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Summary 

This thesis presents an adaptive wavelet method for the simulation of the time evolution of 
the magnetization of nanoelements and the results obtained with the numerical simulations. 

The evolution of the magnetization (m) of a nanoelement situated in a non-magnetic 
medium is modeled mathematically with the Landau-Lifshitz equation. One term in that 
equation, the demagnetizing field, is derived from the solution of a Poisson equation whose 
right hand side depends on m. Of these two equations, coupled via the magnetization, 
the first one is discretized by a pointwise Euler scheme while the other is solved with an 
adaptive wavelet method. 

The multi-level features of wavelet bases are used to cope with the sharp variations in the 
magnetization strength at the interface between the nano-element (where 1ml = 1) and 
the surrounding non-magnetic region (where 1ml = 0) , and in the magnetization direction 
within the nanoelement, which may occur under certain circumstances with the formation 
of narrow domain walls. The aim of the adaptive scheme is to make maximum use of an 
affordable number of degrees of freedom by concentrating the computational resources in 
the locations where the sharpest variations in m are situated. The challenge for such a 
method is to ensure that the size of the memory and the number of operations remains 
proportional to the number of degrees of freedom. 
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Introduction 

The work presented in this thesis arises from the micromagnetics modeling group at the 

University of Wales Bangor, where several researchers have been working on the magnetic 

behaviour of nano-structured permalloy. The motivation for this study lies in this type 

of material's potential future use for high density magnetic storage media. The material 

is considered discretized into a nanoelement structure at the sub-micron level and we use 

a mathematical model to predict behaviour such as magnetization reversal and domain 

formation. The simulat ion is done by a numerical method. The mathematical model used 

in this thesis is based on the Landau-Lifshitz equation. 

In 2000, Philip Ridley presented in his doctoral thesis [25] results obtained for this equa

tion by a finite element method. By contrast, the numerical method used in what follows 

is a combination of a finite difference method and a wavelet method. The wavelet part 

of the scheme is used to solve a Poisson equation with homogeneous boundary conditions 

on a mathematical domain representing a small magnetic region, termed nanoelement or 

platelet, which is embedded in a larger non-magnetic region. The wavelet solver is used 

repeatedly, coupled with the Landau-Lifshitz equation proper, which is an equation of mo

tion implemented with a scheme based on finite differences, such as an Euler scheme. The 

difficulty arises from modelling the interface of the platelet with the outer, non-magnetic 

region and from the expected formation in the solution of localized less smooth features 

which do not remain stationary, such as the formation over time of domain walls. Different 

scales of resolution are necessary on the overall domain: a coarser resolution away from the 

nanoelement , where the magnetization is zero, and a finer resolution near and inside the 

nanoelement. The finite element method implemented by Ridley addresses this problem 
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by the use of a fixed non-uniform unstructured mesh of triangular elements, which is set at 

the start of the simulation. The approach presented here makes use of a wavelet adaptive 

strategy in order to increase the resolution scale dynamically as and where the domain 

walls develop. However, it is expected that t he flexibility added to the method in this 

way will also bring an overhead in data handling and in general computational complex

ity. The algorithms for the wavelet part of implementation are based t he following papers 

[3, 4, 9, 8, 26], and others as specified in the text. The programming itself was done in 

C++ and makes extensive use of the Multilevel Library, a research library for multi-level 

methods and wavelets developed at the IGPM1 , at the RWTH Aachen2 , in Germany. 

This thesis is organized as follows. In the first chapter the mathematical equations used 

used to model the nanoelement magnetization will be presented and t he discretization of 

these equations will be described. The second chapter gives details on wavelet bases in 

general and more particularly on B-spline wavelet bases defined on the unit cube. Some 

of the properties of the bases, relevent to the application at hand, are given. In the 

third chapter, an adaptive wavelet scheme for the solut ion of the Poisson equation is 

described. Chapters 4,5 and 6 are concerned with the implementation of t he tools necessary 

for the realization of this adaptive scheme. These tools are, in order , the calculation of 

a sparse wavelet representation of a function, the implementation of a fast matrix-vector 

multiplication together with the dynamic calculation of the the entries of the Laplace 

operator matrix, and finally the pointwise evaluation of a sparse wavelet expansion. In 

chapter 7, the adaptive Poisson solver is tested numerically for an example relevent to 

the micromagnetics application. Finally, chapter 8 presents the results obtained for the 

1 Institut fi.ir Geometrie and Praktische Mathematik 
2 Rheinisch-Westfalische Technische Hochschule, the faculty of Mathematics, computer sciences and 

natural sciences of Aachen 
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numerical simulation of the magnetization of the nanoelement. 



Chapter 1 

Mathematical models of 

micromagnetics 

1.1 The mathematical model 

The mathematical model presented here concerns the evolution of the magnetization of 

one nanoelement from the instant when an external magnetic field, previously applied to 

the nanoelement, is varied. The nanoelement considered is rectangular in shape and, as in 

[25], it has dimensions 0.2µm width, l.6µm length and 0.2nm thickness. 

The domain of solution 

As a starting point, the nanoelement is represented on the two-dimensional plane as an 

elongated rectangle of ratio 1 to 8, embedded in an area of non-magnetic material, which is 

represented by a square of larger dimensions as illustrated in Figure 1. 1. The 2D assump

tion can be justified partly by the small thickness of the nanoelement and partly by the 

8 
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Figure 1.1: The domain of solution in the case of a rectangular nanoelement. 
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small magnitude of the out of plane component of the applied field. The magnetic region, 

denoted by Dint, and the non-magnetic region, denoted by D ext , together form the domain 

of solution, which will be denoted by n. 

Electromagnetics notations 

The notations for the physical quantities used in the model are now given. Vectors are type

set in bold face, while normal font is used for scalar quantities, and Cartesian coordinates 

are assumed at all times. 

For clarity, a vector field Y(x 1 , x2 , x3, t) will often be written Y when the context is clear. 

The following notation is assumed throughout: 

• M denotes the magnetization (magnetic moment per unit volume). 
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• H t denotes the total effective vector field. It is the sum of all the magnetic fields 

applied to the domain. The evolution of the magnetization depends solely on H t. 

• H app is an externally applied field. In this work as in [25] it is a uniform field in the 

direction of the x 1 or t he x 2 axes. 

• H a denotes the anisotropy field. A uniaxial material, such as the material considered 

here, has exactly one preferred or easy magnetization direction. The anisotropy field 

is the field associated with the energy required to rotate the magnetization moment 

away from its preferred axis. The relation between the anisotropy energy Ea and the 

anisotropy field is H a = -dEa/ dM. 

• H ex denotes the exchange field. 

• H d denotes the demagnetizing field. 

• e denotes a unit vector along the direction of the preferred, or easy, axis. 

• Ms denotes the saturation magnetization of the material. It is a material constant 

which represents the strength of the sum of t he M when all t he magnetic moments 

are aligned in the external field direction. 

• K denotes the anisotropy constant. 

• Hk is the anisotropy field strength. It is given here by Hk = 2K / Ms. 

• A denotes the material dependant exchange constant. 

• >. denotes the dissipative constant . 

• 1 denotes the magneto-mechanical or gyromagnetic ratio. 
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The Landau-Lifshitz equation 

The equation used to model the time evolution of the magnetism of a nanoelement is the 

Landau-Lifshitz (LL) equation of motion 

(1.1) 

This equation has been used successfully to model cases where the dissipative constant is 

small [25]. This equation in particular is suitable for the value,\ = 1 which will be used in 

this work. The total effective field in the equation (1.1) is dependent on M and may be 

decomposed into the sum of the four effective fields 

The dependence of the fields H ex and H a on the magnetization is given by 

H ex 
A 2 

(1.2) - 2M2 'v M , 
s 

H a 
2
!

2
(M . e)e, (1.3) 

s 

whereas H app is a constant . The demagnetization field H d is also dependent on the 

magnetization, and a derivation is given in the following subsection. 

Derivation of the demagnetization field 

This derivation of the demagnetizing field is taken from [25]. It is based on the extension 

of the Maxwell laws of electromagnetics to the field of micromagnetics. Let D denote the 
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electric flux density and J denote the electric current density. For a given magnetization 

moment M, the demagnetizing field is given by 

For current free regions, "v x H d = 0, and so H d is an irrotational vector field. Now let 

B denote the induced field 

and "v · B = 0, 

which implies that 

Since H d is an irrotational field, we may introduce a scalar potential q> such that 

where q> can be seen to satisfy the Poisson equation. In what follows, we depart from the 

electromagnetics convention of denoting a potential by ¢>, in order to avoid conflict with 

the common notation used for scaling functions, which play an important role in wavelet 

methods. Instead, the potential will be denoted by U, which is conventional notation in 

numerical mathematics for the solution of a partial differential equation. 
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Using this new convention for notation, the above equations may be rewritten as 

-VU, 

b.U 41rV · M. 

13 

(1.4) 

(1.5) 

Continuing with the derivation of the demagnetizing field H d) it may be seen that outside 

the magnetic material, M = 0, and so denoting by Uext the potential in that region and 

by Uint the potential in the nanoelement, it follows that 

b.Uext = 0, (1.6) 

(1.7) 

The interface between the magnetic and the non-magnetic regions is denoted by 8Dint = 

Dint n Dext, and across this region continuity conditions are imposed between Uext and Uint · 

From the continuity of the normal component of B and the tangential component of H d 

8Uint _ 8Uext = 47r M . n, 
on on on 8Dint, (1.8) 

(1.9) 

where n is the unit normal away from Dint· Finally, the potential decreases to zero at 

infinity, which is modelled by 

Uext = 0 on 8D, (1.10) 

where 8D denotes the outside boundary of the finite, square, non-magnetic domain, which 
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is located at a distance large enough so as not to affect the solution near the nanoelement. 

The Landau-Lifshitz equation in reduced units 

Before doing any numerical calculation the effective field terms will be rescaled with respect 

to the anisotropy field strength and the Landau-Lifshitz equation will be phrased in reduced 

units. The anisotropy field strength is defined by 

and it follows that the reduced total effective field will be 

the reduced t ime 

the reduced dissipative constant 

and the reduced magnetization 

M 
m= M' 

s 
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The reduced magnetization is in effect a normalized M, so 1ml = 1. The components of 

the total effective field in reduced units are 

ha= (m · e) e, 

A -2 
where Cex = 

4
K Cu , 

M2 
where Cd = 

2
K. 

(1.11) 

(1.12) 

(1.13) 

In the equations above, u is the solution of the Poisson equation described in the previous 

section, with the magnetization in reduced units, and Cu denotes the coefficient for the 

unit change between the unit of length used in the Poisson solver and the unit of length 

consistent with the unit system used for the parameters A and K . 

Finally, the equation (1.1) in reduced units reads 

om 
07 

= -m x h t - a(m x (m x ht)). (1.14) 

Further, by writing m = (m1, m2 , m3 ) and ht = (h1, h2 , h3 ) in terms of cartesian coordi

nates, and expanding the vector products, the equation (1.14) has the following component 

by component expression 
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Having presented the mathematical equations modelling the physical problem, it remains 

to describe the numerical scheme implemented in order to create numerical simulations for 

the behaviour of M in the nanoelement. A general outline of this scheme will be given in 

the next section, while the details of the wavelet numerical model and its implementation 

will be the subject of the next chapters. 

1.2 The numerical model 

The numerical model is split into two parts. One part consists of a time stepping scheme 

to model the equation of motion (1.14) and the other is dedicated to the calculation of the 

effective field components, and in particular the demagnetizing field which is derived from 

the solution of a Poisson equation, as seen in (1.4) and (1.5). The Poisson equation will 

be solved at each time step by a variational method, in terms of a wavelet basis, while the 

time stepping scheme will act on the physical values of the magnetization and the applied 

field. 

1.2.1 A simple time stepping scheme: the Euler scheme. 

The Landau-Lifshitz equation of motion (1.14) will be solved at discrete times Tn, where 

Tn =To+ n6.T for some inital time To. The time-step 6.T will be kept constant during the 

whole simulation. The evolution of the magnetization with time will be implemented using 

the simplest t ime stepping scheme, which is the explicit forward Euler scheme. The Euler 

scheme is also called t he tangent method and it consists of approximating the function 

m(T) by a piecewise linear polynomial. At time To, the approximation coincides with the 

value m(To). At time Tn > To, the value of m will be approximated by m n, which is 
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calculated from the approximation of m at time 'Tn-I · The scheme may summarized by 

Using the right hand side of the Landau-Lifshitz equation for Bm /Eh, t he scheme is 

m o 

fin m n-1 - ~'T ( m n - 1 X h t + a ( m n-1 X ( m n-1 X hf-1
)) ) , 

(1.15) 

(1.16) 

where h;-1 denotes the value of the total effective field calculated at step n - 1. This 

method is a first order method in the sense that it is exact for polynomials of degree 1 but 

not for higher degree polynomials and the local truncation error is 0 (~ 7). The size of the 

time-step ~7 affects the stability of the scheme and it is empirically set to a small enough 

value to keep the size of the errors generated under control. 

1.2.2 A variational form for the derivation of the scalar potential 

T he problem of solving a Poisson equation with homogeneous boundary condition, stated 

as: 

Find u such that: 

~u=f, 

u(x) = 0, 

XE 0, 

x E an, 
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is usually restated as a variational problem: 

Find u E H5(D) such that: 

L Vv ·Vu= L vf, for all v E HJ(D), 

which, by the Lax-Milgram theorem, is known to have a unique solution. The aim of this 

section is to write the equations (1.6) and (1.7), subject to the interface conditions (1.8) to 

(1. 10) in a form equivalent to the one above. In a two dimensional setting, the two main 

equations are written in variational form as: 

Using the identity for the divergence of the product of a vector function (F) by a scalar 

function (g), 

div ( F g) = g div F + F · grad g, 

and writing i6.u as div grad u, it follows that 

and similarly for Uext· 

By Green's theorem, 

j i _ div ( v grad Uint) dx1 dx2 = i + v( grad Uint) • n ds, 
!1,nt anint 
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where fan+ denotes the integration along curve n int in the anticlockwise direction. 
mt 

For the non-magnetic domain, which has an inside boundary (80int) and an outside bound-

ary (80), 

!"{ div (v grad Uext)dx1dx2 = j v ( grad Uext )·next ds+f v( grad Uext)·next dS. 
J next I an-:nt Ian+ 

By reversing the direction of integration on anint and using the boundary condition v = 0 

on 80, one has 

Ji div ( v grad Uext) dx1 dx2 = - i + v ( grad Uext) · n ds 
ext anint 

The variational form of the equation can be rewritten as 

\:/v E HJ (O), -!" r grad Uint • grad V dx1 dx2 - J" r grad Uext • grad V dx1 dx2 
lnint lnext 

J 1. 41r( div m ) v dx1 dx2 - i + v(( grad Uint ) · n - ( grad Uext) · n) ds 
nrnt anint 

Using the first interface condition (1.8), 

\:/v E HJ(O) , le r grad Uint , grad V dx1 dx2 + /" r grad Uext • grad V dx1 dx2 
lnint ln,,,t 

- j 1. 41r( div m) v dx1 dx2 + i + 41r(m . n) v ds. 
nmt anint 
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Finally, denoting by u the prolongation of Uext into flint by Uint, this comes to 

j l grad u • grad v dx1 dx2 = - I l int 41r( div m) V dx1 dx2 

+ i + 41r(m . n) v ds, 'riv E HJ(n) , (1.17) 
an.int 

where the right hand side can be seen to be independent of the solution u. This formulation 

is equivalent to that of the variational problem stated at the beginning of this section. The 

next step towards resolving this problem numerically consists of discretizing it by replacing 

the condition 'riv E HJ (0) by a discrete one V'lj)>., >. E v7 , where v7 denotes a discrete index 

set and where the collection of functions { 1P>., >. E v7} forms a basis for HJ(O) . These 

functions play the role of test functions. Further, the solut ion u is searched for as a linear 

combination of a set of basis functions for HJ(O). These are termed the trial functions. 

We will be using the Galerkin method, according to which the set of test functions and 

the set of trial functions are identical. The problem of finding a potential u for which the 

equation (1.17) holds is then equivalent to the problem: 

Find a sequence dv E £2 such that: 

L dv J 1 grad 1Pv • grad 1P>. dx1 dx2 = 
v E"v n 

-!" { 41r( div m) 1P>. dx1 dx2 
lo.int 

+ i + 41r(m . n ) 1P>. ds, V>. E v7. 
an.int 

Wavelets are the functions that have been used in this thesis for test and trial functions. 

Wavelet functions and some of their relevant properties will be presented in Chapter 2. 



Chapter 2 

Wavelets 

Wavelets are functions which are used in many types of applications, from image compres

sion, signal analysis as in seismology, to integral and differential equations in numerical 

analysis. They are well known for their compression properties and for the existence of a 

fast wavelet transform which is comparable to a fast Fourier transform with local properties 

in both space and frequency. In the context of the numerical scheme presented in chapter 

3, we will be particularly interested in the properties which lead to 

• the sparse representation of certain functions, 

• the good condit ioning of the Laplace operator. 

Many families of wavelets have been constructed in order to suit different applications. 

This chapter also contains a section dedicated to presenting properties which are common 

to most wavelets. The section following the general description of wavelet properties is 

more specialized and is concerned with the description of the wavelet bases that are used 

in the implementation. First of all , however, wavelets are presented in their historical 

context. 

21 
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2 .1 Historical background 

In the early 1980's, wavelets which could present the double advantage of locality in space 

( or time) and in frequency, became popular with people working on signal processing as an 

alternative to the Fourier transform [11]. By analogy with the Fourier transform, a wavelet 

function w was first thought of as the analysing function in a transform of the form: 

1 1+00 (x - b) S(b, a) = r;; w(--)s(x)dx 
ya _

00 
a 

where a E (0, oo), b E IR, s is the analysed function, w denotes the complex conjugate of 

w, and w satisfies the two equations: 

j w(x)dx 0 

j lw(x)j2dx < oo 

In a search for a particular discretization of the variables a and b that would give an 

orthonormal basis for L2 (IR), t he Haar system, due to Alfred Haar in 1910, appeared as an 

obvious solution. This system is a construction of boxes on dyadic intervals: 2il2w(2ix -

k), j, k E Z, with w(x) = 1 if x E (0, 1/2), w(x) = - 1 if x E (1/2, 1), and w(x) = 0 

elsewhere. However, this system shows poor smoothness and cancellation properties, and 

in this respect is said to be of order 0 [23]. Stromberg, in the early 80's built the first 

wavelets of order 1 using spline functions [27]. 

A major step in the history of wavelets was then the elaboration of the concept of Multi

resolution Analysis of L2 (IR), or MRA(L2 (IR)), by Y. Meyer and S. Mallat in the late 

80's. Later, using Mallat's work on MRA(L2 (IR)) bases, Daubechies constructed compactly 
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supported, orthonormal wavelets and scaling functions of predefined regularity [17], [18]. 

A set of compactly supported , biorthogonal wavelets based on splines was constructed 

by Cohen, Daubechies and Feauveau [10] (1992). Several reviews on the construction 

and properties of wavelets defined on IR have been written [2, 28, 20]. As wavelet theory 

progressed and more tools became available, their use spread to areas other than signal 

processing. 

The first applications of wavelets to the solution of partial differential equations seems 

to have consisted of Galerkin methods on problems with periodic boundary conditions. 

Indeed, as was noted by Y. Meyer [24], the techniques which were first developed on the 

real line could be easily modified by a standard procedure of periodisation to be used on 

L2 ([0, 1]) in the periodic case. For problems associated with finite boundary conditions 

however, the need arose in the mid-90's for bases of wavelets defined on the interval, and 

satisfying the boundary conditions. In particular, taking as a starting point the Cohen

Daubechies-Feauveau construction [10], W . Dahmen, A. Kunoth and K. Urban developed 

spline biorthogonal wavelet bases for L2 ([0, 1]). These bases have an arbitrarily high degree 

of polynomial exactness on the whole interval. The authors have also proven that discrete 

norms based on expansions in these bases characterize Sobolev spaces H 8 ([0, 1]) for s 

in a certain range that depends on the regularity of the chosen biorthogonal bases [12]. 

A modification of these bases into multi-dimensional wavelets satisfying certain types of 

boundary conditions was due to W. Dahmen and R. Schneider and described in [15]. 

Other constructions have generalized the unit cube to domains of more complex geometries 

[5, 6, 16] . With the emergence of more specialized bases, a number of numerical methods 

have been adapted to take advantage of t heir good numerical properties such as the easy 

preconditioning of discrete operators, the multi-level organization of the bases and the 
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sparsity of certain operators [9, 8]. 

2. 2 Introduction to wavelets 

Wavelets were originally defined as functions of L2 (JR) and t his will also be the starting 

point of this section. Further subsections will detail how wavelets with different constraints, 

such as periodic wavelets or wavelets on t he interval, have had to depart from this original 

model. Finally, the last subsection is dedicated to multi-dimensional wavelets. 

2.2.1 Multi-resolution analysis of L2(JR) and definition of a wavelet 

'A mult i-resolution analysis M of L2 (JR) is defined by means of a sequence of closed sub

spaces ½, with j E Z, that has the following properties: 

1. llj C ½+1 

2. v(x) E ½ {=} v(2x) E ½+1 

3. v(x) E V0 {=} v(x + 1) E Vo 

4. u j EZ ½ is dense in L2(JR) and n jEZ ½ = {O} 

5. A function¢> E V0 with a non vanishing integral exists such that { ef>(x-l) : l E Z} is a 

Riesz basis of Vo , i. e. every element J E Vo can be written uniquely as J = L n cnfn, 

and positive constants A and B exist such that AIIJll2
:::; L n lcnl2

:::; BIIJll2 -' [20] 

In the above definition, the function ¢> is a scaling function , and the spaces ½ generated by 

its dilates and translates ef>J,k = 2Jl2¢>(2J. - k) for k E Z are called scaling function spaces. 
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The wavelet space Wj may now be defined as a complementing space of½ in ½+i: 

A function '!/J is then a wavelet if {'!/J (. - l) : l E Z} is a Riesz basis of W0• Then, 

{'l/;j,k = 2J/2'l/;(2J . - k): k E Z} forms a basis of Wj and {'l/;j,k: j, k E Z} forms a basis for 

L2 (IR). 

It may be noted that the presence of the 2J /2 factor in the expressions of <PJ,k and 'l/;j,k en

sures that ll<PJ,k ll£2 = 11¢11£2 and similarly for the norms of 'l/;j,k and 'l/;, where the L2 -norm 

is defined as IIJIIL(n) = In If (x) 12 dx. The scaling function cp and the wavelet '!/J are referred 

to as the mother scaling function and the mother wavelet. The mother scaling function is 

usually scaled as IIRc/J(x)dx = l. 

