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Abstract  

The human burden of environmentally transmitted infectious diseases can depend strongly on 

ecological factors, including the presence or absence of natural enemies. The marbled crayfish 

(Procambarus virginalis) is a novel invasive species that can tolerate a wide range of ecological 

conditions and colonize diverse habitats. Marbled crayfish first appeared in Madagascar in 2005 

and quickly spread across the country, overlapping with the distribution of freshwater snails that 

serve as the intermediate host of schistosomiasis–a parasitic disease of poverty with human 

prevalence ranging up to 94% in Madagascar. It has been hypothesized that the marbled crayfish 

may serve as a predator of schistosome-competent snails in areas where native predators cannot 

and yet no systematic study to date has been conducted to estimate its predation rate on snails. 

Here, we experimentally assessed marbled crayfish consumption of uninfected and infected 

schistosome-competent snails (Biomphalaria glabrata and Bulinus truncatus) across a range of 

temperatures, reflective of the habitat range of the marbled crayfish in Madagascar. We found 

that the relationship between crayfish consumption and temperature is unimodal with a peak at 

~27.5°C. Per-capita consumption increased with body size and was not affected either by snail 

species or their infectious status. We detected a possible satiation effect, i.e., a small but 

significant reduction in per-capita consumption rate over the 72-hour duration of the predation 

experiment. Our results suggest that ecological parameters, such as temperature and crayfish 

weight, influence rates of consumption and, in turn, the potential impact of the marbled crayfish 

invasion on snail host populations.  
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Introduction 

The human burden of environmentally transmitted infectious diseases depends strongly on 

ecological factors [1], such as the presence of natural enemies [2]. As antagonistic interactors 

that regulate the transmission of infectious disease, natural enemies can potentially include 

predators, competitors, or parasites of reservoir hosts or of the disease agent itself [2, 3]. 

However, evidence for disease transmission regulation by natural enemies is sparse, and 

generalities regarding the influence of these antagonists remain elusive [4, 5]. This knowledge 

gap is of particular concern, not just for understanding the potential role of natural enemies in 

controlling and eliminating infectious disease, but also because non-native species are becoming 

established in new regions at unprecedented rates [6]. Non-native species have long been 

recognized as having profound effects on ecosystem services [7, 8, 9]. Like native enemies, 

invasive species influence the abundance and distribution of their prey and competitors [10, 11], 

with important implications for transmission of environmentally transmitted infectious diseases–

a phenomenon that has remained largely unexplored.  

One such invader, with a rapidly expanding range and the potential to influence disease 

transmission, is the parthenogenetic marbled crayfish (Procambarus virginalis)—the only clonal 

decapod ever described [12]. The marbled crayfish is believed to have arisen from a non-clonal 

ancestor in the American Cambaridae family and is phylogenetically similar to Procambarus 

fallax [12]. First appearing in the German aquarium trade in the mid-1990s, this novel invader 

quickly spread across Europe [13]. Following its introduction to Madagascar in 2005, the 

marbled crayfish began to spread across the country [13, 14, 15], overlapping with the 

distribution of freshwater snails (Biomphalaria pfeifferi and Bulinus spp.) that serve as the 
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intermediate hosts of schistosomiasis (Schistosoma mansoni and S. haematobium, respectively 

[16]). 

Schistosomiasis is a parasitic disease endemic to tropical and subtropical regions [17]. 

Freshwater snails (largely from three genera: Biomphalaria, Bulinus, and Oncomelania) [18] 

play an obligate role in the transmission of Schistosoma spp. worms. Snails serve as intermediate 

hosts in the Schistosoma life cycle, incubating and shedding infectious Schistosoma cercariae 

(free-swimming, larval worms) into streams, ponds, and lakes. These cercariae go on to penetrate 

the skin of humans bathing, wading, washing laundry, or otherwise in contact with contaminated 

freshwaters. Over 250 million people are infected with schistosomiasis globally, totaling to 3.31 

million disability-adjusted life years annually [19]. Though schistosomiasis infections rarely 

result in mortality, the disabilities associated with the disease are severe and burdensome, falling 

second in both disability-associated burden and prevalence only to intestinal nematode infections 

[19]. Notably, these estimates do not consider the economic and social impacts of disease, 

though it is widely understood that the compromised health of community members–a result of 

untreated schistosomiasis infections–reduces the opportunities for social and economic 

development [20, 21, 22]. Despite its impacts on human morbidity and mortality, schistosomiasis 

remains prevalent, disproportionately impacting poor and marginalized communities, particularly 

those that lack the public infrastructure needed for access to safe drinking water, adequate 

sanitation, and healthcare [23].  

The World Health Organization (WHO) estimated that in 2019 over 235 million people 

were at risk of schistosomiasis infection and required preventative treatment, with 90% of those 

individuals living in Africa [24]. The standard treatment – an oral dose of the anthelmintic 

praziquantel – is considered effective in treating adult parasites (although there is rising concern 

https://www.cdc.gov/parasites/schistosomiasis/biology.html
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of selection for resistance [25]); however, at this time, fewer than half of those in need of 

treatment (105,420,110 / 235,378,761 = 44.8%) receive it [24]. Mass drug administration has 

also fallen short due to high rates of re-infection, as individuals are often repeatedly exposed to 

contaminated water sources [26, 27, 28, 29, 30] and treatment is ineffective against juvenile 

worms [31, 32, 33]. In response, the WHO recognizes snail control as essential to reducing 

Schistosoma spp. transmission and recommends the implementation of snail control strategies, in 

combination with mass drug administration, to control and eliminate schistosomiasis [34]. 

Historically, snail control has been accomplished with chemical molluscicides and habitat 

modification, such as vegetation removal, draining wetlands, cementing canals, and alterations to 

water flow [35]. Alternatively, snail populations can be reduced by abundant populations of 

predators (e.g., crustaceans, birds, and fish) or competitors (e.g., other snail species). Indeed, 

natural enemies show some promise in the reduction of human schistosomiasis [36, 37, 38, 39]. 

For example, the abundance of molluscivorous cichlids (Trematocranus placodon) was 

negatively correlated with intermediate snail host abundance, and temporal declines in fish 

abundance were associated with increases in schistosomiasis [39]. In the Senegal River Basin–

the epicenter of the world’s largest intestinal schistosomiasis epidemic–areas previously 

inhabited by and now hypothesized to be absent of native river prawns experienced greater 

increases in schistosomiasis infections compared to regions falling outside of the prawns’ range 

[40], and localized reintroductions significantly reduced snail population numbers and, in turn, 

human disease prevalence [38].  

