
 

 

 

P
R

IF
Y

S
G

O
L

 B
A

N
G

O
R

 /
 B

A
N

G
O

R
 U

N
IV

E
R

S
IT

Y
 

 

Testing cognitive theories with multivariate pattern analysis of
neuroimaging data
Peelen, Marius V.; Downing, Paul

PsyArXiv Preprints

DOI:
10.31234/osf.io/rhzt9

Published: 03/06/2023

Publisher's PDF, also known as Version of record

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA):
Peelen, M. V., & Downing, P. (2023). Testing cognitive theories with multivariate pattern analysis
of neuroimaging data. PsyArXiv Preprints. https://doi.org/10.31234/osf.io/rhzt9

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or
other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal
requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private
study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to
the work immediately and investigate your claim.

 11. Apr. 2024

https://doi.org/10.31234/osf.io/rhzt9
https://research.bangor.ac.uk/portal/en/researchoutputs/testing-cognitive-theories-with-multivariate-pattern-analysis-of-neuroimaging-data(3c017758-17f6-41ce-adf8-4b7631f453d8).html
https://research.bangor.ac.uk/portal/en/researchers/paul-downing(85167826-4c46-4720-94da-8efeb85f5363).html
https://research.bangor.ac.uk/portal/en/researchoutputs/testing-cognitive-theories-with-multivariate-pattern-analysis-of-neuroimaging-data(3c017758-17f6-41ce-adf8-4b7631f453d8).html
https://research.bangor.ac.uk/portal/en/researchoutputs/testing-cognitive-theories-with-multivariate-pattern-analysis-of-neuroimaging-data(3c017758-17f6-41ce-adf8-4b7631f453d8).html
https://doi.org/10.31234/osf.io/rhzt9


 1 

 
 

 
Testing cognitive theories using multivariate pattern analysis 
of neuroimaging data 
 
 
 
Marius V. Peelen1, †,* and Paul E. Downing2, †,* 

 

1Donders Institute for Brain, Cognition and Behaviour, Radboud University, Thomas van 
Aquinostraat 4, 6525 GD Nijmegen, The Netherlands 

2Cognitive Neuroscience Institute, Department of Psychology, Bangor University, Brigantia 
Building, Bangor, Gwynedd, LL572AS, United Kingdom 

†These authors contributed equally 

* Joint Corresponding Authors 

 
Correspondence: 
marius.peelen@donders.ru.nl (M.V. Peelen) 
p.downing@bangor.ac.uk (P. Downing) 
 
 
 
 
 
 
 
 



 1 

Abstract 
Multivariate pattern analysis (MVPA) has emerged as a powerful method for the analysis of 
functional MRI, EEG and MEG data. The new approaches to experimental design and 
hypothesis testing afforded by MVPA have made it possible to address theories that describe 
cognition at the functional level. Here, we review a selection of studies that used MVPA to test 
cognitive theories from a range of domains, including perception, attention, memory, navigation, 
emotion, social cognition, and motor control. This broad view reveals properties of MVPA, such 
as the ability to test predictions expressed at the item or event level, that make it suitable for 
understanding the “how” of human cognition, as well as limitations, and points to future 
directions.  
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Technological developments in human neuroimaging over the past few decades have led to an 
explosion of investigations into the full range of human cognitive abilities, including perception, 
attention, memory, navigation, emotion, social cognition, motor control, and more. In parallel, 
researchers concerned with understanding the mind from a functional point of view – what are 
the cognitive representations and processes that support human behaviour? – have regularly 
asked whether neuroimaging offers any useful answers to theoretical debates at that level of 
understanding1–6.  
         In the past two decades, and at an increasing pace, researchers have turned to 
multivariate pattern analysis (MVPA) approaches to the design and analysis of human 
neuroimaging studies. MVPA capitalizes on the latent information found in patterns of brain 
activity that are distributed across voxels in an fMRI experiment or across channels in an MEG 
or EEG experiment (Figure 1). Researchers have claimed that these approaches would offer 
new ways to test mechanistic accounts of cognition7–10. The purpose of this review is to take 
stock of that claim by reviewing a wide sample of recent studies that have tested cognitive 
theories by developing hypotheses about the patterns of brain activity that emerge while 
participants perform tasks from many different domains. 

