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Summary 

The theory of Grobner Bases originated in the work of Buchberger [11] and is now con­
sidered to be one of the most important and useful areas of symbolic computation. A 
great deal of effort has been put into improving Buchberger's algorithm for computing a 
Grobner Basis, and indeed in finding alternative methods of computing Grobner Bases. 
Two of these methods include the Grobner Walk method [1] and the computation of 
Involutive Bases [58]. 

By the mid 1980's, Buchberger's work had been generalised for noncommutative poly­
nomial rings by Bergman [8] and Mora [45]. This thesis provides the corresponding 
generalisation for Involutive Bases and (to a lesser extent) the Grobner Walk, with the 
main results being as follows. 

(1) Algorithms for several new noncommutative involutive divisions are given, including 
strong; weak; global and local divisions. 

(2) An algorithm for computing a noncommutative Involutive Basis is given. When used 
with one of the aforementioned involutive divisions, it is shown that this algorithm 
returns a noncommutative Grobner Basis on termination. 

(3) An algorithm for a noncommutative Grobner Walk is given, in the case of conversion 
between two harmonious monomial orderings. It is shown that this algorithm gener­
alises to give an algorithm for performing a noncommutative Involutive Walk, again 
in the case of conversion between two harmonious monomial orderings. 

( 4) Two new properties of commutative involutive divisions are introduced (stability and 
extendibility), respectively ensuring the termination of the Involutive Basis algorithm 
and the applicability (under certain conditions) of homogeneous methods of comput­
ing Involutive Bases. 

Source code for an initial implementation of an algorithm to compute noncommutative 
Involutive Bases is provided in Appendix B. This source code, written using ANSI C and 
a series of libraries (Alglib) provided by MSSRC [46], forms part of a larger collection of 
programs providing examples for the thesis, including implementations of the commutative 
and noncommutative Grobner Basis algorithms [11 , 45]; the commutative Involutive Basis 
algorithm for the Pommaret and Janet involutive divisions [58]; and the Knuth-Bendix 
critical pairs completion algorithm for monoid rewrite systems [39]. 

ii 



Acknowledgements 

Many people have inspired me to complete this thesis, and I would like to take this 
opportunity to thank some of them now. 

I would like to start by thanking my family for their constant support, especially my 
parents who have encouraged me every step of the way. Mae fy nyled yn fawr iawn i chi. 

I would like to thank Prof. Larry Lambe from MSSRC, whose software allowed me to 
test my theories in a way that would not have been possible elsewhere. 

Thanks to all the Mathematics Staff and Students I have had the pleasure of working with 
over the past seven years. Particular thanks go to Dr. Bryn Davies, who encouraged me 
to think independently; to Dr. Jan Abas, who inspired me to reach goals I never thought 
I could reach; and to Prof. Ronnie Brown, who introduced me to Involutive Bases. 

I would like to finish by thanking my Supervisor Dr. Chris Wensley. Our regular meetings 
kept the cogs in motion and his insightful comments enabled me to avoid wrong turnings 
and to get the little details right. Diolch yn fawr! 

This work has been gratefully supported by the EPSRC and by the School of Informatics 
at the University of Wales, Bangor. 

Typeset using I¥I'E;X, XFig and )fy"-pic. 

iii 



"No one has ever done anything like this." 

"That's why it's going to work." 

The Matrix [54] 
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Introduction 

Background 

Grabner Bases 

During the second half of the twentieth century, one of the most successful applications of 

symbolic computation was in the development and application of Grabner Basis theory 

for finding special bases of ideals in commutative polynomials rings. Pioneered by Bruno 

Buchberger in 1965 [ll], the theory allowed an answer to the question "What is the 

unique remainder when a polynomial is divided by a set of polynomials?". Buchberger's 

algorithm for computing a Grobner Basis was improved and refined over several decades 

[1, 10, 21, 29], aided by the development of powerful symbolic computation systems over 

the same period. Today there is an implementation of Buchberger's algorithm in virtually 

all general purpose symbolic computation systems, including Maple [55] and Mathematica 

[57], and many more specialised systems. 

What is a Grabner Basis? 

Consider the problem of finding the remainder when a number is divided by a set of 

numbers. If the dividing set contains just one number, then the problem only has one 

solution. For example, "5" is the only possible answer to the question "What is 20 7 47". 

If the dividing set contains more than one number however, there may be several solutions, 

as the division can potentially be performed in more than one way. 

Example . Consider a tank containing 211 of water. Given two empty jugs, one with 

a capacity of 21 and the other 51 , is it possible to empty the tank using just the jugs, 

assuming only full jugs of water may be removed from the tank? 

1 
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21L 5L 2L 

Trying to empty the tank using the 21 jug only, we are able to remove 10 x 2 = 201 of 

water from the tank, and we are left with 11 of water in the tank. Repeating with the 

51 jug, we are again left with 11 of water in the tank. If we alternate between the jugs 

however (removing 21 of water followed by 51 followed by 21 and so on), the tank this 

time does become empty, because 21 = 2 + 5 + 2 + 5 + 2 + 5. 

The observation that we are left with a different volume of water in the tank dependent 

upon how we try to empty it corresponds to the idea that the remainder obtained when 

dividing the number 21 by the numbers 2 and 5 is dependent upon how the division is 

performed. 

This idea also applies when dividing polynomials by sets of polynomials - remainders 

here will also be dependent upon how the division is performed. However, if we divide 

a polynomial with respect to a set of polynomials that is a Grabner Basis, then we will 

always obtain the same remainder no matter how the division is performed. This fact, 

along with the fact that any set of polynomials can be transformed into an equivalent set 

of polynomials that is a Grabner Basis, provides the main ingredients of Grabner Basis 

theory. 

Remark. The 'Grabner Basis' for our water tank example would be just a 11 jug, 

allowing us to empty any tank containing n1 of water (where n EN). 

Applications 

There are numerous applications of Grabner Bases in all branches of mathematics, com­

puter science, physics and engineering [12]. Topics vary from geometric theorem proving 

to solving systems of polynomial equations, and from algebraic coding theory to the design 

of experiments in statistics. 
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Example. Let F := {x + y + z = 6, x2 + y2 + z2 = 14, x3 + y3 + z3 = 36} be a set 

of polynomial equations. One way of solving this set for x, y and z is to compute a 

lexicographic G ro bner Basis for F. This yields the set G : = { x + y + z = 6, y2 + y z + z2 -

6y - 6z = -11, z3 - 6z2 + llz = 6}, the final member of which is a univariate polynomial 

in z, a polynomial we can solve to deduce that z = 1, 2 or 3. Substituting back into the 

second member of G, when z = 1, we obtain the polynomial y2 - 5y+ 6 = 0, which enables 

us to deduce that y = 2 or 3; when z = 2, we obtain the polynomial y2 - 4y + 3 = 0, 

which enables us to deduce that y = 1 or 3; and when z = 3, we obtain the polynomial 

y2 
- 3y + 2 = 0, which enables us to deduce that y = 1 or 2. Further substitution into 

x + y + z = 6 then enables us to deduce the value of x in each of the above cases, enabling 

us to give the following table of solutions for F. 

X 3 2 3 1 2 1 

y 2 3 1 3 1 2 

z 1 1 2 2 3 3 

lnvolutive Bases 

As Grobner Bases became popular, researchers noticed a connection between Buchberger 's 

ideas and ideas originating from the Janet-Riquier theory of Partial Differential Equations 

developed in the early 20th century (see for example [44]). This link was completed for 

commutative polynomial rings by Zharkov and Blinkov in the early 1990's [58] when they 

gave an algorithm to compute an Involutive Basis that provides an alternative way of 

computing a Grobner Basis. Early implementations of this algorithm (an elementary 

introduction to which can be found in [13]) compared favourably with the most advanced 

implementations of Buchberger's algorithm, with results in [25] showing the potential of 

the Involutive method in terms of efficiency. 

What is an lnvolutive Basis? 

Given a Grobner Basis G, we know that the remainder obtained from dividing a polyno­

mial with respect to G will always be the same no matter how the division is performed. 

With an Involutive Basis, the difference is that there is only one way for the division to 

be performed, so that unique remainders are also obtained uniquely. 

This effect is achieved through assigning a set of multiplicative variables to each polynomial 
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in an Involutive Basis H, imposing a restriction on how polynomials may be divided 

by H by only allowing any polynomial h E H to be multiplied by its corresponding 

multiplicative variables. Popular schemes of assigning multiplicative variables include 

those based on the work of Janet [35], Thomas [52] and Pommaret [47]. 

Example. Consider the Janet Involutive Basis H := {xy - z, yz + 2x + z, 2x2 + xz + 
z2

, 2x2 z + xz2 + z3
} with mult iplicative variables as shown in the table below. 

Polynomial 

xy - z 

yz + 2x + z 

2x2 + x z + z2 

2x2z + xz2 + z 3 

Janet Multiplicative Variables 

{x,y} 

{x,y,z} 

{x} 
{x,z} 

To illustrate that any polynomial may only be involutively divisible by at most one member 

of any lnvolutive Basis, we include the following two diagrams, showing which monomials 

are involutively divisible by H , and which are divisible by the corresponding Grabner 

Basis G := {xy - z , yz + 2x + z, 2x2 + x z + z2}. 

z z 
• . 
• • 

y 

• • 

• 

. 
• . 

Grabner Basis lnvolutive Basis X 

Note that the irreducible monomials of both bases all appear in the set {l, x, yi, zi, x zi }, 

where i ~ l; and that the cube, the 2 planes and the line shown in the right hand diagram 

do not overlap. 
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N oncommutative Bases 

There are certain types of noncommutative algebra to which methods for commutative 

Grabner Bases may be applied. Typically, these are algebras with generators {x1 , ... , xn} 

for which products XjXi with j > i may be rewritten as (xiXj + other terms). For example, 

version 3-0-0 of Singular [31] (released in June 2005) allows the computation of Grabner 

Bases for G-algebras. 

To compute Grabner Bases for ideals in free associative algebras however, one must turn to 

the theory of noncommutative Grabner Bases. Based on the work of Bergman [8] and Mora 

[45], the theory answers the question "What is the remainder when a noncommutative 

polynomial is divided by a set of noncommutative polynomials?", and allows us to find 

Grabner Bases for such algebras as path algebras [37] . 

The final piece of the jigsaw is to mirror the application of Zharkov and Blinkov's Involu­

tive methods to the noncommutative case. This thesis provides the first extended attempt 

at accomplishing this task, improving the author's first basic algorithms for computing 

noncommutative Involutive Bases [20] and providing a full theoretical foundation for these 

algorithms. 

Structure and Principal Results 

This thesis can be broadly divided into two parts: Chapters 1 through 4 survey the 

building blocks required for the theory of noncommutative lnvolutive Bases; the remain­

der of the thesis then describes this theory together with different ways of computing 

noncommutative lnvolutive Bases. 

Part 1 

Chapter 1 contains accounts of some necessary preliminaries for our studies - a review 

of both commutative and noncommutative polynomial rings; ideals; monomial orderings; 

and polynomial division. 

We survey the theory of commutative Grabner Bases in Chapter 2, basing our account 

on many sources, but mainly on the books [7] and [22]. We present the theory from 

the viewpoint of S-polynomials (for example defining a Grabner Basis in terms of S-
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polynomials), mainly because Buchberger's algorithm for computing a Grabner Basis 

deals predominantly with S-polynomials. Towards the end of the Chapter, we describe 

some of the theoretical improvements of Buchberger's algorithm, including the usage of 

selection strategies, optimal variable orderings and Logged Grabner Bases. 

The viewpoint of defining Grabner Bases in terms of S-polynomials continues in Chapter 

3, where we encounter the theory of noncommutative Grabner Bases. We discover that 

the theory is quite similar to that found in the previous chapter, apart from the definition 

of an S-polynomial and the fact that not all input bases will have finite Grabner Bases. 

In Chapter 4, we acquaint ourselves with the theory of commutative lnvolutive Bases. 

This is based on the work of Zharkov and Blinkov [58]; Gerdt and Blinkov [25, 26]; Gerdt 

[23, 24]; Seiler [50, 51]; and Apel [2, 3], with the notation and conventions taken from a 

combination of these papers. For example, notation for involutive cones and multiplicative 

variables is taken from [25], and the definition of an involutive division and the algorithm 

for computing an Involutive Basis is taken from [50]. 

As for the content of Chapter 4, we introduce the Janet, Pommaret and Thomas divisions 

in Section 4.1; describe what is meant by a prolongation and autoreduction in Section 4.2; 

introduce the properties of continuity and constructivity in Section 4.3; give the Involutive 

Basis algorithm in Section 4.4; and describe some improvements to this algorithm in 

Section 4.5. In between all of this, we introduce two new properties of involutive divisions, 

stability and extendibility, that ensure (respectively) the termination of the Involutive 

Basis algorithm and the applicability (under certain conditions) of homogeneous methods 

of computing Involutive Bases. 

Part 2 

The main results of the thesis are contained in Chapter 5, where we introduce the theory 

of noncommutative lnvolutive Bases. In Section 5.1, we define two methods of performing 

noncommutative involutive reduction, the first of which (using thin divisors) allows the 

mirroring of theory from Chapter 4, and the second of which ( using thick divisors) allows 

efficient computation of involutive remainders. We also define what is meant by a non­

commutative involutive division, and give an algorithm for performing noncommutative 

involutive reduction. 

In Section 5.2, we generalise the notions of prolongation and autoreduction to the non-
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commutative case, introducing two different types of prolongation (left and right) to 

reflect the fact that left and right multiplication are different operations in noncommuta­

tive polynomial rings. These notions are then utilised in the algorithm for computing a 

noncommutative Involutive Basis, which we present in Section 5.3. 

In Section 5.4, we introduce two properties of noncommutative involutive divisions. Con­

tinuity helps ensure that any Locally Involutive Basis is an Involutive Basis; conclusivity 

ensures that for any given input basis, a finite Involutive Basis will exist if and only if 

a finite Grebner Basis exists. A third property is also introduced for weak involutive 

divisions to ensure that any Locally Involutive Basis is a Grebner Basis (Involutive Bases 

with respect to strong involutive divisions are automatically Grebner Bases). 

Section 5.5 provides several involutive divisions for use with the noncommutative Involu­

tive Basis algorithm, including two global divisions and ten local divisions. The properties 

of these divisions are analysed, with full proofs given that certain divisions satisfy certain 

properties. We also show that some divisions are naturally suited for efficient involutive 

reduction, and speculate on the existence of further involutive divisions. 

In Section 5.6, we briefly discuss the topic of the termination of the noncommutative 

Involutive Basis algorithm. In Section 5.7, we provide several examples showing how 

noncommutative Involutive Bases are computed, including examples demonstrating the 

computation of involutive complete rewrite systems for groups. Finally, in Section 5.8, we 

discuss improvements to the noncommutative Involutive Basis algorithm, including how 

to introduce efficient involutive reduction and Logged Involutive Bases. 

Chapter 6 introduces and generalises the theory of the Grabner Walk, where a Grebner 

Basis with respect to one monomial ordering may be computed from a Grebner Basis 

with respect to another monomial ordering. In Section 6.1, we summarise the theory of 

the commutative Grobner Walk (based on the papers [1] and [18]), and we describe a 

generalisation of the theory to the Involutive case due to Golubitsky [30]. In Section 6.2, 

we then go on to partially generalise the theory to the noncommutative case, giving algo­

rithms to perform both Grebner and Involutive Walks between two harmonious monomial 

orderings. 

After some concluding remarks in Chapter 7, we provide full proofs for two Propositions 

from Section 5.5 in Appendix A. Appendix B then provides ANSI C source code for an 

initial implementation of the noncommutative Involutive Basis algorithm, together with 
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a brief description of the Alglib libraries used in conjunction with the code. Finally, in 

Appendix C, we provide sample sessions showing the program given in Appendix B in 

action. 



Chapter 1 

Preliminaries 

In this chapter, we will set out some algebraic concepts that will be used extensively in 

the following chapters. In particular, we will introduce polynomial rings and ideals, the 

main objects of study in this thesis. 

1.1 Rings and Ideals 

1.1.1 Groups and Rings 

D efinit ion 1.1.1 A binary operation on a set S is a function * : S x S - S such that 

associated with each ordered pair (a, b) of elements of S is a uniquely defined element 

(a*b)ES. 

D efinition 1.1.2 A group is a set G, with a binary operation*, such that the following 

conditions hold. 

(a) 91 * 92 E G for all 91, 92 E G (closure). 

(b) 91 * (92 * 93) = (91 * 92) * 93 for all 91, 92, 93 E G (associat ivity). 

(c) There exists an element e E G such that for all g E G, e * g = g = 9 * e (identity). 

(d) For each element g E G, there exists an element g-1 E G such that g- 1*g = e = 9*9-l 

(inverses). 

9 
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Definition 1. 1.3 A group G is abelian if the binary operation of the group is commuta­

tive, that is 9 1 * 92 = 92 * 91 for all 91, 92 E G. The operation in an abelian group is often 

written additively, as 91 + 92, with the inverse of 9 written - 9. 

Definition 1. 1 .4 A rng is a set R with two binary operations + and x , known as addition 

and multiplication, such that addition has an identity element 0, called zero, and the 

following axioms hold. 

(a) R is an abelian group with respect to addition. 

( c) r 1 x ( r2 + r3) = r1 x r2 + r1 x r3 and ( r 1 + r2) x r3 = r1 x r3 + r2 x r3 for all r1, r2, r3 E R 

(the distributive laws hold) . 

Definition 1.1.5 A rng R is a ring if it contains a unique element 1, called the unit 

element, such t hat 1 i= 0 and 1 x r = r = r x 1 for all r E R . 

Definition 1.1.6 A ring R is commutative if multiplication (as well as addition) is com­

mutative, that is r1 x r2 = r2 x r1 for all r1, r2 E R. 

Definition 1.1.7 A ring R is noncommutative if r1 x r 2 i= r 2 x r1 for some r 1, r2 ER. 

Definition 1.1.8 If Sis a subset of a ring R that is itself a ring under the same binary 

operations of addition and multiplication, then S is a subring of R. 

Definition 1.1. 9 A ring R is a division ring if every nonzero element r E R has a 

multiplicative inverse r-1. A field is a commutative division ring. 

1.1.2 Polynomial Rings 

Commutative Polynomial Rings 

A nontrivial polynomial p in n ( commuting) variables x1 , ... , Xn is usually written as a 

sum 

(1.1) 

where k is a positive integer and each summand is a term made up of a nonzero coefficient 
1 2 n 

ai from some ring R and a monomial x~i x;i ... x~i in which the exponents ef, ... , er are 
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nonnegative integers. It is clear that each monomial may be represented in terms of its 

exponents only, as a multidegree ei = ( e}, e;, ... , ef), so that a monomial may be written 

as a multiset x ei over the set {x1 , ... , xn}. This leads to a more elegant representation of 

a nontrivial polynomial, 

(1.2) 

and we may think of such a polynomial as a function f from the set of all multidegrees 

Nn to the ring R with finite support (only a finite number of nonzero images). 

Example 1.1.10 Let p = 4x2y + 2x + !~ be a polynomial in two variables x and y with 

coefficients in IQ. This polynomial can be represented by the function f : N2 - Q given 

by 

4, a=(2,1) 

f(a) = 
2, a= (1, 0) 
19 a= (0, 0) 80' 

0 otherwise. 

Remark 1. 1. 11 The zero polynomial p = 0 is represented by the function f (a) = 0 R for 

all possible a. The constant polynomial p = 1 is represented by the function f(a) = lR 

for a= (0, 0, ... , 0) , and f(a) = OR otherwise. 

Remark 1.1.12 The product m 1 x m2 of two monomials m 1, m2 with corresponding 

multidegrees e1 , e2 E Nn is the monomial corresponding to the mult idegree e1 + e2 . For 

example, if m1 = XIX2X~ and m2 = X1X2X~ (so that e1 = (2, 1, 3) and e2 = (1, 1, 2)), then 

m1 X m2 = xrx~x3 as e1 + e2 = (3, 2, 5). 

Definition 1.1.13 Let R[x1 , x2, ... , Xn] denote the set of all functions f : Nn - R such 

that each function f represents a polynomial in n variables x 1 , ... , Xn with coefficients 

over a ring R. Given two functions f, g E R[x1 , x2, . .. , xnl, let us define the functions 

f + g and f x gas follows. 

(f + g)(a) = J(a) + g(a) for all a E Nn; 

(f X g)(a) = L f(f3) x g(,) for all a E Nn. 
/J+r=a 

Then the set R[x1 , x2, . . . , Xn] becomes a ring, known as the polynomial ring inn variables 

over R, with the functions corresponding to the zero and constant polynomials being the 

respective zero and unit elements of the ring. 
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Remark 1.1.14 In R[x1, x2, ... , xnl, R is known as the coefficient ring. 

Noncommutative Polynomial Rings 

A nontrivial polynomial p in n noncommuting variables x1 , . . . , Xn is usually written as a 

sum 
k 

p = L aiwi, 
i=l 

(1.3) 

where k is a positive integer and each summand is a term made up of a nonzero co­

efficient ai from some ring R and a monomial wi that is a word over the alphabet 

X = { x1, x2, ... , Xn}, We may think of a noncommutative polynomial as a function 

f from the set of all words X* to the ring R. 

Remark 1.1.15 The zero polynomial p = 0 is the polynomial ORc, where c is the empty 

word in X*. Similarly lRc is the constant polynomial p = 1. 

Remark 1.1.16 The product w 1 x w2 of two monomials w1 , w2 E X* is given by con­

catenation. For example, if X = {x1,X2,x3}, W1 = X~X2 and W2 = xrx3, then W1 X W2 = 
2 3 

X3X2X1X3. 

Definition 1.1.17 Let R(x1, x2, ... , XnJ denote the set of all functions f : X* ---+ R 

such that each function f represents a polynomial in n noncommuting variables with 

coefficients over a ring R. Given two functions f, g E R(x1, x2, .. . , XnJ, let us define the 

functions f + g and f x g as follows. 

(f + g)(w) = f(w) + g(w) for all w EX*; 

(f x g)(w) = L f(u) x g(v) for all w EX*. 
uxv=w 

Then the set R(x1, x2, ... , XnJ becomes a ring, known as the noncommutative polynomial 

ring in n variables over R, with the functions corresponding to the zero and constant 

polynomials being the respective zero and unit elements of the ring. 

1.1.3 Ideals 

Definition 1.1.18 Let n be an arbit rary commutative ring. An ideal J in n is a subring 

of n satisfying the following additional condition: jr E J for all j E J, r E n. 
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Remark 1.1.19 In the above definition, if R is a polynomial ring in n variables over 

a ring R (R = R[x1 , ... , Xn]), the ideal J is a polynomial ideal. We will only consider 

polynomial ideals in this thesis. 

Definition 1. 1.20 Let R be an arbitrary noncommutative ring. 

• A left (right) ideal J in R is a subring of R satisfying the following additional 

condition: rj E J (jr E J) for all j E J, r E R. 

• A two-sided ideal J in R is a subring of R satisfying the following additional condi­

tion: r1jr2 E J for all j E J, r1, r2 ER. 

Remark 1.1.21 Unless otherwise stated, all noncommutative ideals considered in this 

thesis will be two-sided ideals. 

Definition 1.1. 22 A set of polynomials P = {p1 , P2, ... , Pm} is a basis for an ideal J of 

a noncommutative polynomial ring R if every polynomial q E J can be written as 

k 

q = L £ipiri (£i, ri En, Pi E P). (1.4) 
i=l 

We say that P generates J, written J = (P). 

Remark 1.1.23 The above definition has an obvious generalisation for left and right 

ideals of noncommutative polynomial rings and for ideals of commutat ive polynomial 

rings. 

Example 1.1.24 Let R be the noncommutative polynomial ring Q(x, y), and let J = (P) 

be an ideal in R, where P := { x2y + yx - 2, yxy - x + 4y}. Consider the polynomial 

q := 2x3y + yx2 y + 2xyx - 4x2 y + x3 
- 2xy-4x, and let us ask if q is a member of the ideal. 

To answer this question, we have to find out if there is an expression for q of the type 

shown in Equation (1.4). In this case, it turns out that q is indeed a member of the ideal 

(because q = 2x(x2y + yx - 2) + (x2y + yx - 2)xy - x2(yxy - x + 4y)), but how would we 

answer the question in general? This problem is known as the Ideal Membership Problem 

and is stated as follows. 

D efinition 1.1.25 (The Ideal Membership Problem) Given an ideal Janda poly­

nomial q, does q E J? 
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As we shall see shortly, the Ideal Membership Problem can be solved by dividing a poly­

nomial with respect to a Grabner Basis for the ideal J. But before we can discuss this, 

we must first introduce the notion of polynomial division, for which we require a fixed 

ordering on the monomials in any given polynomial. 

1.2 Monomial Orderings 

A monomial ordering is a bivariate function O which tells us which monomial is the larger 

of any two given monomials m1 and m2. We will use the convention that O(m1, m2) = 1 if 

and only if m1 < m2, and O(m1 , m2) = 0 if and only if m1 ~ m2. We can use a monomial 

ordering to order an arbitrary polynomial p by inducing an order on the terms of p from 

the order on the monomials associated with the terms. 

Definition 1.2.1 A monomial ordering O is admissible if the following conditions are 

satisfied. 

( a) 1 < m for all monomials m # 1. 

By convention, a polynomial is always written in descending order (with respect to a given 

monomial ordering), so that the leading term of the polynomial (with associated leading 

coefficient and leading monomia0 always comes first. 

Remark 1.2.2 For an arbitrary polynomial p, we will use LT(p) , LM(p) and LC(p) to 

denote the leading term, leading monomial and leading coefficient of p respectively. 

1.2.1 Commutative Monomial Orderings 

A monomial ordering usually requires an ordering on the variables in our chosen polyno­

mial ring. Given such a ring R[x1, x2, ... , Xnl, we will assume this order to be x1 > x2 > 

... > Xn. 

We shall now consider the most frequently used monomial orderings, where throughout m1 

and m2 will denote arbitrary monomials (with associated multidegrees e1 = (eL eL ... , e1) 
1For a commutative monomial ordering, we can ignore the monomial mr. 
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and e2 = (et e~, ... , e~)), and deg(mi) will denote the total degree of the monomial mi 

(for example deg(x2yz) = 4). All orderings considered will be admissible. 

The Lexicographical Ordering (Lex) 

Define m1 < m2 if el < e~ for some 1 ~ i ~ n and e{ = e~ for all 1 ~ j < i. In words, 

m1 < m2 if the first variable with different exponents in m1 and m2 has lower exponent 

in m 1 . 

The Inverse Lexicographical Ordering (InvLex) 

Define m1 < m2 if el < e~ for some 1 ~ i ~ n and e{ = e~ for all i < j ~ n. In words, 

m1 < m 2 if the last variable with different exponents in m1 and m2 has lower exponent 

in m1 . 

The Degree Lexicographical Ordering (DegLex) 

Define m1 < m2 if deg(m1) < deg(m2) or if deg(m1) = deg(m2) and m1 < m2 in the 

Lexicographic Ordering. 

Remark 1.2.3 The DegLex ordering is also known as the TLex ordering (T for total 

degree). 

The Degree Inverse Lexicographical Ordering (DeginvLex) 

Define m1 < m2 if deg(m1) < deg(m2) or if deg(m1) = deg(m2) and m1 < m2 in the 

Inverse Lexicographical Ordering. 

The Degree Reverse Lexicographical Ordering (DegRevLex) 

Define m1 < m2 if deg(mi) < deg(m2) or if deg(m1) = deg(m2) and m1 < m2 in the 

Reverse Lexicographical Ordering, where m1 < m2 if the last variable with different 

exponents in m1 and m2 has higher exponent in m1 ( ei > e~ for some 1 ~ i ~ n and 

e{ = e~ for all i < j ~ n) . 

Remark 1.2.4 On its own, the Reverse Lexicographical Ordering (RevLex) is not ad­

missible, as 1 > m for any monomial m =/- l. 
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Example 1.2.5 With x > y > z, consider the monomials m1 := x 2yz; m2 := x 2 and 

m3 := xyz2 , with corresponding multidegrees e1 = (2, 1, 1); e2 = (2, 0, 0) and e3 = (1, 1, 2). 

The following table shows the order placed on the monomials by the various monomial 

orderings defined above. The final column shows the order induced on the polynomial 

p := m1 + m2 + m3 by the chosen monomial ordering. 

Monomial Ordering 0 O(m1 , m2) O(m1, m3) O(m2, m3) p 

Lex 0 0 0 x 2yz + x 2 + xyz2 

Inv Lex 0 1 1 xyz2 + x 2yz + x 2 

DegLex 0 0 1 x 2yz + x yz2 + x 2 

DeglnvLex 0 1 1 xyz2 + x 2yz + x 2 

DegRevLex 0 0 1 x 2yz + xyz2 + x 2 

1.2.2 Noncommutative Monomial Orderings 

In the noncommutative case, because we use words and not multidegrees to represent 

monomials, our definitions for the lexicographically based orderings will have to be adapted 

slightly. All other definitions and conventions will stay the same. 

The Lexicographic Ordering (Lex) 

Define m1 < m2 if, working left-to-right, the first (say i-th) letter on which m1 and m2 
differ is such that the i-th letter of m1 is lexicographically less than the i-th letter of m2 
in the variable ordering. Note: this ordering is not admissible ( counterexample: if x > y 

is the variable ordering, then x < xy but x 2 > xyx). 

Remark 1.2.6 When comparing two monomials m1 and m2 such that m1 is a proper 

prefix of m2 (for example m1 := x and m2 := x y as in the above counterexample), a 

problem arises with the above definition in that we eventually run out of letters in the 

shorter word to compare with (in the example, having seen that the first letter of both 

monomials match, what do we compare the second letter of m2 with?) . One answer is to 

introduce a padding symbol $ to pad m1 on the right to make sure it is the same length 

as m2, with the convention that any let ter is greater t han the padding symbol (so that 

m1 < m2). The padding symbol will not explicitly appear anywhere in the remainder of 

this thesis, but we will bear in mind that it can be introduced to deal with situations 

where prefixes and suffixes of monomials are involved. 
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Remark 1.2. 7 The lexicographic ordering is also known as the dictionary ordering since 

the words in a dictionary ( such as the Oxford English Dictionary) are ordered using the 

lexicographic ordering with variable ( or alphabetical) ordering a < b < c < · · · . Note 

however that while a dictionary orders words in increasing order, we will write polynomials 

in decreasing order. 

The Inverse Lexicographical Ordering (InvLex) 

Define m 1 < m2 if, working left-to-right, the first (say i-th) letter on which m 1 and m2 

differ is such that the i-th letter of m1 is lexicographically greater than the i-th letter of 

m 2 . Note: this ordering (like Lex) is not admissible ( counterexample: if x > y is the 

variable ordering, then xy < x but xyx > x2). 

The Degree Reverse Lexicographical Ordering (DegRevLex) 

Define m1 < m2 if deg(mi) < deg(m2) or if deg(m1) = deg(m2) and m 1 < m 2 in the 

Reverse Lexicographical Ordering, where m 1 < m2 if, working in reverse, or from right­

to-left, the first (say i-th) letter on which m 1 and m2 differ is such that the i-th letter of 

m1 is lexicographically greater than the i-th letter of m2. 

Example 1.2.8 With x > y > z, consider the noncommutative monomials m1 := zxyx ; 

m2 := xzx and m3 := y 2zx. The following table shows the order placed on the monomials 

by various noncommutative monomial orderings. As before, the final column shows the 

order induced on the polynomial p := m 1 + m2 + m3 by the chosen monomial ordering. 

Monomial Ordering 0 O(m1,m2) O(m1,m3) O(m2,m3) p 

Lex 1 1 0 xzx + y2 zx + zxyx 

InvLex 0 0 1 zxyx + y 2zx + xzx 

DegLex 0 1 1 y2 zx + zxyx + xzx 

DeginvLex 0 0 1 zxyx + y2zx + xzx 

DegRevLex 0 1 1 y2 zx + zxyx + xzx 

1.2.3 Polynomial Division 

Definition 1.2.9 Let R be a polynomial ring, and let O be an arbitrary admissible 

monomial ordering. Given two nonzero polynomials p1, p2 E R, we say that p1 divides 
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p2 (written PI I p2) if the lead monomial of PI divides some monomial m (with coefficient 

c) in p2 . For a commutative polynomial ring, this means that m = LM(pI)m' for some 

monomial m'; for a noncommutative polynomial ring, this means that m = meLM(p1)mr 

for some monomials me and mr (LM(p1) is a subword of m). 

To perform the division, we take away an appropriate multiple of p1 from p2 in order to 

cancel off LT(p1) with the term involving m in p2 . In the commutative case, we do 

in the noncommutative case, we do 

It is clear that the coefficient rings of our polynomial rings have to be division rings in 

order for the above expressions to be valid, and so we make the following assumption 

about the polynomial rings we will encounter in the remainder of this thesis. 

Remark 1.2.10 From now on, all coefficient rings of polynomial rings will be fields unless 

otherwise stated. 

Example 1.2.11 Let p1 := 5z2x + 2y2 + x + 4 and p2 := 3xyxz2x 3 + 2x2 be two 

DegLex ordered polynomials over the noncommutative polynomial ring Q(x, y, z) . Be­

cause LM(p2) = xyx(z2x)x2, it is clear that p1 I P2, with the quotient and the remainder 

of the division being 

q := (¾) xyx(5z2x + 2y2 + x + 4)x2 

and 

r .- 3xyxz2x 3 + 2x2 
- (¾) xyx(5z2x + 2y2 + x + 4)x2 

respectively. 

3xyxz2x 3 + 2x2 - 3xyxz2x 3 - (i) xyxy2x 2 - (¾) xyx4 - (\2 ) xyx3 

- (i) xyxy2 x 2 
- (¾) xyx4 

- en xyx3 + 2x2 

Now that we know how to divide one polynomial by another, what does it mean for a 

polynomial to be divided by a set of polynomials? 

Definition 1.2.12 Let R be a polynomial ring, and let O be an arbitrary admissible 
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monomial ordering. Given a nonzero polynomial p ER and a set of nonzero polynomials 

P = {P1,P2, . .. ,Pm}, with Pi ER for all 1 ~ i ~ m, we divide p by P by working through 

p term by term, testing to see if each term is divisible by any of the Pi in turn. We 

recursively divide the remainder of each division using the same method until no more 

divisions are possible, in which case the remainder is either 0 or is irreducible. 

Algorithms to divide a polynomial p by a set of polynomials P in the commutative and 

noncommutative cases are given below as Algorithms 1 and 2 respectively. Note that they 

take advantage of the fact that if the first N terms of a polynomial q are irreducible with 

respect to P, then the first N terms of any reduction of q will also be irreducible with 

respect to P . 

Algorithm 1 The Commutative Division Algorithm 

Input: A nonzero polynomial p and a set of nonzero polynomials P = {p1, ... , Pm} over 

a polynomial ring R[x1, ... xn]; an admissible monomial ordering 0. 

Output: Rem(p, P) := r, the remainder of p with respect to P. 

r = O; 

while (p -/= 0) do 

u = LM(p); c = LC(p); j = 1; found= false; 

while (j ~ m) and (found== false) do 

if (LM(pi) I u) then 

found = true; u' = u/LM(pi); p = p - (cLC(pi) - 1)piu'; 

else 

j = j + 1; 

end if 

end while 

if ( found == false) then 

r = r + LT(p); p = p - LT(p); 

end if 

end while 

return r; 

Remark 1.2.13 All algorithms in this thesis use the conventions that '=' denotes an 

assignment and '==' denotes a test. 
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Algorithm 2 The Noncommutative Division Algorithm 

To divide a nonzero polynomial p with respect to a set of nonzero polynomials P = 
{p1, ... ,Pm}, where p and the Pi are elements of a noncommutative polynomial ring 

R(x1 , ... , xn), we apply Algorithm 1 with the following changes. 

(a) In the inputs, replace the commutative polynomial ring R[x1, ... Xn] by the noncom­

mutative polynomial ring R(x1, ... , xn)-

(b) Change the first if condition to read 

if (LM(pj) I u) then 

found = true; 

choose ue and Ur such that u = ueLM(pj)ur; 

p = p - (cLC(pjt 1)uepjU1-; 

else 

j = j + l ; 

end if 

Remark 1.2.14 In Algorithm 2, if there are several candidates for ue (and therefore for 

ur) in the line 'choose ue and Ur such that u = ueLM(p1)ur', the convention in this thesis 

will be to choose the ue with the smallest degree. 