While some introductions of non-native enemies in previous disease control efforts have 

resulted in unanticipated negative consequences [2], introduced species have also been used with 

success to reduce the abundance of zoonotic reservoirs of disease and of human disease burden 

https://paperpile.com/c/Yu7bAi/AkeX+8KyU+y3wf+aJX8+qZJ6
https://paperpile.com/c/Yu7bAi/zZ03
https://paperpile.com/c/Yu7bAi/rgsI
https://paperpile.com/c/Yu7bAi/U7tq
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[10, 41, 42]–representing a potential benefit of non-native species [43]. Regarding 

schistosomiasis, the abundance of the invasive red swamp crayfish (Procambarus clarkii) was 

significantly correlated with the disappearance of snails in Egyptian irrigation channels [41], and 

an established population of P. clarkii reduced snail abundance in Kenya [42]. Local 

schoolchildren were significantly less likely to become infected with Schistosoma haematobium 

where crayfish were present than in their absence–though environmental conditions influenced 

the crayfish’s impact on snail populations and local schistosomiasis prevalence and intensity 

[42].   

Prey–predator relationships between gastropods and freshwater crayfish—both native and 

non-native— are well-documented [44], and numerous field and experimental studies highlight 

the regulatory impact of crayfish on snail populations [45, 46, 47, 48, 49, 50, 51]. Regulation of 

gastropod abundances by freshwater crayfish occurs through a combination of consumptive and 

nonconsumptive mechanisms, though it remains unclear which mechanism drives this 

widespread pattern [45, 52]. Snail populations decline in the presence of crayfish as a function of 

predation (i.e., a consumptive effect). On the other hand, the presence of predators, including 

crayfish, can indirectly impact snail populations if their presence results in changes in snail 

physiology (e.g., growth rate) [53, 54, 55, 56], morphology (e.g., shell thickness, 57; shape, 

reviewed in 44), or behavior (e.g., habitat use, 54, 58, 59; feeding rate, 54) that, in some cases, 

decrease fitness [57]. Snail anti-predator behaviors include change in habitat use, reduced 

feeding rate, crawling up onto vertical substrates, and moving above the waterline (also known 

as “water quitting”)—all of which have been observed when snails are exposed to a crustacean 

predator [54, 55, 56, 59; additional behavioral responses to predators reviewed in 44].  

https://paperpile.com/c/Yu7bAi/U7tq
https://paperpile.com/c/Yu7bAi/U7tq
https://paperpile.com/c/Yu7bAi/mSbx
https://paperpile.com/c/Yu7bAi/mSbx
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Snails exposed to trematode infections, including Schistosoma spp., exhibit behavioral 

differences compared to uninfected conspecifics, which may alter predator risk and the rate at 

which snails are consumed by a predator [60, 61, 62, 63]. Snails exposed to and presumably 

infected by Schistosoma move more slowly and less frequently than do uninfected conspecifics, 

suggesting that infected snails should be at greater risk for predation [60]. When exposed to 

simulated predation cues—a caged riverine prawn, Macrobrachium vollenhovenii, paired with 

crushed snail conspecifics—infected snails also showed a diminished anti-predator response 

compared to uninfected snails (where the anti-predator response is defined as “water quitting,” 

along with an aversion to open water and a preference for hiding under sheltered areas within the 

tank) [60]. Indeed, prawns preferentially consume Bi. glabrata snails exposed to S. mansoni and 

Bu. truncatus snails exposed to S. haematobium [60]. Differences in the consumption rate of 

uninfected and infected snails could alter the regulatory impact of crayfish on snail populations 

and, perhaps, human disease burden. Schistosomiasis control efforts may be enhanced by snail 

predators, if infected snails are consumed preferentially; however, intervention efforts may be 

hindered should predators avoid consuming infected snail hosts [60].  

Like most crayfish [reviewed in 44], marbled crayfish are omnivores, said to eat “almost 

anything” [64]. However, plant material and snails seem to be their preferred food items [64]. 

Indeed, Andriantsoa et al. [65] anecdotally observed that native snails were absent from sites 

inhabited by this invader, suggesting that predation was not only occurring but that crayfish 

presence might reduce snail abundance to zero. Predation was later confirmed in a laboratory 

setting [65], highlighting the species’ potential to serve as a biological control of snails in 

Madagascar–something that is urgently needed in a country where prevalence in some villages 

can range up to 94% [66, 67].  

https://paperpile.com/c/Yu7bAi/e3TX
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The traits that make the marbled crayfish a particularly successful (and worrisome) 

invader may also make the species a formidable predator of Madagascar’s native snails, 

including schistosome-competent snails. Madagascar is diverse in habitat and climate [65]. 

Marbled crayfish can tolerate a wide range of ecological conditions and colonize diverse habitats 

[65], including areas outside of the limited geographic range of native crayfish species 

(Parastacidae; Astacoides) [68, 69]. The invader has been found in rice fields irrigated by thermal 

water reaching temperatures as high as 37°C, in 20°C river habitats [65] and has withstood 

temperatures as low as 5°C in a laboratory setting, though survivorship drastically declines at 

this extreme temperature [70]. Not only is this thermal plasticity and habitat diversity a feat for a 

clonal species, it also suggests that the marbled crayfish may be able to serve as a snail predator 

in habitats where other, endemically occurring snail predators cannot occur–perhaps, a collateral 

benefit of an otherwise destructive invasive species. However, rates of crayfish mortality, 

growth, and consumption vary greatly across temperatures [70, 71, 72]. Rates generally increase 

simultaneously with temperature until a thermal optimum is reached, beyond which point 

performance declines [73]. The temperature at which this thermal limit occurs varies 

considerably among crayfish species [74, 75, 76]. Marbled crayfish consumption (of carrots and 

worms [Tubifex tubifex]) ceases below 10°C [70], while the upper thermal limit remains 

unknown. Likewise, the thermal optimum of consumption, or the temperature at which 

consumption peaks, also remains unknown for marbled crayfish. As such, temperature plays a 

critical role in our understanding of the marbled crayfish’s potential as a biological control agent 

of snail intermediate hosts in Madagascar, as well as other regions in which the marbled crayfish 

has invaded and schistosomiasis is endemic.  

https://paperpile.com/c/Yu7bAi/e3TX
https://paperpile.com/c/Yu7bAi/e3TX
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This study identifies the conditions under which marbled crayfish prey on schistosome-

competent snails. We addressed the following questions: i) Does temperature affect crayfish 

feeding rates on schistosome-competent snails and, if yes, is the relationship between 

temperature and feeding rate increasing, decreasing, or unimodal with a peak at intermediate 

temperatures? ii) Does the rate of crayfish consumption differ between snail species and between 

infected and uninfected snails across temperatures?, and iii) Does crayfish body size mediate the 

response of feeding rate to temperature?  