2.2.2 Orthogonal and biorthogonal settings 

The original wavelet bases constructed were orthogonal in the sense that they would satisfy 

the following orthogonality conditions: 

(c/>j,k, c/>j,k') okk' Vk, k' E z 

('l/JJ,k, 'l/JJ,k') - okk' Vk, k' E z 

('l/JJ,k,<PJ,k') 0 'vk,k' E Z 

The notat ion (v, w) := In v(x) w(x) dx for t he inner product in L2(0) will be used time and 

again in the remainder of this thesis. In the present situation, 0 = R The orthogonality 
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conditions impose strict restrictions on the construction of new bases. These restrictions 

are relaxed in the biorthogonal setting, where a dual multi-resolution analysis M of L2 (IR), 

consisting of spaces ½ with Riesz bases given by dual scaling functions ¢},k is used. Spaces 

½ are complemented by dual wavelet spaces Wf 

Dual scaling functions and dual wavelets are such that: 

(if>j,k, ef>j,k1 ) 6kk1 'ef k, k' E Z 

( 1/Jj,k, ;f j,k') 6kk' 'ef k, k' E Z 

(cpj,k, ;fj,k') 0 'efk, k' E Z 

( 1/;j,k, ef>j,k') 0 'efk, k' E Z 

Expressed in terms of spaces, 

• in the orthogonal case: 

'efj E Z 

'ef j, j' E Z such that j =f. j' 

• in the biorthogonal case: 

½ ..l wj, 

wj ..L ½, 

'efj E Z 

'ef j E Z 
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An example for the orthogonal case is the Haar wavelet: 

c/Jo,o(x) 

'l/Jo,o(x) 

X[-1/2,1/2J(x), 

X[-1/2,oi(x) - X[o,1;2i(x), 
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where X[a,b](x) is equal to 1 if x E [a, bl, and O otherwise. In the following, everything 

will be denoted as in the biorthogonal case, since the orthogonal case is included as the 

particular case when scaling functions and wavelets are identical to their duals. 

2.2.3 Refinement and wavelet equations 

The projection of a function f onto a scaling function space VJ is given by the following 

equation, where (., .) denotes the L2 (JR) inner product. 

PvJf = LU, ¢J,k)¢J,k 
kEZ 

Since the space VJ may be decomposed into wavelet spaces V0 EB W0 EB W1 EB ··· EB WJ-i, 

the same projection may be written as : 

J - 1 

PvJ f = L (!, ¢o,k)¢o,k + LL U, '¢j,k)'l/Jj,k 
kEZ j = O kEZ 

As Vo C Vi , the mother scaling function ¢ may be expressed exactly in the basis of 

½. Hence there exists a sequence of parameters { h( k) : k E Z} such that the following 
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refinement equation or dilation equation holds: 

cp(x) = V2L h(k)cp(2x - k), 
kEZ 

where h(k) = (¢, ¢(2. - k)) 

As Wo C V1, 'l/J may be expressed exactly in the basis of Vi. Therefore there exists a 

sequence of parameters {g(k) : k E Z} such that the wavelet equation holds: 

'l/J(x) = V2Lg(k)cp(2x - k), 
kEZ 

where g(k) = ('l/J, ¢(2. - k)) ('l/Jo,o, ¢1,k)- These relations between the scale j = 0 and 

the scale j = l are true between any scale j and j + l: 

c/Jj,o(x) L h(k)¢H1,k(x) 
kEZ 

qJj,z(x) L h(k)c/Jj+1,2t+k(x) 
kEZ 

'lpj,O ( X) L g(k)¢H1,k(x) 
kEZ 

'lpj,z(x) L g(k)¢H1,21+k(x) 
kEZ 

Similarly, a dual refinement equation and a dual wavelet equation may be derived: 

ef>j,t(x) 

;J;j,l ( X) 

L h(k)¢j+1,2t+k(x) 
kEZ 

L g(k)¢H1,2t+k(x) 
kEZ 

Finally, by projecting ¢Hl,O onto ½ and wj and ¢Hl,O onto ½ and wj, and using the 

equations above and the biorthogonality relation between ¢H1,0 and ¢H1,1 for l E Z and 
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between ¢>}+i,o and </>j+1,1 for l E Z, we deduce the reconstruction equations: 

kEZ kEZ 

The sequence (h(n)) is often called the scaling function filter or mask and denoted by h, 

while the sequence g = (g(n)) is the wavelet filter or mask. The dual masks are h = (h(n)) 

and g = (g(n)), associated with the dual basis. In the implementation, finitely supported 

scaling functions and wavelets are used. This implies that the corresponding masks have 

a finite number of non-zero entries. 

The fast wavelet transform 

The passage from a one-level, scaling function expression 

L Sj+l,k </>j+l,k 

kEZ 

to an equivalent, multi-level, wavelet expression of the form 

j 

L Sj0 ,k <P}o,k + LL dj',k 'lpj',k 

kEZ j'=jo kEZ 

is called the wavelet transform of the sequence (s}+i,k)- The wavelet expression is found 

by the recursive application of the refinement and wavelet equations. Assuming that the 

scaling function expression is the scaling function expansion of a function f E L2 , so that 
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the coefficients Sj,k are defined by 

1
+00 

Sj,k = -oo f(x)¢j,k(x)dx, 

applying the refinement equation to the dual scaling function J>j,k immediately gives an 

expression of Sj,k in terms of the scaling function coefficients on the higher level: 

Sj,k 2(Hl)/2 L h(n) 1:00 

¢0,0 (2H1x - 2k - n)f(x)dx 
n 

n 

Similarly, by the wavelet equation, we find: 

n 

This linear dependence of the scaling function and wavelet coefficients on level j on the 

scaling function coefficients on level j + 1 can be clearly expressed in matrix form as 

and 

where Sj, and similarly dj and Sj+i, denotes the potent ially infinite vector (sj ,k, k E Z) and 

iij , similarly Gj, denotes a circulant matrix constructed from the entries of the mask h, 

repeated with a double shift to the right over consecutive rows. The composition of the 

Hj and Gj matrices is illustrated in Figure 2.1. In all practical cases, the vector sH 1 has 

a finite number of non-zero entries or it is periodic, and the masks h and g have compact 

supports which are short compared with the length of Sj+i- Then, the double shift in the 
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transformation matrices implies that the vectors Sj and di have shorter lengths than Sj+l· 

In fact, if Sj+l has length N, h has length Nh and g has length N9 , then Sj has length 

(N + Nh)/2 and di has length (N + N9 )/2. This means that the transformation from Sj 

to Sj-l and dj-l requires roughly half as many operations as the transformation from si+1 

to Sj and di. In the periodic case, the length of Sj and di is exactly half that of si+l· By 

referring to Figure 2.1, it is easy to see that during the transformation process from level 

j + 1 to level j, each coefficient si+1, is multiplied by at most ((Nh + N9 )/2 + 2) matrix 

coefficients from Hi and Gj, So N((Nh + N9 )/2 + 2) multiplications take place, at most. 

In the periodic case, the number of entries in Sj is N/2 and so the transformation from 

level j to level j - 1 requires (1/2)N((Nh + N9 )/2 + 2). Hence the transformation from 

the level j + 1 to the level j 0 , requires 

multiplications. This number is linear in N. This makes the wavelet transform fast even in 

comparison with the fast Fourier transform which has O(NlogN) complexity. It is worth 

noting here that shorter refinement and wavelet masks make for a faster wavelet transform. 

The iterative process of wavelet transformation from the level j to the level j - 2 is rep

resented on Figure 2.2. The matrices iij-l and Gj-l have the same structure as iij and 

Gj, but they have roughly half the number of rows and columns as these matrices. The 

inverse transformation process is the reverse of the wavelet transform but it involves the 

primal masks h and g instead of the dual ones. The inverse transformation matrix from 

the level j to the level j + 1 is represented in Figure 2.3. 
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h(O) h(l) ii(2) h(3) h(4) 
h(O) h(l) ii(2) Sj+l,0 Sj,0 

h(O) Sj+l,1 Sj,l 

................................ ... .... ..... ... .. ... .. .. 

g(O) g(l) g(2) g(3) g(4) 
Sj+l,k d·o 

g(O) g(l) g(2) 
J, 

Sj+l,k+l d· 1 
g(O) 

J, 

Figure 2.1: Transformation matrix from ½+1 to Yj + Wi. 

H · J 

.......... ............... Sj+l 

............ Sj 

.. ➔ = 

d· J 

Figure 2.2: Fast wavelet transform 
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Sj-2 

= 

d· J 
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h(0) g(0) Sj,O Sj+l,O 
h(l) g(l) Sj,1 Sj+l,1 
h(2) h(0) g(2) g(0) 
h(3) h(l) g(3) g(l) 
h(4) h(2) g(4) g(2) 

h(3) g(3) d·o J, Sj+l,k-1 

h(4) g(4) d · 1 J, Sj+l,k 

Figure 2.3: Inverse transformation matrix from½+ Wj to ½+i• 

2. 2 .4 Vanishing moments 

An important property of a wavelet basis is the number of vanishing moments that it has. 

A wavelet has N vanishing moments if 

1
+00 

_

00 

xi'I/J(x)dx=0 for i = 0, ... , N - l , 

but not higher. Because of the biorthogonality equations, this means that the approxima

tion order of the dual multi-resolution analysis is N , in the sense that the polynomials up 

to order N can be expressed exactly in terms of dual scaling functions,i.e. 

xi = L aj,kef>k(x) i = 0, . .. , N - l. 
kEZ 

The compression properties of a wavelet also depends on its number of vanishing moments, 

and it is true to say that a wavelet with a higher number of vanishing moments and a 

shorter support has better compression properties. The compression aspect which is of 

interest for the present application concerns the representation of functions. Assuming 

that a function f E £ 2 is locally cn+i on the support nj,k = [a, .B] of a wavelet 1/Jjk, the 
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Taylor expansion of f up to order n can be written as 

where the remainder is an integral term (see for instance [19]). Let Pn denote the polyno

mial part of this expansion. If 'l/Jj,k has N > n vanishing moments, then the corresponding 

wavelet coefficient of f can be expressed as follows 

I dj,kl j l J,k f (x) 'l/Jj,k(x) dx j, 

j l i,k (f(x) - Pn(x)) 'l/Jj,k(x) dx j, 

1 l J,k 'l/Jj,k(x) lx ~! (x - tt J<n+l)(t) dt dx I· 

By the Cauchy-Schwartz inequality, the wavelet coefficient dj,k is bounded as follows 

In the product above, the wavelet normalization means that the first factor is independent 

of j and k 

and the second factor can be bounded as follows: 

I ix (x - tt J<n+l)(t) dt I < ll(x - tt llL2([o,x]) IIJ<n+l)IIL2([o,x]), 

< ll(x - tt llL2([o,x]) IIJ<n+l)IIL2(!1j,k), 
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since (a, x) C OJ,k· Let L denote the length of the support of the mother wavelet 'lj;. The 

support of 'l/JJ,k therefore has length /3 - a= 2-J L. 

1/(x - ttl/i2c[a,x]) lx (x - t)2n dt :S lx (2- J L)2n dt, 

< l /3 (2-j L )2n dt 

2-J L(2-j L)2n = (2-J(n+½) Ln+½)2 

Hence 

< 112- J(n+½)Ln+½ // J (n+l)I/L (!1· .) II 
2 J,k £2(f2j,k) 

(/3- a)b-J(n+½)Ln+½ 11 JCn+1)1/L2(!1i,k), 

and so 

This shows how the size of the wavelet coefficients of a function is related to its smooth-

ness on the support of the wavelet. The rate of decay of/ d1,k /, as the level j increases is 

0(2-Jnl/ f(n) I/L2(nj,1.:) ) for n :S N. The wavelet expansion of J can be compressed by dis

carding the smaller coefficients dJ,k and so the compression rate is better for larger values 

of N. 
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2.2.5 Construction of multivariate wavelets by tensor product 

The simplest construction for multivariate wavelets consists of taking the tensor products 

of univariate scaling functions and wavelets. In order to use the notation of ¢ and 'If; for 

the scaling functions and wavelets in ]Rn, n > 1, the notation for the univariate scaling 

functions and wavelets, which are now considered as simple building blocks, is changed to 

(j,k for a scaling function and 'r/j,k for a wavelet. 

The mother scaling function in ]Rn is defined as 

n 

¢(xi, . . . , Xn) = II ((xi). 
i=l 

The translates of¢ are denoted with a position vector k = (k1 , .. . , kn) as 

n 

<Pk(X1, . .. , Xn) = II ((xi - ki)-
i=l 

The dilates of¢ are defined with the tensor product of univariate scaling functions on a 

single level j as 
n 

</>j,k = II (j,k; . 

i=l 

The wavelets in ]Rn are defined by the tensor product of univariate wavelets and scaling 

functions. There are 2n - 1 different types of wavelets. The type of a multivariate wavelet 

is determined by a vector e = ( e1 , ... , en) that records as ei = 0 the use of a scaling 

function for the ith component of the tensor product and as ei = 1 the use of a wavelet. 
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For instance, we have 

The type e = (0, . .. , 0) corresponds to a scaling function rather than a wavelet. The dilates 

and translates of these 2n - 1 mother wavelets are defined exactly as would be expected. 

For instance, 

It is convenient to condense the notation for a wavelet index as).= (j, e , k). The notation 

I.A.I = j is also usual. It is also sometimes useful to be able to denote in a general way 

the univariate components of a wavelet without having to specify whether they are scaling 

functions or wavelets. In this thesis, a univariate basis function is sometimes denoted by 

(j,e,k, where C,j,k is meant if e = 0 and 'Tlj,k is meant instead if e = l. A general notation for 

a wavelet is therefore 
n 

'l/J;. (x) = IT (j,e;,k; (xi)-
i=l 

T he multi-variate refinement and wavelet equations are naturally deduced from their uni-

variate counterparts. 

2.3 Wavelets used in the implementation 

The present application requires wavelet bases defined on a bounded domain rather than on 

IR.n. The bases also have to satisfy homogeneous boundary conditions. The bases satisfying 

these constraints cannot retain all the properties that the wavelet bases defined on the real 

line have. For instance, the self-similarity of all wavelets with the mother wavelet may not 
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hold near the boundary. However, the passage from univariate to multi-variate wavelets by 

tensor product does not change and so this section will only present the univariate bases 

used as the building blocks for the multi-variate wavelets implemented. The motivation 

for using these particular wavelet bases preferentially to other bases comes first from the 

fact that these bases have been developed for applications of the same type as the present 

one and as a consequence they are proven to possess many relevant properties, as will be 

seen in the next section. The second great mot ivation is the existence of software tools 

for the handling of these bases in applications such as elliptic partial differential equations 

and integral equations. These tools are gathered under the name of Multilevel Library 

and have been developed at the IGPM1 at the RWTH Aachen2 . The Multilevel Library 

has been written in the C++ programming language and although it is under continual 

development, it has kindly been made available on request [22]. 

2.3.1 Wavelet bases defined on the unit interval 

W. Dahmen, A. Kunoth and K. Urban describe in [12] the construction of a family of 

compactly supported, biorthogonal wavelet bases for L2 ([0, l]). Each biorthogonal pair in 

the family is characterized by the approximation orders of the associated primal and dual 

multi-resolution analyses. The order of the primal MRA is denoted by d and the order of 

the dual MRA is denoted by d. The family contains primal bases with MRA of any order 

d ~ l and the construction imposes the condit ion that that the sum d +d is even. 

Their construction is based on the Cohen-Daubechies-Feauveau biorthogonal spline wavelet 

bases for L(JR;.) [10]. 

1 Institut fiir Geometrie and Praktische Mathematik 
2The University of Aachen, Germany 
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The scaling function bases on [O, 1] 

First of all, a biorthogonal pair of scaling function bases from [10] is restricted to the unit 

interval. A minimum level j 0 is fixed for which the length of the supports of c/>jo and ¢jo is 

less than 1 and a sufficient number of functions c/>jo,k and Jjo ,k do not intersect the bound

ary. The scaling functions whose support intersects the boundary are carefully re-defined 

as a fixed linear combination of scaling functions on the same level and truncated at the 

boundary. This is done for the primal and the dual scaling functions independently, but the 

cardinalities of the new collections of primal scaling functions and dual scaling functions 

must be equal. The aim of the linear combination is to ensure that the approximation order 

of the new collection of scaling functions remains on the whole interval the same as that of 

the original basis from [10] and it is done in such a way that, after biorthogonalization, the 

two modified collections of scaling functions form a multi-resolution analysis of L2([0, l]). 

The new bases consist of a finite number of scaling functions. The set of indices k such 

that c/>j,k is in the basis on level j is denoted by 6.j and similarly iS..j denotes the set of 

indices k associated with a dual basis function on level j. This is only a convention since 

6.j = 6.j. 

Because the scaling functions near the boundary are no longer obtained by a simple dila

tion and translation from the mother scaling function , the refinement equation is replaced 
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by a relation of the following form : 

</>j,k = L hj,k,l<Pj+l,l · 
l 

40 

The coefficients hj,k,l still retain a certain structure, which is easier to picture in matrix 

form. In [12], the transpose of the refinement matrix Hj involved in the wavelet transform 

is denoted by Mj,o, and this convention is followed here in order to make references to 

[12] more consistent. The matrix Mj,o can be decomposed into three parts. One left 

upper block, denoted by ML, corresponds to the refinement equations of the left boundary 

adapted scaling functions. The block ML does not depend in any way on the level j. One 

right bottom block, denoted by Mn, is the counterpart of ML for right boundary adapted 

functions. It is also a fixed block, independent of j. Finally, the remaining part of Mj,o 

is denoted by Aj and it corresponds to the refinement relations for the scaling functions 

which have not been boundary adapted. Accordingly, this part of Mj,o is very similar to 

the transpose of the refinement matrix Hj for scaling functions defined on the real line: 

it is composed of one single mask, a/v'2 = (a(l)/v'2, l = l1, ... , l2), which is repeated 

column after column with a double shift downwards. The number of rows and columns 

of Aj increases with j, but the mask that composes Aj is always the same. Figure 2.4 

represents the block decomposition of the refinement matrix Mj,O · The structure of Mj,o 

means that it need not be stored in matrix form, and that storing ML , Mn and the mask 

a is sufficient. The refinement matrix for the dual basis has the same structure, and the 

notations for it are Mj,o, ML , Mn and a = (a(l), l =Li, ... , l2). 
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I 
1- - - -

Figure 2.4: Block structure of the refinement matrix M j,O · 

The wavelet bases on [O, 1] 

After a pair of MRA's with biorthogonal bases has been built for L2 ([0, 1]), wavelet 

biorthogonal bases are built for the wavelet spaces Wj complementing the scaling func

tion spaces ½ into the higher level spaces ½+i, and similarly for the dual spaces. 

- - -
and Vj EB Wj = °½+1 

The details of the construction are given in [12]. The wavelet bases, like the scaling function 

bases, comprise of course of a finite number of functions. The notation v' j is used to 

represent the set of indices k such that 'l/Jj,k is in the primal basis, and '\7 j represents the set 

of indices for the dual basis. The primal wavelet matrix involved in the wavelet transform 

is denoted by Nlj,l and it corresponds to the transpose of the matrix Gj described in section 

2.2.3. The matrix Mj,l has the same structure as Mj,O· The dual wavelet matrix is denoted 

by Mj, l and it is similar to Mj,1 in all aspects. The structure of these matrices and the 

decomposition of the bases into boundary-adapted and non-boundary-adapted functions 

plays a very important role in the implementation of numerical methods. 
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Norm equivalences 

First of all, let us introduce the following notations in order to express the norm equiva

lences below in the clear and concise form used in [12]. 

When j0 denotes the coarsest level of a wavelet basis, v'jo- l is used to denote !:ij 0 , the 

index set of the scaling functions on the coarsest level, and these scaling functions are de

noted by '1/Jjo-l,k · This change of notation simply makes for shorter written expressions by 

including the scaling functions in the wavelet notation. Finally, the equivalence notation 

a~ b means that there exist two positive constants c1 and c2 , independent of a and b, and 

In addition to the norm equivalence between wavelet sequences in f2 and functions in 

00 

llvllL2([0,1]) ~ ( L L I (v,~j,k)l
2 

)
112

, 
j=jo-1 kE'vj 

which is equivalent to the fact that wavelet bases are Riesz bases, the authors of [26][12] 

have proven for any of the constructed pair of bases that there exists an equivalence between 

the weighted wavelet sequences in f2 and functions in H 5 ([0, 1]), 

00 

llv llH•([0,1]) ~ ( L L 22
sj I (v, ~j,k) 1

2 )112, s E (-i', 1 ), 
j=jo-1 kE'vj 

where , and 'Y are defined by 

1 = sup{s E JR:¢, E H 5 ([0, 1])} and 'Y = sup{s E JR:¢ E H 5 ([0, 1])}. 
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This property, when s = l, will lead to a good, diagonal preconditioning of the Laplace 

operator matrix in the Poisson equation and will in this way play a role in the acceleration 

of the convergence of the iterative scheme that will be used to solve the equation. In the 

present context, the primal wavelets have to satisfy homogeneous boundary conditions and 

in the construction described in [15] this norm equivalence holds in H0([0, 1]) for the primal 

wavelets. 



Chapter 3 

An adaptive Poisson solver 

It has already been seen how the simulation of the evolution of the magnetization m inside 

the nano-element has been split into two separate tasks. The first task was the calculation 

of the magnetization mn at an instant Tn, given the value of m and of its derivative with 

respect to T at a set of discrete times Tn,, n' < n. This task is done in the physical space by 

a time-stepping scheme such as the Euler scheme and has been described in Chapter 1. The 

second task consists of the calculation at each time-step of the components of the derivative 

dm/dr according to the Landau-Lifshitz equation. The equations (1.14) and (1.11)-(1.13) 

show that all the components of dm/dr can be obtained directly from m , apart from the 

demagnetizing field hd, which depends on the solution u of the Poisson equation (1.17). 

Clearly, solving this equation at every time-step is the most effort-consuming part of the 

whole problem. 

This chapter presents a scheme for the calculation of a numerical solution to the Poisson 

equation. The variational formulation of the equation given in Section 1.2.2 is discretized 

with wavelets and expressed as a matrix equation of the type Au= b, where A is a sparse, 

44 
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symmetric, positive definite matrix. For this reason, the matrix equation is solved by an 

iterative method such as the method of steepest descent or the conjugate gradient method. 

The properties of wavelets will have two main roles in this scheme. First, the condition 

number of the A matrix will be improved by a diagonal wavelet precondit ioner, with the 

effect of accelerating the convergence of the iterative scheme. Secondly, the scheme will 

take advantage of the sparse wavelet representation of functions in order to express the 

right hand side of the equation and the solution as accurately as possible, given the number 

of degrees of freedom that can be afforded in practice. 

3.1 Discretization of the problem 

In Section 1.2.2, the Poisson equation for u was transformed into a variational problem of 

the form 

Find u E HJ(D) such that: 

l 'vv ·'vu= l vf, for all v E HJ(D). (3.1) 

Let W = {'l!l>. , ,,\ E 'v} be a wavelet basis for HJ(D), as described in Chapter 2, such t hat 

the following norm equivalence holds, 

llvllH1 (n) ~ (I:22 l>-ll (v, 1h)l2 )112
, (3.2) 

>.Ev' 

and let u be expressed as 
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The variational problem above may be discretized in terms of wavelets as 

Find ( d>.)>.E"v E £2 such that: 

(3.3) 

and this is recast as a matrix equation Cd= b, where C denotes the infinite matrix with 

entries C>.,v = In '7'1/J>. · '1'1/Jv, d denotes the vector (d>.)>.E"v and b denotes the vector with 

entries b>. = In J'l/J>.- Taking advantage of the norm equivalence (3.2), the matrix C may 

be preconditioned by a diagonal matrix D with entries d>.,>. = 2-l>-I as follows 

DCDD- 1d = Db or Au = f, 

with A = DCD, u = D - 1d and f = Db. 

Let a(., . ) denote the continuous, bilinear form defined as 

a(u,v)= l '\lu. '\Iv, Vu,vEHJ(D). 