Example 1.2.15 To demonstrate that the process of dividing a polynomial by a set of 

polynomials does not necessarily give a unique result, consider the polynomial p := xyz+x 

and the set of polynomials P := {p1, p2} = {xy - z, yz + 2x + z}, all polynomials being 

ordered by DegLex and originating from the polynomial ring Q[x, y , z]. If we choose to 

divide p by p1 to begin with, we see that p reduces to xyz + x - (xy - z)z = z2 + x, which 

is irreducible. But if we choose to divide p by P2 to begin with, we see that p reduces to 

xyz + x - (yz + 2x + z)x = -2x2 
- xz + x, which is again irreducible. This gives rise 

to the question of which answer (if any!) is the correct one here? In Chapter 2, we will 

discover that one way of obtaining a unique answer to this question will be to calculate a 

Grabner Basis for the dividing set P. 

Definition 1.2.16 In order to describe how one polynomial is obtained from another 

through the process of division, we introduce the following notation. 

(a) If the polynomial r is obtained by dividing a polynomial p by a polynomial q, then 

we will use the notation p ---. r or p ---> q r (with the latter notation used if we wish to 
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show how r is obtained from p). 

(b) If the polynomial r is obtained by dividing a polynomial p by a sequence of polyno­

mials q1 , q2 , ..• , q0 , then we will use the notation p ~ r. 

(c) If the polynomial r is obtained by dividing a polynomial p by a set of polynomials Q, 
then we will use the notation p -Q r. 



Chapter 2 

Commutative Grabner Bases 

Given a basis F generating an ideal J, the central idea in Grabner Basis theory is to use 

F to find a basis G for J with the property that the remainder of the division of any 

polynomial by G is unique. Such a basis is known as a Grabner Basis. 

In particular, if a polynomial p is a member of the ideal J, then the remainder of the 

division of p by a Grabner Basis G for J is always zero. This gives us a way to solve the 

Ideal Membership Problem for J - if the remainder of the division of a polynomial p by 

G is zero, then p E J ( otherwise p tj. J). 

2.1 S-polynomials 

How do we determine whether or not an arbitrary basis F generating an ideal J is a 

Grabner Basis? Using the informal definition shown above, in order to show that a basis 

is not a Grabner Basis, it is sufficient to find a polynomial p whose remainder on division 

by F is non-unique. Let us now construct an example in which this is the case, and let 

us analyse what can to be done to eliminate the non-uniqueness of the remainder. 

Let P1 = a1 + a2 + · · · + aa-; P2 = b1 + b2 + · · · + bf3 and p3 = c1 + c2 + · · · + e-y be three 

polynomials ordered with respect to some fixed admissible monomial ordering O (the ai, 

b1 and ck are all nontrivial terms). Assume that P1 I p3 and p2 I p3, so that we are able 

to take away from p3 multiples s and t of P1 and P2 respectively to obtain remainders r 1 

22 
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r1 P3 - sp1 

= C1 + c2 + · · · + c, - s(a1 + a2 + · · · + ao) 

c2 + · · · + c, - sa2 - · · · - sa0 ; 

r2 p3 - tp2 

C2 + · · · + c, - tb2 - · · · - tb(3. 

23 

If we assume that r 1 and r2 are irreducible and that r 1 =/- r 2 , it is clear that the remainder 

of the division of the polynomial p3 by the set of polynomials P = {p1,p2} is non-unique, 

from which we deduce that P is not a Grabner Basis for the ideal that it generates. We 

must therefore change P in some way in order for it to become a Grabner Basis, but what 

changes are required and indeed allowed? 

Consider that we want to add a polynomial to P. To avoid changing the ideal that is being 

generated by P, any polynomial added to P must be a member of the ideal. It is clear 

that r 1 and r 2 are members of the ideal, as is the polynomial p4 = r 2 - r 1 = -tp2 + sp1. 

Consider that we add p4 to P, so that P becomes the set 

If we now divide the polynomial p3 by the enlarged set P, to begin with (as before) we 

can either divide p3 by PI or P2 to obtain remainders r 1 or r2. Here however, if we assume 

(without loss of generality1) that LT(p4 ) = -tb2 , we can now divide r 2 by p4 to obtain a 

new remainder 

T3 T2 - p4 

c2 + · · · + c, - tb2 - · · · - tbf3 - ( -tb2 - tb3 - · · · - tbf3 + sa2 + sa3 + · · · + sa0 ) 

It follows that by adding p4 to P, we have ensured that the remainder of the division 

of p3 by P is unique2 no matter which of the polynomials p1 and p2 we choose to divide 

1The other possible case is LT(p4 ) = sa2 , in which case it is r 1 that reduces to r2 and not r2 to r 1 . 
2This may not strictly be t rue if p3 is divisible by p4 ; for the time being we shall assume that this is 

not the case, noting that the important concept here is of eliminating the non-uniqueness given by the 
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p3 by first. This solves our original problem of non-unique remainders in this restricted 

situation. 

At first glance, the polynomial added to P to solve this problem is dependent upon the 

polynomial p3 . The reason for saying this is that the polynomial added to P has the form 

p4 = sp1 - tpz, where s and t are terms chosen to multiply the polynomials p1 and p2 so 

that the lead terms of sp1 and tpz equal LT(p3) (in facts= t~i;~; and t = t~i;:;). 
However, by definition, LM(p3 ) is a common multiple of LM(p1) and LM(p2). Because all 

such common multiples are multiples of the least common multiple of LM(p1) and LM(p2) 

(so that LM(p3) = µ(lcm(LM(p1), LM(p2))) for some monomialµ), it follows that we can 

rewrite p4 as 

Consider now that we add the polynomial p5 = LCf;s)µ to P instead of adding p4 to P. 

It follows that even though this polynomial does not depend on the polynomial p3 , we 

can still obtain a unique remainder when dividing p3 by p1 and pz, because we can do 

r3 = rz - LC(p3)µp5. Moreover, the polynomial p5 solves the problem of non-unique 

remainders for any polynomial p3 that is divisible by both p1 and p2 (all that changes is 

the multiple of p5 used in the reduction of r 2); we call such a polynomial an S-polynomiac3 

for P1 and pz. 

Definition 2.1.1 The S-polynomial of two distinct polynomials p1 and p2 is given by the 

expression 

Remark 2.1.2 The terms Jcm(LM(pi),LM(P2)) and Jcm(LM(pi) ,LM(p2)) can be thought of as the 
LT(p1) LT(p2) 

terms used to multiply the polynomials P1 and pz so that the lead monomials of the 

multiples are equal to the monomial lcm(LM(p1), LM(p2)). 

Let us now illustrate how adding an S-polynomial to a basis solves the problem of non­

unique remainders in a particular example. 

choice of dividing p3 by Pi or pz first. 
3The S stands for Syzygy, as in a pair of connected objects. 
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Example 2.1.3 Recall that in Example 1.2.15 we showed how dividing the polynomial 

p := xyz+x by the two polynomials in the set P := {p1, P2} = {xy-z, yz+2x+z} gave 

two different remainders, r1 := z2 + x and r2 := -2x2 - xz + x respectively. Consider 

now that we add S-pol(p1,P2) to P, where 

xyz (xy - z) - xyz (yz + 2x + z) 
xy yz 

(xyz - z2
) - (xyz + 2x2 + xz) 

-2x2 
- xz - z2

. 

Dividing p by the enlarged set, if we choose to divide p by p1 to begin with, we see that p 

reduces (as before) to give xyz + x - (xy - z)z = z2 + x, which is irreducible. Similarly, 

dividing p by P2 to begin with, we obtain the remainder xyz + x - (yz + 2x + z)x = 
-2x2 - xz + x. However, whereas before this remainder was irreducible, now we can 

reduce it by the S-polynomial to give -2x2 - xz + x - (-2x2 - xz - z2) = z2 + x, which 

is equal to the first remainder. 

Let us now formally define a Grobner Basis in terms of S-polynomials, noting that there 

are many other equivalent definitions (see for example [7], page 206). 

Definition 2.1.4 Let G = {g1, ... ,gm} be a basis for an ideal Jover a commutative 

polynomial ring R = R[x1, ... , Xn]- If all the S-polynomials involving members of G 

reduce to zero using G (S-pol(gi, gj) -a 0 for all i -=/=- j), then G is a Grabner Basis for J. 

Theorem 2.1.5 Given any polynomial p over a polynomial ring R = R [x1 , ... , Xnl, the 

remainder of the division of p by a basis G for an ideal J in R is unique if and only if G 

is a Grabner Basis. 

Proof: (=?-) By Newman's Lemma (cf. [7], page 176), showing that the remainder 

of the division of p by G is unique is equivalent to showing that the division process is 

locally confluent, that is if there are polynomials f, Ji, h E R with J1 = f - t1g1 and 

h = J - t2g2 for terms t1, t2 and 91, g2 E G, then there exists a polynomial h E R such 

that both Ji and h reduce to h- By the Translation Lemma (cf. [7], page 200), this in 

turn is equivalent to showing that the polynomial h - J1 = t1g1 - t2g2 reduces to zero, 

which is what we shall now do. 
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There are two cases to deal with, LT(t1g1) i- LT(t2g2) and LT(t1g1) = LT(t2g2). In the 

first case, notice that the remainders Ji and h are obtained by cancelling off different 

terms of the original f (the reductions of f are disjoint), so it is possible, assuming 

(without loss of generality) that LT(t1g1) > LT(t2g2), to directly reduce the polynomial 

h - Ji = t1g1 - t2g2 in the following manner: t1g1 - t2g2 - 91 -t2g2 - 92 0. In the 

second case, the reductions off are not disjoint (as the same term t from f is cancelled 

off during both reductions), so that the term t does not appear in the polynomial t1g1 -

t2g2. However, the term tis a common multiple of LT(t1g1) and LT(t2g2) , and thus the 

polynomial t1g1 - t2g2 is a multiple of the S-polynomial S-pol(g1,g2), say 

for some termµ. Because G is a Grabner Basis, the S-polynomial S-pol(g1, g2) reduces to 

zero, and hence by extension the polynomial t1g1 - t2g2 also reduces to zero. 

( <=) As all S-polynomials are members of the ideal J, to complete the proof it is sufficient 

to show that there is always a reduction path of an arbitrary member of the ideal that 

leads to a zero remainder ( the uniqueness of remainders will then imply that members of 

the ideal will always reduce to zero). Let f E J = ( G). Then, by definition, there exist 

9i E G and Ji E R (where 1 ~ i ~ j) such that 

j 

1 = I:1i9i· 
i=l 

We proceed by induction on j. If j = 1, then f = fig1 , and it is clear that we can use g1 

to reduce f to give a zero remainder (f - f - fig1 = 0). Assume that the result is true 

for j = k, and let us look at the case j = k + l , so that 

By the inductive hypothesis, I:~=l figi is a member of the ideal that reduces to zero. The 

polynomial f therefore reduces to the polynomial f' := fk+i9k+l, and we can now use 

9k+1 to reduce f' to give a zero remainder (f' - f' - fk+I9k+I = 0). D 

We are now in a position to be able to define an algorithm to compute a Grebner Basis. 

However, to be able to prove that this algorithm always terminates, we must first prove 
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a result stating that all ideals over commutative polynomial rings are finitely generated. 

This proof takes place in two stages - first for monomial ideals (Dickson's Lemma) and 

then for polynomial ideals (Hilbert's Basis Theorem). 

2.2 Dickson's Lemma and Hilbert's Basis Theorem 

Definition 2.2.1 A monomial ideal is an ideal generated by a set of monomials. 

Remark 2.2.2 Any polynomial p that is a member of a monomial ideal is a sum of terms 

p = I:i ti, where each ti is a member of the monomial ideal. 

Lemma 2.2.3 (Dickson's Lemma) Every monomial ideal over the polynomial ring 'R, = 
R[x1, ... , Xn] is finitely generated. 

Proof ( cf. [22], page 4 7): Let J be a monomial ideal over 'R, generated by a set of 

monomials S. We proceed by induction on n, our goal being to show that S always has 

a finite subset T generating J. For n = 1, notice that all elements of S will be of the 

form x{ for some j ~ 0. Let T be the singleton set containing the member of S with the 

lowest degree ( that is the x{ with the lowest value of j). Clearly T is finite, and because 

any element of S is a multiple of the chosen x{, it is also clear that T generates the same 

ideal as S. 

For the inductive step, assume that all monomial ideals over the polynomial ring 'R,' = 
R[x1 , ... , Xn_1] are finitely generated. Let Co ~ C1 ~ C2 ~ · · · be an ascending chain of 

monomial ideals over 'R,' , where4 

Let the monomial m be an arbitrary member of the ideal J, expressed as m = m'x~, 

where m' E 'R,' and k ~ 0. By definition, m' E Ck, and so m E x~Ck. By the inductive 

hypothesis, each Ck is finitely generated by a set Tk, and so m E x~(Tk) - From this we 

can deduce that 

is a generating set for J. 

4Think of Co as the set of monomials m E J which are also members of R'; think of Cj (for j;;:: 1) as 
containing all the elements of Cj- l plus the monomials m E J of the form m = m' x{, m' E R'. 



CHAPTER 2. COMMUTATIVE GROBNER BASES 28 

Consider the ideal C = UCj for j ~ 0. This is another monomial ideal over R', and so by 

the inductive hypothesis is finitely generated. It follows that the chain must stop as soon 

as the generators of C are contained in some Cr, so that Cr = Cr+l = · · · (and hence 

Tr = Tr+l = · · · ). It follows that To U XnT1 U x~T2 U · · · U x~Tr is a finite subset of S 

generating J. □ 

Example 2.2.4 Let S = {y4, xy4, x 2y3, x3y3, x 4y, xk} be an infinite set of monomials 

generating an ideal J over the polynomial ring Ql[x, y], where k is an integer such that 

k ~ 5. We can visualise J by using the following monomial lattice, where a point (a, b) 

in the lattice (for non-negative integers a, b) corresponds to the monomial xayb, and the 

shaded region contains all monomials which are reducible by some member of S (and 

hence belong to J). 

b 

To show that J can be finitely generated, we need to construct the set T as described in 

the proof of Dickson's Lemma. The first step in doing this is to construct the sequence 

of sets sj = {gcd(:,yJ) I s ES} for all j ~ 0. 

So {y4, xy4, x2y3, x3y3, x4y, xk} = S 

S1 {y3, xy3, x2y2, x3y2, x4, xk} 

S2 {y2, xy2, x2y, x3y, x4, xk} 

S { 2 3 4 k} 3 y, xy, X , X , X , X 

S4 - {y0 = 1 x x2 x3 x4 xk} 
' ' ' ' ' 

Sj+1 Sj for all j + 1 ~ 5. 

Each set Sj gives rise to an ideal Cj consisting of all monomials m E (Sj) of the form 

m = xi for some i ~ 0. Because each of these ideals is an ideal over the polynomial ring 

Ql[x], we can use an inductive hypothesis to give us a finite generating set Tj for each Cj . 
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In this case, the first paragraph of the proof of Dickson's Lemma tells us how to apply 

the inductive hypothesis - each set Ti is formed by choosing the monomial m E Si of 

lowest degree such that m = xi for some i ~ 0. 

To {xs} 

T1 {x4} 

T2 {x4} 

T3 = {x2} 

T4 = {x0 = l} 

Tj+l = Ti for all k + l ~ 5. 

We can now deduce that 

is a generating set for J. Further, because Ti+1 = Ti for all k + l ~ 5, we can also deduce 

that the set 

is a finite generating set for J (a fact that can be verified by drawing a monomial lattice 

for T' and comparing it with the above monomial lattice for the set S). 

Theorem 2.2.5 (Hilbert's Basis Theorem) Every ideal Jover a polynomial ring R = 
R[x1, ... , Xn] is finitely generated. 

Proof: Let O be a fixed arbitrary admissible monomial ordering, and define LM(J) = 

(LM(p) Ip E J). Because LM(J) is a monomial ideal, by Dickson's Lemma it is finitely 

generated, say by the set of monomials M = { m 1 , ... , mr}. By definition, each mi E M 

(for 1 ~ i ~ r) has a corresponding Pi E J such that LM(Pi) = mi. We claim that 

P = {P1, ... , Pr} is a generating set for J. To prove the claim, notice that (P) ~ J so 

that f E (P) ⇒ f E J. Conversely, given a polynomial f E J , we know that LM(f) E (M) 

so that LM(f) = a:mj for some monomial a: and some 1 ~ j ~ r. From this, if we define 

a:' = tg(%))a:, we can deduce that LM(f-a:'pj) < LM(f). Since f - o:'pi E J, and because 

of the admissibility of 0, by recursion on f - o:'pi (define fk+1 = fk - o:kPik for k ~ l , 

where Ji - O:~PJ1 := f - o:'pJ), we can deduce that f E (P) (in fact f = I:f=1 o:kpik for 

some finite K). □ 
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Corollary 2.2.6 (The Ascending Chain Condition) Every ascending sequence of ide­

als Ji ~ J2 ~ · · · over a polynomial ring R = R[x1, .•. , xn] is eventually constant, so 

that there is an i such that Ji = Ji+i = · · ·. 

Proof: By Hilbert's Basis Theorem, each ideal Jk (for k ;:: 1) is finitely generated. 

Consider the ideal J = UJk. This is another ideal over R, and so by Hilbert's Basis 

Theorem is also finitely generated. From this we deduce that the chain must stop as soon 

as the generators of J are contained in some Ji, so that Ji= Ji+i = · · ·. D 

2.3 Buchberger's Algorithm 

The algorithm used to compute a Grabner Basis is known as Buchberger's Algorithm. 

Bruno Buchberger was a student of Wolfgang Grabner at the University of Innsbruck, 

Austria, and the publication of his PhD thesis in 1965 [11] marked the start of Grabner 

Basis theory. 

In Buchberger's algorithm, S-polynomials for pairs of elements from the current basis are 

computed and reduced using the current basis. If the S-polynomial does not reduce to 

zero, it is added to the current basis, and this process continues until all S-polynomials 

reduce to zero. The algorithm works on the principle that if an S-polynomial S-pol(gi, gj) 

does not reduce to zero using a set of polynomials G, then it will certainly reduce to zero 

using the set of polynomials GU {S-pol(gi, gj)}. 

Theorem 2.3.1 Algorithm 3 always terminates with a Grabner Basis for the ideal J. 

Proof (cf. [7], page 213): Correctness. If the algorithm terminates, it does so with 

a set of polynomials G with the property that all S-polynomials involving members of 

G reduce to zero using G (S-pol(gi, gj) -tc O for all i # j). G is therefore a Grabner 

Basis by Definition 2.1.4. Termination. If the algorithm does not terminate, then an 

endless sequence of polynomials must be added to the set G so that the set A never 

becomes empty. Let G0 C Ci C G2 C · · · be the successive values of G. If we consider 

the corresponding sequence LM(G0) C LM(G1) C LM(G2) C · · · of lead monomials, we 

note that these sets generate an ascending chain of ideals J0 c J 1 C J 2 c • • • because 

each time we add a monomial to a particular set LM(Gk) to form the set LM(Gk+i) , the 

monomial we choose is irreducible with respect to LM(Gk), and hence does not belong to 

the ideal Jk. However the Ascending Chain Condition tells us that such a chain of ideals 
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Algorithm 3 A Basic Commutative Grabner Basis Algorithm 

Input: A Basis F = {!1 , h, ... , fm} for an ideal Jover a commutative polynomial ring 

R[x1 , ... Xn]; an admissible monomial ordering 0. 

Output: A Grabner Basis G = {g1, 92, ... , gp } for J. 

Let G = F and let A= 0; 
For each pair of polynomials (gi, gj) in G ( i < j), 
add the S-polynomial S-pol(gi, gj) to A; 

while (A is not empty) do 

Remove the first entry s1 from A; 

s~ = Rem(s1, G); 

if (s~ # 0) then 

Add s~ to G and add all t he S-polynomials S-pol(gi, s;) to A (gi E G, 9i # sD; 

end if 

end while 

return G; 

must eventually become constant, so there must be some i ~ 0 such that Ji = Ji+1 = • • •. 
It follows that the algorithm will terminate once the set Gi has been constructed, as all 

of the S-polynomials left in A will now reduce to zero (if not, some S-polynomial left in A 

will reduce to a non-zero polynomials~ whose lead monomial is irreducible with respect to 

LM(Gi), allowing us to construct an ideal Ji+1 = (LM(Gi)U{LM(sD}) => (LM(Gi)) = Ji, 

contradicting the fact that Ji+l = k) D 

Example 2 .3.2 Let F := {!1 , h} = {x2 
- 2xy + 3, 2xy + y2 + 5} generate an ideal 

over t he commutative polynomial ring Q [x, y], and let the monomial ordering be DegLex. 

Running Algorithm 3 on F, there is only one S-polynomial to consider initially, namely 

S-pol(f1 , h) = y(fi) - ½x(h) = -~xy2 
- ~x + 3y. This polynomial reduces (using h) to 

give the irreducible polynomial ¾y3 - ~x + 3J y = : h, which we add to our current basis. 

This produces two more S-polynomials to look at, S-pol(fi, h) = y3 (fi) - fx2(h) = 
- 2xy4 + 2x3 

-
3
; x 2y + 3y3 and S-pol(h, h) = ½Y2 (h) - f x(h) = ½Y4 + 2x2 

-
3
; xy + ~y2

, 

both of which reduce to zero. The algorithm therefore terminates with the set { x2 - 2xy + 
3, 2xy + y2 + 5, ¾Y3 - ~x + 3J y} as the output Grabner Basis. 

Here is a dry run for Algorithm 3 in this instance. 
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G i j A s1 s' 1 
U1, h} 1 2 0 

{S-pol(fi, h)} 

U1, h, h} 1 0 -!xy2 - !x + 3y h 
2 {S-pol(f1, h)} 

{S-pol(h, h), S-pol(f1, h)} 
{S-pol(fi, h)} ½Y4 + 2x2 - 3f xy + !Y2 0 

0 - 2xy4 + 2x3 - 3f x2y + 3y3 0 

2.4 Reduced Grabner Bases 

Definition 2.4.1 Let G = {g1, ... , gp} be a Grabner Basis for an ideal over the poly­

nomial ring R[x1, ... , Xn] . G is a reduced Grabner Basis if the following conditions are 

satisfied. 

(a) LC(gi) = ln for all gi E G. 

(b) No term in any polynomial gi E G is divisible by any LT(g1), j =I- i. 

Theorem 2.4.2 Every ideal over a commutative polynomial ring has a unique reduced 

Grabner Basis. 

Proof: Existence. By Theorem 2.3.1, there exists a Grebner Basis G for every ideal 

over a commutative polynomial ring. We claim that the following procedure transforms 

G into a reduced Grabner Basis G'. 

(i) Multiply each 9i E G by LC(gi)-1 . 

(ii) Reduce each 9i E G by G \ {gi}, removing from G all polynomials that reduce to 

zero. 

It is clear that G' satisfies the conditions of Definition 2.4.1, so it remains to show that 

G' is a Grebner Basis, which we shall do by showing that the application of each step of 

instruction (ii) above produces a basis which is still a Grabner Basis. 

Let G = {g1 , ... , gP} be a Grebner Basis, and let g~ be the reduction of an arbitrary 
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gi E G with respect to G \ {gi} , carried out as follows (the tk are terms) . 

"' 
g; = gi - L tkgj.· (2 .1) 

k=l 

Set H = ( G\ {gi}) u {ga if g~ -/= 0, and set H = G\ {gi} if g~ = 0. As G is a Grobner Basis, 

all S-polynomials involving elements of G reduce to zero using G, so there are expressions 

µ 

la9a - tbgb - L tu9c,, = 0 (2.2) 
u=l 

for every S-polynomial S-pol(g0 , 9b) = t0 g0 - tbgb, where 9a, 9b, 9cu E G. To show that H 

is a Grobner Basis, we must show that all S-polynomials involving elements of H reduce 

to zero using H. For distinct polynomials 90 , 9b E H not equal to g~, we can reduce the 

S-polynomial S-pol(g0 , 9b) using the reduction shown in Equation (2.2), substituting for 

9i from Equation (2.1) if any of the 9c,. in Equation (2.2) are equal to 9i· This gives a 

reduction to zero of S-pol(g0 , 9b) in terms of elements of H. 

If g~ = 0, our proof is complete. Otherwise consider the S-polynomial S-pol(gL 90 ). We 

claim that S-pol(gi, 90 ) = t19i -t2g0 =} S-pol(g~, 90 ) = t1g~-t29a· To prove this claim, it is 

sufficient to show that LT(gi) = LT(gD. Assume for a contradiction that LT(gi) -/= LT(g~). 

It follows that during the reduction of 9i we were able to reduce its lead term, so that 

LT(gi) = tLT(gj) for some term t and some gj E G. By the admissibility of the chosen 

monomial ordering, the polynomial 9i - tgj reduces to zero without using 9i , leading to 

the conclusion that g~ = 0, a contradiction. 

It remains to show that S-pol(g;, 90 ) ----t H 0. We know that S-pol(gi, 9a) = t1gi - t2ga ----tc 0, 

and Equation (2.2) tells us that t1gi - t2g0 - L~= l lu9c,. = 0. Substituting for gi from 

Equation (2.1), we obtain5 

or 

5Substitutions for 9i may also occur in the summation I:~=l tugc,.; these substitutions have not been 
considered in the displayed formulae. 
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which implies that S-pol(g~, 9a) -►H 0. 

Uniqueness. Assume for a contradiction that G = {g1, ... , gp} and H = { h1, ... , hq} are 

two reduced Grobner Bases for an ideal J, with G =I= H. Let 9i be an arbitrary element 

from G (where 1 ~ i ~ p). Because 9i is a member of the ideal, then 9i must reduce 

to zero using H (His a Grobner Basis). This means that there must exist a polynomial 

hj EH such that LT(hJ) I LT(gi)- If LT(hj) =/= LT(gi), then LT(hJ) x m = LT(gi) for some 

nontrivial monomial m. But hJ is also a member of the ideal, so it must reduce to zero 

using G. Therefore there exists a polynomial 9k E G such that LT(gk) I LT(hj) , which 

implies that LT(gk) I LT(gi), with k =I= i. This contradicts condition (b) of Definition 

2.4.1, so that G cannot be a reduced Grobner Basis for J if LT(hJ) =I= LT(gi)- From this 

we deduce that each 9i E G has a corresponding hj E H such that LT(gi) = LT(hj)­

Further, because G and Hare assumed to be reduced Grobner Bases, this is a one-to-one 

correspondence. 

It remains to show that if LT(gi) = LT(hJ), then 9i = hj. Assume for a contradiction 

that 9i =I= hj, and consider the polynomial 9i - hj. Without loss of generality, assume 

that LM(gi - hj) appears in 9i· Because 9i - hj is a member of the ideal, then there is a 

polynomial 9k E G such that LT(gk) I LT(gi - hj)- But this again contradicts condition 

(b) of Definition 2.4.1, as we have shown that there is a term in 9i that is divisible by 

LT(gk) for some k =I= i . It follows that G cannot be a reduced Grobner Basis if 9i =I= hj, 

which means that G = H and therefore reduced Grobner Bases are unique. D 

Given a Grobner Basis G, we saw in the proof of Theorem 2.4.2 that if the lead term of 

any polynomial 9i E G is reducible by some polynomial gj E G (where gj =I= 9i), then 9i 

reduces to zero. We can use this information to refine the procedure for finding a unique 

reduced Grobner Basis (as given in the aforementioned proof) by allowing the removal of 

any polynomial 9i E G whose lead monomial is a multiple of some other lead monomial 

LM(gj)- This process, which if often referred to as minimising a Grobner Basis (as in 

finding a Grobner Basis with the minimal number of elements), is incorporated into our 

refined procedure, which we state as Algorithm 4. 

2.5 Improvements to Buchberger's Algorithm 

Nowadays, most general purpose symbolic computation systems possess an implemen­

tation of Buchberger's algorithm. These implementations often take advantage of the 
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Algorithm 4 The Commutative Unique Reduced Grebner Basis Algorithm 

Input: A Grebner Basis G = {g1 , g2 , ... , 9m} for an ideal Jover a commutative polyno­

mial ring R[x1 , ... Xn]; an admissible monomial ordering 0. 

Output: The unique reduced Grebner Basis G' = {g~ , g~, ... , g~} for J. 

G' = 0; 
for each 9i E G do 

Multiply g; by LC(gi)-1; 

if (LM(g;) = uLM(gJ) for some monomial u and some 9J E G (gJ =I gi)) then 

G = G\ {g;}; 
end if 

end for 

for each 9i E G do 

g~ = Rem(gi, ( G \ {gi}) u G'); 

G = G \ {gi}; G' = G' U foa; 
end for 

return G'; 

numerous improvements made to Buchberger's algorithm over the years, some of which 

we shall now describe. 

2.5.1 Buchberger's Criteria 

In 1979, Buchberger published a paper [10] which gave criteria that enable the a priori 

detection of S-polynomials that reduce to zero. This speeds up Algorithm 3 by drastically 

reducing the number of S-polynomials that must be reduced with respect to the current 

basis. 

Proposition 2.5.1 (Buchberger's First Criterion) Let f and g be two polynomials 

over a commutative polynomial ring ordered with respect to some fixed admissible mono­

mial ordering 0 . If the lead terms off and g are disjoint (so that Icm(LM(f), LM(g)) = 
LM(f)LM(g)), then S-pol(f, g) reduces to zero using the set {f, g}. 
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Proof (Adapted from [7), Lemma 5.66): Assume that f = I:~=l si and g = Lj=1 t1, 

where the si and the t1 are terms. Because s1 and t1 are disjoint, it follows that 

S-pol(J, g) tif - s1g 

t1(s2 +···+Sa) - s1(t2 + · · · + tfJ) - (2.3) 

We claim that no two terms in Equation (2.3) are the same. Assume to the contrary 

that t1si = s1tj for some 2 ~ i ~ a and 2 ~ j ~ /3. Then t 1si is a multiple of both t1 
and s1, which means that t1si is a multiple of lcm(t1, s1) = t1s1. But then we must have 

t1 si ~ t1 s1, which gives a contradiction (by definition s1 > si). 

As every term in t1 ( s2 + · · ·+Sa) is a multiple of t1, we can use g to eliminate each of the 

terms tisa, t1sa-1 , ... , t1s2 in Equation (2.3) in turn: 

t1(s2 + · · · + sa) - s1(t2 + · · · + t f3) 

__, t1(s2 +·· · +Sa) - s1(t2 + · · · + tf3) - Sag 

t1(s2 + · · · + Sa-1) - s1(t2 + · · · + t f3) - sa(t2 + · · · + t f3) 

__, t1(s2 + · · · + Sa-2) - (s1 + Sa-1 + Sa)(t2 + · · · + t(J) 

__, - (s1 + S2 + · · · + sa)(t2 + · · · + t (J ) 

- s1(t2 + .. · + tf3) - .. · - Sa(t2 + · · · + t f3 )- (2.4) 

We do this in reverse order because, having eliminated a term t 1s-y (where 3 ~ 'Y ~ a), to 

continue the term t1s-y- l must appear in the reduced polynomial (which it does because 

t1s-y- 1 > s,5t'1 for all 'Y ~ o ~ a and 2 ~ 'f/ ~ /3). 
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We now use the same argument on -s1(t2 + · · · + t13), using f to eliminate each of its 

terms in turn, giving the following reduction sequence. 

-s1(t2 + .. · + t13) - .. · - sa(t2 + · · · + t13) 

---t -s1(t2 + · · · + t13) - · · · - sa(t2 + · · · + t13) + t2f 

- -s1(t2 + · · · + t13) - · · · - sa(t2 + · · · + t13) + t2(s1 + · · · +Sa) 

-s1(t3 + · · · + t13) - · · · - sa(t3 + · · · + t13) 

---t -s1(t4 + · · · + t,e) - · · · - sa(t4 + · · · + t13) 

---t 0. 

Technical point: If some term sitj (for i,j ~ 2) cancels the term s1tk (for k ~ 3) in 

Equation (2.4), then as we must have j < kin order to have sitj = s1tk, the term s1tk will 

reappear as sitj when the term s1t1 is eliminated, allowing us to continue the reduction 

as shown. This argument can be extended to the case where a combination of terms of 

the form sitj cancel the term s1tk, as the term s1tk will reappear after all the terms s1tK 

(for 2 :( "'< k) have been eliminated. D 

Proposit ion 2.5.2 (Buchberger's Second Criterion) Let f, g and h be three mem­

bers of a finite set of polynomials P over a commutative polynomial ring satisfying the 

following conditions. 

(a) LM(h) I lcm(LM(f),LM(g)). 

(b) S-pol(f,h) ---tp 0 and S-pol(g,h)---tp 0. 

Then S-pol(J, g) ---tp 0. 

Proof: If LM(h) I lcm(LM(f) , LM(g)), then mhLM(h) = lcm(LM(f), LM(g)) for some 

monomial mh. Assume that lcm(LM(f), LM(g)) = m1LM(f) = m9LM(g) for some mono­

mials m1 and m9 . Then it is clear that m1LM(f) = mhLM(h) is a common multiple of 

LM(f) and LM(h), and m9 LM(g) = mhLM(h) is a common multiple of LM(g) and 

LM(h). It follows that lcm(LM(f), LM(g)) is a multiple of both lcm(LM(f), LM(h)) and 

lcm(LM(g), LM(h)), so that 

lcm(LM(f), LM(g)) = m1hlcm(LM(J), LM(h)) = m9hlcm(LM(g), LM(h)) (2.5) 
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for some monomials mfh and mgh· 

Because the S-polynomials S-pol(J, h) and S-pol(g, h) both reduce to zero using P, there 

are expressions 
a 

S-pol(J, h) - I ::SiPi = 0 
i=l 

and 
{3 

S-pol(g, h) - Ltjpj = 0, 
j=l 

where the si and the tj are terms, and Pi, Pj E P for all i and j. It follows that 

m1n (s-pol(f,h)-t,s,p;) = m,, (s-pol(g,h)-t,t;P; ); 

(
lcm(LM(J), LM(h)) f _ lcm(LM(J) , LM(h)) h _ ~ . ·) _ 

mfh LT(!) LT(h) '8 SiPi -

(
lcm(LM(g), LM(h)) lcm(LM(g), LM(h)) h ~ ) . 

mgh LT(g) g - LT(h) - ~ tjpj ' 

(
lcm(LM(J), LM(g)) f _ lcm(LM(J) , LM(g)) h _ ~ . ·) _ 

mfh m,hLT(J) m1hLT(h) '8 SiPi -

(
lcm(LM(J) , LM(g)) lcm(LM(J), LM(g)) h ~ ) . 

mgh m
9
hLT(g) g - m

9
hLT(h) - ~ tjpj ' 

lcm(LM(J), LM(g)) f ~ lcm(LM(J), LM(g)) ~ . 
LT(f) - mfh D SiPi LT( ) g - m 9h D tjpj, 

i=l g J=l 

a {3 

S-pol(J, g) - L m JhSiPi + L m 9htjPj 0. 
i=l j=l 

To conclude that the S-polynomial S-pol(J, g) reduces to zero using P, it remains to show 

that the algebraic expression - I::f=1 mfhSiPi + I::J=1 m 9htjpj corresponds to a valid re­

duction of S-pol(J, g). To do this, it is sufficient to show that no term in either of the sum­

mations is greater than lcm(LM(J), LM(g)) (so that LM(mJhSiPi) < lcm(LM(J), LM(g)) 

and LM(m9htJPJ) < lcm(LM(J), LM(g)) for all i and j). But this follows from Equation 

(2.5) and from the fact that the original reductions of S-pol(J, h) and S-pol(g, h) are valid, 

so that LM(siPi) < lcm(LM(J), LM(h)) and LM(tJPJ) < lcm(LM(g), LM(h)) for all i and 

j . D 
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2.5.2 Homogeneous Grabner Bases 

Definition 2.5.3 A polynomial is homogeneous if all its terms have the same degree. For 

example, the polynomial x2y+4yz2+3z3 is homogeneous, but the polynomial x3 y+4x2+45 

is not homogeneous. 

Of the many systems available for computing commutative Grobner Bases, some (such as 

Bergman [6]) only admit sets of homogeneous polynomials as input. This restriction leads 

to gains in efficiency as we can take advantage of some of the properties of homogeneous 

polynomial arithmetic. For example, the S-polynomial of two homogeneous polynomials 

is homogeneous, and the reduction of a homogeneous polynomial by a set of homogeneous 

polynomials yields another homogeneous polynomial. It follows that if G is a Grobner 

Basis for a set F of homogeneous polynomials, then G is another set of homogeneous 

polynomials. 

At first glance, it seems that a system accepting only sets of homogeneous polynomials 

as input is not able to compute a Grobner Basis for a set of polynomials containing one 

or more non-homogeneous polynomials. However, we can still use the system if we use an 

extendible monomial ordering and the processes of homogenisation and dehomogenisation. 

Definition 2.5.4 Let p = Po + · · · + Pm be a polynomial over the polynomial ring 

R[x1, ... , xn], where each Pi is the sum of the degree i terms in p ( we assume that Pm =I= 0). 

The homogenisation of p with respect to a new (homogenising) variable y is the polynomial 

where h(p) belongs to a polynomial ring determined by where y is placed in the lexico­

graphical ordering of the variables. 