We experimentally assessed marbled crayfish consumption of uninfected versus infected 

snails across a range of temperatures, reflective of the environmental conditions across the 

habitat range of the marbled crayfish in Madagascar. We hypothesized that the relationship 

between temperature and feeding rate would be unimodal with a peak at intermediate 

temperatures. Additionally, we hypothesized that snail infection status would influence the rate 

of consumption, as behavioral and physiological differences between uninfected and infected 

snails may make animals of differing infection status more or less accessible, detectable, or 

desirable to predators. Finally, we hypothesized that temperature may mediate the influence of 

weight on consumption, because temperature influences large-bodied organisms differently than 

those that are smaller in size [77]. Overall, the results from the present study enhance our 

understanding of the biotic and abiotic factors that impact the rate at which a recent invader, the 

marbled crayfish (Procambarus virginalis), consume schistosome-competent snails.  
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Materials & methods 

Animal husbandry 

Marbled crayfish were reared in freshwater aquaria filled with artificial pond water [78]. 

Crayfish tanks varied in size (3.72 L, 11.7 L, or 81.3 L), depending on the age, size, and rearing 

density of the crayfish. Crayfish, prior to becoming subjects in experiments, were typically 

housed with between two and four conspecifics. Juvenile crayfish were regularly removed from 

adult husbandry tanks and either relocated to a smaller tank (11.7 L) without adults or 

euthanized. Once included in the experiment, crayfish were housed individually in 11.7-L tanks. 

Husbandry tanks were held at room temperature (~25°C), whereas the temperature of 

experimental tanks was controlled and monitored (see below). All crayfish were regularly fed 

frozen carrots, except during experimental trials. Marbled crayfish (Procambarus virginalis) 

were obtained through private sellers on Etsy (https://www.etsy.com/) and Aquabid 

(https://www.aquabid.com/). Permission to import and house marbled crayfish for use in this 

study was provided by the State of Washington’s Department of Fish and Wildlife (Shellfish 

Import Permit No. 22-3020).  

Snails were reared in freshwater aquaria (either 3.72- or 11.7-L tanks, depending on the 

density of snails), filled with artificial pond water [78]. Tanks underwent 100% water changes 

one to two times per week [79]. Snails were regularly fed romaine lettuce, which was refreshed 

during the bi-weekly water changes. All Biomphalaria glabrata (M-line, naive and exposed to 

S.mansoni strain PR-1) and Bulinus truncatus (Egypt, naive and exposed S. haematobium strain 

Egyptian) snails were provided by the NIAID Schistosomiasis Resource Center of the 

https://www.aquabid.com/
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Biomedical Research Institute (Rockville, MD, USA) through NIH-NIAID Contract 

HHSN272201700014I for distribution through BRI Resources. 

 

Experiments 

Our methods largely replicated previous experimental predation trials between crustaceans and 

Schistosoma-competent mollusks [80]. Briefly, one marbled crayfish (Procambarus virginalis) 

was held in combination with a set density (n =12) of either Bi. glabrata or Bu. truncatus snails 

in a 11.7-L tank. An "average" size class of snails (6–10 mm shell length for Bi. glabrata; 5–10 

mm shell length for Bu. truncatus) was used. Crayfish length and weight were measured prior to 

the start of each experimental period. Crayfish varied in weight between 1.54 g and 14.44 g with 

an average ± SE of 6.62 ± 0.117 g.  

The total duration of each experimental period was 72 hours, with observations and snail 

replacement taking place every 12 hours. Each experimental period consisted of 7 total time 

points (0, 12, 24, 36, 48, 60, 72), in which each 12-hour increment constituted a “trial,” for a 

total of 6 trials per experimental period. At the conclusion of each trial, the number of snails 

above the water line, the number of snails on the lettuce (described below), the number of snails 

inside and under the shelter/hiding, and the number of snails in open water were counted and 

summed to reflect the total number of snails remaining in the tank. Additionally, the total 

number of empty, intact shells and the total number of dead snails were recorded at the 

conclusion of each trial. Shattered shell pieces were not included in empty shell counts, as it was 

too difficult to determine how many broken pieces constituted a singular shell. For each trial, we 
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derived the total number of snails missing and presumably consumed as follows: the initial 

number of snails at each trial (n =12), minus the number of snails remaining, minus the number 

of snails dead but not consumed. The number of snails consumed and the number of dead snails 

were totaled to determine the total number of snails to be replaced/added to the experimental 

tank. All counts were repeated and confirmed by a second observer. At the conclusion of each 

trial, dead snails and empty, intact shells were removed, snail density (n =12) was reset, and the 

number of snails replaced/added was recorded. At the conclusion of the 72-hour experimental 

period, any remaining snails were removed from experiment tanks and returned to temperature-

acclimated holding tanks. Crayfish remained in their tanks, allowing us to control for individual 

crayfish identity in analyses.  

Crayfish and snails were provided with food throughout the duration of the experimental 

period. Specifically, at the beginning of the experimental period (time point “0”), a piece of 

romaine lettuce was added to each experimental tank to serve as a food source for snails. 

Additionally, one invertebrate pellet was placed into each of the tanks, including control tanks, to 

serve as an alternative source of food for crayfish. This reflected our assumption that crayfish are 

omnivorous, and are not limited to eating only snails in their natural habitats. Each experimental 

tank also contained a piece of PVC pipe, which served as a shelter for the crayfish and snails.  

We observed crayfish consumption rate across five temperature conditions – 15, 20, 25, 

30, and 35°C. This range reflects the diverse temperatures at which marbled crayfish have been 

found in Madagascar (20°C to 37°C) [65]. Though marbled crayfish can survive in temperatures 

as low as 5°C for extended periods of time, previous experiments have suggested that 

consumption ceases below 10°C [70]. However, consumption has been observed at 15°C, and 

therefore, this may reflect the lower thermal limit of crayfish feeding behavior. Animals 
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underwent a temperature acclimation period, in which the water temperature changed 1–1.5 

°C/day until the desired temperature was reached. Animals were then held at the experimental 

temperature for at least 12 hours prior to the start of the experiment. Given that 15°C and 35°C 

would near the thermal limits of both the crayfish and snails [60, 65, 70, 81, 82], we included 

control tanks, from which crayfish were absent, to exclude the effect of temperature-associated 

snail death and ensure that snail mortality accurately reflected crayfish consumption.  

We were interested in the influence of snail infection status on crayfish consumption 

rates and, therefore, varied snail infection status between experimental tanks. Each individual 

crayfish was held either with all “exposed” or “naive” (hereafter, “uninfected”) snails of one of 

two species included in the present study: Biomphalaria glabrata and Bulinus truncatus. 

