically, the cookie is called a MIT-MAGIC

COOKIE, due to the invention of xauth at the Massachusetts Institute of Technology, and

is utilised over IP networks as follows:

On the server:

escher:~> xauth list

escher:O MIT-MAGIC-CODKIE-1 bf9c949db0bb919982ae98b69596b89c

escher-10:0 MIT-MAGIC-COOKIE-1 bf9c949db0bb919982ae98b69596b89c

escher- qfe7:0 MIT-MAGIC-COOKIE- 1 bf9c949db0bb919982ae98b69596b89c

escher/unix:O MIT-MAGIC- COOKIE- 1 bf9c949db0bb919982ae98b69596b89c

As can be seen, the MIT-MAGIC-COOKIE is valid for any of the X server host machine's IP

interface addresses (in this case - escher, escher-10 and escher-qfe7 are all a single machine's

multiple interfaces onto different subnetworks, implying that the X server is listening on all

these interface IP addresses). Also, there is a Unix socket interface on which the cookie is

valid. The : 0 represents the display number in standard Unix X server terms (where the

75

Chapter 5 The jgViz Grid Runtime

X server for display 0 listens on port 6000, the X server for display 1 listens on port 6001 ,

etc.) .

On the client:

ariel:-> xauth add escher:0 MIT-MAGIC-C00KIE-1

bf9c949db0bb919982ae98b69596b89c

ariel:-> setenv DISPLAY escher:0

Note that the hostname used (escher) must be a name that can be looked up by the

operating system's standard hosts name service (be it NIS, DNS, LDAP, etc.) to get

the correct IP for the X server - this may require changing if in a different domain (for

example, to being the fully qualified escher.sees.bangor.ac.uk). Secondly, the keys are

stored in $HOME/. Xauthori ty, so are automatically propagated in a shared home directories

environment - hence, only the DISPLAY variable may need to be set. Finally, the X server

needs to be started with authority usage, typically in the xini t script that is used to startup

a user X session (authority is used in all modern Unix operating systems):

escher :-> xinit $H0ME/.xinitrc -- /usr/bin/X11/X -auth $H0ME/.Xauthority

Although the above discussion is associated with traditional X usage in a windowed desktop

environment, the same set of restrictions apply to production of 3D OpenGL graphics due

to the fact that, whether it is software or hardware generated , this produces output on the

graphical context held by the X server. The Direct Rendering Initiative (ORI) [77] is a

system for safe, efficient, direct access to graphics hardware under the X server. Consisting

of changes to the X server, the X libraries and the kernel of the host operating system,

ORI was originally conceived for OpenGL rendering. Companies such as nVidia that provide

drivers for their own graphics accelerators (under three Unix flavours - Linux, Solaris and

FreeBSD) tend not to use the DRI system, however, and instead provide their own modules

for accessing the hardware within the standard X.org X server.

Our problem is how to access graphics hardware on a particular remote machine. There are

two factors to be considered. Firstly, there may not be an X server running on a remote

system 1 . Secondly, the machine may be in use as a standard PC desktop or by somebody

else 2 , in which case the X server (and thus, the graphics resources) will be tied up and

1 There is little that can be done to enable an X server in a transparent fashion due to the nature of

starting s uch a service on unknown hardware.
2As a workstation or being utilised by other networked - possibly Grid - clients.

76

Chapter 5 The jgViz Grid Runtime

inaccessible as discussed above. We currently have no ideal solution to resolve inaccessibility

and contention. The research community is actively looking at solutions for this issue, but

no overall satisfactory solution has been found that has succeeded in becoming popular.

These include off-screen rendering, which has been found in [66] to suffer a (sometimes

substantial) performance deficit. In fact there is probably no portable solution that does

not involve customization for either jgViz use or desktop use, and in this case the far larger

desktop functionality must obviously be the primary target for any single project (such as

the X.org project).

Readback Issues

The utilization of remote graphics resources dictates that the rendering process output (i.e.

the 2D pixel image) is transported back to the display host. As mentioned in chapter 2 the

process of reading back the rendered graphics from the graphics hardware can be slow. In

addition to the custom hardware solutions from HP and IBM mentioned previously, there

are other considerations necessary.

There are a number of reasons why readback performance can suffer. There are three prin

cipal components involved in the rendering and readback process - the graphics processing

chip itself, the system interface to it, and the operating system software drivers for it -

all of which are relatively dynamic. Graphics processor lifecycles are 12 months between

major revisions and 6 months for minor revisions (clock bumps). Software drivers are regu

larly revised, in particular nVidia provide very regular updates, optimizations and fixes for a

number of operating systems (currently Windows, Linux, FreeBSD and Solaris [78]). Only

the system interface for the graphics processor is less frequently updated, although updates

can still be expected every two or so years.

Since 19963 , the focus with graphics processing chips has been on pure rendering perfor

mance to the local screen. This is an approach largely driven by the home consumer market .

During the development of such hardware, read back performance has often suffered as it is

not a requirement in such a market. Nevertheless, the last year or two (alongside improved

system interfaces) has seen significantly improved performance readback performance. A

significant part of this has been the changeover from the Accelerated Graphics Port (AGP)

system interface to the PCI-Express system. AGP's offering of bandwidth up to 2133

31996 was the year in which 3Dfx released the Voodoo PC graphics accelerator, which was the first

affordable, high-performance 30 card for the PC. The so-called 'killer app' for Voodoo was the OpenGL

subset driver (called the MiniGL driver) developed to run the id Software came Quake, and thus kicking off

the 3D gaming age

77

Chapter 5 The jgViz Grid Runtime

MB/Sec to the graphics chip in the AGP8X form is outdone by PCI-Express's bi-directional

4000 MB/Sec in its standard graphics form of 16-channel PCI-Express.

Additionally, due to the degree of programmability in place in modern graphics chips (which

is being increasingly exploited in other ways [79] [80]) and the crucial interaction with

the operating system and its use of non-graphics hardware resources, the software driver

for graphics hardware is of considerable importance. In line with the generally increasing

awareness of readback, software drivers have moved toward providing improved performance

in the area, and large performance differences are sometimes seen between different driver

versions.

Traditionally, both ATI and nVidia graphics processors have suffered from performance hits

in performing readback function, although it has been subject to variation with different

driver versions. However, that has now changed somewhat as recent nVidia chips in partic

ular using PCI-Express system interfaces have seen improved readback performance. The

present to future timeframe allows us to envisage systems consisting of new, increasingly

programmable graphics processors supplied with data over a non-direction preferential sys

tem interface by an operating system's graphics subsystem. Through increasingly optimized

software drivers, they will know how to communicate with the hardware for maximized per

formance.

5.1.2 Network Protocols

jgViz's distributed graphics pipelines are heavily dependent on the networks that connect

the various components. As well as the capability of the hardware in these networks, related

software layers are also equally important . The nature of the Grid dictates that we desire

both high performance and high security. It is enticing but impossible to produce a single

protocol that can handle all varieties of usage, however, there have been many different Grid

data transport protocols produced. Globus XIO provides a standardized API for plugging

in different Grid transport protocols. It is based on byte-transfer schemes and hides as

much detail as possible from the user, but also is designed with the knowledge that some

tuning of protocols will be necessary to obtain maximum performance. Grid FTP is the most

popular system for transferring files of data among Grid resources and it offers advanced

features such as striping and the use of replica servers. However, as an extension on the

FTP protocol, it is not intend ed for data streaming.

Due to the nature of visualization data streaming, we cannot make use of performance

78

Chapter 5 The jgViz Grid Runtime

enhancing facilities such as single-file parallelism and striping. As the stream is 'live' data,

multiple-source transfer striping is impossible. However, future work may investigate in

more depth the possibility of SMP machines performing parallel data transfer - this may

be particularly helpful at the bottleneck points of pipelines. Our requirement for maximum

performance also reduces the amount of processing overhead that is acceptable. The Re

alityGrid project utilised the sockets-based Globus 1/ 0 subsystem to provide the necessary

performance [62) as SOAP over HTTP cannot provide the necessary performance. Kola,

Kosar and Livny [81) carry out a profiling of Grid data transfer systems to study the param

eters of transfer rate, parallelism and system load using Grid FTP and the NeST 4 transport

protocols. The resulting data suggests fairly high CPU utilization of relatively powerful

machines in parallel setups. This is particularly relevant to the jgViz components that are

responsible for distributing and collecting together data. The fact that it is found to be so

necessary to 'tune' the balance of parallelism and protocol parameters suggests that such

systems would limit jgViz performance. Similar performance data is seen in [82] . Hence, we

have chosen , for the time being, to use Chromium's native transport in order to minimize

processing overhead and maximize pipeline performance. As further work goes on in the

area of real-time data streaming, Grid native transport protocols are very interesting, par

ticularly as we further study wide-area use of jgViz, rather than the localized setups we are

currently concerned with. The possibilities of making use of network intelligence, such as

multicasting for multiple-viewers and Quality-of-Service systems for guaranteed bandwidth ,

promise much for jgViz as they have already delivered in other projects 5 .

5.1.3 Launching Components

Once the jgViz client has discovered available Grid resources and scheduled an appropriate

graphics pipeline, it is only necessary to launch the relevant Chromium components on the

selected machines. This process takes place in two parts - establishing the machines and

settings to be used, and then utilising them to launch the pipeline.

Job launching in Grid environments is a many-and-varied thing due to the diversity and

number of submission and queueing systems. The requirements of any system involving

interactivity restrict substantially the options for the scheduling-execution system that can

be used - for example, utilisation of a batch control system would result in substantial

coordination problems amongst multiple machines in addition to the loss of an 'on-demand'

4 Network Storage, see http://www. cs. ,lisc . edu/condor/nest/.
5Such as the AccessGrid media-conferencing system.

79

Chapter 5

App. Node

~

Hostname
Chromium Path
System Path

Net. Nodes

E
Hostname
Chromium Path
System Path
OpenGL Path

Tiled Display

The jgViz Grid Runtime

Mothers hip

E
Hostname
Chromium Path
System Path
Python Path

App. Node

~

Hostname
Chromium Path
System Path

Net. Nodes

E
Hostname
Chromium Path
System Path
OpenGL Path

Readback

Figure 5.1: Data items for each node type within the Chromium configuration script

service. Obviously, it is a critical part of the envisaged jgViz visualization system that the

system does ma ke available a near-instantaneous service, within the bounds of available

hardware.

Configuration Parsing

The configuration script output from the scheduling process is editable for customization

purposes by the user. However , a final jgViz system requires that this ability is removed

in order to protect available Grid resources from being utilised in ways not desired by their

'owners'. For the purposes of this research, however, allowing this has made certain testing

and development easier.

With all the necessary information available in the configuration script that the jgViz client

runtime accesses, the data is extracted through simple linear searching for the known 'tags' .

Figure 5 .1 highlights that which is extracted in order to launch the relevant Chromium

components using the Grid protocols.

80

Chapter 5 The jgViz Grid Runtime

Grid Execution

As previously highlighted, security is a key design element of the Grid. Several component

parts comprise this security solution. The concepts of authentication and authorisation are

key, whilst encryption can also be used depending on the exact nature of the requirements.

It is a fundamental part of executing on remote grid resources that the user is authenticated

to ensure that they are who they say they are. It is also necessary to authorise the user to

access the requested resources within established policy parameters. As a Grid application ,

jgViz utilises the established protocols for performing job launch over the Grid. This in

turn requires that a Grid 'proxy' is set up. A proxy is a finite-lifetime set of credentials that

authenticate a user through their certificate and passphrase. For the lifetime of the proxy,

Grid protocols can use the credentials to access Grid resources. Presently, jgViz expects

the user to have a proxy setup when it launches, and will give an error if this is not the

case. This solution was chosen due to incompatibilities observed in the way that proxies

are created and credentials are stored, using the Java CoG Toolkit compared to the Globus

Toolkit. Future work would embed this creation capability within jgViz. A proxy can be

setup using the command-line utility that comes with Globus or a graphical one that is part

of the Commodity Grid Toolkit.

Prior to launching the actual pipeline components on the Grid , jgViz tries its best to

verify Grid connectivity. This is achieved by sending a GRAM (Globus Resource Allocation

Manager) 'ping' to each machine involved. This is a Globus runtime layer dummy function

that returns no result and is simply used to test that a Globus gatekeeper is running and

accepting jobs. The fact that a GRIS index server is running and so advertising a Grid

resource is not a guarantee that it is reachable as they are different daemons listening on

different ports (in fact, the Globus Runtime port is usually monitored by the inetd super

server that instantiates Globus handlers dynamically as required). If any of the node pings

fail, then jgViz will not try to launch any of the pipeline.

Once the pre-requisites above are concluded, jgViz can move on with the actual process of

launching the graphics pipeline components. This is a multi-stage process in itself. As the

parsing of the configuration script has taken place, jgViz now has all the knowledge needed.

Figure 5.2 presents a diagrammatic overview of the launch process, as discussed below.

81

Chapter 5 The jgViz Grid Runtime

Chromium
Config
Script

Mothership
Node

jgViz Client
Run/Launch Component

Application
Node

pplication
Binary

Network
Nodes

Figure 5.2: Components and Ordering Involved in Launching a jgViz Session

1. Transfer of Chromium configuration script via secure GridFTP protocol.

2. Transfer of client-side held application binary via GridFTP.

3. Generation of RSL (Resource Specification Language) and launch of the mothership

using Python and Chromium path data , and a transferred configuration script. Fol

lowed by a slight pause to ensure that the mothership is up and running and accepting

connections.

4. Generation of RSL and launch of application node using Chromium path data and a

remote application binary.

5. Generation of RSL and launch of network nodes using Chromium and libgl path data .

GridFTP Transfer

The GridFTP protocol is utilized during the jgViz runtime processes for the transfer of a

number of important files. During the pre-launch procedure, the transfer of the mothership

configuration file (as previously generated within jgViz) to the Chromium mothership node

is critical. This must successfully take place so that jgViz can then launch the mothership

component via the Globus runtime and a call to the Python interpreter on the remote

machine. Pakhira et al. (83] question the compatibility of GridFTP and firewalls when

dealing with large data transfers and go on to utilise the Storage Resource Broker (SRB)

82

Chapter 5 The jgViz Grid Runtime

Grid service instead. We are not presently operating in a firewalled environment and have

seen no problems, and one would also expect that such a problem is due to configuration

issue, as the theory regarding such use is va lid . It is also speculated that this could be due

to their use of the Geodise Computational Toolbox.

Additionally, the user selects whether the application binary concerned is located on their

selected application node or located locally where the jgViz client is running. If local ,

then jgViz will also transfer the binary to the Chromium application node. GridFTP itself

is a Grid standard protocol that uses Grid security credentials to authenticate users and

provides secure transfer of data as well as partial file transfer and a number of techniques

(parallel streams, buffer size customization, multiple-server striped transfer) to improve

performance. The Commodity Grid Toolkit implements a simple GridFTPC/ient class that

we utilise within jgViz. The server-side process is built and installed as part of the Globus

Toolkit and started from inetd (inetd is a daemon that listens for connections on specific

ports and starts appropriate programs to handle the services on these ports when connections

are received) .

RSL

The Resource Specification Language (RSL), used to specify Grid job characteristics, is

key in launching Chromium components in a non-interactive environment, and we need to

make use of several parts of the RSL syntax for this. The relevant parts all represent a

component of how to launch an executable in a Unix shell. These parts of the RSL specify

the environment, the executable, the arguments to the executable, and the handling of

output and error streams:

(environment=(variable]) (variable2))

Sets up environment variables as necessary. For each of the Chromium components, we

need to use a subset of:

1. PATH - Sets the search directories that will be searched for executables.

2. LD_LIBRARY _PATH - Lists the directories that will be searched by the run-time

linker (Id) for library functions.

3. CRMOTHERSHIP - Tells non-mothership Chromium components where the moth

ership is, such that t hey can discover at runtime the details of their intended func

tionality.

83

Chapter 5 The jgViz Grid Runtime

4. CR_SYSTEM_GLPATH - Specifies the path to the system OpenGL library (Jibgl)

that should be used by Chromium. This may be necessary as Chromium requires a

thread-safe GL library that is sometimes not the default (in /usr/lib) for an OS. A

typical example is the nVidia Linux drivers, in which the thread-safe libgl is located

in /usr/lib/t/s.

5. DISPLAY - To ensure that the local X server is used i.e. the local graphics acceler

ator.

(directory=path)

Working directory for the process to be launched.

(executable=executab/e path)

Specifies the binary executable to be launched, which will vary depending on which Chromium

component is being launched.

(arguments= arguments)

Arguments to the executable, which may or may not be needed for Chromium components.

(stdout=stdout path) (stderr=stderr path)

Handling of the stdout and stderr streams for the executable. As Unix is based on the idea

of representing everything as files, which can in turn be stored on secondary storage, we

can utilise the Global Access to Secondary Storage (GASS) protocol here. Using the Java

COG toolkit, we create a GASS server on the jgViz client machine and use the HTTPS

protocol to transfer the two streams from the remote Grid machine back. These are then

handled as streams by the jgViz client.

Table 5.1 shows the combination of these RSL components used for each type of Chromium

node.

84

Chapter 5 The jgViz Grid Runtime

RSL Component Mothership Value Application Node Network Node

Value Value

Environment

Variables

$PATH Cr Mothership Path Cr Binaries Path Cr Binaries Path

$LD_LIBRARY _PATH Cr Libraries Path Cr Libraries Path Cr Li braries Path

$CRMOTHERSHIP - Mothership Name Mothership Name

$CR_SYSTEM_G L_PATH - - Custom Confi g

$DISPLAY - - localhost:0.0

Executable python crappfaker crserver

Argume nts /tmp/jgvmothership.py - -

1/ 0 Streams ST DIO and ST DERR via STDIO and ST DERR via ST DIO and ST DERR via

HTTPS to GASS server HTTPS to GASS server HTTPS to GASS server

Directory / tmp Cr Binaries Path Cr Binaries Path

Table 5.1: RS L components used for different jgViz nodes

85

Chapter 5 The jgViz Grid Runtime

A typical jgViz RSL statement is, therefore, as follows (formatting inserted for readability):

{&(environment=

(PATH /bin:/usr/bin:/usr/local/bin:/usr/X11R6/bin:/home/ade/cr/bin/Linux)

(DISPLAY localhost:0.0)

(CRMOTHERSHIP darius.sees.bangor.ac.uk)

(CR_SYSTEM_GL_PATH /usr/lib/tls)

(LD_LIBRARY_PATH /home/ade/cr/lib/Linux))

(directory=/tmp)

(executable=/home/ade/cr/bin/Linux/crserver)

(stdout=https://147.143.9.26:37169/dev/stdout)

(stderr=https://147.143.9.26:37169/dev/stderr)

We express the runtime environment of the various Grid-launched components as completely

as possible, in order to avoid possible problems relating to library search paths and runtime

directory locations (83) .