Numerous recent reviews have examined MVPA studies from other perspectives, 
focusing on methodological aspects8,11–13, philosophical considerations and in-principle 
limitations of the approach14–16, applications in brain-computer interfaces17, historical 
perspectives18, “mind-reading”19,20, and integrating MVPA studies with computational models21 
including deep neural networks22–24. In contrast, here we take a pragmatic approach to 
understanding whether and how MVPA has been used to shed light on theories about the “how” 
of human behaviour. Unlike previous theoretical and methodological perspectives, the aim of 
this review is to provide specific examples of studies that have successfully used MVPA to test 
cognitive theories. While these examples primarily highlight the strengths of MVPA, like any 
approach it also has limitations, which we discuss after the examples. Furthermore, by 
presenting these examples, we do not imply that MVPA is the only way to test cognitive theories 
with neuroimaging data. Finally, we briefly identify some future directions for research that 
should build on the findings and principles identified here.  
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Figure 1. Overview of key steps in multivariate pattern analysis of neuroimaging data, illustrated with the 
design of previous fMRI and M/EEG studies investigating the representation of object category and 
shape48,116. A) Neural activity is measured indirectly using fMRI or directly using M/EEG. fMRI provides 
high spatial resolution, with activity patterns measured across a set of voxels (each typically 2x2x2 mm) in 
specific brain regions (e.g., the occipital cortex). MEG and EEG provide high temporal resolution, with 
activity patterns measured across channels at specific points in time (e.g., 180 ms after image onset). 
Activity patterns across voxels (fMRI) or channels (M/EEG) are used to train a classifier to distinguish 
between two or more classes (e.g., snake vs bird). Typically, the classifier is trained on part of the data 
and tested on held-out data with the same conditions occurring in the training and testing sets (cross-
validation). B) Alternatively, the classifier can be tested on different but related conditions, to test for 
generalization (cross-decoding), for example across different stimulus sets or across format. C) Pairwise 
decoding accuracy can be used as a distance measure in representational similarity analysis45: object 
pairs that are accurately classified are representationally dissimilar (illustrated by darker cells). Other 
distance measures can also be used132. The resulting representational dissimilarity matrix (RDM) of a 
particular brain region (fMRI), or at a particular time point (M/EEG), can then be correlated with models 
derived from cognitive theories that make different predictions about the structure of representations. 
Here, for example, two models are illustrated that emphasize either the status of an object as (in)animate, 
or its overall shape. 
 
What is multivariate pattern analysis? 
MVPA studies vary widely, but generally depend (sometimes implicitly) on the assumption that 
neural activity patterns (the distribution of activity across a set of voxels or channels) index the 
structure of a mental representation or process. In its most basic form, MVPA can be used to 
test whether the activity patterns in a given brain region are reliably distinct for two different 
stimulus classes (Figure 1). If this is the case, then that region may be considered to represent 
some dimension that distinguishes those classes. However, the finding of above-chance 
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classification alone may not provide much theoretical insight, as there are typically many 
dimensions on which two conditions differ that could drive the classification15,25. Therefore, 
many studies have used more complex approaches to relate brain activity patterns to measures 
of behaviour, to judgments of (dis)similarity, or to parameters derived from formal computational 
models. As we will see in the examples below, two approaches have been particularly fruitful for 
testing cognitive theories: cross-decoding (Figure 1b) and representational similarity analysis 
(Figure 1c). Still other studies adopt the logic that multivariate patterns provide a “signature” 
that indexes the degree to which one of several possible mental states is more engaged in a 
given task26. Finally, multivariate decoding approaches are complemented by encoding 
methods27–29. Unlike decoding, which aims to predict experimental conditions from neural 
activity patterns, encoding aims to predict neural activity patterns from experimental conditions. 
While all these approaches have strengths and weaknesses12,27,29, the claim evaluated here is 
that they can provide insight, at a fine-grained level, into the links between neural activity 
patterns and the mechanisms or representations implied by cognitive theories. 

As with any other measure of neural activity, the inferential strength of an MVPA finding 
depends on other factors. Stronger claims will be supported, for example, by results that are 
robust across different tasks, stimulus items, and participants; by demonstrating a systematic 
relationship between patterns and overt behaviour; or by demonstrating specificity to brain 
regions or time windows. Understanding MVPA results from fMRI or M/EEG at the underlying 
neurophysiological level has proved challenging, as illustrated by debates about the 
interpretation of above-chance decoding of visual orientation from activity patterns in primary 
visual cortex30–35. However, as illustrated below, MVPA has been successful even without a 
complete picture of the neurophysiological basis of the activity patterns that differentiate 
between conditions. 
 
What is a cognitive theory?  
A cognitive theory is one that explains how a behaviour emerges from processes and 
representations at a level that abstracts away from the specific neural substrate. This 
corresponds closely to the “algorithmic” level of Marr’s influential analysis of the tasks 
confronted by vision, a level that lies between the properties of neurons and neural networks 
(the “implementation” level), and a description of the problem the organism faces and the 
relevant information that is available in its environment (the “computational” level)36,37. Cognitive 
theories adopt an information processing perspective to describe mental representations of 
internal states and of the external world. Representations are powerful because they can make 
explicit some latent dimensions, while obscuring others, thereby supporting behaviours that rely 
on those exposed dimensions. By way of analogy, Arabic representations of number make units 
of ten explicit in a way that Roman numerals do not, so that decimal operations are trivial to 
perform in one (8 x 10 = 80) but not the other (VIII x X = LXXX). Cognitive theories also take up 
the formation, manipulation, retrieval, and use of representations: that is, cognition 
encompasses active mental processes as well as stable mental representations38,39. A key 
aspect of the cognitive approach is the idea that multiple relatively simple processes and 
representations can interact in different ways, depending on the actor’s goals, to produce a wide 
range of complex behaviours.  
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Specifying a cognitive model entails answering several questions, such as: what kinds of 
inputs must be represented, and what kinds of latent information must be extracted from those 
inputs? What is the format and durability of stored representations? What is the number and 
kind of processes that manipulate, store, retrieve, or draw inferences about represented 
information? What are the capacity limits or “bottlenecks" of these processes, and to what 
extent do they interact with each other? How does information flow within and between 
processes or stages?40 