Exposed snails were held at room temperature (~25°C) for ~30 days post-exposure (exposure 

date provided by the reagent provider, BRI) to allow infections to adequately mature [83] before 

being used in experiments. Following the post-exposure period, exposed snails were assumed to 

be infected and will be referred to as such hereafter. 

We were limited by the availability of infected Bu. truncatus and Bi. glabrata snails 

(table 1, figure 1). As such, the first round of experiments included only uninfected snails. Round 

1 of experiments began on 14 June 2021 and concluded on 13 August 2021. In Round 1 of 

experiments, we conducted seven (72-hour long) predation experiments for each set temperature 

(15, 20, 25, 30, and 35°C) for a total of 42 (12-hour long) trials (observations) per temperature, 

with one crayfish individual held in combination with either uninfected Bi. glabrata or 

uninfected Bu. truncatus snails. Round 1 also included two (72-hour long) experiments in control 

tanks with snails and no crayfish for each set temperature for uninfected Bi. glabrata and Bu. 

truncatus, for a total of 14 (12-hour long) trials for each temperature for each species in control 
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conditions Round 2 of experiments, which included both uninfected and infected snails, began 

on 25 October 2021 and concluded on 17 December 2021. In Round 2 of experiments, two 72-

hour experiments, for a total of 14 (12-hour long) trials for each set temperature (15, 20, 25, 30, 

and 35°C) were conducted in both the experimental and control conditions for both uninfected 

and infected Bi. glabrata and Bu. truncatus snails. Crayfish individuals used in Round 1 of 

experiments were also used in Round 2, barring mortality. 

 

Analysis 

We were interested in the influence of temperature, snail species, and snail infection status on the 

rate at which crayfish consumed snails. We assumed that crayfish body size (measured as weight 

in grams) would also influence consumption, because larger animals should consume more and 

may respond differently to temperature compared to smaller animals. Over the course of the 

experiment, we encountered instances when there were too many snails in a tank (i.e., more 

snails than the set density of 12). This may have occurred if observers overlooked a hiding snail. 

When this occurred, the trial in which too many snails were observed and the previous trial were 

removed from analyses, resulting in the exclusion of 52 data points out of a total of 960 (5%). In 

addition, 16 instances of crayfish molting (the trial the molt was observed, as well as the 

previous and following trials) were excluded from analyses, as crayfish are known to cease 

feeding during molting [84]. Control tanks did not have crayfish (n = 350 observations) and were 

used to estimate background snail mortality. Therefore, only data from experimental trials (n = 

542) were included in analyses of crayfish consumption. All analyses were run in R version 4.3.1 

(2023-06-16) [85]. 
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We analyzed crayfish consumption rates using a generalized linear mixed model 

(GLMM) implemented in the “glmmTMB” package in R [85, 86]. As each tank was stocked 

with 12 snails at the start of each trial, we used a binomial likelihood with a logit link function 

such that for the number of snails eaten 𝑦𝑦𝑖𝑖 in each trial 𝑖𝑖: 

𝑦𝑦𝑖𝑖~𝐵𝐵𝑖𝑖𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖𝐵𝐵𝐵𝐵�𝑝𝑝𝑖𝑖,𝑁𝑁𝑠𝑠,𝑖𝑖 − 𝑁𝑁𝑑𝑑,𝑖𝑖� 
𝐵𝐵𝐵𝐵𝑙𝑙𝑖𝑖𝑙𝑙(𝑝𝑝𝑖𝑖) = 𝛼𝛼 + 𝛽𝛽𝑋𝑋𝑖𝑖 +  𝜖𝜖𝑐𝑐,𝑖𝑖 + 𝜖𝜖𝑟𝑟,𝑖𝑖 + 𝜖𝜖𝑐𝑐𝑟𝑟,𝑖𝑖 

 
where 𝑝𝑝𝑖𝑖 as the expected probability of consumption per-snail, 𝑁𝑁𝑠𝑠,𝑖𝑖 = 12 is the initial snail 

density, 𝑁𝑁𝑑𝑑,𝑖𝑖 is the number of snails which died but were not consumed, 𝛼𝛼 is an intercept, and 𝛽𝛽 

is the vector of coefficients corresponding to the matrix of predictors 𝑋𝑋𝑖𝑖. We chose a binomial 

model with a logit link because it (1) intrinsically accounts for the fact that the response 𝑦𝑦𝑖𝑖 is 

bounded between 0 and 12, and (2) accounts for the sigmoidal mean–variance relationship which 

is typical of binary outcome (e.g., consumed / not consumed) data; neither of these conditions are 

met by a Gaussian or Poisson likelihood [87]. As fixed effects, we fit snail species (2 levels), 

infection status (2 levels), temperature (5 levels: 15, 20, … 35°C), trial time (6 levels: 12, 24, … 

72 hours), and all second- and third-order interactions among these predictors, as well as crayfish 

weight and the interaction between temperature and crayfish weight (figure 1). To account for 

repeated observations of the same crayfish over several weeks of the experiment, we fit random 

intercepts for each crayfish (𝜖𝜖𝑐𝑐,𝑖𝑖) and experimental run (𝜖𝜖𝑟𝑟,𝑖𝑖), as well as an interaction between 

them to allow crayfish intercepts to vary across runs (𝜖𝜖𝑐𝑐𝑟𝑟,𝑖𝑖). We used Wald 𝜒𝜒2 tests to conduct 

null hypothesis tests of main effects and interactions at the 𝛼𝛼 = 0.05 level [88]. Following 

significant main effects or interactions, we conducted post-hoc pairwise comparisons of the 

estimated marginal effects using the R package “emmeans”, adjusting p-values using the Tukey 

method [89], and using compact letters displays to aid interpretation [90]. 



16 

In line with our experimental design, temperature and time were coded as categorical 

predictors, but the model estimates displayed an apparent unimodal effect of temperature and a 

negative, monotonic effect of time, so we conducted further tests to assess the continuous effects 

of these variables. For temperature, we fit a generalized additive mixed model (GAMM) using 

the R package “mgcv”, with the same response distribution and random effects structure as the 

above model, but including as fixed effects only a temperature spline and weight. We used this 

model to visualize continuous thermal consumption curves at 3, 7, and 11g (approximately the 

10% quantile, mean, and 90% quantiles of observed crayfish weights, respectively). To assess 

the linear effect of time on per capita consumption rate implied by the estimates from the main 

model, we computed post-hoc polynomial contrasts, extracting the linear trend component and 

standard error following a multivariate normal distribution around the estimated marginal means 

and variance-covariance matrix (on the log-odds scale) for each time point [91, 92]. 