GASS

The combination of Unix's modelling of everything as a file (or at least, as an identifiable

part of the file system) and GASS is a powerful one. Global Access to Secondary Storage

allows any of the Unix 'files' to be handled in some manner via a Grid infrastructure. As

mentioned above, jgViz makes use of this facility to handle the standard out (stdout) and

standard error (stderr) streams from the various Unix processes it launches remotely, as

involved in the Chromium pipeline. The Java Commodity Grid Toolkit contains a class for

establishing a GASS server on a port using HTTPS as the transport protocol. The launched

processes are set up to use this with the stdout and stderr RSL substrings shown above.

Although jgViz does not currently do any, it is possible to monitor these output streams

(particularly the stderr stream) to determine when problems occur. Presently, jgViz simply

displays the output of the two streams during the launch process on the 'Run' tab of the

GUI.

The Running Pipe

Once the nodes in all three classes of node that are required for a Chromium pipeline

are launched, they communicate with each other to establish their settings and begin

to operate. As the mothership is the node responsible for holding the configuration for

the other Chromium components, non-mothership nodes do not require any configuration

other than being told on what machine the mothership is running. This is set using the

86

Chapter 5 The jgViz Grid Runtime

CRMOTHERSHIP environment variable as shown above. Once all components are up-and

running, the pipeline starts operating - the application begins and the output is consumed

into the Chromium streams system. Each running component is also intimately linked with

a Globus Runtime job that provides various capabilities to the program that launched it (i.e.

the jgViz client) . In order to maintain control over the pipeline, the jgViz client maintains

(in a Java vector) all the Globus jobs. Additionally, vectors of the stdin and stderr handling

GASS servers are kept.

5.2 Post-launch

Once a graphics pipeline is up and running, then jgViz takes on the role of controlling and

monitoring. The diversity and nature of Grid environments defines that resources stand

to become unavailable or of limited availability at any moment. For example, the Internet

as a whole is a large and diverse interconnection of hardware and administrative domains

in which connections of various capabilities are frequently coming online and going offline.

Additionally, the fact that the Grid encompasses not just a specialist research network,

but a collection of networks that are used by all users ' traffic, means that traffic levels

will vary wildly. Alongside the increasing level of intelligence going into the networks we

use, with features such as multicast and Quality-of-Service (QoS) protocols, all this means

that the network is not predictable or consistent. The Grid protocols and Grid software

must therefore, by definition, be built with failure-tolerance in mind. The hierarchies and

duplication in evidence with protocols such as the Meta Directory Service (MDS, as covered

previously) are good examples of this. In terms of compute facilities, the same is true once

again. They may be open to a number of people for use for a variety of differing applications,

of which we must assume that none is considerate and gives-way to any other. Therefore,

whilst it is reasonable to expect that some form of least-load scheduling would be carried

out by any Grid application, we cannot guarantee it and it is necessary for any performance

critical application to guarantee that its own performance is maintained at the necessary

level on the hardware in use. Real-time visualization, such as that of jgViz, is a good

example of this and jgViz therefore needs to closely watch the running pipeline and take

action to ensure it is performing optimally.

87

Chapter 5 The jgViz Grid Runtime

5.2.1 Session Control

Before considering the functionality necessary to monitor and deal with a running pipeline,

jgViz must be able to control the pipeline. This involves the ability to stop the pipeline and

reset the system, thus re-verifying Grid connectivity and allowing a new pipeline instance

to be launched.

Stopping a Pipeline

Stopping a running pipeline is not just a case of terminating the Globus Runtime jobs (via

the unique job identifiers returned upon each job launch) - to do so would result in an

orphan process being left in an undetermined state and without the ability to monitor or

terminate them via available Grid protocols. To terminate a pipeline, we need to stop the

Chromium mothership and the running application. In both cases, we use a further GRAM

job submission to achieve this. Chromium provides a number of binaries for acting on

a running mothership - here, we are interested in the quitms binary for shutting down a

running mothership. For closing down the remaining parts of the pipeline, we only need to

quit the application and this will have the knock-on effect of closing the sockets and pipes

that pass the graphics data through the separated Chromium components. In order to kill

the application, we issue a GRAM job using the Unix pki/1 command. pki/1 is designed for

signalling processes - it then depends on the process' signal-handler as to what happens.

jgViz includes the capability to send a number of Unix signals to the application. For

reasons outlined in the next section, the process of stopping an application node therefore

consists of first sending a 5/GHUP (hang-up) to the process in order to signal the suitable

signal-handler coded into the Chromium component to end, before sending the 5/GQU/Tto

actually tell the process to end. Typical RSL syntax generated and submitted by jgViz for

the ending of the mothership and application node (with the roller application) is therefore

as follows:

{&(environment=PATH /usr/bin)

(LD_LIBRARY_PATH /home/ade/cr/lib/Linux))

(directory=/tmp)

(executable=/home/ade/cr/bin/Linux/quitms)

(stdout=https://147.143.104.90:32867/dev/stdout)

(stderr=https://147.143.104.90:32867/dev/stderr)}

{&(environment=(PATH /usr/bin)

(LD_LIBRARY_PATH /usr/local/cr/lib/Linux))

88

Chapter 5

(directory=/tmp)

(executable=/usr/bin/pkill)

(arguments=-HUP roller)

(stdout=https://147.143.104.90:32869/dev/stdout)

(stderr=https://147.143 .104.90:32869/dev/stderr)}

{&(environment=(PATH /usr/bin)

(LD_LIBRARY_PATH /usr/local/cr/lib/Linux))

(directory=/tmp)

(executable=/usr/bin/pkill)

(arguments=rol ler)

(stdout=https://147.143.104.90:32871/dev/stdout)

(stderr=https://147.143.104 .90:32871/dev/stderr)}

The jgViz Grid Runtime

Once a pipeline has been stopped, the jgViz client needs to clear out all reference to the

relevant components. As discussed in Appendix B, it is necessary that the client maintains

a number of references and so it now 'resets itself' by dropping all such references.

5.2.2 Monitoring Active Sessions, Dynamic Scheduling and State Transfer

Monitoring of a running pipeline is concerned with changing network and machine condi

tions. jgViz therefore repeatedly measures the network latency and load levels of running

nodes, as discussed below. jgViz establishes consistent values for these, and if they increase

beyond a user-definable (but sensibly preset) proportion, then jgViz will react.

This reaction takes one of two forms depending on the application being run and is per

formed as part of the process of stopping the existing pipeline. If the application is custom

built and keeps state related information in a temporary "check-point" file, then jgViz can

be told what this file is and 'rescue' it from where it is running via GridFTP before shutting

down the pipeline (as shown in Figure 5.3). If the application does not do this and is just a

stateless code with no state data (for example, a model viewer) , then the pipeline will just

be shutdown.

jgViz then returns to the list of available jgViz servers previously discovered and obtains

updated metric data for these nodes. The time taken to do this needs to be short enough

not to interfere with the perceived quick movement of the pipeline, but long enough to

acquire updated metric data on available nodes. On balance, we have chosen 5 seconds for

this. jgViz then performs a new 'scheduling' to produce a refreshed subset of active nodes,

89

Chapter 5 The jgViz Grid Runtime

Render Node 1
Before App.Node

Interruption Render Node 2
State File

Render Node 3

@ GFT

jgV LE@

@ GF

After I State File I
Interruption New App. Nod

Figure 5.3: The jgViz client reschedules a pipeline

as covered in chapter 4. The schedu ling is performed with the same options as chosen by

the user for the initial sched uling, but with the updated performance metric data. jgViz

will t hen automatica lly create a new Chromium configuration and transfer it to the new

mothership host for launching.

If a "check-point" st ate file was rescued it is restored to the new application host via

GridFTP and the new pipeline is started with the application picking up the st ate file and

continuing where it left off. In the case without a recent state-file, the new pipeline is just

started with the application at its initial start point. T his is not an ideal solution of how to

preserve the state of an application between pipeline instances as it requires a compliant

application, however other options such as taking an imprint of memory content within a

Grid environment were deemed far too complex and problematic for the timescale of this

project.

Measuring Running Nodes

jgViz performs monitoring of a collection of jgViz servers at two points - firstly when deciding

which machines to use in a pipeline during sched uling, and secondly when monitoring a

running pipeline. Whilst the schedu ling-stage monitoring is intended to be non-invasive on

machines that may already be executing jobs for other users, the runtime-stage monitoring

occurs at a t ime when t he user 'owns' the machines that are part of t he pipeline. Both

st ages could potentially be involved in monitoring a significant number of machines. We also

90

Chapter 5 The jgViz Grid Runtime

Round- Concurrent

Robin

Number Cycle CPU User Memory Cycle CPU User Memory

of Nodes Time (ms) Time(%) Utilization Time (ms) Time(%) Utilization

(MB) (MB)

1 1232 1.1 80 1192 1.1 80

2 2446 1.1 81 1275 2.2 82

4 4917 1.1 83 1439 2.8 90

8 9366 1.1 87 1554 3.4 96

16 18753 1.1 89 2137 4.4 97

36 42038 1.1 90 3865 4.9 98

Table 5.2: Performance results for round-robin vs concurrent monitoring scalability tests

have to consider the performance deficit introduced upon the jgViz client by the monitoring

load demanded by the configuration. Unless we look at increasingly complex systems, there

are two basic schemes that can be used for monitoring: round-robin and concurrent. In

order to judge which of these systems is appropriate for the two stages of monitoring, a

non-jgViz client test was performed. Of the two metrics, the performance of the ICMP

PING in hardware requirement is insignificant, even when sca led to many more machines

than we are concerned with. However, the machine load metric, as gained from the Grid

M DS LDAP server running on the monitored nodes, is not predictable or as lightweight.

Table 5.2 and Figure 5.4 show the results of a simple looping test with the two types of

monitoring.

These results were obtained using a Sun Blade 2000 with dual 1.05GHz UltraSPARC-

111 processors and 8GB memory for the jgViz client. Whilst the concurrent monitoring

implementation shows vastly improved scalability (in terms of cycle time), it also consumes

substantial ly more client-side resources. When concurrently monitoring more than 8 nodes,

the limiting factors become 1/0 delays and the additional processing associated with the

LDAP search results. Of course, having a number of threads trying to execute on the

same processor in parallel also produces a contention issue, reflected in the fact that the

system-load (which is a measure of the average runqueue length) being subject to a greater

proportional increase than the pure CPU user time. This also explains why the machine

appeared to be a lot slower to use, although the CPU utilization does not indicate as such.

Monitoring of the pipeline that takes place once it is up-and-running, this could be po

tentially detrimental if, for example, the application is hosted on the same machine as the

91

Chapter 5

C:
:0
0

ai:::
I

"O
C:
:::,
0

ai:::

-C:
(JJ ,_ ,_
:::,
u
C:
0 u

Monitoring Cycle Time
45000

40000

35000

30000

§. Z.5000

_§ 20000

15000

10000

5000

0 ' 10 " 20 25 ,. 35 ..
of servers

Monitoring Cycle Time
·-~--------
...,. +---------
l5000-+----------

30000 +----------
25000 +----------
20000 +---------
•sooo+---------
,0000 +----------

5000 t;;;:;~~~
0 5 10 15 20 2$ 30 35 40

of sorve<s

"
- 3.5
!!.
:::, 3
Q.

U 2,5

IS

- 35
'if.
; 3
Q.

U 2.5

IS

CPU Utilization

0 ' 10 " 20 25 ,. 35 40

of servers

CPU Utilization

,_
./

/
/

I'
I
I
I

0 5 10 15 20 25 JO 35 40

#of servers

,oo

'"
" f 92..5

""
.,

0

~ "·' ..
32.5

80

""'
91,5

"' i ,,.
f .,: ..
"'

The jgViz Grid Runtime

Memory Utilization

-/
/

/
0 5 10 15 20 ~ 30 ~ ~

II of servers

Memory Utilization

~

I
I
I
I
I

I/
0 5 10 15 20 2$ 30 " 40

#of servers

Figure 5.4: Graphical representation of round-robin vs concurrent test data

client. However, the additiona l network and server load caused by this is unlikely to be

significant as the checks are still taking place at least one second apart for any single node

and are lightweight. As the number of monitored servers increases, then the jgViz client

has more work to do and so the question is posed of how many servers a typical institution

is likely to have that would need to be monitored. As a result of this, sca labi lity across

systems of increased distribution and node-count will require further thought. However,

within jgViz's current target scale, it is a fair conclusion that the round-robin monitoring

is well-suited to use at the non-running, scheduling stage but that it would provide insuffi

cient performance during the runtime stage. Therefore, the concurrent system is the logical

choice for use here. Note, however, that additional limitations are placed on what other

tasks t he jgViz client machine can do and on the class of machine one might expect to use

for such a task in the first place .

92

Chapter 5 The jgViz Grid Runtime

Triggering an Event

There are a number of different, competing requirements in monitoring a running jgViz

pipeline and deciding that it is suffering enough in performance that it should be stopped

and moved to a different set of machines. The overall goal is obviously to maintain and

enhance the pipeline performance. Equally, it is desirable that the impact of monitoring the

pipeline is kept low on the pipeline component machines. We also wish to be prompt in

spotting and moving a pipeline, so we need to be able to make quick decisions. However,

the relocation should not be too hasty and move a pipeline that is running well, so we

must be precise in judging that which needs moving and that which doesn't. This, in

turn, works against a prompt response, as the sometimes 'peaky' data that can be seen

for the two metrics involved (also a consideration with a visualization that does not run at

a consistent, relatively smooth frame rate) does not lend itself well to decisions based on

very short duration performance data.

These requirements and limitations are difficult to balance and could, on their own, produce

a work of immense study and depth. Within jgViz, we try to take a relatively simple top

level approach and allow easy 'fine-tuning' of parameters within that. The approach taken

is to keep two moving historical sets of data and compare the average data values in them.

That is, the average of a long-term history, the average of a short-term history and the

proportional difference between them. When the short-t erm average is more than the set

proportion greater than the long-term average, jgViz triggers an 'event' that represents

pipeline performance having dropped to a level requiring attention. The stop, reschedule,

start process then begins as detailed.

When in monitoring mode, jgViz repeatedly loops through all nodes updating load and

network latency data. On each cycle, this data is added to the short and long term history

arrays for each metric and the new average of all the data in each is calculated for com

parison. jgViz uses six customizable parameters to dictate the outcome of this comparison.

The six parameters are:

1. Network latency long history buffer size.

2. Network latency short history buffer size.

3. Node load long history buffer size.

4. Node load short history buffer size.

93

Chapter 5 The jgViz Grid Runtime

5. Required percentage increase in network latency short history buffer average compared

to network latency long history buffer average.

6. Required percentage increase in node load short history buffer average compared to

node load long history buffer average.

Given the performance levels concerned in concurrent node monitoring (with short cycle

times of the order of one second), the level of definition in different operating system's ' load'

metrics and the rare but occasionally significant variations in millisecond-order network

latencies, deciding on the right combination of these settings can be very difficult.

Figure 5.5 presents a diagrammatic example of the monitoring-event process. It can be

clearly seen that the network latency associated with node 1 has increased by a suitable

proportion to cause a trigger, which will cause jgViz to stop the pipeline and reschedule it.

Monitoring Other Metrics

The existing two metrics that jgViz uses (network latency and node load) are deliberately

chosen for their 'big-picture' qualities of being relatively light to test and also very indicative.

In compute resource utilization terms, neither individually places a restrictive load on either

the client in checking them, or the server answering such check requests - in which, an

LDAP query is the most intense operation required and so which would only be expensive

if the machine were particularly busy on something else that had to be interrupted, either

in terms of CPU time or virtual memory paging. In network terms, an ICMP PING is very

light in load, principally because the majority of network cards available now handle such

echo requests with minimal processor interaction. The two existing metrics' light-weight

nature allows them both to be used during the initial scheduling process and the runtime

monitoring stage.

There are a number of other general considerations relating to the use of different metrics.

For distributed systems, bandwidt h costs money. For all modern computer systems, power

and cooling cost money - and increasingly so all the time. However, these costs may

be insignificant next to the costs of people. Employing administration personnel with

appropriate knowledge to configure and operate Grid facilities will likely be a significant

cost.

The possibility of using other metrics beyond the base pair is an enticing one, in order

94

Chapter 5

Node
0

Node
1

Network
Latency

Node
Load

Network
Latency

Node
Load

The jgViz Grid Runtime

0 1 2 3 -l 5 6 7 8 9 Mean
3 3 4 3 3 2 5 3 3

0 1 2 3 4 5 6 7 8 52 53 54 55 56 57 58 59

I 3 I 3 14 13 13 12 I 5 I 3 I 1 l11
"'

1111 3 2 2 1 2 3 2 1

Mean
54 42 51 38 64 59 67 56 33 521--------------~

012345678 G~«~~Q~ff

54 42 51 38 64 59 67 56 33 111111111 47 54 55 71 47 51 48

0 2 3 4 5 6 7 3 9 Mean
6 7 8 4 10 6 9 7 3 11 %

0 1 2 3 4 5 6 7 8 52 53 54 55 56 57 58 59 -I 6 I1 I a I 4 1191 ~ I 9 I 1 I 3 f•11
"'"' 3 2 3 1 1 2 1 3

3 Mean
87 67 89 74 73 81 68 75 83 77

0 1 2 3 4 5 6 7 8 42 43 44 ~ 46 47 48 49
87 67 89 14 13 81 68 75 83 111111 111 18 76 91 75 86 73 n a

Network Latency Short History Buffer Size = 10

Node Load Short History Buffer Size = 10

Network Latency Long History Buffer Size = 60

Node Load Long History Buffer Size = 50

Network Latency Percentage Increase Required = 100

Node Load Percentage Increase Required = 60

Figure 5.5: jgViz client's monitoring process, showing two historical buffers (short and

long) being kept for each of two metrics (network latency and node load) along with the

associated ca lculations and parameters, for each of two monitored nodes.

95

Chapter 5 The jgViz Grid Runtime

to improve the quality of the jgViz experience. Additional metrics will impact upon this

and the above mentioned factors and all must be considered. There are three areas that

additional metrics of various kinds can be considered - node hardware capability, network

state and application classification.

It is exceptionally difficult to assess the real-world performance of a system. There is such

large variation in chipsets, processors, memory, disks, operating systems and many other

components - all components that work below the jgViz and Grid layers but which vary in

terms of quality, throughput and outright 'speed' and, thus, have a knock-on effect. For the

purposes of our network (render) nodes , we are focused on the rendering system require

ments. However, that still involves a significant number of components and is thus subject

to large variation. Statistical metrics, such as geometry performance (polygons per second)

or texture performance (pixels per second) can be established for individual graphics accel

erators, but are subject to the rest of the hardware in a system. Likewise, evaluating CPU

and memory effects presents similar problems. Particularly as the interfaces between parts

of computer systems evolve, components will be increasingly subject to factors external to

themselves. For example, the industry has recently seen the introduction of dual-core CPUs

and new CPU-system interfaces in which placement of items such as memory controllers

has changed (AMD K8 series processor systems using the HyperTransport front-side bus).