Because of the norm equivalence (3.2), there exists c2 > 0 such that llullH1 ::; v'C2llulle2 , 

for all u E HJ(D) . Continuity of a(., .) implies that la(u, v)I ::; c2 llulle2 llvlle2 , for all 

u, v E HJ(D). Since a(u, v) = u T Av, the £2-norm of A is bounded from above 

Also, because a( u, v) is coercive for u E HJ (D) and the norm equivalence (3.2) holds, it 

follows that there exists c1 > 0 such that c1 llulli
2 

::; u T Au, for all u E HJ(D). Since 
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u T Au :::; IIAulle2 llulle2 ) the t'rnorm of A is bounded from below 

The inequality 

has two interesting consequences for the numerical scheme. The first one is that the problem 

(3.3) is well-posed, in the sense that the equation Au = f has a unique solution in f2 and 

that this solution depends continuously on the right hand side f. The second consequence 

is that the condition number of any sub-section AA of A ) defined as those entries a;..,11 of 

A such that v ) A E A and A C V, is bounded by c2c11 

This discretization of the problem (3.1) can be found in [9L[3L[8] . It has been the starting 

point of most recent wavelet numerical methods for elliptic problems such as the Poisson 

problem. 

3.2 Objectives of the scheme 

The object of the numerical scheme will be to find the best approximate solution to the 

infinite matrix equation Au = f ) given that all computations are necessarily done on finite 

sequences of numbers. This means in particular that finite subsets A1, Au C V will have 

to be found such that f is well approximated by a finite sequence of wavelet coefficients 
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Sparse representation of functions 

As seen in Chapter 2, the cancellation property of wavelets - that is, their having vanish

ing moments - leads to the sparse representation of certain functions, in particular those 

functions which have localized irregularities and are otherwise smooth. For these functions, 

the size of their wavelet coefficients ld>. J on level i>-. 1 decreases rapidly as the center of the 

support of the associated wavelet 7P>. is situated further away from the zone of irregularity, 

and also as the level J>-. J increases. Consequently, a finite representation of such a function, 

comprising the largest N coefficients d>. will be sparse in that it will not contain all the 

coefficients associated with the basis functions 7P>. on a given level, but instead the coeffi

cients that are present will be 'located' in a neighbourhood of the zone of irregularity that 

will be all the more narrow as the level of the coefficients is higher. This may be seen as 

the wavelet equivalent to the irregular meshes used by finite element methods. The rate 

of decay, as N increases, of the error made by retaining only the N largest coefficients of 

a sequence in £2 has been described formally, for instance in [8]. 

Known behaviour of the magnetization suggests an adaptive scheme 

In the present situation, the numerical scheme must also fit well within the framework of 

the repetition of a time iteration followed by a new Poisson problem. It may be better 

to think of the scheme as solving Aun = f n, where f n is a function of the magnetiza

tion at t ime Tn. At each step Tn, the new Poisson problem is entirely determined by a 

Nn-term approximation f t to the right hand side f n. Physical experiments and previous 

mathematical simulations such as in [25], give a good indication of two reasons why the 
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wavelet representation of the right hand side f n should be sparse rather than uniform. 

Both reasons are traced back to sharp local variations in the magnetization fin . 

Firstly, for all Tn, the magnetization fin presents a sharp variation at the interface [}Dint = 

Dint n Dext since fin is zero on Dext, the non-magnetic region. Secondly, inside the nano

element Dint, under certain conditions, the magnetization evolves with time into a domain 

formation. Within each domain, the magnetization is aligned parallel to one single di

rection. The interface between two such domains is termed the domain wall and is the 

location of sharp direction variations in fin · Hence, when n increases, due to the for

mation of domain walls, the sequence f 12 should progressively contain groups of larger 

coefficients, which should migrate towards the final position of the domain walls, when fi 

has stabilised. 

The first reason would tend to suggest a numerical scheme based on a sparse and fixed 

representation of the f n, whereas the second reason suggests a sparse and adaptive rep

resentation, as n increases. As for the solution u n, it is also expected to present a fairly 

sharp variation on the edge of the nano-element, and since '\Jun is one of the driving causes 

for the evolut ion of fin with time, it is expected that the irregularities in fin should be 

somewhat anticipated in un . Therefore it seems reasonable to expect the numerical scheme 

to produce a solution uA,,.n, where the set Aun is not necessarily t he same as A1n, but where 

it could be the same as Afn+i. 

Comparison with the aims of other adaptive wavelet schemes 

Several adaptive wavelet methods for elliptic equations have been published; they are all 

iterative methods. Iterative methods are based on repeated matrix vector multiplications, 

whereas direct methods are based on the computation of a decomposition for the A matrix, 
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followed by forward and backward substitution. Because the wavelets used have compact 

support, many entries ('ih/;>., '\1'1/Jv) are zero, hence the A matrix is sparse. It is not how

ever, a tridiagonal but a banded matrix, and it is known that the matrix decomposition 

leads to substantial 'fill-in', which is the reason why direct methods are avoided. When 

A is a finite dimensional, symmetric, positive definite matrix, several classical iterative 

methods are used, including the gradient and conjugate gradient methods. In the present 

case, A is indeed symmetric and positive definite, but is not finite-dimensional and part 

of the strategy of the adaptive methods consists of modifying the matrix multiplication 

of the classical iterative methods in order to allow dynamically chosen sub-sections of the 

infinite matrix to be used. 

In [9] and in [8], two adaptive schemes are detailed. The overall principle of both is similar 

to that of multi-grid techniques, used in particular with finite element methods, in that the 

first iterations are made with a representation of the solution involving few unknowns, mak

ing the work involved at each iteration fairly light, and progressively, as the scheme reaches 

closer to the true solut ion, the number of degrees of freedom is increased. In this way, only 

few iterations involve the final, large number of degrees of freedom. The aims of the algo

rithm presented in [9] are the following: generate an ascending sequence of nested sets Aj 

such that #(Aj \ Aj_1) stays as small as possible, and such that the error for the solution 

calculated with each Aj is reduced by some fixed factor , so llu-uAHi II ::; 0llu-uJ\
1 
II, where 

0 < 0 < l does not depend on j and where u denotes the true solution. The algorithm 

presented in [8] has the same aims though it follows a different strategy for achieving them. 

In view of the conclusions of the previous section, it may be that the algorithms from 
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[9] and [8] are not well suited for the problem at hand. The first reason for this is that at 

any time increment n ~ l , the solution u~-1 to the Poisson equation at the previous time 
Un-1 

step is already a good approximation to the solution un. Hence the 'multi-grid' strategy 

may not necessarily be very relevant here. The other aim of the two algorithms, which 

consists of the optimal choice of a super-set Aj, given the set Aj-l, is also a little different 

from what might be needed in the present situation, where the solution at time n - l is 

probably represented in terms of the total number of unknowns that can be afforded, say 

N, and therefore the problem would seem perhaps more that of a redistribution of the re

sources from Aun-I to Aun' #(Aun_i) = #(Aun) = N , than that of further refinement. The 

numerical scheme implemented for this thesis is described further in this chapter. A proof 

of its convergence is also given. This scheme makes use of the matrix-vector multiplication 

subroutine defined in [9] and and [8] and the implementation of the scheme follows closely 

certain suggestions made in [3]. 

3.3 Scheme and convergence of the scheme 

Matrix multiplication 

The scheme used in this thesis is an iterative scheme and as such it makes repeated use of 

an approximation to the matrix vector multiplication Ax, where A is an infinite matrix 

and x is an finite vector. The algorithm used to calculate this approximation is based on 

a fast matrix vector multiplication subroutine called MU LT and described in [9]. This 

subroutine calculates a finitely supported vector w such that the error IIAx - wlle
2 

is 

bounded by a known arbitrary quantity 77. The algorithm for MU LT works by taking 

advantage of the sparsity of the A matrix and also of the decrease of the modulus of 
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its entries (V'l/J>., V'l/Jv) as the difference of levels J l>-1 - lvl J increases further and further 

away from the diagonal. The MU LT algorithm and its implementation for this thesis are 

presented further in Chapter 5. Here, it is enough to say that the implementation involves 

a modification of MU LT which imposes an upper bound on the distance between the 

entries of A that will be used and the diagonal. Hence, if this upper bound is denoted by 

r > 0, any entry a>.,11 such that J i>.I - lvl J > r will not be used. Denoting by Ar, the matrix 

of the entries of A that can be used, it is clear that Ar has a finite number of entries per 

row and column, and that it is a symmetric positive definite matrix, whose euclidean norm 

is bounded by the same bounds as the norm of A. The scheme given below is intended to 

calculate an approximate solution to the equation 

for a given maximum radius r and a maximum vector length N. A bound for the norm 

IIA - Arl l is given in Chapter 5, as it is a core component of the MU LT algorithm. 

Also, in Chapter 7, the accuracy of the solutions found for increasing r is investigated 

numerically on an example which is relevant to the whole model and for which a simple 

analytical expression for the true solution of the infinite Poisson problem is available. This 

example will be used to choose values for r and N, which will not fatally compromise the 

accuracy of the overall simulation. 

Adaptive steepest gradient scheme 

Let PN(x) denote the vector comprising of the N largest (in modulus) entries of x. Given 

a maximum vector length N, a symmetric positive definite matrix A with finitely many 
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entries per row and column, such that a ::; IIAlle2 ::; b, a, b > 0, together with a vector f 

with N non-zero entries, and a termination parameter E, the following algorithm finds u 1, 

an approximate vector solution with length N to the equation Au = f. This algorithm is 

a variant on the method of steepest descent. 

Let u 0 be an initial guess at t he solution. If no initial guess is available, the null vec

tor may be used instead. 

j := -1 

Initial Step 

j := j + l 

wj := Auj - f 

w j := PN(wj) 

d = llwj - wj[le2 

Loop 

While ( Pj > E ) 

ej := Awj 

a · :=± J Wj e; 

U j+l := U j - D!jW j 

ii.Jj+1 := W j - ajej 

w j+1 := PN(wHi) 

d := d + llwj - wjlle2 

If d > [lwj lle2/2, go to the Initial Step. 

PH1 := wf+1 W j+i 

j := j + l 

Final Step 



CHAPTER 3. AN ADAPTIVE POISSON SOLVER 54 

Convergence of the scheme 

It is proved below that the sequence of the Uj converges towards the correct solution u 

of the equation Au = f. Such a solution exists, is unique and has a finite number of 

entries. The final step of the scheme defines u 1 as the best N-term approximation of the 

last computed term in the sequence. The convergence of the adaptive scheme is studied 

with respect to the error function usually used to prove the convergence of the classical 

steepest descent algorithm. This error function is denoted by E and it is the A-1-norm of 

the residual 

where Uj denotes the solution calculated by the adaptive scheme after the /h iteration. The 

following shows without making any assumptions on the initial guess u 0 that E( Uj+1) < 

(Auj+1 - ff A-1(Auj+1 - f) 

(A(uj -aiwi) - f)T A-1 (A(ui - CXjWj)- f) 
(Aui - ff A - 1(Aui - f) - (Aui - ff aiwi 

2aj(Aui - ff Wj + a;wf Awi 

2wf Wj (Aui - ff Wj - (wJwi) 2 

wfAwi 
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Let us express the true residual Au1 - f as the sum w1 + d1. It follows that 

Let A 1 denote a finite symmetric sub-matrix of A such that A1w1 = Aw1 and let w1,i, 1::; 

i ::; n1 , be the coordinates of w 1 in terms of an orthogonal collection of eigenvectors for 

A 1 with associated eigenvalues Ai. Then 

i=l 
n1 

< mini Ai I) w1,i)2 

i=l 

Similarly, let A2 denote a finite symmetric sub-matrix of A- 1 such that (w1+d1)T A 2(w1+ 

w 1 and d1 in terms of an orthogonal collection of eigenvectors for A 2 with associated 

eigenvalues >.~. Then 

i=l 
n2 

< mini 2:) wj,i + d1,i)
2 

i=l 
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This gives for µj 

µj < 
~ w J' Wj (wj + d jf(wj + d j) 
a (w J' Wj)2 + 2wJ' Wj df Wj 

b w J'w j (w j + d jf(w j + dj) 
µj < -

(wJ' w j ) ((w j + dj)T(wj + dj ) - w J' Wj df dj ) a 

1 a ( w T w ; dT d; ) > - 1 - J J 

µj b w Tw · (w · + d ·)T(w · + d ·) j J J J J J 

1 a ( df d; ) > - 1 
- (w j + dj)T(w j + dj) µj b 

For E(u j+1 ) < E (uj) t o hold, the condit ion l / µj > 0 must be satisfied . It is shown below 

that this is guaranteed because 

for all steps j . 

Firstly, when Wj = w i is calculated during an Initial Step, di = Aui - f - w i is also equal 

to the difference w i -wi, hence it is orthogonal to w i. It follows that ( w i + dif ( w i + di) = 

dTd T d 1 h . 1· 0 < df d; 1 h ld i i + w i w i an consequent y t e mequa 1ty _ (w ;+d ;)7'(w ;+d;) < o s. 

Secondly, when Wj is calculated inside the Loop, the norm of dj may be bounded as 

follows 
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dj-1 + (w j - w1) 

j 

lldille2 < L llw1 - w1lle2 = d 
k=i 

57 

This bound is sufficient to ensure that lldi + wille2 > lldille2 by the following sequence of 

implied steps. 

wf W j + 2df W j > 0 

This concludes the proof that the sequence (u1)1 converges towards the solut ion u of 

Au= f . The rate of convergence is improved when the ratio a/b = /\:-1 is large and when 

the directions of descent W j are kept close to the directions of steepest descent Auj - f. 

Remark: it has not been shown that this scheme converges in a finite number of steps. 

Therefore, in practice, there should be some reasonable balance between N and E. In par

ticular, if the scheme does not terminate, the value of these parameters should be revised. 

If the MU LT algorithm is used to accelerate the computation of the matrix-vector prod

ucts Auj and Awj, the computation of d must be modified to take into account this 
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additional source of error and still guarantee the convergence of the scheme. Let rJ denote 

the accuracy parameter in the MU LT algorithm, then the £2-norm of the error introduced 

at each matrix-vector multiplication is bounded by rJ. When w i has been calculated in an 

Initial Step, the choice rJ < v'f./ 4 and the modification d := llwi - wi lle2 + rJ ensure that 

lldill/lldi + will < 1. Also, the modification d := d + llwi - wille2 + O:j'T/ inside the Loop 

ensures that lldill/lldi + will < 1 for any step j. These modifications can be explained 

by writing the vector di as w i - w i + T/i, where IIT/i lle2 ~ rJ is the norm of the difference 

between the exact and the approximate calculation of Aui, and by recursively writing the 

vectors di as dj-l + (wj - wj) - O:jT/j · 

3.4 Comments on the scheme 

This scheme is straightforward and it is designed to be applicable to the problem at hand. 

Its performance will be evaluated numerically in Chapter 7 from the points of view of: 

1. Whether the size of the memory storage used remains within a constant factor of N. 

The following terms are required to be stored in memory: 

• vector w i or Wj: Length N, by definition. 

• vector ej: Length bounded by C N, where C is a constant. This is ensured 

by the imposition of a maximum radius on the A matrix. The length will vary 

depending on this radius and on whether the MU LT algorithm is used. The 

size of the coefficient C is very important in practice. 

• vector U j: At the first Initial Step, it has length N or less. As j increases, 

its length is not bounded, but the rate of increase is less than jN. Here, the 
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total number of iterations will play an important role, as well as the quality of 

t he overlap between the index set of the final solution Au
1 

and that of the right 

hand side A J. 

• vector w j : Length bounded by C#(ui) +Nin the Initial Step and it is the 

same as the length of ej in the Loop. Here, the effect of restarting the scheme 

with an Initial Step when j > 0 is apparent. 

• matrix A: It is only necessary to keep in memory the entries which are needed 

for a particular multiplication, however, storing the entries of A from one iter

ation to the next saves much computing effort. Overall, the number of entries 

that are used is bounded by a constant factor times the length of the last com

puted U j. Once again, the size of this value for the example test will be of 

interest. 

2. Whether the number of computing operations per iteration remains proportional to 

N. The computational steps may be quantified as follows: 

• The number of operations needed to perform a matrix-vector multiplication is 

proportional to length of the vector. When an Initial Step is performed in an 

iteration, two matrix-vector multiplications are used instead of one and for one 

of these multiplications, the length of the vector is that of U j . 

• The calculation of the N - best approximation of a vector requires the sorting 

of this vector's entries by decreasing modulus and the copying of the N largest 

entries into the new vector. The sorting operation has a computational cost of 

n log(n) , where n is the length of the vector. 

• The computational cost of d, Pi and aj is always proportional to N . 
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3. The speed of convergence, the accuracy of u 1 as a solution of the exact Poisson 

problem (no maximum radius imposed), and the distance between the last computed 

u j and u 1. 

The next three chapters will give some details on the computation of the main tools nec

essary for the implementation of this scheme and of the Landau-Lifshitz simulations in 

general. These concern , in order, the computation of the wavelet right hand side f of the 

Poisson equation, the matrix vector multiplication algorithm and the dynamic calculation 

of the entries for the A matrix, and the pointwise evaluation of sparse wavelet expressions. 

The subsequent chapters present the numerical tests performed on the adaptive Poisson 

solver, as well as the results obtained with Landau-Lifshitz simulations. 



Chapter 4 

Sparse wavelet expansion of a 

function f - or -

Calculation of the R.H.S. of the 

Poisson equation 

In the two-dimensional case, the system of equations which we are solving is: 

In particular, for the simple example where M = (0, 1) inside the platelet (the region nint) 

61 
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and is null outside it (the region Dext), this is: 

\if).. EA, 

Hence the right hand side of the equation involves inner products of the form J f '1/J>.., where 

'1/J>.. denotes a wavelet, and the set of such wavelet coefficients forms the dual wavelet ex

pansion off. Because the region of interest (the platelet) occupies only a very small part 

of the total region of solution, a sparse representation off is sought, where more wavelets 

are used in and near the platelet. 

4.1 From full wavelet expansion to sparse 

The usual projection of a function on a wavelet space, which is part of the Multilevel Library 

in the lD case, consists first of all in calculating ( on a regular grid) a full scaling function 

representation of f on a chosen refinement level. In a second step, the wavelet transform 

is applied, resulting in a full wavelet representation off. Finally, the sparse wavelet repre

sentation off is obtained by discarding unwanted wavelet coefficients of smaller magnitude. 

Unlike the second and third of these steps, the first one can be implemented in a vari

ety of ways, one of which is sketched below because it is very close to the method actually 

used in this project. 
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Projection onto the ( dual) scaling function space 

Let j be the level of the dual scaling function space considered. The projection onto 

½ of a function f is the expansion 

P0 (!) = L (J, ¢;.)¢;;.. 
>-Et:..i 

The inner products (J, ¢;.) are often approximated in a convenient way by replacing f by 

its expansion in terms of interpolating piecewise linear scaling functions, denoted ¢i, which 

are the hat functions in lD. 

P0 U) ~ I: I: J(xµ)(c/Jt, ¢;.)¢;;. . 
>-Ef:.j µEf:.j 

The inner products (¢~, ¢;.) for the one-dimensional case are calculated in the Multilevel Li

brary by functions integrals, InnerProducts (on the real line) and I-Integral (on the interval) 

as refinable integrals by a spectral method based on the fact that both functions involved 

in the inner product are refinable functions. The library's documentation points to [29] 

for a reference on this subject . For the multi-dimensional case, as long as tensor-product 

wavelets are used, the matter boils down to multiplying together ID-inner products. 

This method presents several advantages: it is based on the point values off, the non-zero 

inner products (¢t, ¢;.) have relatively few distinct values which can be calculated accu

rat ely once and then used from memory in each sum, and finally it is a direct method in 

the sense that there is no need to solve a system of equations. All this combines to make 
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it a fast method. 

The Multilevel Library also provides a method (PolynomApprox) which increases the order 

of the approximation by replacing f by a polynomial of order higher than linear. It is 

often advocated to use polynomials of the same order as that of the dual multi-resolution 

analysis, to keep and not decrease the order of the Galerkin method. For this reason, in 

this thesis, f was not replaced by an expansion in terms of <t>t functions, but by a Lagrange 

interpolation of higher order, which will be presented further. 

4.2 Method implemented: directly to the sparse rep-

resentation 

The method implemented for this project is based on [26] and most of the notations used 

and ideas presented come from that article. 

The need for a full representation of a function at some point in the process of calcu

lating its sparse wavelet representation is the drawback associated with the usual methods 

of projecting a function onto a wavelet space. For reasons of memory space, the num

ber of levels used in the wavelet representation becomes limited by the number of scaling 

functions on the finest level despite the fact that this number has no connection with the 

actual size of the sparse representation of the function. Therefore in situations where the 

wavelet representation of a function is known beforehand to be sparse, the usual method 

incurs a waste: a waste of storage space and also a waste in the comput ing effort dedicated 

to the calculation of all the scaling function and wavelet coefficients that will never be used. 
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By contrast, an efficient method would require storage and computing resources propor

tional to the number of coefficients used in the final , sparse, representation of the function. 

Calculating directly only those wavelet coefficients that will remain in the sparse repre

sentation seems the obvious answer. It is apparent that two predictions would then be 

necessary: one to relate a priori the size and the quality of the sparse representation of a 

function, and one to predict exactly which wavelet coefficients will be involved. 

4.2.1 Approximation by canonical projection 

Let A denote a finite subset of the wavelet index set v' , and let SA denote the span of the 

'l/J;., >. E A. The canonical projection of a function f onto SA is denoted Q1.J and is the 

expansion 

QA! = L)f, 'l/J;.),(fi;.. 
>.EA 

Global estimate 

Due to the Riesz basis property of the wavelets, this expansion realizes a near-best approx

imation off E L2 by a function in SA, in the sense that 

Ideally, the wavelet expansion of the equation's RHS would be no other than its canonical 

projection onto a well chosen subspace SA. 
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Tree structure of an index set 

The choice of a subset A C 'v is restricted to subsets endowed with a tree structure. 

This choice is made for practical reasons, indeed it makes the process of handling sparse 

index sets much simpler and computationally cheaper. Moreover, because of the wavelet 

compression property, it corresponds to the natural structure of index sets defined as 

A= p.: IU, '!/J.>-)1 < E}. 

The tree structure is very similar to that used in [7] under the name of pyramid structure. 

The precise definition of the tree structure is given below together with certain notations 

and definitions, which are used repeatedly in the same context. 

• Let D denote the unit cube [O, l]n and let □>- denote the dyadic cube 2-l>-l(k(>.) + 

[O, l]n) . The cube □>- is associated with all the 1PN such that JX J = J>.J and k(>.') = 

k(>.). In dimension n, 2n - 1 wavelets and one scaling function are associated with 

it. The role of □>- is to represent the relative positions and the relative sizes of the 

supports of different wavelets. 

• The ancestors of >. are the indices X such that □>- c □N. 

• The children of>. are the indices X such that ON results from a single dyadic subdi

vision of □>-- The index >. is then logically called the parent of the X. 

• An index set A C 'v has a tree structure if for >. E A, all the ancestors of >. are also 
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in A. 

• The leaves of such a set are then defined as the >. whose children are not all con-

tained in A. The leaves are the indices of the wavelets which are on the local finest 

refinement level of a wavelet expansion. The set of leaves of A is denoted fJA. 

• A tree A is M-graded (M E N) if for a ll >. E A, and for all >.' in the set of parents of 

Local estimate 

k(X) + 2- 1>-1+1[- M, M + 1t ~ LJ □>-", where X' EA. 

l>-"l=l>-l-1 

An estimate of the local error of the approximation off E Lp by QA! is given in [26], p.12, 

Lemma 3.3, under the assumption that A has a tree structure. 