Though snail density was reset prior to the start of each trial, snails could have moved to 

various positions within the tank (i.e., above the water line, under the shelter/hiding) where they 

would be inaccessible to crayfish consumption during the trial. Anti-predatory behavior may be 

related to infection status, as infected snails are expected to move more slowly and less 

frequently than uninfected snails [60]. Therefore, we fit a model to assess the number of 

unavailable snails (the number above the water line or under shelter/hiding) as a function of snail 

species, snail infection status (uninfected or infected), and condition (control or experimental). 

As in the main model, we used a binomial likelihood and logit link and included all second- and 

third-order interactions among fixed effects. As crayfish were absent from the control trials, we 

used only random week effects in this model. We included only data from experimental round 2 

(n = 472), as infected snails were not examined in round 1.  
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Lastly, we assessed whether snails died by causes other than predation in the control 

tanks, and whether there were differences in background mortality between the control and 

treatment tanks. We employed a binomial GLMM with a logit link, regressing the number of 

dead snails in each trial on the same set of fixed and random effects used for the unavailable 

snails model, but including data from both experimental runs (n = 890). For both models, we 

evaluated main effects and interactions using Wald tests and conducted Tukey-adjusted pairwise 

comparisons as above. 

 

Results 

Snail consumption was significantly associated with temperature (𝜒𝜒2(4) = 29.1, p < 0.001), time 

point (𝜒𝜒2(5) = 97.1, p < 0.001), and crayfish weight (𝜒𝜒2(1) = 18.9, p < 0.001), but not with 

infection status (𝜒𝜒2(1) = 0.42, p = 0.52) or snail species (𝜒𝜒2(1) = 0.02, p = 0.88) (figure 1). No 

second- or third-order interactions among the main effects were significant (table S1). 

Temperature displayed an apparent unimodal effect on consumption, with probability of 

consumption at the 30°C treatment (μ = 0.37, 95% CI = [0.24, 0.52]) significantly greater than at 

both the 15°C (μ = 0.10, 95% CI = [0.05, 0.18], p = 0.002) and 35°C treatments (μ = 0.13, 95% 

CI = [0.07, 0.23], p = 0.02, figure 2). GAMM estimates suggest that consumption peaks between 

the 25 and 30°C treatments, at approximately 27.2°C.  

While larger crayfish consumed more snails across temperature treatments, the absence 

of a significant interaction between temperature and crayfish weight (𝜒𝜒2(4) = 1.02, p = 0.91) 

suggests that the shape and maxima of crayfish thermal consumption curves does not vary 

among crayfish of different sizes. Estimates of snail consumption probability across time points 
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are consistent with a ~9% decrease in the odds snail consumption every 12 hours, indicative of a 

small but significant satiation effect (𝑒𝑒𝛽𝛽×12 = 0.91, t(432) = -4.2, p < 0.001, figure 3). 

The proportion of snails unavailable to prawns did not generally differ between infected 

and uninfected snails (𝜒𝜒2(1) = 3.5, p = 0.06, table S2). We did, however, find a significantly 

higher proportion of unavailable snails in experimental (μ = 0.17, 95% CI = [0.14, 0.20]) than in 

the control (μ = 0.04, 95% CI = [0.03, 0.05]) treatments (𝜒𝜒2(1) = 90.6, p < 0.001), supporting the 

hypothesis of a pro-active anti-predatory behavior. We also estimate significantly more 

unavailable Bu. truncatus (μ = 0.13, 95% CI = [0.10, 0.15])) than Bi. glabrata (μ = 0.06, 95% CI 

= [0.04, 0.07])) snails (𝜒𝜒2(1) = 9.1, p = 0.003). There was a significant interaction between 

experimental condition (control vs treatment) and species (𝜒𝜒2(1) = 66.14, p < 0.001), with more 

unavailable Bu. truncatus than Bi. glabrata in control tanks (figure 4). There was also a 

significant interaction between condition and infection status (𝜒𝜒2(1) = 66.14, p < 0.001), which 

appears to be driven by a significantly higher proportion of infected (μ = 0.20, 95% CI = [0.16, 

0.24]) than uninfected (μ = 0.13, 95% CI = [0.10, 0.16]) Bu. truncatus in the experimental tanks 

(p = 0.009) with no other significant differences between uninfected and infected snails (figure 

4).  

Minimal snail mortality occurred in control conditions. Of 350 total 12-hour long control 

trials, there were only 20 instances (6% of trials) in which the number of snails remaining in the 

tank was less than the original number of 12. Specifically, mortality was 0.2% ± 0.1% (SE) for 

Bu. truncatus and 0.5% ± 0.1% for Bi. glabrata in control tanks. Conversely, mortality in 

experimental tanks was significantly higher than in control tanks both for Bu. truncatus (4.6% 

±0.5%, Wald test t(881) = -5.17, p < 0.001, table S3) and for Bi. glabrata (1.7% ±0.3%, t(881) = 

-3.06, p = 0.012), corresponding to a nearly 50-fold reduction in projected life expectancy for Bu. 
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truncatus and a nearly 7-times reduction in projected life expectancy for Bi. glabrata under 

laboratory predation conditions (figure S1). 

 

Discussion  

In this set of experiments, the rate at which marbled crayfish consumed schistosome-competent 

snails was significantly influenced by temperature and crayfish weight. Per-capita crayfish 

consumption was shown to be a unimodal function of water temperature that peaked at 

intermediate temperatures between 26 and 29°C. Consumption, however, was not influenced by 

other factors, such as snail species and snail infection status and there was no interaction between 

temperature and weight. Crayfish consumed fewer snails at the low and high temperature 

extremes (15, 20, and 35°C, respectively) compared to moderate temperatures (25 and 30°C). In 

our experiment, 15°C and 20°C occurred on the rising slope of the crayfish’s thermal 

consumption curve and 35°C on the falling slope. Crayfish consumption generally increased with 

increasing temperature until ~27.5 °C, at which point consumption declined. Though a similar 

trend emerges in previous studies, thermal optima, or the temperature at which the rate of 

consumption is maximized, varies considerably amongst crayfish species [74, 75, 76]. Taken 

together, our results demonstrate that, under laboratory conditions, marbled crayfish are 

voracious predators of schistosome-competent snails and that this regulatory effect is modulated 

by climatic conditions. These results provide a strong foundation for future investigation of the 

potential of marbled crayfish to regulate human disease burden by reducing intermediate host 

snails. Field studies are warranted to determine the regulatory effect of the invasive marbled 

crayfish on snail populations—and, in turn, human schistosomiasis burdens—across a broad 

thermal range, including habitats falling outside of the range of naturally occurring snail 
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predators. Future studies should also investigate the relationship between marbled crayfish 

presence and human schistosomiasis burden, which cannot be explicitly examined within the 

scope of this work.  