Within the graphics rendering field, however, the interface to the graphics accelerator is

important and just as difficult to measure the performance of. 3D rendering benchmarks,

such as the 3DMark series, may provide a solution. However, they are typically provisioned

only for the Windows OS, creating problems in a heterogeneous environment, and with a

relatively specialised field of 'expertise' (games). Gaining such a performance evaluation

for a machine would likely be very useful for the initial scheduling carried out by jgViz.

However, it also requires additional setup time from an administrator. For the purposes

of runtime monitoring (alongside initial scheduling when nodes are already being used for

other purposes), it is difficult to see what other metrics could be utilised without adversely

affecting the running system. Additional metrics on virtual memory subsystems and CPU

statistics are available, but vary amongst different operating systems and amongst different

versions thereof, and are difficult to make use of without thought to advertising quiescent

levels of the same statistics for comparison. Even then, the amount of 'artform' involved

in operating system low-level features such as schedulers and virtual memory systems may

restrict the usefulness of such data. The possibility of running small test programs to test

various real-world capabilities of such hardware presents similar problems in the required

full-occupancy of machines that may already be in use or, in the case of being pre-evaluated,

work required from the system administrator. Again, these problems are accentuated in a

96

Chapter 5 The jgViz Grid Runtime

heterogeneous Grid environment.

Networks present similarly themed problems as rendering nodes. The principal concern is the

technical one of how difficult it is to evaluate the performance of a network at a particular

time without adversely affecting other users of that network. The financial implication may

be additional to this in some Grid-utilizing establishments. Once again, it is possible that

the systems administrator could do some additional setup involving real-world performance

measurement, and that such data could then be advertised by the jgViz server-side GIS

backend . Another possibility is to advertise the theoretical performance available depending

on the networking technology in use. This then has the advantage that it should be possible

to setup without system administrator time, but obviously is not a practical measurement.

Issues such as cable quality, cable length, network switching capacity and so-on all have an

effect on this. The Network Weather Service (NWS) [84] offers a general-purpose solution

here that has recently been implemented within the Globus middleware. NWS focuses on

enabling distributed scheduling to take place over wide geographical scales of networks in

a ubiquitous and non-intrusive manner. Additionally, NW$ provides accurate prediction of

future network traffic levels, which could be utilised withing jgViz alongside some estimation

of the time required for pipeline operation to provide an optimized initial pipeline scheduling.

NWS and projects such as the UK's GridMon fit in with moves by the Global Grid Forum to

provide a standardized, service-based approach to network performance monitoring and data

access [85]. These works are promising, but further investigation remains before complete

standardization.

A smaller and more difficult area for additional metrics to improve the initial scheduling

process may be in characterizing the application to be run and matching its particular

characteristics in use of graphics resources. There are several difficult aspects to this,

including determining the requirement of the user for the application and analysing the

nature of the graphics work with regard to the many different hardware structures there are

(for example, in piping texture data versus geometry data around a network). Increasing

diagnostic abilities in operating systems has recently been observed, which will make future

analysis of applications and their typical utilization easier to achieve. A specific example is

the DTrace component of Solaris 10 from Sun Microsystems. Although aimed at debugging

problems and performance of any code, a side-effect of DTrace use is the ability to produce

statistics that would, for example, be able to show how many gl calls had been made by

an application during a particular duration . As these are the instructions that a Chromium

session has to deal with, it would be a very relevant piece of data, particularly when

correlated with other data on program execution.

97

Chapter 5 The jg Viz Grid Runtime

Config. Script PYth0n
.,__..,. Config.

Generation makes Script

Parsing
& Extraction

1 ---►► 2 ---►► 3 ----.. ► 4
_ __,..,► 5

Setup Grid Test Grid
Credentials Connectivity

Launch Cr Stop Cr
Session Session

Figure 5.6: Components of jgViz runtime model

5.3 Conclusions

Reset Cr
Session

This chapter has detailed many of the defining and special features of t he jgViz system

along with the reasoning behind the design choices made. As detailed in fi gu re 5.6, the

runtime component of jgViz consists of a number of stages, some of which are susceptible to

ext ernal influencing factors. Graphics resources present a subset of these regarding security

of access t o a nd performance in readback operations. These place restrictions on where

and how such a tool as jgViz is usefu l. There are also performance restrictions implicit in

the Grid protocols, as discussed regarding data streaming performance and the desirability

of suit able protocols in order to ease security in multi-institutional Grids.

The pipeline of tasks involved in launch ing and stopping a graphics pipeline utilizes the

GRAM, GridFTP and GASS protocols directly for job launching and data transfer. The

particular characteristics of the two data transport protocols is seen to suit them better to

either file transfer or low-intensity data streaming. We have fou nd t hat the two monitoring

schemes we studied have uses in different parts of the jgViz system. Due to the intensity of

work involved, the round-robin node monitoring scheme is better for use at t he sched uling

98

Chapter 5 The jgViz Grid Runtime

stage, but the concurrent scheme is necessary for effective monitoring of the nodes involved

in a running pipeline. Regarding the monitoring stage, we base our current measurement

scheme on the two metrics of network latency and node proportional load, and the compar

ison of short-term and long-term historical averages for this metrics. When the necessary

deterioration in performance is seen, an event is triggered that stops the running pipeline

and starts a new pipeline, along with limited preservation of state data.

99

Chapter 6

Experimentation

6.1 Introduction

Measurements taken for establishing whether jgViz meets the requirements originally ex

pressed for it are an important part of understanding the nature of a distributed, Grid-based

graphics pipeline. Additionally, jgViz's functionality in enhancing the distributed graphics

pipeline experience can be studied to help determine areas that require further attention

and where the focus for major future work should lie.

6.2 Experimental Setup

To exercise the variables that can apply to a jgViz dist ributed graphics pipeline's operation,

we need a variable quantity of machines, a variety of network speeds and to test both types

of distributed graphics pipeline. A temporary infrast ructure was set up to build a suitable

test environment. Figure 6.1 shows the machines used for this testing and referenced (by

name) in this thesis alongside their locations in Bangor - this is the Bangor Grid.

Test Equipment

As shown in figure 6.1, the Bangor Grid consists of a number of different classes and

types of hardware. The routers involved here (shown in blue), are of two types. The

sees.bangor.ac.uk domain (Informatics) only has software routing (light blue) deployed on

modest Sun Ultra 10s (ares, argo) that act as file servers and one Sun Blade 2000 (ajax)

Chapter 6

1 00M Experimental
Configuration

Experimentation

bangor.ac.uk

sees.bangor.ac.uk

sw9-0

othership
Node

Figure 6.1: T he Bangor Grid

1 000M Experimental
Configuration

sw9-0

othership
Node

101

Chapter 6 Experimentation

that acts primarily as a software-installation server. It can be seen that ajax is a router for

three subnets whereas ares and argo are for just two. The dark blue routers in bangor.ac.uk

are Cisco Catalyst 4006 hardware switch-routers providing the university's Gigabit backbone

and the connection between Informatics and ainur, the SGI Altix that acts as the Bangor

GIIS.

The main experimental equipment consists of 18 PCs located in one of our laboratories, on

subnet 147.143.104.0/24 - all of which are standard PCs with AMO Athlon-3200+ CPUs

(actual clock 2.2GHz) and 1GB memory (see Figure 6.2). The rendering slaves are named

nodeXX where XX is from 1 to 18. All but one of these machines have ATI 7000 series

graphics cards (which do not currently support hardware rendering under Linux) and the

remaining one (to be used as the compositor in readback) has an nVidia GeForce 3, which

does support hardware rendering, thus somewhat lightening the load of intensive graphics

operations. The experimental machines all run Fedora Core Linux 4 and the X.org 6.8.3

X server. The mothership node is a P3-1GHz, 256MB RAM PC running Red Hat Linux 9

and XFree86 4.3.0. ainur is an Altix 3000 with 12 ltanium2 CPUs at 1.3GHz and 12GB

RAM running SGI ProPack Linux 3 (Red Hat Enterprise derived) . All machines involved

in the Bangor Grid use the Globus Toolkit 2.43 and run GRIS servers advertising their

abilities to the GIIS. Chromium 1.8 was utilised on all visualization machines. nVidia 's

Linux driver version 1.0.7664 (supporting OpenGL 1.5.3) was used where appropriate and

Tungsten Graphics' MesaGL 6.2.1 ORI Radeon Driver (supporting OpenGL 1.2) used on

the other machines.

Our experimental setup connects the slave test machines at one of two speeds - Fast

Ethernet lO0MB/Sec using an in-room 3Com 4300 switch (sw104-0), or Gigabit Ether

net lO00MB/ Sec using a Cisco Catalyst 4006 for switching (G-sw104-0). This Gigabit

switching is actually carried out by the deanstsrl Catalyst 4006 with appropriate ports on

it made into a separate logical partition through Virtual Local Area Networks (VLANs) .

The amount of traffic otherwise handled by deanstsrl is so low that we consider there to

be no possible side-effects of this dual role for the one physical box - 6 months of SN MP

monitoring failed to produce a utilization figure (in CPU or switching bandwidth) above

4%. The major traffic occurs solely within the confines of subnet 147.143.104.0/24, so does

not additionally suffer from the performance of the links in the Informatics network and

backbone (147.143.102.0/24). The gigabit switching is carried out over 50 meter long ca

bles from the experimental machines, but all connections were tested complete and showed

matched , consistent performance and no errors. A brief discussion of whether long cables

makes a difference is included in Appendix A.

102

Chapter 6 Experimentation

Figure 6.2: Experimenta l Setup showing Rendering Nodes (see also page 172)

103

Chapter 6 Experimentation

Test Application

Experimental performance is always going to be affected by the application chosen to

demonstrate that performance. We are restricted by the experimental hardware available,

but our absolute need is to provide a representative and real-world study. In particular, our

main experimental apparatus does not support hardware rendering of OpenGL data and

this will restrict the performance obtained. We also have a requirement to establish good

baseline performance so that the implications of changes to variables can be well observed.

As a result, we have chosen a test application that involves relatively little texture data

and places variable geometry demands on the graphics pipeline. The application is Roller

Coaster 2000 by Plusplus [86], which is a C/ OpenGL roller coaster ride animation in which

the roller coaster tracks are drawn using different levels-of-detail as per their distance

from the 'camera'. The roller coaster tracks are mathematically defined by control points

and tangents, and so are programmable and repeatable. The speed variation (within the

simulation) and variable rate of graphics commands will produce an ideal situation for

monitoring the pipeline performance in both situations and for observing effects such as

stutter. The jgViz system should be able to support any OpenGL 1.5 compliant application

due to Chromium's API compatibility. Community experience shows, however, that some

applications do things in unexpected ways and require some 'tweaking' in order to make

them work.

Test Conditions

All experimental results are taken in a fully-deployed jgViz system. All resource discovery is

performed using the Grid Index Service, all job launching is carried out through the Globus

Resource Allocation Manager, all file transfer with the Grid FTP service, all graphics work

is handled through a standard Chromium installation and all user interaction is with the

jgViz client. Measurements are taken multiple times in two separate sittings. Variation in

results obtained, such as frame rate, is alleviated by the measurements being taken at the

same set stages of the looping Roller Coaster demonstration run, with the default 'rc2k.trk'

roller coaster track, and then averaged.

6.3 Experimental Procedure

There are many measurements that can be taken when involving multiple machines in a

distributed manner. There has been work in measuring the performance of Chromium style

104

Chapter 6 Experimentation

graphics pipelines, including in [16] . However, testing the jgViz system itself is more difficult

due to the Grid middle-layer architecture and the very fact that part of jgViz is aimed at

alleviating some of the possible performance problems in such an environment. So, we focus

on evaluating the additions to the process of using distributed graphics pipelines provided

by jgViz. Effectively this is the scalability of the jgViz setup system - specifically, the parts

that initiate graphics pipelines and the parts that then take responsibility for keeping them

healthy. In establishing this, there are two principal metrics. Firstly, the monitoring cycle

time, which is the time to complete a single monitoring run of all pipeline nodes, given

by instrumenting the monitoring thread (see Appendix B for a discussion of the GUI) to

record the time when it begins to update its load and ping metrics for each node, and then

to record and calculate the time duration taken after a single update of each node. The

monitoring cycle time reflects on the 'behind-the-scenes' quality of whether jgViz is able

to assess the pipeline nodes frequently enough, and thus trigger an event quickly when

the pipeline needs attention. Secondly, the reschedule time, which is the time duration

between an event triggering to show a pipeline as no longer operating optimally, and it

being stopped, rescheduled (including updating node metrics) and restarted on a new set

of machines. This value measures the practicality of the jgViz monitoring/ rescheduling

system. Judging whether the stage in between these two metrics - the decision of whether

a pipeline is 'good enough' - is adequate in itself is not straight forward. This will be tackled

as a process of optimizing the monitoring parameters jgViz makes available, although fine

tuning may still be needed for a particular, different, network infrastructure. Additionally,

in assessing the broad-picture performance, the frame-rate is relevant. At a more technical

level, CPU, memory and network statistics will be taken for each of the types of nodes

involved in a pipeline to allow us to analyse where the limitations lie. The four types of

nodes are:

The client node - that on which the jgViz client runs.

The application node - that on which the application is hosted by the Chromium appli

cation faker.

Rendering slave nodes - those that take in GL commands, perform them (i.e. render

them) and then either display the results locally (tiled pipelines) or read back the

results and send it over the network to a compositor node (readback pipelines).

The compositor node - the node that takes in multiple rendering streams, reassembles

them and displays them locally (readback pipeline only) .

105

Chapter 6 Experimentation

The low level metrics are as follows:

CPU User Time (%) - percentage of CPU time spent on user calls.

CPU System Time (%) - percentage of CPU time spent on system calls.

CPU Wait 10 Time (%) - percentage of CPU time spent waiting on Input/Output sub

systems.

CPU Idle Time (%) - percentage of CPU time spent idling.

Memory Used (bytes) - amount of memory used over and above base Operating System

level.

Network RX (bytes/second) - bytes received per second via the Ethernet network.

Network TX (bytes/second) - bytes transmitted per second via the Ethernet network.

6.4 Base Results

6.4.1 Monitoring Cycle Time

As with the previous comparison of round-robin and concurrent monitoring strategies (see

chapter 4) , we have instrumented the jgViz client's pipeline runtime code to output a

number of statistics, including the monitoring cycle time. It is particularly important that

this metric scales well, due to the fact that the entire rescheduling process's efficiency

depends on it.

The results for tiled and readback pipeline configurations (shown in figures 6.3 and 6.4)

are, understandably, fairly similar. In both cases, we see that Gigabit Ethernet scales better

as the node count increases. The higher low-end result is due to the fact that a readback

pipeline implicitly has one more node to be monitored (the compositor node) and that this

node would typically be busier than any of the slave network nodes. It is also noteworthy

that the Fast Ethernet results scale very-close to linear, suggesting that a network overhead

does not impinge at the low-end in the same way that it seems to with Gigabit Ethernet,

where the scaling is a definite shallowing curve, Broadly, these results are independent of

the network speed due to the low volume of data being handled. It is more likely that

contention for the network due to coincidences in timing (i.e. two monitoring requests

106

Chapter 6 Experimentation

425
400
375
350
325

ci;- 300

-S 275
aJ 250
-~ 225
f- 200
Q)

c3 175
6 150

125
100
75
50

25
0

4 8 12 16

Number of Nodes

Figure 6.3: jgViz Monitoring Cycle Time for Tiled Pipeline over Fast and Gigabit Ethernet

Networks

375
350
325
300
275

ci;- 250 E
-; 225
E 200
F 175
Q)

c3 150
>,

U 125
100

75
50
25
0

4 8 12 16

Number of Nodes

Figure 6.4: jgViz Monitoring Cycle Time for Readback Pipeline over Fast and Gigabit

Ethernet Networks

107

Chapter 6 Experimentation

25

22.5

20

U) 17.5
0..
LL - 15
Q)

ro 12.5 a:::

~ Q)

E 10 M
co ...

LL 7.5

5

2.5

0
4 8 12 16

Number of Nodes

Figure 6.5: jgViz Frame Rate on Tiled Pipelines over Fast and Gigabit Ethernet Networks

being sent for different machines simultaneously) would be a problem . This may explain

why the Gigabit result scales better to 16 nodes as it takes less time to send the sma ll

amount of data in the request (compared to Fast Ethernet), and so is less likely to coincide

with another request being sent.

6.4.2 Frame Rate

As previously mentioned, the frame rate is certainly relevant to the operation of a visualiza

tion and so deserving of attention here. The specific details of taking such a technology and

putting into a distributed computing environment means that we wi ll see less performance

and more variation than in a more tightly-knit setup.

Providing a consistent and fast enough frame rate is important for interactive visualization.

This is always going to be difficult to achieve within a distributed computing environment.

Frame Rate is particularly sensitive to change in the two major variables of pipeline type

and network speed. Of interesting contrast shown in figures 6.5 and 6.6, however, is

the differing trends seen. Tackling ti led pipelines first, both Fast and Gigabit Ethernet

networks provide reasonably consistent drop-offs in performance as the number of nodes

increases. The shallower drop-off in Fast Ethernet performance indicates that the network

is becoming a limiting factor at the application node (where the scene is split and sent to

108

Chapter 6 Experimentation

6.5

6

5.5

5

<ii 4.5 c..

------------LL 4 -Q)
3.5 ro

a::: 3
Q)

E 2.5
ro

2 LL

1.5

0.5

0
4 8 12 16

Number of Nodes

Figure 6 .6: jgViz Frame Rate on Readback Pipelines over Fast and Gigabit Ethernet Net

works

the render slaves) at a fairly low number of nodes (i.e. the lOOMb/ Sec available bandwidth

becomes saturated , even though the machine itself can provide far more data). Gigabit

Ethernet results show more severe drop-off a lthough whether this is due to network or node

limitation is unclear. The difference between Fast and Gigabit performance is also observed,

and Gigabit certainly gives acceptable performance. Readback results are interesting. Here,

the difference between the two network technologies is more pronounced. Fast Ethernet

performance starts poor and gets worse. Gigabit performance is far from good , but actually

improves as more nodes become available. This is indicative of network limitations, but in

a more distributed manner than in the tiled pipel ine case. In considering results for any

rated speed of network, we need to remember two things - that the actual performance

is likely to be different, and that performance over a duration of a second is not defined

well enough for a visualization running at a rate in excess of several frames per second.