Definition 2.5.5 The dehomogenisation of a polynomial p is the polynomial d(p) given 

by substituting y = l in p, where y is the homogenising variable. For example, the 

dehomogenisation of the polynomial xr + X1X2Y + X1Y2 E (Q[x1 , X2, y] is the polynomial 

xr + X1X2 + X1 E Q[x1, X2]. 

Definition 2.5.6 A monomial ordering O is extendible if, given any polynomial p = 
t 1 + · · · + to: ordered with respect to O (where t 1 > · · · > to:), the homogenisation of p 

preserves the order on the terms (t~ > t:+i for all l ~ i ~ a -1, where the homogenisation 
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process maps the term ti E p to the term t~ E h(p)). 

Of the monomial orderings defined in Section 1.2.1, two of them (Lex and DegRevLex) 

are extendible as long as we ensure that the new variable y is lexicographically less than 

any of the variables Xi, ... , Xni another (Inv Lex) is extendible as long as we ensure that 

the new variable y is lexicographically greater than any of the variables Xi, ... , Xn, 

The other monomial orderings are not extendible as, no matter where we place the new 

variable y in the ordering of the variables, we can always find two monomials mi and m2 

such that, if p = mi +m2 (with mi > m2), then in h(p) = m~ +m;, we have m; < m;. For 

example, mi := xix~ and m2 := Xi provides a counterexample for the DegLex monomial 

ordering. 

Definition 2.5.7 Let F = {Ji, ... , fm} be a non-homogeneous set of polynomials. To 

compute a Grabner Basis for F using a program that only accepts sets of homogeneous 

polynomials as input, we proceed as follows. 

(a) Construct a homogeneous set of polynomials F' = {h(fi), ... , h(fm)}. 

(b) Compute a Grabner Basis G' for F'. 

(c) Dehomogenise each polynomial g' E G' to obtain a set of polynomials G. 

As long as the chosen monomial ordering O is extendible, G will be a Grabner Basis for 

F with respect to O [22, page 113]. A word of warning however - this process is not 

necessarily more efficient that the direct computation of a Grabner Basis for F using a 

program that does accept non-homogeneous sets of polynomials as input. 

2.5.3 Selection Strategies 

One of the most important factors when considering the efficiency of Buchberger's algo­

rithm is the order in which S-polynomials are processed during the algorithm. A particular 

choice of a selection strategy to use can often cut down substantially the amount of work 

required in order to obtain a particular Grabner Basis. 

In 1979, Buchberger defined the normal strategy [10] that chooses to process an S­

polynomial S-pol(f, g) if the monomial lcm(LM(f), LM(g)) is minimal (in the chosen 
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monomial ordering) amongst all such lowest common multiples. This strategy was refined 

in 1991 to give the sugar strategy [29], a strategy that chooses an S-polynomial to pro­

cess if the sugar of the S-polynomial (a value associated to the S-polynomial) is minimal 

amongst all such values (the normal strategy is used in the event of a tie). 

Motivation for the sugar strategy comes from the observation that the normal strategy 

performs well when used with a degree-based monomial ordering and a homogeneous ba­

sis; the sugar strategy was developed as a way to proceed based on what would happen 

when using the normal strategy in the computation of a Grebner Basis for the correspond­

ing homogenised input basis. We can therefore think of the sugar of an S-polynomial as 

representing the degree of the corresponding S-polynomial in the homogeneous computa­

tion. 

The sugar of an S-polynomial is computed by using the following rules on the sugars 

of polynomials we encounter during the computation of a Grebner Basis for the set of 

polynomials F = {!1, ... , Jm}-

(1) The sugar Sug/i of a polynomial Ji E F is the total degree of the polynomial Ji (which 

is the degree of the term of maximal degree in Ji)-

(2) If pis a polynomial and if t is a term, then Sugtp = deg(t) + SugP. 

It follows that the sugar of the S-polynomial S-pol(g, h) = lcm(L~w~~M(h)) g lcm(L~*)h~M(h)) h 

is given by the formula 

Sugs-pol(g,h) = max(Sug9 - deg(LM(g)), Sugh - deg(LM(h))) + deg(lcm(LM(g) , LM(h))). 

Example 2.5.8 To illustrate how a selection strategy reduces the amount of work re­

quired to compute a Grebner Basis, consider the ideal generated by the basis { x31 - x6 -

x - y, x 8 - z, x 10 
- t} over the polynomial ring Q [ x, y, z, t]. In our own implementation of 

Buchberger's algorithm, here is the number of S-polynomials processed during the algo­

rithm when different selection strategies and different monomial orderings are used (the 

numbers quoted take into account the application of both of Buchberger's criteria). 
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Selection Strategy Lex DegLex DegRevLex 

No strategy 640 275 320 

Normal strategy 123 63 61 

Sugar strategy 96 55 54 

2.5.4 Basis Conversion Algorithms 

One factor which heavily influences the amount of time taken to compute a Grebner 

Basis is the monomial ordering chosen. It is well known that some monomial orderings 

(such as Lex) are characterised as being 'slow', while other monomial orderings (such as 

DegRevLex) are said to be 'fast'. In practice what this means is that it usually takes far 

more time to calculate (say) a Lex Grebner Basis than it does to calculate a DegRevLex 

Grebner Basis for the same generating set of polynomials. 

Because many of the useful applications of Grebner Bases (such as solving systems of 

polynomial equations) depend on using 'slow' monomial orderings, a number of algorithms 

were developed in the 1990's that allow us to obtain a Grebner Basis with respect to one 

monomial ordering from a Grebner Basis with respect to another monomial ordering. 

The idea is that the time it takes to compute a Grebner Basis with respect to a 'fast' 

monomial ordering and then to convert it to a Grebner Basis with respect to a 'slow' 

monomial ordering may be significantly less than the t ime it takes to compute a Grebner 

Basis for the 'slow' monomial ordering directly. Although seemingly counterintuitive, the 

idea works well in practice. 

One of the first conversion methods developed was the FGLM method, named after the 

four authors who published the paper [21] introducing it. The method relies on linear 

algebra to do the conversion, working with coefficient matrices and irreducible monomials. 

Its only drawback lies in the fact that it can only be used with zero-dimensional ideals, 

which are the ideals containing only a finite number of irreducible monomials (for each 

variable xi in the polynomial ring, a Grebner Basis for a zero-dimensional ideal must 

contain a polynomial which has a power of xi as the leading monomial). This restriction 

does not apply in the case of the Grabner Walk [18], a basis conversion method we shall 

study in further detail in Chapter 6. 
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2.5.5 Optimal Variable Orderings 

In many cases, the ordering of the variables in a polynomial ring can have a significant 

effect on the time it takes to compute a Grebner Basis for a particular ideal (an example 

can be found in [17]). This is worth bearing in mind if we are searching for any Grebner 

Basis with respect to a certain ideal, so do not mind which variable ordering is being used. 

A heuristically optimal variable ordering is described in [34] ( deriving from a discussion 

in [9]), where we order the variables so that the variable that occurs least often in the 

polynomials of the input basis is the largest variable; the second least common variable 

is the second largest variable; and so on ( ties are broken randomly). 

Example 2.5.9 Let F := {y2z2 +x2y, x2y4 z+xy2z+y3 , y7 +x3z} generate an ideal over 

the polynomial ring Q[x, y, z]. Because x occurs 8 times in F, y occurs 19 times and z 

occurs 5 times, the heuristically optimal variable ordering is z > x > y. This is supported 

by the following table showing the times taken to compute a Lex Grebner Basis for F 

using all six possible variable orderings, where we see that the t ime for the heuristically 

optimal variable ordering is close to the time for the true optimal variable ordering. 

Variable Order Time Size of Grebner Basis 

x>y>z 1:15.10 6 

x>z>y 0:02.85 7 

y>x>z 2:19.45 7 

y> z >x 2:16.09 7 

z>x>y 0:05.91 8 

z>y>x 5:44.38 8 

2.5.6 Logged Grobner Bases 

In some situations, such as in the algorithm for the Grebner Walk, it is desirable to be 

able to express each member of a Grebner Basis in terms of members of the original basis 

from which the Grebner Basis was computed. When we have such representations, our 

Grebner Basis is said to be a Logged Grabner Basis. 

Definition 2.5.10 Let G = {g1 , ... , gp} be a Grebner Basis computed from an initial 

basis F = {!1 , .. . , fm}- We say that G is a Logged Grabner Basis if, for each gi E G, we 
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have an explicit expression of the form 

/3 

gi = Lto:fk0 , 

o:=1 

where the to: are terms and fka E F for all 1 ~ a ~ (3. 

Proposition 2.5.11 Given a finite basis F = {!1, ... , fm}, it is always possible to com­

pute a Logged Grabner Basis for F. 

Proof: We are required to prove that every polynomial added to the input basis F = 
{Ji, ... , fm} during Buchberger's algorithm has a representat ion in terms of members of 

F. But any such polynomial must be a reduced S-polynomial, so it follows that the first 

polynomial fm+l added to F will always have the form 

{3 

fm+l = S-pol(fi, !;) - L to:fk0 , 

a,=1 

where Ji, fj, fk
0 

E F and the ta are terms. This expression clearly gives a representation 

of our new polynomial in terms of members of F, and by induction (using substitution) it 

is also clear that each subsequent polynomial added to F will also have a representation 

in terms of members of F. □ 

Example 2.5.12 Let F := {!1,h,h} = {xy- z, 2x + yz + z, x + yz} generate an 

ideal over the polynomial ring (Q[x, y, z], and let the monomial ordering be Lex. In 

obtaining a Grabner Basis for F using Buchberger's algorithm, three new polynomials 

are added to F, giving a Grabner Basis G := {g1,g2 ,g3 ,g4 ,g5 ,g6 } = {xy - z, 2x + yz + 
z, x+yz, - ½vz+½z, -2z2, -2z}. These three new polynomials are obtained from the S­

polynomials S-pol(2x+yz+z, x+yz), S-pol(xy - z, - ½yz+½z) and S-pol(xy-z, 2x+yz+z) 
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respectively: 

S-pol(2x + yz + z, x + yz) 
1 

2 (2x + yz + z) - (x + yz) 

S-pol(xy - z, 2x + yz + z) 

1 1 
- 2yz+ 2z; 

z(xy - z) + 2x ( - } yz + } z) 

xz - z2 

1 
xz - z2 

- 2z (2x + yz + z) 

1 2 3 2 
--yz - - z 

2 2 

-~yz2 
- ~z2 

- z (-~ yz + ~z) 
2 2 2 2 

-2z2
· 
' 

-yz-z 

- 94 -yz - z - 2 ( - }yz+ } z) 

-2z. 

These reductions enable us to give the following Logged Grobner Basis for F. 

Member of G Logged Representation 

91 = xy - z Ji 
92 = 2x + yz + z h 
93 = X + yz 

1 1 94 = - 2yz + 2z 

9s = -2z2 

96 = - z 

h 
½h - h 
z Ji + ( x - z ) h + ( - 2x + z) h 
Ji+ (- y - l)h + (y + 2)/3 

45 



Chapter 3 

Noncommutative Grabner Bases 

Once the potential of Grebner Basis theory started to be realised in the 1970's, it was only 

natural to try to generalise the theory to related areas such as noncommutative polynomial 

rings. In 1986, Teo Mora published a paper [45] giving an algorithm for constructing a 

noncommutative Grebner Basis. This work built upon the work of George Bergman; in 

particular his "diamond lemma for ring theory" [8]. 

In this chapter, we will describe Mora's algorithm and the theory behind it, in many 

ways giving a 'noncommutative version' of the previous chapter. This means that some 

material from the previous chapter will be duplicated; this however will be justified when 

the subtle differences between the cases becomes apparent, differences that are all too 

often overlooked when an 'easy generalisation' is made! 

As in the previous chapter, we will consider the theory from the point of view of S­

polynomials, in particular defining a noncommutative Grobner Basis as a set of polyno­

mials for which the S-polynomials all reduce to zero. At the end of the chapter, in order 

to give a flavour of a noncommutative Grebner Basis program, we will give an extended 

example of the computation of a noncommutative Grebner Basis, taking advantage of 

some of the improvements to Mora's algorithm such as Buchberger's criteria and selection 

strategies. 

46 
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3.1 Overlaps 

For a (two-sided) ideal Jover a noncommutative polynomial ring, the concept of a Grabner 

Basis for J remains the same: it is a set of polynomials G generating J such that remain­

ders with respect to G are unique. How we obtain that Grabner Basis also remains the 

same (we add S-polynomials to an initial basis as required); the difference comes in the 

definition of an S-polynomial. 

Recall (from Section 2.1) that the purpose of an S-polynomial S-pol(p1,p2) is to ensure 

that any polynomial p reducible by both p1 and p2 has a unique remainder when divided by 

a set of polynomials containing p1 and P2- In the commutative case, there is only one way 

to divide p by P1 or P2 (giving reductions p - t1p1 or p - t2P2 respectively, where t1 and t2 
are terms); this means that there is only one S-polynomial for each pair of polynomials. In 

t he noncommutative case however, a polynomial may divide another polynomial in many 

different ways (for example the polynomial xyx - z divides the polynomial xyxyx + 4x2 

in two different ways, giving reductions zyx + 4x2 and xyz + 4x2). For this reason, we 

do not have a fixed number of S-polynomials for each pair (p1,p2) of polynomials in the 

noncommutative case - that number will depend on the number of overlaps between the 

lead monomials of P1 and P2. 

In order to explain what an overlap is, we first need the following preliminary definitions 

allowing us to select a particular part of a noncommutative monomial. 

Definition 3.1.1 Consider a monomial m of degreed over a noncommutative polynomial 

ring R. 

• Let Prefix(m, i) denote the prefix of m of degree i (where 1 ~ i ~ d). For example, 

Prefix(x2yz, 3) = x 2y ; Prefix(zyx2 , 1) = z and Prefix(y2zx, 4) = y2zx. 

• Let Suffix(m, i) denote the suffix of m of degree i (where 1 ~ i ~ d). For example, 

Suffix(x2yz, 3) = xyz; Suffix(zyx2, 1) = x and Suffix(y2zx, 4) = y2zx. 

• Let Subword(m, i , j) denote the subword of m starting at position i and finishing 

at position j (where 1 ~ i ~ j ~ d). For example, Subword(zyx2 , 2, 3) = yx; 

Subword(zyx2
, 3, 3) = x and Subword (y2zx, 1, 4) = y2 zx. 

Definition 3.1.2 Let m 1 and m2 be two monomials over a noncommutative polynomial 

ring R with respective degrees d1 ~ d2 . We say that m 1 and m2 overlap if any of the 
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following conditions are satisfied. 

(a) Prefix(m1 , i) = Suffix(m2, i) (1 ~ i < d2); 

(c) Suffix(m1 , i) = Prefix(m2, i) (1 ~ i < d2). 

We will refer to the above overlap types as being prefix, subword and suffix overlaps 

respectively; we can picture the overlap types as follows. 

Prefix Subword Suffix 

Remark 3 .1.3 We have defined the cases where m2 is a prefix or a suffix of m1 to be 

subword overlaps. 

Proposition 3 .1.4 Let p be a polynomial over a noncom mutative polynomial ring R that 

is divisible by two polynomials p1,p2 ER, so that t\LM(p1)r1 = LM(p) = £2LM(p2)r2 for 

some monomials £1,£2,r1 ,r2. As positioned in LM(p) , if LM(p1) and LM(p2) do not 

overlap, then no matter which of the two reductions of p we apply first, we can always 

obtain a common remainder. 

Proof: We picture the situation as follows (u is a monomial). 

u 

LM(p) 

We construct the common remainder by using P2 to divide the remainder we obtain by 

dividing p by p1 (and vice versa). 
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Reduction by Pi first 

p -t p - (LC(p)LC(p1)-1)£1p1r1 

(p - LT(p)) - (LC(p)LC(p1)-1)£1(P1 - LT(p1))r1 

(p - LT(p)) - (LC(p)LC(p1)-1)£1(P1 - LT(p1))uLM(p2)r2 

~ (p - LT(p)) - (LC(p)LC(p1)-1LC(p2)-1)£1(P1 - LT(p1))u(p2 - LT(p2))r2 

Reduction by P2 first 

p -t p- (LC(p)LC(p2)-1)£2p2r2 

(p - LT(p)) - (LC(p)LC(p2)-1)£2(P2 - LT(p2))r2 

(p - LT(p)) - (LC(p)LC(p2)- 1)£1LM(p1)u(p2 - LT(p2))r2 

~ (p - LT(p)) - (LC(p)LC(p1)-1LC(p2)-1)£1(P1 - LT(p1))u(p2 - LT(p2))r2 

D 

Let p, Pi, P2, £1, £2, r1 and r2 be as in Proposition 3.1.4. As positioned in LM(p) , in 

general the lead monomials of p1 and P2 may or may not overlap, giving four different 

possibilities, each of which is illustrated by an example in the following table. 

LM(p) £1 LM(p1) r1 £2 LM(p2) r2 Overlap? 

x2yzxy3 x2yz xy3 1 x2y zx y3 Prefix overlap 

x2yzxy3 X xyzxy y2 x2 yzx y3 Subword overlap 

x2yzxy3 X xyz xy3 x2y zx y3 Suffix overlap 

x2yzxy3 x2 y zxy3 x2yz xy2 y No overlap 

In the cases that LM(p1) and LM(p2) do overlap, we are not guaranteed to be able to 

obtain a common remainder when we divide p by both p1 and p2. To counter this, we 

introduce (as in the commutative case) an S-polynomial into our dividing set to ensure 

a common remainder, requiring one S-polynomial for every possible way that LM(p1) 

and LM(p2) overlap, including self overlaps (where p1 = P2, for example Prefix(xyx, 1) = 

Suffix(xyx, 1)). 

Definition 3.1.5 Let the lead monomials of two polynomials p1 and p2 overlap in such a 

way that t'1LM(p1)r1 = £2LM(p2)r2, where £1, £2, r1 and r2 are monomials chosen so that 

at least one of £1 and £2 and at least one of r 1 and r2 is equal to the unit monomial. The 

S-polynomial associated with this overlap is given by the expression 
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Remark 3.1.6 The monomials £1 and £2 are included in the notation S-pol(£1,p1,£2,p2) 

in order to differentiate between distinct S-polynomials involving the two polynomials p1 
and p2 ( there is no need to include r 1 and r2 in the notation because r1 and r2 are uniquely 

determined by £ 1 and £2 respectively). 

Example 3 .1. 7 Consider the polynomial p : = xy z + 2y and the set of polynomials P : = 
{p1,p2} = {xy - z,yz - x}, all polynomials being ordered by DegLex and originating 

from the polynomial ring (Q(x, y, z). We see that pis divisible (in one way) by both of the 

polynomials in P, giving remainders z2 + 2y and x2 + 2y respectively, both of which are 

irreducible by P . It follows that p does not have a unique remainder with respect to P. 

Because there is only one overlap involving the lead monomials of p1 and p2, namely 

Suffix(xy, 1) = Prefix(yz, 1), there is only one S-polynomial for the set P, which is the 

polynomial (xy - z)z - x(yz - x) = x2 - z2. When we add this polynomial to the set 

P, we see that the remainder of p with respect to the enlarged P is now unique, as the 

remainder of p with respect to p2 (the polynomial x2 + 2y) is now reducible by our new 

polynomial, giving a new remainder z2 + 2y which agrees with the remainder of p with 

respect to P1. 

Let us now give a definition of a noncommutative Grabner Basis in terms of S-polynomials. 

Definition 3.1.8 Let G = {91, ... , 9m} be a basis for an ideal Jover a noncommutative 

polynomial ring R = R(x1, ... , Xn) - If all the S-polynomials involving members of G 

reduce to zero using G, then G is a noncommutative Grabner Basis for J. 

Theorem 3.1.9 Given any polynomial p over a polynomial ring R = R(x1, ... , xn), the 

remainder of the division of p by a basis G for an ideal J in R is unique if and only if G 

is a Grabner Basis. 

Proof: ( =>) Following the proof of Theorem 2.1.5, we need to show that the division 

process is locally confluent, that is if there are polynomials f, Ji, h E R with Ji = 
f - £191r1 and h = f - £292r2 for terms £1 , £2, r1, r2 and 91, 92 E G, then there exists a 

polynomial h E R such that both Ji and h reduce to !J. As before, this is equivalent to 

showing that the polynomial h - Ji= £191r 1 - £292r 2 reduces to zero. 
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If LT(£191r 1) -f, LT(f292r2) , then the remainders Ji and h are obtained by cancelling 

off different terms of the original f ( the reductions of f are disjoint), so it is possible, 

assuming (without loss of generality) that LT(£191r 1) > LT(£292r 2), to directly reduce 

the polynomial h - Ji = f191r1 - f292r2 in the following manner: f191r1 - f292r1 ----.91 

-£292r2 ----.92 0. 

On the other hand, if LT(£191r 1) = LT(f292r2), then the reductions off are not disjoint 

(as the same term t from f is cancelled off during both reductions), so that the term t does 

not appear in the polynomial f191r1 -£292r2. However, the monomial LM(t) must contain 

the monomials LM(g1) and LM(g2) as subwords if both 91 and 92 cancel off the term t, 

so it follows that LM(91) and LM(92) will either overlap or not overlap in LM(t). If they 

do not overlap, then we know from Proposition 3.1.4 that Ji and h will have a common 

remainder (!1 ~ h and h ~ h), so that h-Ji ~ h-h = 0. Otherwise, because of 

the overlap between LM(91) and LM(92), the polynomial £1g1r 1 -£292r 2 will be a multiple 

of an S-polynomial, say f191r1 -£292r2 = £3 (8-pol(R~, 91, £;, 92))r3 for some terms £3 , r3 and 

some monomials€~, £;. But G is a Grabner Basis, so the S-polynomial S-pol(R~,91,£;,92) 

will reduce to zero, and hence by extension the polynomial £191r 1 -£292r 2 will also reduce 

to zero. 

( ¢::) As all S-polynomials are members of the ideal J, to complete the proof it is sufficient 

to show that there is always a reduction path of an arbitrary member of the ideal that 

leads to a zero remainder ( the uniqueness of remainders will then imply that members of 

the ideal always reduce to zero). Let f E J = (G). Then, by definition, there exist 9i E G 

(not necessarily all different) and terms ii, ri ER (where 1 ::,; i ~ j) such that 

j 

f = LA9iri. 
i=l 

We proceed by induction on j. If j = 1, then f = f 191r 1, and it is clear that we can use 

91 to reduce f to give a zero remainder (f ----.91 f - f 191r1 = 0). Assume that the result 

is true for j = k, and let us look at the case j = k + 1, so that 

By the inductive hypothesis, I:;~=l €i9iri is a member of the ideal that reduces to zero. 

The polynomial f therefore reduces to the polynomial f' := fk+ l9k+lrk+l, and we can 
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now use gk+l to reduce f' to give a zero remainder (f' - 9k+i f' - i!k+1gk+1rk+I = 0). D 

Remark 3.1.10 The above Theorem forms part of Bergman's Diamond Lemma [8, The­

orem 1.2]. 

3.2 Mora's Algorithm 

Let us now consider the following pseudo code representing Mora's algorithm for comput­

ing noncommutative Grobner Bases [45]. 

Algorithm 5 Mora's Noncommutative Grobner Basis Algorithm 

Input: A Ba.sis F = {!1, h, ... , fm} for an ideal Jover a noncommutative polynomial 

ring R(x1, ... Xn); an admissible monomial ordering 0. 

Output: A Grobner Basis G = {g1,g2, .. . ,gp} for J (in the case of termination). 

Let G = F and let A = 0; 
For each pair of polynomials (gi, gj) in G (i ~ j), add an S-polynomial S-pol(/!1, gi, /!2, gj) 

to A for each overlap /!1LM(gi)r1 = 1!2LM(gj)r2 between t he lead monomials of LM(gi) 

and LM(gj)-

while (A is not empty) do 

Remove the first entry s1 from A; 

s~ = Rem(s1, G); 

if (s~ -/= 0) then 

Add s~ to G and then (for all gi E G) add all the S-polynomials of the form 

S-pol(/!1, 9i, 1!2, sD to A; 
end if 

end while 

return G; 

Structurally, Mora's algorithm is virtually identical to Buchberger's algorithm, in that we 

compute and reduce each S-polynomial in turn; we add a reduced S-polynomial to our 

basis if it does not reduce to zero; and we continue until all S-polynomials reduce to zero 

- exactly as in Algorithm 3. Despite this, there are major differences from an implemen­

tation standpoint, not lea.st in the fact that noncommutative polynomials are much more 

difficult to handle on a computer; and noncommutative S-polynomials need more com­

plicated data structures. This may explain why implementations of the noncommutative 

Grobner Ba.sis algorithm are currently sparser than those for the commutative algorithm; 
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and also why such implementations often impose restrictions on the problems that can 

be handled - Bergman [6] for instance only allows input bases which are homogeneous. 

3.2.1 Termination 

In the commutative case, Dickson's Lemma and Hilbert's Basis Theorem allow us to prove 

that Buchberger's algorithm always terminates for all possible inputs. It is a fact however 

that Mora's algorithm does not terminate for all possible inputs (so that an ideal may have 

an infinite Grabner Basis in general) because there is no analogue of Dickson's Lemma 

for noncommutative monomial ideals. 

Proposition 3.2.1 Not all noncommutative monomial ideals are finitely generated. 

Proof: Assume to the contrary that all noncommutative monomial ideals are finitely 

generated, and consider an ascending chain of such ideals J1 ~ J2 ~ · • · . By our assump­

tion, the ideal J = UJi (for i ~ 1) will be finitely generated, which means that there 

must be some k ~ l such that Jk = Jk+l = · · ·. For a counterexample, let R = Q(x, y) 
be a noncommutative polynomial ring, and define Ji (for i ~ 1) to be the ideal in R 

generated by the set of monomials { xyx, xy2x, . .. , xyix}. Because no member of this set 

is a multiple of any other member of the set, it is clear that there cannot be a k ~ l such 

that Jk = Jk+I = · · · because xyk+1x E Jk+l and xyk+lx ft_ Jk for all k ~ l. D 

Another way of explaining why Mora's algorithm does not terminate comes from consid­

ering the link between noncommutative Grabner Bases and the Knuth-Bendix Critical 

Pairs Completion Algorithm for monoid rewrite systems [39], an algorithm that attempts 

to find a complete rewrite system for any given monoid presentation. Because Mora's 

algorithm can be used to emulate the Knuth-Bendix algorithm (for the details, see for 

example [33]), if we assume that Mora's algorithm always terminates, then we have found 

a way to solve the word problem for monoids (so that we can determine whether any word 

in a given monoid is equal to the identity word); this however contradicts the fact that 

the word problem is actually an unsolvable problem (so that it is impossible to define an 

algorithm that can tell whether two words in a given monoid are identical). 
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3.3 Reduced Grabner Bases 

Definition 3.3.1 Let G = {g1 , ... , gp} be a Grobner Basis for an ideal over a polynomial 

ring R(x1 , ... ,xn) - G is a reduced Grabner Basis if the following conditions are satisfied. 

(a) LC(gi) = IR for all 9i E G. 

(b) No term in any polynomial 9i E G is divisible by any LT(gJ), j =/- i. 

Theorem 3.3.2 If there exists a Grabner Basis G for an ideal J over a noncommutative 

polynomial ring, then J has a unique reduced Grabner Basis. 

Proof: Existence. We claim that the following procedure transforms G into a reduced 

Grobner Basis G'. 

(i) Multiply each 9i E G by LC(gi)-1 . 

(ii) Reduce each 9i E G by G \ {gi}, removing from G all polynomials that reduce to 

zero. 

It is clear that G' satisfies the conditions of Definition 3.3.1, so it remains to show that 

G' is a Grobner Basis, which we shall do by showing that the application of each step of 

instruction (ii) above produces a basis which is still a Grobner Basis. 

Let G = {g1 , ... , gp} be a Grobner Basis, and let g~ be the reduction of an arbitrary 

9i E G with respect to G \ {gi}, carried out as follows (the fk and the rk are terms). 

K, 

9~ = 9i - 2:/k9Jk rk, (3.1) 
k=l 

Set H = ( G\ {gi}) U {ga if g~ =/- 0, and set H = G\ {gi} if g~ = 0. As G is a Grobner Basis, 

all S-polynomials involving elements of G reduce to zero using G, so there are expressions 

µ 

Cbf.agar a - Cafbgbrb - I: fu9c,, r u = 0 
u = l 

(3.2) 

for every S-polynomial S-pol(fa,9a,fb,9b) = cbf.agara - Cafbgbrb, where Ca= LC(ga); Cb= 

LC(gb); the Ru and the ru are terms (for 1 ::;; u::;; µ); and 9a, 9b, 9c,, E G. To show that His 
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a Grabner Basis, we must show that all S-polynomials involving elements of H reduce to 

zero using H. For polynomials ga, gb E Hnot equal tog~, we can reduce an S-polynomial 

of the form S-pol(t'a, ga, t'b, gb) using the reduction shown in Equation (3.2), substituting 

for gi from Equation (3. 1) if any of the gcu in Equation (3.2) are equal to gi. This gives a 

reduction to zero of S-pol(t'a, ga, Pb, gb) in terms of elements of H. 

If g~ = 0, our proof is complete. Otherwise consider all S-polynomials S-pol(t'~, g~, t'b, gb) 

involving the pair of polynomials (g~, gb), where gb E G \ {gi}- We claim that there exists 

an S-polynomial S-pol(f:'1, gi, t'2, gb) = cbt'1gir1 - cit'2gbr2 such that S-pol(t'~, g~, t'b, gb) = 

cbt'1g~r1 - cl2gbr2. To prove this claim, it is sufficient to show that LT(gi) = LT(gD. 

Assume for a contradiction that LT(gi) # LT(g~). It follows that during the reduction of 

gi we were able to reduce its lead term, so that LT(gi) = t'LT (gj)r for some terms t' and r 

and some gj E G. Because LM(gi - t'gjr) < LM(gi), the polynomial gi - t'gjr must reduce 

to zero without using gi, so that g~ = 0, giving a contradiction. 

It remains to show that S-pol(t'~,g~,t'b,gb) _,H 0. We know that S-pol(t'1,gi,£2,gb) = 
cbt'1gir1 - cl2gbr2 - c 0, and Equation (3.2) tells us that cbt'1gir1-c/2gbr2- I:~=l t'ugc.,ru = 
0. Substituting for gi from Equation (3.1), we obtain1 

or 

C/,f I !/;r1 - C; f 2gbr2 - ( t £,g,,. r u - t, c,£ J £,g;, r, r1) = 0, 

which implies that S-pol(t'~,g~,t'b,gb) _,H 0. The only other case to consider is the case of 

an S-polynomial coming from a self overlap involving LM(g~) . But because we now know 

that LT(g~) = LT(gi), we can use exactly the same argument as above to show that the 

S-polynomial S-pol(t'1,g~,£2,gD reduces to zero using H because an S-polynomial of the 

form S-pol(t'1, gi, t'2, gi) will exist. 

Uniqueness. Assume for a contradiction t hat G = {g1, ... , gp} and H = {h1 , .. . , hq} are 

two reduced Grabner Bases for an ideal J, with G -=I H. Let gi be an arbitrary element 

from G (where 1 ~ i ~ p). Because 9i is a member of the ideal, then gi must reduce 

to zero using H (H is a Grabner Basis). This means that there must exist a polynomial 

1Substitutions for 9i may also occur in the summation L~=l Eu9cu r,,; t hese substitutions have not 
been considered in the displayed formulae. 
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hi E H such that LT(hi) I LT(gi). If LT(hi) =/ LT(gi), then f x LT(hi) x r = LT(gi) for 

some monomials f and r, at least one of which is not equal to the unit monomial. But hi 

is also a member of the ideal, so it must reduce to zero using G. Therefore there exists 

a polynomial 9k E G such t hat LT(gk) I LT(hj), which implies that LT(gk) I LT(gi), with 

k =I i. This contradicts condit ion (b) of Definition 3.3.1 so that G cannot be a reduced 

Grabner Basis for J if LT(hi) =/ LT(gi)- From this we deduce that each gi E G has a 

corresponding hi EH such that LT(gi) = LT(hj) - Further, because G and Hare assumed 

to be reduced Grabner Bases, this is a one-to-one correspondence. 

It remains to show that if LT(gi) = LT(hj), then gi = hi. Assume for a contradiction 

that 9i =I hi and consider the polynomial gi - hi. Without loss of generality, assume 

that LM(gi - hi) appears in 9i· Because gi - hi is a member of the ideal, then there is a 

polynomial 9k E G such that LT(gk) I LT(gi - hi)- But this again contradicts condition 

(b) of Definition 3.3.1, as we have shown that there is a term in gi that is divisible by 

LT(gk) for some k =I i . It follows that G cannot be a reduced Grabner Basis if gi =I hj, 

which means that G = H and therefore reduced Grabner Bases are unique. D 

As in the commutative case, we may refine the procedure for finding a unique reduced 

Grabner Basis (as given in the proof of Theorem 3.3.2) by removing from the Grabner 

Basis all polynomials whose lead monomials are multiples of the lead monomials of other 

Grabner Basis elements. This leads to the definition of Algorithm 6. 

3.4 Improvements to Mora's Algorithm 

In Section 2.5, we surveyed some of the numerous improvements of Buchberger's algo­

rithm. Let us now demonstrate that many of these improvements can also be applied in 

the noncommutative case. 

3.4.1 Buchberger's Criteria 

In the commutative case, Buchberger's first criterion states that we can ignore any S­

polynomial S-pol(J, g) in which lcm(LM(J), LM(g)) = LM(J)LM(g). In the noncommuta­

tive case, this translates as saying that we can ignore any 'S-polynomial' S-pol(f1, J, £2, g) = 
LC(g)Rifr1 - LC(J)f2gr2 such that LM(J) and LM(g) do not overlap in the monomial 

f 1LM(J)r1 = f2LM(g)r2 . We can certainly show that such an 'S-polynomial' will reduce 

to zero by utilising Proposition 3.1.4, but we will never be able to use this result as, by 
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Algorithm 6 The Noncommutative Unique Reduced Grobner Basis Algorithm 

Input: A Grabner Basis G = {g1 , 92, ... , 9m} for an ideal J over a noncommutative 

polynomial ring R(x1, ... Xn); an admissible monomial ordering 0. 

Output: The unique reduced Grobner Basis G' = {g~, g~, . .. , g~} for J. 

G' = 0; 
for each 9i E G do 

Multiply 9i by LC(gi)-1; 

if (LM(gi) = t'LM(gi)r for some monomials t', rand some 9i E G (gi # gi)) then 

G = G\ {gi}; 

end if 

end for 

for each 9i E G do 

g~ = Rem(gi, (G \ {gi}) u G'); 

G = G \ {gi}; G' = G' u {gD; 
end for 

return G'; 

definition, an S-polynomial is only defined when we have an overlap between LM(f) and 

LM(g). It follows that an 'S-polynomial' of the above type will never occur in Mora's 

algorithm, and so Buchberger's first criterion is redundant in the noncommutative case. 

The same cannot be said of his second criterion however, which certainly does improve 

the efficiency of Mora's algorithm. 

Proposition 3.4.1 (Buchberger's Second Criterion) Let f, g and h be three mem­

bers of a finite set of polynomials P over a noncommutative polynomial ring, and consider 

an S-polynomial of the form 

(3.3) 

If LM(h) I J\LM(f)r1, so that 

(3.4) 

for some monomials t'3, r3, then S-pol(t'1 , f, t'2, g) - p 0 if all S-polynomials corresponding 

to overlaps (as placed in the monomial t'1LM(f)r1) between LM(h) and either LM(f) or 

LM(g) reduce to zero using P. 
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Proof ( cf. [37], Appendix A): To be able to describe an S-polynomial corresponding 

to an overlap (as placed in the monomial R1LM(f)r1) between LM(h) and either LM(J) 

or LM(g), we introduce the following notation. 

• Let R13 be the monomial corresponding to the common prefix of R1 and R3 of maximal 

degree, so that R1 = R13R~ and R3 = R13R3. (Here, and similarly below, if there is no 

common prefix of R1 and R3, then R13 = 1, .e~ = R1 and R3 = R3.) 

• Let R23 be the monomial corresponding to the common prefix of .e2 and R3 of maximal 

degree, so that R2 = R23R~ and R3 = R23R~. 

• Let r 13 be the monomial corresponding to the common suffix of r 1 and r3 of maximal 

degree, so that r1 = rir13 and r3 = r3r13 . 

• Let r 23 be the monomial corresponding to the common suffix of r 2 and r3 of maximal 

degree, so that r2 = rir23 and r3 = r~r23. 