In general, larger crayfish consumed a greater number of snails across all temperatures. 

This pattern is consistent with previous findings for other crustacean species, in which large 

crayfish (P. clarkii) and prawns (Macrobrachium spp.) consumed significantly more 

schistosome-competent snails than smaller conspecifics [80, 93, 94]. However, marbled crayfish 

consumed fewer Bi. glabrata and Bu. truncatus snails, on average, than did prawns of similar 

size (extra small to medium-sized prawns, ranging from < 1 g to 10 g; consumption rate = 4.67 

snails/12 hours).  

Our results suggest that abiotic (temperature) and biotic (crayfish weight) factors 

influence rates of consumption and, in turn, the potential regulatory control of the marbled 

crayfish on snail host populations. However, interpretation of the present findings must be 

contextualized within the natural ecosystems in which Schistosoma transmission takes place, and 

therefore, we must bear in mind that crayfish are just one player impacted by temperature. 

Temperature plays an important, if not the most important, role in the distribution of 

schistosome-competent snails and human schistosomiasis at the large geographical scale [95, 

reviewed in 96, 97]. Snail hatching, growth, fecundity, and survivorship are also substantially 

impacted by temperature [81, 82 reviewed in 96, 97]. In an experiment investigating the 

influence of temperature on the biology of schistosome-competent snails, Sturrock and Sturrock 

[82] found that Bi. glabrata snails held at 25°C and 30°C hatched two weeks earlier than 

conspecifics held at 20°C. Egg hatching was not observed in 35°C aquaria, and hatchlings 

transferred to these tanks did not survive past two weeks. Following hatching, growth rate 
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increased with increasing temperature (20–30°C), and snails in the 25°C and 30°C tanks reached 

sexual maturity and began laying eggs eight weeks earlier than snails in 20°C tanks. The number 

of eggs laid per two-week period varied considerably across temperature conditions, with snails 

laying six to eight times as many eggs in the 25°C condition compared to other conditions. 

Survivorship was also highest in 25°C tanks [82]. Likewise, temperature impacts the penetration 

and subsequent development of Schistosoma miracidia (measured as the number of daughter 

sporocysts) [98] in snail intermediate hosts, as well as the production of free-swimming cercariae 

[99], cercarial emergence [100], and survival [101]. Miracidial infection in snails increased with 

increasing temperature (ranging from 10°C to 40°C at 3°C intervals), as did the number of 

daughter sporocysts produced within a snail host to a point (production decreased at 40°C) [98]. 

Cercarial production increases between 15°C and 31°C [99]. As snail metabolic activity, energy, 

and vitality (e.g., fecundity, survival, and mortality rate) increases with rising temperatures (to a 

point), so does cercarial production with the snail intermediate host [100, 101, reviewed in 96]. 

In general, cercariae survival decreases as the water temperature increases, with exponential 

increases in mortality occurring at temperatures below 15°C and greater than 35°C [101]. Taken 

together, the results of our study demonstrate that the optimum temperature for crayfish 

consumption coincides well with that of snail egg production and hatching [82]. When crayfish 

consumption of intermediate snail hosts is expected to be hindered by low or high temperatures 

(i.e., the thermal limit), as demonstrated by the present study, cercarial production and survival–

and, in turn, the risk of schistosomiasis transmission and infection–is also expected to be lower 

[99, 101]. 

An important finding was that neither snail species nor snail infection status were 

significantly associated with rates of marbled crayfish consumption. Swartz and colleagues [60] 
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postulated that schistosomiasis control efforts may be enhanced by snail predators, if infected 

snails are consumed preferentially. On the other hand, intervention efforts may be hindered 

should predators avoid consuming infected snail hosts. Prawns (Macrobrachium vollenhovenii) 

preferentially consume Bi. glabrata snails exposed to S. mansoni and Bu. truncatus snails 

exposed to S. haematobium [60], but we found that marbled crayfish did not preferentially 

consume infected snails. One possible explanation is that Schistosoma spp. infections were not 

given adequate time to develop initially or that exposure to differing temperatures resulted in 

variations in the rate at which infections developed [102], making the difference between 

uninfected and infected snails negligible. While prawns are native to the sub-Saharan riverine 

system, the marbled crayfish evolved only recently [12, 13, 14, 15] from a progenitor species 

(Procambarus fallax) that has a distribution that does not overlap with schistosome-infected 

snails [103,104]. As such, marbled crayfish have not co-evolved with schistosome-competent 

snails, meaning that snails, regardless of infection status, may not have yet developed anti-

predator behavior to this unfamiliar predator. Alternatively, the marbled crayfish, as a recently 

evolved invader, may also not be able to detect physiological differences between uninfected and 

infected snails that may otherwise make infected animals more detectable or desirable to 

predators [105]. Therefore, differences in predator preference between infected and uninfected 

snails may be diminished in the interaction between marbled crayfish and snails. The present 

study may have also lacked statistical power, hindering our ability to detect an effect of snail 

infection status on crayfish consumption rates across time points.  

We postulated that crayfish consumption of uninfected and infected snails would be 

influenced by the number of snails available to be consumed, which could differ depending on 

snail infection status (as described above) [60]. We observed more unavailable snails in 

https://paperpile.com/c/Yu7bAi/PW6z
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experimental trials compared to control trials, indicating that both Bi. glabrata and Bu. truncatus 

snails respond to the presence of marbled crayfish with enhanced anti-predator behavior. Snail 

availability, however, did not generally differ between infected and uninfected snails in either the 

experimental or control conditions. This suggests that both Bu. truncatus and Bi. glabrata snails, 

regardless of infection status, engage in anti-predator behaviors when exposed to a marbled 

crayfish individual in the experimental condition. The fact that there were no systematic 

differences in the number of unavailable snails between the infected and uninfected conditions 

suggests that the lack of an overall effect of infection status on crayfish consumption rates 

probably does not arise from opposing effects of preference and accessibility (i.e., our 

experiments do not support the hypothesis that crayfish prefer infected snails but infected snails 

are harder to get, or vice versa). These findings contrast those of Swartz and colleagues [60], 

who found that snails infected with Schistosoma spp. exhibit a diminished anti-predator response 

compared to uninfected snails when exposed to simulated predation cues–an unexpected 

outcome given that the two studies used genetically identical strains of snails and parasites. 