Lemma: 'Assume that all 'I/J.>. associated with the support cube □>- = 2- l>-l(k + □) satisfy 

and that A E v' is M-graded. Then for any leaf>. E fJA and any l :S p :S oo one has 
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where □; is a cube satisfying 

and TIJ denotes the space of polynomials on ]Rn of order at most d. ' 

This estimate shows that the error of the wavelet approximation is locally bounded by 

the error of the best approximation by a polynomial of order at most d, where d is the 

order of t he dual multi-resolution analysis and where 'locally' is characterized by the size 

of the cubes □>-, >. E fJA. 

In general, the canonical projection of a function f on SA cannot be calculated exactly 

or at low cost: a substitute for QA must be used. In [26], p.25, the choice of substitute AA 

is governed by the following requirements: 

1. The number of operations needed to compute AA! remains proportional to #A. 

2. The local accuracy of AA remains comparable to that of QA as given by the estimate 

above. 

In the problem at hand, the right hand side function f does not belong to L2 and it is 

instead approximated in H - 1 . 



CHAPTER 4. SPARSE WAVELET EXPANSION OF A FUNCTION 69 

4.2.2 A priori choice of a sparse representation's wavelet coeffi

cients with the BAS scheme 

In the method implemented, the choice of the coefficients or, equivalently the choice of an 

appropriate subset A of v', is performed before any wavelet coefficients have been calcu

lated, and therefore it must be based on a priori information on the function f. In the 

scheme that follows, this a priori information is contained in a positive 'error function' E , 

defined on the set of sub-domains of D. The scheme is set up to create a tree A for which 

the error E is distributed quasi-uniformly over t he support-cubes □-\ of the tree leaves 

(A E 8A). The scheme is called the Basic Adaptive Scheme, or BAS. 

Simple requirements on function E are imposed as in [26], p.14: 

• E(D') ~ E(D"), for □'~ □", and 

• E(□') ----+ 0, as diam(□') ----+ 0. 

An algorithm for BAS 

In [26], p.14, BAS is described by the following algorithm: 

Given E, the associated BAS(E, <5) can roughly be described as follows. Set B = □, g = 0. 

While B =/- 0, pick □' E B and do: 

1. If E(D') ~ <5, include □' in set Q, 

else include the children of □' in set B. 

2. Remove □' from set B. 
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The algorithm terminates after a finite number of steps and outputs a set 90 = {□>. : ,X E 

8A(o)} of good cubes in the sense that E(□>.) :=:; o for all ,X E 8A(o). By construction, A(o) 

is a tree. 

4.2.3 An alternative projection operator 

As was mentioned in Section 4.1, a usual substitute for the wavelet canonical projection 

of a function J consists of the wavelet canonical projection of a piecewise polynomial ap

proximation of J. When a full representation of f is sought, the pieces of the polynomial 

are calculated on small cubes of uniform dimensions, whereas in the present situation, the 

size of the pieces' support must reflect the local need for accuracy. In view of the local 

estimate of Section 4.2.1, the correct size is given by the cube □>. associated with the local 

leaf ,X E fJA. 

If ,X is a leaf, the approximation of f on the support of 'l/J>. can be done in one piece 

and it makes sense to replace (J, 'l/J>.) by (P>.(J), 'l/J>.), where P>.(J) denotes a polynomial 

approximation off on the support of 'l/J>. - When A is not a leaf, the order of the size of the 

support of 'l/J>. is larger than that of the local leaves, indeed for large I-XI , it is close to the 

size of the whole domain O = □. In that case, the approximation off on t he support of 

'l/J>. must be a piecewise approximation such as P>.' (J) on each cube □>.', where X is both a 

leaf and a child of -X. If there are m such X, calculating one wavelet coefficient associated 

with ,X by replacing (J, 'l/J>.) by I:,>.' (P>.' (J), 'I/J>.)£2 (□>.,) will amount to the same work as cal

culating m wavelet coefficients associated with leaves. This means that the total amount 

of work needed to approximate QA! by this method cannot be proportional to the number 

of elements in A. 
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One way to get around this problem is to use a local scaling function expansion as an 

intermediate step between the function's point values and its wavelet expansion. The 

local scaling function expansion will consist of scaling function coefficients calculated as 

S>, = (P>.(f), ¢>-), where P>.(f) is a one-piece polynomial approximation to f on the sup

port CJj,k, (j = l>-1, k = k(>.) ) of t he generator function¢>-• The set of>. involved, denoted 

S(8A) contains all the children of the leaves of A and some extra indices needed for the 

subsequent wavelet transform. A local wavelet transform will then take the set of scaling 

function coefficients defined by S(8A), to the wavelet coefficients defined by A. 

4.2.4 Choice of the set of generator functions' indices S(BA) 

The set of scaling functions ¢>-, >. E S(8A) must contain all the scaling functions needed 

to produce t he wavelets 'lpN, X E 8A by wavelet transform. The multi-dimensional wavelet 

transform involves the one-dimensional refinement and wavelet equations. Therefore, a 

function c/Jj,k is 'needed' for producing the wavelets 'lj)>-' associated with □>-' if for 1 :S i :S 

n, ~j,k, is needed for producing 771>-'l,k;(>-') (by the wavelet equation) or ~l>-'l,k;(>-') (by t he 

refinement equation). The set S(8A) is built by the algorithm outlined below. 

Simple algorithm for S( 8A) 

For each cube □>-' , >.' E 8A, 

• Let j = IX] + 1. 

• For each spatial direct ion i (1 :S i :S n): 

- Find li, the smallest k such that ~j,k is needed for producing 771>-' l,k;(>-') or ~l>-' l,k;(>-') · 
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- Find mi, the largest k such that ~j,k is needed for producing 771>.'l,k;(N) or ~INl,k;(N)· 

• Insert in S(oA) all indices>- = (j, 0, k) such that li :'.Ski :'.S mi for all i, 1 :'.Si :'.Sn. 

Let N9 denote the maximum number of scaling functions ~j,k needed to produce a scaling 

function ~j-I,k', which may be adapted to the boundary or not. N9 does not depend on 

the level j. Similarly Nw, the maximum number of scaling functions ~j,k needed to produce 

a wavelet '17} - I,k', does not depend on j. It is then clear that the number of entries in 

S(oA) is strictly bounded by (max(N9 , Nw)t times the number of cubes associated with 

the wavelets in fJA, which is (#8A) /(2n -1) if the BAS algorithm was used. So for a given 

spatial dimension n, the cardinality of S(oA) is proportional to the number of leaves. 

4.2.5 Generator function local expansion: calculation of the co

efficients 

First of all a remark. The generator function local expansion of a function f consists of a 

vector of coefficients S>. associated with a set of indices S(oA). On each level j such that 

:3>- E S(8A) : J>-1 = j, the coefficients in the local expansion are a subset of the coefficients 

in the full scaling function expansion of f on level j. This means that the sum I:>.Es>- s >. ¢>. 

is not a representation of f because several levels are present in the expansion. 

As suggested in [26], the local polynomial approximation of f used in the calculation 

of the S>. is a Lagrange interpolation with polynomials of order don O'j,k , t he support of 
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Simple case: in one dimension and disregarding boundary issues 

In one dimension, f is approximated on CTj,k, the support of cf;j,k by 

d 

P?k f = L f(xi)Li, 
i=l 

where the xi denote d points equally spaced on a-;,k and the Li are the interpolating 

Lagrange polynomials 

The notation a-;,k stands for an interval which is possibly a little larger than O-j,k and whose 

usefulness is explained further below. Ignoring for now the problems associated with the 

boundaries of the domain 0, the nodes xi on interval O-j,k are obtained from the nodes yi 

on interval a-0 ,0 by the simple transform xi= 2-J(yi + k). As a consequence, the Lagrange 

polynomials L?'k defined on O-j,k can be expressed as 

The generator function coefficients Sj,k are calculated as 

d d 

Sj,k = (P?kf,cf;j,k) = L f(xi)(L?\¢j,k) = L f(xi)rJj,k(i) 
i = l i=l 
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where TJi,k(i) denotes the inner product (L?'\c/>j,k)- Denoting (L~0
•
0 ,¢) by TJ(i), it is ap

parent that 

T}j,k ( i) L L?'k (x)c/>j,k(x) dx 

L L~0
•
0 (2ix - k)2il2¢(2ix - k) dx 

2-i/2 L L~0
•
0 (y)¢(Y) dy, y = 2ix - k, dx = 2-idy 

2- i/2TJ(i) 

This shows that the d coefficients TJ( i) can be calculated once and used again from memory 

to calculate every Sj,k· Assuming that the necessary values of function f are available at 

no cost, the calculation of any coefficient Sj,k requires d flops (floating point operations) . 

The multivariate case 

In (Rt, we have generator functions </>>.. = c/>j,k = rr~=l ~j,k;, with supports aj,k = aj,k1 X 

· · · x ai,kn. The ideal coefficient Sj,k would be calculated as 

In the inner-most integral function f can be considered a function of variable Xn alone. This 

type of integrals has been replaced in the lD case by the sum I::fn=l 2-i/2 f(x1 , ..• , x~n )TJ(in)-
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Repeating this process n times yields the coefficient SJ,k corresponding to the lD case as 

d d 

Sj,k = 2-Jn/2 L · · · L f (xf1, .. . , X~ )1J(i1) ... TJ(in) 
i1 =l in=l 

This shows that the coefficients Sj,k can be simply calculated from the point values of f 

and the d lD-integrals TJ(i), whatever the dimension of the domain. Once the TJ(i) have 

been stored in memory, the cost of calculating any SJ,k is Jn flops . 

Boundary adapted scaling functions 

Near the boundary of the domain, the primal scaling functions have been adapted to sat

isfy an homogeneous boundary condition while retaining the basis' approximation order d. 

These modifications mean that the boundary adapted functions are no longer the straight 

forward translates and dilates of the other scaling functions in the basis. They are however 

a linear combination of the 'normal' scaling functions, truncated at the boundary. 

In the one dimensional case, let Lif denote the set of indices k such that ¢J,k is a scaling 

function adapted to the boundary on the left of the interval. It also denotes the set of 

indices k such that ¢J,k is a dual scaling function adapted to the boundary on the left of 

the interval. Similarly, let us denote by Lif the corresponding set for primal and dual scal

ing functions adapted to the right boundary of the interval. A coarsest level Jo is chosen 

such that for J ~ Jo, no ¢J,k or ¢J,k is adapted both on the right and on the left ends of 

the interval. For J ~ Jo, the sets Lif and Lif are disjoint, and all sets Lif have the same 

cardinality. Similarly, the Lif have all the same cardinality for J ~ Jo• The boundary 

adapted scaling functions are denoted ¢J,k and ¢fk and they are expressed in terms of 
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'normal' scaling functions as: 

Lt 
<PY,k L a~k</>j,rl[o,oo) 

r=lL 
k1 

lfu (j) 

<f>fk L a~k<Pj,rl(-oo,l] 

r=lfi (j) 

76 

These expressions are made more precise in the chapter 2, and also in the section dedicated 

to the implementation of the generator function local expansion, Section 4.3.3. What really 

matters here is that the af k and a:k are not dependent on the level j. , , 

-L 
Vk E 6.j , Sj,k / p~i,kj A.~ ) 

\ d ''l-'3,k 

""' L I PCTj,k f ,I., ) ~ ar,k\ d , 'r'j,rX[O,oo) 
r 

d 

L a~k L f (xi) (L?'k, </>j,rX[o,oo)) 
r i=l 

where the xi are once again regularly spaced nodes and where 

{ 

1 if x EX 
Xx (x) = 

0 otherwise. 

Given a certain index k, the nodes xi associated with support O-j,k are related to the nodes 

yi associat ed with support O'jo,k as xi = 2Jo-jyi. Just like in the previous section, it is 

immediate that 
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As a consequence, the inner product (PI3'k f, cpfk) can be made independent of the level j, 

except for a multiplicative coefficient: 

~L 
\:./k E 6-j , 

1 L?'k (x)</>j,r(x)x[o,oo)(x)dx 

2(j-jo)l21 L?o,k (2j-jox )<Pj
0
,r(2j-jox )X[O,oo) (x )dx 

2Uo-j)/21 L?o,k (Y)<Pj
0
,r(Y)x[o,oo)(Y)dy, Y = 2j-jox 

2(jo-j)/2riL (i) 
• 130 ,r , 

where 11lo,r(i) is defined as J~ L?0 ·k <Pjo,rX[o,oo)· Moreover, denoting by Efo (k, i) the sums 

I:r o::,k 'r/lo,r (i), the calculation of the coefficients s j,k may be simplified to the sum 

d 
Sj,k = 2Uo-j)/2 L f (xi)Efo (k, i) 

i=l 

which can be done in d flops once the Efo (k, i), k E .3.f,k, have been stored in memory. 

The calculation of the coefficients corresponding to the right boundary adapted scaling 

functions can be done in exactly the same way as the calculation of the coefficients near 

the left boundary. 

To summarize, whatever the dimension n of the domain, the calculation of any coeffi

cient Sj,k can be done in dn flops. The pre-processing needed involves the calculation of 

a vector of length d containing the values of the rJ(i), a matrix of dimensions d x #.6.fo 

containing the values of the Efo(k, i) and a matrix of dimensions d x #.6.fo containing 
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the values of the E~(k, i). Details on these calculations are given in Section 4.3. The 

amount of work needed to calculate all the coefficients Sj,k, (j, k) E S(8A) is bounded by 

max(N9 , Nw)(#8A/(2n - l))cln flops and so it is proportional to #oA. 

Chebyshev or regularly spaced nodes 

Regularly spaced nodes are preferred to irregularly spaced nodes such as Chebyshev, be

cause they facilitate the re-usability of the inner products 'TJ( i) . 

The quality of the approximation of a function f by a Lagrange interpolation is estimated 

in [19], p.29, as 

where Pn denotes a Lagrange interpolation off of degree n associated with arbitrary nodes, 

11-1 1 denotes the L00 norm and 1fn+1(x) = fl ]=0 (x - Xj)- Further, [19] gives the following 

estimates: 

• For evenly spaced points, ll1rn+il l = O((b - a)/et+1 when n --+ oo, where [a, b] is 

the interval of interpolation and e = exp(l) . 

• For Chebyshev nodes, ll?Tn+ill = 2((b- a)/4t+1 . 

For the range of values of n that are likely to be used in this application (3 ::; n ::; 6), 

the quotient (e/4t+1 decreases from about 0.22 down to about 0.067. This does not seem 

enough to justify the amount of supplementary work associated with choosing Chebyshev 

nodes over regular ones. 
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4.2.6 The local wavelet transform 

The local wavelet transform is the indispensable step that takes the redundant, multi-level, 

scaling function expansion (8-,x, ,,\ E S(8A)) of a function f to its sparse wavelet expansion 

(d,x , ,,\ E A), where d,x = J f 'lj;,x. The local wavelet transform makes the most of the tree 

structure of the set of indices A. Let Q denote the set of cubes O,x such that ,,\ E 8A. The 

indices in Q are assumed to be sorted by increasing level I >-1- Let J denote the highest level 

present in A and let j0 denote the coarsest possible level. A simple algorithm for the local 

wavelet transform is the following. 

For all O,x E Q, starting with the last cube and proceeding towards the first, 

• If l>-1 < J, remove from S(8A) all the indices of level J + 1 and remove from Q the 

cubes of level J. Reset J to l>- 1-

• Make S,x, the subset of S(oA) which contains the indices of the scaling function 

coefficients SJ+l,k which are needed for the calculation of the 2n-1 wavelet coefficients 

and one scaling function coefficient associated with cube O,x. 

• Do a one-level transform on the coefficients 8-,x,, ,,\' E S >-. The new 2n - 1 wavelet 

coefficients are stored as part of the wavelet expansion of f. The new scaling function 

coefficient is also stored and its index,,\ is inserted in the set S(oA). 

• If I >-I =I= j 0 , the parent cube of O,x is inserted in Q. 

In the one dimensional case, the one-level transform consists of applying once the refinement 

and the wavelet equations to a set of coefficients. Because the scaling function and wavelet 

bases are defined on an interval, these equations depend on the level j involved and they 
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are best written in a matrix form. Let Mj,o denote the refinement equation matrix and 

let Mj,l denote the wavelet equation matrix on level j. Let also q>j and q>H1 denote the 

vectors of scaling functions on levels j and j + 1. Similarly, let 1It j denote the vector of 

wavelets on level j. The refinement and wavelet equations in matrix form are: 

and 

A dual scaling function coefficient Sj,k = J f </>j,k is obtained from a linear combination of 

dual scaling function coefficients on level j + 1 by: 

l ,.,o(k) 

Sj,k = L [Mj,o]t,k Sj+l,k, 
l=l1,o(k) 

where l1 ,o(k) denotes the lowest row index of a non-zero entry in column k of matrix Mj,O 

and lu,o(k) denotes the highest (following the Multilevel Library's notations, the subscript 

l stands for 'low' and u stands for 'up'). When </>j,k is not an adapted boundary condition, 

l1,o ( k) = k + li and lu,o ( k) = k + l2 , which means that exactly l2 - li + 1 = d + 1 scaling func

tions on level j + 1 are needed. When </>j,k is a left or a right boundary adapted function, the 

number of scaling function coefficients that are needed on level j + 1 is equal to the length of 

the top left ( or bottom right) block of matrix Mj,o. This length is independent of the level j. 

Similarly, a wavelet coefficient dj,k is obtained as: 

lu,l (k) 

dj,k = L [Mj,1]1,k Sj+l,k , 
l=l1,1 (k) 
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where l1,1(k) and lu,1(k) correspond to the column k of M j,l and the difference lu,1(k)-l1,1 (k) 

is also independent of the level j. 

In n dimensions, the dual scaling function and wavelet coefficients are defined as 

S>, = 1 f fr ~j,k; 
n i=l 

and 

where (j,k; = ~j,k; if ei = 0 and (j,k; = 'r/j,k; if ei = 1. The scaling function coefficients on 

level j + l necessary for the calculation of coefficient S>. form the set: 

Correspondingly, the set S>. of the indices of coefficients SN on level j + l necessary for the 

calculation of all the dual coefficients associated with the cube □>- is the set: 

and the one-level decomposition in n dimensions consists of the linear combination 

lu,e1 (k1) 

d>, = L [Mj,e1]li,k1 

l1 =l1,e1 (k1) 

lu,en (kn) 

L [Mj,en ]ln,kn Sj+l,l· 

ln=l1,en (kn) 

Assuming that the set S(>.) contains a maximum of Nn indices and that there are a 

maximum of N non-zero entries in the columns of the Mj,o and Nlj,l matrices, the sum above 

can be calculated in ( Nn + · · · + N) = ( Nn+ 1 
- N) / ( N - l) flops. Since 2n coefficients must 

be calculated for each cube □>-, the number of floating point operations needed per cube is 
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2n(ivn + • • • + N) maximum. This number depends on the length of the primal filters and 

on the space dimension only. So the cost of the one-level decompositions performed during 

a local transform is proportional to number of cubes in A and therefore it is proportional to 

#A. This cost can be reduced to 2Nn + • • • + 2n N per cube by calculating simultaneously 

the 2n coefficients associated with one cube. The one-level decomposition is the main step 

in the algorithm above, but the operations of locating, inserting and deleting coefficients 

in the memory also incur a cost, which is the penalty for not using a matrix-type method 

of storage. This trade-off between the size of memory space occupied versus the effort 

required to handle the object stored is one of the main drawbacks of the sparse algorithms. 

4.3 Implementation 

The implementation is very close to the method described in the previous section. The 

calculation of the sparse dual wavelet expansion of a function f follows the following steps. 

• Determine the set of wavelet indices that will be present in the expansion (A) ac

cording to a precision criterion c5 (or an ideal number of wavelet coefficients N) and 

an error function E. This operation is encoded in a function called FindGoodCubes, 

the output of which is the set of cubes □>. associated with the leaves >. E 8A, which 

uniquely determines a tree of wavelet indices A. 

• Grade 8A so that the tree A is 2-graded. This is encoded in function called Grade Tree. 

• Determine the set of scaling function indices (S(8A)) necessary to obtain the tree 

A by local ( dual) wavelet transform. This set is called the generator function local 

expansion set and the function that calculates it called GenLocSet. 
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• Calculate the local ( dual) generator function ( or scaling function) local expansion of 

f by calculating the inner products (!, ¢>.), >. E S(f:JA). This task is performed by 

function GenLocRHS. 

• Finally, the scaling function coefficients are transformed into wavelet coefficients by 

a local dual wavelet transform implemented as function LocTransformT. 

This algorithm can be summarized as 

1. G +--- FindGoodCubes -- fl, N, E 

2. S +--- GenLocSet -- G 

3. S +--- Grade Tree -- S , 2 

4. S +--- GenLocRHS -- S, f 

5. D +--- LocTransformT -- G, S 

where G contains the set of good cubes, or set of indices f:JA, S encodes the set of generator 

function indices and coefficients and D encodes the set of wavelet indices and coefficients. 

4.3.1 Implementation of the BAS algorithm in the FindGoodCubes 

function 

The FindGoodCubes function implements the BAS algorithm (section 4.2.2) except for a 

few practical modifications. 

The first modification concerns the initialization of the algorithm. In BAS, the start

ing point of the algorithm is a set B which contains one single element: the unit cube. In 



CHAPTER 4. SPARSE WAVELET EXPANSION OF A FUNCTION 84 

FindGoodCubes, the set B can consist of any uniform dyadic refinement of the unit cube; 

the level of that refinement must be set in input. The intention behind this change was 

to prevent the set of leaves 8A from containing indices >. such that l>-1 < Jo - 1, where Jo 

denotes the coarsest level of the wavelet basis used. Any possible leaf of level Jo - 1 will 

correspond to a scaling function on level Jo. 

The second modification concerns the criterion for stopping the scheme. BAS stops only 

when E(D;.) ::::; b for all cubes D;. in the output set of good cubes g, or 8A. In FindGood

Cubes, the scheme stops when one of three conditions is fulfilled: E(D;.) ::::; b for all □;. E g, 

or the number of elements in the union of g and B exceeds a predefined integer N, or the 

level J of the indices >. has reached 29, the maximum level for which the Multilevel Library 

works being 30. If after checking a cube □;. E B, the second or third condition is fulfilled, 

the scheme does not stop straight away, but carries on until all cubes ON E B satisfying 

l>-1 = IXI have also been checked. Then, the scheme is stopped by the operation 

BUQ--+Q 

This is to avoid creating artifacts in the distribution of the wavelet coefficients, for instance 

a lack of symmetry caused by the sudden discontinuation of the scheme. 

Finally, the checks E(D;.) ::::; b in BAS are replaced by E(D~) ::::; b in FindGoodCubes. 

Here, □~ denotes the union of the supports of the wavelets on level l>-1 which intersect the 

cube D;. . The cubes D;. represent the size and location of the supports of different wavelets 

but the objects of interest are really the supports themselves. 
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The function header is: 

int FindGoodCubes( set<MDindex,less<MDindex> > &tree, 

set<MDindex,less<MDindex> > &tree-comp, 

int level, int dim, double eps, int N, 

const I_Basis_Bspline &basis, 

double (*E)(RectBorder) ); 

where 'tree' is the set of good cubes D.x, ,,\ E BA, and 'tree-comp' is the complementary set 

of cubes D.x, ,,\ E A\ BA. 