As we review examples of specific studies in the following section, we will show how 
neuroimaging studies have used MVPA to address some of the questions and problems that 
emerge from cognitive theories of behaviour. Outside of our scope, there are theories of 
information representation and transformation that are fundamentally neuroscientific, aimed at 
capturing the properties of a given brain region, pathway, or network41. Likewise, while we are 
concerned here with MVPA tests of cognitive theories, this logic is sometimes reversed, as 
when cognitive theories are invoked to explain patterns of activity in neuroimaging results2. 
Finally, while cognitive theories are also used as a framework to understand individual 
differences42, psychiatric conditions43, or cross-cultural variation44, our focus here (without 
denying the importance of those topics) is on mental universals, in the tradition of cognitive 
psychology. 
 
What makes MVPA suitable for testing cognitive theories? 
What are some of the properties of MVPA logic that suit it to testing hypotheses generated by 
models of cognition? We do not claim that other approaches to the design and analysis of 
neuroimaging experiments (e.g., repetition suppression or mass univariate studies) cannot 
achieve similar aims. Rather the emphasis is on features of MVPA that naturally align to testing 
cognitive models. One feature that stands out is that MVPA is readily used to index 
representations with fine granularity, by measuring the brain states that are tied to specific 
items, events, or experiences. This property enables contact between theory and data at a level 
that is required for testing predictions effectively. 

Rich item-level data sets have proved powerful in the representational similarity 
approach45,46 to MVPA that characterises neural spaces through dense measurement of inter-
item similarity. These descriptions can be related across imaging methods (e.g. fMRI-MEG 
fusion47), and also to overt measures of behaviour such as reaction times in search tasks48,49 or 
explicit similarity ratings46, as well as to similarity spaces derived from computational 
models50,51. Importantly, this approach improves the specificity of predictions about neural 
activity, and hence the ability to distinguish competing models, by going beyond simple “point” 
predictions (A>B, or A>0) that are known to provide a weak basis for theorising52,53. In turn, 
more exploratory studies, or those motivated more by neuroscientific aims, may reveal neural 
representational spaces that were not expected from cognitive theories, but that nonetheless 
inform them. 

Neuroimaging studies have often taken advantage of the ability to covertly index mental 
states without perturbing the behaviours that generate those states54–57. This feature has proven 
still more powerful in combination with the sensitivity of MVPA, for example in studies of activity 
related to perceptual events that should be ignored58,59, to activation states in the delay interval 
of working memory tasks60,61, to contextual information that is retrieved from memory 
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incidentally62, or to the preparation to generate overt behaviours63,64. Finally, MVPA can be 
particularly informative when used to test for generalization by using a cross-decoding approach 
that compares activity patterns across domains, modalities, tasks, time, or individuals (Figure 
1b)65–68. For example, this approach allowed researchers to show that perceptual aspects of the 
encoding context are reinstated during retrieval, that emotions and mental states are shared 
across tasks and individuals, and that visual object representations are activated by attention 
cues and modulated by scene context, as reviewed in more detail below. 
 
Applications of MVPA to testing cognitive theory. 
In each section below, we introduce a cognitive capacity of interest, and describe one or more 
influential theories from that domain. We then illustrate how MVPA studies of adult human 
participants have assessed the predictions of those theories or informed debates between 
theories. Together, these examples highlight the ways in which multivariate neuroimaging 
methods, leveraging some of the design and analysis advantages noted above, can speak to 
core issues that have shaped theorising about human cognition for decades. Space limits mean 
that many other worthy examples have been omitted.  
 
Spatial navigation 
Tolman69 argued that the sophisticated mammalian capability for navigation is enabled by 
symbolic representations of the spatial environment that support inducing new paths to 
previously visited locations (commonly referred to as “cognitive maps”70). While neuroimaging 
methods typically require participants to remain immobile, clever task design has enabled 
MVPA tests of key predictions of this general theory of the neurocognitive processes supporting 
human navigation. Specifically, MVPA revealed distinct representations of spatial location (one’s 
position in a mental map) and facing direction (one’s orientation at a given location) in the 
medial temporal lobes71 while participants viewed images of different familiar campus locations 
that were photographed from each of the four cardinal directions (Figure 2). A related study72 
revealed how we encode experienced episodes. Participants wore photo-capturing devices that 
recorded time- and location-stamped egocentric images over a month. They later viewed some 
of these images during fMRI, and tried to recall the depicted episodes. Hippocampal activity 
patterns were more similar for more proximate than more distant autobiographical events, both 
in terms of their distance in space as well as in time. These studies illustrate how the cognitive 
map concept has been elaborated by MVPA approaches to human neuroscience, by showing 
functional dissociations amongst navigation mechanisms, and relating neural activity patterns to 
real-life experience using representational similarity analysis.  