We can now manipulate Equation (3.3) as follows (where c3 = LC(h)). 

c3c2Rifr1 - c3c1 R2gr2 

c3c2Rifr1 - c1c2R3hr3 + c1c2R3hr3 - c3c1R2gr2 

c2(c3Rifr1 - c1R3hr3) - c1(c3R2gr2 - c2R3hr3) 

c2 ( c3R13R~ Jr; r13 - c1 .e 13R;hr;r13) 

( .e .ell II .e .e" h II ) - C1 C3 23 29r2r23 - C2 23 3 r3r23 

c2R13(c3R~fr; - c1.e;hr;)r13 - c1R23(c3R~gr; - c2R~hr~)r23. 

As placed in R1LM(J)r1 = R3LM(h)r3, if LM(J) and LM(h) overlap, then the S-polynomial 

corresponding to this overlap is2 S-pol(R~, J, .e3, h). Similarly, if LM(g) and LM(h) overlap 

as placed in R2LM(g)r2 = R3LM(h)r3, then the S-polynomial corresponding to this overlap 

is S-pol(R~,g,.e~, h). By assumption, these S-polynomials reduce to zero using P, so there 

are expressions 
Ct 

c3R~Jr; - c1.e;hr; - ~ UiPiVi = 0 (3.5) 
i = l 

2For completeness, we note that the S-polynomial corresponding to the overlap can also be of the form 
S-pol( e; , h, e~, !); this (inconsequentially) swaps the first two terms of Equation (3.5). 
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and 
/3 

/)II 11 1)1/h 11 ~ O C3,:,2gr2 - C2,:,3 r3 - L.,, u1p1v1 = , (3.6) 
j=l 

where t he ui, vi, u1 and v1 are terms; and Pi,Pj E P for all i and j. Using Proposition 

3.1.4, we can state that these expressions will still exist even if LM(J) and LM(h) do not 

overlap as placed in £1LM(J)r1 = £3LM(h)r3; and if LM(g) and LM(h) do not overlap as 

placed in £2LM(g)r2 = £3LM(h)r3. It follows that 

c2£13(c3£Ur~ - c1£;hr;)r13 - c1£23(c3£~gr~ - c2£~hr~)r23 

c2£13 (t uipivi ) r13 - c1£23 (t u1p1v1) r23 
i=l J=l 

a /3 

L c2£13UiPiVir13 - L c1£23u1p1v1r23; 
i=l j=l 
a /3 

L c31
c2£13UiPiVir13 - L c31c1£23UJPJVJr23. 

i=l j=l 

To conclude that the S-polynomial S-pol(£1,f,£2,g) reduces to zero using P, it remains 

to show that the algebraic expression - I::~=l c3
1c2£13uipivir13 + I::J=1 c3

1c1£23UJPJVJr23 

corresponds to a valid reduction of S-pol(£1, J,£2,g). To do this, it is sufficient to show 

that no term in either of the summations is greater than the term £1LM(J)r1 (so that 

LM(£13UiPiVir13) < £1LM(J)r1 and LM(£23UJPJVJr23) < £1LM(J)r1 for all i and j). But 

this follows from Equation (3.4) and from the fact that the reductions of the expressions 

c3£;_Jr;_ - c1£3hr3 and c3£~gri - c2£1hr1 in Equations (3.5) and (3.6) are valid, so that 

LM(uipivi) < LM(£Uri) and LM(uJPJVJ) < LM(£igri) for all i and j. D 

Remark 3.4.2 The three polynomials J, g and h in the above proposition do not neces­

sarily have to be distinct (indeed, f = g = his allowed) - the only restriction is that the 

S-polynomial S-pol(£1, J, £2, g) has to be different from the S-polynomials S-pol(£~, J, £3, h) 
and S-pol(£~,g,£1, h); for example, if J = h, then we cannot have£~ = £3. 

3.4.2 Homogeneous Grobner Bases 

Because it is comput ationally more expensive to do noncommutative polynomial arith­

metic than it is to do commutative polynomial arithmetic, gains in efficiency due to 

working with homogeneous bases are even more significant in the noncommutative case. 
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For this reason, some systems for computing noncommutative Grobner Bases will only 

work with homogeneous input bases, although (as in the commutative case) it is still 

sometimes possible to use these systems on non-homogeneous input bases by using the 

concepts of homogenisation, dehomogenisation and extendible monomial orderings. 

Definition 3.4.3 Let p = Po + · · · + Pm be a polynomial over the polynomial ring 

R(x1 , ... , Xn), where each Pi is the sum of the degree i terms in p (we assume that 

Pm -=/ 0). The left homogenisation of p with respect to a new (homogenising) variable y is 

the polynomial 

and the right homogenisation of p with respect to a new (homogenising) variable y is the 

polynomial 

Homogenised polynomials belong to polynomial rings determined by where y is placed in 

the lexicographical ordering of the variables. 

Definition 3.4.4 The dehomogenisation of a polynomial pis the polynomial d(p) given 

by substituting y = 1 in p, where y is the homogenising variable. 

Definition 3.4.5 A monomial ordering O is extendible if, given any polynomial p 

t1 + · · · + t°' ordered with respect to O (where t1 > • • • > to,) , the homogenisation of p 

preserves the order on the terms ( t~ > t~+l for all 1 ~ i ~ a - 1, where the homogenisation 

process maps the term ti E p to the term t~). 

In the noncommutative case, an extendible monomial ordering must specify how to ho­

mogenise a polynomial (by multiplying with the homogenising variable on the left or on 

the right) as well as stating where the new variable y appears in the ordering of the vari­

ables. Here are the conventions for those monomial orderings defined in Section 1.2.2 that 

are extendible, assuming that we start with a polynomial ring R(x1, ... , Xn), 

Monomial Ordering Type of Homogenisation Position of the new variable y 

in the ordering of the variables 

InvLex Right y < Xi for all Xi 

DegLex Left y < xi for all xi 

DeglnvLex Left y > xi for all xi 

DegRevLex Right y > Xi for all x; 
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Noncommutativity also provides the possibility of the new variable y becoming 'trapped' 

in the middle of some monomial forming part of a polynomial computed during the course 

of Mora's algorithm. For example, working with DegRevLex, consider the homogenised 

polynomial hr(Xi + x1) =Xi+ X1Y and the S-polynomial 

Because y appears in the middle of the monomial x1yx1, the S-polynomial does not 

immediately reduce to zero as it does in the non-homogenised version of the S-polynomial, 

We must therefore make certain that y only appears on one side of any given mono­

mial by introducing the set of polynomials H = {h1 , h2, ... , hn} = {yx1 - x1y, yx2 -

X2Y, ... , yxn - XnY} into our initial homogenised basis, ensuring that y commutes with 

all the other variables in the polynomial ring. This way, the first S-polynomial will reduce 

to zero as follows: 

Which side y will appear on will be determined by whether LM(yxi - XiY) = yxi or 

LM(yxi - XiY) = xiy in our chosen monomial ordering (pushing y to the right or to the 

left respectively). This side must match the method of homogenisation, which explains 

why Lex is not an extendible monomial ordering - for Lex to be extendible, we must 

homogenise on the right and have y < xi for all Xi, but then because LM(yxi - xiy) = XiY 

with respect to Lex, the variable y will always in practice appear on the left. 

Definition 3.4.6 Let F = {!1 , ... , f m} be a non-homogeneous set of polynomials over 

the polynomial ring R(x1 , ... , Xn)- To compute a Grabner Basis for F using a program 

that only accepts sets of homogeneous polynomials as input, we use the following proce­

dure ( which will only work in conjunction with an extendible monomial ordering). 

(a) Construct a homogeneous set of polynomials F' = {he(f1), ... , he(fm)} or F' 

{hr(fi), ... , hr(fm)} (dependent on the monomial ordering used). 

(b) Compute a Grabner Basis G' for the set F' UH, where H = {yx1 - X1Y, yx2 -

X2Y, • • •, YXn - XnY }. 

( c) Dehomogenise each polynomial g' E G' to obtain a Grabner Basis G for F, noting 
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that no polynomial originating from H will appear in G (d(hi) = 0 for all hi EH). 

3.4.3 Selection Strategies 

As in the commutative case, the order in which S-polynomials are processed during Mora's 

algorithm has an important effect on the efficiency of the algorithm. Let us now generalise 

the selection strategies defined in Section 2.5.3 for use in the noncommutative setting, 

basing our decisions on the overlap words of S-polynomials. 

Definition 3.4.7 The overlap word of an S-polynomial S-pol(t'i,J, £2 ,g) = LC(g)£ifr1 -

LC(f)£2gr2 is the monomial £1LM(f)r1 ( = £2LM(g)r2)-

Definition 3.4.8 In the noncommutative normal strategy, we choose an S-polynomial to 

process if its overlap word is minimal in the chosen monomial ordering amongst all such 

overlap words. 

Definition 3.4.9 In the noncommutative sugar strategy, we choose an S-polynomial to 

process if its sugar (a value associated to the S-polynomial) is minimal amongst all such 

values (we use the normal strategy in the event of a tie). 

The sugar of an S-polynomial is computed by using the following rules on the sugars 

of polynomials we encounter during the computation of a Grebner Basis for the set of 

polynomials F = {!1, ... , Jm}-

(1) The sugar Sug1i of a polynomial Ji E Fis the total degree of the polynomial Ji (which 

is the degree of the term of maximal degree in Ji)-

(2) If pis a polynomial and if t1 and t2 are terms, then Sugtipt
2 

= deg(t1) +SugP +deg(t2). 

(3) If p = P1 + P2, then SugP = max(Sugp
1

, Sugp
2
). 

It follows that the sugar of the S-polynomial S-pol(£1, g, £2, h) = LC(h)£1gr1 -LC(g)£2hr2 
is given by the formula 
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3.4.4 Logged Grobner Bases 

Definition 3.4.10 Let G = {g1, ... , gp} be a noncommutative Grabner Basis computed 

from an initial basis F = {!1, . . . , fm}- We say that G is a Logged Grabner Basis if, for 

each 9i E G, we have an explicit expression of the form 

/3 

9i = L fo:fko.ro:, 
o:=1 

where the £0 and the r 0 are terms and fko. E F for all 1 ~a~ {3. 

Proposition 3.4.11 Let F ={Ji, ... , fm} be a finite basis over a noncommutative poly­

nomial ring. If we can compute a Grabner Basis for F, then it is always possible to 
compute a Logged Grabner Basis for F. 

Proof: We refer to the proof of P roposit ion 2.5.11, substituting 

/3 

S-pol(f1, Ji, f2, Ii) - L fo:9koro: 
o:=1 

for f m+ 1 ( the f O and the r o: are terms). 

3.5 A Worked Example 

D 

To demonstrate Mora's algorithm in action, let us now calculate a Grabner Basis for the 

ideal J generated by the set of polynomials F := {Ji, h, h} = {x y - z, yz+2x+z, yz+x} 

over the polynomial ring (Q(x, y, z) . We shall use the DegLex monomial ordering (with 

x > y > z); use the normal selection strategy; calculate a Logged Grabner Basis; and use 

Buchberger 's criteria. 

3.5.1 Initialisation 

The first part of Mora's algorithm requires us to find all the overlaps between the lead 

monomials of the three polynomials in the init ial basis G := {g1, g2 , g3} = {xy - z, yz + 
2x + z, yz + x }. There are three overlaps in total, summarised by the following table. 
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Overlap 1 Overlap 2 Overlap 3 

Overlap Word yz xyz xyz 

Polynomial 1 yz + 2x + z xy - z xy-z 

Polynomial 2 yz+x yz + 2x + z yz +x 

.e1 1 1 1 

r1 1 z z 

.e2 1 X X 

r2 1 1 1 

Degree of Overlap Word 2 3 3 

Because we are using the normal selection strategy, it is clear that Overlap 1 will appear 

in the list A first, but we are free to choose the order in which the other two overlaps 

appear (because their overlap words are identical). To eliminate this choice, we will use 

the following tie-breaking strategy to order any two S-polynomials whose overlap words 

are identical. 

Definition 3.5.1 Let s1 = S-pol(.e1,9a,.e2,9b) and s2 = S-pol(.e3, 9c,.e4,gd) be two S­

polynomials with identical overlap words, where 9a, gb, gc, gd E G = fo1, ... , g0 } . Assum­

ing ( without loss of generality) that a < b and c < d, the tie-breaking strategy places s1 

before s2 in A if a < c or if a = c and b ~ d; and later in A otherwise. 

Applying the tie-breaking strategy for Overlaps 2 and 3, it follows that Overlap 2 = 
S-pol(l,91,x,92) will appear in A before Overlap 3 = S-pol(l,91,x,93). 

Before we start the main part of the algorithm, let us note that for the Logged Grabner 

Basis, we begin the algorithm with t rivial expressions for each of the three polynomials 

in the initial basis G in terms of the polynomials of the input basis F: 91 = xy - z = Ji; 
92 = yz + 2x + z = !2; and 93 = yz + x = h-

3.5.2 Calculating and Reducing S-polynomials 

The first 8-polynomial to analyse corresponds to Overlap 1 and is the polynomial 

l(yz + 2x + z) l - l (yz + x)l = 2x + z - x = x + z. 

This polynomial is irreducible with respect to G, and so we add it to G to obtain a new 

basis G = {xy - z, yz+2x+ z, yz+x, x+z} = {g1, 92, g3 , 94 }. Looking for overlaps between 
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the lead monomial of x + z and the lead monomials of the four elements of G, we see that 

there is one such overlap (with 91) whose overlap word has degree 2, so this overlap is 

added to the beginning of the list A to obtain A= {S-pol(l, xy- z, 1, x + z), S-pol(l, xy­

z, x, yz + 2x + z), S-pol(l, xy - z, x, yz + x)}. As far as the Logged Grabner Basis goes, 

94 = x + z = l(yz + 2x + z)l - l(yz + x) l = h - h-

The next entry in A produces the polynomial 

l(xy - z)l - l(x + z)y = -zy - z . 

As before, this polynomial is irreducible with respect to G, so we add it to G as the fifth 

element. There are also four overlaps between the lead monomial of - zy- z and the lead 

monomials of the five polynomials in G: 

Overlap 1 Overlap 2 Overlap 3 Overlap 4 

Overlap Word zyz zyz yzy yzy 

Polynomial 1 yz + 2x + z yz+x yz+ 2x+ z yz+x 

Polynomial 2 - zy - z -zy-z - zy - z - zy- z 

f1 z z 1 1 

r1 1 1 y y 

f2 1 1 y y 

r2 z z 1 1 

Degree of Overlap Word 3 3 3 3 

Inserting these overlaps into the list A, we obtain 

A= { S-pol(z, yz + 2x + z, 1, - zy - z) , S-pol(z, yz + x, 1, - zy - z), 

S-pol(l , yz + 2x + z, y, - zy - z), S-pol(l , yz + x, y, -zy - z), 

S-pol(l, xy - z, x, yz + 2x + z), S-pol(l, xy - z, x, yz + x) }. 

The logged representation of the fifth basis element again comes straight from the S­

polynomial (as no reduction was performed), and is as follows: 95 = - zy - z = l(xy -

z)l - l(x + z)y = l(fi)l - l(h - h)Y = !1 - hY + !Jy. 

The next entry in A yields the polynomial 

-z(yz + 2x + z) l - 1(-zy - z)z = -2zx - z2 + z2 = - 2zx. 
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This time, the fourth polynomial in our basis reduces the S-polynomial in question, giving 

a reduction -2zx ----t94 2z2 . When we add this polynomial to G and add all five new 

overlaps to A , we are left with a six element basis G = {xy - z, yz + 2x + z, yz + x, x + 
z, - zy - z, 2z2

} and a list 

A={ S-pol(l, 2z2
, z, 2z2

), S-pol(z, 2z2
, 1, 2z2

), 

S-pol(z, - zy - z, 1, 2z2
), S-pol(z, yz + x, 1, - zy - z), 

S-pol(l, yz + 2x + z, y, 2z2
), S-pol(l, yz + x, y, 2z2

), 

S-pol(l, yz + 2x + z, y, -zy - z), S-pol(l, yz + x, y, -zy - z), 

S-pol(l, xy - z, x, yz + 2x + z), S-pol(l, xy - z , x, yz + x) }. 

We obtain the logged version of the sixth basis element by working backwards through 

our calculations: 

96 = 2z2 

= -2zx + 2z(x + z) 

(-z(yz + 2x + z) l - l(-zy - z)z) + 2z(x + z) 

(-z(h) - (!1 - hY + fsy)z) + 2z(h - is) 

- fiz + zh + hyz - 2zfs - fsyz. 

3.5.3 Applying Buchberger's Second Criterion 

The next three entries in A all yield S-polynomials that are either zero or reduce to 

zero (for example, the first entry corresponds to the polynomial 2(2z2)z - 2z(2z2)1 = 
4z3 

- 4z3 = 0). The fourth entry in A, S-pol(z, yz + x, 1, -zy - z ), then enables us (for 

the first time) to apply Buchberger's second criterion, allowing us to move on to look 

at the fifth entry of A. Before we do this however, let us explain why we can apply 

Buchberger's second criterion in this particular case. 

Recall (from Proposition 3.4.1) that in order to apply Buchberger's second criterion for 

the S-polynomial S-pol(z, yz + x, 1, -zy - z), we need to find a polynomial 9i E G such 

that LM(gi) divides the overlap word of our S-polynomial, and any S-polynomials cor­

responding to overlaps (as positioned in the overlap word) between LM(gi) and either 

LM(yz + x) or LM(-zy - z) reduce to zero using G (which will be the case if those 
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particular S-polynomials have been processed earlier in the algorithm). 

Consider the polynomial 92 = yz + 2x + z . The lead monomial of this polynomial divides 

the overlap word zyz of our S-polynomial, which we illustrate as follows. 

LM{g3) 

z y z ------

As positioned in the overlap word, we note that LM(92) overlaps with both LM(93) 

and LM(95), with the overlaps corresponding to the S-polynomials S-pol(l, 92, 1, 93) = 
S-pol(l, yz + 2x + z, 1, yz + x) and S-pol(z, 92, 1, 95) = S-pol(z, yz + 2x + z , 1, -zy - z) 

respectively. But these S-polynomials have been processed earlier in the algorithm (they 

were the first and third S-polynomials to be processed); we can therefore apply Buch­

berger's second criterion in this instance. 

There are now six S-polynomials left in A, all of whom either reduce to zero or are 

ignored due to Buchberger's second criterion. Here is a summary of what happens during 

the remainder of the algorithm. 

S-polynomial 

S-pol(l, yz + 2x + z, y, 2z2) 

S-pol(l, yz + x, y, 2z2) 

S-pol(l, yz + 2x + z , y, - zy - z) 

S-pol(l, yz + x, y, -zy - z) 

S-pol(l, xy - z, x, yz + 2x + z) 

S-pol(l, xy - z, x, yz + x) 

Action 

Reduces to zero using the division algorithm 

Ignored due to Buchberger's second criterion 

(using yz + 2x + z) 

Reduces to zero using the division algorithm 

Ignored due to Buchberger's second criterion 

(using yz + 2x + z) 

Ignored due to Buchberger's second criterion 

(using x + z) 

Ignored due to Buchberger's second criterion 

(using yz + 2x + z) 

As the list A is now empty, the algorithm terminates with the following (Logged) Grobner 

Basis. 
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Input Basis F 

Ji= xy - z 

fz = yz + 2x + z 

h = yz+x 

3.5.4 Reduction 

Grabner Basis G 

91 = xy - z = Ji 
92 = yz + 2x + z = fz 

93 = yz + x = h 
94 = X + z = fz - h 
95 = -zy - z = Ji - fzy + hY 

96 = 2z2 = - fiz + zfz + fzyz - 2zh - hyz 

68 

Now that we have constructed a Grabner Basis for our ideal J, let us go on to find the 

unique reduced Grabner Basis for J by applying Algorithm 6 to G. 

In the first half of the algorithm, we must multiply each polynomial by the inverse of 

its lead coefficient and remove from the basis each polynomial whose lead monomial is a 

multiple of the lead monomial of some other polynomial in the basis. For the Grabner 

Basis in question, we multiply 95 by -1 and 96 by ½; and we remove 91 and 92 from the 

basis (because LM(91) = LM(94) x y and LM(92) = LM(93)). This leaves us with the 

following (minimal) Grabner Basis. 

Input Basis F 

Ji= xy- z 

!2 = yz + 2x + z 

h = yz+ x 

Grabner Basis G 

93 = yz+ x = h 

94 = X + z = fz - h 

95 = zy + z = - !1 + fzy - hY 

96 = z2 = -½fiz + ½zfz + ½fzyz - zh - ½hyz 

In the second half of the algorithm, we reduce each 9i E G with respect to ( G \ {9i}) U G', 

placing the remainder in the (init ially empty) set G' and removing 9i from G. For the 

Grobner Basis in question, we summarise what happens in the following table, noting that 

the only reduction that takes place is the reduction yz + x ---+94 yz + x - (x + z) = yz - z. 
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G G' 9i g~ 

{ y z + x, x + z, zy + z, z2} 0 yz+x yz- z 

{ x + z, zy + z, z2} {yz - z} x+z x+z 

{zy + z, z2} {yz - z, x + z} zy+z zy+ z 
{z2} { y Z - Z, X + Z, zy + Z} z2 z2 

0 {yz - z, x + z, zy + z, z2} 

We can now give the unique reduced (Logged) Grabner Basis for J. 

Input Basis F Unique Reduced Grabner Basis G' 

Ji= xy- z yz - z = -h + 2h 
h = yz + 2x + z x + z = h - h 

h = yz + x zy + z = - Ji + hY - hY 

z2 = -½fiz + ½zh + ½hyz - zh - ½hyz 



Chapter 4 

Commutative Involutive Bases 

Given a Grabner Basis G for an ideal J over a polynomial ring R , we know that the 

remainder of any polynomial p E R with respect to G is unique. But although this 

remainder is unique, there may be many ways of obtaining the remainder , as it is possible 

that several polynomials in G divide our polynomial p, giving several reduction paths for 

p. 

Example 4.0.2 Consider the DegLex Grabner Basis G := {g1,g2,g3 } = {x2 - 2xy + 
3, 2xy + y2 + 5, ¾Y3 - ~x + 3

4
7 y} over the polynomial ring R := Q[x, y] from Example 

2.3.2, and consider the polynomial p := x2y + y3 + Sy E R. The remainder of p with 

respect to G is O (so t hat pis a member of the ideal J generated by G), but there are two 

ways of obtaining this remainder, as shown in the following diagram. 

( 4.1) 

2xy2 + y3 + 5y 

921 
0 

-½ xy2 + y3 - ~ x + Sy 

! 92 
.§y3 _ .§x + 37y 
4 2 4 

! 93 

0 

An Involutive Basis is a Grabner Basis G for J such that there is only one possible 

reduction path for any polynomial p E R. In order to find such a basis, we must restrict 

70 
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which reductions or divisions may take place by requiring, for each potential reduction of 

a polynomial p by a polynomial 9i E G (so that LM(p) = LM(gi) x u for some monomial 

u), some extra conditions on the variables in u to be satisfied, namely that all variables 

in u have to be in a set of multiplicative variables for 9i, a set that is determined by a 

particular choice of an involutive division. 

4.1 lnvolutive Divisions 

In Definition 1.2.9, we saw that a commutative monomial u1 is divisible by another mono­

mial u2 if there exists a third monomial u 3 such that u 1 = u 2u 3 ; we also introduced the 

notation u 2 I u1 to denote that u 2 is a divisor of u1, a divisor we shall now refer to as a 

conventional divisor of u1. For a particular choice of an involutive division I , we say that 

u2 is an involutive divisor of u1 , written u2 11 u1 , if, given a partitioning (by I) of the 

variables in the polynomial ring into sets of multiplicative and nonmultiplicative variables 

for u 2 , all variables in u 3 are in the set of multiplicative variables for u 2 . 

Example 4.1.1 Let u1 := xy2z2
; ui := x 2yz and u2 := xz be three monomials over the 

polynomial ring R := (Q[x, y, z], and let an involutive division I partition the variables in 

R into the following two sets of variables for the monomial u2 : multiplicative = {y, z }; 

nonmultiplicative = { x}. It is true that u2 conventionally divides both monomials u1 and 

ui, but u2 only involutively divides monomial u1 as, defining u3 := y2 z and u~ := xy 

(so that u1 = u2u3 and ui = u2u~), we observe that all variables in u 3 are in the set of 

multiplicative variables for u2, but the variables in u~ (in particular the variable x) are 

not all in the set of multiplicative variables for u2 • 

More formally, an involutive division I works with a set of monomials U over a polynomial 

ring R[x1 , ... , Xn] and assigns a set of multiplicative variables M1(u , U) ~ {x1 , ... , Xn} 
to each element u E U. It follows that, with respect to U, a monomial w is divisible by a 

monomial u E U if w = uv for some monomial v and all the variables that appear in v 

also appear in the set M 1 (u, U). 

Definition 4.1.2 Let M denote the set of all monomials in the polynomial ring R, = 
R[x1, ... , Xnl, and let UC M. The involutive cone C1(u, U) of any monomial u EU with 

respect to some involutive division I is defined as follows. 

C1(u, U) = { uv such that v EM and u 11 uv }. 
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Remark 4.1.3 We may think of an involutive cone of a particular monomial u as con­

taining all monomials that are involutively divisible by u. 

Up to now, we have not mentioned any restriction on how we may assign multiplicative 

variables to a particular set of monomials. Let us now specify the rules that ensure that a 

particular scheme of assigning multiplicative variables may be referred to as an involutive 

division. 

Definition 4.1.4 Let M denote the set of all monomials in the polynomial ring n = 
R[x1, ... , xn]. An involutive division I on Mis defined if, given any finite set of monomials 

UC M, we can assign a set of multiplicative variables M1(u, U) ~ {x1 , ... , xn} to any 

monomial u E U such that the following two conditions are satisfied. 

(a) If there exist two monomials u1, u2 EU such that C1(u1, U) n C1(u2, U) -=I= 0, 
then either C1(u1, U) c C1(u2, U) or C1(u2, U) c C1(u1 , U). 

(b) If V c U, then M1(v, U) ~ Mr(v, V) for all v EV. 

Remark 4.1.5 Informally, condition (a) above ensures that a monomial can only appear 

in two involutive cones Cr(u1, U) and Cr(u2, U) if u1 is an involutive divisor of u2 or 

vice-versa; while condition (b) ensures that the multiplicative variables of a polynomial 

v E V c U with respect to U all appear in the set of multiplicative variables of v with 

respect to V. 

Definition 4.1.6 Given an involutive division I, the involutive span C1(U) of a set of 

monomials U with respect to I is given by the expression 

C1(U) = LJ C1(u, U). 
uEU 

Remark 4.1. 7 The ( conventional) span of a set of monomials U is given by the expression 

C(U) = LJ C(u, U), 
uEU 

where C(u, U) = {uv Iv is a monomial} is the (conventional) cone of a monomial u EU. 

Definition 4.1.8 If an involutive division I determines the multiplicative variables for a 

monomial u E U independent of the set U, then I is a global division. Otherwise, I is a 

local division. 
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Remark 4.1.9 The multiplicative variables for a set of polynomials P (whose terms are 

ordered by a monomial ordering 0) are determined by the multiplicative variables for the 

set of leading monomials LM(P). 

4.1.1 Involutive Reduction 

In Algorithm 7, we specify how to involutively divide a polynomial p with respect to a 

set of polynomials P. 

Algorithm 7 The Commutative Involutive Division Algorithm 

Input: A nonzero polynomial panda set of nonzero polynomials P = {p1, ... , Pm} over a 

polynomial ring R[x1 , ... xn]; an admissible monomial ordering O; an involutive division 

I. 

Output: Remr(P, P) := r, the involutive remainder of p with respect to P. 

r = O; 

while (p -/= 0) do 

u = LM(p); c = LC(p); j = l; found= false; 

while (j ~ m) and (found == false) do 

if (LM(p1) Ir u) then 

found= true; u' = u/LM(p1); p = p - (cLC(p1)-
1)p1u'; 

else 

j = j + l; 
end if 

end while 

if (found == false) then 

r = r + LT(p); p = p - LT(p); 

end if 

end while 

return r; 

Remark 4.1.10 The only difference between Algorithms 1 and 7 is that the line "if 

(LM(p1) I u) then" in Algorithm 1 has been changed to the line "if (LM(p1) Ir u) then" 
in Algorithm 7. 

Definition 4.1.11 If the polynomial r is obtained by involutively dividing (with respect 

to some involutive division I) the polynomial p by one of ( a) a polynomial q; (b) a sequence 
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of polynomials q1, q2, ... , q0 ; or ( c) a set of polynomials Q, we will use the notation 

p ~qr; p 7 r and p ~ Q r respectively (matching the notation introduced in 

Definition 1.2.16). 

4.1.2 Thomas, Pommaret and Janet divisions 

Let us now consider three different involutive divisions, all named after their creators in 

the theory of Partial Differential Equations (see [52], [47] and [35]). 

Definition 4 .1.12 (Thomas) Let U = { u 1 , ... , um} be a set of monomials over a poly-

nomial ring R[x1, ... , Xnl, where the monomial u1 EU (for 1 ~ j ~ m) has corresponding 

multidegree ( e}, e;, ... , e'J) . The Thomas involutive division T assigns multiplicative vari-

ables to elements of U as follows: the variable Xi is multiplicative for monomial u1 (written 

Xi E MT(u1, U)) if e~ = maxk 4 for all l ~ k ~ m. 

Definition 4.1.13 (Pommaret) Let u be a monomial over a polynomial ring 

R[x1, ... , xn] with multidegree (e1 , e2 , ... , en) . The Pommaret involutive division P as­

signs multiplicative variables to u as follows: if 1 ~ i ~ n is the smallest integer such that 

ei > 0, then all variables x1, x2 , ... , Xi are multiplicative for u (we have x1 E Mp(u) for 

all 1 ~ j ~ i). 

Definition 4 . 1. 14 (Janet) Let U = { u 1, ... , um} be a set of monomials over a polyno­

mial ring R[x1 , .. . , Xnl, where the monomial Uj E U (for 1 ~ j ~ m) has corresponding 

multidegree (e}, e;, .. . , e"J). The Janet involutive division :1 assigns multiplicative vari­

ables to elements of U as follows: the variable Xn is multiplicative for monomial Uj (written 

Xn E M.1(uJ, U)) if e"} = maxkek for all l ~ k ~ m; the variable Xi (for 1 ~ i < n) is mul­

tiplicative for monomial u1 (written Xi E M.1(u1, U)) if e; = maxk 4 for all monomials 

uk E U such that e; = e~ for all i < l ~ n. 

Remark 4 .1.15 Thomas and Janet are local involutive divisions; Pommaret is a global 

involutive division. 

Example 4 .1.16 Let U := {x5y2z, x4yz2
, x 2y2z, xyz3 , xz3 , y2z, z} be a set of mono­

mials over the polynomial ring Q[x, y, z], with x > y > z. Here are the multiplicative 

variables for U according to the three involutive divisions defined above. 
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Monomial Thomas Pommaret Janet 

x5y2z {x ,y} {x} {x,y} 
x4yz2 0 {x} {x,y} 
x2y2z {y} {x} {y} 
xyz3 {z} {x} {x,y,z} 
xz3 {z} {x} {x,z} 
y2z {y} {x,y} {y} 
z 0 {x,y,z} {x} 

Proposition 4.1.17 All three involutive divisions defined above satisfy the conditions of 

Definition 4- 1.4-

Proof: Throughout, let M denote the set of all monomials in the polynomial ring 

R = R[x1, ... , xn]; let U = { u1, . .. , um} C M be a set of monomials with corresponding 

multidegrees (el, e%, ... , e,n (where 1::::; k:::; m); let Ui, Uj EU (where 1::::; i,j:::; m, i # j); 
and let m1, m2 E M be two monomials with corresponding multidegrees Ui, ff, . .. , f1) 
and Ui, Ji, ... , f:2). For condition (a), we need to show that if there exists a monomial 

m E M such that m1ui = m = m2uj and all variables in m 1 and m 2 are multiplicative 

for ui and Uj respectively, then either ui is an involutive divisor of Uj or vice-versa. For 

condition (b), we need to show that all variables that are multiplicative for ui E U are 

still multiplicative for ui E V ~ U. 

Thomas. (a) It is sufficient to prove that ui = Uj. Assume to the contrary that ui # u1, 

so that there is some 1 ::::; k :::; n such that ef # ej. Without loss of generality, assume 

that ef < ej. Because ef + ff = ej + ft, it follows that ff > 0 so that the variable Xk 

must be multiplicative for the monomial ui. But this contradicts the fact that Xk cannot 

be multiplicative for ui in the Thomas involutive division because ej > ef. We therefore 

have ui = u1. 

(b) By definition, if Xj E M7(ui, U), then e{ = maxk e{ for all Uk E U. Given a set 

V ~ U, it is clear that e{ = maxk e{ for all Uk EV, so that x 1 E MT(ui, V) as required. 

Pommaret. (a) Let a and (3 (1 ::::; a, (3:::; n) be the smallest integers such that ef > 0 and 

eJ > 0 respectively, and assume (without loss of generality) that a ~ (3 . By definition, 

we must have ff = ff = 0 for all a < k :::; n because the xk are all nonmultiplicative for 

ui and u1. It follows that ef = ej for all a < k :::; n. If a = (3, then it is clear that ui is 

an involutive divisor of Uj if ef < e1, and Uj is an involutive divisor of ui if ef > ey. If 
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a > (3, then f2 = 0 as variable Xa is nonmultiplicative for uj, so it follows that ef ~ e'f 

and hence ui is an involutive divisor of Uj. 

(b) Follows immediately because Pommaret is a global involutive division. 

Janet. (a) We prove that ui = ui. Assume to the contrary that ui =I ui, so t here exists 

a maximal 1 ~ k ~ n such that et =I ej. Without loss of generality, assume that et < ej. 
If k = n, we get an immediate contradiction because Janet is equivalent to Thomas for 

the final variable. If k = n - 1, then because ef-1 + g-1 = e7-1 + 1;-1 , it follows that 

g-1 > 0 so that the variable Xn-l must be multiplicative for the monomial ui. But 

this contradicts the fact that Xn-l cannot be multiplicative for ui in the Janet involutive 

division because e"J-1 > e7-1 and e1 = ef. By induction on k, we can show that et = ej 
for all 1 ~ k ~ n, so that ui = Uj as required. 

(b) By definition, if Xj E M .1(ui, U), then e{ = maxk e{ for all monomials Uk E U such 

that e! = ei for all i < l ~ n. Given a set V ~ U, it is clear that e{ = maxk e{ for all 

uk E V such that e! = e~ for all i < l ~ n, so that Xj E M .1(ui, V) as required. □ 

The conditions of Definition 4.1.4 ensure that any polynomial is involut ively divisible 

by at most one polynomial in any Involutive Basis. One advantage of this important 

combinatorial property is that the Hilbert function of an ideal J is easily computable 

with respect to an Involutive Basis (see [4]). 

Example 4.1.18 Returning to Example 4.0.2, consider again the DegLex Grebner Basis 

G := {x2 
- 2xy + 3, 2xy + y2 + 5, ¾Y3 

- ~x + 3J y} over the polynomial ring Q [x, y]. A 

Pommaret Involutive Basis for G is the set P := GU {g4 := - 5xy2 - 5x + 6y}, with 

t he variable x being multiplicative for all polynomials in P, and the variable y being 

multiplicative for just g3 . We can illustrate the difference between the overlapping cones 

of G and the non-overlapping involutive cones of P by the following diagram. 
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y Grabner Basis G y 

X 

• 
94 
• 
92 

Pommaret Basis P 

91 

77 

X 

The diagram also demonstrates that the polynomial p := x2y + y3 + 8y is initially con­

ventionally divisible by two members of the Grabner Basis G (as seen in Equation (4.1)), 

but is only involutively divisible by one member of the Involutive Basis P, starting the 

following unique involutive reduction path for p. 

x2y + y3 + 8y 

!92 
-½ xy2 + y3 - ~ X + 8y 

! 94 

y3 - 2x + 351Y 

!93 
0 

4.2 Prolongations and Autoreduction 

Whereas Buchberger's algorithm constructs a Grabner Basis by using S-polynomials, the 

involutive algorithm will construct an Involutive Basis by using prolongations and autore­

duction. 

Definition 4.2.1 Given a set of polynomials P , a prolongation of a polynomial p E Pis 

a product pxi, where Xi (j. M1(LM(p), LM(P)) with respect to some involutive division I. 

Definition 4.2.2 A set of polynomials Pis said to be autoreduced if no polynomial p E P 

exists such that p contains a term which is involutively divisible (with respect to P) by 

some polynomial p' E P \ {p}. Algorithm 8 provides a way of performing autoreduction, 
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and introduces the following notation: Let Rem1(A, B, C) denote the involutive remainder 

of the polynomial A with respect to the set of polynomials B, where reductions are only 

to be performed by elements of the set C ~ B. 

Remark 4.2.3 The involutive cones associated to an autoreduced set of polynomials are 

always disjoint, meaning that a given monomial can only appear in at most one of the 

involutive cones. 