However, the performance of Fast Ethernet readback being so close to 1 frame per second

is indicative of a clear network limitation. Gigabit performance shows slight improvement

with increasing number of nodes, indicating that the lowering amount of work being done

by each render node reduces the overhead of data that has to be transferred between any

two hosts (render slave and compositor) . As an overa ll view, it seems fair to conclude that

readback performance would benefit greatly from improved network performance, both in

latency (where each frame component is subject to the network latency twice - once from

application node to render slave and then from render slave to compositor) and bandwidth

109

Chapter 6

80
75

70

65

en 60
-; 55

E 50
i= 45
Q)

:5 40
~ 35
13 30
~ 25

0:: 20

15
10

5

0

Experimentation

~

.-' _,,,,
~~

~~

/ ~
~
~

4 8 12 16

Number of Nodes

Figure 6.7: Pipeline Reschedu le Time of Tiled Pipeli nes over Fast and Gigabit Ethernet

Networks

(getting as many frame components from a number of render nodes to a compositor node

all as simultaneously and instantaneously as possible).

6.4.3 Pipeline Reschedule Time

One of the fundamental jgViz functions is to provide reliability and consistency in the

pipeli ne through monitoring and rescheduling of it. Rescheduling presents its own prob

lems, particu larly in a distributed Grid environment trying to provide interactive, real-time

graphics. An overhead of all the security components in the Grid protocols is that job

launching takes a certain amount of time. There is little that can be done to reduce this

without compromising the protocols themselves . Parallelism in job launching may help,

but the balance of processing and communication required by the security components of

job launching limit the use of this approach without increasing the jgViz client machine

capacity. So, this is an important metric of jgViz's performance as it references directly

how jgViz itself works.

Reschedule time scales linearly as we would expect. In both tiled and readback setups, there

is approximately 40 seconds of overhead, as shown in Figures 6.7 and 6.8. This is due to the

stopping of the old pipeline that is running (involving stopping the mothership and ki lling

the application via Grid jobs), the time spent refreshing metrics data on available nodes,

110

Chapter 6

85
80
75
70

en 65
-so
~ 55
i= 50
(I) 45

~ 40

1 35
~ 30
&_ 25

20
15
10

5
0

___. ------......

4

Experimentation

~ ----~ / ~

./ ~
/ ~

/ ~ --

8 12 16

Number of Nodes

Figure 6.8: Pipeline Reschedu le Time of Readback Pipelines over Fast and Gigabit Ethernet

Networks

transfer of the new mothership configuration to the new mothership and the launch of both

the new mothership and application nodes. The time taken for these tasks to be carried out

remains broadly constant as this 40 second period . The additiona l few seconds on this initial

overhead in a readback pipeline is due to the additiona l compositor node being launched

at each sca le, no matter how many network nodes are involved. The differing results then

seen on top of this are for different numbers of network nodes to be launched. The slight

d isturbance seen in the Fast Ethernet resu lts relative to the very-consistent Gigabit results

is due to the fact that the nodes involved in the pipeline are more likely to be network

limited with Fast Ethernet .

6.4.4 Low-Level Statistics

Having discussed some of the higher-level performance results and speculated over possible

causes thereof, it is appropriate to investigate some of the low-level causes of this behaviour

and, thus, better characterize the issues faced in distributed graphics pipelines . We begin

by observing the CPU util ization statistics for the various node types with the two network

speeds as part of the tiled pipeline type.

111

Chapter 6

60

55

50

45

~ 40
..__,,
C 35
0

:;:::; 30 C1l
.!:::l

25 :;:::;
::>

20

15

10

5

0
4 8 12 16

Number of Nodes

Experimentation

'-. 100-User

'-. 100-System

'-. 100-ldle
'-. 100-WIO

'_ 1000-User

1000-System

1000-ldle

'-. 1000-WIO

Figure 6.9: CPU Statistics for Client Node Monitoring Tiled Pipeli ne over Fast and Gigabit

Ethernet Networks

CPU vs Network Speed

The cl ient node gives reasonably pred ictable results, as shown in Figure 6.9. As the number

of nodes being monitored increases, t he idle time reduces and the wait 10 time increases,

reflecting the increased network traffic being seen. Likewise, the system time increases and,

at its much more significant 45% levels, reflects just how tied to network communication

the jgViz client's monitoring is. That the user time remains reasonably consistent implies

that the jgViz code itself scales reasonably wel l, but t hat the communication overhead

restricts the test environment to monitoring some 35-45 nodes.

The application node is responsible for splitting up the graphics scene and sending it out to

the render slaves. Figure 6.10 shows the differing user t ime behaviour in Fast and Gigabit

networks. The limitations of the l00MB/ sec network for more t han four nodes actually

reduce the user load on the application node as it is, in effect, required to generate less

frames (and t hus do less work) in order to keep the later-stage 'pinch-point' fu lly occupied .

In contrast, we see that the l000MB/ sec network provides increased capacity for the pipeline

beyond four nodes, with reducing idle time and increasing wait 10 and system time. This

wou ld lead to a limitation of up to 30 nodes or so in this network environment.

112

Chapter 6

80
75
70
65

I'...
............

60
...-.. 55

0

~ 50
C 45 0

:.=; 40 cu
.t::! 35
:.=;

30 =>
25
20
15
10 --=

5
0

4

............
-..........__

--........
"-...

"-.....
~

__,,.,.,., _..,,.,

----~

. .

-
I

8 12 16

Number of Nodes

Experimentation

'\. 100-User

'\. 100-System

'\. 100-ldle

100-WIO

'\. 1000-User

1000-System

'\. 1000-ldle

'\. 1000-WIO

Figure 6.10: CPU Statistics for Application Node as part of Tiled Pipeline over Fast and

Gigabit Ethernet Networks

100

90

80

~
70

0 -- 60
C
0

:.=;
cu 50
.t::!
:.=; 40
=>

30

20

10 ---0
4

I ·1

8 12 16

Number of Nodes

'\. 100-User

'\. 100-System

'\. 100-ldle

'\. 100-WIO

'\. 1000-User

1000-System

1000-ldle

'\. 1000-WIO

Figure 6.11: CPU Statistics for Slave Rendering Node as part of Tiled Pipeline over Fast

and Gigabit Ethernet Networks

113

Chapter 6 Experimentation

The statistics for the individual slave rendering nodes, seen in Figure 6.11, show the idle

time for each node increasing as more nodes are made part of the pipeline. This is due to

the fact that each node has less overall work to do as it receives a smaller chunk of the

scene to render and the frame rate lowers. The relative difference between the idle time

and the other three CPU metrics implies that a more complicated visualization could easily

be used. However, our test equipment would not suit this well due to the software GL layer

used on the slaves through MesaGL, and the fact that we may then restrict our ability to

observe effects on the application and compositor nodes.

CPU vs Pipeline Type

To observe the effect that the pipeline type has on CPU utilization , we study the relevant

nodes (with the extra node of the compositor in a readback pipeline) in a Gigabit network

only. Previous observations make it clear that doing so in a Fast Ethernet network would

not produce truly realistic figures for the CPU due to the network bottle-neck. Whilst the

network may still be the overall limiting factor with use of Gigabit Ethernet (due to it as a

technology rather than saturation in a certain part), the scalability can be shown alongside

actual performance data.

The effect of monitoring a readback pipeline as opposed to just a tiled pipeline is largely

that of simply monitoring an additional node (see Figure 6.12). System time increases with

more nodes and idle time reduces whilst user time remains very similar, reflecting increased

network utilization. Wait 10 time is insignificant in both pipelines and, indeed, it should

not vary for the client node.

The application node (see Figure 6.13) gives very different scalability characteristics. In

terms of idle time, it can be seen that a tiled configuration consistently decreases whereas a

readback configuration decreases and then increases again as the number of nodes involved

rises. This is due to a bottle-neck further down the pipeline that only becomes apparent

with the extra requirements of a readback pipeline over a tiled instance. It can also be

seen that the idle and wait 10 times are closely linked for the tiled and readback pipelines.

System and user time in both pipelines increase linearly and without note, as we would

expect as the amount of data the application node is generating, splitting and sending does

not radically change in size, only in the way it is partitioned.

The slave render nodes (Figure 6.14) show increasing idle time in those pipelines with more

nodes, causing a drop in frame rate. That readback really suffers with the increasing node-

114

Chapter 6

60

55

50

45

~40
0 ..._.,
C: 35
0

:.;::::; 30 co
.!::! 25 :.;::::;
:::)

20

15

10

5

0
4 8 12

Number of Nodes
16

Experimentation

"- Tiled-User

"- Tiled - System

' Tiled - Idle
' Tiled-WIO

"- Readback - User

Readback - Sys
tem

Read back - Idle

' Read back - WIO

Figure 6.12: CPU Statistics for jgViz Client Node monitoring a Gigabit Ethernet Network

providing both Tiled and Readback Pipeline Types

90 ~ ---------------
85 -1-~ ----------------,,~ =
80 +--~c----------=- e::::.._ __ _
75 +----~ - -----,,~ =--------
70 +-....:,,,,,c---------------
65 +---....:,,,,,..,-_ _________ _

~ 60 -+---- - ~ -...::,---------
0
..._., 55 +--------~--=------ -
§ 50 +------------=:,,,,..,..::,----
~ 45 -1--------- ------=_,_-
.!::! 40 +-- -------------
:.;::::; 35 -1---------------:::)

30 +----------------
25 -1--------- ---=-"""""---
20 +-----=---~~---- -
15
10
5 _i:;:.:::::..._ ______ """""',..,,,,,,:~:::::==

0+-----~- ---~----~
4 8 12 16

Number of Nodes

"- Tiled - User

"- Tiled - System

' Tiled - Idle
' Tiled-WIO

"- Readback - User

Readback - Sys
tem

' Readback - Idle

' Readback - WIO

Figure 6.13: CPU Statistics for an Application Node as part of a Gigabit Ethernet Network

providing both Tiled and Readback Pipeline Types

115

Chapter 6

100

90
~

80

- 70
~ 0,

60
C:

~

0
:.= co 50
-~
:.= 40
:::,

30
r-,.....__

20

10 r--

0
4

-

~ -
I I

8 12 16

Number of Nodes

Experimentation

'\. Tiled - User

'\. Tiled - System

'\. Tiled - Idle

'\. Tiled - WIO

'\. Readback - User

Readback - Sys
tem

Readback - Idle

'\. Readback - WIO

Figure 6.14: CPU Statistics for a Slave Node rendering as part of a Gigabit Ethernet

Network providing both Tiled and Readback Pipeline Types

count is clearly shown by the peak in user time being at t he lowest number of nodes. This

sharp fall is in contrast to the tiled setup in which user time peaks at 8-nodes and only

suffers a steady drop-off after that.

Compositor performance (Figure 6.15) shows peak-efficiency at the 8-node count. It is

also clear from the time spent in wait 10 relative to the time spent in user and system

processing, that the network latency is a problem here. It seems reasonable to suggest that

the hardware graphics card present in our compositor node is responsible for part of the

lowness of the load here and, as we have seen that the rendering slaves are not bottle-necks

above, and that the network is the cause of the slow down in the pipe in getting the rendered

t iles back to the compositor quickly enough . This would concur with the high wait 10 time

observed, which is caused by t ransmission of data.

Network Traffic

As previously observed, there are two types of limitations with the network. Firstly, there

is the capability of the network technology standard available. For example, there is an

116

Chapter 6

65

60

55

50

,_ 45
~
~40
C
0 35

:.:::;
ro

.!:::! 30
:.:::; 25
:::J

20

15

10

5

0

c-

L---"

~

4

-- -

I

8 12

Number of Node

I

16

Experimentation

'-. Tiled - User

'\. Tiled - System

'\. Tiled - Idle

'-. Tiled - WIO

'\. Readback - User

Readback - Sys
tem

Readback - Idle

'\. Readback - WIO

Figure 6.15: CPU Statistics for the Compositor Node in a Gigabit Ethernet Network pro

viding both Tiled and Readback Pipeline Types

implicit latency overhead associated with any network technology. Secondly, there are the

limitations of any network environment, including cabling and switching. Having a Gigabit

Ethernet network does not guarantee that we will be able to transfer 1 Gigabit of data per

second from or to a machine. In addition, it is worth noting that a graphics pipeline is

only as strong as its weakest part and that, with a distributed setup, this places a great

requirement on the networking involved in connecting the pipeline components.

We have performed some initial testing with netperf 1 that show the data transfer levels

we have been able to get, as shown in table 6.1. The bandwidth tests represent sustained

transfer between three different sets of machines in the slave test group for durations of

one hour. We have also used ICM P Echo packets via ping to establish network latency over

an hour-long duration.

1http://www.netperf . org/netperf/NetperfPage .html

117

Chapter 6

Network

(Mbits/ Sec)

Fast 100

Gigabit 1000

Technology Real-World

(Mbits/ Sec)

193.93
269.00

Experimentation

Speed Latency (us)

Table 6 .1: netperf and ping measured real-world network data transfer rate

11000000

10000000

9000000

- 8000000
(.)

,,
Q)
Cl) --Cl)

7000000
Q)

>- 6000000
..c

5000000 (.)

li=
4000000 (1J

I-
3000000

2000000

1000000

0
4

/

/
/

I I

8 12

Number of Nodes

I

16

'\. Client RX

'\. Client TX

'\. App RX
App TX

'\. Slave RX

'\. Slave TX

Figure 6.16: Network Traffic seen by al l node types in a Fast Ethernet Network providing

a Tiled Pipeline

These results tie in with what we would expect given the differences between the two

Ethernet networking technologies. The bandwidth achieved by the Gigabit link is somewhat

less than we would expect, but is still large enough to not be a problem with the number

of nodes we have avai lable and is sensible. Going above 16 nodes produces a situation

where other limitations regarding processing the graphics stream come to the fore - such

as performing the computation involved in partitioning a scene into multiple tiles. At such

node levels, limited bandwidth is not the problem we will encounter. In attempting to

understand the va lues regarding latency, we have performed a short study of the Fast and

Gigabit Ethernet standards in Appendix A.

118

Chapter 6

25000000

22500000

20000000

- 17500000 (.)
Q)
en
--- 15000000 en
Q)
+-'
>,

12500000 .c -(.)

!E 10000000
co
f- 7500000 I/

5000000

2500000

0
4

~
~

/
/

/

I

8 12

Number of nodes

I

16

Experimentation

'\. Client RX
'\, Client TX

'\. App RX

App TX
'\. Slave RX
'\. Slave TX

Figure 6.17: Network Traffic seen by all node types in a Gigabit Ethernet Network providing

a Tiled Pipeline

Figures 6.16 and 6.17 present the usefu l contrast of the two network technologies we have.

We note that the Fast Ethernet resu lts indicate that the network at the application node

becomes saturated with a fairly low number of nodes being sent to by the application

node. The Gigabit resu lts allow us to see that this occurs at approximately 5 nodes and

that the increase in the applications node's transmitted data begins to slow down at 8

nodes. At the same time, we see that traffic being received by the render slaves is reducing.

This is particularly apparent with Fast Ethernet as the same amount of bandwidth is split

between increasing numbers of nodes, but is also apparent with Gigabit. These statistics

broadly agree with the results seen for CPU statistics (figures 6 .12, 6.13 and 6.14) with the

application node idle time reducing and then beginning to ever-so-slightly level off. We can

easily determine the area of peak data transfer in this pipeline as being the transmission

from the application node to the render slaves.

With this knowledge in hand, it seems reasonable to hypothesise two things: firstly, that

the Gigabit tiled pipeline's application node was beginning to encounter delays from the

network as its bandwidth utilization approaches the rea l-world limits - 22.5 M Bytes/ Sec

= 180M Bits/ Sec - within the above mentioned idea that a second is a long time in a

multi-frames-per-second visualization; and secondly, that the fact there is still some room

119

Chapter 6

5500000

5000000

4500000

-- 4000000
(.)
Cl)
(/)

en 3500000
Cl)

3000000 ->.
..c - 2500000 (.)

!i= co ,_ 2000000
I-

1500000

1000000

500000

0

~ = ----
I

4 8

Number of Nodes

-

12

'\. Client RX
'\. Client TX

'\. App RX
l '\. AppTX
'\. Slave RX

Slave TX

Experimentation

'\. Compositor Rx
'\. Compositor TX

Figure 6.18: Network Traffic seen by all node types in a Fast Ethernet Network providing

a Readback Pipeline

for increase implies the physical limitations of the system in non-network-bandwidth terms

have been reached, as discussed above.

The readback pipeline result s shown in figures 6.18 and 6.19 give very sim ilar shaped results

for both network speeds. The fact t hat the Fast Ethernet network is not nominally saturated

(at less than 5.SMBytes/ Sec) does not consider the dua l transit over the network now being

taken for each frame to be displayed on the compositor node. With the latency for each

frame being incurred twice, the amount of data involved in transporting rendered pixels

back to the compositor is a clear limitation in the very bursty data transfers implicit in

a frame-by-frame visua lization. A different application would give a different relationship

between the application node's transmitted data rate and a render node's transmitted rate

(i.e. geometry data vs pixel data) - in particu lar, the heavy use of texture data would have

a large impact on its initia l distribution from the application node. T he higher bandwidth

of the Gigabit network improves the peak performance to the 8-node marker from the much

lower va lue in the Fast Ethernet network, but fundamental ly lacks the performance to make

readback truly interactive.

120

Chapter 6

24000000

22000000

20000000

- 18000000
(.)
Q) 16000000
(/) --(/)

14000000 Q)
>,

12000000 .0 --(.) 10000000 ij::
ro

8000000 L..

I-
6000000

4000000

2000000

0

~
1,..----

4 8

Number of Nodes

-

12

' Client RX
' Client TX

' App RX
' App TX
, slave RX

Slave TX

Experi men ta tion

'- Compositor Rx
'- Compositor TX

Figure 6.19: Network Traffic seen by all node types in a Gigabit Ethernet Network providing

a Readback P ipeline

6.4.5 Network Congestion Effects

It is clear that jgViz distributed graphics pipelines are most sensitive to network issues. It is,

therefore, prudent to look into the effects of congestion in different parts of the network. To

establish an understanding of this, we have repeated the measurements from the previous

section with network congestion in p lace. In order to establish as wide a view as possible,

we have on ly carried this out for tiled pipelines, since that is where performance is not so

lacking a lready that seeing the impact of the network congestion would be difficult. We use

Gigab it networks and not Fast Ethernet, as the lOOM B/ Sec also does not provide enough

performance. In order to congest the network, we simply use netperf on an additiona l (non

pipeline) machine and bombard the point of network congestion with a bandwidth test.

We are not interested in the results of the test as we on ly require it to congest the network

for the period of time when the application is running. We therefore run netperf with an

arbitrarily large duration and quit it when we no longer need it. The network congestion

simply takes the form of a high-traffic but low-overhead application . TCP was used rather

than UDP, as it is imagined that most future applications wi ll use TCP in a Grid as they are

unlikely to be fai lure-tolerant. This produces some load on the processor of the machine

in handling the sheer number of interrupts that will have to be serviced. However, having

121

Chapter 6

1100

1000

900

800

en 700

s 600
Q)

E 500
F

400

300

200

100

0
4 8 12

Number of Nodes
16

, Cycle Time Normal
(ms)

, cycle Time
Congested (ms)

Experimentation

Figure 6.20: Client Monitoring Cycle Time in Gigabit T iled P ipeline with Congested Client

Node

processors as fast as the 3.2GHz-rated Ath lons limit these problems, even if the front-side

bus speed is so much smaller and no matter how t he network software driver is setup to

req uest interrupt service from t he CPU .