More generally, the evidence speaks to cognitive theories about long-term knowledge 
representations, showing that the encoding of time and spatial location are partly shared, and 
yet distinct from the representation of heading direction.  
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Figure 2. As we navigate through space and time, we track our position in familiar locations (orange 
spots) and the direction we are facing (blue cameras), and we encode memories of specific events at 
specific times (green clock icons). Studies using MVPA of fMRI data have investigated patterns of brain 
activity that emerge as participants view locations from familiar environments71 or recall episodes 
captured in images from their own daily lives72. In medial temporal brain regions, distributed patterns of 
activity demonstrated some key properties in accordance with map-like cognitive representations. 
Specifically, in representations of location, patterns were more similar for nearby than distant locations; 
likewise, in representations of direction, neural patterns were more similar for similar than distinct 
directions; and finally, events experienced closer in time were captured in more similar activity patterns 
than more temporally distant events. 
 
Object perception  
Behavioural studies have shown that object recognition is strongly facilitated by scene 
context73,74, but there has been debate about the underlying mechanisms. According to 
interactive accounts, the visual processing of objects and scenes interacts, such that object 
processing is modulated by expectations derived from scene context75. Alternatively, information 
from objects and scenes may be processed in parallel, with facilitation resulting from post-
perceptual evidence integration76. Recent studies applied MVPA cross-decoding to fMRI and 
MEG data to provide evidence for the interactive account77. Participants viewed ambiguous 
objects (e.g., degraded by blurring) within or outside of scene context. Multivariate activity 
patterns evoked by the ambiguous objects in object-selective visual cortex (measured with 
fMRI) at 300 ms after stimulus onset (measured with MEG) became more similar to the activity 
patterns evoked by intact objects (determined in a separate experimental run) when the 
ambiguous objects were presented in scenes. Because the scenes alone did not evoke object-
specific activity patterns, the modulation could not be explained by additive processing of 
scenes and objects, thus providing evidence for interactive accounts. 

In this example, MVPA was used to index the processing of within-scene objects by 
relating visual cortex response patterns evoked by degraded objects in scenes to canonical 
(intact) object responses in isolation. Through this cross-decoding approach, differences 
between conditions could be related to the modulation of visual object processing, which was 
key to testing the predictions of contextual facilitation models. 
 
Attention  
Attentional mechanisms allow cognitive processes to focus on currently relevant information78. 
According to the influential biased competition theory of attention79, attention biases the 
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competition between neural representations of multiple simultaneously presented stimuli (e.g., 
visually presented objects) in favour of the attended stimulus. Neuroimaging studies have used 
MVPA cross-decoding to provide evidence for a central component of the biased competition 
theory (and other theories of attention): the attentional template80. In visual search tasks, when 
attention is directed to a particular stimulus attribute, such as an object’s shape or colour, 
neurons in macaque visual cortex representing that attribute show increased activity, even 
before a search display is presented81. This preparatory activity constitutes a top-down 
attentional bias82, facilitating the processing of subsequently presented target objects. fMRI 
studies have used MVPA to show that a classifier trained to distinguish between activity 
patterns evoked by visually presented objects can predict what specific object participants 
prepared to search for in separate trials, in the absence of visual input83,84. Recently, this 
approach has been used to go beyond what was known from animal work, showing that such 
attentional templates incorporate contextual expectations during naturalistic visual search85. 

In this example, MVPA was used to address hypothesised intervening stages between 
the decision to act and the act itself, providing evidence for an attentional template that 
mediates between a verbal understanding of a task and the active processing of a search array. 
Here, a key methodological strength was the ability to measure indices of target objects at an 
item-specific level, as previously achieved in neurophysiological studies.  
 