Algorithm 8 The Commutative Autoreduction Algorithm 

Input: A set of polynomials P = {p1,p2, ... ,Pa}; an involutive division I. 

Output: An autoreduced set of polynomials Q = {q1 , q2 , ... , q,a}. 

while (:3 Pi E P such that Rem1(Pi, P, P \ {p;}) f- Pi) do 

p~ = Rem1(Pi, P, P \{Pi}); 

P = P \ {Pi}; 
if (p~ f- 0) then 

P = PU {pa; 

end if 

end while 

Q=P; 

return Q; 

Proposition 4.2.4 Let P be a set of polynomials over a polynomial ring R = R[x1, ... , xnl, 
and let J and g be two polynomials also in R. If P is autoreduced with respect to an in­

volutive division I , then Rem1(J, P) + Rem1(g, P) = Rem1(J + g, P). 

Proof: Let f' := Rem1(J, P); g' := Rem1(g, P) and h' := Rem1(h, P), where h := f + g. 

Then, by the respective involutive reductions, we have expressions 

and 

A 

f' = f - L Paa ta; 
a=l 

B 

g' = g - LP.abtb 
b=l 

C 

h' = h - LP-rctc, 
c= l 
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where Po:a, Pf3b, P'Yc E P and ta, tb, tc are terms which are multiplicative ( over P) for each 

Po:a, Pf3b and P'Yc respectively. 

Consider the polynomial h' - f' - g'. By the above expressions, we can deduce1 that 

A B C D 

h' - J' - 9
1 = LPo:)a + LPf3btb - LP'Yctc =: LPo/d· 

a=l b=l c=l d=l 

Claim: Rem1(h' - f' - g', P) = 0. 

Proof of Claim: Let t denote the leading term of the polynomial ~f=1 p0dtd . Then 

LM(t) = LM(Poktk) for some 1 ~ k ~ D since, if not, there exists a monomial LM(p0k,tk') = 

LM(pok,,tk") =: u for some 1 ~ k', k" ~ D (with Pok, =I= p0k,,) such that u is involutively 

divisible by the two polynomials Pok' and p0k,,, contradicting Definition 4.1.4 (recall that 

our set P is autoreduced, so that the involutive cones of P are disjoint). It follows that 

we can use Pok to eliminate t by involutively reducing h' - f' - g' as shown below. 

D k-1 D 

LPo/d ~"k L Podtd + L Podtd. ( 4.2) 
d=l d=l d=k+l 

By induction, we can apply a chain of involutive reductions to the right hand side of 

Equation (4.2) to obtain a zero remainder, so that Rem1(h' - f' - g', P) = 0. 0 

To complete the proof, we note that since f', g' and h' are all involutively irreducible, we 

must have Rem1(h' - f' - g', P) = h' - f' - g'. It therefore follows that h' - f' - g' = 0, 

or h' = f' + g' as required. □ 

Remark 4.2.5 The above proof is based on the proofs of Theorem 5.4 and Corollary 5.5 

in [25]. 

Let us now give a definition of a Locally Involutive Basis in terms of prolongations. Later 

on in this chapter, we will discover that the Involutive Basis algorithm only constructs 

Locally Involutive Bases, and it is the extra properties of each involutive division used with 

the algorithm that ensures that any computed Locally Involutive Basis is an Involutive 

Basis. 

Definition 4.2.6 Given an involutive division I and an admissible monomial ordering 

1For 1 ~ d ~ A, Podtd = Paa ta (1 ~a~ A); for A+ 1 ~ d ~A+ B , Podtd = p13btb (1 ~ b ~ B); and 
for A + B +I~ d ~A+ B + C = : D, Podtd = P,ctc (1 ~ c ~ C). 
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0, an autoreduced set of polynomials P is a Locally Involutive Basis with respect to I 

and O if any prolongation of any polynomial Pi E P involutively reduces to zero using P. 

Definition 4.2. 7 Given an involutive division I and an admissible monomial ordering 

0, an autoreduced set of polynomials P is an Involutive Basis with respect to I and 0 

if any multiple Pit of any polynomial Pi E P by any term t involutively reduces to zero 

using P. 

4.3 Continuity and Constructivity 

In the theory of commutative Grobner Bases, Buchberger's algorithm returns a Grobner 

Basis as long as an admissible monomial ordering is used. In the theory of commutative 

Involutive Bases however, not only must an admissible monomial ordering be used, but 

the involutive division chosen must be continuous and constructive. 

Definition 4.3.1 (Continuity) Let I be an involutive division, and let U be an arbi­

trary set of monomials over a polynomial ring R [x1 , ... , Xn] - We say that I is continuous 

if, given any sequence of monomials { u1, u2, ... , um} from U such that for all i < m, 

we have ui+l 11 UiXj; for some variable Xj; that is nonmultiplicative for monomial mi ( or 

Xj; ri. M1(ui, U)), no two monomials in the sequence are the same (ur # u 5 for all r # s, 

where 1 ~ r, s ~ m). 

Proposition 4.3.2 The Thomas, Pommaret and Janet involutive divisions are all con­

tinuous. 

Proof: Throughout, let the sequence of monomials { u1, ... , ui, ... , Um} have corre­

sponding multidegrees ( e}, e~, ... , ef) ( where 1 ~ i ~ m). 

Thomas. If the variable Xj; is nonmultiplicative for monomial ui, then, by definition, 

e{; # maxt e{; for all Ut E U. Variable Xj, cannot therefore be multiplicative for monomial 

ui+l if ef+i ~ e{\ so we must have ef+i = e{; + 1 in order to have ui+l IT uiXj;· Further, 

for all 1 ~ k ~ n such that k # Ji, we must have e}+1 = e} as, if ef+i < ef, then Xk cannot 

be multiplicative for monomial ui+l (which contradicts ui+1 IT uixjJ· Thus ui+1 = uiXj;, 

and so it is clear that the monomials in the sequence { u1, u2, ... , um} are all different. 

Pommaret. Let ai (1 ~ ai ~ n) be the smallest integer such that ef; > 0 (where 

1 ~ i ~ m), so that ef = 0 for all k < a i . Because ui+I IP u ixj; for all 1 ~ i < m, 
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and because (by definition) ji > ai, it follows that we must have e}+l = 0 for all k < ai. 

Therefore ai+1 ;;::: ai for all 1 ~ i < n. If ai+1 = ai, we note that ef+-1 ~ efi because 

variable Xa; is multiplicative for monomial ui+l · If then we have eft1 = ef;, then because 

the variable Xj; is also nonmultiplicative for monomial ui+1, we must have e{~1 = e{i + l. 

It is now clear that the monomials in the sequence { u 1 , u 2 , .. . , um} are all different because 

(a) the values in the sequence a = { a 1, a 2, ... , am} monotonically increase; (b) for consec­

utive values a 8 , C¥s+l, ... , C¥s+cr in a that are identical (1 ~ s < m, s + (J ~ m), the values 

in the corresponding sequence E = { e~•, e~.j.1 , . .. , e~+cr} monotonically decrease; ( c) for 

consecutive values ef•, ef+ 1 , ... , ef+r in E that are identical ( s ~ t < s + (J, t + T ~ s + (J), 
the degrees of the monomials Ut, Ut+l, ... , Ut+r strictly increase. 

Janet. Consider the monomials u 1, u2 and the variable xii that is nonmultiplicative for 

u1 . We will first prove (by induction) that et = el for all j 1 < i ~ n. For the case 

i = n, we must have e2 = ef otherwise (by definition) variable Xn is nonmultiplicative 

for monomial u2 (we have e2 < ef ), contradicting that fact that u2 l:r u 1xii. For the 

induct ive step, assume that et = el for all k ~ i ~ n, and let us look at the case i = k - l. 

If e~-1 < e~-1
, then (by definition) variable Xk-l is nonmultiplicative for monomial u2 , 

again contradicting the fact that u2 l:r u1xj1 • It follows that we must have e~-l = e~- 1. 

Let us now prove that e~1 = e{1 + l. We can rule out the case ~ 1 < e{1 immediately 

because this implies that the variable Xj 1 is nonmultiplicative for monomial u2 (by defi­

nition), contradicting the fact that u2 l:r u1Xj1 • The case e~1 = e{1 can also be ruled out 

because we cannot have et = el for all j1 ~ i ~ n and variable Xj 1 being simultaneously 

nonmultiplicative for monomial u1 and multiplicative for monomial u2 . Thus e~1 = e{1 + l. 
It follows that u 1 < u2 in the InvLex monomial ordering (see Section 1.2.1) and so, by 

induction, u1 < u2 < · · · < Um in the InvLex monomial ordering. The monomials in the 

sequence { u 1, u2 , . .. , um} are therefore all different. D 

Proposition 4.3.3 If an involutive division I is continuous, and a given set of polyno­

mials P is a Locally Involutive Basis with respect to I and some admissible monomial 

ordering O, then P is an Involutive Basis with respect to I and O. 

Proof: Let I be a continuous involutive division; let O be an admissible monomial 

ordering; and let P be a Locally Involutive Basis with respect to I and 0. Given any 

polynomial p E P and any term t, in order to show that P is an Involutive Basis with 

respect to I and 0, we must show that pt ~P 0. 
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If p Ir pt we are done, as we can use p to involutively reduce pt to obtain a zero remainder. 

Otherwise, :ly1 ft Mr(LM(p) , LM(P)) such that t contains y1. By Local lnvolutivity, the 

prolongation py1 involutively reduces to zero using P. Assuming that the first step of this 

involutive reduction involves the polynomial p1 E P, we can write 

A 

PYl = P1t1 + LPa0 ta0 , (4.3) 
a=l 

where Paa E P and t1, ta
0 

are terms which are multiplicative ( over P) for Pl and each Paa 

respectively. Multiplying both sides of Equation (4.3) by_!_, we obtain the equation 
Yl 

( 4.4) 

If P1 Ir pt, it is clear that we can use p1 to involutively reduce the polynomial pt to 

obtain the polynomial I::=l Paataa ;
1

• By Proposition 4.2.4, we can then continue to 

involutively reduce pt by repeating this proof on each polynomial Paa taa Y\ individually 

(where 1 ~a~ A), noting that this process will terminate because of the admissibility 

of O ( we have LM(Paa taa :) < LM(pt) for all 1 ~ a ~ A). 

Otherwise, if P1 does not involutively divide pt, there exists a variable y2 E _!_ such 
Y1 

that Y2 ft M1(LM(p1), LM(P)). By Local lnvolutivity, the prolongation p1y2 involutively 

reduces to zero using P. Assuming that the first step of this involutive reduction involves 

the polynomial P2 E P, we can write 

B 

P1Y2 = p2t2 + LP/3btf3b> 
b=l 

(4.5) 

where P/3b E P and t2, t13b are terms which are multiplicative ( over P) for p2 and each P/3b 

respectively. Multiplying both sides of Equation (4.5) by .l.l.L, we obtain the equation 
Y1Y2 

(4.6) 

Substituting for P1t1;
1 

from Equation (4.6) into Equation (4.4), we obtain the equation 

(4.7) 
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If P2 Ir pt, it is clear that we can use p2 to involutively reduce the polynomial pt to obtain 

the polynomial :E:=l P0ta t°'a :
1 
+ :E~=l Pf3b t13b Yt

1
1:

2 
• As before, we can then use Proposition 

4.2.4 to continue the involutive reduction of pt by repeating this proof on each summand 

individually. 

Otherwise, if P2 does not involutively divide pt, we continue by induction, obtaining a 

sequence p, P1, P2, p3, ... of elements in P. By construction, each element in the sequence 

divides pt. By continuity, each element in the sequence is different. Because Pis finite and 

because pt has a finite number of distinct divisors, the sequence must be finite, terminating 

with an involutive divisor p' E P of pt, which then allows us to finish the proof through 

use of Proposition 4.2.4 and the admissibility of 0. D 

Remark 4.3.4 The above proof is a slightly clarified version of the proof of Theorem 6.5 

in [25]. 

Definition 4.3.5 (Constructivity) Let J be an involutive division, and let U be an 

arbitrary set of monomials over a polynomial ring R[x1 , ... , Xn]- We say that I is con­

structive if, given any monomial u EU and any nonmultiplicative variable xi <t, M 1(u, U) 

satisfying the following two conditions, no monomial w E C1 (U ) exists such that uxi E 

Cr(w,UU {w}). 

(b) If there exists a monomial v E U and a nonmultiplicative variable x1 <t, M 1(v, U) 

such that vx1 I uxi but vx1 # uxi, then vx1 E C1(U). 

Remark 4 .3.6 Constructivity allows us to consider only polynomials whose lead mono­

mials lie outside the current involutive span as potential new Involutive Basis elements. 

Proposition 4.3. 7 The Thomas, Pommaret and Janet involutive divisions are all con­

structive. 

Proof: Throughout, let the monomials u, v and w that appear in Definition 4.3.5 have 

corresponding multidegrees (et, e~, ... , e~), (et, e;, . .. , e~) and (e~, e!, ... , e;;-,); and let the 

monomials w1 , w2, w3 and µ that appear in this proof have corresponding multidegrees 

( 1 2 n ) ( 1 2 n ) ( 1 2 n ) d ( 1 2 n) ew1>ew1i···,ew1) ew2>ew21 ··· ,ew2' ew3,ew3, ···, ew3 an eµ,eµ,··· ,eµ. 

To prove that a particular involutive division I is constructive, we will assume that a 

monomial w E Cr(U) exists such that uxi E Cr(w,U U {w}). Then w = µw1 for some 
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monomial µ E U and some monomial w1 that is mult iplicative for µ over the set U 

(e~
1 

> 0 ⇒ xk E M1(µ, U) for all 1 :=::; k :=;;; n); and uxi = ww2 for some monomial w2 
that is mult iplicative for w over the set U U { w} ( e~

2 
> 0 ⇒ Xk E M1 ( w, U U { w}) for all 

1 :=::; k ~ n). It follows that uxi = µw1w2. If we can show that all variables appearing in 

w2 are multiplicative forµ over the set U (e~
2 

> 0 ⇒ Xk E M1 (µ, U) for all 1 ~ k :=;;; n), 

thenµ is an involutive divisor of uxi, contradicting the assumption uxi (/. C1 (U). 

Thomas. Let Xk be an arbitrary variable (1 :=::; k :=;;; n) such that e~
2 

> 0. If e~
1 

> 0, then 

it is clear that Xk is multiplicative forµ. Otherwise e~
1 

= 0 so that e~ = et. By definition, 

t his implies that xk EMT(µ, U) as xk E MT(w, U U { w} ). Thus Xk EMT(µ , U). 

Pommaret. Let a and (3 (1 :=::; a, (3 :=;;; n) be the smallest integers such that e~ > 0 

and e~ > 0 respectively. By definition, (3 :=;;; a (because w = µw1), so for an arbitrary 

1 :=::; k ~ n, it follows that e~
2 

> 0 ⇒ k :=;;; (3 :=;;; a ⇒ xk E Mp(µ, U) as required. 

Janet. Here we proceed by searching for a monomial v E U such that uxi E C.:,(v, U), 

contradicting the assumption uxi (/. C.:,(U). Let a and (3 (1 :=::; a, (3 :=;;; n) be the largest 

integers such that e~
1 

> 0 and e~
2 

> 0 respectively (such integers will exist because if 

deg(w1) = 0 or deg(w2) = 0, we obtain an immediate contradict ion uxi E C.:,(U)). We 

claim that i > max{a,(3}. 

• If i < (3, then e~ < e~ which contradicts Xf3 E M.:,(w, U U { w}) as e:J, = eZ for all 

1 > (3. Thus i ~ (3 . 

• If i < a, then as (3 :=;;; i we must have ez = eZ for all a < , :=;;; n . Therefore 

e~ < e~ ⇒ Xa (/. M .:,(µ, U), a contradict ion; it follows t hat i ~ a . 

• If i = a, then either (3 < a or (3 = a. If (3 = a, then as e~
1 

> O; e~
2 

> 0 and 

e~ + 1 = e~ + e~1 + e~2 , we have e~ > e~ ⇒ Xa (/. M .:,(µ, U), a contradiction. If 

(3 < a, then e~ + 1 = e~ + e~1 • If e~
1 
~ 2, we get the same contradiction as before 

(xa (/. M.:,(µ, U)). Otherwise e~l = 1 so that eZ = ez for all a~ 1 :=;;; n. If w = µxi, 

then as e~ < e~ we have Xf3 (/. M .:,(w, U U { w} ), a contradiction. Else let 6 (where 

1 :=::; 6 < a) be the second greatest integer such that et
1 

> 0. Then, as e! < et and 

ez = eZ for all 6 < 'Y :=;;; n, we have Xo r/. M.:, (µ, U), another contradiction. It follows 

that i > max{ a, (3}, so that eZ = ez for all i < 'Y :=;;; n and e!, + 1 = e~. 

If uxi r/. C.:,(U), then there must exist a variable Xk (where 1 :=::; k < i) such that e~
2 

> 0 

and Xk r/. M .:,(µ, U). Because e~
1 

> 0, we can use condit ion (b) of Definition 4.3.5 to give 
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us a monomial µ 1 E U and a monomial W3 multiplicative for µ 1 over U ( eJi
3 

> 0 ⇒ x"f E 

M,1(µ 1, U) for all I::;; 1 ::;; n) such that 

UXi µW1W2 

µXkW1 (::) 

µ1W3W1 ( :: ) . 

If µ1 l.1 uxi, then the proof is complete, with v = µ 1 . Otherwise there must be a variable 

xk, appearing in the monomial w1(!!!2.) such that Xk' rt. M,1(µ 1, U). To use condition (b) 
Xk 

of Definition 4.3.5 to yield a monomial µ2 E U and a monomial W4 multiplicative for µ2 
over U such that 

it is sufficient to demonstrate that at least one variable appearing in the monomial 

W3W1(~) is multiplicative for µ 1 over the set U. We will do this by showing that 
Xk 

x0 E M,1(µ 1, U) (recall that e~
1 

> 0). 

By the definition of the Janet involutive division, 

(4.8) 

and 

( 4.9) 

so that µ < µ1 in the InvLex monomial ordering. If we can show that a > k, then it is 

clear from Equation (4.8) and x0 E M,1(µ, U) that x0 E M,1(µ 1 , U). 

• If a > /3, then a > k because k ::;; /3 by definition. 

• If a = /3, then a > k if k < /3; otherwise k = /3 in which case x0 E M,1(µ, U) is 

contradicted by Equations (4.8) and (4.9). 

• If a < /3, then ez = eJi for all a < 1 ::;; n. Thus k ::;; a otherwise xk E M,1(w, U U 

{ w}) ⇒ xk E M,1(µ, U), a contradiction. Further, k = a is not allowed because 

x 0 E M,1(µ , U) and xk rt. M.7(µ, U) cannot both be true; therefore a > k again. 
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If µ2 l..1 uxi, then the proof is complete, with 11 = µ 2. Otherwise we proceed by induction 

to obtain the sequence shown below (Equation ( 4.10)), which is valid because µu-l < µu 

(for er ) 2) in the InvLex monomial ordering allows us to prove that the variable x 0 (that 

appears in the monomial w1) is multiplicative (over U) for the monomial µr,; this in turn 

enables us to construct the next entry in the sequence by using condition (b) of Definition 

4.3.5. 

(4.10) 

Because µ < µ1 < µ2 < · · · in the InvLex monomial ordering, elements of the sequence 

µ,µ1,µ2,, .. are distinct. It follows that the sequence in Equation (4.10) is finite (ter­

minating with the required 11) because µ and the µu (for er ) 1) are all divisors of the 

monomial uxi, of which there are only a finite number of. □ 

Remark 4.3.8 The above proof that Janet is a constructive involutive division does not 

use the property of Janet being a continuous involutive division, unlike the proofs found 

in [25] and [50]. 

4.4 The lnvolutive Basis Algorithm 

To compute an lnvolutive Basis for an ideal J with respect to some admissible monomial 

ordering O and some involutive division I , it is sufficient to compute a Locally Involutive 

Basis for J with respect to I and O if I is continuous; and we can compute this Locally 

Involutive Basis by considering only prolongations whose lead monomials lie outside the 

current involutive span if I is constructive. Let us now consider Algorithm 9, an algorithm 

to construct an Involutive Basis for J (with respect to I and 0) in exactly this manner. 

The algorithm starts by autoreducing the input basis Fusing Algorithm 8. We then con­

struct a set S containing all the possible prolongations of elements of F, before recursively 

(a) picking a polynomial s from S such that LM(s) is minimal in the chosen monomial 

ordering; (b) removing s from S; and (c) finding the involutive remainder s' of s with 

respect to F. 

If during this loop a remainders' is found that is nonzero, we exit the loop and autoreduce 

the set FU { s'}, continuing thereafter to construct a new set S and repeating the above 

process on this new set. If however all the prolongations in S involutively reduce to zero, 
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Algorithm 9 The Commutative Involutive Basis Algorithm 

Input: A Basis F = {!1, h, ... , fm} for an ideal J over a commutative polynomial 

ring R[x1, ... xn]; an admissible monomial ordering O; a continuous and constructive 

involutive division I . 

Output: An Involutive Basis G = {g1 , g2 , ... , gp} for J (in the case of termination). 

G = 0; 

F = Autoreduce(F); 

while ( G == 0) do 

S = {xd If E F, xi(}. Mr(J,F)}; 

s' = O; 

while (S-=/ 0) and (s' == 0) do 

Let s be a polynomial in S whose lead monomial is minimal with respect to O; 

S = S\{s}; 

s' = Remr(s, F); 
end while 

if ( s' -=/ 0) then 

F = Autoreduce(F U {s'} ); 

else 

G=F; 

end if 

end while 

return G; 
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then by definition Fis a Locally Involutive Basis, and so we can exit the algorithm with 

this basis. The correctness of Algorithm 9 is therefore clear; termination however requires 

us to show that each involutive division used with the algorithm is Noetherian and stable. 

Definition 4.4.1 An involutive division I is Noetherian if, given any finite set of mono­

mials U, there is a finite Involutive Basis V 2 U with respect to I and some arbitrary 

admissible monomial ordering 0. 

Proposition 4.4.2 The Thomas and Janet divisions are Noetherian. 

Proof: Let U = { u1, ... , um} be an arbitrary set of monomials over a polynomial ring 

R = R[x1, ... , Xn] generating an ideal J. We will explicitly construct an lnvolutive Basis 

V for U with respect to some arbitrary admissible monomial ordering 0. 

Janet (Adapted from [50], Lemma 2.13). Letµ E R be the monomial with multi­

degree (e~, e~, ... , e~) defined as follows: e~ = maxuEU e~ (1 ~ i ~ n). We claim that the 

set V containing all monomials v E J such that v I µ is an Involutive Basis for U with 

respect to the Janet involutive division and 0. To prove the claim, first note that V is a 

basis for J because U ~ V and V C J; to prove that V is a Janet Involutive Basis for J 

we have to show that all multiples of elements of V involutively reduce to zero using V, 

which we shall do by showing that all members of the ideal involutively reduce to zero 

using V. 

Let p be an arbitrary element of J. If p E V, then trivially p E C..7(V) and sop involutively 

reduces to zero using V. Otherwise set X = {xi such that etM(p) > e~}, and define 

the monomial p' by e~, = etM(p) for Xi ~ X; and e~, = e~ for Xi E X (so that e~, = 

min{etM(p) 'e~}). By construction of the set V and by the definition ofµ, it follows 

that v' E V and X ~ M._1(p', V). But this implies that LM(p) E C..7(p', V), and thus 

p ~p' (p- LM(p)). By induction and by the admissibility of 0, p ~v O and thus V 

is a finite Janet Involutive Basis for J. 

Thomas. We use the same proof as for Janet above, replacing "Janet" by "Thomas" 

and ":J" by "T". D 

Proposition 4.4.3 The Pommaret division is not Noetherian. 

Proof: Let J be the ideal generated by the monomial u := xy over the polynomial ring 

Q[x, y]. For the Pommaret division, M p(u) = {x}, and it is clear that Mp(v) = {x} for 
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all v E J as v E J => v = (xy)p for some polynomial p. It follows that no finite Pommaret 

Involutive Basis exists for J as no prolongation by the variable y of any polynomial p E J 

is involutively divisible by some other polynomial p' E J; the Pommaret Involutive Basis 

for J is therefore the infinite basis { xy, xy2 , xy3 , .•. } . D 

Definition 4.4.4 Let u and v be two distinct monomials such that u I v. An involutive 

division I is stable if Rem1 ( v, { u, v}, { u}) = v. In other words, u is not an involutive 

divisor of v with respect to I when multiplicative variables are taken over the set { u, v }. 

Proposition 4.4.5 The Thomas and Janet divisions are stable. 

Proof: Let u and v have corresponding multidegrees (e;,,, ... , e~) and (e;, ... , e~). If 

u I v and if u and v are different, then we must have e~ < e~ for at least one 1 ~ i ~ n. 

Thomas. By definition, xi (/. M 7 (u, { u, v} ), so that Rem7 (v, { u, v }, { u}) = v. 

Janet. Let j be the greatest integer such that el < e{. Then, as et = ee for all j < k ~ n, 
it follows that x1 (/. M.,r(u, { u, v} ), and so Rem.,r(v, { u, v }, { u}) = v . □ 

Proposition 4.4.6 The Pommaret division is not stable. 

Proof: Consider the two monomials u := x and v := x2 over the polynomial ring Q[x]. 

Because Mp(u, {u,v}) = {x}, it is clear that u IP v, and so the Pommaret involutive 

division is not stable. D 

Remark 4.4. 7 Stability ensures that any set of distinct monomials is autoreduced. In 

particular, if a set U of monomials is autoreduced, and if we add a monomial u (/. U to U, 

then the resultant set U U { u} is also autoreduced. This contradicts a statement made on 

page 24 of [50], where it is claimed that if we add an involutively irreducible prolongation 

uxi of a monomial u from an autoreduced set of monomials U to that set, then the resultant 

set is also autoreduced regardless of whether or not the involutive division used is stable2. 

For a counterexample, consider the set of monomials U : = { u1, u2} = { xy, x2y2} over the 

polynomial ring Q[x, y], and let the involutive division be Pommaret. 

u Mp(u, U) 

xy {x} 
x2y2 {x} 

2This claim is integral to the proof of Theorem 6.4 in [50], a theorem that states than an algorit hm 
corresponding to Algorithm 9 in t his thesis terminates. 
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Because the variable y is nonmultiplicative for t he monomial xy, it is clear that the set U 

is autoreduced. Consider the prolongation xy2 of the monomial u1 by the variable y. This 

prolongation is involutively irreducible with respect to U, but if we add the prolongation 

to U to obtain the set V := {v1,v2 ,v3 } = {xy,x2y2 ,xy2
}, then v3 will involutively reduce 

v2 , contradicting the claim that the set V is autoreduced. 

V 

{x} 

{x} 

{x} 

Proposition 4.4.8 Algorithm 9 always terminates when used with a Noetherian and sta­

ble involutive division. 

Proof: Let I be a Noetherian and stable involutive division, and consider the computa­

tion ( using Algorithm 9) of an Involutive Basis for a set of polynomials F with respect to 

I and some admissible monomial ordering 0. The algorithm begins by autoreducing F to 

give a basis (which we shall denote by F1) generating the same ideal J as F. Each pass of 

the algorithm then produces a basis Fi+I = Autoreduce(Fi U {s~}) generating J (i ~ 1), 

where each s~ -=I= 0 is an involutively reduced prolongation. Consider the monomial ideal 

(LM(Fi)) generated by the lead monomials of the set Fi. Claim: 

(4.11) 

is an ascending chain of monomial ideals. 

Proof of Claim: It is sufficient to show that if an arbitrary polynomial f E Fi does not 

appear in ~+1, then there must be a polynomial f' E ~+1 such that LM(J') I LM(J). It is 

clear that such an J' will exist if the lead monomial off is not reduced during autoreduc­

tion; otherwise a polynomial p reduces the lead monomial off during autoreduction, so 

that LM(p) 11 LM(J). If there exists a polynomial p' E Fi+1 such that LM(p') = LM(p) , 

we are done; otherwise we proceed by induction on p to obtain a polynomial q such that 

LM(q) 11 LM(p). Because deg(LM(J)) > deg(LM(p)) > deg(LM(q)) > • • •, this process 

is guaranteed to terminate with the required f'. D 

By the Ascending Chain Condition (Corollary 2.2.6), the chain in Equation (4.11) must 
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eventually become constant, so there must be an integer N (N ~ 1) such that 

Claim: If Fk+l = Autoreduce(Fk U {sk}) for some k ~ N, then LM(sk) = LM(fxi) for 

some polynomial f E Fk and some variable Xi (f. M1(J, Fk) such that sk = Rem1(Jxi, Fk)-

Proof of Claim: Assume to the contrary that LM(sU =/- LM(f xi)- Then because 

sk = Rem1(fxi, Fk), it follows that LM(sU < LM(fxi). But (LM(Fk)) = (LM(Fk+1)), so 

that LM(sU = LM(f'u) for some f' E Fk and some monomial u containing at least one 

variable Xj (f. M1(f', Fk) (otherwise sk can be involutively reduced with respect to H, a 

contradiction). 

Because O is admissible, 1 ~ ;:. and therefore Xj ~ u, so that LM(f'xj) ~ LM(f'u) < 
3 

LM(f xi)- But the prolongation f xi was chosen so that its lead monomial is minimal 

amongst the lead monomials of all prolongations of elements of Fk that do not involu­

tively reduce to zero; the prolongation J'xk must therefore involutively reduce to zero, so 

that LM(J'xj) = LM(J"u') for some polynomial f" E Fk and some monomial u' that is 

multiplicative for f" over Fk . But sk is involutively irreducible with respect to Fk, so a 

variable x
3
'. (f. M1(f", Fk) must appear in the monomial .3£.. 

X3 

It is now clear that we can construct a sequence f'xj , f"xj, ... of prolongations. But I is 

continuous, so all elements in the corresponding sequence LM(J'), LM(f") , ... of mono­

mials must be distinct. Because Fk is finite, it follows that the sequence of prolongations 

will terminate with a prolongation that does not involutively reduce to zero and whose 

lead monomial is less than the monomial LM(Jxi), contradicting our assumptions. Thus 

LM(sk) for k ~ N is always equal to the lead monomial of some prolongation of some 

polynomial f E Fk. □ 

Consider now the set of monomials LM(Fk+1). Claim: LM(Fk+i) = LM(Fk) U {LM(sk)} 

for all k ~ N, so that when autoreducing the set Fk U {sU, no leading monomial is 

involutively reducible. 

Proof of Claim: Consider an arbitrary polynomial p E Fk U { sU. If p = sk, then 

(by definition) p is irreducible with respect to the set Fk, and so (by condition (b) of 

Definition 4.1.4) p will also be irreducible with respect to the set Fk U { sU. If p =I- sk, 
then p is irreducible with respect to the set Fk ( as the set Fk is autoreduced), and so 

(again by condition (b) of Definition 4.1.4) the only polynomial in the set Fk U {sk} 
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that can involutively reduce the polynomial p is the polynomial s;.. But I is stable, so 

that s;. cannot involutively reduce LM(p). It follows that a polynomial p' will appear in 

the autoreduced set Fk+l such that LM(p') = LM(p), and thus LM(Fk+i) = LM(Fk) U 

{LM( sU} as required. □ 

For the final part of the proof, consider the basis F N . Because I is N oetherian, there exists 

a finite Involutive Basis GN for the ideal generated by the set of lead monomials LM(FN ), 

where GN ;2 LM(FN)- Let fxi be the prolongation chosen during the N-th iteration of 

Algorithm 9, so that LM(fxi) ~ C1(FN ). Because GN is an Involutive Basis for LM(FN ), 

there must be a monomial g E GN such that g 11 LM(fxi)- Claim: g = LM(fxi). 

Proof of Claim: We proceed by showing that if g i= LM(fxi), then g E C1(LM(FN )) 

so that (because of condition (b) of Definition 4.1.4) LM(fxi) E C1(GN) ⇒ LM(fxi) E 

C1(g, LM(FN) U {g} ), contradicting the constructivity of I (Definition 4.3.5). 

Assume that g i= LM(fxi) · Because (G N) = (LM(FN )), there exists a polynomial Ji E FN 

such that LM(fi) I g. If LM(fi) 11 g with respect to FN, then we are done. Otherwise 

LM(g) = LM(fi)u1 for some monomial u1 i= 1 containing at least one variable Xj
1 
~ 

M1(!1 , FN). Because deg(g) < deg(LM(fxi)) and LM(fi)xh I LM(fxi), we must have 

LM(fi)xJJ < LM(f xi) with respect to our chosen monomial ordering, so that LM(f1)xj
1 

E 

C1(FN) by definition of how the prolongation f Xi was chosen. It follows that there exists 

a polynomial fz E FN such that LM(f2) 11 LM(fi)xJ1 with respect to FN. If LM(fz) 11 g 

with respect to FN, then we are done. Otherwise we iterate (LM(fi)xh = LM(f2)u2 for 

some monomial u2 containing at least one variable x12 ~ M1(h, FN ) ... ) to obtain the 

sequence (!1, h, h, .. . ) of polynomials, where the lead monomial of each element in the 

sequence divides g and LM(fk+1 ) 11 LM(fk)xJk with respect to FN for all k ~ 1. Because 

I is continuous, this sequence must be finite, terminating with a polynomial fk E FN (for 

some k ~ 1) such that fk 11 g with respect to FN, 0 

It follows that during the N -th iteration of the algorit hm, a polynomial is added to the 

current basis FN whose lead monomial is a member of the Involutive Basis GN. By 

induction, every step of the algorithm after the N-th step also adds a polynomial to the 

current basis whose lead monomial is a member of G N · Because G N is a finite set, after a 

finite number of steps the basis LM(Fk) (for some k ~ N) will contain all the elements of 

GN. We can therefore deduce that LM(Fk) = GN; it follows that LM(Fk) is an Involutive 

Basis, and so Fk is also an Involutive Basis. □ 
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Theorem 4.4.9 Every Involutive Basis is a Grabner Basis. 

Proof: Let G = {g1 , ... ,gm} be an Involutive Basis with respect to some involutive 

division I and some admissible monomial ordering 0, where each gi E G (for all 1 ~ i ~ 

m) is a member of the polynomial ring R[x1 , ... , xn]- To prove that G is a Grobner Basis, 

we must show that a ll S-polynomials 

conventionally reduce to zero using G (1 ~ i, j ~ m, i -=/- j). Because G is an Involu­
tive Basis it is clear that lcm(LM(g;),LM(gj))g · ---+ 0 and lcm(LM(g;),LM(gj))g· - 0. By 

' LT(g;) i I G LT(g1) J I G 

Proposition 4.2 .4, it follows that S-pol(gi, gj) ~ G 0. But every involutive reduction is 

a conventional reduction, so we can deduce that S-pol(gi, gj) -+c 0 as required. D 

Lemma 4.4.10 Remainders are involutively unique with respect to Involutive Bases. 

Proof: Given an lnvolutive Basis G with respect to some involutive division J and 

some admissible monomial ordering 0, Theorem 4.4.9 tells us that G is a Grobner Basis 

with respect to O and thus remainders are conventionally unique with respect to G. To 

prove that remainders are involutively unique with respect to G, we must show t hat the 

conventional and involutive remainders of an arbitrary polynomial p with respect to G are 

identical. For this it is sufficient to show that a polynomial p is conventionally reducible 

by G if and only if it is involutively reducible by G. ( =>) Trivial as every involutive 

reduction is a conventional reduction. ( ¢::) If a polynomial p is conventionally reducible 

by a polynomial g E G, it follows that LM(p) = LM(g)u for some monomial u. But G is 

an Involutive Basis, so t here must exist a polynomial g' E G such that LM(g )u = LM(g')u' 

for some monomial u' that is multiplicative ( over G) for g'. Thus p is also involutively 

reducible by G . □ 

Example 4.4.11 Let us return to our favourite example of an ideal J generated by the 

set of polynomials F := {11 , h} = {x2 - 2xy + 3, 2xy + y2 + 5} over the polynomial ring 

Q[x, y, z]. To compute an lnvolutive Basis for F with respect to the DegLex monomial 

ordering and the Janet involutive division :1, we apply Algorithm 9 to F, in which the first 

task is to autoreduce F. This produces the set F = {h, h} = {2xy+y2 + 5, x 2 +y2 +8} 
as output (because Ji = x 2 

- 2xy + 3 ~h x 2 + y2 + 8 =: h and h is involutively 

irreducible with respect to h), with multiplicative variables as shown below. 
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Polynomial 

h = 2xy +y2 + 5 

h = x2 + y2 + 8 

{x,y} 

{x} 
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The first set of prolongations of elements of F is the set S = { hY} = { x 2y + y3 + 8y}. 

As this set only has one element, it is clear that on entering the second while loop of the 

algorithm, we must remove the polynomial s = x2y + y3 + 8y from S and involutively 

reduce s with respect to F to give the polynomial s' = ¾Y3 - !x + 347 y as follows. 