Choice of an error function E 

The choice of the error function E is of course problem dependent. In the problem at 

hand, the right hand side coefficients are the sum of inner products calculated over the 

inside of the magnetic domain Dint and of inner products calculated along the boundary 

BDint· In both types of inner products, the borders of the domain of integration introduce 

a discontinuity in f, which is expected to be smooth elsewhere. For the right hand side 

used in this thesis, the chosen error function E is 

{ 

diam( 0-1.xl,k(.X)) 
E(D.x) = 

0 otherwise, 

where 0-1.xl,k denotes the support of ¢.x and ,,\ is a leaf of A. The set A is reset at t he start 

of each time-step to the set of wavelet indices used to represent the solution of the Poisson 

problem at the previous time step. 
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4.3.2 Calculation of the generator function indices set with the 

GenLocSet function 

The GenLocSet function improves a little on the algorithm given in Section 4.2.4. The 

starting point is a partitioning of the unit cube into a disjoint set of good cubes g, which is 

the output of the BAS algorithm. For each cube □>., E g, and for each spatial dimension 

i, the lowest index li needed for a wavelet transform is only looked for if the cube's side 

Xi= 2-l>-'lki(.>.') borders a coarser cube □>." E Q, l>-''I > l>-'1- Otherwise, li is simply set to 

2ki(X). Similarly, the highest index mi needed for a wavelet transform is only looked for 

if the cube's side Xi = 2- J>.'l(ki(X) + 1) borders a coarser cube. Otherwise, li is simply set 

to 2ki(X) + 1. 

Additional flexibility is given to the GenLocSet function by the introduction of three 

optional input parameters. Two of these parameters fix the values of the differences 

L = 2ki - li and NI = mi - (2ki + 1) arbitrarily and the third parameter causes Gen

LocSet to work with the dual basis instead of the primal basis. This flexibility is used in 

the process of evaluating a sparse wavelet expansion pointwise. 

For each cube in the input set of good cubes, the work done by this function consists 

of 

• n searches for a neighbour coarser cube, 

• a maximum of (max(L, M) + 2t insertions in S(oA). 
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Using the STL containers 'set' for the set of good cubes and 'map' for the set of scaling 

function coefficients, the complexity of a search operation and of an insertion is logarithmic 

in terms of the number of entries in the set or map. So the work done by the GenLocSet 

function is of the order of #fJAlog( #fJA) operations. This number is not directly propor

tional to number of leaves in A but it is still independent of the number of levels involved 

in A. 

The function header is: 

int GenLocSet( map<MDindex,double,less<MDindex> > &S, 

const set<MDindex,less<MDindex> > &G, 

const I_Basis_Bspline &basis, 

int minl1 = -1, int maxl2 = -1, int pd= 0 ); 

4.3.3 Calculation of the generator function coefficients with the 

GenLocRHS function 

The implementation of the calculation of the generator function coefficients of a function 

f differs from the ideas presented in Section 4.2.5 on one major point. When c/>j,k is a 

boundary adapted function, its support is longer than otherwise. The maximum support 

for a ID-function c/>1,k, k E Lif, is 2-j [0, l2+lf,J and the maximum support for a ID-function 

cf>fk, k E Lif, is 2- j[li + l~, I]. When using exactly d interpolation nodes on the support of 

c/>j,k, whatever its length, a loss of accuracy is introduced near the boundary by comparison 

to the inside of the domain. In order to conserve the same accuracy everywhere, at the 

one-dimensional stage, instead of calculating a Lagrange interpolation of f on each scaling 
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function's support <7J,k, the method implemented calculates several Lagrange interpolations 

off on intervals of length 2-J. Those intervals are of the form 2-i[l, l + lj, where l varies 

between li and l2 - 1 when c/>J,k is an inner scaling function (<7J,k = 2- i[k + l1 , k + l2]), 

between O and l2 + lf,, - 1 when k E .6.f and between li + lf (j) and 2i - 1 when k E .6.f. 

The scaling function coefficients are therefore calculated as follows. 

• A way from the boundary, 

l2-l d-1 

Sj,k 2-j 12 I: I: 1 ( X1,i ) (Lrl+l], cf> X[l,l+I]), 

(d-1)(l2-l1) 

Sj,k 2-J/2 L J(xv)rJ(v), 
v=O 

• Near the left boundary ( k E .6.f), 

i=O 

Xl,i = 2-j (l + i/(d - 1)) 
(li- l )(l2+lf,) 

Sj,k 2Uo- j)/2 L Efo(k, v)J(2- iv/(d- l)) 
v=O 

• Near the right boundary (k E .6.f), 

V 
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where the sum's index v varies from -(d - 1) ( 2i - (l1 + l~(j))) to 0. 

This modification multiplies the amount of work for each coefficient Sj,k by the number of 

sub-intervals used in the support CJj,k in each spatial direction. 

In addition to the general GenLocRHS function, a more specialized function has been 

implemented to cater for the physical problem at hand. This function is a member of the 

Interface class, which models the platelet. The Interface::GenLocRHS function calculates 

the surface integrals, the contour integrals and the divergence of the magnetic moment M , 

where needed. 

4.3.4 Pre-processing: calculation of vector 'T/ and of matrices Efo 

and Et in function etakr 

The calculation of Efo and Ei~ differs from that of rJ essent ially in the extra summation 

involving the coefficients o:f r or of r· The values of these coefficients are given by the 
' ' 

Multilevel Library, also this sect ion concerns itself only with the calculation of the inner 

products (Lil,l+l ], </> X[l,l+i]), which are the main components of Efo and Efo as well as rJ. 

By writ ing the Lagrange polynomials in terms of monomials x 8 as 

it becomes apparent that the core of the calculation consists of inner products of the form 

fnt xr </>(x )X[t,l+l] (x )dx or rather of a difference of inner products of the form JIR. xr </>(x h[t,oo) (x )dx, 
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with O :::; r :::; d - l and Li :::; l :::; l2 - 1. These inner products will be denoted µ~. It is 

useful to note that: 

- for l < l µ1 = µli = f 00 xr ,1..(x)dx· _ 1, r r - oo 'f' ' 

- for Li :S l :::; l2 , µ~ can be calculated by the Multilevel Library as a sum of inner 

products of refinable functions (¢ and X(o,11) : 

oo l2 12-l 

µ~ = L ¢(x)dx = L ¢(x)dx = L 1 ¢(x) X[o,11(x - m) dx 
l l m=l JR 

The remaining µ!. will be calculated by recursion ( on r) from these given values. 

A recursion on the µ~ 

Following the method used in [13], the refinement equation ( ¢(x) = L~=li ak¢(2x - k)) is 

inserted in the expression for µ~. 
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T(c+l) t. a, t, (:) k'-• µ;1
-•, 

t. a, ~ (:) k'- ' µ;1
- k + 

lz L ak µ;l-k. 

k=li 

In the last equality, the first term of the right hand side consists of data which is already 

known at step r, and it is denoted by b~. The second term can be rearranged to avoid any 

coefficients µ~ for l outside the range (li, l2 - 1) . This is done as follows. 

l2 L ak µ;l- k 

k=li 

l2 L ak µ;l- k 

k=li 

l2 L ak µ;l- k 

k=li 

where p = 2l - k, 
p=2l - l2 

12 - l 

L a - p+ 21 µ~, because µ~ = 0 for p ~ l2 , 

p=2l-l2 

otherwise, 

because µ~ = µ~1 for p::; li, and ak = 0 fork < [i. 
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The entire equation can now be re-written for li :S l :S l2 - 1 as a matrix equation. Let us 

define a (l2 - li) by (l2 - li) matrix A such that 

except if l < W1 + l2) /21, 

A - " 11 a in that case. l,l1 - - L..,p=2l-l2 - p+2l, 

Moreover, let br denote the vector ( b~1
, ..• , b~2 

-
1 ) and let µr denote the vector (µ~1

, ••• , µ!.2 - 1
). 

Finally, let Dr denote the ( l2 - li) by ( l2 - li) diagonal matrix 2r+1 I. The following matrix 

equation gives the coefficients µ~ in terms of coefficients µ~,, where r' < r, 

After the vector µ 0 has been calculated using the Multilevel Library, the remaining vectors 

µ r are recursively obtained by inverting the matrix equation above. The proof of the 

non-singularity of matrices A + Dr is given in an appendix. 

Calculation of the Li r 
' 

The Lagrange polynomials Li associated with the J nodes x1, for O :S l :S J - 1, are such 

il-1 

L Li,rXz = <>i,l, for O :Si :S d - 1. 
r=O 

The Li,r form a matrix L which is the inverse of a Vandermonde matrix V, with entries 

½,r = xI, for O :S i, r :S J - 1. 
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Function call 

The etakr function is called only once in the program and it has the following header: 

void etakr( matrix &EtaL_jO, vector &Eta_jO, matrix &EtaR_jO, 

const I_Basis_Bspline &basis); 

4.3.5 Specialization of GenLocRHS for the interface condition 

93 

The specialized function used to calculate the right hand side coefficients for the physical 

problem must calculate two types of integrals fnin t div M <P>. and §80int M · n <P>.- The 

issues attached to the calculation of the surface integral are: 

1. how to calculate the divergence of M from a set of dyadic point values, 

2. the integral is restricted to the intersection of the support of (P>. with the platelet 

As for the contour integral, because the multi-dimensional wavelets have a tensor prod

uct structure and because the directions of integration are parallel to the axes, they are 

calculated like the surface integrals, on a domain of dimension n - l. 

Calculation of the divergence 

The divergence of the magnetic moment is calculated as the divergence of a vector of local 

polynomial interpolations. Each component of this vector is the tensor product of n one

dimensional Lagrange interpolating polynomials. 
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The degree of the one-dimensional interpolating polynomials is chosen to be d + 1, so 

that it is one more than that of the interpolation used to calculate the inner products with 

The interpolating nodes are regularly spaced on a dyadic grid and they are all chosen 

inside the platelet. The motivation for this is that M is expected to present a sharp vari

ation or even a discontinuity at the border between the magnetic and the non-magnetic 

regions. An interpolating polynomial constructed from nodes on either side of that bound

ary would certainly show artificial overshoots near 8Dint, unnecessarily changing the values 

of div M to non-representative values. The down side of this choice is that it fixes a coars

est scaling function level (jp) around the platelet, such that in each spatial direction, the 

platelet is wide enough to contain d + 1 dyadic nodes on level )p· This restriction may not 

be unreasonable since it means that the supports of dual scaling functions <l>iv,k are not 

wider than the platelet. 

Using a notation similar to that of section 4.2.5, this can be summarized by 

div M ~ div p<7_i,,. M 
d+l ' 

where 

and 
n 

Pd~•; Mi(Y) = L Nfi(xl) IT L~!km (Ym) 
::cl m=l 
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where x = ( xli, ... , x1n) is a point on a dyadic grid of level j and of size ( J + 1 r . 

By a process of re-scaling and shifting the grid, the divergence of M can be approximately 

calculated from the first partial derivatives of the interpolating polynomials associated with 

the grid (0, ... , Jt. 

where x is now a point on a dyadic grid of level 0. 

A pre-processing step evaluates the products 

at all points yon a grid (I0 - dt,10 + 2dt)11, where 10 = -l(dt + 1)/2J (+1 if dis odd) 

and where adjacent nodes on the grid are at a distance of 1/(d - 1) from each other. This 

grid of values has nearly the same centre node as the grid (0, ... , d)71 of interpolating nodes 

and it contains all the points necessary for the calculation of the inner products of div M 

with the scaling functions by GenLocRHS as previously described. 

After the pre-processing step, the divergence of M is easily obtained anywhere it is 

needed by matrix multiplications involving the values of the Mi at node points and the 

pre-calculated partial derivatives of the interpolating polynomials. 
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Integral over D.int 

The calculation of the integral of div M with a scaling function cf».. on the domain D.int 

is done basically in the same way as the calculation of the integral over the whole of n in 

the sense that it consists of calculating the inner product of the vector T/ ( or of a row of 

one of the matrices Efo or E!) with a vector of point values of div M. However, if the 

intersection of the support of <P>. with Oint is empty, no calculation is made as the inner 

product is clearly null. What is more, if the support of <P>,, is not completely included inside 

D,int, only a part of the vector TJ ( or of a row of one of the matrices Efo or E!) is used. That 

part is what corresponds to the piecewise interpolation of div M on the dyadic cubes of 

level l>-1 which are strictly inside Oint· 

The header for the interface::GenLocRHS function is as follows. The values of M can 

be given as a set of point values or as a function. 

void Interface: :GenLocRHS( map< MDindex,double,less<MDindex> > &S, 

const I_Basis_Bspline &basis, 

const PointValues &M ); 

void Interface: :GenLocRHS( map< MDindex,double,less<MDindex> > &S, 

const I_Basis_Bspline &basis, 

vector (*M)(const vector &x, Interface *pt) ); 
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4.3.6 Implementation of the local wavelet transform in the Loe-

Transform T function 

The implementation of the local wavelet transform closely follows the algorithm from sec

tion 4.2.6. The implementation of the one-level decomposition is based on two recursive 

functions OneLocDecompos0T and OneLocDecomposl T. In the one-level decomposition 

which calculates the coefficients associated with a cube D.x, each of of these functions is 

given to start with the same set of scaling function coefficients in input, for instance N n 

coefficients. The OneLocDecompos0T function applies to these coefficient the column k1 of 

matrix Mj,o 
lu,o(k1) 

L [Mj,ol11,k1 Sj+1,l 
l1 = l1,o(k1) 

with for result a set of Nn-l coefficients s;~l,(l
2

, .. .,ln) · Independently, the OneLocDecom

posl T function applies to these coefficient the column k1 of matrix Nlj,l 

lu,I (k1) 

L [Mj,1l11 ,k1 Sj+l,l 
l1 = l1,1 (k1) 

with for result a set of Nn- l coefficients s;~i,(L
2

, .. . ,z,.)· The OneLocDecompos0T and One

LocDecomposl T functions terminate by calling both functions with for input sets the set of 

coefficients that has just been calculated. The iterations stop when the output sets contain 

only one coefficient. This coefficient is one of the 2n coefficients associated with □>-- Figure 

4.3.6 may help visualize the process. 

It was mentioned in section 4.2.6 that the variables' storage handling can be costly 

when they are not stored in matrix-type structures. The implementation uses the Stan-
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Mj,O 

{ 
(1,0) } 

S j+l,(l3) 

Mj,O I !M· Mj,O / !M· M· j ~ Mj,l M· j \ Mj,l I J,l / J,l J,0 ~ J,0 \ 

S· k d J, j,(0,0,1),k dj,(0,1,0) ,k dj,(0,1,1),k 
- -

dj,(1,0,0),k dj,(1,0,1),k dj,(l ,1,0),k dj,(l,1,1),k 

Figure 4.1: Example of a one-level decomposition in 3D for the coefficients associated with 
the cube D,x, where>-= (j,e,k) . 

<lard Template Library containers 'set' and 'map' to store the set of cubes (denoted by G) , 

the set of scaling function coefficients ( denoted by S) and the set of wavelet coefficients 

(denoted by D). The maximum number of storage handling operations per cube D,x, >-EA, 

is of Nn searches through S, the insertion of one coefficient in S and of 2n - 1 coefficients 

in D. The STL documentation guarantees that the average time needed to insert or to 

find an element in a set ( or map) is at most proportional to the logarithm of the number of 

entries in the set ( or map). Finally, the algorithm erases coefficients from S and G every 

time a cube has a lower level than the previous cube. Erasing an element takes constant 

time. 

The function header is: 

void LocTransformT( map< MDindex,double,less<MDindex> > &D, 

set< MDindex,less<MDindex> > &G, 

map< MDindex,double,less<MDindex> > &S, 
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const I_Basis_Bspline &basis); 

4.4 Numerical example 

The example presented here is very simple. It consists of calculating a sparse dual wavelet 

expansion for the one-dimensional function f(x) = X[318,5181 (x),x E [O, 1]. The wavelet ex

pansion is then evaluated pointwise. Let { xi}f:1 be a set of N points where the wavelet 

expansion has been evaluated and let ei be the error made at point xi. The wavelet 

expansion is compared with the original function f according to two criteria: the max

imum pointwise error is emax = maxi(leil), and an approximation to the L2 error is 

e L2 = CEi er ( Xi - X i- 1)) 112, Two different biorthogonal pairs of B-spline wavelet bases 

are used. In keeping with the notation of the Multilevel Library, these pairs of bases are 

denoted N(d), N(d, d), where d and dare the approximation order of the the primal and 

dual bases. The error function E used to choose the set of wavelet coefficients kept in the 

sparse representation was the following 

if Clj,k n [3/8, 5/8] = 0, 

otherwise. 

The number of coefficients used in the local scaling function expansion is denoted by Ns, 

the number of coefficients in the wavelet expansion is denoted by N v and the maximum 

wavelet level involved is denoted by J. The results are summarized in tables 4.1 to 4.2. 

Table 4.3 shows the results obtained when the set of wavelet coefficients retained is chosen 

after the full wavelet expansion has been calculated, by discarding wavelet coefficients of 

modulus less than 10-12 . 
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0 0.1 0.01 0.001 10-4 10-t) 

emax 0.3076 0.3076 0.3076 0.3076 0.3076 
eL2 0.0397 0.0140 0.0050 0.0012 0.0004 
Ns 134 224 326 462 564 
ND 51 73 95 123 147 
J 7 10 13 17 20 

Table 4.1: Bases N(2),N(2,4) - direct to sparse representation. 

0 0.1 0.01 0.001 10- 4 10-5 

emax 0.3924 0.3924 0.3924 0.3924 0.3924 
eL2 0.0499 0.0177 0.0044 0.0016 0.0005 
Ns 78 162 274 358 442 
ND 43 64 94 116 140 
J 6 9 13 16 19 

Table 4.2: Bases N(3),N(3,3) - direct to sparse representation. 

emax 0.2936 0.2936 0.2936 0.2936 0.2936 0.2936 0.2936 
eL2 0.0990 0.0700 0.0495 0.0350 0.0248 0.0175 0.0124 
Ns 31 63 127 255 511 1023 2047 
ND 25 35 45 55 61 69 77 
J 4 5 6 7 8 9 10 

Table 4.3: Bases N(2),N(2,4) - from full representation to sparse, threshold on wavelet 
coefficients: 10- 12 . 
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The first observation concerning the tabulated results is that the maximum error emax 

does not vary with the parameter 8. The maximum error corresponds to the overshoot of 

the wavelet expansion near the discontinuities. Near the discontinuities, the local scaling 

function expansion of f is on the highest level and the error is evaluated at dyadic points 

2-J0 k, corresponding to the indices ( J0 , k) of the scaling functions used. When the value 

of 8 is decreased, the level J0 increases, but this is only a re-scaling of the problem: when 

J0 is fine enough, the scaling function coefficients involved are all calculated as 

which depends on J0 only by the factor 2-10/
2 and by the values of f on a stencil of 

(l2 - li)(d- 1)+ 1 points, regularly spaced at intervals of 2 - 10 /(d-1). For f(x) = X[a/s,s;sJ (x), 

the (l2 - Zi)(d - 1) + 1 values f (xt,i) do not depend on the scale of the stencil but only on 

its relative position to the discontinuity. So, if the local scaling function expansion about 

point x = 3/8 contains the function c/>10 ,k, there exists k1 such that for parameter 81 < 8, 

SJ0,kc/>J0,k has the same values on a grid of level J0 as s1
0
,,k'c/>1

0
,,k' on a grid of level J0,. The 

maximum error emax does not depend on J0. However the error becomes more and more 

localized near the discontinuities as J0 increases, as is shown by eL2 • 

The second observation is that the error function E, although very simple, is good at 

predicting which wavelet coefficients should be retained in the expansion, as can be seen 

from the comparison of tables 4.1 and 4.3. A similar error function will be used for the 

right hand side of the Poisson equation with interface condition. 



Chapter 5 

Fast matrix vector multiplication and 

dynamical calculation of the 

derivative operator matrix entries 

The global wavelet scheme ( presented in chapter 3 ) that solves iteratively the Poisson 

equation makes use of matrix-vector multiplications of the type Av, where A is an in

finite matrix and v is an infinite vector with a finite number of non-zero entries. These 

multiplications have to be approximated by a finite number of computing operations. 

5.1 T he MULT algorithm 

5.1.1 Properties of this algorithm 

In [9], the authors describe an algorithm for a routine MU LT such that (Proposition 

5.10, p.22 [8]) ' Given a tolerance rJ > 0 and a vector V with finite support, the algorithm 

102 
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MU LT produces a vector W which satisfies [ . .. ] 

where the matrix A is denoted by C. Moreover, for a class A s• of s*-admissible matrices 

A , the MU LT algorithm has the following properties, listed in Requirements 5.3, p.18, 

[8]: 

• ' The size of the output ArJ is bounded by 

• The number of arithmetic operations needed to compute WrJ does not exceed 

C{ ,,,- 1/s llVllg(v') + N} with N := #suppV. 

• The number of sorts needed to compute WrJ does not exceed C N log N.' 

Here, 77 denotes t he tolerance, AIJ denotes the set of wavelet indices present in the output 

vector WrJ, s is such that O < s < s* and T = (s + 1/2)-1/ 2 . Finally, C denotes a positive 

constant depending only on s when s tends to infinity. 

The space .e~('v) is called 'weak£/ and in [9] p.13 it is defined for T < 2 as: 

with semi-norm 
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where v * denotes the sequence comprising of the modulus of the entries of v sorted by 

decreasing order. A norm is then defined on f~("'v) by 

Assuming that v is in £~ ('v) means that the size of the entries in the sequence v is expected 

to decrease at a certain rate, while assuming that A is in A s• is linked to the compressibil

ity properties of t he matrix A. A subset of A s• is the set Cs• of s* -compressible matrices 

defined as follows. 

Definition 5.8, p.21, [8) A matrix C is called s*-compressible if for each O < s < s* 

and for some positive sequence { aj hENo there exists for each j E N0 a matrix Cj having 

at most aj2j non-zero entries per row and columns such that IJC-Cjlle2 ~ aj2-sJ,j E N0 . 

The class of s* -compressible matrices is denoted by Cs• . 

When B-spline wavelet bases [12][14) are used, the preconditioned matrices A compris

ing of entries a>.,>-' = 2-(l>-l+l>-'I) J 'v 'l/J>. • 'v'l/JN are shown in [9] p.16, p.17 be s*-compressible, 

(5.1) 

with ns* ~ O" - n/2. The parameter O" is given in [21] p.2003, as 0 < O" < p - s, where p is 

the Sobolev regularity of the primal wavelets and s is the coefficient used in the re-scaling 

matrix D = diag(2-s(l>-ll, >.)(A= DCD is the preconditioned derivative operator matrix), 

which is 1 in the case of a second order elliptic operator. In this case, the compressed AJ 
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are found by a truncation process. Let <h,N denote the entries of A j, then 

_ { a>-,>-', 11>-I - l>-'11 s; j/n, 
a>-,>-' = 

0, else. 

(5.2) 

It is noted in [9] p.26, that the bound s* s; rJ /n - 1/2 is not best possible as the authors 

of [3] p.31-32 have found a bound s* s; d - 3/2, where d is the order of the primal MRA, 

for !-dimensional ellipt ic operator matrices constructed with spline wavelets. For instance, 

when the wavelets used have d = 2, the predicted s* would be 3/2 - 1/2 - 1 = 0 and the 

value found in [3] was 1/2. 