However, in the present experiment, snail behavior and crayfish consumption are confounded in 

the experimental treatment; that is, the difference between the number of unavailable snails in 

control versus experimental treatments could be due either to differences in snail behavior (i.e., 

more snails are choosing habitats that make them unavailable in the experimental condition 

compared to the control condition) or crayfish consumption (i.e., there are fewer unavailable 

snails because crayfish have eaten snails in the predation experiments). It is therefore possible 

that, in the absence of crayfish consumption (by caging crayfish in the experimental tanks and 

preventing them to predate on snails), we might have observed a greater number of unavailable 

snails in the experimental treatment, and this would have revealed more marked expression of 
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anti-predator behavior among uninfected snails compared to infected snails, consistent with 

Swartz et al. [60]. Future studies should monitor uninfected and infected snail behavior in a 

simulated predator condition (described by [60]), where the marbled crayfish is present but 

unable to access and consume the snails and consumption is simulated through the addition of 

crushed conspecifics.  

As with any experimental study, several caveats are worth noting. Behavioral differences 

are known to arise between aquarium- and naturally reared marbled crayfish; aquarium-reared 

individuals tend to be more active and aggressive [105], suggesting that laboratory consumption 

rates may not reflect the rates occurring in nature. However, previous field observations in 

Madagascar found that native snails were absent from areas in which the marbled crayfish had 

established [65], providing supportive (although not conclusive) field evidence that this invader 

may prey upon snails in nature. Previous studies have also demonstrated links between the 

abundance of schistosome-competent snails and human infection burdens [42, 38, 60, 80, 106]. 

Though this is promising evidence in support of the crayfish’s potential to serve as a biological 

control of snail intermediate hosts, our results demonstrate that ecological parameters, such as 

crayfish weight and temperature, could influence the relationship between invasive enemies, 

snails, and human schistosomiasis burden. For example, based on peak rates of consumption 

from the experiment, crayfish in lower (<25°C) and higher (>30°C) water temperatures may be 

less likely to reduce snail populations. Anyway, no sustained transmission of schistosomiasis 

seems to occur when average temperature in the warmest quarter exceeds ca. 31-32 C [107], so 

other ecological processes concur to limit transmission risk at high temperature and reduction of 

crayfish consumption rate in the upper thermal range of the distribution won’t be relevant. On 

the other hand, per-capita crayfish consumption rate might be significantly lower than at peak in 

https://paperpile.com/c/Yu7bAi/PW6z+LJo8
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the Madagascar highland where mean annual temperature is around 25C or below. Also, our 

experiments showed that per capita consumption rate in the 6 consecutive 12-hour long trials of 

the predation experiments slightly decreased with time, a possible indication of satiation, thus 

slightly reducing the effectiveness of predation control by marbled crayfish. Jointly with the 

observation that snails exhibited a clear anti-predatory behavior and actively searched for 

predation refugia, there is the possibility that in natural wildlife conditions, predation rate might 

be lower than estimated in our laboratory experiments.    

While invasion of alien species should be avoided by any means, we observe that, 

according to the results of this laboratory experiment and field evidence of a reduction of snail 

abundance where the crayfish invaded, the presence of the marbled crayfish may provide an 

unexpected co-benefit to the people of Madagascar: crayfish-driven reductions in burdens of 

human schistosomiasis [41, 42, 38] – something that is urgently needed in a country where 

prevalence in some villages can range up to 94% [66, 67]. However, this effect needs to be 

weighed against other considerations as the country leadership grapples with all the ecological 

and social impacts of a significant number of invasive species [108] and, specifically, of the 

marbled crayfish. Several studies have clearly documented that the invasion of the Louisiana 

crayfish Procambarus clarkii can have dramatic impacts on native invertebrate fauna [109,110]. 

Introduced marbled crayfish directly threaten Madagascar’s native aquatic wildlife [65]–a 

pressing concern given approximately 90% of plant species, 36% of birds, 90% of mammals, 

96% of reptiles, 33% of fish and 86% of macroinvertebrates are endemic to the island [111]. 

On the other hand, natural predators of the obligate host snail of schistosome parasites 

may be playing an important role in the diet of children (112, 113), serving as an opportunistic 

and rapidly renewable nutritional source in a country where ~50% of children experience stunted 
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growth due to lack of sufficient dietary protein [114]. Non-native species have long been 

recognized as having profound effects on ecosystem services [7, 8, 9] through their influence on 

the abundance and distribution of their prey and competitors [10, reviewed in 11]. However, 

empirical evidence of such consequences does not exist for the vast majority of non-native 

introductions [115, 116, 117]. Non-native species may, in some regards, have negligible and 

even positive impacts on ecosystems [43, 118], and careful, balanced evaluations of all the 

benefits and disservices associated with species introductions are needed to better inform 

management strategies [43, 118, 119, 120]. Drawing upon examples of non-native crayfish, the 

impact of a non-native species on ecosystems may vary considerably and is probably species-

specific and context-dependent [121, 122, 123, 124]—thus limiting our ability to make broad 

predictions regarding the multi-faceted impacts of invasive species on biodiversity and 

ecosystem services, including the regulation of disease agents. In general, existing evidence of 

the positive impact of natural enemies on human diseases is exceedingly rare, as are empirical 

investigations linking species interactions within the environment to outcomes of human disease 

[reviewed in 2]. 

Our study shows unequivocally that crayfish are voracious predators of schistosome-

competent snails and that temperature modulates consumption rates. Whether crayfish are able to 

reduce schistosomiasis prevalence in the human population by controlling snail abundance at the 

transmission sites has yet to be determined. Field studies are needed to determine whether the 

snail consumption documented here will translate into impacts on snail populations and human 

schistosomiasis burden. However, the possibility remains that reductions in schistosomiasis 

transmission might be a silver lining to the invasion of Procambarus virginalis in Madagascar. 