Memory 
Most cognitive theories of memory distinguish between encoding, storage, and retrieval stages. 
According to the encoding specificity theory86, memory performance depends on the similarity 
between encoding and retrieval contexts. Accordingly, remembering a particular fact or episode 
may include mentally reinstating the encoding context, for example the place where the memory 
item was encountered. In an MEG study87, participants learned arbitrary associations between 
visual images (of scenes or faces) and words (Figure 3A). In the retrieval phase, participants 
were only presented with the words, reporting whether they had seen the words before. 
Multivariate classifiers were trained on responses evoked by the images presented without the 
words (in the encoding phase) and tested on responses evoked by the words without the 
images (in the retrieval phase). Results showed that the category of the word-associated 
images could be decoded at retrieval, indicating that the encoding context was reinstated. 
Importantly, by training and testing classifiers at different time points, the analysis showed that 
the activity pattern at 180 ms after image onset (during encoding) was reinstated around 500 ms 
after the word retrieval cue (Figure 3B), providing evidence that relatively early stages of 
encoding are reinstated during recollection. 
 This study thus cleverly used MVPA cross-decoding to provide evidence for contextual 
reinstatement by associating activity patterns during retrieval with content-specific activity 
patterns during encoding, at an item-specific level. 
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Figure 3. Schematic summary of an MEG study investigating contextual reinstatement during memory 
retrieval87. A) During the encoding phase, participants viewed pictures of scenes and faces. Each image 
was first shown in isolation and subsequently together with a semantically unrelated word. Participants 
were instructed to memorize the picture-word associations. Classifiers were trained on MEG data to 
distinguish between the visually presented faces and scenes (before words were presented). Decoding 
peaked at around 180 ms after image onset. B) During the retrieval phase, participants read words and 
reported whether or not the word had been presented during the encoding phase. MEG activity patterns 
carried information about the image category that had been presented together with the words during the 
encoding phase: a classifier trained to distinguish between faces and scenes at 180 ms after image onset 
could significantly decode the cue-associated image category at around 500 ms after cue onset. This 
provides evidence that the word cues activated an early perceptual representation of the encoding 
context, in line with the contextual reinstatement hypothesis. 
 
Category Learning 
Researchers have used MVPA to test cognitive theories about how new categories are learned. 
One such study88 directly compared two formal models, applied to a trial-and-error task 
requiring participants to assign geometric shapes to one of two categories. Each model posits 
different internal representations of learned categories: the prototype model89 describes an 
abstracted encoding of category-defining features, while the exemplar model90 instead 
emphasizes representations of individual category exemplars. At the behavioural level, each 
model described categorization decisions equally well. Whole-brain MVPA of fMRI data 
examined distinct predictions made by the two models about the activity patterns that would be 
evoked by each learned exemplar. The observed patterns of brain data were significantly more 
consistent with representational states predicted by the exemplar model, relative to the 
prototype model. Further analysis demonstrated a close link between patterns of activity in key 
occipital, parietal, and lateral prefrontal regions, and parameters from the exemplar model that 
describe attention to category-defining object features.  
 This study provides a clear example of how the hypothetical representations of two 
competing models may be translated into item-level predictions about the patterns of neural 
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activity evoked by those items, revealing mental encoding principles that were not 
distinguishable at the level of behaviour. 
 
Conceptual knowledge 
Conceptual knowledge describes the rich information we can retrieve and manipulate about 
categories of objects, events, and abstractions such as “chair”, “party”, or “freedom”. What are 
the key dimensions that describe meaningful, real-world concepts, once they are learned? 
Researchers have tested the claim from embodied (or grounded) cognition theories that direct 
sensorimotor experience of the world pervades our mental representations of concepts, even 
abstract ones91,92. MVPA provides a test of this proposal by searching for neural signatures of 
such first-hand sensorimotor experience during cognition about concepts. A recent fMRI study 
used representational similarity analysis to compare models of the dimensions that describe 
knowledge of abstract and concrete concepts, including objects and events, expressed in single 
words93. These different models were based on: 1) taxonomic relationships (e.g., Pippin -> 
Apple -> Fruit); 2) patterns of local co-occurrence in large text corpora, an index of semantic 
proximity; and 3) overlap in features of shared “experiential” content that related to sensory, 
motor, spatial, and affective properties. Across a range of brain regions, the third model was 
most effective at capturing variance in the activity patterns evoked by the tested concepts. This 
finding supports the grounded cognition proposal that abstract knowledge about concepts is 
constituted, at least in part, from a mixture of modality-specific experiences. 

This study is an example of how MVPA can index representations with fine granularity. 
The ability to measure similarities between item-level activity patterns allowed for tests of 
competing models that describe how semantic knowledge is organised. 
 
Emotion  
A long-standing debate in the field of emotion research revolves around the role and importance 
of basic emotions94,95. According to discrete emotion theory96, a small number of basic emotions 
(e.g., joy, anger, fear, disgust) are the building blocks of emotional states, each characterized by 
specific and universal behavioural, physiological, and neural signatures. MVPA has been used 
to provide evidence for such emotion-specific neural correlates. In one study, participants either 
viewed short movies depicting the basic emotions or mentally imagined being in a particular 
emotional state97. Classifiers trained to distinguish emotion categories during movie viewing 
could classify emotion categories during mental imagery, suggesting that basic emotions are 
supported by discrete neural signatures that generalize across emotion-eliciting conditions. 
However, evidence against basic emotion theory comes from an fMRI study that investigated 
the neural similarity of 20 complex emotional states (e.g., jealousy, nostalgia) inferred from brief 
verbal narratives98. For each narrative, participants indicated the degree to which it elicited each 
of the six basic emotions. These data were used to construct a similarity space, in which 
complex emotions that elicited basic emotions in similar ways were represented as relatively 
more similar to each other. Subsequently, MVPA was used to obtain the neural similarity of the 
activity patterns evoked by the 20 conditions in mentalizing regions (medial prefrontal cortex; 
temporo-parietal junction) that were previously shown to distinguish basic emotions99. Results 
from this representational similarity analysis showed that a model based on appraisal 
theory100,101 significantly outperformed the basic emotion model at explaining the mental “space” 
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of complex emotions, suggesting that these are high-dimensional and cannot be fully reduced to 
a combination of basic emotions. 