Across a ll this new experimentation , it was observed that no noticeable memory differences

occurred from the standard resu lts above and t hat the statistics for nodes not being directly

congested only varied in the downward d irection . We t he refore do not revisit those results

a lready discussed as part of t he non-congested experimentation .

Congesting t he Client

The jgViz cl ient machine in a pipeline does not usua lly receive a substantial amount of data.

The level of uti lization associated wit h monitoring the mach ines involved in the pipeline is

relatively sma ll.

Figures 6.20 and 6.22 show clearly how detrimenta l the network congestion can be to

the jgViz client 's ma in functions. T he fact that the monitoring cycle time increases so

dramatically represents t he fact that it is a lighter load than the actua l reschedu ling process,

which suffers significantly but consistently. Figure 6.23 shows us that the reason for this as

being vastly increased system and wait 10 CPU time proportions over the non-congested

122

Chapter 6

25

22.5

20

'en 17.5
Q.
!::, 15
(l)

m
L.. 12.5
(l)

E 10
ro
u: 7.5

5

2.5

0
4 8 12

Number of Nodes
16

, Frame Rate
Normal (FPS)

, Frame Rate
Congested

Experimentation

Figure 6.21: Visualization Frame Rate in Gigabit T iled Pipeline with Congested Client Node

85
80
75
70
~

65
60
55

0: 50
(l) 45
E 40
F 35

~

~

30
25
20
15
10

5
0

4

~ __,,,.
~

~

I

8 12

Number of nodes

-
~

16

, Reschedule Time
Normal(s)

, Reschedule Time
Congested(s)

Figure 6.22: Reschedu le Time for a Gigabit Ti led Pipeline with Congested Client Node

123

Chapter 6

55

50

45

40 -~ 0 35 ._,.
C

30 0
:;:;
co

25 -~
:;:;
=> 20

15

10

5

0
4 8 12 16

Number of Nodes

Experimentation

, User Normal (%)
, User Congested

(%)

, System Normal
(%)

System Congested
(%)

, WaitlO Normal (%)

WaitlO Congested
(%)

, Idle Normal (%)

, Idle Congested (%)

Figure 6.23: Client CPU Statistics in Gigabit Tiled Pipeline with Congested Cl ient Node

850000
800000
750000
700000

"-

" " 650000
u 600000
(I)

550000 ~
Cf) 500000 (I)

>, 450000
@, 400000
(.) 350000 !i= co 300000 ...
I- 250000

200000
150000
100000
50000

0
4

~

"' ~

"--"""'"

8 12

Number of Nodes

~

-

16

' TX Normal (8/S}
, TX Congested

(8/S}

Figure 6.24: Client Transmitted Network Traffic in Gigabit T iled Pipeline with Congested

Client Node

124

Chapter 6

37500000
35000000
32500000
30000000

I,

" u 27500000
(I) 25000000

(./) -- 22500000 (/)
(I)
>, 20000000
Ee.. 17500000
(.)

15000000 ~ co 12500000 L.

f-
10000000

7500000
5000000
2500000

0
4

./

" ../ ,~

8 12

Number of Nodes

/

16

' RX Normal (B/S)
, RX Congested

(BIS)

Experimentation

Figure 6 .25: Client Received Network Traffic in Gigabit Tiled Pipeline with Congested Client

Node

(normal) setup. The system time increase represents servicing of interrupts associated with

the bombardment of incoming traffic whereas the wait 10 time increase is associated with

the delays now occurring with transm itting data due to the level of data being received.

The increased rate of decrease in user time ava ilable a lso shows what can be a significant

effect on the non-10 related e lements of the jgViz client node (such as those calcu lating the

moving short and long term averages) . However, figure 6.21 shows that the performa nce

of the graphics pipeline itself is not massively affected . Indeed, the seemi ng ly unrelated

nature of the client and the running pipel ine suggests that this is a combination of two

th ings. Firstly, that we may be seeing effects of network switching equipment saturation (a

Gigabit switch may or may not be able to simu ltaneously switch mu ltiple channels at fu ll

rate) . Secondly, that the pipeline member nodes may be slowed slightly by a very small

increase in the time it takes them to get an answer to a q uery back to the mon itoring

jgViz client due to the network satu ration on the client node. T he network statistics for

the client (figures 6.24 and 6.25) show the relative differences between the congested and

non-congested situations. In terms of the transmitted data , t he increase seen is d ue to TCP

acknowledgements having to be sent. However, the proportiona l increase here is viewable

and the amount of transmitted data is sti ll not so much as to significantly contribute. The

received data shows the network saturation that has occurred and that this is very much

greater than in the non-congested state . In both graphs, we see a clear fa ll-off at the

8-node mark before ' recovery' back to the high-level at t he 16-node mark. This appears

to be related to t he processor util ization seen in figure 6 .23 and the major transfer from

125

Chapter 6

375~-------------
350--i-----------------::;-
325 +-------------=--=---
300 +-----------,~ .,,,,,.- ---
275 +-------7"'!....,,'----------
250 +------z!:;il"""--------

ui' 225 +-------,,j~ --------
-S 200 +------;!t,----------
Q) E 175 +------.,_ __________ _

F 150 +-,,-------------
125 ----------------
100 +--------- -----

75-+--------------
50+--------------
25-+------- - --- ---
0 +-------,-----~-----,

4 8 12 16

Number of Nodes

, Cycle Time Normal
(ms)

, cycle Time
Congested (ms)

Experimentation

Figure 6.26: Client Monitoring Cycle Time in Gigabit Tiled Pipeline with Congested Appli

cation Node

idle-time to system-time seen at this point. We would hypothesize that this is caused

by some operating system behaviour related to the network stack - perhaps the 'collision'

factor between transmit and receive reaches a certain level.

Congesting the Application

The application node in a jgViz running pipeline will only normally be transmitting data to

render slaves. Depending on the processing requirement of the application, the complexity

and volume (in both geometry and texture data) of the graphics output and the splitting

of the graphics that has to be performed, the application node's processing elements are

likely to be the busiest in the entire pipeline. As the performance of the application and

its graphics element is the defining quality of pipeline performance, the effect of network

congestion at the application node is particularly relevant to the entire jgViz experience.

Figure 6.26 shows that network congestion at the application node does nothing to affect

the monitoring cycle time of the client. The application node is still able to answer network

requests (i .e. of its GRIS LDAP server for performance data) sufficiently quickly that no

noticeable difference is made to the client. However, figure 6.28 shows how the more in

tense task of rescheduling a pipeline is affected more, if still not tremendously significantly.

This will be caused by contention for the network into the application node between the

126

Chapter 6

25

22.5

20

'Ji 17.5
a..
LL 15 -.$
Cll 12.5
(I)

E 10
Cll

LL 7.5

5

2.5

0
4 8 12

Number of Nodes
16

, Frame Rate
Normal (FPS)

, Frame Rate
Congested

Experi men ta tion

Figure 6.27: Visualization Frame Rate in Gigabit Ti led Pipeline with Congested Application

Node

85
80
75
70
65
60
55

§: 50
(I) 45
E 40
F 35

30
25
20
15
10
5
0

__,_
~-./

~ ~ __, ~ ~.----
~ .,/

././
,,,./

4 8 12 16

Number of Nodes

, Reschedule Time
Normal{s)

, Reschedule Time
Congested{s)

Figure 6.28: Reschedule Time for a Gigabit Tiled Pipeline with Congest ed Application Node

127

Chapter 6

75

70

65

60

55

~ 50
0
__, 45
C
0 40 :;:;

-~ 35
:;:; 30
=>

25
20

15

10

5

0

--

-

-
~

4

/""
__,,/

I

8 12

Number of Nodes

-

16

Experimentation

'\. User Normal (%)

'\. User Congested
(%)

'\. System Normal
(%)

'\. System Congested
(%)

'\. WaitlO Normal(%)

I '-. WaitlO Congested
(%)

Idle Normal (%)

'\. Idle Congested (%)

Figure 6.29: Client CPU Statistics in Gigabit T iled Pipeline with Congested Application

Node

25000000

22500000

20000000

u 17500000
Q)

Cl)

---ti) 15000000
Q)
>, 12500000 @,
u 10000000 lE
C1l

7500000 f-

5000000

2500000

0
4 8 12

Number of Nodes
16

' TX Normal (B/S)
'-TX Congested

(B/S)

Figure 6.30: Client Transmitted Network Traffic in Gigabit Tiled Pipeline with Congested

Application Node

128

Chapter 6

27500000

25000000

22500000

u 20000000
Q)

~ 17500000
(/)
Q)

>. 15000000

£9, 12500000
(.)

IE 10000000 ro
i= 7500000

5000000

2500000

0
4 8 12

Number of Nodes
16

' RX Normal (B/S)
, RX Congested

(B/S)

Experimentation

Figure 6.31: Client Received Network Traffic in Gigabit Tiled Pipeline with Congested

Application Node

client trying to stop and start jobs, and the network congestion cause. Regarding pipeline

performance, Figure 6.27 shows the varied impact of the congestion . Here, network con

gestion introduces a definite unknown and unpredictable element. In comparison to the

same experimental results for the congestion of the client machine (figures 6.20, 6.21 and

6 .22) we see the expected result of the application node congestion having more effect on

the running pipeline (due to the fact that the application node is a fundamental part of the

pipeline whereas the client is merely an 'on-looker'). Figure 6.29 shows the change from the

non-congested situation of idle t ime transferring to wait 10 time as the number of nodes

increases, to the congested situation of these two statistics being very sim ilar. There is also

increased system time in the congested application node case, aga in due to the interrupt

servicing for the received network traffic. The changing balance of received vs transmitted

network data (see figures 6.30 and 6.31) in the congested network is reflected as delivering

consistent system and wait 10 CPU statistics whilst the user time is very similar to the

non-congested results. Observing this changing network balance, figure 6.30 shows us that

the congestion of the network input has very little effect on the network output from the ap

plication node to the render slaves . Although the network connection is running ful l-duplex,

figure 6 .31 shows t hat the received traffic on the congested application node reduces as the

number of nodes increases. T his is believed to be due to saturation of the interna l network

capabilities of this node, whether due to bus or network driver/ chipset limitations. Even as

part of a 16-node pipeline, the application node sti ll manages to receive over lO0Mb/ sec

129

Chapter 6

400
375
350
325
300
275

cii' 250
E., 225
Q) 200
E 175
F

150
125
100
75
50
25
0

4 8 12

Number of Nodes
16

, Cycle Time Normal
(ms)

, cycle Time
Congested (ms)

Experimentation

Figure 6.32: Client Monitoring Cycle Time in Gigabit Tiled Pipeline with Congested Render

Slave Node

of traffic, more than the Fast Ethernet ever did!

Congesting the Slaves

Comparing the results for the congested slave network to the congested application node

network produces its own intrigue. Figures 6.32 and 6.34 show the expected generally

slightly worse performance with poor performance at the low number of nodes in the

monitoring cycle measurements and good performance at the same number of nodes in the

reschedule time. Investigations to diagnose this minor difference have been inconclusive.

Figure 6.33 shows the total effect on the entire pipeline performance to be decreasingly

susceptible to a single node being on a converged network . This makes sense as the overall

frame rate drops and the requirements of an individual render node lower. The far larger

reduction in performance at low node counts certainly indicates that the congested network

affecting a higher relative proportion of the render nodes has a serious effect. This is the

situation that jgViz is designed to prevent before it becomes a serious issue. Figure 6.35

indicates the same order of wait 10 impact resulting from the network congestion as was

the case with the application node - slightly more in this case as there are less other tasks

to keep the machine busy on something else. Again, it is also seen that this increase in

wait 10 is directly related to the reduction in idle time while user time exhibits very little

change. System time increases in line with the network traffic also being received , a lthough

130

Chapter 6

25

22.5

20

- 17.5 (/)
a..
!::- 15
2

12.5 ro ...
Q)

E 10
ro ...

LL 7.5

5

2.5

0
4 8 12

Number of Nodes
16

, Frame Rate
Normal (FPS)

, Frame Rate
Congested

Experimentation

Figure 6.33: Visualization Frame Rate in Gigabit Tiled Pipeline with Congested Render

Slave Node

85
80
75
70
65
60

- 55
~ 50
rJ) 45
Q)

40 E
~ -

F 35
30
25
20
15
10

5
0

4

-~ -
~ ~

~ ~

/~-"'
~
~

~

I

8 12 16

Number of Nodes

, Reschedule Time
Normal(s)

, Reschedule Time
Congested(s)

Figure 6.34: Reschedu le Time for a Gigabit T iled Pipeline with Congested Render Slave

Node

131

Chapter 6

100

90

80

70 --::R. 0 - 60
C
0

:;::::;
co
-~

50

:;::::; 40
::>

30

20

10

0

...._
I

4 8 12 16

Number of Nodes

Experimentation

'\. User Normal(%)

'\. User Congested
(%)

'\. System Normal
(%)

'\. System Congested
(%)

'\. WaitlO Normal (%)

WaitlO Congested
(%)

'\. Idle Normal (%)

'\. Idle Congested (%)

Figure 6.35: Client CPU Statistics in Gigabit Tiled Pipeline with Congested Render Slave

Node

900000~-----------

850000 j ======:::~:::~~;; 800000
750000+------------
700000-1------------

u 650000+-----------
~ 600000 +-----------
ui 550000 +------------
~ 500000+------------
~ 450000
u 400000 +-- -------- --
~ 350000 +------------
~ 300000+-----------
I- 250000+------------

200000+------------
150000 +------------
100000 +------------
50000 ~ -----------

0 +-- --.----,------,
4 8 12 16

Number of Nodes

' TX Normal (B/S)
, TX Congested

(B/S)

Figure 6.36: Client Transmitted Network Traffic in Gigabit Tiled Pipeline with Congested

Render Slave Node

132

Chapter 6

37500000
35000000
32500000
30000000

u 27500000
(I) 25000000

Cl)

en 22500000
(I)
>, 20000000
e?, 17500000
(.)

15000000 b=
ca 12500000
f-

10000000
7500000
5000000
2500000

0
4 8 12

Number of Nodes
16

' RX Normal (B/S)
, RX Congested

(B/S)

Experimentation

Figure 6.37: Client Received Network Traffic in Gigabit Ti led Pipeline with Congested

Render Slave Node

these results genera lly show that it is both system and wait 10 time that increase due

to the converged network. It is safe to assume that the wait 10 increase is due to the

interruption in the graphics stream caused by the additional network traffic having to be

acknowledged . As a render slave does not have transmit responsibi lities in a tiled pipeline,

the traffic levels seen in Figure 6.36 confirm our previous postulation for the application

node being congested by the level of traffic generated in simply acknowledging the TCP

segments received . We know that this level of traffic, whilst relevant, does not significantly

affect the performance of a node. The data level received by the render slave (Figure 6.37)

is seen to decrease slightly as the node count increases, even though this machine is the

target of the network congestion. The larger node count means that the application node

is producing less traffic per slave and that the slaves are seeing a longer period of receiving

data for a single frame as the application node works harder. This causes a small rise in

the interrupts that the slave's processor must service (as seen in Figure 6.35) and a small

overall traffic reduction .

6.5 Optimizing jgViz's Monitoring and Rescheduling

Reliability and predictability of the running graphics pipelines are both managed by jgViz.

The monitoring and rescheduling functions of jgViz are linked by the decision-maker, which

133

Chapter 6 Experimentation

is responsible for deciding when the performance statistics gained through monitoring justify

triggering a reschedule. As previously discussed, this is critically dependent on a number of

user settings - size of long and short histories and the proportion of change between them

required to trigger an 'event'.

These settings are easily adjusted by the user, but need to be optimized as a default and

for the purposes of proving how well jgViz performs. Different technologies will require

changed values as the network and client node speeds increase and change the balance of

timings in the monitoring stage. This will depend more on the latency of such technologies

than the bandwidth they afford so Fast and Gigabit Ethernet are both going to exhibit

similar trends within their performance limits.

The process of optimizing is largely empirical and by learning through experience. The

principal difficulties are as follows:

1. The ' long-term history length' values (both latency and utilization) cannot be too

large as jgViz cannot begin comparing the short and long averages for either metrics

until the long-term buffers are full.

2. The 'short-term history length' values (both metrics) need to be long enough to

overcome brief, transient factors affecting the metrics.

3. The short and long history lengths need to be far enough apart to be representative,

and differ sufficiently.

4. The 'proportion change required ' parameters need to be set in concert with the history

length settings and should not be so low as to trigger a needless reschedule but should

not be so high as to not trigger when required.

The process of optimizing these values took several steps and we began with the following

values for our parameters, as simply a best initial guess:

• Short-History Load Length = 30

• Long-History Load Length = 180

• Short-History Net Length = 30

• Long- History Net Length = 180

134

Chapter 6 Experimentation

• Load Proportion Change Required = 80

• Net Proportion Change Required = 80

Experimenting with these settings in a relatively small setup (4-nodes, tiled on a single

LAN) showed that jgViz was too likely to reschedule after a fairly short duration, making the

pipeline somewhat 'brittle'. Observing the full debugging output from the jgViz monitoring

subsystem, we observed that this was primarily due to subtle variations in the network

latency that was quickly becoming a difference of greater than 80% in short to long average

comparison. Reconsidering this, it seemed logical that increasing the required proportion

change would be the best solution. Our initial investigation had not adequately considered

the case of the 'normal' loading on the slave nodes (under monitoring) being low such that

a small value change represents a great proportional change. We also observed, however,

that the small latencies of a network within a LAN (sub 1 millisecond) are very much more

susceptible to slight "bumps" here-and-there than load data from an operating system is,

due to the software layer of abstraction involved in reporting load data. Hence the following

increases to the proportion changes:

• Load Proportion Change Required = 200

• Net Proportion Change Required = 400

This gives a more balanced control of the pipeline. There are no unnecessary reschedules

due to normal network intricacies. However attempting to cause a reschedule by remotely

logging into one of the slave nodes and running a compute intensive task works, but takes

too long to trigger (in excess of 30 seconds). The solution to this is to shorten the short

and long buffer lengths. The short-term buffer length is key, but it makes sense to also

reduce the long-term buffer length if we can, in order to save memory (less significant) and

compute resource (slightly more significant) on the jgViz client performing the monitoring.

The changed values are:

• Short-History Load Length = 10

• Long-History Load Length = 60

• Short-History Net Length = 10

• Long-History Net Length = 60

135

Chapter 6 Experimentation

These are the final values that we found optimized the monitoring and rescheduling process.