-.:J h 
1 

x2y + y3 + 8y - 2x(2xy + y2 + 5) 

= 
1 5 

- - xy2 + y3 
- - x + 8y 

2 2 

-.:J h 
1 2 3 5 1 ( 2 - 2xy + y - 2x + 8y + 4y 2xy + y + 5) 

5 3 5 37 I 

4y - 2x + 4 y = s = : f4 . 

As the prolongation did not involutively reduce to zero, we exit from the second while 

loop of the algorit hm and proceed by autoreducing the set FU {!4} = {2xy + y2 + 5, x2 + 

y2 + 8, ¾y3 
- !x + 3J y}. This process does not alter the set, so now we consider the 

prolongations of the three element set F = {h , h, f4}. 

Polynomial 

h = 2xy + y2 + 5 

h = x2 +y2 + 8 

f4 = ¾Y3 - !x + 3d Y 

{x} 

{x} 

{x,y} 

We see that there are 2 prolongations to consider, so that S = {hy, hY} = {2xy2 + y3 + 

5y, x2y + y3 + 8y}. As xy2 < x2y in the Deg Lex monomial ordering, we must consider 

the prolongation hY first. 

f2y = 2xy2+y3 + 5y 2 2 3 5 4(5 3 5 + 37) 
~ f4 xy + Y + Y - 5 4Y - 2x 4Y 

12 
2xy2 + 2x - 5 y =: f 5 . 

As before, the prolongation did not involutively reduce to zero, so now we autoreduce the 

set FU {fs} = {2xy + y2 + 5, x2 + y2 + 8, ¾y3 
- !x + 3

4
7 y , 2xy2 + 2x - 1;y}. Again this 

leaves the set unchanged, so we proceed with the set F = {h , h , f 4, fs}-
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Polynomial 

h = 2xy + y2 + 5 

h = x2 + y2 + 8 

/4 = ¾Y3 
- ~x + 3d Y 

fs = 2xy2 + 2x - 1
5
2 y 

{x} 

{x} 

{x,y} 

{x} 
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This time, S = {hy, !Jy, fsY} = {2xy2 + y3 + 5y, x 2y + y3 + 8y, 2xy3 + 2xy - ~2 y2 } , 

and we must consider the prolongation hY first. 

hY = 2xy
2 + y3 + 5y ~Js 2xy

2 + y3 + 5y - ( 2xy2 + 2x -
1

5

2 
y) 

3 37 
y - 2x + 5Y 

3 37 4 (5 3 5 37 ) 
~f4 y - 2x + 5Y - 5 4Y - 2x + 4Y 

0. 

Because the prolongation involutively reduced to zero, we move on to look at the next 

prolongation hY ( which comes from the revised set S = {hy, f 5y} = { x 2y + y3 + 
8y, 2xy3 + 2xy - 1ly2 } ). 

-:I fz 

-:I fs 
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Finally, we look at t he prolongation f 5 y from the set S = {2xy3 + 2xy - ~2y2}. 

3 12 2 f 5y = 2xy + 2xy - 5 y 3 12 2 8 ( 5 3 5 37 ) 2xy + 2xy - - y - -x -y - - x + - y 
5 5 4 2 4 

2 64 12 2 
4x - - xy- - y 

5 5 
2 64 12 2 2 2 ) 4x - - xy - -y - 4(x + y + 8 

5 5 
64 32 2 

- - xy--y -32 
5 5 

64 32 2 32 2 
- - xy--y - 32+ - (2xy + y +5) 

5 5 5 
0. 

Because this prolongation also involutively reduced to zero using F, we are left with 

S = 0, which means that the algorithm now terminates with the Janet Involutive Basis 

G = {2xy + y 2 + 5, x2 + y 2 + 8, ¾y3 
- ~x + 3

4
7 y, 2xy2 + 2x - 1

5
2 y} as output. 

4.5 Improvements to the lnvolutive Basis Algorithm 

4.5.1 Improved Algorithms 

In [58], Zharkov and Blinkov introduced an algorithm for computing an Involutive Basis 

and proved its termination for zero-dimensional ideals. This work led other researchers to 

produce improved versions of the algorithm (see for example [4], [13], [23], [26], [27] and 

[28]); improvements made to the algorithm include the introduction of selection strategies 

(which, as we have seen in the proof of Proposition 4.4.8, are crucial for proving the 

termination of the algorithm in general), and the introduction of criteria (analogous to 

Buchberger's criteria) allowing the a priori detection of prolongations that involutively 

reduce to zero. 

4 .5.2 Homogeneous Involutive Bases 

When computing an Involutive Basis, a prolongation of a homogeneous polynomial is 

another homogeneous polynomial, and the involutive reduction of a homogeneous poly­

nomial by a set of homogeneous polynomials yields another homogeneous polynomial. 

It would therefore be entirely feasible for a program computing Involutive Bases for ho-
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mogeneous input bases to take advantage of the properties of homogeneous polynomial 

arithmetic. 

It would also be desirable to be able to use such a program on input bases containing non­

homogeneous polynomials. The natural way to do this would be to modify the procedure 

outlined in Definition 2.5.7 by replacing every occurrence of the phrase "a Grebner Basis" 

by the phrase "an Involutive Basis", thus creating the following definition. 

Definition 4.5.1 Let F = {Ji , ... , fm} be a non-homogeneous set of polynomials. To 

compute an lnvolutive Basis for F using a program that only accepts sets of homogeneous 

polynomials as input, we proceed as follows. 

(a) Construct a homogeneous set of polynomials F' = {h(fi), ... , h(fm)}. 

(b) Compute an lnvolutive Basis G' for F' . 

(c) Dehomogenise each polynomial g' E G' to obtain a set of polynomials G. 

Ideally, we would like to say that G is always an Involutive Basis for F as long as the 

monomial ordering used is extendible, mirroring the conclusion reached in Definition 2.5.7. 

However, we will only prove the validity of this statement in the case that the set G is 

autoreduced, and also only for certain combinations of monomial orderings and involutive 

divisions - all combinations will not work, as the following example demonstrates. 

Example 4.5 .2 Let F := {xi+ x~, x1 + xD be a basis generating an ideal J over the 

polynomial ring Q[x1, x2, x3], and let the monomial ordering be Lex. Computing an 

Involutive Basis for F with respect to the Janet involutive division using Algorithm 9, we 

obtain the set G := {x~ + xt X1X~ + x~xt X1X2 + X2xt Xi - xt X1 + xn . 

Taking t he homogeneous route, we can homogenise F (with respect to Lex) to obtain the 

set F' := {xiy+xt X1Y2+xn over the polynomial ring Q[x1,X2,X3, y]. Computing an 

lnvolutive Basis for F' with respect to the Janet involutive division, we obtain the set 

G' := { x~y3+xt x1x~y3+x~xiy, X1X2Y3+x2xiy, x1y3+xiy, X1Y2+xt x1xiy-x~y2, Xix~y+ 

x~x5, XiX3y+x~x3, Xiy+xt x1xi-x~y}. Finally, if we dehomogenise G', we obtain the set 

H := {x~+x~, X1X~+x~x~, X1X2+x2x5, X1+x~, X1X~-xt XiX~+x~x~, XiX3+x~x3, Xi+xn; 
however this set is not a Janet Involutive Basis for F, as can be verified by checking that 

(with respect to H) the variable x3 is nonmultiplicative for the polynomial x~ + xt and 
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the prolongation of the polynomial x~ + x~ by the variable x3 is involutively irreducible 

with respect to H. 

The reason why His not an Involutive Basis for Jin the above example is that the Janet 

multiplicative variables for the set G' do not correspond to the Janet multiplicative vari­

ables for the set H = d(G'). This means that we cannot use the fact that all prolongations 

of elements of G' involutively reduce to zero using G' to deduce that all prolongations of 

elements of H involutively reduce to zero using H. To do this, our involutive division must 

satisfy the following additional property, which ensures that the multiplicative variables 

of G' and d( G') do correspond to each other. 

Definition 4.5.3 Let O be a fixed extendible monomial ordering. An involutive division 

I is extendible with respect to O if, given any set of polynomials P, we have 

for all p E P , where y is the homogenising variable. 

In Section 2.5.2, we saw that of the monomial orderings defined in Section 1.2.1, only Lex, 

InvLex and DegRevLex are extendible. Let us now consider which involutive divisions 

are extendible with respect to these three monomial orderings. 

Proposition 4.5.4 The Thomas involutive division is extendible with respect to Lex, 

lnvLex and DegRevLex. 

Proof: Let P be an arbitrary set of polynomials over a polynomial ring containing vari­

ables x1 , ... , Xn and a homogenising variable y. Because the Thomas involutive division 

decides whether a variable xi (for 1 ~ i ~ n) is multiplicative for a polynomial p E P 

independent of the variable y, it is clear that Xi is multiplicative for p if and only if xi 

is multiplicative for d(p) with respect to any of the monomial orderings Lex, Inv Lex and 

DegRevLex. It follows that MT(P, P) \ {y} = MT(d(p), d(P)) as required. D 

Proposition 4.5.5 The Pommaret involutive division is extendible with respect to Lex 

and DegRevLex. 

Proof: Let p be an arbitrary polynomial over a polynomial ring containing variables 

x1 , ... , Xn and a homogenising variable y. Because we are using either the Lex or the 
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DegRevLex monomial orderings, the variable y must be lexicographically less than any 

of the variables x1 , ... , Xn, and so we can state (without loss of generality) that p belongs 

to the polynomial ring R[ x1, . .. , Xn, y]. Let ( e1, e2, ... , en, en+l) be the multidegree corre­

sponding to the monomial LM(p), and let 1 :=:;; i :=:;; n + 1 be the smallest integer such that 

ei > 0. 

If i = n + 1, then the variables x1, ... , X n will all be multiplicative for p. But then d(p) 

will be a constant, so that the variables x1 , ... , Xn will also all be mult iplicative for d(p). 

If i :=:;; n, then the variables x1 , ... , Xi will all be multiplicative for p . But because y is the 

smallest variable, it is clear that i will also be the smallest integer such that Ji > 0, where 

(!1, J2, ... , r) is the multidegree corresponding to the monomial LM(d(p)). It follows 

that the variables x1 , ... , Xi will also all be multiplicative for d(p) , and so we can conclude 

that M p(p, P) \ {y} = M p(d(p), d(P)) as required. □ 

Proposition 4.5.6 The Pommaret involutive division is not extendible with respect to 

InvLex. 

Proof: Let p := yx2 + Xi be a polynomial over the polynomial ring Q[y, x1 , x2], where 

y is the homogenising variable ( which must be greater than all other variables in order 

for InvLex to be extendible) . As LM(p) = yx2 with respect to InvLex, it follows that 

M p(p) = {y}. Further, as LM(d(p)) = LM(x2+xi) = x2 with respect to InvLex, it follows 

that M p(d(p)) = {x1 , x2}. We can now deduce that the Pommaret involutive division is 

not extendible with respect to InvLex, as Mp(p) \ {y} # M p(d(p)), or 0 # {x1 ,x2}. □ 

Proposition 4 .5. 7 The Janet involutive division is extendible with respect to InvLex. 

Proof: Let P be an arbitrary set of polynomials over a polynomial ring containing 

variables x1 , ... , Xn and a homogenising variable y. Because we are using the Inv Lex 

monomial ordering, the variable y must be lexicographically greater than any of the 

variables x1 , ... , X n , and so we can state ( without loss of generality) that p belongs to 

the polynomial ring R[y, x1 , ... , Xn] - But the Janet involutive division will then decide 

whether a variable Xi (for 1 :=:;; i :=:;; n) is multiplicative for a polynomial p E P independent 

of the variable y, so it is clear that xi is multiplicative for p if and only if xi is multiplicative 

for d(p), and so (with respect to InvLex) M.:r(P, P) \ {y} = M.:r(d(p) , d(P)) as required. 

□ 
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Proposition 4.5.8 The Janet involutive division is not extendible with respect to Lex or 

DegRevLex. 

Proof: Let U := {XIY, x1y2
} be a set of monomials over the polynomial ring Q[x1 , y], 

where y is the homogenising variable (which must be less than x1 in order for Lex and 

DegRevLex to be extendible). The Janet multiplicative variables for U (with respect to 

Lex and DegRevLex) are shown in the table below. 

u M:r(u , U) 

xfy {x1} 

x1y2 {x1,Y} 

When we dehomogenise U with respect to y, we obtain the set d(U) ·- {xi, xi} with 

multiplicative variables as follows. 

d(u) M:r(d(u) , d(U)) 

{xi} 

0 

It is now clear that Janet is not an extendible involutive division with respect to Lex or 

DegRevLex, as M:r(x1y2
, U) \ {y} =/:= M :r(x1, d(U)), or {xi} =j:= 0. □ 

Proposition 4.5.9 Let G' be a set of polynomials over a polynomial ring containing vari­

ables X 1, . . . , Xn and a homogenising variable y. If (i) G' is an Involutive Basis with respect 

to some extendible monomial ordering O and some involutive division I that is extendible 

with respect to O i and (ii) d( G') is an autoreduced set, then d( G') is an Involutive Basis 

with respect to O and I. 

Proof: By Definition 4.2.7, we can show that d( G') is an Involutive Basis with respect 

to O and I by showing that any multiple d(g')t of any polynomial d(g') E d( G') by any 

term t involutively reduces to zero using d( G'). Because G' is an Involutive Basis with 

respect to O and I , the polynomial g't involutively reduces to zero using G' by the series 

of involutive reductions 
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where g~i E G' for all 1 ::::; i ::::; A. 

Claim: The polynomial d(g')t involutively reduces to zero using d( G') by the series of 

involutive reductions 

where d(g~J E d( G') for all 1 ::::; i ::::; A. 

Proof of Claim: It is clear that if a polynomial g1 E G' involutively reduces a polynomial 

h, then the polynomial d(g1) E d( G') will always conventionally reduce the polynomial 

d(h). Further, knowing that I is extendible with respect to 0, we can state that d(g1) 
will also always involutively reduce d(h). The result now follows by noticing that d(G') 

is autoreduced, so that d(g1) is the only possible involutive divisor of d(h), and hence the 

above series of involutive reductions is the only possible way of involutively reducing the 

polynomial d(g')t. □ 

Open Question 1 If the set G returned by the procedure outlined in Definition 4.5.1 is 

not autoreduced, under what circumstances does autoreducing G result in obtaining a set 

that is an Involutive Basis for the ideal generated by F? 

Let us now consider two examples illustrating that the set G returned by the procedure 

outlined in Definition 4.5.1 may or may not be autoreduced. 

Example 4.5.10 Let F := {2x1x2 +Xi+ 5, x~ + x1 + 8} be a basis generating an ideal J 

over the polynomial ring Q[x1 , x2], and let the monomial ordering be InvLex. Ordinarily, 

we can compute an lnvolutive Basis G := {x~ + X1 + 8, 2x1X2 +Xi+ 5, l0x2 - xr - 4xi -

37x1, xf + 4xy + 42xf + 25} for F with respect to the Janet involutive division by using 

Algorithm 9. 

Taking the homogeneous route (using Definition 4.5.1), we can homogenise F to obtain 

the basis F' := {2x1x2 +Xi+ 5y2, x~ + YX1 + 8y2} over the polynomial ring Q[y, x1, x2], 

where y is the homogenising variable (which must be greater than all other variables). 

Computing an lnvolutive Basis for the set F' with respect to the Janet involutive division 

using Algorithm 9, we obtain the basis G' := {x~+yx1 +8y2, 2x1x2+xf+5y2, 10y2x2 - xy-

4yxi - 37y2x1, xf + 4yxy + 42y2xi + 25y4
}. When we dehomogenise this basis, we obtain 

the set d(G') := {x~ +x1 +8, 2x1x2 +xi +5, l0x2 - xy-4xf-37x1, xf +4xy +42xi +25}. 



CHAPTER 4. COMMUTATIVE INVOLUTIVE BASES 102 

It is now clear that the set d(G') is autoreduced (and hence d(G') is an Involutive Basis 

for J) because d(G') = G. 

Example 4 .5 .11 Let F := {x~ + 2x1X2 + 5, X2 + xr + 8} be a basis generating an ideal J 

over the polynomial ring Q[x1, x2], and let the monomial ordering be InvLex. Ordinarily, 

we can compute an Involutive Basis G := {x~ - 2xr - l6x1 + 5, X2 +Xi+ 8, Xi - 2xf + 

16xi - 16x1 + 69} for F with respect to the Janet involutive division by using Algorithm 

9. 

Taking the homogeneous route (using Definition 4.5.1), we can homogenise F to obtain 

the basis F' := {x~ + 2x1x2 + 5y2, yx2 +Xi+ 8y2} over the polynomial ring Q[y, x1, x2], 

where y is the homogenising variable (which must be greater than all other variables). 

Computing an Involutive Basis for the set F' with respect to the Janet involutive division 

using Algorithm 9, we obtain the basis G' := {x~ + 2x1x2 + 5y2, xrx2 + 2xy - 8yxr + 

16y2x1 - 69y3, YX1X2 + xr + 8y2x1, YX2 + xr + 8y2, Xi - 2yxy + 16y2xr - 16y3x1 + 69y4
}. 

When we dehomogenise this basis, we obtain the set d(G') := {x~ + 2x1x2 + 5, xrx2 + 

2xy - 8xr + l6x1 - 69, X1 X2 + xy + 8x1' X2 +Xi+ 8, Xi - 2xr + 16xr - l6x1 + 69}. This time 

however, because the set d(G') is not autoreduced (the polynomial x1x2+xy+8x1 E d(G') 

can involutively reduce the second term of the polynomial x~ + 2x1x2 + 5 E d(G')), we 

cannot deduce that d( G') is an Involutive Basis for J. 

Remark 4 .5 .12 Although the set G returned by the procedure outlined in Definition 

4.5.1 may not always be an Involutive Basis for the ideal generated by F, because the set 

G' will always be an Involutive Basis (and hence also a Grabner Basis), we can state that 

G will always be a Grobner Basis for the ideal generated by F (cf. Definition 2.5.7). 

4.5.3 Logged Involutive Bases 

Just as a Logged Grobner Basis expresses each member of the Grobner Basis in terms 

of members of the original basis from which the Grobner Basis was computed, a Logged 

Involutive Basis expresses each member of the Involutive Basis in terms of members of 

the original basis from which the Involutive Basis was computed. 

Definition 4.5.13 Let G = {g1 , . .. , gp} be an Involutive Basis computed from an initial 

basis F = {11, ... , fm}- We say that G is a Logged Involutive Basis if, for each gi E G, 
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we have an explicit expression of the form 

/3 

gi = L to:f ka, 

o:=l 

where the ta are terms and fka E F for all 1 ~ a ~ (3. 

Proposition 4.5.14 Given a finite basis F ={Ji, . .. , fm}, it is always possible to com­

pute a Logged Involutive Basis for F. 

Proof: Let G = {g1 , ... ,gp} be an lnvolutive Basis computed from the initial basis 

F = {11, ... , fm} using Algorithm 9 (where h E R [x1, . . . , Xn] for all Ji E F). If an 

arbitrary gi E G is not a member of the original basis F, then either gi is an involutively 

reduced prolongation, or gi is obtained through the process of autoreduction. In the 

former case, we can express gi in terms of members of F by substitution because 

/3 

gi = hxj - L to,hka 
Ot=l 

for a variable x1; terms t°' and polynomials h and hka which we already know how to 

express in terms of members of F. In the latter case, 

/3 

gi = h - L to,hka 
0t=l 

for terms t°' and polynomials h and hk
0 

which we already know how to express in terms 

of members of F, so it follows that we can again express gi in terms of members of F . □ 



Chapter 5 

Noncommutative Involutive Bases 

In the previous chapter, we introduced the theory of commutative Involutive Bases and 

saw that such bases are always commutative Grabner Bases with extra structure. In this 

chapter, we will follow a similar path, in that we will define an algorithm to compute a 

noncommutative Involutive Basis that will serve as an alternative method of obtaining a 

noncommutative Grabner Basis, and the noncommutative Grabner Bases we will obtain 

will also have some extra structure. 

As illustrated by the diagram shown below, the theory of noncommutative Involutive 

Bases will draw upon all the theory that has come before in this thesis, and as a con­

sequence will inherit many of the restrictions imposed by this theory. For example, our 

noncommutative Involutive Basis algorithm will not be guaranteed to terminate precisely 

because we are working in a noncommutative setting, and noncommutative involutive 

divisions will have properties that will influence t he correctness and termination of the 

algorithm. 

Commutative Grabner Bases---+ Commutative Involutive Bases 

j j 
Noncommutative Grabner Bases--+ Noncommutative Involutive Bases 

104 
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5.1 Noncommutative lnvolutive Reduction 

Recall that in a commutative polynomial ring, a monomial u2 is an involutive divisor of a 

monomial u 1 if u1 = u2u3 for some monomial u3 and all variables in u3 are multiplicative 

for u2 . In other words, we are able to form u1 from u2 by multiplying u2 with multiplicative 

variables. 

In a noncommutative polynomial ring, an involutive division will again induce a restricted 

form of division. However, because left and right multiplication are separate processes in 

noncommutative polynomial rings, we will require the notion of left and right multiplicative 

variables in order to determine whether a conventional divisor is an involutive divisor, so 

that (intuitively) a monomial u2 will involutively divide a monomial u1 if we are able to 

form u 1 from u2 by multiplying u2 on the left with left multiplicative variables and on the 

right by right multiplicative variables. 

More formally, let u1 and u2 be two monomials over a noncommutative polynomial ring, 

and assume that u1 is a conventional divisor of u2 , so that u1 = u3u2u4 for some monomials 

u3 and u4. Assume that an arbitrary noncommutative involutive division I partitions the 

variables in the polynomial ring into sets of left multiplicative and left nonmultiplicative 

variables for u2 , and also partitions the variables in the polynomial ring into sets of right 

multiplicative and right nonmultiplicative variables for u2 . Let us now define two methods 

of deciding whether u2 is an involutive divisor of u1 (written u2 11 u1), the first of which 

will depend only on the first variable we multiply u2 with on the left and on the right in 

order to form u1 , and the second of which will depend on all the variables we multiply u2 

with in order to form 1t1. 

Definition 5.1.1 Let u1 = u3u2u4 , and let I be defined as in the previous paragraph. 

• (Thin Divisor) u2 11 u1 if the variable Suffix(u3 , 1) (if it exists) is in the set of left 

multiplicative variables for u2, and the variable Prefix( u4 , 1) ( again if it exists) is in 

the set of right multiplicative variables for u2 • 

• (Thick Divisor) 1t2 11 u1 if all the variables in u3 are in the set of left multiplicative 

variables for u2 , and all the variables in u4 are in the set of right multiplicative 

variables for u2. 

Remark 5.1.2 We introduce two methods for determining whether a conventional di­

visor is an involutive divisor because each of the methods has its own advant ages and 
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disadvantages. From a theoretical standpoint, using thin divisors enables us to follow the 

path laid down in Chapter 4, in that we are able to show that a Locally Involutive Basis is 

an Involutive Basis by proving that the involutive division used is continuous, something 

that we cannot do if thick divisors are being used. On the other hand, once we have 

obtained our Locally Involutive Basis, involutive reduction with respect to thick divisors 

is more efficient than it is with respect to thin divisors, as less work is required in order to 

determine whether a monomial is involutively divisible by a set of monomials. For these 

reasons, we will use thin divisors when presenting the theory in this chapter (hence the 

following definition), and will only use thick divisors when, by doing so, we are able to 

gain some advantage. 

Remark 5.1.3 Unless otherwise stated, from now on we will use thin divisors to deter­

mine whether a conventional divisor is an involutive divisor. 

Example 5.1.4 Let u 1 := xyz2x; u~ := yz2y and u2 := z2 be three monomials over the 

polynomial ring R = Q(x, y, z), and let an involutive division I partition the variables in 

'R., into the following sets of variables for the monomial u2 : left multiplicative = {x, y}; 

left nonmult iplicative = { z}; right multiplicative = { x, z}; right nonmultiplicative = 

{y}. It is true that u2 conventionally divides both monomials u1 and u~, but u2 only 

involutively divides monomial u1 as, defining u3 := xy; u4 := x; u3 = y and u~ = y (so 

that u1 = u3u2u4 and u~ = u3u2u~), we observe that the variable Suffix(u3, 1) = y is in 

the set of left multiplicative variables for u2 ; the variable Prefix(u4 , 1) =xis in the set of 

right multiplicative variables for u2; but the variable Prefix(u~, 1) = y is not in the set of 

right multiplicative variables for u2 . 

Let us now formally define what is meant by a (noncommutative) involutive division. 

Definition 5.1.5 Let M denote the set of all monomials in a noncommutative polynomial 

ring R = R(x1, ... , Xn), and let UC M. The involutive cone C1(u, U) of any monomial 

u E U with respect to some involutive division I is defined as follows. 

Definition 5.1.6 Let M denote the set of all monomials in a noncommutative polynomial 

ring R = R(x1, ... , xn). A strong involutive division I is defined on M if, given any finite 

set of monomials UC M, we can assign a set of left multiplicative variables Mf(u, U) ~ 
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{ x 1, ... , Xn} and a set of right multiplicative variables M f ( u, U) ~ { x 1, . . . , Xn} to any 

monomial u E U such that the following three conditions are satisfied. 

• If there exist two elements u1, u2 E U such that C1(u1, U) n C1(u2, U) f= 0, then 

either C1(u1, U) c C1(u2, U) or C1 (u2, U) c C1(u1 , U). 

• Any monomial v E C1(u, U) is involutively divisible by u in one way only, so that 

if u appears as a subword of v in more than one way, then only one of these ways 

allows us to deduce that u is an involutive divisor of v . 

• If V CU, then Mf (v, U) ~ M f(v, V) and Mf(v, U) ~ M f(v, V) for all v EV. 

If any of the above conditions are not satisfied, the involutive division is called a weak 

involutive division. 

Remark 5.1. 7 We shall refer to the three conditions of Definition 5.1.6 as (respectively) 

the Disjoint Cones condition, the Unique Divisor condition and the Subset condition. 

Definition 5.1.8 Given an involutive division I , the involut ive span C1(U) of a set of 

noncommutative monomials U with respect to I is given by the expression 

C1(U) = LJ C1(u, U). 
uEU 

Remark 5 .1.9 The (conventional) span of a set of noncommutative monomials U is given 

by the expression 

C(U) = LJ C(u, U), 
uEU 

where C ( u, U) = { v1 uv2 such that v1, v2 are monomials} is the ( conventional) cone of a 

monomial u E U. 

D efinition 5 .1.10 If an involutive division I determines the left and right multiplicative 

variables for a monomial u E U independent of the set U, then I is a global division. 

Otherwise, I is a local division. 

Remark 5.1.11 The multiplicative variables for a set of polynomials P (whose terms 

are ordered by a monomial ordering 0) are determined by the multiplicative variables for 

the set of leading monomials LM(P). 
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In Algorithm 10, we specify how to involutively divide a polynomial p with respect to a set 

of polynomials P using thin divisors. Note that this algorithm combines the modifications 

made to Algorithm 1 in Algorithms 2 and 7. 

Algorithm 10 The Noncommutative lnvolutive Division Algorithm 

Input: A nonzero polynomial p and a set of nonzero polynomials P = {p1 , ... , Pm} 

over a polynomial ring R(x1 , ... Xn); an admissible monomial ordering O; an involutive 

division I. 

Output: Remr(P, P) := r, the involutive remainder of p with respect to P. 

r = O; 

while (p f, 0) do 

u = LM(p); c = LC(p); j = l; found= false; 

while (j ~ m) and (found == false) do 

if (LM(pi) Ir u) then 

found = true; 

choose ue and Ur such that u = ueLM(pi )ur, the variable Suffix( ue, 1) (if it exists) 

is left multiplicative for PJ, and the variable Prefix(ur , 1) (again if it exists) is 

right multiplicative for PJi 

p = p- (cLC(p1)-1 )uepJur; 

else 

j = j + l; 
e nd if 

end while 

if ( found = = false) then 

r = r + LT(p); p = p - LT(p); 

end if 

end while 

return r; 

Remark 5.1.12 Continuing the convention from Algorithm 2, we will always choose the 

ue with the smallest degree in the line 'choose ue and Ur such that . .. ' in Algorithm 10. 

Example 5.1.13 Let P := {x2 - 2y, xy - x, y3 + 3} be a set of polynomials over the 

polynomial ring (Q(x, y) ordered with respect to the DegLex monomial ordering, and 

assume that an involutive division I assigns multiplicative variables to P as follows. 
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p Mf(LM(p), LM(P)) Mf(LM(p), LM(P)) 

x 2 - 2y {x,y} {x} 

xy-x {y} {x,y} 

y3 + 3 {x} 0 

Here is a dry run for Algorithm 10 when we involutively divide the polynomial p := 

2x2y3 + yxy with respect to P to obtain the polynomial yx - 12y, where A; B; C and D 
refer to the tests (p =I= O)?; ((j ~ 3) and (found == false))?; (LM(p1) Ir u)? and (found 
== false)? respectively. 

p r u C j found ue Ur A B C D 

2x2y3 +yxy 0 true 
x2y3 2 1 false true false 

2 true false 

3 true true 

yxy- 6x2 true x2 1 false false 

true 

yxy 1 1 false true false 

2 true true 

-6x2 +yx true y 1 false false 

true 
x2 -6 1 false true true 

yx - 12y true 1 1 false false 

true 

yx 1 1 false true false 

2 true false 

3 true false 

4 false true 

- 12y yx true 

y -12 1 false true false 

2 true false 

3 true false 

4 false true 

0 yx - 12y false 
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5.2 Prolongations and Autoreduction 

Just as in the commutative case, we will compute a (noncommutative) Locally Involutive 

Basis by using prolongations and autoreduction, but here we have to distinguish between 

left prolongations and right prolongations. 

Definition 5.2.1 Given a set of polynomials P, a left prolongation of a polynomial p E 

P is a product XiP, where Xi (j. M y(LM(p), LM(P)) with respect to some involutive 

division I; and a right prolongation of a polynomial p E P is a product pxi, where 

xi (j. M r(LM(p), LM(P)) with respect to some involutive division I . 

Definition 5.2.2 A set of polynomials Pis said to be autoreduced if no polynomial p E P 

exists such that p contains a term which is involutively divisible (with respect to P) by 

some polynomial p' E P \ {p}. 

Algorithm 11 The Noncommutative Autoreduct ion Algorithm 

Input: A set of polynomials P = {p1,p2, ... ,Pa}; an involutive division I. 

Output: An autoreduced set of polynomials Q = { q1 , q2, . . . , q,a }. 

while (:l Pi E P such that RemI(Pi, P, P \ {Pi}) -/= Pi) do 

p~ = Rem1(Pi, P, P \{pi}); 

p = P\ {pi}; 

if (p~ i= 0) then 

p = p u {p~}; 

end if 

e nd while 

Q=P; 

return Q; 

R emark 5.2.3 With respect to a strong involutive division, the involutive cones of an 

autoreduced set of polynomials are always disjoint. 

Remark 5.2.4 The notation RemI(Pi, P, P \ {pi}) used in Algorithm 11 has the same 

meaning as in Definition 4.2.2. 

Proposition 5.2 .5 Let P be a set of polynomials over a noncommutative polynomial ring 

R = R(x1 , .. . , Xn), and let f and g be two polynomials also in R . If P is autoreduced with 

respect to a strong involutive division I , then RemI(f, P) + RemI(g, P) = Rem I(! + g, P). 



CHAPTER 5. NONCOMMUTATIVE IN VOLUTIVE BASES 111 

P roof: Let f' := Rem1(f, P) ; g' := Rem1(g, P ) and h' := Remr(h, P ), where h := f + g. 

Then, by the respective involutive reductions, we have expressions 

and 

A 

J' = f - L UaPcxa Va; 
a= l 

B 

g' = g - L UbPf3bVb 

b=l 

C 

h' = h - L UcP'"'fcVc, 

c=l 

where Pcxa' P!3b ' P'"Yc E p and Ua, Va, Ub, Vb, Uc, Ve are t erms such that each Pcxa' P!3b and P'"'fc 

involutively divides each UaPcxa Va, UbPf3b Vb and UcP'"'fc Ve respectively. 

Consider the polynomial h' - f' - g'. By the above expressions, we can deduce1 that 

A B C D 

h' - J' - g' = L UaPcxaVa + L UbPf3bVb - L UcP'"'fcVc = : L UdPodVd -

a=l b= l c=l d=l 

Claim: Rem1(h' - f' - g', P ) = 0. 

P roof of Claim: Let t denote the leading term of the polynomial "2:.f=1 UdPod vd . Then 

LM(t) = LM(ukPokvk) for some 1 ~ k ~ D since, if not, t here exists a monomial 

for some 1 ~ k', k" ~ D (with Pok, -/= p0k,,) such that w is involutively divisible by the two 

polynomials Poe and Pok", contradicting Definit ion 5.1.6 (recall that I is strong and P is 

autoreduced, so that the involutive cones of P are disjoint) . It follows that we can use 

Pok to eliminate t by involut ively reducing h' - f' - g' as shown below. 

D k - l D 

L udPod vd ~.k L udPod vd + L UdPod vd . (5 .1) 
d= l d= l d= k+ l 

By induction , we can apply a chain of involutive reductions to the right hand side of 

Equat ion (5.1) to obtain a zero remainder , so t hat Rem1(h' - f' - g', P ) = 0. 0 

1For 1 ~ d ~ A , U dPodVd = UaPo:aVa (1 ~ a~ A); for A + 1 ~ d ~ A+ B , UdPo,, Vd = UbPf3bVb 

(1 ~ b ~ B); and for A + B + 1 ~ d ~ A + B + C = : D , UdPodVd = U cP-rcVc (1 ~ c ~ C) . 
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To complete the proof, we note that since f', g' and h' are all involutively irreducible, we 

must have Remr(h' - f' - g', P) = h' - f' - g'. It therefore follows that h' - f' - g' = 0, 

or h' = f' + g' as required. □ 

Definition 5.2.6 Given an involutive division I and an admissible monomial ordering 0, 

an autoreduced set of noncommutative polynomials P is a Locally Involutive Basis with 

respect to I and O if any (left or right) prolongation of any polynomial Pi E P involutively 

reduces to zero using P. 

Definition 5.2.7 Given an involutive division I and an admissible monomial ordering 0, 

an autoreduced set of noncommutative polynomials Pis an Involutive Basis with respect 

to I and O if any multiple upiv of any polynomial Pi E P by any terms u and v involutively 

reduces to zero using P. 

5.3 The Noncommutative lnvolutive Basis Algorithm 

To compute a (noncommutative) Locally lnvolutive Basis, we use Algorithm 12, an algo­

rithm that is virtually identical to Algorithm 9, apart from the fact that at the beginning 

of the first while loop, the set S is constructed in different ways. 

5.4 Continuity and Conclusivity 

In the commutative case, when we construct a Locally Involutive Basis using Algorithm 

9, we know that the algorithm will always return a commutative Grebner Basis as long 

as we use an admissible monomial ordering and the chosen involutive division possesses 

certain properties. In summary, 

( a) Any Locally Involutive Basis returned by Algorithm 9 is an Involutive Basis if the 

involutive division used is continuous (Proposition 4.3.3); 

(b) Algorithm 9 always terminates if (in addition) the involutive division used is con­

structive, Noetherian and stable (Proposition 4.4.8); 

(c) Every Involutive Basis is a Grebner Basis (Theorem 4.4.9). 

In the noncommutative case, we cannot hope to produce a carbon copy of the above 

results because a finitely generated basis may have an infinite Grebner Basis, leading to 
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Algorithm 12 The Noncommutative Involutive Basis Algorithm 

Input: A Basis F = {!1, h, ... , fm} for an ideal Jover a noncommutative polynomial 

ring R(x1 , ... Xn); an admissible monomial ordering O; an involutive division I. 

Output: A Locally Involutive Basis G = {g1, g2 , ... , gp} for J (in the case of termina­

tion). 

G=0; 
F = Autoreduce(F); 

while ( G == 0) do 

S = {xd I f E F, Xi (/: Mf(f, F)} U {!xi I f E F, Xi(/: Mf(f, F)}; 
s' = O; 

while (S-/= 0) and (s' == 0) do 

Let s be a polynomial in S whose lead monomial is minimal with respect to O; 

S=S\{s}; 
s' = Remr(s, F); 

end while 

if (s'-/= 0) then 

F = Autoreduce(F U { s'} ); 

else 

G = F; 

end if 

end while 

return G; 
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the conclusion that Algorithm 12 does not always terminate. The best we can therefore 

hope for is if an ideal generated by a set of polynomials F possesses a finite Grabner 

Basis with respect to some admissible monomial ordering 0, then F also possesses a 

finite Involutive Basis with respect to O and some involutive division I. We shall call any 

involutive division that possesses this property conclusive. 