These studies demonstrate how MVPA can provide information about the dimensions 
that structure our knowledge and experience of emotions, with complex emotions only partly 
described by reference to basic emotion categories. 
 
Social Cognition 
Successful navigation of the social world requires recognizing that the sensations and mental 
states of other humans can differ from our own. According to simulation theory102, we 
understand others’ minds through a simulation that is grounded in shared perceptual processes. 
In contrast, according to the theory-theory103, social cognition is more like inductive reasoning, in 
which propositions are assessed to make assessments of others’ likely mental states. To 
provide evidence for the simulation theory, one fMRI study104 induced aversive emotions (e.g. 
pain, disgust, and unfair treatment) in participants, who also observed a friend experiencing the 
same emotions. Cross-decoding analyses (e.g., train on painful vs non-painful stimulation, test 
on disgusting vs neutral gustatory stimuli) revealed patterns in cingulate and insular regions that 
generalised across both the aversive stimulus type (pain, gustatory) and, importantly, also over 
the recipient (self, other). These results support the simulation theory in that they identify shared 
neural encoding of directly and vicariously experienced sensations. However, MVPA has also 
provided evidence for the theory-theory105. Sighted and congenitally blind individuals listened to 
stories that described a protagonist learning something of either positive or negative valence, 
either through the visual modality (e.g., the protagonist sees a break-up note from his partner) 
or auditory modality (e.g., the protagonist learns her job application was successful via a 
voicemail). Multivoxel patterns in the right temporal-parietal junction (rTPJ) encoded the 
information source of the narratives (heard vs seen) and, crucially, did so equally for blind and 
sighted participants. These results support the theory-theory in that they evidence a concept of 
"seeing" that is not grounded in first-hand experience (absent in the blind participants), but 
rather an abstract one that is derived from second-hand experience, such as through language. 

Representations make some dimensions explicit while obscuring others. Here we see 
how some of the representations of emotionally adverse experiences revealed with MVPA make 
explicit the valence of an emotional experience while obscuring whether it is the self or another 
person who is having that experience. 
 
Sensori-motor prediction  
Influential theories in the domain of motor behaviour state that actions are accompanied by 
efference copies that serve to predict and suppress the sensory consequences of one’s own 
actions106,107, reducing self-generated sensations. Research in animals has supported this idea, 
for example by showing that primary somatosensory cortex (S1) encodes motor-related activity 
before movement initiation108. Two recent fMRI studies used MVPA to provide evidence for 
similar anticipatory signals in the human brain. In one study109, participants performed a delayed 
object manipulation task in the scanner. On each trial, a cue indicated the action to be 
performed on that trial (e.g., lift object with right hand). Results showed that the effector used in 
the action (left or right hand) could be decoded from S1 activity patterns during the delay period 
before the movement, in the absence of sensory input. A related study64 investigated the 
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planning of movements at a finer scale (Figure 4A), at the level of individual finger presses 
(thumb, middle finger, little finger). Multivariate activity patterns in S1 carried information about 
the specific finger that participants planned to move, even on no-go trials, where the action was 
planned but not executed. Finally, representational similarity analysis revealed that the finger-
specific activity patterns during the planning phase resembled the finger-specific activity 
patterns during the execution phase (Figure 4C). These studies provide converging evidence 
that motor planning activates predicted sensory consequences in S1, in line with classical 
theories of motor control in which an internal forward model predicts future body states and their 
sensory correlates. 

In this example, the ability of MVPA to distinguish the activity profiles of individual digits 
shed new light on the way we prepare to produce complex behaviours and anticipate their 
sensory consequences.  
 

 
Figure 4. Schematic summary of an fMRI study investigating motor prediction64. A) Single finger 
movements were cued before an extended motor planning interval of varying duration (left). On ”go” trials, 
participants carried out the movement; it was withheld on “no go” trials, which were further analysed to 
segregate ”pure” planning processes. B) Representational dissimilarity matrix in contralateral primary 
somatosensory cortex (S1) for the planning and execution phases, measured with fMRI. C) 
Multidimensional scaling (MDS) illustration of the correspondence between the relative similarities of 
activity patterns across planning (orange) and execution (blue) of single finger movements (1=thumb, 
3=middle, 5=little). While the main distinction was between planning and execution (principal component 
1 (PC1); left panel), the preserved geometry from preparation to execution (PC2-PC3; right panel) 
supports the proposal that planned behaviour in part entails pre-activation of anticipated sensory 
outcomes of behaviour. 
 