5.1.2 Description of the algorithm 

The algorithm is based on a decomposition of the vector v as the sum 

N = #supp v and J = flog2Nl 

where V[o] := v1 and V [j] := v 2i - v 2i-1, while v 2i is t he vector comprising of the 2i largest 

entries of v . An approximation to Av is t hen found as 

k 

w k := L A k- j v[j], (5.3) 
j=O 

where the blocks V[j] are multiplied with columns of the A k- j matrices, the more com

pressed as the the size of the entries in the V [j] decreases. The error made by the approxi-
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mation wk is estimated by the norm 

k 

IIA(v - V2k) + I)A- Ak-j)v[j]l le2 

j=O 

k 

< c2llv - V2kll + I:ajllv[j]II 
j=O 

where c2 is the norm-2 of A and the aj are the norm-2 of the A = Aj matrices. 
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(5.4) 

(5.5) 

The MU LT algorithm consists mainly of estimating a suitable k such that IIAv-wkll ::; rJ 

is guaranteed. 

Below is the description of MU LT which can be found in [8] p.22. 

1. Sort the non-zero entries of the vector V and form the vectors V[o], V [j], J 

1, ... , llog NJ with N := #suppV. Define V [o] := 0 for j > log N. 

3. Set k = 0. 

(a) Compute the right hand side Rk of (5.5) for the given value of k. 

(b) If Rk ::; rJ stop and output k; otherwise replace k by k + 1 and return to (a). 

4. For the output k of (3) and for j = 0, 1, ... , k, compute the nonzero entries in the 

matrices Ck-j which have a column index in common with one of the nonzero entries 
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5. For the output k of (3), compute W k as in (5.4, 2) and take W := W k and A = 

suppW. 

5.2 Implementation 

The implementation of MU LT follows closely the suggestions made in the paper [3] 

concerning both the type of data structures to use and the algorithm for the matrix-vector 

multiplication from equation 5.3. 

5.2.1 Data structures 

The storage of the vector v must accommodate for the fact that the index set of non-zero 

ent ries in v is lacunary and that it does not have a particular structure. Hence, it is not 

feasible to map the wavelet index set of non-zero entries in v to a sequence of integers 

other than explicitly. The storage must also be dynamic and allow access any entries in 

a minimum of operations. As suggested in [3], vectors of wavelets coefficients have been 

implemented with the container map from the Standard Template Library [1]. A map in 

STL is a list of pairs of objects, the first object an element of an ordered index set , the 

second object an element of a set of values. The list is sorted by ascending order on the first 

object of each pair, which is termed the key. The STL also defines a number of functions to 

handle maps efficiently. These include an insert function, to insert a new pair at its correct 

place in the map, a find function to give access to the value corresponding to a given key, 
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an erase function to delete part of the map, and so on. 

The flexibility of the STL resides in its template nature which means that the set of keys 

and the set of values are entirely defined by the user. For a vector v of wavelet coefficients, 

I have defined a class of multi-dimensional wavelet indices called MDindex comprising of 

four components: 

• d the dimension of the associated wavelet, 

• j the wavelet level, 

• e a vector of integers corresponding to the 'type' of the wavelet, 

• and k a vector of integers corresponding to its position. 

The order function is defined on the subsets of indices of the same dimension and it is the 

following: for wavelet indices >. and X, >. more than X if, in that order: 

• j(>.) > j(X), 

The storage of the matrix A has the similar requirements to that of the vector v. The 

multiplication procedure described in MU LT requires easy access to each column of A, 

and within a column, sequential access to each non-zero entry is also required. Once again, 

as suggested in [3], the matrix A has been implemented by means of a map of maps. The 

first map associates a wavelet index with a column of the matrix, and each column is a 

map that associates a wavelet index (the row index) with a value. 
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Finally, another type of storage is needed to implement v*, the sequence of the entries 

of v sorted by decreasing magnitude. The vectors v 2i and V [j] are indeed blocks of v*. A 

map storage is here would be inappropriate because the set of wavelet coefficients is only a 

partially ordered set, and therefore it cannot be used as the set of keys. The STL defines a 

container called multimap to map a set of partially ordered keys to a set of values. In the 

case of v* , the keys are the magnitude of the wavelet coefficients and the values are the 

wavelet indices. 

5.2.2 The Mult and FastMat VecMultGH functions 

The Mult function implements directly the algorithm MU LT and the FastMat VecMultGH 

function is basically a copy of the piece of code given in [3] p.20. The main difference 

with this function is due to the fact that for [3], the Laplace operator matrix was pre

calculated before starting the program, while here it is calculated dynamically column per 

column, as needed. Every time a column a;>. of a certain AJ is needed, the FastMat Vec

MultGH function checks whether that column exists in storage, and if so it further checks 

the wavelet coefficient of lowest level a>-',>. is such that lj ( )/) - j (,~) I = J / n and if it is 

less than J /n, the column is complemented with the non-zero coefficients av,>. such that 

min(j(>.) - J /n, j 0 ) :::; v(j) < X(j). Similarly, the column is complemented with entries of 

higher row level, if needed. If the needed column is altogether absent from storage, it is 

inserted with the appropriate range of levels for the rows wavelet indices. These operations 

are performed by a function called InsertColumnSubset. The dynamic calculation of the 

individual entries of the Laplace operator matrix can be very time consuming but it saves 

memory space. One consequence of the pre-calculation of the matrix is that it imposes an 
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overall maximum level on the scheme. Instead, when the entries are calculated dynami

cally, the number of entries in storage is the restricting factor. 

A difference with t he algorithm MU LT, is the possibility to restrict t he level increase 

between the vector v and t he vector w k. This functionality can be switched on or off by 

changing the definition of a macro name 

ALI 

(for Allowed Level Increase) . The value of the maximum level allowed is defined in the 

macro 

ALI 

. Another functionality restricts instead the size of the radius IJ - j 'I used for each column

coefficient multiplication. In t his case, the equation 5.3 is replaced by 

k 

W k := L Amin(k- j,Jr)v [j ], 
j=O 

where lr denotes the maximum radius imposed. This functionality can be switched on or 

off by changing t he definition of the macro name 

MR 

(for Maximum Radius) . The value of the maximum radius is defined in the macro 

MR 
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Both functionalities can also be switched on at the same time. 

The function headers are: 

void Mult( map<MDindex,double,less<MDindex> > &w_j, 

const multimap<double,MDindex,less_absolute> &u_j, 

Laplace□p &A, double Eps, int CML = 0 ); 

void FastMatVecMultGH( map<MDindex,double,less<MDindex> > &w_j, 

const multimap<double,MDindex, less_absolute > &v_lambda, 

LaplaceOp &A, int J, int CML = 0, int ALI= 0 ); 
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5.2.3 Pre-processsing step: calculation of the matrix norms c2 

and aj 

The MU LT algorithm requires t he evaluation of Rk, an upper bound for the error 

IJAv - w kll given in (5.5). It is apparent that the parameters c2 and aj must be ap

proximated in a pre-processing step. By definition c2 = JJAJJ2 and aj = IIA - Ajll2- It is 

known that aj ::; CA 2-sj for some CA > 0. In [3] p.31 , it has been proven for the ID-case 

that s = d - 3/2, where d denotes the order of the primal MRA. Therefore, it remains to 

estimate CA and c2 as well as s for higher dimensions. This has been done for the spline 

wavelet basis with d = 3 and d = 3 in one and two dimensions. 

These parameters are approximated numerically from finite approximations to the ma-
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[Sjosiol [Sjo wjol [Sio Wh] ... 

[Wjosjol [Wjowiol [WioWiiJ ... 

A = 
[Wjl sjol [Wjl w jol [wj1 wj1l ... 

Figure 5.1 : Block decomposition of matrix A . 

trix A . T he 1-norm of an x n matrix is defined as 

Because IIBll2 :S IIBll1 for any matrix B, an upper bound for the 2-norm of a finite dimen-

sional matrix is the maximum row sum. 

Denoting by [Sj0 Sj0 ] the block of A comprising of entries a>.,>.' = J \7¢>. · \1¢>.1, IAI = 

IXI = j 0 , and by [Sj0 Wj] the blocks of A comprising of entries a>.,>.' = J \7¢>. • \l'lj;>.' , 

I A I = j 0 and I A' I = j, and denoting in the same spirit the remaining blocks of A by [Wj Siol 

and [Wj Wi'], the matrix A can be split into blocks according to the level of the wavelets 

used to calculate its entries. This is represented on Figure 5.1. 
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The largest row sum in A-AJ is searched by calculating the row sums block per block. Let 

denote the sum of the entries on the kth row of block [Wj Wj'] and so on. Then 

where the first term corresponds to a sum of entries in blocks on or above the diagonal 

blocks, while the second term corresponds to a sum of entries in blocks below the diagonal 

blocks. In the sum above, when j' or j' - j is equal to j0 , the sum is made on blocks [Sj0 ] 

or [S'j0 ] too. 

The search for the maximum is facilitated by the fact that the entries in A depend essen

tially on the difference j - j' of levels between the two wavelets involved in the calculation 

of the entry. This can be seen as follows. In dimension n > 1, the entries of A comprise of 

a sum of terms of the form 

This expression can be re-scaled with (J,ei,k/xi) = 23j/2(;i,k;(2Jxi) and assuming that j' > j, 

by a change of variables, the integral of the derivatives comes to 
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Similarly, the remaining integrals can be re-scaled and they come to 

Finally, t aking into account the preconditioning factor 2-(j+j'), 

2 -(j+j') J (j,e;,k; (xi)(j',<,k: (xi ) II_ J (j,em,km (xm)(j' ,e:,.,k:,. (xm) 
m;,!,i 

2-jj-j'I J (j',e;,k/xi)(~i'-i,e;,k:(xi) II (j 1 ,em,km(xm)(2i'-i,e:,.,k;,, (xm), 
m;,!,i 

each term depends only on a factor 2U'-j)(n+1)/2 . What is more, because of the shift invari

ance of the wavelet and scaling functions which do not intersect the domain boundary, for 

j and j ' fixed, most of the sums inside a block, for instance the Pk([Wj Wj']), are equal. So, 

in order to calculate all the sums corresponding to blocks on or above the diagonal, it suf

fices to calculate for increasing j the Pk([Sj0 Wj]) and the Pk([Wj0 Wj]) associated with rows 

corresponding to functions whose support intersects the support of the boundary adapted 

functions, and to one scaling function and 2n-l wavelets whose support does not intersect 

the support of boundary adapted functions. 

Since the norm IIA - AJII is expected to behave like c2-Js, for fixed k a linear rela

tionship is searched between the logarithm of the Pk([Sj0 Wj]) and the difference j - j 0 > l. 

The same thing is done for the Pk([Wj0 Wj]). In the case of the spline basis with d = 3, d = 3 

in dimension 1, these results have been calculated for j0 ~ j ' ~ j 0 + 11 and are reproduced 
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at the end of this chapter. The regressions, calculated using Excel 2000, show a very good 

fit, with a 1 - r 2 ~ 10- 12 . All rows have the same slope - s = 1.5 but the intercept varies. 

are given by a relation Ck,2-s(j-jo). 

In order to calculate the sums corresponding to blocks below the diagonal, it suffices 

to calculate for increasing j the sums Pk ([WjSj0 ]) and Pk( [WjWj0 ]) for the same choice 

of row k as before. In the lD-case of the spline basis with d = 3, d = 3, these sums 

were found to decrease very quickly with the difference of levels j - j 0 . This makes sense 

since on each row, in blocks below the diagonal, the number of non-zero entries is indepen

dent of the difference j - j ' , while the size of the entries is multiplied by a coefficient 2-lj-j'I . 

Overall, it was found in the lD-case of t he spline basis with d = 3, d = 3, that a large 

coefficient Ck ~ 14.4, corresponding to a scaling function row, was the largest of all and 

that its influence even outweighed the additional sum on blocks below the diagonal that 

would be added to a wavelet row. As a consequence, for that basis, an upper bound for 

t he coefficients aj has been estimated by 

a. < 14.4 2-1.s(j+1) j >= l 
J - 1 - 2 - 1.5 ' 

Also, a very large sum in the block [Sj0 Sj0 ] makes clear that the second scaling function 

row has the largest sum in A . As a consequence, for that basis, the coefficient c2 has been 

bounded by 
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The parameter s = 1.5 = d - 3/2 matches the value given in [3]. For the 2D-case, 

the calculations have been further simplified by the assumption that the solution lies far 

enough from the boundary to justify the removal of all the rows in A that correspond 

to boundary adapted basis functions. The reason for this is that the sums in diagonal 

blocks are all significantly outweighed by sums corresponding to boundary adapted scaling 

functions. Since these functions are unlikely to be used in the problem at hand, keeping 

their associated rows in the calculations might mean an over-estimation of the parameter 

c2 . The same calculations as in the lD-case have been repeated in the 2D-case and they 

have provided the following upper bounds for the aj and c2 

and 
2-1.04(j+l) 

aj ::; 4.381 - 2 - 1.04 . 

5.3 Dynamical calculation of the entries of the deriva-

tive operator matrix 

In order to apply the MU LT algorithm efficiently to sparse vectors, it will be convenient 

to calculate the entries of the derivative operator matrix A as and when the need for them 

arises. The caculated entries can then be stored in memory for future use. The dynamical 

calculation of these entries that has been implemented for this thesis is based on a method 

described in [4]. 

Because of the tensor product construction of the wavelets used, the entries of A may 
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be decomposed into a sum of products of one-dimensional integrals of the form 

(5.6) 

where i = 0, 1. The approach from [4] consists of calculating these inner products as a 

linear combination of integrals of scaling functions on a single level: 

where J = max(j + e, j' + e') , the (Yl are the ith derivatives of the scaling functions and 17m , 

is the shortest support of the two functions (j,e,k and (j',e',k'· The set AJ(i7m) is defined as 

the set of indices l such that the support of (J,l has a non-empty and non-trivial intersection 

with the set 17m n supp((j,e,k)- The set A~(17m) is defined similarly. The coefficients mY,(·k) 

are derived from the refinement and wavelet matrices. 

The inner products 

are all equal, up to a multiplicative factor, to an inner product of scaling functions on the 

coarsest level j 0 
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In a preprocessing step, all the non-zero inner-products of the above form are calculated 

and stored in memory as: 

if supp(~jo,P) n {O, 1} = 0 and supp(~jo,P') n {O, 1} = 0, 

otherwise. 

The I-Integral function from the Multilevel Library calculates accurately the integrals of 

products of refinable functions and of their lower derivatives by solving an eigenvalues 

problem. Given the refinement matrix of two scaling function bases defined on the unit 

interval, this function computes simultaneously all the non-vanishing inner-products of the 

form above, whether the functions involved are boundary-adapted or not. The I-Integral 

is the function used in the pre-processing step. 

After t he pre-processing step, the more effort-consuming part of the method consists of 

the calculation of the coefficients mYrk) . It is proved in [4] that the overall amount of 
' 

work needed to calculate one one-dimensional integral such as (5.6) in the worst case is 

proportional to )dif f = max( J - j, J - j '). In the implementation of this method for its use 

by the fast matrix vector multiplication algorithms presented in t he previous sections, it 

has been advantageous to use the fact that the entries of A need to be calculated column 

by column to avoid the repeated calculation of the coefficients mY,(•k) corresponding to t he 

column index. 

During the preliminary tests on t he matrix A and on t he Poisson solver, the computa

tion of the entries of A has been found to be very slow, in particular when entries a>-,N 

with a fairly large difference i>- - XI were used. For this reason, t he method first imple-



CHAPTER 5. FAST MATRIX VECTOR MULTIPLICATION 119 

mented has been replaced for most calculations by a piece of software written by Mario 

Mommer, a research student at the University of Aachen. His software is not (yet) part 

of the Multilevel Library, but he has kindly given me access to it, thereby speeding up my 

program noticeably. His software directly calculates the one-dimensional integrals of B

spline scaling functions and wavelets by taking advantage of their polynomial expressions. 

In this way, the dependence on the scale difference ]di f I is removed. 



Chapter 6 

Pointwise evaluation of a sparse 

wavelet expansion 

6.1 Interface between the time-stepping scheme and 

the wavelet Poisson solver 

The process of recovering point values from a wavelet expansion is required by numerical 

schemes involving wavelets. T his evaluation may be needed at different stages in the scheme 

and for different reasons. Recall that the evolut ion of the magnetization m over t ime is 

governed by the Landau-Lifshitz equation, where the t ime derivative of m is a function of 

m itself and of four applied fields: 

• h app, a constant, 

• ha = (m · e) e, 

120 
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where u is the solution of Poisson solver. 

In the present situation, the time-stepping scheme used for the equation of motion of the 

magnetization is implemented in the physical space, while the Poisson solver used to calcu

late the demagnetization field, which is a component of the magnetization's time derivative, 

is implemented in the wavelet space. As a consequence, the wavelet expansion of the so

lution of the Poisson solver must be evaluated at every time-step. It will be seen that the 

gradient of the solution, hd, can be evaluated directly from the wavelet expansion of u. 

The choice of the points where the wavelet expansion is evaluated depends on the local 

refinement of this expansion, and since the wavelet solver is adaptive, the refinement may 

vary from one run of the solver to the next. Hence, the set of points where the value of the 

derivative dd1;' is known is dictated by the wavelet solver. However, the Euler time-stepping 

scheme 

mn 

clearly makes the assumption that the values of mn- l and of its derivative d":t;-1 are known 

at the same nodes. For this reason, the point-value expression of the magnetization mn- l 

must be updated by some form of interpolation so that it corresponds to the same nodes 

as the point-value expression of d":t;- 1
• This update will be done by projecting mn- l onto 

the dual wavelet space, and evaluating this expansion at the correct set of nodes. The first 

advantage of this method is that it is systematic and that the lack of a pattern between the 
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set of nodes at time n - l and the set of nodes at time n does not present any difficulties. 

The second advantage is that it makes it easy to use the same approximation order for 

this interpolation as the one that has been used for the calculation of the Poisson equation 

right hand side. Finally, it is possible to calculate accurately and for a minimum cost, the 

values of the Laplacian of mn-l at the same time as the values of mn-l· This immedi

ately gives the exchange field h;;1 at the correct nodes, while the anisotropy field h a is 

derived in a straight-forward manner from the values of mn-l• It can be noted that the 

evaluation of the effective fields and of the magnetization will only be performed at points 

situated inside the nano-element as the magnetization is always theoretically null outside it. 

The role of the pointwise evaluation of a sparse wavelet expansion is therefore an im

portant one in the scheme. The description of its implementation will be the subject of 

this chapter. The process of evaluation consists of two main steps. The first one is the 

converse of the wavelet transform described in section 4.2.6. In this step, the sparse wavelet 

transform is taken back to a local scaling function expansion. The second step is the point

wise evaluation of the local scaling function expansion. This evaluation takes place on grid 

fine enough to contain at least every node of the form 2- U+l) k, where d(j,e,k) is a coefficient 

in the sparse wavelet expansion. The presence of several levels of scaling functions makes 

this a delicate task and the choice of the scaling function coefficients present in the local 

scaling function expansion plays an important part in ensuring that the evaluation is done 

at all the desired nodes. The next section presents an algorithm for the transformation of 

a sparse wavelet expansion into a local scaling function expansion, given the set of indices 

corresponding to scaling function coefficients needed for the evaluation. Next, an algorithm 

for the evaluation is given, where the set of scaling function coefficients present in the local 
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expansion determines where the expansion is evaluated. It is also explained how the partial 

derivatives of the local scaling function expansion can also be evaluated, at little extra cost. 

Finally, the last section is concerned with the choice of the scaling functions indices. In 

particular, this choice must ensure that the wavelet expansion of the right hand side of the 

Poisson equation at time Tn can be obtained from the pointwise magnetization mn for the 

same set of wavelet indices as were present in the expansion of the potential un-l at the 

previous time-step. 

6.2 A local inverse transform 

The inverse transform implemented in this work consists of the passage from a wavelet 

sequence D = ( d>.., >. E AD), which is the sparse wavelet representation of a function f, 

f(x) = L d>.. VJ>..(x), Vx E [O, lt 
>..E/\.v 

to a sequence of scaling function coefficients S = (s>.., >. E As), where the set As may include 

indices on several levels and where S>.. = U, ¢>..). The local scaling function expansion is 

therefore redundant in the sense that 

f(x)-/= L S>.. <P>..(x), for many x E [O, 1r . 
>..EAs 

The dual inverse transform, which takes a sequence of coefficients (d>.., >. E AD) to a se

quence (s>.., >. E As), where B>.. = U, ¢>..), has also been implemented. The two inverse 

transforms work in the same way, the role of the primal and dual basis functions and 

masks being reversed. For this reason, this section will only present the first inverse trans-
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form. 

The inverse transform is based on the use of an inverse transform matrix, as represented 

on Figure 2.3. For the wavelet bases used in the implementation, the inverse matrix be

tween levels J and J + 1 is the concatenation of the primal refinement and wavelet matrices 

Mj,o and Mj,l , that were described in section 2.3.1, but now in the multi-dimensional case. 

Hence, if di is the vector of the full wavelet expression of the projection of a function f 

onto the wavelet space Wj, and Sj and Bj+l are the vectors of the full scaling function ex

pressions of the projection off onto the spaces ½ and ½+1 , the inverse transform between 

levels J and J + 1 can be written in matrix form as 

[ M;,o,M,,, ] [: j [ •;+1] 

In the case of a sparse wavelet expansion, the columns of the inverse matrix that are asso

ciated with the absent entries in di and Sj are not used. 

T he principle of the algorithm is to start from the set of scaling function and wavelet 

coefficients in AD on the coarsest level Jo, and to calculate a sparse set Sio+i of scaling 

function coefficients on level Jo + 1 by multiplication with the correct columns of the in

verse transform matrix. Within the set Sio+i, it is useful to identify three disjoint subsets: 

the subset sjo+l = s n sjo+l, which consists of desired coefficients, the subset sjo+l of 

coefficients that are not in S but that will be needed for the calculation of coefficients S>., 

>. E As, l>-1 > Jo + 1, on higher levels, and finally the subset of coefficients that are not 

needed. Clearly, unlike the first two subsets, the last one should not be stored in memory. 
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Figure 6.1: Structure of an acceptable set As (top) and example of an unacceptable set 
(below). Each square, with side length 2-i and lateral positioning 2-i k, represents a JD
index >. = (j, k). 

The whole process is iterated for increasing levels. 

In order to differentiate between the set s;+i and the set of useless coefficients, we im

pose on the index set As a certain structure. As must have the structure of the set of 

leaves of a graded tree, with the relaxed condition that the parent of a leaf may also be 

in As provided that it is the neighbour of an index, which is already in As. In this way, 

some 'overlap' between consecutive levels is allowed in As. This is illustrated by a one

dimensional example on Figure 6.1. Let A denote the tree associated with As and let fJA 

denote its set of leaves. Let us define Ac, the index set that complements fJA into A. Then 

if A has a large enough grading coefficient, a coefficient s >.., >. f/. As, is in s;+i, and therefore 

must be kept , if>. E Ac. 



CHAPTER 6. POINTWISE EVALUATION OF A SPARSE WAVELET EXPANSION126 

An algorithm for the local inverse transform procedure 

Now that all the relevant sets have been defined, an algorithm for the local inverse transform 

is presented. 

• Start of procedure: copy the scaling function coefficients of coarsest level Jo directly 

from D to S. 

• Starting from the coarsest level Jo to the finest J: for each level J: 

1. Copy the level J + 1 of Aa into As,. 

2. Span the level J + 1 of As and remove from As, the coefficients that also belong 

to As and finally set to O the values of the coefficients on level J in S and S'. 