Definition 5.4.1 Let F be an arbitrary basis generating an ideal over a noncommutative 

polynomial ring, and let O be an arbitrary admissible monomial ordering. An involutive 

division I is conclusive if Algorithm 12 terminates with F, I and O as input whenever 

Algorithm 5 terminates with F and O as input. 

Of course it is easy enough to define the above property, but much harder to prove that a 

particular involutive division is conclusive. In fact, no involutive division defined in this 

thesis will be shown to be conclusive, and the existence of such divisions will be left as 

an open question. 

5.4.1 Properties for Strong Involutive Divisions 

Here is a summary of facts that can be deduced when using a strong involutive division. 

(a) Any Locally lnvolutive Basis returned by Algorithm 12 is an Involutive Basis if the 

involutive division used is strong and continuous (Proposition 5.4.3); 

(b) Algorithm 12 always terminates whenever Algorithm 5 terminates if (in addition) the 

involutive division used is conclusive; 

(c) Every Involutive Basis with respect to a strong involutive division is a Grabner Basis 

(Theorem 5.4.4). 

Let us now prove the assertions made in parts (a) and (c) of the above list, beginning by 

defining what is meant by a continuous involutive division in the noncommutative case. 

Definition 5.4.2 Let I be a fixed involutive division; let w be a fixed monomial; let Ube 

any set of monomials; and consider any sequence (u1 , u2 , . •. , uk) of monomials from U 

(ui E U for all 1 :s; i :s; k), each of which is a conventional divisor of w (so that w = Riuiri 

for all 1 :s; i :s; k, where the Ri and the ri are monomials). For all 1 :s; i < k, suppose that 

the monomial ui+l satisfies exactly one of the following conditions. 
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(a) ui+1 involutively divides a left prolongation of ui, so that deg(t'i) ~ l; Suffix(t'i, 1) t/. 
Mf(ui, U); and ui+l 11 (Suffix(t'i, l ))ui. 

(b) ui+1 involutively divides a right prolongation of ui, so that degh) ~ 1; Prefix(ri, 1) t/. 
Mf(ui, U); and ui+l 11 ui(Prefixh, 1)). 

Then I is continuous at w if all the pairs (£i, ri) are distinct ( ( ei, ri) =I- ( eJ, rJ) for all i =I- j); 

I is a continuous involutive division if I is continuous for all possible w. 

Proposition 5.4.3 If an involutive division I is strong and continuous, and a given set 

of polynomials P is a Locally Involutive Basis with respect to I and some admissible 

monomial ordering O, then P is an Involutive Basis with respect to I and O. 

Proof: Let I be a strong and continuous involutive division; let O be an admissible 

monomial ordering; and let P be a Locally Involutive Basis with respect to I and 0. 

Given any polynomial p E P and any terms u and v, in order to show that P is an 

Involutive Basis with respect to I and 0, we must show that upv ~ P 0. 

If p 11 upv we are done, as we can use p to involutively reduce upv to obtain a zero 

remainder. Otherwise, either :3 y1 t/. Mf(LM(p), LM(P)) such that y1 = Suffix(u, 1), 

or :3 y1 t/. Mf(LM(p), LM(P)) such that Y1 = Prefix(v, 1). Without loss of generality, 

assume that the first case applies. By Local Involutivity, the prolongation y1p involutively 

reduces to zero using P. Assuming that the first step of this involutive reduction involves 

the polynomial p1 E P, we can write 

A 

YIP = UtPl V1 + L UcxaPcxa Vc,a, 

a=l 

(5.2) 

where Pcxa E p and U1, V1, Ucxa, Vcxa are terms such that Pl and each Pcxa involutively divide 

U1P1 V1 and each u00Pcxa Vcxa respectively. Multiplying both sides of Equation (5.2) on the 

left by u' := Prefix(u, deg(u) - 1) and on the right by v, we obtain the equation 

(5.3) 

If p1 11 upv, it is clear that we can use p1 to involutively reduce the polynomial upv to 

obtain the polynomial I::=l u1u00p00 Vcxa v. By Proposition 5.2.5, we can then continue 
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to involutively reduce upv by repeating this proof on each polynomial u'uc,aP°'a Vc,a. v in­

dividually (where 1 ~ a ~ A), noting that this process will terminate because of the 

admissibility of O (we have LM(u'u°'aP°'av°'av) < LM(upv) for all 1 ~a~ A). 

Otherwise, if p1 does not involutively divide upv, either :3 Y2 (/. Mf (LM(p1), LM(P)) such 

that Y2 = Suffix(u'u1, 1), or :ly2 (f. Mf(LM(p1), LM(P)) such that Y2 = Prefix(v1v, 1). 
This time (again without loss of generality), assume that the second case applies. By 

Local Involutivity, the prolongation p1y2 involutively reduces to zero using P. Assuming 

t hat the first step of this involutive reduction involves the polynomial p2 E P, we can 

write 
B 

P1Y2 = U2P2V2 + L Uf3bPf3bVf3b> (5.4) 
b=l 

where P/3b E P and u2, v2, Uf3b, Vf3b are terms such that P2 and each P/3b involutively divide 

u2p2v2 and each u13bPf3bVf3b respectively. Multiplying both sides of Equation (5.4) on the 

left by u'u1 and on the right by v' := Suffix(v1v,deg(v1v) -1), we obtain the equation 

(5.5) 

Substituting for u'u1p1v1v from Equation (5.5) into Equation (5.3), we obtain the equation 

(5.6) 

If p2 11 upv, it is clear that we can use p2 to involutively reduce the polynomial upv to 

obtain the polynomial I:::=l u'uc,aP°'a. Vc,a v + I::i=l u'u1 u13bPf3b Vf3b v'. As before, we can then 

use Proposition 5.2.5 to continue the involutive reduction of upv by repeating this proof 

on each summand individually. 

Otherwise, if p2 does not involutively divide upv, we continue by induction, obtaining a 

sequence p,p1,p2 ,p3 , ... of elements in P. By construction, each element in the sequence 

divides upv. By continuity (at LM(upv)), no two elements in the sequence divide upv in 

the same way. Because upv has a finite number of subwords, the sequence must be finite, 

terminating with an involutive divisor p' E P of upv, which then allows us to finish the 

proof through use of Proposition 5.2.5 and the admissibility of 0. D 

Theorem 5.4.4 An Involutive Basis with respect to a strong involutive division is a 

Grabner Basis. 



CHAPTER 5. N0NC0MMUTATIVE INV0LUTIVE BASES 117 

Proof: Let G = {g1 , ... , 9m} be an Involutive Basis with respect to some strong in­

volutive division I and some admissible monomial ordering 0, where each 9i E G (for 

all 1 ~ i ~ m) is a member of the polynomial ring R(x1 , ... , Xn). To prove that G is 

a Grabner Basis, we must show that all S-polynomials involving elements of G conven­

tionally reduce to zero using G. Recall that each S-polynomial corresponds to an overlap 

between the lead monomials of two ( not necessarily distinct) elements gi, gj E G. Consider 

such an arbitrary overlap, with corresponding S-polynomial 

Because G is an Involutive Basis, it is clear that c2f!igiri ---y-+-GO and c1f!jgjrj ---y-+-GO. 

By Proposition 5.2.5, it follows that S-pol(f!i,9i,f!j,9j) ---y-+-GO. But every involutive 

reduction is a conventional reduction, so we can deduce that S-pol(f!i,9i,f!J,9j) ---ta Oas 

required. D 

Lemma 5.4.5 Given an Involutive Basis G with respect to a strong involutive division, 

remainders are involutively unique with respect to G. 

Proof: Let G be an Involutive Basis with respect to some strong involutive division I 

and some admissible monomial ordering 0. Theorem 5.4.4 tells us that G is a Grabner 

Basis with respect to O and thus remainders are conventionally unique with respect to 

G. To prove that remainders are involutively unique with respect to G, we must show 

that the conventional and involutive remainders of an arbitrary polynomial p with respect 

to G are identical. For this it is sufficient to show that a polynomial p is conventionally 

reducible by G if and only if it is involutively reducible by G. (⇒) Trivial as every 

involutive reduction is a conventional reduction. ( ¢::) If a polynomial p is conventionally 

reducible by a polynomial g E G, it follows that LM(p) = uLM(g)v for some monomials 

u and v. But G is an Involutive Basis, so there must exist a polynomial g' E G such that 

LM(g') 11 uLM(g)v. Thus pis also involutively reducible by G. D 

5.4.2 Properties for Weak Involutive Divisions 

While it is true that the previous three results (Proposition 5.4.3, Theorem 5.4.4 and 

Lemma 5.4.5) do not apply if a weak involutive division has been chosen, we will now 

show that corresponding results can be obtained for weak involutive divisions that are 

also Grabner involutive divisions. 
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Definition 5.4.6 A weak involutive division I is a Grabner involutive division if every 

Locally Involut ive Basis with respect to I is a Grabner Basis. 

It is an easy consequence of Definition 5.4.6 that any Involutive Basis with respect to a 

weak and Grabner involutive division is a Grabner Basis; it therefore follows that we can 

also prove an analog of Lemma 5.4.5 for such d ivisions. To complete the mirroring of 

t he results of Proposition 5.4.3, Theorem 5.4.4 and Lemma 5.4.5 for weak and Grabner 

involutive divisions, it remains to show t hat a Locally Involutive Basis with respect to a 

weak; continuous and Grabner involutive division is an Involutive Basis. 

Proposition 5.4. 7 If an involutive division I is weak; continuous and Grabner, and if 

a given set of polynomials P is a Locally Involutive Basis with respect to I and some 

admissible monomial ordering 0, then P is an Involutive Basis with respect to I and 0. 

Proof: Let I be a weak; continuous and Grabner involutive division; let O be an 

admissible monomial ordering; and let P be a Locally Involut ive Basis with respect to I 

and 0. Given any polynomial p E P and any terms u and v, in order to show that Pis 

an Involutive Basis with respect to I and 0, we must show that upv ~ P 0. 

For the first part of the proof, we proceed as in the proof of Proposition 5.4.3 to find an 

involutive divisor p' E P of upv using the continuity of I at LM(upv) . This then allows 

us to involutive reduce upv using p' to obtain a polynomial q of the form 

A 

q = L UaPoaVa, 

a=l 

where p00 E P and the Ua and the Va are terms. 

(5.7) 

For the second part of the proof, we now use t he fact that P is a Grabner Basis to find 

a polynomial q' E P such that q' conventionally divides q (such a polynomial will always 

exist because q is clearly a member of the ideal generated by P). If q' is an involutive 

divisor of q, then we can use q' to involut ively reduce q to obtain a polynomial r of the 

form shown in Equation (5.7). Otherwise, if q' is not an involutive divisor of q, we can 

use the fact that I is continuous at LM(q) to find such an involutive divisor, which we 

can then use to involutive reduce q to obtain a polynomial r, again of the form shown in 

Equation (5.7). In both cases, we now proceed by induction on r, noting that this process 

will terminate because of t he admissibility of O (we have LM(r) < LM(q)). D 
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To summarise, here is the situation for weak and Grabner involutive divisions. 

( a) Any Locally Involutive Basis returned by Algorithm 12 is an Involutive Basis if the 

involutive division used is weak; continuous and Grabner (Proposit ion 5.4. 7); 

(b) Algorithm 12 always terminates whenever Algorithm 5 terminates if (in addit ion) the 

involutive division used is conclusive; 

( c) Every Involutive Basis with respect to a weak and Grabner involutive division is a 

Grabner Basis. 

5.5 Noncommutative Involutive Divisions 

Before we consider some examples of useful noncommutative involutive divisions, let us 

remark that it is possible to categorise any noncommutative involutive division somewhere 

between the following two extreme global divisions. 

Definition 5.5.1 (The Empty Division) Given any monomial u, let u have no (left 

or right) multiplicative variables. 

Definition 5.5.2 (The Full Division) Given any monomial u, let u have no (left or 

right) nonmultiplicative variables (in other words, all variables are left and right multi­

plicative for u) . 

Remark 5.5.3 It is clear that any set of polynomials G will be an Involutive Basis 

with respect to the (weak) full division as any multiple of a polynomial g E G will be 

involutively reducible by g ( all conventional divisors are involutive divisors); in contrast 

it is impossible to find a finite Locally Involutive Basis for G with respect to the (strong) 

empty division as there will always be a prolongation of an element of the current basis 

that is involutively irreducible. 

5.5.1 Two Global Divisions 

Whereas most of the theory seen so far in this chapter has closely mirrored the correspond­

ing commutative theory from Chapter 4, the commutative involutive divisions (Thomas, 

Janet and Pommaret) seen in the previous chapter do not generalise to the noncommu­

tative case, or at the very least do not yield noncommutative involutive divisions of any 
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value. Despite this, an essential property of these divisions is that they ensure that the 

least common multiple lcm(LM(p1), LM(p2)) associated with an 8-polynomial S-pol(p1,p2) 

is involutively irreducible by at least one of p1 and p2 , ensuring that the 8-polynomial 

S-pol(p1, P2) is constructed and involutively reduced during the course of the Involutive 

Basis algorithm. 

To ensure that the corresponding process occurs in the noncommutative lnvolutive Basis 

algorithm, we must ensure that all overlap words associated to the 8-polynomials of a 

particular basis are involutively irreducible (as placed in the overlap word) by at least 

one of the polynomials associated to each overlap word. T his obviously holds true for the 

empty division, but it will also hold true for the following two global involutive divisions, 

where all variables are either assigned to be left multiplicative and right nonmultiplicative, 

or left nonmultiplicative and right multiplicative. 

Definition 5 .5.4 (The Left Division) Given any monomial u, the left division <J as­

signs no left nonmultiplicative variables to u, and assigns no right multiplicative variables 

to u (in other words, all variables are left multiplicative and right nonmultiplicative for 

u) . 

Definition 5.5.5 (The Right Division) Given any monomial u, the right division t> 

assigns no left multiplicative variables to u, and assigns no right nonmultiplicative vari­

ables to u (in other words, all variables are left nonmultiplicative and right multiplicative 

for u) . 

Proposition 5.5 .6 The left and right divisions are strong involutive divisions. 

Proof: We will only give the proof for the left division - the proof for the right division 

will follow by symmetry (replacing 'left' by ' right', and so on). 

To prove that the left division is a strong involutive division, we need to show that the 

three conditions of Definition 5.1.6 hold. 

• Disjoint Cones Condition 

Consider two involutive cones C<J(u1) and C<J(u2) associated to two monomials u1, u2 

over some noncommutative polynomial ring n. If C<J(u1) n C<J(u2) -=I= 0, then there 

must be some monomial v E 'R, such that v contains both monomials u1 and u2 as 

subwords, and (as placed in v) both u1 and u2 must be involutive divisors of v. By 
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definition of <J, both u1 and u2 must be suffices of v. Thus, assuming (without loss 

of generality) that deg(u1) > deg(u2), we are able to draw the following diagram 

summarising the situation. 

V 

But now, assuming that u1 = U3U2 for some monomial u3 , it is clear that C<J(u1) C 

C<J(u2) because any monomial w E C<J(u1) must be of the form w = w'u1 for some 

monomial w'; this means that w = w'u3u2 E C<J(u2). 

• Unique Divisor Condition 

As a monomial vis only involutively divisible by a monomial u with respect to the 

left division if u is a suffix of v, it is clear that u can only involutively divide v in at 

most one way. 

• Subset Condition 

Follows immediately due to the left division being a global division. 

D 

Proposition 5.5. 7 The left and right divisions are continuous. 

Proof: Again we will only treat the case of the left division. Let w be an arbitrary fixed 

monomial; let U be any set of monomials; and consider any sequence (u1 , u 2 , •.. , uk) 

of monomials from U ( ui E U for all 1 :s; i :s; k), each of which is a conventional divisor 

of w (so that w = f;uiri for all 1 :s; i :s; k, where the£; and the ri are monomials). For 

all 1 :s; i < k, suppose that the monomial ui+l satisfies condition (b) of Definition 5.4.2 

(condition (a) can never be satisfied because <J never assigns any left nonmultiplicative 

variables). To show that <J is continuous, we must show that no two pairs (fi, ri) and 

(fj, rj) are the same, where i I- j. 

Consider an arbitrary monomial ui from the sequence, where 1 :s; i < k. Because <J 

assigns no right multiplicative variables, the next monomial ui+l in the sequence must 

be a suffix of the prolongation ui(Prefixh, 1)) of u;, so that deg(ri+1) = deg(ri) - 1. 
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It is therefore clear that no two identical ( £, r) pairs can be found in the sequence, as 

deg(r1) > deg(r2) > · · · > deg(rk)- D 

To illustrate the difference between the overlapping cones of a noncommutative Grobner 

Basis and the disjoint cones of a noncommutative lnvolutive Basis with respect to the left 

division, consider the following example. 

Example 5.5.8 Let F := {2xy + y2 + 5, x2 + y2 + 8} be a basis over the polynomial ring 

(Q(x, y), and let the monomial ordering be DegLex. Applying Algorithm 5 to F, we obtain 

the Grobner Basis G := {2xy+y2+5, x2+y2+8, 5y3-10x+37y, 2yx+y2+5}. Applying 

Algorithm 12 to F with respect to the left involutive division, we obtain the lnvolutive 

Basis H := {2xy + y2 + 5, x2 + y2 + 8, 5y3 - lOx + 37y, 5xy2 + 5x - 6y, 2yx + y2 + 5}. 

To illustrate which monomials are reducible with respect to the Grobner Basis, we can 

draw a monomial lattice, part of which is shown below. In the lattice, we draw a path 

from the (circled) lead monomial of any Grobner Basis element to any multiple of that 

lead monomial, so that any monomial which lies on some path in the lattice is reducible 

by one or more Grobner Basis elements. To distinguish between different Grobner Basis 

elements we use different arrow types; we also arrange the lattice so that monomials of 

the same degree lie on the same level. 

1 

X 

xy2x xyxy 

y 

y2 

' \ ' 
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\ '' 
\ ' 
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yxy y2x 

/ \ ,., 
/1,,,.,/\\ 

' I \\ 
\. I \ \ 

' I ;, \ I \ X .. \ 
\ .... \ 

·< \ \ 
\ \ \ 

\ I \ 
'- I \ '- I ... :I \ ' 

yxyx yx2y y2x2 xy3 yxy2 y2xy y3x y4 
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Notice that many of the monomials in the lattice are reducible by several of the Grebner 

Basis elements. For example, the monomial x2yx is reducible by the Grebner Basis 

elements 2xy + y2 + 5; x2 + y2 + 8 and 2yx + y2 + 5. In contrast, any monomial in the 

corresponding lattice for the Involutive Basis may only be involutively reducible by at 

most one element in the Involutive Basis. We illustrate this by the following diagram, 

where we note that in the involutive lattice, a monomial only lies on a particular path if 

a member of the Involutive Basis is an involutive divisor of that monomial. 

1 

X y 

/ 

x4 x3y x2yx xyx2 yx3 

Comparing the two monomial lattices, we see that any monomial that is conventionally 

divisible by the Grebner Basis is uniquely involutively divisible by the Involutive Basis. 

In other words, the involutive cones of the Involut ive Basis form a disjoint cover of the 

conventional cones of the Grebner Basis. 

Fast Reduction 

In the commutative case, we can sometimes use the properties of an involutive division 

to speed up the process of involutively reducing a polynomial with respect to a set of 

polynomials. For example, the Janet tree [27, 28] enables us to quickly determine whether 

a polynomial is involutively reducible by a set of polynomials with respect to the Janet 

involut ive division. 
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In the noncommutative case, we usually use Algorithm 10 to involutively reduce a poly­

nomial p with respect to a set of polynomials P. When this is done with respect to the 

left or right divisions however, we can improve Algorithm 10 by taking advantage of the 

fact that a monomial u1 only involutively divides another monomial u2 with respect to 

the left (right) division if u 1 is a suffix (prefix) of u2 . 

For the left division, we can replace the code found in the first ifloop of Algorithm 10 with 

the following code in order to obtain an improved algorithm. 

if (LM(pJ) is a suffix of u) then 

found = true; 

p = p - ( cLC(pi )-1 )uePJ, where ue = Prefix(p, deg(p) - deg(pi)); 

else 

j = j + l; 
end if 

We note that only one operation is required to determine whether the monomial LM(pJ) 

involutively divides the monomial u here (test to see if LM(pJ) is a suffix of u); whereas in 

general there are many ways that LM(PJ) can conventionally divide u, each of which has 

to be tested to see whether it is an involutive reduction. This means that, with respect 

to the left or right divisions, we can determine whether a monomial u is involutively 

irreducible with respect to a set of polynomials P in linear time (linear in the number of 

elements in P); whereas in general we can only do this in quadratic time. 

5.5.2 An Overlap-Based Local Division 

Even though the left and right involutive divisions are strong and continuous (so that any 

Locally Involutive Basis returned by Algorithm 12 is a noncommutative Grobner Basis), 

these divisions are not conclusive as the following example demonstrates. 

Example 5.5.9 Let F := {xy - z, x + z , yz - z, xz, zy + z , z2
} be a basis over the 

polynomial ring <Q(x, y, z), and let the monomial ordering be DegLex. Applying Algorithm 

5 to F, we discover that F is a noncommutative Grobner Basis (F is returned to us as 

the output of Algorithm 5). When we apply Algorithm 12 to F with respect to the 

left involutive division however, we notice that the algorithm goes into an infinite loop, 

constructing the infinite basis G := FU { zyn - z, xyn + z, z ym + z, xym - z}, where n ;;:: 2, 

n even and m ;:=: 3, m odd. 
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The reason why Algorithm 12 goes into an infinite loop in the above example is that the 

right prolongations of the polynomials xy - z and zy + z by the variable y do not involu­

tively reduce to zero (they reduce to the polynomials xy2 + z and zy2 - z respectively). 

These prolongations are the only prolongations of elements of F that do not involutively 

reduce to zero, and this is also true for all polynomials we subsequently add to F, thus 

allowing Algorithm 12 to construct the infinite set G. 

Consider a modification of the left division where we assign the variable y to be right 

multiplicative for the (lead) monomials xy and zy. Then it is clear that F will be a 

Locally Involutive Basis with respect to this modified division, but will it also be true 

that F is an Involutive Basis and (had we not known so already) a Grobner Basis? 

Intuitively, for this particular example, it would seem that the answer to both of the 

above questions should be affirmative, because the modified division still ensures that 

all the overlap words associated with the S-polynomials of F are involutively irreducible 

( as placed in the overlap word) by at least one of the polynomials associated to each 

S-polynomial. This leads to the following idea for a local involutive division, where we 

refine the left division by choosing right nonmultiplicative variables based on the overlap 

words of S-polynomials associated to a set of polynomials only (note that there will also 

be a similar local involutive division refining the right division called the right overlap 

division). 

Definition 5.5.10 (The Left Overlap Division 0) Let U = { u1 , ... , um} be a set of 

monomials, and assume that all variables are left and right multiplicative for all elements 

of U to begin with. 

(a) For all possible ways that a monomial Uj EU is a subword of a (different) monomial 

u i E U, so t hat 

Subword(ui , k, k + deg(ui) - 1) = Uj 

for some integer k, if Uj is not a suffix of ui, assign the variable Subword(ui, k + 
deg(uj), k + deg(uj)) to be right nonmultiplicative for Uj . 

(b) For all possible ways that a proper prefix of a monomial ui E U is equal to a proper 

suffix of a ( not necessarily different) monomial Uj E U, so that 

Prefix(ui, k) = Suffix(uj , k) 
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for some integer k and ui is not a subword of Uj or vice-versa, assign the variable 

Subword(ui, k + l , k + l) to be right nonmultiplicative for ui. 

Remark 5.5 .11 One possible algorithm for the left overlap division is presented in Al­

gorithm 13, where the reason for insisting that the input set of monomials is ordered with 

respect to DegRevLex is in order to minimise t he number of operations needed to discover 

all the subword overlaps (a monomial of degree d1 can never be a subword of a different 

monomial of degree d2 ~ d1). 

Example 5.5.12 Consider again the set of polynomials F := {xy - z, x + z, yz -
z, xz, zy + z, z2

} from Example 5.5.9. Here are the left and right multiplicative vari­

ables for LM(F) with respect to the left overlap division O. 

u M ~(u, LM(F)) M~(u, LM(F)) 

xy {x ,y,z} {x,y} 
X {x ,y,z} {x} 
yz {x,y,z} {x} 
xz {x,y,z} {x} 
zy {x,y,z} {x ,y} 
z2 {x ,y,z} {x} 

When we apply Algorithm 12 to F with respect to the DegLex monomial ordering and the 

left overlap division, F is returned to us as the output, an assertion that is easily verified 

by showing that the 10 right prolongations of elements of F all involutively reduce to zero 

using F . This means that Fis a Locally Involutive Basis with respect to the left overlap 

division; to show that F (and indeed any Locally Involutive Basis returned by Algorithm 

12 with respect to the left overlap division) is also an lnvolutive Basis with respect to 

the left overlap division, we need to show that the left overlap division is continuous and 

either strong or Grebner; we begin (after the following remark) by showing that the left 

overlap division is continuous. 

Remark 5.5.13 In the above example, the table of multiplicative variables can be con­

structed from the table T shown below, a table that is obtained by applying Algorithm 

13 to LM(F). 
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Algorithm 13 The Left Overlap Division () 

Input: A set of monomials U = {u1 , ... , um} ordered by DegRevLex (u1 ~ u2 ~ · · · ~ 

um), where ui E R(x1, ... , Xn) . 
Output: A table T of left and right multiplicative variables for all ui E U, where each 

entry of Tis either 1 (multiplicative) or O (nonmultiplicative). 

Create a table T of multiplicative variables as shown below: 

U1 1 1 1 1 
1 1 1 

Um 1 1 1 1 

1 1 
1 1 

1 1 

for each monomial ui EU (1 ~ i ~ m) do 

for each monomial Uj E U (i ~ j ~ m) do 

Let Ui = Xi1 Xi2 ... Xia and Uj = Xji X12 .. . Xj{j ; 

if ( i =I= j) then 

for each k ( 1 ~ k < a - /3 + 1) do 

if (Subword(ui, k, k + /3 - 1) == Uj) then 

T(uj, xi+fJ ) = O; 

end if 

end for 

end if 

for each k ( 1 ~ k ~ (3 - 1) do 

if (Prefix(ui, k) == Suffi.x(uj, k)) then 

T(uj, xi+J = O; 

end if 

if (Suffi.x(ui, k) == Prefix(uj, k)) then 

T( ui , xt+J = O; 

end if 

end for 

end for 

end for 

return T; 
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Monomial XL XR yL yR ZL ZR 

xy 1 1 1 1 1 0 

X 1 1 1 0 1 0 

yz 1 1 1 0 1 0 

xz 1 1 1 0 1 0 

zy 1 1 1 1 1 0 
z2 1 1 1 0 1 0 

The zero entries in T correspond to the following overlaps between the elements of LM(F). 

Table Entry 

T(xy, zR) 

T(x, yR) 

T(x, zR) 

T(yz, yR) 

T(yz, zR) 

T(xz, yR) 

T(xz , zR) 

T(zy, zR) 

T(z2, yR) 

T(z2,zR) 

Overlap 

Suffix(xy, 1) = Prefix(yz, 1) 

Subword(xy, 1, 1) = x 

Subword(xz, 1, 1) = x 

Suffix(yz, 1) = Prefix(zy, 1) 

Suffix(yz, 1) = Prefix(z2
, 1) 

Suffix(xz, 1) = Prefix(zy, 1) 

Suffix(xz , 1) = Prefix(z2
, 1) 

Suffix(zy, 1) = Prefix(yz, 1) 

Suffix(z2 , 1) = Prefix(zy, 1) 

Suffix(z2, 1) = Prefix(z2 , 1) 

Proposition 5 .5. 14 The left overlap division O is continuous. 

Proof: Let w be an arbitrary fixed monomial; let U be any set of monomials; and 

consider any sequence (u1 , u2 , ... , uk) of monomials from U (ui E U for all 1 ~ i ~ k), 

each of which is a conventional divisor of w (so that w = eiuiri for all 1 ~ i ~ k, where 

the ei and the ri are monomials). For all 1 ~ i < k, suppose that the monomial ui+l 

satisfies condition (b) of Definition 5.4.2 (condition (a) can never be satisfied because 0 

never assigns any left nonmultiplicative variables). To show that O is continuous, we 

must show that no two pairs (£i, ri) and (£j, rj) are the same, where i -=f j. 

Consider an arbitrary monomial ui from the sequence, where 1 ~ i < k. By definition of 

0, the next monomial ui+l in the sequence cannot be either a prefix or a proper subword 

of ui. This leaves two possibilities: (i) ui+1 is a suffix of ui (in which case deg(ui+1) < 

deg(ui)); or (ii) ui+1 is a suffix of the prolongation uivi of ui, where Vi := Prefix(ri, 1). 
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Example of possibility (i) Example of possibility (ii) 

In both cases, it is clear that we have deg(ri+i ) ~ degh), so that deg(ri) ~ deg(r2) ~ 

• • • ~ deg(rk)- It follows that no two (e, r) pairs in the sequence can be the same, because 

for each subsequence Ua, Ua+1, ... , ub such that deg(ra) = deg(ra+1) = · · · = deg(rb) , we 

must have deg(ea) < deg(ea+1) < . .. < deg(eb)- D 

Having shown that the left overlap division is continuous, one way of showing that every 

Locally Involutive Basis with respect to the left overlap division is an Involut ive Basis 

would be to show that the left overlap division is a strong involutive division. However, 

the left overlap division is only a weak involutive division, as the following counterexample 

demonstrates. 

Proposition 5.5.15 The left overlap division is a weak involutive division. 

Proof: Let U := {yz, xy} be a set of monomials over the polynomial ring Q(x, y, z). 

Here are the multiplicative variables for U with respect to the left overlap division 0. 

u M ~(u, U) 

yz {x,y, z } 

xy {x, y, z} 

M~(u, U) 

{x,y,z} 

{x,y} 

Because yzxy E C0 (yz, U) and yzxy E C0 (xy, U), one of the conditions Co(yz, U) C 

C0 (xy, U) or C0 (xy, U) C C0 (yz, U) must be satisfied in order for O to be a strong 

involutive division (this is the Disjoint Cones condition of Definition 5.1.6). But neither 

of these conditions can be satisfied when we consider that xy ¢. Co(yz, U) and yz ¢. 
C0 (xy, U), so O must be a weak involutive division. D 

The weakness of the left overlap division is the price we pay for refining the left division 

by allowing more right multiplicative variables. All is not lost however, as we can still 

show that every Locally Involutive Basis with respect to the left overlap division is an 

Involutive Basis by showing that the left overlap division is a Grabner involutive division. 

Proposition 5.5.16 The left overlap division O is a Grabner involutive division. 
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Proof: We are required to show that if Algorithm 12 terminates with O and some 

arbitrary admissible monomial ordering O as input, then the Locally Involutive Basis 

G it returns is a noncommutative Grabner Basis. By Definition 3.1.8, we can do this 

by showing that all S-polynomials involving elements of G conventionally reduce to zero 

using G. 

Assume that G = fo1, ... , gp} is sorted (by lead monomial) with respect to the DegRevLex 

monomial ordering (greatest first), and let U = { u1, ... , up} := {LM(g1), ... , LM(gp)} be 

the set of leading monomials. Let T be the table obtained by applying Algorithm 13 to 

U. Because G is a Locally Involutive Basis, every zero entry T( ui, xJ) (r E { L, R}) in 

the table corresponds to a prolongation gixj or xjgi that involutively reduces to zero. 

Let S be the set of S-polynomials involving elements of G, where the t-th entry of S 

(1 ~ t ~ ISi) is the S-polynomial 

with ftuirt = £~ujr; being the overlap word of the S-polynomial. We will prove that every 

S-polynomial in S conventionally reduces to zero using G. 

Recall (from Definition 3.1.2) that each S-polynomial in S corresponds to a particular type 

of overlap - 'prefix', 'subword' or 'suffix'. For the purposes of this proof, let us now split 

the subword overlaps into three further types - ' left' , 'middle' and 'right', corresponding 

to the cases where a monomial m2 is a prefix, proper subword and suffix of a monomial 

Left Middle Right 

This classification provides us with five cases to deal with in total, which we shall process 

in the following order: right, middle, left, prefix, suffix. 

(1) Consider an arbitrary entry St E S (1 ~ t ~ ISi) corresponding to a right overlap 

where the monomial Uj is a suffix of the monomial ui. Because O never assigns any left 

nonmultiplicative variables, Uj must be an involutive divisor of ui. But this contradicts 

the fact that the set G is autoreduced; it follows that no S-polynomials corresponding to 
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right overlaps can appear in S. 

(2) Consider an arbitrary entry St E S (1 ::,; t :::; ISi) corresponding to a middle overlap 

where the monomial Uj is a proper subword of the monomial ui. This means that St = 
Ct9i - c~R~gjr~ for some gi, gj E G, with overlap word ui = R~ujr~. Let ui = xi 1 • •• xi

0
; let 

uj = Xj1 •• • XjfJ; and choose D such that Xiv = XjfJ· 

--------- ------- -- --- ----

Because Uj is a proper subword of ui, it follows that T( Uj , xf;+
1

) = 0. This gives rise to 

the prolongation gjXio+i of gj , But we know that all prolongations involutively reduce 

to zero (G is a Locally Involutive Basis), so Algorithm 10 must find a monomial uk = 
Xk1 • • • xk, E U such that uk involutively divides u 1xio+i. Assuming that xk.., = xi", we can 

deduce that any candidate for Uk must be a suffix of UjXio+i (otherwise T(uk , xf+J = 0 

because of the overlap between ui and uk). This means that the degree of uk is in the 

range 1 :::; 1 :::; /3 + l ; we shall illustrate this in the following diagram by using a squiggly 

line to indicate that the monomial uk can begin anywhere ( or nowhere if uk = xio+i) on 

the squiggly line. 

-- -- - -- -- - ---------------

We can now use the monomial uk together with Buchberger's Second Criterion to simplify 

our goal of showing that t he S-polynomial St reduces to zero. Notice that the monomial 

uk is a subword of the overlap word ui associated to St, and so in order to show that St 

reduces to zero, all we have to do is to show that the two S-polynomials 

and2 

2 Technical point: if 1 =/:- /3 + l, the S-polynomial Sv could in fact appear as Sv = Cv9jXiv+• -

c~(xi, . .. X; 0 +, --, )9k and not as Sv = Cv(Xj, ... Xio+, --, )9k - c'vgjXio+,; for simplicity we will treat both 
cases t he same in the proof as all t hat changes is the notation and the signs. 



CHAPTER 5. NONCOMMUTATIVE INVOLUTIVE BASES 132 

reduce to zero (1 ~ u, v ~ ISi). 

For the S-polynomial sv, there are two cases to consider: 1 = 1, and , > 1. In the 

former case, because (as placed in ui) the monomials uj and uk do not overlap, we can 

use Buchberger's First Criterion to say that the 'S-polynomial' Sv reduces to zero (for 

further explanation, see the paragraph at t he beginning of Section 3.4.1). In the latter 

case, we know that the first step of the involutive reduction of the prolongation gjXiD+i is 

to take away the multiple (?1-)(xh ... XiD+,--r )gk of 9k from gjXiD+i to leave the polynomial 
V 

g1x i D+i - (£JL)(x11 ... xiD+i - )gk = - (-+)sv, But as we know that all prolongations invo-
cv I Cv 

lutively reduce to zero, we can conclude that the S-polynomial Sv conventionally reduces 

to zero. 

For the S-polynomial Su, we note that if D = a - l , then Su corresponds to a right overlap. 

But we know from part (1) that right overlaps cannot appear in S, and so St also cannot 

appear in S. Otherwise, we proceed by induction on the S-polynomial Su to produce a 

sequence { UqD+i , uqD+2 , .•• , Uq" } of monomials, so that Su ( and hence St) reduces to zero 

if the S-polynomial 

reduces to zero (1 ~ f/ ~ ISi), whereµ= deg(uqJ-

~ --
Xk-y 

~ 

But Sr, always corresponds to a right overlap, so we must conclude that middle overlaps 

( as well as right overlaps) cannot appear in S. 

(3) Consider an arbitrary entry St E S (l ~ t ~ ISi) corresponding to a left overlap where 

the monomial u1 is a prefix of the monomial ui. This means that St = Ct9i - c~gjr~ for 
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Because Uj is a prefix of ui, it follows that T(uj , x~+ J = 0. This gives rise to the 

prolongation gjxif3+i of 9i· But we know that all prolongations involutively reduce to 

zero, so there must exist a monomial uk = Xk1 ••• Xk-r E U such that Uk involutively 

divides UjXif3+i. Assuming that Xk-r = Xi", any candidate for Uk must be a suffix of UjXif3+ i 

(otherwise T(uk, xf:+ J = 0 because of the overlap between ui and uk)- Further, any 

candidate for Uk cannot be either a suffix or a proper subword of ui (because of parts (1) 

and (2) of this proof). This leaves only one possibility for uk, namely uk = UjXif3+i · 

If a = /3 + 1, then it is clear that Uk = ui, and so the first step in the involutive reduction 

of the prolongation gjxi0 is to take away the multiple (~ )gi of 9i from gjxi
0 

to leave the 

polynomial gjxi 0 - (fjc )gi = -(➔)st. But as we know that all prolongations involutively ct c1, 

reduce to zero, we can conclude that the S-polynomial St conventionally reduces to zero. 