Further adjustment of these values for individual setups can be made, but it is likely that

the smallest of changes to the surrounding network environment would mean they required

updating again. Given the relatively variable quantities being dealt with in different ap

plications and even in running things at different times, optimizing to such a level seems

pointless. Scalability to large numbers of nodes (beyond 32) will be limited by the capa

bilities of the jgViz client machine as the length of the montioring cycle time (time to gets

updates from all nodes) may become ineffectively large. In such a case, the above settings

could be optimized to reduce the downside of running the jgViz client on a less capable

machine than would be ideal.

6.6 Conclusions

In commenting on the experimental results we have seen, there are (as we would expect)

definite patterns. Generally speaking, tiled pipeline performance is decent whereas readback

performance is unacceptable. This is primarily due to the 'double-hit' of network latency

suffered in a readback pipeline. The length of the pipeline (in stages rather than cable

length) is the overwhelming factor. This ties in with considering the latency of Ethernet

as a network for distributed visualization. We find that Fast Ethernet is unsuitable for all

but the smallest and least-demanding of uses as it suffers the limitations of both latency

and bandwidth and simply cannot transport sufficient data around quickly enough. This is

in contrast to Gigabit Ethernet, which provides genuinely usable performance by exhibiting

shorter latency and enhanced bandwidth. We also see that readback pipelines in particular

suffer depending on the rendering hardware used. Reading pixels from a frame buffer is

a task for which there has been little optimization in past graphics rendering solutions

where the focus was to get pixels to the screen as fast as possible, not from it. Software

rendering and read-back imposes an additional constraint as hardware rendering has only

really received any optimization for the task in recent graphics processing units on the

new Pel-express interface. It is worth noting that the bandwidth limitations we observed

with the Gigabit Ethernet may be limited due to the hardware/software combination we

have. We have in the past seen three times the bandwidth achieved using a different

Gigabit network card on a less powerful system, but with official (vendor supplied) network

drivers. The particular hardware and driver combination used here may be the source of

the limitation.

Grimstead et al. have carried out a performance study of the RAVE system [65], although

136

Chapter 6 Experimentation

it is difficult to draw similarities or comparisons with jgViz due to the different abilities

and aims of the two projects. RAVE's utilisation of Java and Java3D places an additional

limitation on performance in exchange for code that does not need to be recompiled for

different platforms. However, the comparatively limited degree of parallelisation, the lower

resolution, the set nature of the visualizations, and the distinct difference between local

and remote rendering in RAVE, all lead to different characteristics to jgViz. The concept

of a heuristic of some kind to determine the utilization of a GPU is something that could

be used as a jgViz metric as well as within RAVE and other Grid visualization projects.

The effects of network congestion are clear in showing that the combined effect of additional

traffic, the increased CPU utilization needed to service it and the increased contention for

resources creates a problem. The more significant effect of limitation is not on pipeline

performance, but on jgViz monitoring and rescheduling performance. Although the mon

itoring cycle time does not suffer too much (as it is such a lightweight request to service

for the pipeline nodes) the sometimes substantial increase in the reschedule time can be

significant. If a node becomes the subject of network congestion, but it is at such a level

as to pass 'under the radar' as far a jgViz's network monitoring is concerned, then we may

have the problem of jgViz not rescheduling when it should. Within the current metrics only

optimization can be performed, and it is difficult to see how else such a problem could be

detected without performing fake reschedules repeatedly.

Of particular interest is the fact that both the distributed graphics pipeline elements and the

jgViz system produce a broad spectrum of requirements from hardware due to the balance

of 10 and compute work. The implication of this is that improving performance requires an

all-round approach. However, the degree of CPU time spent in the wait /0 state indicates

that a different network technology would be the most useful thing to look at initially,

perhaps Myrinet or lnfiniband with the low latencies both technologies offer. Whether we

then encompass Cluster computing is a worthy question, however, as studying non-optimal

equipment is our concern. The application node is unsurprisingly seen to be the most loaded

node and so work on optimizing the selection of such a node as part of the jgViz scheduling

stage is important - for example in picking a SMP system so that a single processor does

not have to split its time between the application generating graphics and the Chromium

element partitioning that graphics stream and sending it out to render slaves. Further

work going on in the Chromium community on multi-threading this process is particularly

interesting as it will enable an immensely complex graphics application to be run on a

compute-optimized, expensive Grid-attached machine whilst the rendering is carried out by

graphics-optimized, cheap PCs that are also Grid-attached. The heterogeneous Grid really

137

Chapter 6 Experimentation

comes alive when such systems can be implemented.

Improving the level of knowledge we have about the application we are intending to run

and, alongside, increasing the intelligence in the scheduling element of jgViz to suit the

wide-variety of hardware available is another area for improvement. Characterisation at t he

instruction level (perhaps using a technology such as DTrace [87]) is worthy of study.

138

Chapter 7

Conclusions and Future Work

7 .1 Conclusions

Visualization is a process that can enable the understanding and interpretation of datasets

that a human may otherwise find difficult to comprehend . High-performance visualization

represents taking visualization into a high-performance computing world of parallelism and

supercomputing-class resources. Grid middlewares are collections of software components

aimed at integrating services and resources, and dea ling with the security of and access to

such resources. Beyond those t erms, the definition of what Grids are varies, but they are

often noted as being (in some form) the future of the connected world . Whilst there has

been work on visualization within Grids, it has mainly been focused on relatively specialized

applications. In this thesis, however, our target audience is researchers and developers

wishing to use existing visualization applications based on standard graphics interfaces and

enable them to run in Grid environments. We have investigated the feasibility of achieving

this goal and so providing high-performance through parallelism and improvements to the

visualization experience (perhaps generat ing a higher- resolution image, for example) .

Chapter 2 of this thesis presented an overview of visualization and Grid technologies before

moving on to discuss those projects t hat have attempted to combine these two areas. We

noted that the Chromium project has been widely used and is well regarded . We discussed

the implications of the recent generation of commodity graph ics processors and ever higher

performance networks, and concluded that t he era of supercomputer visualization may be

under threat. The connectivity of t he Grid is seen as the architecture of the future for

large scientific studies. However, in speculating about a Grid visual ization system, we

Chapter 7 Conclusions and Future Work

identified a need to study existing interactive visualizations in a non-optimal, commodity

hardware environment and selected Chromium as our vehicle for achieving this within the

Grid. Chromium, however, has not been implemented with the Grid in mind, and so much

work was needed to do this.

Chapter 3 proposed an information model for jgViz, our Grid visualization project. We

developed a specification language based on the necessary configuration data to configure

a multi-node Chromium graphics pipeline and added data as needed in order to discover,

schedule and launch such a pipeline as a Grid-enabled application. We split our model into

a Grid server component that advertises the capabilities of a node, and a client component

that is part of the client application. We developed a simple path for the information

through the use of the Grid Information Service (GIS) standard. The hierarchical nature

of this standard enables the server to advertise capabilities in a Grid Resource Information

Server (GRIS) which is a subordinate of a Grid Index Information Server (GIIS), that is

searched by the jgViz client for single-point resource discovery. We utilised a feature of the

LDAP language and developed a customized schema in order to represent our data in an

easily-searchable manner. We believe our language does not unnecessarily complicate the

job of describing a pipeline, which is important as a system administrator would have to

configure some language elements manually. We also believe that our information model

makes good use of the GIS standard and sits well with its principals of dynamism, security,

federation and searchability.

In chapter 4, we discussed the scheduling process that we have developed for utilization of

Grid resources. We selected a two-stage scheduling process involving a first subsetting on

the basis of all discovered nodes that offer suitable configurations and a second subsetting

on a ranked scoring basis. The two simple metrics of proportional load and network latency

proved to be a good basis for establishing nodes scores due to their lightweight nature

and the fact that we do not wish to detrimentally affect any discovered nodes. For the

purposes of handling tiled display pipelines, the scheduling process utilizes necessary added

data in the information model and, for scoring purposes, considers a tiled display by simply

calculating the mathematical mean of all nodes in the display. Competing tiled displays can

then be compared fairly. We made a conscious decision to make the jgViz client application

as component-based as possible, and so the scheduler's output is only in the form of an

augmented Chromium configuration script that can be utilized separately, having taken

advantage of the jgViz system to establish and create the configuration.

Chapter 5 discussed the use of jgViz for launching and controlling a distributed graphics

pipeline. We carried out a brief study of the problems associated with 'ownership' of

140

Chapter 7 Conclusions and Future Work

graphics hardware and workarounds for this, but we identified that a fuller solution is

needed for remote access to graphics processors. In launching a pipeline, we utilise several

Grid protocols. GridFTP and Global Access to Secondary Storage (GASS) are used for

data transfer, although (61] indicates that they do not offer the necessary throughput

performance for live graphics data. The Grid Resource Allocation Management (GRAM)

protocol is used for launching and stopping the jobs on Grid nodes for the entire graphics

pipeline to operate. We developed a monitoring system that 'watches' a running pipeline

for performance problems utilizing the same data metrics as originally used to schedule the

nodes in the pipeline. As a running pipeline requires temporary 'possession' of the nodes

involved, the 'aggressive' concurrent monitoring of all nodes is used here. This compares

to a less rigid round-robin poll through all the nodes monitoring utilized during the initial

scheduling. In developing a means to decide when a pipeline's performance has become

unacceptable, we found that the metrics were overly sensitive to very short-lived spikes

in the metric data. Hence, we have utilized a system of two rolling averages - of short

and long time length - for each metric, and our monitor process considers the pipeline to

be unusable when the difference between these averages for a single metric exceeds a set

proportion. Should an event be triggered, then we have implemented a system to stop the

running pipeline, remeasure and reschedule amongst the available nodes, and then start a

new pipeline. This is subject to a time delay, however. We have implemented a mechanism

to preserve the application state during a reschedule, through the simple recovery of a state

file . We speculated on a number of additional or alternative metrics that could be used,

including the possibility of code characterisation and the use of additional Grid services

during both the initial scheduling and the runtime monitoring. Our pipeline launch and

monitoring system makes effective use of Grid standards and offers a service currently

focused on intra-organization use, as a few issues remain to be addressed for true inter

organization use, principally regarding Grid protocol based secure and high-performance

streaming of visualization data between nodes.

In our extensive study of the performance of distributed graphics pipelines (chapter 6),

we have shown that a non-purpose built hardware setup can be utilised for distributed

graphics visualization on the Grid. There are certain limitations to this, with the principal

issue being that Fast Ethernet is broadly not good enough as the interconnect in a parallel

graphics pipeline. Readback performance also suffers greatly depending on the hardware

available and so is likely to become an area of more interest as some of the specific issues

involved are solved through future technology development. Gigabit Ethernet has shown

more than adequate performance for tiled configurations and actually shows some speed-up

when increasing the numbers of render nodes in the pipeline, within certain bounds. By

141

Chapter 7 Conclusions and Future Work

flooding individual nodes in a running pipeline with network traffic, we have concluded that

the pipeline is subject to congestion on individual nodes, but modern PC systems are fast

enough for the interrupts generated to not interfere too much. Further, such a network load

in normal use is unlikely. We have also optimized the parameters of the monitoring and

rescheduling element of jgViz and we find that this capability performs well, although it is

subject to limitations in timing by virtue of what it tries to do. There is some inherent delay

in a pipeline being rescheduled that we believe becomes prohibitive when larger numbers

of nodes are involved, and this remains an issue.

With regard to the hypothesis originally stated in chapter 1, we are able to conclude that

a general-purpose, real-time Graphics pipeline can be provisioned using Grid technologies

within the limitations as set out above. We also see great prospects for improvement and

further work, as laid out in the next section.

7.2 Future Work

Researching in such a topical, diverse and widespread area as Grid computing has a good

side and a bad side. It is good to be part of something that is currently in vogue and which

has a bit of momentum. It is bad (or, at least, difficult) to ever develop a perspective view

of such a breadth of work. The work presented in this thesis, however, has led to several

ideas for future development and research related to the particular field of Grid visualization .

We summarise these below.

• The recently completed Web Services Reference Framework (WSRF) [40] Grid stan

dard and the corresponding Globus 4 implementation likely represent the future of

Grid middleware, in concept if not instance. We observe with interest the develop

ment from the reasonably well accepted Globus 2 through Globus 3 and the Open

Grid Services Architecture (OGSA) to this latest generation. We also note that whilst

a change of thought process is somewhat involved in implementing new style Grid

software, the designers have paid attention to existing Grid applications and develop

ers. With specific regard to the information model jgViz component, OGSI or WSRF

Grid software, such as the GeneGrid [88] and e-Viz projects [89] , is required to imple

ment custom service registries to contain resource status data . Although the jgViz

information model currently utilizes the M DS, we do not believe there would be sub

stantial difficulty in moving from such an LDAP based approach to an OGSI/WSRF

web service based approach - the difference is in style, not content. We believe,

142

Chapter 7 Conclusions and Future Work

therefore, that a change in jgViz to using the WSRF would be a worthy, if significant,

piece of future work as part of jgViz's development.

• The jgViz system should be enhanced to include support for automating the deploy

ment of the mothership and application nodes as part of the Chromium pipeline.

Given that the application node in particular may need to be carefully located, the

user may wish to interact with this in some way.

• As mentioned at several points within the thesis, further experimentation and study

is required in relation to additional metrics being used during both the scheduling

and monitoring stages of the jgViz client. The possibilities in areas such as code

characterisation and advance-reservation are definitely worthy of investigation with

regard to improving the initial scheduling. For the monitoring stage, it is somewhat

more challenging. Consideration has been given to using the frame rate achieved by

a visualization task as a measure of its effectiveness , as this could easily be obtained

from the Chromium system. However, further user interaction is then required to

establish the range of frame rates that were effective. A rolling averages approach

could be deployed here as it is with the two existing metrics, however, the reschedule

process for a stopped pipeline would not be guaranteed to detect any change in the

available nodes and so would be more likely to reschedule the same pipeline. A more

enticing possibility for use at both the initial scheduling and the monitoring stages is

the use of Grid-monitoring services such as the Network Weather Service (NWS) for

prediction and monitoring of network traffic levels. Careful study would be needed

to ensure that the impact of such services would not be too detrimental to running

pipelines, but integration of such a scheme alongside an advance-reservation system is

certainly attractive. We believe that such systems are likely to become an increasing

part of Grid applications and deployments, and would fit in well with a transition

of jgViz to the WSRF-based 'next-generation' Grid . The idea of some sort of 'GPU

metric' mentioned in Chapter 5 is also enticing. Another issue with all deployment

that is considered is the resource cost of people - we have observed that additional

systems administrator time in order to implement and support Grid systems is difficult

to fund - so, we need to minimize such requirements in our implementation.

• In parallel with improving the metrics used in scheduling and monitoring machines,

improvement of the monitoring hierarchy is worthy of research . Whilst the exist

ing information model works well , the implementation of a more hierarchical system

of monitoring (using Grid standard protocols) would ease the transition to a larger

number of nodes by distributing some of the connection load currently placed on the

single client machine. Whilst this would help scalability during both initial scheduling

143

Chapter 7 Conclusions and Future Work

and monitoring, it would need to be carefully controlled so as not to become too

disruptive to running systems and pipelines.

• The time duration for jgViz to reschedule an under-performing pipeline requires at

tention. Whilst it is tolerable with small node count pipelines, the time taken is

unacceptable with larger node counts. This interferes with what is supposed to be an

interactive, real-time experience. However, it is the nature of the Grid protocols that

a time delay is encountered. We have considered the possibility of performing the

startup of the new pipeline whilst the old one is still running in order to reduce tran

sition time. However, this does not fit well with graphics processor ownership/access

issues, or the situation where a node is involved in both the old and new pipelines.

More work is needed on this, perhaps involving some implementation of two stages

in the startup of Chromium components such that these issues can be bypassed.

• Security needs dictate that Grid protocol transport of inter-node visualization data is

an objective. Whilst Grid data protocols do not yet offer the necessary performance,

future hardware and protocol improvement will make it possible to move data in such

a way. The current Chromium native transport can use any network port and so

can be placed onto one of the Globus ephemeral ports. However, the security as

pect of tunnelling this data through a secured Grid transport is highly desirable for

inter-institution work in a Grid. This is increasingly relevant as the multi-institutional

element of the Grid, involving current and future high-performance national and inter

national networks, leads to greater resource sharing within Grid virtual organizations.

• The initial work presented on the transfer of state between generations of a resched

uled pipeline could harness expertise in other fault-tolerant research, be it from other

Grid work involving Grid standards or from, for example, peer-to-peer or cluster com

puting. Fitting any low-level system into a Grid hierarchy is going to be difficult due

to the heterogeneity and diversity of Grid components.

• Planned improvements to the Chromium software will also improve jgViz's perfor

mance. Specifically, multi-threading of the 'tilesort' Stream Processing Unit will

enable this processor-intensive task to be carried out on a high-performance multi

processor machine as the application node. This will greatly increase the scalability

of a Chromium pipeline to deal with very sophisticated graphics and fits in well with

the vast development in graphics processor performance on the rendering slaves. The

possibility of using such extra processing power to assist with data transfer over the

network, for example through stream parallelism, is also exciting. jgViz would then

crossover very effectively between the differing machine classes within a Grid in uti-

144

Chapter Conclusions and Future Work

lizing each for the task they are best suited. This is a particularly interesting area for

future work.

• Two other items are on the wish list: further experimentation with differing hardware,

particularly in using hardware native rendering and higher performance networks, as

nodes and clusters utilizing such technology are as likely as anything to be attached

to a Grid; and implementation of a user adaptable graphical representation of a

constructed graphics pipeline within the jgViz client.

All in all, we believe the design of jgViz provides a sound basis for future development. It

seems likely that a good proportion of this work will involve greater integration with other

Grid projects as the world moves forward. However, there is no point in jgViz becoming just

another Grid visualization project so it must be focused on flexibility, and catering for the

same generic graphics applications as now. We also believe that with future development

as discussed above, jgViz would only become more useful.

145

Appendix A

Ethernet Effect

The results observed in chapter 6 regarding performance of the two network standards

we have practical experience with are worthy of further discussion, as much for explaining

things to ourselves as anything! Table A.1 recaps these results.

Bandwidth

Initially looking at the bandwidth figures, we see the limitation of 269Mb/ Sec. This number

was shown up repeatedly with tests on different equipment and in different forms. We

performed the same tests in 3 environments and got the same basic number:

1. Between two of the test machines over the 50 meter cable runs to the Cisco Catalyst

4006.

2. Between two of the test machines over a 1 meter cable run to a Netgear 5-port mini

Gigabit switch.

3. Between two of the test machines over a crossover cat5e network cable.

Network Technol-

ogy (Mb/ Sec)

I Fast 100
Gigabit 1000

Real-World

(Mb/ Sec)

193.93
269.00

Speed Latency (us)

Table A. 1: netperf and ping measured real-world network data transfer rate

Chapter A Ethernet Effect

As we have tested different switches a nd cables, it seems fair to assume that the limitation

here is with the network subsystem of the test machines. Or, could there be a fundamental

limitation in Gigabit Ethernet that we are bumping into? We have borrowed two other

machines to test this theory.