3. Span level J of D and, for each entry d>., calculate the set of scaling function 

coefficients of level J + 1 which will receive some contribution from d>. in the 

reconstruction process. This set is the set of row indices µ such that the entries 

(µ, >-) in the inverse transformation matrix are non-zero. Add the contribution 

from d>. to the coefficients sµ, ifµ E As or µ E As,. 

4. Span the level J of S and do the same as above. 

5. Span level J of S' and do the same as above. 

6. Delete all values in S' and all indices in As, . 

The calculation of the contribution of a wavelet coefficient d>. to a coefficient sµ is simply 

the product Mj,l (µ, >-) d>., while the contribution of scaling function S>. to a coefficient sµ is 

calculated by Mj,0 (µ, >-) S>. - The wavelet and refinement matrices for the multi-dimensional 

bases are never stored in memory, as their entries are easily deduced from the univariate 

wavelet and refinement matrices. 
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6.3 Evaluation of a local scaling function expansion 

The method implemented for the evaluation of the local scaling function expansion is based 

on the decision that the value at any one point would be calculated from scaling functions 

on a single level and that scaling functions on level j would be evaluated on a grid of dyadic 

nodes of level j. 

The set of points where the evaluation takes place is determined by the set of scaling 

function coefficients and by the diameter of the support of the scaling functions. Let us 

assume that a point x i, on the dyadic grid of level j, lies inside the support of exactly 

N scaling functions of level j. If not all the N coefficients associated with these scaling 

functions are present in the local scaling function expansion, the point xi is considered to 

be 'missing', and the expansion is not evaluated at that point. Because of this, the set of 

scaling function indices As must be chosen carefully prior to the inverse transform, so that 

no 'gaps' of missing values are created at the transitional area between two levels of the 

expansion. 

In the expansion, each term s;. ¢» is evaluated at dyadic nodes on level l>-1 from the values 

of the n-dimensional mother scaling function at dyadic nodes on level 0, which are calcu

lated and stored in memory at the start of the routine. If any derivatives of the expansion 

are also required, the values of the derivatives of the mother scaling function are also stored 

in memory and for each dyadic point in the support of ¢», an array of values is stored, 

with one cell for each derivative. The evaluation of boundary-adapted scaling functions 

necessitates a little more work than that of the other scaling functions because they are a 
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linear combination of the dilates and translates of the mother scaling function, truncated 

at the boundary. The calculation of the values of the mother scaling function and of its 

derivatives is performed by a routine from the Multilevel Library called EvalValues, which 

evaluates refinable functions from their refinement masks according to a method presented 

in [29]. 

The output of the local evaluation function implemented consists of the set of point values 

of all the derivatives required. This set is stored as an object of class Point Values, which 

is defined as an STL map, associated with an integer variable called Res that contains the 

level of the finest dyadic nodes present in the set of point values. Each cell in the map 

corresponds to a node Xj,k = 2-j k and its key is its position vector 2Jn •• -j k on the dyadic 

grid of resolution level Res. The value of the cell is a vector, whose components are the 

values of the chosen derivatives at the node Xj,k· 

The steps of the implementation of the overall evaluation of a local scaling function expan

sion are summarized in the algorithm below. 

Algorithm 

• Make the multi-variate refinement mask by tensor products of the univariate refine

ment mask J2 a from section 2.3.1. 

• Calculate and store the values of the derivatives of the mother scaling function </> 

at the dyadic nodes inside its support. The type and the number of the derivatives 

needed is specified in input. The mother scaling function itself is understood as the 

partial derivative of order O in all variables. 
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• Span the set of scaling function coefficients S backwards. (The coefficients in S are 

sorted by increasing level j.) For each s1,k E S, 

1. If s1,k is the first coefficient encountered on level j after all the coefficients on 

level j + 1 have been passed, the values calculated at nodes on level j + 1 must 

first be dealt with. These values form a set V. 

( a) For each derivative i needed, a coefficient Ci is calculated. This coefficient 

is the multiplicative constant that takes the values of the mother scaling 

function's derivatives to the derivatives of a scaling function on level j + 1. 

It is calculated as Ci = 2U+1)ai J2U+1)n, where O:'i is the total order of the 

derivative and n is the dimension of the physical domain. 

(b) If j + 1 > j 0 , for each node in V, a contribution counter is checked, to see 

whether the number of 'contributions' at that point matches the number of 

scaling functions on level j + 1 that are non-zero at that point. 

---+ If there is a match, the node and its associated values, multiplied by n, 

are included, if not already present, in the output set of values, which 

is denoted by P. 

---+ Otherwise, the point is discarded. 

( c) Else, for each node in V, the node and its associated values, multiplied by 

Ci, are included in P. 

( d) The set V is cleared of all nodes and values. 

2. Make a vector of coefficients s'. k' to replace s1· k¢1· k by an expression of the form J, l l 

21n/2 Ek' s1,k,¢(2i x - k'). Calculate also the set of nodes N where ¢1,k should 

be non-zero. 
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3. For each node l/2J E N, 

(a) If the node is not present in V, included it, associated with an array of 

derivative values set to zero and a contribution counter set to zero too. 

(b) Calculate the contribution of Sj,k<Pj,k from the values of¢ and of its deriva

tives, and add it to the array of values. 

( c) Increment the contribution counter. 

The number of operations involved in this algorithm can be decomposed as follows. The 

number of operations done per coefficients;.. E Sis bounded by a constant factor of n+nc nd, 

where n c is the maximum number of translates and dilates of ¢ used in the composition 

of boundary-adapted scaling functions, and nd is the number of derivatives required. In 

addition to this, for each node present in the set V there is a further (constant) number 

of operations, the calculation of the number of scaling functions whose support overlap at 

the node. The total number of nodes which have been in V at some point in the algorithm 

can be bounded by a constant number times the cardinality of S. Finally, for each node in 

the output set P, the algorithm requires one insert in the map P, nd multiplications, and 

one search through P for each occurence of the node in V ( as a node on dyadic grids of 

different levels). In summary, the number of operations required by this algorithm can be 

said to vary linearly with the number of scaling function coefficients present in S. 

Finally, a specialized version of the above algorithm has been implemented to evaluate 

the scaling function expansion only at points situated in the nano-element. This is done by 

a simple check: if the support of </>j,k has an empty or trivial intersection with the rectangle 

Stint representing the nano-element, the term Sj,k<Pj,k is not evaluated. 
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6 .4 Choice of a set of scaling function coefficients 

The choice of a set of scaling function coefficients that will be used for the evaluation of 

a sparse wavelet expansion must be made in two situations. The first one is when the 

demagnetizing field needs to be evaluated, after a run of the wavelet Poisson solver. In 

this case, the choice of the coefficients must make the grid of point values representative 

of the local refinement of the wavelet expansion. The second situation is the case of an 

update of the grid where the magnetization is evaluated. The point of the update is that 

the magnetization must be evaluated at the same nodes as the demagnetizing field. In this 

case, the set of scaling function indices used for the demagnetizing field is also used for the 

magnetization. Although this last choice may be economical because one set of indices is 

calculated instead of two, it also makes the choice of this set a little more difficult because 

the magnetization is expanded in the dual wavelet basis, whereas the demagnetizing field 

is obtained by the evaluation of an expansion in the primal basis. This section is concerned 

with the choice of a set of scaling function indices that will be suitable for both situations. 

To recapitulate, the choice of a set of scaling function coefficients must take care of the 

following issues: 

1. There must be sufficiently many coefficients, and they must be organized in such a 

structure as to make the primal and dual local inverse transforms described previously 

correct and relatively efficient. 

2. There must be sufficient overlap between successive levels of refinement to avoid the 

creation of gaps in the grid of point values. This must be the case for the evaluation 

of a primal or a dual expansion. At the same time, the overlap must be as small as 
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possible to avoid the repeated evaluation of certain nodes. This problem has been 

described in the previous section. 

3. In practice, point values are only needed inside the nano-element, and therefore it 

would be efficient to choose, as far as possible, only those coefficients that will have 

a contribution to make to point values in that region of the domain. 

4. The choice of the coefficients must make the grid of point values representative of 

the local refinement of the wavelet expansion. Finally, the grid of point values must 

contain all the nodes necessary for the calculation of the scaling function expansion 

of the Poisson equation's right hand side at the next time-step. 

The third point is partly answered by a function called Trim W , which removes from D 

all the coefficients d>. such that '1/J>. has an empty or trivial intersection with flint· This 

solution is not completely satisfactory and for the needs of the inverse transform, the set 

S will still have to contain coefficients Sj,k such that supp( <Pi,k) n Dint = 0. These coeffi

cients, however, will be ignored (after ident ification) by the specialized version of the local 

evaluation function. 

The management of the remaining issues has been based on a set of cubes, very simi

lar to the set of good cubes at the core of the process of projection onto the wavelet space, 

presented in chapter 4. It has already been mentioned, in relation to point 1 in the list 

above, that the set of scaling function coefficients must be organized around a tree struc

ture. Let An denote the set of the wavelet indices present in the sparse wavelet expansion, 

as output from the Trim W function. Assuming that AD is a tree, and that Ac is the 

associated set of good cubes , or equivalently the set of leaves of that tree (Ac = BAD), 
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the function GenLocSet defined in section 4.3.2 would create a set of scaling function 

indices with an acceptable structure. Moreover, the optional input parameters of the same 

GenLocSet can be used to specify the extent of the overlap between two different levels of 

refinement, thus answering the second part of point 1 and point 2. 

In fact, there is no guarantee that AD is a tree, so instead, Ac is defined as the set of 

leaves of the smallest tree containing AD. The calculation of Ac is done by a function 

called AssocGoodCubes, which also calculates the complement of Ac in the tree. This com

plement is here denoted by Ac,. Next, the tree Ac U Ac, is graded by a function called 

GradeTree. Then, it is possible to use the GenLocSet function to deduce from Ac the set 

of scaling indices A5 . The next two subsections will present the AssocGoodCubes function 

and the Grade Tree function, while the last section will detail the calculation of the cor

rect values for the GenLocSet input parameters that determine the extent of the overlap 

between two refinement levels. 

An algorithm for the AssocGoodCubes function 

The Assoc Good Cubes has for input AD and for output the sets Ac and Ac,, such that 

Ac n Ac, = 0 and Ac U Ac, is the smallest tree containing AD. 

1. Initialization of Ac with the set of dyadic nodes on level j 0 -1 in the unit cube [O, 1 t. 

2. For each wavelet index >. E AD, proceeding by increasing level >., 

(a) Search Ac for cube □>. or for an antecedent Dµ => □>., lµI < l>-1, of that cube. 

(b) If □>. E Ac, proceed to the next index in AD. 
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( c) Else remove Dµ from Aa and insert it into A0 , instead. For increasing levels j 

from jµj + 1 to l>-1- 1, 

1. Insert into A0 , the child of Dµ, which is also the parent on level j of cube 

□>. , 

11. Insert into Aa the remaining of the children of Dµ. 

iii. Reset Dµ as the parent of □>. on level j. Increment j. 

(d) When j = l>-1, insert all the children of Dµ into A0 . 

The ouput sets Aa and Ac, can be substantially larger than the input set Av, and clearly 

all the more so that the structure of Av is remote from that of a tree, since if An only 

contains a few wavelet indices on a high level, the union Ac U A0 , also contains all their 

antecedents. 

The GradeTree function 

The Grade Tree function has four input variables: the complementing sets Ac and Ac,, and 

two integers m1 and m2 . In each direction i, 1 ::; i ::; n, GradeTree grades Ac U A0 , by 

m1 leaves ( on level j - l ) before a region on level j and by m2 leaves after, where j 

varies between the finest level in Aa and the coarsest level +2. One cube can be added in 

addition to the specified m1 or m2 in order for cubes on level j to exactly cover a certain 

number of cubes on level j - l. At the end of GradeTree, Ac is the set of leaves of the 

graded tree and Ac, is its complement. 
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The calculation of the extent of the over lap between two levels 

The GenLocSet function works by including in the set of scaling function indices As the 

children of all the cubes present in the set of good cubes A0 . Then, the 'patches' of 

consecutive cubes on the same level j are augmented, in all directions where the patch 

borders a patch on a coarser level, by L cubes before the patch and by M cubes after it. 

In order to calculate the values of Land M that will satisfy all the constraints imposed in 

the set As, it is simpler to reason in the one-dimensional setting. The values of L and M 

will be calculated independently for each constraint and then, out of the values calculated, 

the largest ones will be retained. 

Suitable Land M for a correct inverse transform. Let [li, l2] denote the support of 

the primal mother scaling function and [l~, z;J denote the support of¢. In this paragraph, 

values for L and M are calculated to make the primal inverse transform correct. The 

calculation for the dual inverse transform follows the same lines, but l~ and z; are then 

used instead of li and l2. The inverse transform will be correct if the set Sj n s; contains 

all the scaling function coefficients on level j needed for the reconstruction of the scaling 

function coefficients in SHI · Because of the structure imposed on the sets Sj and s;, this 

requirement can be expressed as a condition on the length of the grading of the tree A. 

Before an overlap is added, A is already graded with a coefficient denoted by G. From the 

reconstruction equations, it can be observed that the calculation of the coefficient Sj+i,m 

requires the knowledge of the coefficients Sj,k for 

(6.1) 
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Levelj+I 

Level j 

Level j-1 

~G ------ G+l,I) 
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Figure 6.2: Part of G-graded tree A before addition of the left overlap L 
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L 

·,k-G-L) 
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~G 

Figure 6.3: Part of G-graded tree A after addition of the left overlap L 

where l x J denotes the greatest integer less than or equal to x . Let us consider a section of 

A where the indices are on level j + 1, and let (j + 1, l) denote the index situated at the 

left end of that section. After a hypothetical overlap of length L has been added to the 

tree A, the end of the section on level j + 1 has been moved left to the index (j + 1, l - L). 

According to (6.1), for the correct reconstruction of the coefficient Sj+i,L-L, the coefficient 

most to the left that Sj must contain has for index (j, l ( l - L - l2 + 1) /2 J). On the other 

hand, as illustrated on Figure 6.3, the index at the left end of the section on level j, to the 

left of the section on level j + 1, is (j, k - G - L), where k = l/2. As a consequence, the 

following relation on L has been established 

}_ _ G _ L < ll - L - l2 + 1 J . 
2 - 2 
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By rearranging this inequality, it can be shown that a sufficient condition on L for the 

inverse transform to be correct is 

L ~ l2 + l - 2G. 

A similar calculation for the length of the overlap added on the right hand side gives the 

following sufficient condition on M 

M ~ -li - 2(G - 1). 

L and M for a grid without gaps. As for the previous paragraph, the primal case 

is explained in details and the dual case can be deduced by writing l~ and l~ instead of 

li and l2. First, the calculation of the overlap on the left hand side. The notation of the 

previous paragraph is used again here. The last coefficient at the right end of the section 

on level j, has for index (j, k - l). The scaling function associated with that coefficient 

has for support 2-j[k - 1 + li, k - l + l2] and so the last node on the right, where the 

local scaling function expansion on level j can be evaluated, is Xj = 2- j ( k + li). In order 

to avoid a gap in the grid of point values, the first node where the local scaling function 

expansion on level j + l must be evaluated is the next node along, Xj+i = 2-U+1lm, where 

m = 2(k + l1 + 1). In order to be able to calculate the value of a local expansion on level 

j + l at point Xj+ 1, the scaling function Sj+i,p, where m = p + l2 - l, must be contained in 

SH 1. Another expression for p is 
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The index at the left end of the section on level j + I , before the addition of an overlap, is 

(j + 1, 2k). The index at the end of the section, after the addition of the overlap, must be 

at least as far left as (j + 1,p). This imposes the following constraint on L: 

L 2: 2k - p and 2k - p = -2(li + 1) + l2 - 1. 

A similar calculation for the length of the right hand side overlap gives the following 

sufficient condition for M : 

M 2: 2(l2 - 1) - li - 2. 

A good grid of point values for the projection function GenLocRHS In the over

all time-stepping scheme, at each iteration, the primal local evaluation function is used to 

calculate the values of hd and the dual local evaluation function is used to calculate the 

values of m n and h;x. The local scaling function expansions evaluated all have the same 

index set As. The set As is calculated by the GenLocSet function, given the set of good 

cubes Ac and two overlap parameters L and M. The values of mn+i are calculated on 

the grid of values that is the intersection of the grid calculated by the primal and the dual 

evaluation functions. At the next iteration, the Poisson solver is initiated by the calcu

lation of the local scaling function expansion of the right hand side. This is done by the 

GenLocRHS function, which requires in input the grid of point values of mn+l· This im

poses a constraint on this grid. The scaling function coefficients calculated in GenLocRHS 

are associated with a set of local scaling function indices, denoted here by AR. The set AR, 

like As, is calculated by GenLocSet and from the same set of good cubes Ac. The overlap 

parameters used in that case are the default values, which are LI = max(I lil, lwlil) and 
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Ml = max(l2,w l2 ). Here, wz1 and wz2 are the indices of the first and last non-zero entries 

in the wavelet mask ('l/J(x) = I:~~~li b1 </>(2x - l)), and of course 11 and 12 are the indices of 

the first and last non-zero entries in the refinement mask ( <f>(x) = I:!~11 a1 </>(2x - l) ) . 

The first observation that matters here , is that for a common index set As, the grid 

of point values produced by the dual evaluation routine is a subset of the grid produced 

by the primal evaluation routine because the dual scaling functions have a longer support 

(l~ ::; l1 and l~ :2: l2 , [12]). As a consequence, it is sufficient to calculate Land M such that 

the grid produced by the dual evaluation routine is correct for GenLocRHS. 

The second observation is that GenLocRHS needs d + 1 point values on level j to cal

culate a scaling function coefficient Sj,k · Depending on the location of (j, k) with respect to 

the inner domain Dint, these points must be either centered about the node (j, k), or they 

may all be situated to the left or to the right side of node (j, k) if node (j, k) is situated 

on the boundary of Dint. 

The calculation of a suitable value for L starts with considering the scaling function index 

situated at the end of a section on level j of the set of indices AR, after the overlap L1 has 

been added. This index is denoted by (j, l). Among the point values that may be needed 

for the calculation of Sj,l by GenLocRHS, the one situated most to the left is associated 

with the point Xj = (j, l - d). Then, among the scaling function coefficients from As that 

will be needed to evaluate a dual scaling function expansion on level j at point Xj, the one 

'situated' most to the left has for index (j, p), where l - d = p + l~ - 1. Another expression 

for p is p = l - d - l~ + 1. Then, writing L as L1 + L2 , this imposes the following condition 
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on £2: 

and l - p = d + l2 - 1. 

As a consequence, a sufficient condition on L is 

A similar calculation for the right hand side gives the following condition on M 

Finally, the values for L and M used in the calculation of As are the smallest values that 

satisfy the three sets of conditions established above. In practice, the last set of conditions 

dominates the other two. 



Chapter 7 

Numerical tests on the Poisson solver 

The suitability of the adaptive scheme described in Chapter 3 will be assessed in this part. 

An important tool in the assessment of the accuracy of the scheme will be the knowledge of 

a closed form analytical expression for the solution of the Poisson equation corresponding 

to the first iteration of the evolutive scheme, for a rectangular nano-element and a uniform 

initial magnetization m = (0, 1, 0) . The choice of certain parameters such as a suitable 

maximum radius for the derivative operator matrix and the number of degrees of freedom 

involved will also motivate these numerical tests. Finally, the number of operations and the 

size of the memory storage needed will be studied with respect to the number of degrees 

of freedom. 

141 
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7 .1 An analytical solution 

When the magnetization is m = (0, 1, 0), the solution of equation 1.17 inside a magnetic 

region of rectangular shape c ::; x1 ::; a, d ::; x2 ::; b, is given in [25] by the formula 

In the numerical tests presented further, m will always be equal to (0, 1, 0) and the nano

element will be a rectangle [c, a] x [d, bl, where c = 32/64, a = 33/64, d = 28/64 and 

b = 36/64 and the error made by the numerical calculation will be evaluated from the 

analytical expression above. 

7 .2 Tests with the usual matrix-vector multiplication 

In a first series of t ests, the adaptive Poisson algorithm is run with N = 210
, E = 10- 5 and for 

increasing values of the maximum radius r = 0, ... , 3. Every matrix-vector multiplication 

is calculated in the usual manner. 

7. 2 .1 The right hand side f 

The right hand side of the equation is calculated with GenLocRHS. It has originally 1172 

wavelet coefficients but it is limited to its 210 terms of largest modulus before the start of 
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Figure 7.1: Distribution of the coefficients off over n. Colour code for the coefficient 
levels: khaki=4, red=5, green=6, purple=1, blue=8, brown=9, orange=l 0. 

the scheme. The wavelet coefficients present in f are spread between levels 4 and 10 and 

their distribution over the domain is represented on graphs 7.1-7.3, where every square 

represents a cube □>., meaning that at least one of the four coefficients with level j,X,j and 

position vector k (A) is present in f. The level of the coefficients is colour coded as well as 

being represented by the squares sizes. On figure 7.1, the frame represents the boundary of 

n, while the nanoelement, situated in the center of the graph, is represented by a rectangle 

shaded in gray. It can be seen on the close-up pictures that the coefficients of highest 

level are situated about the top and bottom edges of the nano-element. The size of the 

nano-element has been chosen small enough to minimize the effect of the simulation of n 

by a bounded domain and for larger nano-elements. 
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Figure 7.2: Distribution of the coefficients of f over n. Close-up on the nano-elem ent. 
Colour code for the coefficient levels: red=S, green= 6, purple=7, blue=8, brown=9, or
ange=10. 
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Figure 7.3: Distribution of the coefficients off over n. Close-up on the top edge of the 
nano-element. Colour code f or the coefficient levels: green=6, purple= 7, blue=8, brown=9, 
orange=10. 
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7.2.2 Test results 

For each run of the Poisson solver with a maximum radius r, the following data has been 

collected on table 7.4: 

Iter. : the number of iterations taken. 

Init. Step : the number of Initial Steps taken. 

# u1 : the number of entries in the vector u1 at the last iteration and before the compression 

step. 

#(Aru1) : the number of ent ries in the vector A ru1, where u1 is the solution before 

the compression step. This gives an upper bound for the size of the output of the 

matrix-vector multiplications. 

II A ruJ - fll : the residual calculated as the norm-2 of the vector of wavelet coefficients 

II A ruf - f II : the residual calculated after compression of the solution. 

IIEull : t he relative error on the potential, calculated by t he formula 

where G(Au) denotes a set of points inside n int, u1(x) is the evaluation of the wavelet 

expansion u f and u is the analytical solution. 
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Looking first at the accuracy of the potential calculated numerically, table 7.4 shows that 

for all the tests, the size of the residuals for the problem A ru = f, calculated before or 

after the compression of the solution, is of the order of fi. The relative error Eu decreases 

mostly between the tests done with r = 0 and r = l , and less so for higher values of r. 