Sequential Motor Behaviour 
Learning to play even a simple piano tune involves pressing the right keys in the right order at 
the right times. How does a parallel brain produce such series of behaviours coherently? One 
family of models posits a chain of associations, such that each behaviour acts, via associative 
processes, to trigger the next110. In contrast, competitive queuing models propose that action 
sequences are encoded in a parallel scheme111. A serial model predicts that preparation of the 
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first act alone should suffice to elicit the action chain, while a competitive queuing model 
predicts simultaneous pre-activation of all effectors: the first in the sequence most strongly, and 
each other in proportion to its position in the temporal sequence. An MEG study supports the 
competitive queuing model63. Participants learned sequences of timed finger keypresses 
(Figure 5A). At test, separate preparatory and performance phases enabled each to be 
analysed separately. Using a cross-decoding approach, linear classifiers were trained on sensor 
data acquired during performance and then tested on activity patterns that were evoked during 
preparation, as an index of the activation state of each finger. Results revealed the predicted 
ordinal arrangement of preparatory activity (Figure 5B), as predicted by competitive queuing 
models. 

This study reveals how multivariate measures of neural activity offer a sensitive and non-
intrusive measure of the internal mental states that precede overt behaviour. In this way they 
are able to test the implications of formal models that make detailed and time-specific 
predictions about those internal states. 

 

 
Figure 5. Schematic summary of an MEG study investigating sequential motor behaviour63. A) A cue 
signalled which of several learned finger-movement sequences to prepare, initiating a planning interval. 
Next a “go” cue instructed the participant to execute the sequence. B) MEG recordings captured the 
strength of activation of patterns representing each finger movement during the planning interval (left, 
before “go” cue). These were ordered systematically such that the first planned movement dominated the 
observed MEG patterns, followed by the second, third, and so on, in an orderly queue. This finding is 
predicted by formal models of “competitive queuing” that postulate a mechanism by which a parallel 
system can produce serial behaviours.  
 
Limitations of MVPA for testing cognitive theories 
While the aim of our review is to show how MVPA of neuroimaging data can be (and has been) 
used to test cognitive theories, there are clearly also limitations to this approach. Most of these 
limitations are shared with other correlational neuroscience methods, some are specific to one 
or multiple neuroimaging methods (e.g., fMRI, MEG, or EEG), and still others are specifically 
related to MVPA. Here, we briefly mention some of these limitations, and describe how they 
apply to several of the example studies reviewed above. 

One well-known limitation of correlational methods is that they do not provide evidence 
that a particular neural measure (e.g., activity of a neuron) causally contributes to the cognitive 
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process of interest. For example, the studies that used MVPA to reveal object-specific 
preparatory activity in visual search tasks interpreted this as evidence for an attentional 
template83,84. Similarly, studies that demonstrated the activation of encoding context during 
memory retrieval assumed this activation to contribute to memory performance87. However, an 
alternative interpretation for these findings is that this such activity reflects epiphenomenal 
mental imagery that is unrelated to attentional selection or memory. While task design and 
correlation of neural measures with behavioral measures112,113 can go some way to alleviating 
these concerns, ideally MVPA findings are supplemented by causal evidence such as provided 
by TMS. This approach has been successfully used, for example, to demonstrate that the 
contextual facilitation in visual cortex observed with MVPA causally contributes to object 
recognition114. 

MVPA can be highly sensitive to small differences, complicating the interpretation of 
above-chance decoding. Specifically, the finding that two conditions can be decoded above 
chance in a particular brain region (in fMRI) or at a particular time point (in M/EEG) is not 
necessarily informative about the underlying processes driving the decoding. For example, 
decoding whether a participant experiences aversive or neutral events104 could be driven by a 
range of processes, including sensory processing, affective responses, (preparation of) 
defensive actions, or even artifacts such as small eye or body movements115. For this reason, 
researchers have adopted the cross-decoding approach (Figure 1b), in which classifiers are 
trained on one distinction (e.g., experiencing pain) and tested on another distinction (e.g., 
viewing someone else in pain) to reveal commonalities and thereby inform interpretation. An 
advantage of this approach is that demonstrating how classification generalises over a range of 
materials, tasks, or other contexts reduces the possibility that confounding variables specific to 
one of those contexts explains decoding performance. Finally, as we have seen, another 
informative approach is to combine MVPA with RSA to relate neural similarity to the similarity 
between conditions in competing cognitive models (Figure 1c).  