Figure A.1 : Second Gigabit test rig

Figure A.1 shows our Gigabit test rig. We use two Sun Fire V20Z servers (with dual 2 .6GHz

Opterons , 4GB memory, Broadcom Gigabit Ethernet) and a Cisco Catalyst 4006 (with 24

Gigabit ports) . We performed both T CP and UDP tests with this equipment and also

recorded CPU utilization . Table A.2 shows these results in compariso n with those from the

test machines we have.

Equipment Test Bandwidth Tra nsmit CPU Receive CPU

(Mb/ Sec) (%) (%)

Athlon 3.2GHz PCs TCP 273.26 41.96 51.42

UDP 289.9 (0.2% loss) 37.03 29.56

Sun Fire V20Zs TCP 907.32 7.55 12.81

UDP 1098.63 (15.9% loss) 22.85 10.05

Table A.2: Gigabit Ethernet testing results

These results prove that there is no implicit Gigabit Et he rnet limit , no limit associated with

our cabling and no limit associated with the use of the switches we have available, the

Cata lyst 4006. The limitation must be in the hardwa re/ software combinatio n in the Athlon

PCs. The more expensive Sun server solution provides stunning performance, showing the

advantage of quality hardware and a commercia l vendor's software driving it. The CPU

utilization a lso shows much lower utilization by the Sun servers, in spite of the fact that

are handling nearly four times the traffic . The degree of packet loss experienced by UDP

on the Sun servers of 15.9%, reflects the network technology becoming a limitation , hence

we do not suffer as such at the lower 290Mb/ Sec level of the Athlon PCs.

147

Chapter A Ethernet Effect

Latency

Our results show that Gigabit Ethernet has a lower latency than Fast Ethernet. Can we

explain the reason for this?

First, a bit of theory. Fast Ethernet in this case is actually the 100-BASE-TX variant of

IEEE 802.3u. This takes advantage of the 125MHz capability of category 5 cabling to only

require 2 twisted-pairs (of the four available) and uses an encoding scheme that includes

2 signalling levels. The encoding scheme effectively gives 4 bits of data for every 5 clock

cycles (explaining why transfer is lO0Mb/ Sec whilst the clock rate is 125MHz) . Gigabit

Ethernet here is the 1000-BASE-T variant of the IEEE 802.3z standard. This standard uses

all 4 twisted-pairs in a category 5 cable. It uses a different encoding scheme that includes 5

voltage levels, representing 00, 01, 10, 11 and a special control signal. By sending a voltage

level down each twisted-pair, 8 bits can therefore be sent in parallel per clock cycle. This

is still running at the 125MHz category 5 capability, but transferring ten times the data.

An ICMP Ping is defaulted to be 56-bytes in length, although there is also the 8-byte IP

overhead added to that to produce a 64-byte (512-bit) data transfer as necessary for Ping

to transit an IP network. Fast Ethernet sends (almost) one bit per clock and so takes eight

times the time of Gigabit Ethernet which is sending 8 bits per clock.

We can bump up the size of the Ping packet to try and make the Gigabit Ethernet take as

long as the Fast Ethernet. The factor is, once again , 8. So, the Ping packet size becomes

(8 * 64)=512 bytes, but we need to deduct the 8-byte IP header, making the Ping payload

504 bytes. The Maximum Transmission Unit (MTU) of Ethernet is 1500 bytes, so this data

quantity still fits within an Ethernet frame. Table A.3 shows the results of this alongside

other latency data.

I Test Details Latency (us)

100-BASE-TX 50m 129

100-BASE-TX lm Crossover 130

1000- BASE-T 50m 96

1000- BASE-T lm Crossover 95

1000-BASE-T 50m Large Payload 126

Table A.3: Latency testing results

Although not an exact match, these results do show:

148

Chapter A Ethernet Effect

• That cable length makes no difference

• That the presence of an unloaded switch makes no difference

• How increasing the ICMP payload over Gigabit increases the latency in close proximity

to what we would expect

• The dependence of latency on frame size

As such, this answers the posed question. It is important to remember that any traffic is

far more than just a single bit of data.

149

Appendix B

The jg Viz Client GU I - an

Implementation Overview

The overwhelming majority of code for this project is finalised in the jgViz client GUI. This

is a Java2 application that makes use of various libraries to interact with LDAP and Grid

resources. Java was chosen for two primary reasons. Firstly, other languages are hard

pressed to match Java's cross-platform abilities; secondly, Java's Swing API makes writing

GU Is easy. Most of the code that is in the jgViz client is the result of many different

testing programs written to test out new parts with fixed input data. Due to jgViz's nature

as a research project, the code structure and design has been pieced together with ideas

expanding upon ideas repeatedly. It is, therefore, not an optimal implementation as reflected

somewhat by its class diagram, shown in figure B.1.

The core structure of the code reflects the manner in which the various components of the

client were developed - one major component in the process of using a jgViz pipeline at a

time. The ordering here was mothership, application node, scheduling, configuration script,

run and monitoring. These became the fundamental foundation of the code by becoming

different 'panels' of the GUI. The user simply passes through the tabs from left-to-right to

setup a pipeline. The contents of each of these panels is relatively obvious:

Mothership Panel Contains settings relating to the Chromium mothership to be launched

- where it is, path to Chromium on that machine, etc.

Application Node Panel Contains settings relating to the Chromium application node

Chapter B The jgViz Client GUI - an Implementation Overview

Scheduling Panel Contains pipeline related settings

Configuration Panel Generates and contains the Chromium configuration script

Run Panel Takes the configuration script and launches the pipeline components

Monitoring Panel Monitors the running pipeline components and reacts accordingly

There are a few key data structures that hold data within the jgViz client. These are

instantiated in the main jgvFrame class and passed to those frame objects created (such

as the jgvApplicationNodePanel for the application node) that need them. Discovered

resources are stored in a vector called availableNodes that is loaded with data by the

resource discovery code (also in the jgvFrame class) and used by the scheduling code. The

output of the scheduling process is another vector, this time called activeNode, that is used

to generate the configuration script. The configured pipeline is then launched by the run

panel extracting the relevant data from the passed configuration script and the monitoring

panel learns the nodes it needs through vectors shared with the run panel. Custom classes

are implemented for holding the data for each type of node and the various pieces of user

configurable settings. These are simply held in the above vectors as objects and cast to get

the data back out when needed. The vectors effectively act as temporary storage locations

for data on nodes.

The resource discovery process was the first part of jgViz to be implemented and is part

of the jgvFrame class. This makes use of the Java class libraries originally developed by

Novell but now part of the OpenLDAP project. Searching of the LDAP database is achieved

through the use of the jgViz LDAP schema that provides an objectC/ass for all jgViz nodes

advertised. This eases the process of searching for and discovering such records as the LDAP

search functionality allows us to restrict on the basis of objectC/ass. Once available nodes

are discovered, the scheduling panel component also uses the LDAP libraries to get updated

metric information for the nodes and also launches the ICM P Ping metrics gathering shell

script.

The run panel launches the pipeline through the Java CoG toolkit as previously described

and keeps the standard output and error streams from the launched processes in a vector.

The output of these streams is then routed to the three frames in this panel. The vectors

containing the launched jobs and all other maintained references to them are passed to the

monitoring tab when it is selected and self-populates. This makes use of the same LDAP

and shell methods to update the two metrics for each running node. However, here they

are performed concurrently. In the scheduling panel, a thread is spawned to run alongside

151

Chapter B The jgViz Client GUI - an Implementation Overview

the GUI (and hence keep it up-to-date) to performing the actual round-robin cycle through

the discovered nodes updating metric data. In the monitoring panel , in order to provide

concurrent metric update, a thread is once again spawned alongside the GUI to update the

active nodes, but that thread then goes on to launch a separate thread for each node to

be updated. So, lots of thread are launched and then spend time waiting for 1/0 before

returning. Only once they are all returned does the cycle go round again. As we have seen,

however, this doesn't tend to take long.

Should the monitoring stage detect a problem with the pipeline and trigger an event, then

it uses references to the other panels that it has to call the various methods within those

panels that are necessary to reschedule the pipeline including the process of trying to save

a state file. This process therefore involves: the stop method from the run panel, use of the

Grid toolkit, calling of the scheduling panel's methods to update and reschedule the nodes

in the pipeline, calling of the configuration panel's configuration script rebuild method and

finally calling of the appropriate methods within the run panel to start the new pipeline.

152

......
l11 w

Tl
(iq '
C:

"" (I)

co
......
'- ·
l)q

<
N

n
ro·
::::J
n
QJ
Vl
Vl

(./)
"" C:

~
C:

;;i

jgvMothershipPanel

JgvAppllcatlonNode

jgvNodeMonitoringPanel

jgViz

lgvSchedulingThrasholdsl

jgvSchedulingPanel
NodeMonitorThread

jgvMonltoringPrafs

jgvMonitoringPanel
NodeMonitoringPanel

jgvMonitoringPanel
NodeMonitorThread

9
tu
\)
~ -,
OJ

~
~

~-

~
Q
rii'
::,
G')

s
I

tu
::,

3
'tJ
m
3
~
::,

n:r a·
::,

0
Mi -,

' rii'
~

Appendix C

International Network Topologies

National and International networks, as discussed throughout this thesis, are ever-changing

collections of costly and cutting-edge network equipment. Such carrier-grade systems pro

vide the peak of performance for providing connections that form such a major part of the

Internet. Of course, networks are only as good as their weakest link and this places addi

tional emphasis on end-to-end solutions, but these networks are the truly enabling factor

in geographically dispersed cooperation. We include here, for interest, topology diagrams

representing the current state-of-the-art networks that exist. We include commercial ISP

networks and then move on to national and international academic networks before finish

ing with the Global Lambda Integrated Facility - a virtual organization that represents a

collection of international networks. For comparison purposes, we also include Jon Postel's

original diagram of the arpanet in 1982. How things change.

Chapter C

BBN-LN•TEST
41

International Network Topologies

POSTEL 25 FEB 82

Figure C.1: Arpanet in 1982 by Jon Postel - The Original ' Internet' in One Picture

--· '""' ?:~ =- ··-~ ""1<,d ~= eu, ..
=- ·-

E"O!'f
, c.c, '"""' $,n1.<,$o,.,p, Yl"'ilePl.a,ns = -- -.c., Sarl(a8Mtiara "'.ln"'1"'
l--,. 0r-r, ~..., l .. "9 ·- ~ ~"""' SM;,<1 -- -,_
~ '"""' ,~.()',e.r.s '""'

Figure C.2: Level3 ISP International IP Network

OC 192/STl.&I
OC<&'STM16
OC12/SHM
OCJISTMI

0 IPE/1,bled
O S.W:.l.<o(J)Untl'ffl•LNBoclh.>ul

PwingPonl

155

C
hapter C

~ C

QJ

"' QJ ... Q
.

-ta .c
0
-C

,

In
ternational N

etw
ork T

opologies

F
igure C

.3
: M

C
I Inte

rn
a

tio
n

a
l IP

 N
etw

ork

156

......
lTI
--..J

"T1
(Jq
C
Cl)

n
.p.

)>
0-

(1)
:::i
Cl)

:::i
Cl)
.....
:::i
Cl)
N

z
Cl)

g
.....
~

:::i

.....
:::r
Cl)