Before any proactive attempt to deploy non-native species for schistosomiasis control, future 

https://paperpile.com/c/Yu7bAi/rgsI
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studies will need to carefully quantify the co-occurring ecological impacts and potential benefits 

for nutrition and reduction in schistosomiasis transmission risk of nature-based solutions for 

disease control. Until then, it is imperative that the invasive crayfish must not be introduced to 

freshwaters beyond its current range. The present work lays the foundation for future exploration 

of the potential role of marbled crayfish in the regulation of schistosome-competent snails and 

draws attention to the untapped potential for non-native species to regulate disease.  
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Figures 

Figure 1. Bivariate plots displaying the proportion of snails consumed in each trial as jittered 
points with (a-c) overlayed boxplots for treatment variables, and (d) an overlayed regression 
curve (± standard error) for crayfish weight. Columns display data for each snail species, with 
rows displaying consumption across (a) temperature, (b) time block, (c) snail infection status, 
and (d) crayfish weight. 
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Figure 2. (a) Estimated marginal means and confidence intervals for probability of snail 
consumption at 15, 20, 25, 30, and 35°C, superimposed on jittered points corresponding to 
observed snail consumption proportions. (b) Continuous temperature curves (and 95% 
confidence bands) for 3, 7, and 11g individuals (approximately the 10% quantile, mean, and 90% 
quantile of crayfish weights). Estimates that do not share a letter are significantly different. Both 
discrete (GLMM estimated) and continuous (GAMM estimated) effects are consistent with a 
unimodal effect of temperature on consumption, with GAMM curves suggesting a peak around 
27.2°C. 
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Figure 3. Estimated marginal means and confidence intervals for probability of snail 
consumption at trial time points (12 to 72 hrs at 12 hr intervals), superimposed on the lineartime 
trend (and 95% confidence band). Estimates that do not share a letter are significantly different. 
Results are consistent with a small but significant satiation effect. The linear trend is consistent 
with a ~9% decrease in the odds of snail consumption every 12 hours, indicative of a small but 
significant satiation effect (𝑒𝑒−0.008 ×12 = 0.91, t(432) = -4.2, p < 0.001, r = - 0.49). 
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Figure 4. Estimated marginal means and confidence intervals for the proportion of unavailable 
snails across species, infection status, and experimental condition, superimposed on jittered 
points corresponding to observed proportions of unavailable snails in trials. Estimates that do not 
share a letter are significantly different.  
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Table 1. Summary tables displaying the observed proportion of snails consumed by crayfish, 
unavailable for crayfish consumption, or dead by causes other than crayfish consumption. 
Proportions are grouped by (a) temperature treatments, (b) infection status, (c) trial time blocks, 
and (d) snail species. Because not all data were used to inform consumption estimates, and 
separate control trials were conducted without crayfish to assess snail predator-avoidance 
behavior, sample sizes differ among data used to evaluate consumption, predator avoidance, and 
other mortality. Proportions are given as a mean ± SD. 
 
a.  consumed  unavailable  dead 

temperature  n  mean (SD)  n  mean (SD)  n  mean (SD) 
15 °C  106  0.15 (0.17)  95  0.09 (0.16)  174  0.03 (0.07) 
20 °C  109  0.30 (0.25)  95  0.13 (0.16)  181  0.02 (0.06) 
25 °C  108  0.33 (0.27)  95  0.11 (0.15)  178  0.02 (0.06) 
30 °C  110  0.38 (0.26)  95  0.11 (0.14)  181  0.02 (0.05) 
35 °C  107  0.23 (0.27)  92  0.15 (0.18)  176  0.01 (0.04) 

             

b.  consumed  unavailable  dead 
status  n  mean (SD)  n  mean (SD)  n  mean (SD) 

infected  119  0.33 (0.25)  233  0.13 (0.17)  233  0.01 (0.04) 
uninfected  421  0.27 (0.26)  239  0.11 (0.15)  657  0.02 (0.06) 

             

c.  consumed  unavailable  dead 
time  n  mean (SD)  n  mean (SD)  n  mean (SD) 

12 hrs.  86  0.31 (0.27)  75  0.10 (0.14)  142  0.02 (0.06) 
24 hrs.  88  0.36 (0.31)  79  0.11 (0.14)  147  0.02 (0.06) 
36 hrs.  87  0.23 (0.21)  79  0.13 (0.17)  144  0.02 (0.06) 
48 hrs.  86  0.31 (0.28)  79  0.09 (0.13)  144  0.01 (0.04) 
60 hrs.  95  0.19 (0.21)  80  0.13 (0.17)  155  0.03 (0.05) 
72 hrs.  98  0.28 (0.24)  80  0.14 (0.20)  158  0.02 (0.07) 

             

d.  consumed  unavailable  dead 
species  n  mean (SD)  n  mean (SD)  n  mean (SD) 

Bi. glabrata  268  0.27 (0.24)  236  0.10 (0.16)  449  0.01 (0.04) 
Bu. truncatus  272  0.29 (0.27)  236  0.14 (0.15)  441  0.03 (0.07) 
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Supplemental Tables & Figures 
 
 
 

 
Figure S1. Estimated means and confidence intervals for snail mortality across species 
experimental condition. Estimates that do not share a letter are significantly different.  
 
 
Table S1. Wald tests for main effects and interactions for binomial GLMM fit to the number of 
consumed snails in experimental trials. Asterisks indicate significant predictors. 

term 𝝌𝝌𝟐𝟐 df Pr(>𝝌𝝌𝟐𝟐)  

snail species 0.023 1 0.881  

infection status 0.422 1 0.516  

temperature 29.056 4 <0.001 * 

time 97.1 5 <0.001 * 

weight 18.948 1 <0.001 * 
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snail species : infection status 0 1 0.995  

snail species : temperature 3.098 4 0.542  

snail species : time 7.244 5 0.203  

infection status : temperature 2.059 4 0.725  

infection status : time 3.831 5 0.574  

temperature : time 16.228 20 0.702  

temperature : weight 1.021 4 0.907  

snail species : infection status : 
temperature 2.706 4 0.608  

snail species : infection status : time 10.049 5 0.074  

snail species : temperature : time 20.826 20 0.407  

infection status : temperature : time 19.352 20 0.499  
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Table S2. Wald tests for main effects and interactions for binomial GLMM fit to the number of 
unavailable snails in control and experimental trials. Asterisks indicate significant predictors. 

term 𝝌𝝌𝟐𝟐 df Pr(>𝝌𝝌𝟐𝟐)  

snail species 9.103 1 0.003 * 

infection status 3.526 1 0.06  

condition (control vs. experimental) 90.575 1 <0.001 * 

snail species : infection status 2.318 1 0.128  

snail species : condition 66.375 1 <0.001 * 

infection status : condition 14.679 1 <0.001 * 

snail species : infection status : 
condition 0.28 1 0.597  
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Table S3. Wald tests for main effects and interactions for binomial GLMM fit to the number of 
dead snails in control and experimental trials. Asterisks indicate significant predictors. 

term 𝝌𝝌𝟐𝟐 df Pr(>𝝌𝝌𝟐𝟐)  

snail species 34.184 1 <0.001 * 

infection status 8.511 1 0.004 * 

condition (control vs. experimental) 41.179 1 <0.001 * 

snail species : infection status 0.739 1 0.39  

snail species : condition 9.299 1 0.002 * 

infection status : condition 0.735 1 0.391  

snail species : infection status : condition 0.056 1 0.814  
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