While MVPA is typically more sensitive than univariate analyses, it is still limited by the 
spatial resolution of neuroimaging methods. As such, it is likely that many neural signals are not 
expressed at the level of voxels (fMRI), electrodes (EEG), or sensors (MEG). Therefore, finding 
no evidence for a particular neural distinction cannot be taken as evidence that such a 
distinction does not exist in the brain. For example, the lack of a difference in decoding the 
source of narratives (heard vs seen) in blind and sighted participants105 could reflect the 
insensitivity of MVPA to such information that may be present at other scales. Furthermore, the 
sensitivity of MVPA differs across brain regions and neuroimaging methods (e.g., fMRI vs 
MEG116), complicating direct comparisons and multimethod integration. 

Finally, a general concern that has been raised about neuroimaging research is the 
“consistency fallacy”. Neuroimaging results that are merely consistent with one cognitive theory 
cannot be taken as strong evidence for that theory2,117. To be most informative, the results 
should additionally be inconsistent with one or more alternative theories. One example from the 
studies reviewed here is the finding of above-chance decoding of basic emotion categories97. 
While this finding is certainly consistent with the discrete emotion theory, above-chance 
decoding is also consistent with alternative theories (e.g., appraisal theory). Indeed, subsequent 
studies used MVPA in combination with RSA to test more detailed predictions of these theories, 
showing that the representation of complex emotions cannot be fully captured by a combination 
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of basic emotions98. We suggest that MVPA in combination with cross-decoding or RSA allows 
for more informative tests of cognitive theories, but these approaches do not in themselves 
provide a substitute for well-articulated alternative models.  

Thus, while neuroimaging and MVPA are not without limitations, many shared with other 
approaches, we believe that the examples provided in this review show that, when used 
appropriately, MVPA can be a useful method to test cognitive theories. 
 
Future directions 
Further developments in analysis methods promise to make MVPA even more useful for testing 
cognitive theories. For example, the “hyperalignment” approach68 aligns representational 
spaces (as opposed to anatomy) across individuals, making it possible to distinguish aspects of 
the geometry of those spaces that are shared across individuals from idiosyncratic variation. 
This approach extends the improvement in representational granularity provided by MVPA from 
items and events to individual participants118,119. Reliable measures at the single-participant 
level allow tests of hypotheses about links between brain measures and individual differences in 
behaviour120, which in turn may address new predictions that arise from cognitive models121. 
Second, multivariate connectivity methods122,123 measure connectivity in information shared 
across brain regions, rather than activation per se, an approach that may lend itself to cognitive 
theories that describe transformation of representations in stages over time. Finally, rapid 
developments in the field of artificial intelligence have generated new computational models and 
improved decoding algorithms124, which may in turn provide more sensitive and robust 
descriptions of the neural patterns that correspond to hypothesised cognitive representations.  

Improvements in the quality and resolution of neuroimaging data will also bring new 
opportunities for testing cognitive theories. For example, high spatial resolution fMRI data, 
combined with MVPA, allows distinguishing representations within specific cortical layers, which 
has revealed similarities and differences between representations activated during cognitive 
tasks of working memory, attention, prediction, and imagery125. Further, recent developments in 
high-density mobile EEG systems now allow for measuring neural activity during natural 
behaviour126. Combined with MVPA, this opens up the possibility to investigate cognitive 
processes in more ecologically-valid environments and tasks127, which may provide better ways 
to test how cognition depends on complex contextual variables than possible in standard 
controlled laboratory tasks128. 

In sum, these recent analytical and technical developments improve on existing 
advantages of MVPA for testing specific, granular predictions that cognitive models make about 
patterns of brain activity and their variability over time, anatomical location, participants, and 
contexts. Of course, better data and more powerful analysis methods alone are no substitute for 
continued progress in developing the cognitive theories that we aim to test using these 
methods. Ideally, such theories are computationally explicit and provide a mechanistic 
explanation of the cognitive process under investigation129–131; among other advantages, those 
features will tend to support specific predictions about patterns of neural activity in space and 
time that are measurable with MVPA. Researchers’ questions are often shaped, at least in part, 
by the methods and tools available to them. As applications of MVPA to cognitive theories 
continue to prove their value, we believe researchers will see in these methods new ways to 
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develop, improve, and refute those theories, across the span of the human behavioural 
repertoire.    
 
Conclusion 
Since their advent, human neuroimaging methods have attracted criticism of their ability to go 
beyond localization of neural events, whether in anatomical regions or in time, and thus whether 
they would be able to shed any light on functional accounts of human behaviour. This criticism 
and the ensuing responses have rapidly and productively shaped the way researchers approach 
cognitive neuroimaging; the large-sample, data-rich, and hypothesis-driven studies of today 
represent a marked leap forward from the relatively simple and often exploratory studies of only 
20 years ago. That is not to criticise those earlier researchers (amongst them the present 
authors!) but rather it is a sign of progress in common with that seen in other life sciences 
methodologies. In that spirit, we argue that human neuroimaging will continue to deliver on its 
early promise as one tool in the toolbox for understanding human behaviour, providing neural 
constraints on cognitive theories1. 
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