C
(fl
)>

~~~~=~~i;~~~ections: The Abilene Network 
42 connectors + 7 IXs: 2 NGIXs, Starlight, AMPATH, 2 PacificWaves, Manlan 
54 connections to 30 peer networks 

~ 

30 August 2005 

~c 
Abilene Network Operations Center 
Indiana University 
www.abilene.iu.edu 

'~ \ ~ 
~ 

Abilene 

illl?.Ncffi?lE 
Core Node 
Connector 

1nge Point 
,bilene Participant 
1eer Network 
1ultlhomed connector 
oming soon 

9 
Ill 
-0 ...... 
<b ..... 
n 

s-...... 
<b 

3 
Ill ...... 
o· 
::, 
Ill -< 
<b 

I 
;, 
-0 
0 

~ 
~-



Chapter C International Network Topologies 

····•. : 
DANTE 

www.1e1nLnet GEANT www.dante.net 

The world's most advanced 
international research network 

Providing pan-European and international connectivity for research and education 
, --r-

- toGblt/s 

- 5GbU/s 
- 2.5 Gblt/s 

622Mbit/s 
- 34-155 Mbit/s 

f 

,.., 

Backbone Topology October 2004 

GtANT is operated by DANTE on bohalf of Europe's research and education networks 

@l Austria 

~ Be\iium 
ej Sw1tffltand 

ejcypn,. 

-
§I CmhRlpubllc 

~ c..m.ny ~-... -
~ r.tonl& 

~ Sp1fn 

~ Rnl&nd' 

~ Franca 

~ c, .... 

~ Cro,111 

~ lfunga,y 

(!] 1rtland 

(I] f"1el 

~ ktlond• 

~ fl>ly 

@) LNhu

~ LUX<mbou,w 

• Connealons bttweff'I these counn1.sare ?Jin. ofNORDUnet (thl Nordic rt'lfan&I ndWoO;) 

E) leMa 
El Mo(,. 

~ ... -
t«'il """"•Y• 

~ Pol<ad 
~ Portugal 

~ R0m11nia 

~ RLWfa 

GEANT is co-funded by The European Commission within its 
5th R&D Framework programme 

Figure C.5: Geant European Academic Backbone 

... 

RU 

~ -.. · 
~ SkMlnia 

~ sio.,lda 

~ Tu<koy 

~ United Klnadom 

l-"1.;.iJ~I 
lnlormallon Soddy -Contract No. 

IST-2000-26417 

158 



Chapter C International Network Topologies 

TheJ T Backbone 

-' i 

..r 
.,,./✓ 

I 

I 

Key -CIINL MAH 

c..-., 
EollllAN -EIIIWt 
,anw, 
LoNM! 
UIN 
MAH -NNW 
NNNAH -TVN u• 1--
" 

Figure C.6: SuperJanet4 UK Academic Network 

--.MAH 
CurnbrtallOd~ 
Lancahh111ArH ~twott 
CydtlArMN.tMwk 
Ednbwgh Ind &.ting 
MN< 
EHi al England RbgloNI ----Fie and Tayside MAN 
LMmlng Network South Ent London-- k Mei'opoiit:w, N M Nrllwofk ...,,.,..MAN 
NetNor1h Wn l 
No,1,EMIMAH 
Soul, WHl Engl,r,d Rogiona ----N-Un-allho~~ 
and IS!ancta Mlll!u'lnllm 
klstit• NiltMn 
Yorl<,lnand--
Coro Pakll DI PraMnco 

R~ n•twofk 
Dl'llry point __ , .. 
-Ink 

159 



C
hapter C

 
International N

etw
ork T

opologies 

F
igure C

.7
: G

lobal L
am

bda Integrated Facility C
ollection of N

etw
orks i J I I i i , I I i I i i I I i 

160 



Appendix D 

Roster at Supercomputing 



C "Tl 
Ul oq" 
)> C: , 

/1) 

0 
..... 
""CJ 
0 
(/1 
.-+ 
/1) , 

-0 , 
/1) 
(/1 
/1) 
::::, 
.-+ 
/1) 
c.. 
Cl) 
.-+ 

(/) 
C: 
-0 
/1) , 
ri 
0 
3 
"O 
C: ~-::::, 

(Jq 

IV 
0 
0 
~ 

OI 
I ..... 

IV 

z 
0 
< 
/1) 

3 
O" 
/1) , 
IV 
0 
0 
~ 

""CJ 
;:;: 
.-+ 
(/1 

O" 
C: 

~ 1 ()q 
::::,-

IV 

ti t Distributed. Graphi~s-Pipelines-on the G-rl 

IJ1troduction 
ork ,s a study of the realiti, 
a general purpose grid v1s1 

,rm of an OpenGL pipeline. 
g raphics system Chromlur 
trid running Globus to lnve, 
,nee effects, scheduling a, 

issues Involved. 

A J Fewlngs and N W John, University of Wales, Bangor, UK 

Its & Future 
,ve built our architectu 
tudy of grid v isuallzatlo, 
,at the concept Is benefi• 
ability to automate grid 

cs is advantageous. We a, 
our scheduling system a, 
lded components into th, 

9 
Ill 
-0 
cit .... 
CJ 

JJ 
1/) ..... 
(I) .... 
Ill ..... 
V) 
t:: 
-0 
(I) 

8 
:3 
-0 
t:: ..... 
k 



References 

[1] Fran Berman, Geoffrey C Fox, and Anthony J G Hey, "The grid: Past, present and 

future," in Grid Computing: Making the Global Infrastructure a Reality, Fran Berman, 

Geoffrey C Fox, and Anthony J G Hey, Eds. Wiley, 2003. 

[2] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman , S. Martin , W. Smith, and 

S. Tuecke, "A resource management architecture for metacomputing systems," in 

Proceedings IPPS/ SPDP '98 Workshop on Job Scheduling Strategies for Parallel Pro

cessing, 1998, pp. 62- 82. 

[3] Adrian J Fewings and Nigel W John, "Distributed graphics pipelines on the grid," 

in Poster Presentation Proceedings, Supercomputing 2004 Conference, Pittsburgh, 

November 2004, University of Wales, Bangor, IEEE/ACM. 

[4] M White, G Dunnett, R L Grimsdale, P F Lister, I McGroarty, M DJ McNeil!, and AD 

Nimmo, "Workstation graphics-rendering hardware," in IEE Colloquium on Computer 

Graphics Systems. 15 January 1992, pp. 4/1-4/ 6, IEE. 

[5] Brian Paul, "What's new in chromium?," Presentation at Chromium User 

Group Meeting, Santa Fe, New Mexico, 28 April 2004, Available on 

the web at http ://www. tungstengraphics. com/SantaFe- BrianPaul_Chromium_ 

User_Mtg/ind%ex.html. 

[6] Jon Louis Bentley, "Multidimensional binary search trees used for associative search

ing," Commun. ACM, vol. 18, no. 9, pp. 509-517, 1975. 

[7] L J Doctor and J G Torborg, "Display techniques for octree-encoded objects," IEEE 

Computer Graphics and Applications, vol. 3, no. 1, pp. 29-38, 1981. 

[8] C H Chien and J K Aggarwal, "Volume/surface octrees for the representation of 

three-dimensional objects," Comput. Vision Graph. Image Process., vol. 36, no. 1, pp. 

100-113, 1986. 



Bibliography 

[9] Jack Veenstra and Narendra Ahuja, "Line drawings of octree-represented objects," 

ACM Trans. Graph., vol. 7, no. 1, pp. 61-75, 1988. 

[10] Aleksander Stempel, Kwan-Liu Ma , Eric B Lum, James Ahrens, and John Patchett, 

"Slic: Scheduled linear image compositing for parallel volume rendering," in IEEE 

Symposium on Parallel and Large-Data Visualization and Graphics. October 2003, 

IEEE. 

[11] K Ma, J S Painter, and M F Krogh, "Parallel volume rendering using binary swap 

composition," IEEE Computer Graphics and Applications, vol. 14, no. 4, pp. 59-67, 

July 1994. 

[12] O-L Yang, J-C Yu, and Y-C Chung, "Efficient compositing methods for the sort-last 

-sparse parallel volume rendering system on distributed memory multicomputers," The 

Journal of Supercomputing, vol. 18, no. 2, pp. 201-220, February 2001. 

[13] Gordon Stoll, Matthew Eldridge, Dan Patterson, Art Webb, Steven Berman, Richard 

Levy, Chris Caywood, Milton Taveira, Stephen Hunt, and Pat Hanrahan, "Lightning-

2: a high-performance display subsystem for pc clusters," in Proceedings of the 28th 

annual conference on Computer graphics and interactive techniques. August 2001, 

ACM. 

[14] Shigeru Muraki , Eric B Lum, Kwan-Liu Ma, Masato Ogata, and Xuezhen Liu, "A 

pc cluster system for simultaneous interactive volumetric modeling and visualization," 

in IEEE Symposium on Parallel and Large-Data Visualization and Graphics. October 

2003, IEEE. 

[15] Greg Humphreys, Matthew Eldridge, Ian Buck, Gordon Stoll, Matthew Everett, and 

Pat Hanrahan, "Wiregl: A scalable graphics system for clusters," in Proceedings of 

SIGGRAPH 2001. 2001, ACM . 

[16] Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean Ahern, Peter D Kirch

ner, and James T Klosowski, "Chromium: A stream-processing framework for inter

active rendering on clusters," in Proceedings of SIGGRAPH 2002. 2002, ACM. 

[17] Brian Paul, "Scalable rendering with chromium," Web Presentation, 

http://www.tungstengraphics.com/chromium/chromium.html. 

[18] Oliver G. Staadt, Justin Walker, Christof Nuber, and Bernd Hamann, "A survey and 

performance analysis of software platforms for interactive cluster-based multi-screen 

rendering," in EGVE '03: Proceedings of the workshop on Virtual environments 2003. 

2003, pp. 261-270, ACM Press. 

164 



Bibliography 

[19] Rudrajit Samanta, Thomas Funkhouser, Kai Li, and Jaswinder Pal Singh, "Hybrid sort

first and sort-last parallel rendering with a cluster of pcs," in HWWS '00: Proceedings 

of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware. 2000, pp. 

97-108, ACM Press. 

[20] Jian Yang, Jiaoying Shi , Zhefan Jin , and Hui Zhang, "Design and implementation 

of a large-scale hybrid distributed graphics system," in EGPGV '02: Proceedings of 

the Fourth Eurographics Workshop on Parallel Graphics and Visualization . 2002, pp. 

39-49, Eurographics Association. 

[21] C. Winkelholz and T. Alexander, "Approach for software development of parallel 

real-time ve systems on heterogenous clusters," in EGPGV 02: Proceedings of the 

Fourth Eurographics Workshop on Parallel Graphics and Visualization . 2002, pp. 23-

32, Eurographics Association. 

[22] P.G. Lever, G.W. Leaver, I. Curington, J.S. Perrin, A.W. Dodd, N.W. John, and W.T. 

Hewitt, "Design issues in the avs/ express multi-pipe edition," in IEEE Visualization 

2000, October 2000. 

[23] ModViz Inc, "Virtual graphics platform (vgp) data sheet," Web site, January 2005, 

http://www.modviz.com. 

[24] "Sun Microsystems Inc.", "Sun fire visual grid," Web site, January 2004, 

http://www.sun.com/solutions/ hpc/compute/visualgrid/. 

[25] IBM, "Deep computing visualization: Gain insight into your data," Web site, January 

2005, http: / /www-1.ibm.com/servers/ deepcomputing/visualization/. 

[26] Hewlett Packard, "Scalable high-performance visu-

alization system," Web presentation, January 2005, 

http: / / www.hp.com/ techservers/hpccn / sci_ vis/ sepia_vis_presentation. pdf. 

[27] Thomas A. DeFanti, Ian Foster, Michael E. Papka, Rick Stevens, and Tim Kuhfuss, 

"Overview of the i-way: Wide-area visual supercomputing," International Journal of 

Supercomputer Applications and High Performance Computing, vol. 10(2), pp. 123-

130, 1996. 

[28] J Jamison and R Wilder, "vbns: the internet fast lane for research and education," 

IEEE Communications Magazine, vol. 35, no. 1, pp. 60- 63, January 1997. 

[29] Ian Foster, "The grid: A new infrastructure for 21st century science," Physics Today, 

vol. 55, no. 2, pp. 42, February 2002. 

165 



Bibliography 

[30] David De Roure, Mark A Baker, Nicholas R Jennings, and Nigel R Shadbolt, "The 

evolution of the grid," in Grid Computing: Making the Global Infrastructure a Re

ality, Fran Berman, Geoffrey C Fox, and Anthony J G Hey, Eds., Wiley Series in 

Communications Networking and Distributed Systems, chapter 3, pp. 65-100. Wiley, 

2003. 

[31] Ian Foster, Jonathan Geisler, Bill Nickless, Warren Smith, and Steven Tuecke, "Soft

ware infrastructure for the i-way high-performance distributed computing environ

ment," in Proceedings of 5th IEEE International Symposium on High Performance 

Distributed Computing, August 1996, pp. 562-571. 

[32] FAFNER RSA Factoring Project, "http://www.npac.syr.edu/factoring.html," Web 

site. 

[33] E Korpela, D Werthimer, D Anderson, J Cobb, and M Leboisky, "Seti©home-massively 

distributed computing for seti," Computing in Science & Engineering, vol. 3, no. 1, 

pp. 78-83, Jan-Feb 2001. 

[34] Ian Foster and Carl Kesselmann, Eds., The Grid: Blueprint for a New Computing 

Infrastructure, Morgan Kauffmann, 1998. 

[35] M Romberg, "The unicore architecture: seamless access to distributed resources," 

in The Eighth lnternation Symposium on High Performance Distributed Computing, 

1999. 

[36] A S Grimshaw, W A Wulf, and the Legion Team, "The legion vision of a worldwide 

virtual computer," Communications of the ACM, vol. 40, no. 1, pp. 39-45, January 

1997. 

[37] M J Litzkow, M Livny, and M W Mutka, "Condor-a hunter of idle workstations," in 

Distributed Computing Systems, 1988., 8th International Conference on, June 1988, 

pp. 104-111. 

[38] World Wide Web Consortium, "Web services description language draft note," Web 

draft, February 2006, http://www. w3. org/TR/wsdl. 

[39] K Brodlie, J Brooke, M Chen, D Chisnall, A Fewings, C Hughes, N W John, M W 

Jones, M Riding, and N Roard, "Visual supercomputing - technologies, applications 

and challenges," in 25th Annual Conference of the European Association for Com

puter Graphics, Christophe Schlick and Werner Purgathofer, Eds. The Eurographics 

Association, August-September 2004. 

166 



Bibliography 

[40] Organization for the Advancement of Structured Information Standards (OASIS) , 

"Web services reference framework specification," Web site, February 2006, ht tp: 

/ /www.oasis-open.org/ committees/ documents.php?wg_abbrev=wsrf . 

[41] Ian Foster, "Globus toolkit version 4: Software for service-oriented systems," in IFIP 

International Conference on Network and Parallel Computing, 2005, pp. 2-13. 

[42] Ian Foster and Carl Kesselman, "Globus: A metacomputing infrastructure toolkit," 

The International Journal of Supercomputer Applications and High Performance Com

puting, vol. 11, no. 2, pp. 115-128, Summer 1997. 

[43] B. Allcock, J . Bester, J . Bresnahan, A. L. Chervenak, I. Foster, C. Kesselman, 

S. Meder, V. Nefedova , D. Quesnal , and S. Tuecke, "Data management and transfer 

in high performance computational grid environments," Parallel Computing Journal, 

vol. 28, no. 5, pp. 749-771, May 2002. 

[44] Joseph Bester, Ian Foster, Carl Kesselman, Jean Tedesco, and Steven T uecke, "Gass: 

A data movement and access service for wide area computing systems," in Proceedings 

of the Sixth Workshop on Input/ Output in Parallel and Distributed Systems, 1999, 

pp. 78-88. 

[45] K. Czajkowski , S. Fitzgerald, I. Foster, and C. Kesselman, "Grid information services 

for distributed resource sharing," in Proceedings of the Tenth IEEE International 

Symposium on High-Performance Distributed Computing (HPDC-10), August 2001. 

[46] Gregor von Laszewski, Ian Foster, Jarek Gawor, and Peter Lane, "A Java Commodity 

Grid Kit," Concurrency and Computation: Practice and Experience, vol. 13, no. 8-9, 

pp. 643-662, 2001. 

[47] Gregor von Laszewski, Jarek Gawor, Sriram Krishnan, and Keith Jackson , "Com

modity grid toolkits - middleware for building grid computing environments," in Grid 

Computing: Making the Global Infrastructure a Reality , Fran Berman , Geoffrey C Fox, 

and Anthony J G Hey, Eds. Wiley, 2003. 

[48] Nasa, "http://www.nas.nasa .gov/ about/ projects/ columbia/ columbia. html," Web 

site, September 2005. 

[49] The BlueGene/ L Team, "An overview of the bluegene/ 1 supercomputer," Tech. Rep. 0-

7695-1523-X, IBM Research and IBM Rochester and the Lawrence Livermore Nationa l 

Laboratory, 2002. 

[50] GLIF, "http://www.glif.is/ ," Web site, September 2005. 

167 



Bibliography 

[51] William E Johnston, Grid Computing Implementing production Grids, chapter 5, pp. 

117-167, Wiley, 2003. 

[52] John D Ainsworth and John M Brooke, "Testing for scalability in a grid resource usage 

service," in Proceedings of the UK e-Science All Hands Meeting 2005. EPSRC, 19-22 

September 2005. 

[53] Pratap Pattnaik, Kattamuri Ekanadham, and Joefon Jann, Grid Computing Autonomic 

Computing and the Grid, chapter 13, pp. 351-361, Wiley, 2003. 

[54] Craig Lee and Domenico Talia , Grid Computing Grid programming models: current 

tools, issues and directions, chapter 21, pp. 555-578, Wiley, 2003. 

[55] Charles Hansen, "Known and potential high performance computing applications in 

computer graphics and visualizat ion," in High Performance Computing for Computer 

Graphics and Applications, M. Chen, P. Townsend, and J .A. Vince, Eds. July 1995, 

Proceedings of the International Workshop on High Performance Computing for Com

puter Graphics and Visualization 1995, pp. 23-29, Springer. 

[56] T hierry Benoist, W T Hewitt, and Nigel W John, "Corba visua lization platform," in 

Short Presentations Proceedings, Eurographics 2001, September 2001, ISSN 1017-

4656. 

[57] Olivier Martin, "The eu datatag project," Tech. Rep. GGF3, Globa l Grid Forum, 

Frascati, Italy, 2001. 

[58] L Renambot, T van der Schaaf, H Bal, D Germans, and H J W Spoelder, "Griz: Ex

perience with remote visualization over an optica l grid ," Journal of Future Generation 

Computer Systems (FGCS), vol. 19, no. 6, pp. 871-882, August 2002. 

[59] Gabrielle Allen, Werner Senger, Tom Gooda le, Hans-Christian Hege, Gerd Lanfermann, 

Andr? Merzky, Thomas Radke, Edward Seidel, and John Shalf, "The cactus code: A 

problem solving environment for the grid ," in Proceedings of the Ninth IEEE Interna

tional Symposium on High Performance Distributed Computing (HPDC9}, 2000. 

[60] Gabrielle Allen, Werner Senger, Tom Goodale, Hans-Christian Hege, Gerd Lanfermann, 

Andr? Merzky, Thomas Radke, Edward Seidel, and John Shalf, "Cactus tools for grid 

applications," Cluster Computing, vol. 4, pp. 179-188, 2001. 

[61] J . M. Brooke, P. V. Coveney, J . Harting, S. Jha , S. M. Pickles, R. L. Pinning, and A. R. 

Porter, "Computat ional steering in realitygrid ," in Proceedings of the UK e-Science 

All Hands Meeting 2003, 2003. 

168 



Bibliography 

[62] S.M. Pickles, R.J. Blake, B.M. Boghosian, J.M. Brooke, J. Chin, P.E.L. Coveney, 

R. Haines, J. Harting, M. Harvey, S. Jha, M.A.S. Jones, M. McKeown, R.L. Pin

ning, A.R. Porter, K. Roy, and M. Riding, "The teragyroid experiment," in GGFlO: 

Workshop on Case Studies on Grid Applications, March 2004. 

[63] Paul Heinzlreiter and Dieter Kranzlmuller, "Visualization services on the grid: The 

grid visualization kernel," Parallel Processing Letters, vol. 13, no. 2, pp. 135-148, 

2003. 

[64] D. Kranzlmuller, G. Kurka, P. Heinzlreiter, and J. Volkert, "Optimizations in the 

grid visualization kernel," in PDIVM 2002, Workshop on Parallel and Distributed 

Computing in Image Processing, Video Processing, and Multimedia, 2002. 

[65] Ian J Grimstead, Nick J Avis, David W Walker, and Roger N Philip, "Resource

aware visualization using web services," in Proceedings of the UK e-Science All Hands 

Meeting 2005. EPSRC, 19-22 September 2005. 

[66] Ian J. Grimstead, Nick J. Avis, and David W. Walker, "Automatic distribution of 

rendering workloads in a grid enabled collaborative visualization environment," in SC 

'04: Proceedings of the 2004 ACM/IEEE conference on Supercomputing, Washington, 

DC, USA, 2004, IEEE Computer Society. 

[67] David Hughes, "Sinking in the sea of pixels - the case for media fusion," White paper, 

SGI, Corporate Office 1500 Crittenden Lane Mountain View, CA 94043, 2005. 

[68] John Domingue, Blaine A. Price, and Marc Eisenstadt, "A framework for describing 

and implementing software visualization systems," in Graphics Interface '92, 1992, pp. 

53-60. 

[69] gViz Team, 'The gviz web site http://www.comp.leeds.ac.uk/ vis/ gviz," Web Site, 

March 2005. 

[70] D A Duce and M Sagar, "skml a markup language for distributed collaborative vi

sualization," in Eurographics UK Theory and Practive of Computer Graphics 2005, 

L Lever and M McDerby, Eds., 2005. 

[71] Steven Molnar, Michael Cox, David Ellsworth, and Henry Fuchs, "A sorting classifi

cation of parallel rendering," IEEE Computer Graphics and Applications, vol. 14, no. 

4, pp. 23-32, July 1994, University of North Carolina at Chapel Hill and Princeton 

University. 

169 



Bibliography 

[72] G. VoB;, J. Behr, D. Reiners, and M. Roth , "A multi-thread safe foundation for 

scene graphs and its extension to clusters," in EGPGV '02: Proceedings of the Fourth 

Eurographics Workshop on Parallel Graphics and Visualization. 2002, pp. 33-37, Eu

rographics Association. 

[73] E. Wes Bethel, Greg Humphreys, Brian Paul, and J. Dean Brederson, "Sort-first, 

distributed memory parallel visualization and rendering," in Proceedings of the 2003 

IEEE Symposium on Parallel and Large Data Visualization and Graphics {PVG 2003}. 

2003, IEEE. 

[74] R Scheifler, "The x windows system," ACM Transactions on Graphics, 1986. 

[75] The X Consortium, "The xhost man page: 

http://www.xfree86.org/current/xhost.1.htm1," Web Site, September 2005. 

[76] The X Consortium, "The xauth man page: 

http://www.xfree86.org/4.4.0/xauth.1.htm1," Web site, September 2005. 

[77] Tungsten Graphics Inc., 'The dri website: http:/ / dri.freedesktop.org/wiki/," Web 

site, September 2005. 

[78] nVidia Corporation, "http://www.nvidia.com/content/drivers/drivers.asp," Web site, 

September 2005. 

[79] Zhe Fan, Feng Qiu, Arie Kaufman, and Suzanna Yoakum-Stover, "Gpu cluster for 

high performance computing," in Proceedings of the ACM/IEEE Supercomputing 

Conference, 2004., November 2004, pp. 47-51. 

[80] Jin Young Hong and May D Wang, "High speed processing of biomedical images 

using programmable gpu," in International Conference on Image Processing, ICIP 

'04., October 2004, vol. 4, pp. 2455-2458. 

[81] George Kola , Tevfik Kosar, and Miron Livny, "Profiling grid data transfer protocols 

and servers," in Proceedings of 10th European Conference on Parallel Processing 

(Euro-Par 2004), 2004. 

[82] Rajkumar Kettimuthu, "Globus striped gridftp framework and server," Web Presen

tation, August 2005, Department of Computer Science and Engineering, The Ohio 

State University, Columbus, Ohio. 

[83] Anjan Pakhira, Ronald Fowler, Lakshmi Sastry, and Toby Perring, "Grid enabling 

legacy applications for scalability - experiences of a production application on the uk 

170 



Bibliography 

ngs," in Proceedings of the UK e-Science All Hands Meeting 2005. EPSRC, 19-22 

September 2005. 

[84] Rick Wolski, Neil T Spring, and Jim Hayes, 'The network weather service: A dis

tributed resource performance forecasting service for metacomputing," Journal of 

Future Generation Computing Systems, vol. 15, no. 5-6, pp. 119-132, October 1999. 

[85] Mark Leese, Rik Tyler, and Robin Tasker, "Network performance monitoring for the 

grid," in Proceedings of the UK e-Science All Hands Meeting 2005. EPSRC. 19-22 

September 2005. 

[86] Plusplus, "Roller coaster 2000," Web site, August 2005, 

http://plusplus.free.fr/ rollercoaster /. 

[87] Bryan M . Cantri l! , Michael W. Shapiro, and Adam H. Leventhal , "Dynamic instru

mentation of production systems," in USENIX 2004 Annual Technical Conference, 

2004, pp. 15-28. 

[88] Sachin Wasnik, Mark Prentice, Noel Kelly, P V Jithesh, Paul Donachy, Terence 

Harmer, Ron Perrott, Mark McCurley, Michael Townsley, Jim Johnston, and Shane 

McKee, "Resource monitoring and service discovery in genegrid," in Proceedings of 

the UK e-Science All Hands Meeting 2005. EPSRC. 19-22 September 2005. 

[89] M Riding, J D Wood, KW Brodlie, J M Brooke, M Chen, D Chisna ll, C Hughes, NW 

John, M W Jones, and N Roard, "e-viz: Towards an integrated framework for high 

performance visua lization," in Proceedings of the UK e-Science All Hands Meeting 

2005. EPSRC, 19-22 September 2005. 

171 



The end of the roller coaster ride 

172 