This may be related to the inaccuracy caused by the wavelet representation of the right 

hand side and the limitation to N degrees of freedom of the representation of the descent 

direction W j. Even so, the size of Eu seems to be acceptable from an applications point 

of view [25] . The number of iterations needed for a stopping parameter E = 10- 6 is fairly 

small, considering the size of the system solved. These are positive points, which need to 

be balanced against the resources involved by the scheme. It seems clear from the values 

of #w that the memory space needed to store the variables is too large by comparison 

with the target number of unknowns N = 1024. Also, the number of Initial Steps taken 

by each of the tests is very large, since such a step is taken more often than every second 

step. As explained in section 3.4, this has a serious adverse consequence on the number of 

operations performed by the solver. The next two sections show the results of tests made 

on modified versions of the solver in the view of reducing the resources used. In the first 

section, the matrix vector multiplication is replaced by a modified version of the MU LT 

algorithm, while in the second section, the Poisson solver scheme is 'simplified ' by removing 

the convergence check on d and thereby disabling any second calls to the Initial Step. 
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7.3 Tests with an approximate matrix-vector multi

plication 

The logical replacement for the usual matrix vector mult iplication is the MU LT algo

rithm. It has been found however that in this particular case, the parameter k calculated 

by my implementation of MU LT was always so large that there would be in effect no 

difference with a normal multiplication. The modification used in this series of tests con

sists in fixing the parameter k to log2 ( N). A maximum radius r is still imposed, and 

everything apart from the mutiplication routine being kept as in the previous section, the 

results resented on table 7.5 have been obtained. 

These results show that on this example the residuals for the problem A ru - f are of 

the same order as those calculated with a normal matrix vector multiplication, and more 

importantly, the size of the relative error Eu has not increased. The number of entries in 

the output of the matrix vector multiplication has been reduced significantly. The number 

of Initial Steps used is as large as previously. 

In the next series of tests, a 'quick' adaptive scheme is used, where the Initial Step is 

used only once, disregarding the size of the parameter d. The matrix vector multiplica

t ions are preformed with the modified MU LT algorithm. The results are presented on 

table 7.6. Because only one Initial Step is taken in this case, the length of the output 

of A ru j is not a good indicator of the memory needed for the scheme, for this reason, 

table 7.6 also presents under the heading #(A rw1) the maximum length of the output of 

a matrix multiplication in the scheme. Clearly, the 'quick' scheme reduces the number of 

operations ( only one matrix-vector multiplication, and the input vector has always length 
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N) and the size of the storage needed per iterations. Another positive point is that the 

difference between the residual calculated with solution before and after compression is 

much smaller thatn with the original scheme, suggesting that less effort is wasted by the 

solver. On this example, by comparison with the tests made on the original scheme (table 

7.4), a deterioration of the relative error can be noted: from 2.73E-02 to 2.81E-02 when 

r = l and from 2.36E-02 to 2.68E-02 when r = 2. However, because the size of Eu is still 

of t he same order and because the resources involved have been so much reduced , it seems 

reasonable to favor the 'quick' scheme to the original one, also all the tests presented from 

now on use the 'quick' algorithm and the modified MU LT algorithm. 

The next tests aim at checking whether decreasing the threshold parameter E would im

prove the errors Eu. The results on table 7.7 show that when E is decreased from 10- 5 to 

10- 9 , t he relative errors decrease slightly, at t he expense of a three to four-fold increase in 

the number of iterations. 

From the reduction in Eu on table 7.6, it appears that a maximum radius of at least 

1 must be used. Also, when N = 1024, it seems that there is no advantage in taking r 

greater than 2. The same tests have been repeated with N = 2048 and it can be observed 

on table 7.8 that in this case too, the most important reduction of the relative error Eu 

is achieved by the increase of the maximum radius from O to 1. The representation of the 

right hand side of the equation with N wavelet coefficients is another factor of t he differ

ence between the solution calculated by the scheme and the solut ion to the infinite Poisson 

problem. The results presented on table 7.8 have been obtained with the same vector f 

as all t he results presented so far. This vector contains only 1024 non-zero entries. When 
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running the same test , with r = 1 and a vector f of length 2048, the relative error can be 

seen to decrease from 2.86E-02 to 2.68E-02. The effect of the compression step at the end 

of the scheme on the size of the residual has been reduced in the 'quick' algorithm, however 

in the tests done with the 'quick' algorithm, this step still reduces the number of wavelet 

coefficients used to represent the solution approximately by half. The coefficients that 

are removed are mainly situated in the non-magetic part of the domain. The coefficients 

present in the solution before and after compression are represented on graphs 7.9 to 7.11. 

As a summary, it appears that for this example, the 'quick' adaptive algorithm converges 

to an approximate solut ion with an acceptable accuracy. The number of iterations nec

essary is small and when the modified MU LT algorithm is used for the matrix vector 

multiplications, the size of the vectors used remains proportional to the target number of 

degrees of freedom N, the multiplicative factor being about 10, when r = 1. The choice 

of r = 1 for the value of the maximum radius seems to give the best compromise between 

t he accuracy of the solution and the cost of the scheme in terms of memory usage and 

operations count . In the next section, this algorithm and the chosen parameters are put to 

the test in the coupling of the Poisson solver with the evolut ive Landau-Lifshitz equat ion. 
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r Iter. Init . Step #Uj #(Aruj) IIArUJ - /II IIArUj - /II IIEull 
0 35 21 2965 11544 l.03E-03 5.30E-03 5.63E-02 
1 26 20 5295 82882 l.30E-03 5.79E-03 2.73E-02 
2 26 20 6267 421398 1.39E-03 4.95E-03 2.36E-02 
3 26 20 6227 1404883 l.51E-03 4.42E-03 2.37E-02 

Figure 7.4: Tests with unmodified MULT multiplication and N = 1024. 

r Iter. Init. Step #uj #(Aruj ) IIArUJ - / II IIArUj - / II IIEull 
1 26 20 5441 36320 l.21E-03 6.14E-03 2.69E-02 
2 26 21 6447 51913 1.21E-03 6.25E-03 2.37E-02 
3 26 21 6430 66445 l.28E-03 6.48E-03 2.38E-02 
4 26 21 6291 76352 1.28E-03 6.61E-03 2.38E-02 

Figure 7.5: Tests with a modified algorithm MU LT and N = 1024. 

r Iter. Init. Step #uj #(Aruj) IIArUJ - /II IIArUj - / II IIEull #(Arwj) 
0 32 1 2390 11247 l.40E-03 l.65E-03 5.43E-02 8186 
1 20 1 2438 23234 l.39E-03 1.48E-03 2.81E-02 11871 
2 21 1 2394 41083 l.48E-03 l.56E-03 2.68E-02 20031 
3 21 1 2371 49454 l.50E-03 l.55E-03 2.65E-02 22194 

Figure 7.6: Tests with a m odified algorithm MU LT) the 'quick ' adaptive schem e and 
N = 1024. 

r Iter. IIEull 
1 67 2.68E-02 
2 80 2.57E-02 

Figure 7.7: Tests with E = 10- 9 and N = 1024. 

r Iter. Init. Step #Uj #(Aruj ) IIArUJ - /II IIArUj - /II IIEull #(Arwj ) 
0 33 1 4015 15395 5.25E-03 5.89E-03 4.98E-02 13695 
1 22 1 4112 45471 6.97E-03 7.60E-03 2.86E-02 17921 
2 22 1 4195 80054 8.22E-03 9.30E-03 2.58E-02 25792 
3 22 1 4167 90284 8.12E-03 8.80E-03 2.58E-02 33085 

Figure 7.8: Tests with a m odified algorithm MU LT, the 'quick ) adaptive schem e and 
N = 2048. 
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Figure 7.9: Distribution of the coefficients of the solution before (left) and after (right} 
compression. Colour code for the coefficient levels: khaki=4, red=5, green=6, purple=7, 
blue=8, brown=9, orange=10. 
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Figure 7.10: Distribution of the coefficients of Uj (left) and u1 (right}. Close-up on Dint· 

Colour code for the coefficient levels: red=5, green=6, purple=7, blue=81 brown= 9, or
ange=10, pink =11. 
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Figure 7.11: Distribution of the coefficients of U j (left) and u 1 (right}. Close-up on the 
top edge of D int· Colour code for the coefficient levels: blue=8, brown=9, orange=l 0, pink 
= 11 . 



Chapter 8 

Preliminary results 

In this chapter, two simulations of the evolution of the magnetization of a rectangular na

noelement are presented. In both simulations the magnetization is initially uniform, parallel 

to the xraxis, which is the direction of the length of the nanoelement, m 0 = (0, 1, 0). The 

anisotropy vector is parallel to the x1-axis, the direction of the width of the nanoelement, 

h a = (1, 0, 0) . The applied field, responsible for the initial magnetization, is assumed to be 

zero at all times T > To. The remaining physical parameters are given the following values: 

the anisotropy constant is fixed to K = 5 .105 erg/ cm 3 , the saturation magnetization is set 

to Ms = 800 emu/ cm3 and the dissipative constant is unity ( a = 1). The two simulations 

presented differ by the value given to the exchange constant A. In the first simulation 

A = 10- 5 erg/cm, and in the second simulation A = 10- 6 erg/cm. A larger value for 

the exchange constant A implies that larger sections of the magnetic material behave as 

separate units. The numerical parameters are given the following values. The parameters 

needed for the Poisson solver are given the values accepted at the end of the previous 

chapter: r = 1 and N = 2048. The size of the time-step 6.T used in the Euler scheme 

was worked out empirically by running the programme for decreasing values of 6.T until 
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numerical stability was achieved. The time-step for the first simulation is set to 6.r = 10-2 

and for the second simulation to 6.r = 5.10-2 . After the choice of the time-step values, 

because the Euler scheme does not conserve the magnetization strength, the programme 

was modified to normalize the magnetization pointwise at every time-step. 

Figures 8.1-8.4 and 8.6-8.8 represent the evolution of the magnetization inside the na

noelement, as calculated by the two simulations. For each simulation, the first graphs 

correspond to times r fairly near to one another and close to the initial time r0 = 0, and 

they show t he most obvious changes in the magnetization of the nanoelement. The last 

graphs correspond to later times, they are more spread out in time and they show how the 

magnetization settles in a given configuration. The formation of vortices and later domains 

can be observed. The evolution of the distribution of the wavelet coefficients used during 

the two simulations is also graphically represented on Figures 8.5 and 8.9. The graphs 

focus on the area of the nanoelement. As the first simulation takes place, refinement oc

curs over the whole nanoelement (the gray area on the graph), and more particularly along 

the vertical edges. Coarsening occurs away from the nanoelement and also at its top and 

bottom edges. As the second simulation takes place, refinement can again be observed over 

the entire nanoelement and along its vertical edges, but also in a certain measure, along 

horizontal accumulations across the nanoelement. It may be observed also from the arrow 

plots 8.1-8.4 and 8.6-8.8 that the domain walls formed during the second simulation are 

rather more narrow than those formed during the first simulation. The horizontal accu

mulation of wavelet coefficients in this case may be due to the domain walls. Finally, a 

general observation is that the displacement of the wavelet refinement during both sim

ulations seems fairly slow. Consequently, the efficiency of the scheme could be improved 
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by alternating a succession of non-adaptive time-steps with an adapt ive one. During the 

non-adaptive time-steps, the Poisson solver would follow a Galerkin scheme on a fixed 

wavelet subspace of L2 (D.). The efficiency gain would occur in the Poisson solver and at 

the update stage, when the magnetisation m n-l is updated to be evaluated at the nodes 

where m n is calculated. In particular, a scheme more accurate than the Euler scheme, 

such as a scheme where the calculations of m at time-steps Tn', n' < n - 1 are used to 

calculate m n, could be all the more efficiently implemented, since the update step would 

be less frequently required. 
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Figure 8.1: Simulation 1. Magnet ization of the nano element at times r = 1.18 (left) and 
r = 2.20 (right) 
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Figure 8.2: Simulation 1. Magnetization of the nanoelement at t imes T = 3.0 (left) and 
T = 3.7 (right) 
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Figure 8.3: Simulation 1. Magnetization of the nanoelement at times r = 8.6 (left) and 
r = 26.7 (right) 
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Figure 8.4: Simulation 1. Magnetization of the nanoelement at times T = 33.1 (left) and 
T = 43.6 (right) 



CHAPTER 8. PRELIMINARY RESULTS 160 

I r-i f·JJ·J I I u 1 h i 

~- ~ 

■ 
.... - = - -- - ..... - . 

- ..... - ~ l .. • - ..... ... • -
.... ~ aj I - ., r; 

:= ae:~ - • - ' 
..... 

I 

• -1- l't ::- - ~ I I 
..... ... '"' .... -• - r .. 

I .... .. .. -- :i.~ - -
Lh - . L 

'""7 ... . I L• 7: 

~ .. -I - .. . - ..... 
I- -. --- Ii - 't ..... 

- r - :r - ..... 
f<"' I - -- ..... .. • -- -..... .. .. . - -

I- ..... . 'I . - ..... 
I- .... . - ~ ! 

... - --~ .. .. 
L-- -

I - • :I 
I u. ..... 

- ~ 1- 1- i- I 
.J.. ■ ->- - ... I 

=• ... I • ..... 
1 - ~ 

I- ... 

~ :! ~ - - - • = .... ,_ 
I ~ .... ,_ - EI .... ... .... ,_ 

~ n .......... 
I f-' t1'1 I I f-' ... l-1 1 I I I µ I 

F igure 8.5: Simulation 1. Dist ribution of the wavelet coefficients at t imes T = 1.18, T = 2.2, 
T = 3.7, T = 26.7 and T = 36.4 



CHAPTER 8. PRELIMINARY RESULTS 161 

Figure 8.6: Simulation 2. Magnetization of the nanoelement at times -r = 4 (left) and 
-r = 8 (right) 
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Figure 8.7: Simulation 2. Magnetization of the nanoelement at times r = 11 (left) and 
r = 32 (right) 
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Figure 8.8: Simulation 2. Magnetization of the nanoelement at times r = 107 (left) and 
r = 144 (right) 
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Figure 8.9: Simulation 2. Distribution of the wavelet coefficients at times T = 4, T = 8, 
T = 11, T = 14 and T = 114 



Appendix A 

Non-singularity of the A + Dr matrix 

The non-singularity of the A+ Dr matrix (r ~ 1) from Section 4.3.4 is proved here for any 

B-spline scaling function basis constructed in [10] and [12]. In the construction, li ::; 0 and 

l2 > 0 are integers such that [li, l2] is the support of the mother scaling function cp. The 

refinement equation is cp(x) = L~=li ak c/>(2x - k), where the ak are defined in [10], p.540, 

as 

-d( d ) 
ak = 2 k + l d/2 J 

and d denotes the approximation order of the scaling function basis. By convention, the 

refinement mask (ak)k is considered infinite (k E Z) with null entries outside the range 
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Matrix A is the (l2 - Li) by (l2 - Zi) matrix defined by 

except if l < I (Zi + l2)/2l, 

Matrix Dr is 2r+l times the identity matrix of size (l2 - Li) by (l2 - Zi). The A+ Dr matrix 

is singular if and only if det(A + Dr) 6 det(A - (-2r+1)I) = 0, which is the same as A 

having ( -2r+1) for eigenvalue. 

The Gershgorin circle theorem states that all the eigenvalues of matrix A lie on t he complex 

plane within t he circles C1 centered at z1 = A1,1 and with radii r1 = I:#l IA1,pl. First, let 

us determine the center and radius of the circle associated with row Zi-

l1 l2 

Z11 L a-p+Zl1 = - L ap, 

p=2l1 -l2 p=l1 

l2 l1 -1 

rii L la-p+2li I = L lapl = 0. 

By integrating both sides of the refinement equation over R , it is apparent that I::~=li ak = 

2, so z1i = -2 and C11 = { -2}. Let us now determine t he center and radius of the remaining 

circles C1, for A1 + 1 :S l :S l2 - 1. 

Z1 - a2l -l2, 

l2 - l 

r1 L la2p-12I • 
p=l1,p#l 
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Because all the ak are positive and because they add up to 2, it is clear that -2 ::; z1 ::; 0 

and that O ::; r1 ::; 2. Moreover, if z1 = - 2, then r1 = 0. Therefore the intersection of the 

union of the circles C1 with the real axis is a subset of, or is equal to, the interval ]- 4, 2 ] . 

This proves that -2r+1, r ~ 1, cannot be an eigenvalue for A and that A+ Dr, r ~ 1, is 

non-singular. 



Appendix B 

Tables of results used in the 

estimation of the parameters for the 

MU LT algorithm 

B.1 Dimension 1 

The following tables concern the Laplace operator for the one-dimensional B-spline basis 

on the unit interval defined in the Multilevel Library by the parameters: d = 3, d = 3, and 

biorthogonalization method= 5. 

On the table concerning the row sums of blocks on and above the diagonal, the label S 

denotes that the row function is a scaling function and the label W that it is a wavelet. 

T he ki denote different rows. The rows present in the table are all the rows such that the 

support of the correponding row function has a non-trivial intersection with the support 

of a boundary adapted basis function. In addition to those, the table also presents the 
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Row level Column level Level diff. Block [WjSj0 ] Block [Wj wjol 
5 4 1 1.27E+00 1.08E+00 
5 4 1 1.22E+00 1.18E+00 
6 4 2 3.98E-02 4.14E-02 
7 4 3 2.49E-03 1.52E-03 

F igure B.l: Maximum row sums for blocks below the diagonal. Functions away from the 
boundary only. 

sums for one row associated with a scaling function and one row associated with a wavelet 

whose support only intersects t he supports of inner basis functions . 

Ski Wk4 

R Square 1.00000 R Square 1.000000 
Standard Error 1.5E-06 Standard Error 3.2E-07 

Intercept Slope Intercept Slope 
Co effi ci en ts 0.140212 -1.4999 Coefficients 1.627615 -1.5000 
Standard Error 9.7E-07 14.E-07 Standard Error 2.5E-07 3.5E-08 
Lower 95% 0.140209 -1.5000 Lower 95% 1.627615 -1.5000 
Upper 95% 0.140214 -1.4999 Upper 95% 1.627616 -1.5000 

0 bservation Residuals Observation Residuals 
1 5.E-07 1 -2.E-07 
2 3.E-07 2 -1.E07 
3 2.E-07 3 -5.E-08 
4 2.E-08 4 6.E-08 
5 -1.E-07 5 2.E-07 
6 -3.E-07 6 2.E-07 
7 -5.E-07 7 4.E-07 
8 -5.E-07 8 3.E-07 
9 -6.E-07 9 -1.E-07 
10 -2.E-06 10 -6.E-07 

Figure B.2: Typical statistics for the regressions on the log of the row sums. 
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Col. level 4 4 5 6 7 8 9 10 
Row level 4 4 4 4 4 4 4 4 
Level diff. 0 0 1 2 3 4 5 6 

s 
k1 10.2 4.6 0.39 0.138 0.0488 0.0172 0.00608 0.00215 
k2 1220.3 16.1 5.06 1.807 0.6389 0.2259 0.07986 0.02823 

k3 30.6 1.4 0.22 0.079 0.0278 0.0098 0.00347 0.00123 

w 
k1 * 6.2 2.76 0.46 0.16 0.0580 0.0205 0.00725 
k2 * 8.2 1.29 0.47 0.17 0.0609 0.0215 0.00761 
k3 * 8.8 1.18 0.46 0.16 0.0572 0.0202 0.00715 
k4 * 8.6 0.96 0.39 0.14 0.0483 0.0171 0.00603 
k5 * 5.7 0.86 0.35 0.12 0.0435 0.0154 0.00544 
k5 * 5.1 0.88 0.35 0.12 0.0443 0.0156 0.00553 
k7 * 4.9 0.88 0.35 0.12 0.0443 0.0156 0.00553 
ks * 4.7 0.88 0.35 0.12 0.0443 0.0156 0.00553 

Col. level 11 12 13 14 15 
Row level 4 4 4 4 4 
Level diff. 7 8 9 10 11 

s Intcpt. (I) Slope 2r 

k1 7.61E-04 2.69E-04 9.51E-05 3.36E-05 l.19E-05 0.14 -1.5 1.10 
k2 9.98E-03 3.53E-03 l.25E-03 4.41E-04 l.56E-04 3.85 - 1.5 14.4 
k3 4.34E-04 l.53E-04 5.43E-04 l.92E-04 6.78E-04 -0 .67 -1.5 0.63 

w Intcpt. (I) Slope 2r 

k1 2.56E-03 90.6E-04 3.2E-04 1.13E-04 4.0E-05 1.89 -1 .5 3 . 71 
k2 2.69E-03 9.52E-04 3.37E-04 l.19E-04 4.2E-05 1.93 -1.5 3.83 
k3 2.53E-03 8.94E-04 3.16E-04 l.12E-04 3.9E-05 1.87 -1.5 3 .65 
k4 l.13E-03 7.54E-04 2.67E-05 9.43E-05 3.3E-05 1.63 - 1.5 3 .09 
k5 l.92E-03 6.8E-04 2.4E-05 8.5E-05 3.0E-05 1.48 - 1.5 2 .78 
k5 l.96E-03 6.92E-04 2.45E-05 8.65E-05 3.lE-05 . 1.89 -1.5 3. 71 
k7 l.96E-03 6.92E-04 2.45E-05 8.65E-05 3.lE-05 1.50 -1.5 2.83 
ks l.96E-03 6.92E-04 2.45E-05 8.65E-05 3.lE-05 1 .50 -1.5 2.83 

Figure B.3: Row sums for blocks on and above the diagonal. 
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B.2 Dimension: 2 

The following tables concern the Laplace operator for the two-dimensional B-spline basis 

on the unit interval defined in the Multilevel Library by the parameters: d = 3, d = 3, 

and biorthogonalization method = 5. Three types of rows are considered: in Sk1 , the row 

function 'l/Jjo,k ,e is a scaling function, while in W k1 and in W k2 it is a wavelet of type (1, 0) 

and (1, 1), respectively. 

Column level Row level Level diff. Sk1 Wk1 Wk2 
4 4 0 1628.302 * * 
4 4 0 78.010 7.291 144.951 
5 4 1 0.873 3.101 2.028 
6 4 2 0.346 1.420 0.917 
7 4 3 0.159 0.521 0.416 
8 4 4 0.079 0.236 0.203 
9 4 5 0.039 0.115 0.101 

Intercept (I) 0.521 2.131 2.052 
Slope -1.043 - 1.042 -1.082 

21 1.435 4 .379 4.146 

Figure B.4: Row sums for blocks on and above the diagonal. Functions away from the 
boundary only. 

Wk1 
Row level Column level Level diff. Block [WjSj0 ] Block [Wj wjol 

5 4 1 1.22E+00 l.18E+00 
6 4 2 3.98E-02 4.14E-02 
7 4 3 2.49E-03 l.52E-03 

Wk2 
Row level Column level Level diff. Block [WjSj0 ] Block [Wj w jo l 

5 4 1 1.22E+ oo 1.1sE+oo 
6 4 2 3.98E-02 4.14E-02 
7 4 3 2.49E-03 l.52E-03 

Figure B.5: Maximum of row sums for blocks below the diagonal. Functions away from the 
boundary only. 
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Sk1 Wk1 

R Square 0.9993 R Square 0.9990 
Standard Error 0.0444 Standard Error 0.0607 

Intercept Slope Intercept Slope 
Coefficients 0.5211 -1.0432 Coefficients 2.0517 -1.0818 
Standard Error 0.0730 0.0199 Standard Error 0.0637 0.0192 
Lower 95% 0.2071 -1.1286 Lower 95% 1.8490 -1.1429 
Upper 95% 0.8351 -0.9577 Upper 95% 2.2544 -1.0207 

0 bservation Residuals Observation Residuals 
1 0.0343 1 0.0505 
2 -0.0434 2 -0.0134 
3 -0.0160 3 -0.0702 
4 0.0251 4 -0.0212 

5 -0.0544 

Figure B.6: Typical statistics for the regressions on the log of the row sums. 
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