Otherwise, if a > /3 + 1, we can now use the monomial Uk together with Buchberger's 

Second Criterion to simplify our goal of showing that the S-polynomial St reduces to zero. 

Notice that the monomial uk is a subword of the overlap word ui associated to St, and 

so in order to show that St reduces to zero, all we have to do is to show that the two 

S-polynomials 

and 

reduce to zero (1 :::; u, v::; ISi). 

The S-polynomial Sv reduces to zero by comparison with part (2) . For the S-polynomial 

Su, we proceed by induction (we have another left overlap) , eventually coming across a 

left overlap of 'type a = /3 + 1' because we move one letter at a time to the right after 
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each inductive step. 

(4 and 5) In Definition 3.1.2, we defined a prefix overlap to be an overlap where, given 

two monomials m 1 and m2 such that deg(m1) ~ deg(m2), a prefix of m 1 is equal to a 

suffix of m2; suffix overlaps were defined similarly. If we drop the condition on the degrees 

of the monomials, it is clear that every suffix overlap can be treated as a prefix overlap 

(by swapping the roles of m 1 and m2); this allows us to deal with the case of a prefix 

overlap only. 

Consider an arbitrary entry St E S (1 :::;; t :::;; ISi) corresponding to a prefix overlap where 

a prefix of the monomial ui is equal to a suffix of the monomial uJ. This means that 

St = ctf.tgi - c~gjr~ for some gi, gj E G, with overlap word l!tui = ujr~. Let ui = Xi 1 ••• X;
0

; 

let Uj = Xj1 •• • Xj13 ; and choose D such that xiD = xJ13 . 

By definition of 0, we must have T(uJ , x{;+J = 0. 

Because we know that the prolongation gjXiD+i involutively reduces to zero, there must 

exist a monomial uk = Xk1 •• . Xk, E U such that uk involutively divides UjXiD+ i . This uk 

must be a suffix of UjXiD+i (otherwise, assuming that Xk, = Xj,., we have T(uk, xf;+J = 0 

if K, = /3 (because of the overlap between ui and uk); and T(uk , xf+i) = 0 if K, < /3 
(because of the over lap between UJ and uk)). 
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Let us now use the monomial uk together with Buchberger's Second Criterion to simplify 

our goal of showing that the S-polynomial St reduces to zero. Because uk is a subword 

of the overlap word Ptui associated to St, in order to show that St reduces to zero, all we 

have to do is to show that the two S-polynomials 

and 

reduce to zero (1 ::;; u, v::;; jSj). 

if 1 > D + l 
if 1 ::;; D + l 

The S-polynomial Sv reduces to zero by comparison with part (2). For the S-polynomial 

Su, first note that if a = D + l , then either uk is a suffix of ui, u i is a suffix of uk, or 

uk = ui; it follows that Su reduces to zero trivially if uk = U;, and (by part (1)) Su (and 

hence St) cannot appear in S in the other two cases. 

If however a f. D + l, then either Su is a middle overlap (if 1 < D + l), a left overlap 

(if 1 = D + l ), or another prefix overlap. The first case leads us to conclude that St 

cannot appear in S; the second case is handled by part (3) of this proof; and the final case 

is handled by induction, where we note that after each step of the induction, the value 

a+ /3 - 2D strictly decreases, so we are guaranteed at some stage to find an overlap that 

is not a prefix overlap, enabling us either to verify that the S-polynomial St conventionally 

reduces to zero, or to conclude that St can not in fact appear in S . □ 

5.5.3 A Strong Local Division 

Thus far, we have encountered two global divisions that are strong and continuous, and one 

local division that is weak, continuous and Grabner. Our next division can be considered 

to be a hybrid of these previous divisions, as it will be a local division that is continuous 

and ( as long as thick divisors are being used) strong. 

Definition 5.5.17 (The Strong Left Overlap Division S) Let U = { u1 , ... , um} be 

a set of monomials. Assign multiplicative variables to U according to Algorithm 15, which 

(in words) performs the following two tasks. 

(a) Assign multiplicative variables to U according to the left overlap division. 
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(b) Using the recipe provided in Algorithm 14, ensure that at least one variable in every 

monomial u1 E U is right nonmultiplicative for each monomial ui E U. 

Remark 5.5.18 As Algorithm 15 expects any input set to be ordered with respect to 

DegRevLex, we may sometimes have to reorder a set of monomials U to satisfy this 

condition before we can assign multiplicative variables to U according to the strong left 

overlap division. 

Algorithm 14 'DisjointCones' Function for Algorithm 15 

Input: A set of monomials U = { u1, . . . , um} ordered by DegRevLex ( u1 ;;: u2 ;;: · · · ;;: 

um), where ui E R(x1 , ... , xn); a table T of left and right multiplicative variables for 

all ui E U, where each entry of T is either 1 (multiplicative) or O (nonmultiplicative). 

Output: T. 

for each monomial ui E U ( m ;;: i ;;: 1) do 

for each monomial u1 E U ( m ;;: j ;;: 1) do 

Let ui = xi1 Xi2 ••• Xi., and u1 = xJi x12 ... x 113 ; 

found = false; 

k = l; 
while (k ~ /3) do 

if (T(ui, x~) = 0) then 

found = true; 

k = /3 + l; 

else 

k = k + l; 
end if 

end while 

if (found == false) then 

T(ui, x~) = O; 

end if 

end for 

end for 

return T; 
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A lgorithm 15 The St rong Left Overlap Division S 

Input: A set of monomials U = {u 1, . . . ,um} ordered by DegRevLex (u1 ~ u2 ~ • • • ~ 

Um), where Ui E R(x1, . .. , Xn) -

Output: A table T of left and right multiplicative variables for all ui E U, where each 

entry of T is either 1 (multiplicative) or O (nonmultiplicative). 

Create a table T of mult iplicative variables as shown below: 

xf XR 
1 xf xf XL 

n 
XR 

n 

U1 1 1 1 1 1 1 
U2 1 1 1 1 1 1 

Um 1 1 1 1 1 1 

for each monomial ui E U (l ~ i ~ m) do 

for each monomial Uj E U (i ~ j ~ m) do 

Let Ui = Xi1 Xi2 ... X i o and Uj = Xj1 X12 ... Xj13 ; 

if (i-/= j) then 

for each k ( 1 ~ k < a - /3 + l ) do 

if (Subword (ui, k , k + /3 - 1) == uj) t he n 

T(uj , x~+13 ) = O; 

end if 

end for 

end if 

for each k (l ~ k ~ /3 - 1) do 

if (Prefix(ui, k) == Suffix(uj , k)) then 

T(uj, x~+J = O; 
end if 

if (Suffix(ui, k) == P refix(uj, k)) t hen 

T(ui, x~+J = O; 

end if 

end for 

end for 

end for 

T = DisjointCones(U, T); {Algorithm 14} 

return T; 



CHAPTER 5. NONCOMMUTATIVE IN VOLUTIVE BASES 138 

Proposition 5.5.19 The strong left overlap division is continuous. 

Proof: We refer to the proof of P roposition 5.5.14, replacing O by S. D 

Proposition 5.5.20 The strong left overlap division is a Grabner involutive division. 

Proof: We refer to the proof of Proposition 5.5.16, replacing Oby S . D 

Remark 5.5.21 Propositions 5.5.19 and 5.5.20 apply either when using thin divisors or 

when using thick divisors. 

Proposition 5.5 .22 With respect to thick divisors, the strong left overlap division is a 

strong involutive division. 

Proof: To prove that the strong left overlap division is a strong involutive division, we 

need to show that the three conditions of Definition 5.1.6 hold . 

• Disjoint Cones Condition 

Let C5 (u1 , U) and C5 (u2 , U) be the involut ive cones associated to the monomials u1 

and u2 over some noncommutative polynomial ring R , where { u1 , u2} CUC R. If 

C5 (u1, U) n C5 (u2 , U) -/- 0, then there must be some monomial v E R such that v 

contains both monomials u1 and u2 as subwords, and ( as placed in v) both u1 and 

u2 must be involut ive divisors of v . By definition of S, both u1 and u2 must be 

suffices of v. Thus, assuming (without loss of generality) that deg(u1 ) > deg(u2), 

we are able to draw the following diagram summarising t he situation. 

V 

For S to be strong, we must have Cs(u1 , U) C Cs(u2, U) (it is clear that Cs(u2, U) <t. 
C5 (u1, U) because u2 r/:. C5 (u1 , U)). This can be verified by proving that a variable 

is right nonmult iplicative for u1 if and only if it is right nonmultiplicative for u2. 

( ⇒) If an arbitrary variable x is right nonmultiplicative for u2, then either some 

monomial u E U overlaps with u2 in one of the ways shown below (where the 

variable immediately to the right of u2 is t he variable x), or x was assigned right 
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nonmultiplicative for u2 in order to ensure that some variable in some monomial 

u E U is right nonmultiplicative for u2 . 

Overlap (i) Overlap (ii) 

u u 

If the former case applies, then it is clear that for both overlap types there will be 

another overlap between u1 and u that will lead S to assign x to be right nonmulti­

plicative for u1. It follows that after we have assigned multiplicative variables to U 

according to the left overlap division (which we recall is the first step of assigning 

multiplicative variables to U according to S), the right multiplicative variables of 

u1 and u2 will be identical. It therefore remains to show that if x is assigned right 

nonmultiplicative for u2 in the latter case (which will happen during the final step 

of assigning multiplicative variables to U according to S ), then x is also assigned 

right nonmultiplicative for u1 . But this is clear when we consider that Algorithm 

14 is used to perform this final step, because for u1 and u2 in Algorithm 14, we will 

always analyse each monomial in U in the same order. 

( ¢=) Use the same argument as above, replacing u1 by u2 and vice-versa. 

• Unique Divisor Condition 

Given a monomial u belonging to a set of monomials U, u may not involutively 

divide an arbitrary monomial v in more than one way (and hence the Unique Divisor 

condition is satisfied) because (i) S ensures that no overlap word involving only u 

is involutively divisible in more than one way by u; and (ii) S ensures that at least 

one variable in u is right nonmultiplicative for u, so that if u appears twice in v 

as subwords that are disjoint from one another, then only the 'right-most' subword 

can potentially be an involutive divisor of v. 

• Subset Condition 

Let v be a monomial belonging to a set V of monomials, where V itself is a subset of 

a larger set U of monomials. Because S assigns no left nonmultiplicative variables, 

it is clear that Mf(v, U) ~ M f(v, V). To prove that Mf(v , U) ~ Mf(v, V), note 

that if a variable x is right nonmultiplicative for v with respect to U and S (so 

that x (J. M §(v, U)), then (as in the proof for the Disjoint Cones Condition) either 

some monomial u E U overlaps with v in one of the ways shown below (where the 
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variable immediately to the right of v is the variable x), or x was assigned right 

nonmultiplicative for v in order to ensure that some variable in some monomial 

u E U is right nonmultiplicative for v. 

Overlap (i) Overlap (ii) 

u u 

V V 

In both cases, it is clear that, with respect to the set V, the variable x may not be 

assigned right nonmultiplicative for v if u tJ. V , so that Mf(v, U) ~ M§(v, V) as 

required. 

D 

Proposition 5.5.23 With respect to thin divisors, the strong left overlap division is a 

weak involutive division. 

Proof: Let U := { xy} be a set of monomials over the polynomial ring (Q(x, y). Here are 

the multiplicative variables for U with respect to the strong left overlap division S. 

u M;s(u, U) M§(u , U) 

x y { x, y} {y} 

For S to be strong with respect to thin divisors, the monomial xy2xy, which is conven­

tionally divisible by xy in two ways, must only be involutively divisible by xy in one way 

(this is the Unique Divisor condition of Definition 5.1.6). However it is clear that xy2xy 

is involutively divisible by xy in two ways with respect to thin divisors, so S must be a 

weak involutive division with respect to thin divisors. D 

Example 5 .5.24 Continuing Examples 5.5.9 and 5.5.12, here are the multiplicative vari­

ables for the set LM(F) of monomials with respect to the strong left overlap division S , 

where we recall that F := { xy - z, x + z , yz - z, xz, zy + z, z2} . 
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u Mi(u, LM(F)) Mf(u, LM(F)) 

xy {x,y,z} {y} 
X {x,y,z} 0 
yz {x,y,z} 0 
xz {x,y,z} 0 
zy {x,y,z} {y} 
z2 {x,y,z} 0 

When we apply Algorithm 12 to F with respect to the DegLex monomial ordering, thick 

divisors and the strong left overlap division, F ( as in Example 5.5.12) is returned to us 

as the output Locally Involut ive Basis. 

Remark 5.5 .25 In the above example, even though we know that S is continuous, we 

cannot deduce that the Locally Involutive Basis F is an Involut ive Basis because we are 

using thick divisors (Proposition 5.4.3 does not apply in the case of using thick divisors). 

What this means is that the involutive cones of F ( and in general any Locally Involutive 

Basis with respect to S and thick divisors) will be disjoint (because S is strong), but will 

not necessarily completely cover the convent ional cones of F, so that some monomials 

that are conventionally reducible by F may not be involutively reducible by F. It follows 

that when involutively reducing a polynomial with respect to F, the reduction path will 

be unique but the correct remainder may not always be obtained (in the sense that some 

of the terms in our 'remainder' may still be conventionally reducible by members of F). 

One remedy to this problem would be to involutively reduce a polynomial p with respect 

to F to obtain a remainder r, and then to conventionally reduce r with respect to F 

to obtain a remainder r' which we can be sure contains no term that is convent ionally 

reducible by F. 

Let us now summarise (with respect to thin divisors) the properties of the involutive 

divisions we have encountered so far, where we note that any strong and continuous 

involutive division is by default a Grobner involutive division. 
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Division Continuous Strong Grabner 

Left Yes Yes Yes 

Right Yes Yes Yes 

Left Overlap Yes No Yes 

Right Overlap Yes No Yes 

Strong Left Overlap Yes No Yes 

Strong Right Overlap Yes No Yes 

There is a balance to be struck between choosing an involutive division with nice theo­

retical properties and an involutive division which is of practical use, which is to say that 

it is more likely to terminate compared to other divisions. To this end, one suggestion 

would be to try to compute an Involutive Basis with respect to the left or right divisions 

to begin with (as they are easily defined and involut ive reduction with respect to these 

divisions is very efficient); otherwise to try one of the 'overlap' divisions, choosing a strong 

overlap division if it is important to obtain disjoint involutive cones. 

It is also worth mentioning that for all the divisions we have encountered so far, if Algo­

rithm 12 terminates then it does so with a noncommutat ive Grabner Basis, which means 

that Algorithm 12 can be thought of as an alternative algorithm for computing noncom­

mutative Grabner Bases. Whether this method is more or less efficient than computing 

noncommutative Grabner Bases using Algorithm 5 is a matter for further discussion. 

5.5.4 Alternative Divisions 

Having encountered three different types of involutive division so far ( each of which has 

two variants - left and right), let us now consider if there are any other involutive divisions 

with some useful properties, starting by thinking of global divisions. 

Alternative Global Divisions 

Open Question 2 Apart from the empty, left and right divisions, are there any other 

global involutive divisions of the following types: 

(a) strong and continuous; 

(b) weak, continuous and Grabner? 
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Remark 5.5.26 It seems unlikely that a global division will exist that affirmatively an­

swers Open Question 2 and does not either assign all variables to be left nonmultiplicative 

or all right nonmultiplicative (thus refining the right or left divisions respectively). The 

reason for saying this is because the moment you have one variable being left multiplica­

tive and another variable being right multiplicative for the same monomial globally, then 

you risk not being able to prove that your division is strong; similarly the moment you 

have one variable being left nonmultiplicative and another variable being right nonmulti­

plicative for the same monomial globally, then you risk not being able to prove that your 

division is continuous. 

Alternative Local Divisions 

So far, all the local divisions we have considered have assigned all variables to be mul­

tiplicative on one side, and have chosen certain variables to be nonmultiplicative on the 

other side. Let us now consider a local division that modifies the left overlap division by 

assigning some variables to be nonmultiplicative on both left and right hand sides. 

Definition 5.5.27 (The Two-Sided Left Overlap Division W) Consider a set U = 
{ u1, ... , um} of monomials, where all variables are assumed to be left and right multiplica­

tive for all elements of U to begin with. Assign multiplicative variables to U according to 

Algorithm 16, which (in words) performs the following tasks. 

(a) For all possible ways that a monomial Uj EU is a subword of a (different) monomial 

ui EU, so that 

for some integer k, assign the variable Subword(ui, k- 1, k - 1) to be left nonmultiplica­

tive for Uj if Uj is a suffix of ui; and assign the variable Subword(ui, k + deg(uj), k + 
deg(uj)) to be right nonmultiplicative for Uj if Uj is not a suffix of ui. 

(b) For all possible ways that a proper prefix of a monomial ui E U is equal to a proper 

suffix of a (not necessarily different) monomial Uj E U, so that 

Prefix(ui, k) = Suffix(uj, k) 

for some integer k and ui is not a subword of Uj or vice-versa, use the recipe provided in 

the second half of Algorithm 16 to ensure that at least one of the following conditions 
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are satisfied: (i) the variable Subword(ui, k + 1, k + 1) is right nonmultiplicative for 

uj; (ii) the variable Subword(uj, deg(ui) - k, deg(uj) - k) is left nonmultiplicative for 

Remark 5.5.28 For task (b) above, Algorithm 16 gives preference to monomials which 

are greater in the DegRevLex monomial ordering (given the choice, it always assigns 

a nonmultiplicative variable to whichever monomial out of ui and Uj is the smallest); 

it also attempts to minimise the number of variables made nonmultiplicative by only 

assigning a variable to be nonmultiplicative if both the variables Subword( ui, k + 1, k + 1) 

and Subword(uj, deg(ui) - k, deg(uj) - k) are respectively right multiplicative and left 

multiplicative. These refinements will become crucial when proving the continuity of the 

division. 

Example 5.5.29 Consider the set of monomials U := {zx2yxy, yzx, xy} over the poly­

nomial ring Q(x, y, z). Here are the left and right multiplicative variables for U with 

respect to the two-sided left overlap division W. 

u M{:y(u, U) M{t(u, U) 

zx2yxy {x,y , z} {x,y,z} 
yzx {y,z} {y,z} 
xy {x} {y,z} 

The above table is constructed from the table T shown below, a table which is obtained 

by applying Algorithm 16 to U. 

Monomial XL XR yL YR zL ZR 

zx2yxy 1 1 1 1 1 1 

yzx 0 0 1 1 1 1 

xy 1 0 0 1 0 1 

The zero entries in T correspond to the following overlaps between the elements of U 

(presented in the order in which Algorithm 16 encounters them). 
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Algorithm 16 The Two-Sided Left Overlap Division W 

Input: A set of monomials U = {u1, ... , um} ordered by DegRevLex (u1 ~ u2 ~ • · · ~ 

um), where Ui E R(x1, ... , Xn), 

Output: A table T of left and right multiplicative variables for all ui E U, where each 

entry of Tis either 1 (multiplicative) or O (nonmultiplicative). 

Create a table T of multiplicative variables as shown below: 

xf xf xf xf x~ x: 
U1 1 1 1 1 1 1 

Um 1 1 1 1 1 1 

for each monomial ui EU (1 ::s;; i ::s;; m) do 

for each monomial Uj EU (i ::s;; j ,:s;; m) do 

Let ui = Xi1 Xi2 ••• Xi"' and Uj = Xj1 x12 ... Xfo; 

if ( i =/= j) then 

for each k (1 ::s;; k ,:s;; a - /3 + 1) do 

if (Subword(ui, k, k + /3 - 1) == uj) then 

if (k < a - /3 + 1) then T (uj, x~+
13

) = O; 

else T(uj,xt_J = O; 

end if 

end if 

end for 

end if 

for each k ( 1 ::s;; k ,:s;; /3 - 1) do 

if (Prefix(ui, k) == Suffix(uj, k)) then 

if (T(ui, xf't,_J + T(uj, x~+J == 2) then T(uj, x~+J = O; 
end if 

end if 

if (Suffix(ui, k) == Prefix(uj, k)) then 

if (T(ui, x1+J + T(uj, xt_k) == 2) then T(uj, xt_k) = O; 
end if 

end if 

end for 

end for 

end for 

return T; 
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Table Entry 

T(yzx, xR) 

T(yzx,xL) 

T(xy, xR) 

T(xy, yL) 

T(xy, zL) 

Overlap 

Prefix(zx2yxy, 2) = Suffix(yzx, 2) 
Suffix(zx2yxy, 1) = Prefix(yzx, 1) 

Subword(zx2yxy, 3, 4) = xy 

Subword(zx2yxy, 5, 6) = xy 

Suffix(yzx, 1) = Prefix(xy, 1) 

146 

Notice that the overlap Prefix(yzx, 1) = Suffix(xy, 1) does not produce a zero entry for 

T(xy, zR), as by the time that we encounter this overlap in the algorithm, we have already 

assigned T(yzx, xL) = 0. 

Proposition 5.5.30 The two-sided left overlap division W is a weak involutive division. 

Proof: We refer to the proof of Proposition 5.5.15, making the obvious changes (for 

example replacing Oby W). D 

For the following two propositions, we defer their proofs to Appendix A due to their 

length and technical nature. 

Proposition 5.5.31 The two-sided left overlap division W is continuous. 

Proof: We refer to Appendix A. D 

Proposition 5.5.32 The two-sided left overlap division W is a Grabner involutive divi­

sion. 

Proof: We refer to Appendix A, noting that the proof is similar to the proof of Propo­

sition 5.5.16. D 

Remark 5.5.33 Because a variable is sometimes only assigned nonmultiplicative if two 

other variables are multiplicative in Algorithm 16, the subset condition of Definition 5.1.6 

will not always be satisfied with respect to the two-sided left overlap division. This will 

still hold true even if we apply Algorithm 14 at the end of Algorithm 16, which means 

that the two-sided left overlap division cannot be converted to give a strong involutive 

division in the same way that we converted the left overlap division to give the strong left 

overlap division. 
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To finish this section, let us now consider some further variations of the left overlap 

division, variations that will allow us to assign more multiplicative variables than the left 

overlap division (and hence potentially have to deal with fewer prolongations when using 

Algorithm 12), but variations that cannot be modified to give strong involutive divisions 

in the same way that the left overlap division was modified to give the strong left overlap 

division (this is because there are other ways beside a monomial being a suffix of another 

monomial that two involutive cones can be non-disjoint with respect to these modified 

divisions) . 

D efinition 5.5.34 (The Prefix-Only Left Overlap Division) Let U = { u1, . .. , um} 

be a set of monomials, and assume that all variables are left and right multiplicative for 

all elements of U to begin with. 

(a) For all possible ways that a monomial Uj EU is a proper prefix of a monomial ui EU, 

assign the variable Subword(ui, deg(uj) + 1, deg(uj) + 1) to be r ight nonmultiplicative 

for Uj, 

(b) For all possible ways that a proper prefix of a monomial ui E U is equal to a proper 

suffix of a (not necessarily different) monomial ui E U, so that 

Prefix(ui, k) = Suffix(uj, k) 

for some integer k and ui is not a subword of Uj or vice-versa, assign the variable 

Subword(ui, k + l, k + l) to be right nonmultiplicative for Uj-

Definition 5 .5.35 (The Subword-Free Left Overlap Division) Consider a set U = 
{ u 1, . .. , Um} of monomials, where all variables are assumed to be left and right multi­

plicative for all elements of U to begin with. 

For all possible ways that a proper prefix of a monomial ui E U is equal to a proper suffix 

of a ( not necessarily different) monomial Uj E U, so that 

Prefix(ui, k) = Suffix(uj , k) 

for some integer k and ui is not a subword of Uj or vice-versa, assign the variable 

Subword(ui, k + l , k + l) to be right nonmultiplicative for Uj. 

Proposition 5.5.36 Both the prefix-only left overlap and the subword-free left overlap 

divisions are continuous, weak and Grabner. 
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Proof: We leave these proofs as exercises for the interested reader, noting that the 

proofs will be based on ( and in some cases will be identical to) the proofs of Propositions 

5.5.14, 5.5.15 and 5.5.16 respectively. □ 

Remark 5.5.37 To help distinguish between the different types of overlap division we 

have encountered in this chapter, let us now give the following table showing which types 

of overlap each overlap division considers. 

Type A Type B Type C Type D 

-
Overlap Division Type Overlap Type 

A B C D 

Left ✓ ✓ ✓ X 

Right ✓ X ✓ ✓ 

Strong Left ✓ ✓ ✓ X 

Strong Right ✓ X ✓ ✓ 

Two-Sided Left ✓ ✓ ✓ ✓ 

Two-Sided Right ✓ ✓ ✓ ✓ 

Prefix-Only Left ✓ ✓ X X 

Suffix-Only Right ✓ X X ✓ 

Subword-Free Left ✓ X X X 

Subword-Free Right ✓ X X X 

5.6 Termination 

Given a basis F generating an ideal over a noncommutative polynomial ring R, does there 

exist a finite Involutive Basis for F with respect to some admissible monomial ordering 

0 and some involutive division I? Unlike the commutative case, where the answer to the 

corresponding question (for certain divisions) is always 'Yes', the answer to this question 

can potentially be 'No', as if the noncommutative Grabner Basis for F with respect to 

0 is infinite, then the noncommutative Involutive Basis algorithm will not find a finite 

Involutive Basis for F with respect to I and 0, as it will in effect be trying to compute 

the same infinite Grabner Basis. 
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However, a valid follow-up question would be to ask whether the noncommutative In­

volut ive Basis algorithm will terminate in the case that the noncommutative Grobner 

Basis algorithm terminates. In Section 5.4, we defined a property of noncommutative 

involutive divisions ( conclusivity) that ensures, when satisfied, that the answer to this 

secondary question is always 'Yes'. Despite this, we will not prove in this thesis that 

any of the divisions we have defined are conclusive. Instead, we leave the following open 

question for further investigation. 

Open Question 3 Are there any conclusive noncommutative involutive divisions that 

are also continuous and either strong or Grobner? 

To obtain an affirmative answer to the above quest ion, one approach may be to start by 

finding a proof for the following conjecture. 

Conjecture 5.6.1 Let O be an arbitrary admissible monomial ordering, and let I be 

an arbitrary involutive division that is continuous and either strong or Grabner. When 

computing an Involutive Basis for some basis F with respect to O and I using Algorithm 

12, if F possesses a finite unique reduced Grabner Basis G with respect to 0, then after 

a finite number of steps of Algorithm 12, LM(G) appears as a subset of the set of leading 

monomials of the current basis. 

To prove that a particular involutive division is conclusive, we would then need to show 

that once LM( G) appears as a subset of the set of leading monomials of the current basis, 

then the noncommutative Involutive Basis algorithm terminates (either immediately or 

in a finite number of steps), thus providing the required finite noncommutative Involutive 

Basis for F. 

5. 7 Examples 

5.7.1 A Worked Example 

Example 5.7.1 Let F := {!1 , h} = {x2y2 - 2xy2 + x2
, x 2y - 2xy} be a basis for an 

ideal Jover the polynomial ring Q(x, y), and let the monomial ordering be DegLex. Let 

us now compute a Locally Involutive Basis for F with respect to the strong left overlap 

division S and thick divisors using Algorithm 12. 
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To begin with, we must autoreduce the input set F. This leaves the set unchanged, 

as we can verify by using the following table of multiplicative variables ( obtained by 

using Algorithm 15), where y is right nonmultiplicative for h because of the overlap 

LM(h) = Subword(LM(fi), 1, 3); and xis right nonmultiplicative for Ji because we need 

to have a variable in LM(h) being right nonmultiplicative for Ji. 

Polynomial 

Ji = x2y2 - 2xy2 + x2 

h = x2y- 2xy 

{x,y} 

{x,y} 

{y} 

{x} 

The above table also provides us with the set S = {fix, hY} = {x2y2x-2xy2x+x3 , x2y2-

2xy2} of prolongations that is required for the next step of the algorithm. As x2y2 < x2y2x 

in the DegLex monomial ordering, we involutively reduce the element hY E S first. 

As the prolongation did not involutively reduce to zero, we now exit from the second 

while loop of Algorithm 12 and proceed by autoreducing the set FU {h ·- - x2} = 
{x2y2 - 2xy2 + x2, x2y - 2xy, - x2}. 

Polynomial M }(fi,F) M~(li,F) 

Ji = x2y2 - 2xy2 + x2 {x,y} {y} 

h = x 2y - 2xy {x,y} 0 
h = -x2 {x,y} 0 

This process involutively reduces the third term of Ji using h, leaving the new set 

{14 := x2y2 - 2xy2, h, h} whose multiplicative variables are identical to the multi­

plicative variables of the set {Ji, h, h} shown above. 

Next, we construct the set S = {f4x, hx, hY, hx, hY} of prolongations, processing the 

element hY first. 

-2xy. 
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Again the prolongation did not involut ively reduce to zero, so we add the involutively 

reduced prolongation to our basis to obtain the set {!4 , fz, h, ls := -2xy}. 

Polynomial M~(fi , F) M §(fi,F) 
f 4 = x2y2 - 2xy2 {x,y} {y} 

fz = x 2y - 2xy {x,y} 0 
h = - x 2 {x ,y} 0 
fs = -2xy {x,y} 0 

This time during autoreduction, the polynomial fz involutively reduces to zero with re­

spect to the set {f4 , h, fs} : 

1 
~ Is x2y - 2xy + 2x(-2xy) 

= -2xy 

~ls -2xy - (-2xy) 

0. 

This leaves us with the set {!4 , h, f5 } after autoreduction is complete. 

Polynomial M ~(fi, F) M§(fi, F) 
f 4 = x2y2 - 2xy2 {x,y} {y} 

h = - x2 {x,y} 0 
fs = -2xy {x ,y} 0 

The next step is to construct the set S = {f4x, hx, hY, f 5 x, f 5 y} of prolongations, from 

which the element fsY is processed first . 

lsy = - 2xy2 =: fB• 

When the set {f4, h, ls, /5} is autoreduced , the polynomial f 4 now involutively reduces 

to zero, leaving us with the autoreduced set {h, f5 , / 6 } = {-x2 , - 2xy, -2xy2 } . 

Polynomial M ~(fi, F) M§(fi, F) 

h = - x2 {x,y} 0 
fs = -2xy {x,y} 0 
f5 = - 2xy2 {x,y} {y} 
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Our next task is to process the elements of the set S = {hx, hY, Jsx, J5y, JGx} of 

prolongations. The first element J5y we pick from S involutively reduces to zero, but the 

second element J5x does not: 

O· 
' 

After constructing the set {h, J5 , JG, h }, autoreduction does not alter the contents of 

the set, leaving us to construct our next set of prolongations from the following table of 

multiplicative variables. 

Polynomial Mi(fi,F) M:(f;,F) 
h = -x2 {x,y} 0 

Js = -2xy {x,y} 0 
JG= -2xy2 {x,y} {y} 

h= -2xyx {x,y} 0 

Whilst processing this (7 element) set of prolongations, we add the involutively irreducible 

prolongation JGx = -2xy2x =: J8 to our basis to give a five element set which in unaffected 

by autoreduction. 

Polynomial Mi(fi,F) M§(J;,F) 

h = -x2 {x,y} 0 
Js = -2xy {x , y} 0 
JG= - 2xy2 {x , y} {y} 

h= -2xyx {x , y} 0 
Js = -2xy2x {x,y} 0 

To finish, we analyse the elements of the set 
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of prolongations in the order f5y, f5x, hY, f3x, f5x, hY, hx, fsY, f sx. 

O· ) 

0. 

Because all prolongations involutively reduce to zero (and hence S = 0), the algorithm 

now terminates with the Involutive Basis 

G := {-x2
, -2xy, -2xy2 , -2xyx, -2xy2x} 

as output, a basis which can be visualised by looking at the following (partial) involutive 

monomial lattice for G. 

1 

X y 

Q) yx y2 

I 
x3 x2y y3 

\ 
\\ 

\ / 

\ / 

\/ 
/ \ 

/ 
/ 

x4 x3y x2yx xyx2 yx3 x2y2· 0 xyxy 

For comparison, the (partial) monomial lattice of the reduced DegLex Grobner Basis H 
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for Fis shown below, where H := {x2
, xy} is obtained by applying Algorithm 6 to G. 

1 

X y 

Looking at the lattices, we can verify that the involutive cones give a disjoint cover of the 

conventional cones up to monomials of degree 4- However, if we were to draw the next 

part of the lattices (monomials of degree 5) , we would notice that the monomial xy3x is 

conventionally reducible by the Grobner Basis, but is not involutively reducible by the 

Involutive Basis. This fact verifies that when thick divisors are being used, a Locally 

Involutive Basis is not necessarily an Involutive Basis, as for G to be an Involutive Basis 

with respect to S and thick divisors, the monomial xy3x has to be involut ively reducible 

with respect to G. 

5. 7.2 Involutive Rewrite Systems 

Remark 5. 7 .2 In this section, we use terminology from the theory of term rewriting that 

has not yet been introduced in this thesis. For an elementary introduction to this theory, 

we refer to [5], [19] and [36]. 

Let C = (A I B) be a monoid rewrite system, where A = { a1, ... , an} is an alphabet 

and B = {bi, ... , bm} is a set of rewrite rules of the form bi = .ei -+ ri (1 :=:;; i :=:;; m; 

Pi, ri E A*). Given a fixed admissible well-order on the words in A compatible with C, the 
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Knuth-Bendix critical pairs completion algorithm [39] attempts to find a complete rewrite 

system C' for C that is Noetherian and confluent, so that any word over the alphabet 

A has a unique normal form with respect to C'. The algorithm proceeds by considering 

overlaps of left hand sides of rules, forming new rules when two reductions of an overlap 

word result in two distinct normal forms. 

It is well known (see for example [33]) that the Knuth-Bendix critical pairs completion 

algorithm is a special case of the noncommutative Grabner Basis algorithm. To find a 

complete rewrite system for C using Algorithm 5, we treat C as a set of polynomials 

F = { t'1 -r1, t'2 - r2, ... , t'm -rm} generating a two-sided ideal over the noncommutative 

polynomial ring Z(a1, ... , an), and we compute a noncommutative Grabner Basis G for 

F using a monomial ordering induced from the fixed admissible well-order on the words 

in A. 

Because every noncommutative lnvolutive Basis (with respect to a strong or Grabner 

involutive division) is a noncommutative Grabner Basis, it is clear that a complete rewrite 

system for C can now also be obtained by computing an lnvolutive Basis for F , a complete 

rewrite system we shall call an involutive complete rewrite system. 

The advantage of involutive complete rewrite systems over conventional complete rewrite 

systems is that the unique normal form of any word over the alphabet A can be obtained 

uniquely with respect to an involutive complete rewrite system (subject of course to 

certain conditions (such as working with a strong involutive division) being satisfied), a 

fact that will be illustrated in the following example. 

Example 5.7.3 Let C := (Y, X, y, x I x3 
---t c:, y2 

---t c:, (xy)2 
- c:, Xx - c:, xX -

c:, Yy - c:, yY - c) be a monoid rewrite system for the group S3 , where c denotes the 

empty word, and Y > X > y > x is the alphabet ordering. If we apply the Knuth-Bendix 

algorithm to C with respect to the DegLex (word) ordering, we obtain the complete 

rewrite system 

C' := (Y,X,y ,x I xyx---t y, yxy- X , x2 -x, Xx - £, y2 
---t £, Xy-yx, xX -

c:, yX ---t xy, X 2 
---t x, Y ---t y). 

With respect to the DegLex monomial ordering and the left division, if we apply Algorithm 

12 to the basis F := {x3-1, y2 -1 , (xy)2-1, Xx-1 , xX-1 , Yy-1 , yY-1} corresponding 

to C, we obtain the following lnvolutive Basis for F (which we have converted back to a 



CHAPTER 5. NONCOMMUTATIVE INVOLUTIVE BASES 156 

rewrite system to give an involutive complete rewrite system C" for C). 

C" := (Y,X, y ,x I y2 
-t c:, Xx -t c:, xX -t c:, Yy-t c:, y2x -t x, Y -t y, Y x -t 

yx, Xxy -t y, Yyx -t x, x2 
-t X, X 2 

-t x, xyx -t y, Xy -t yx, Xyx -t xy, x 2y -t 

yx, yX -t xy, yxy -t X, Yxy -t X, YX -t xy). 

With the involutive complete rewrite system, we are now able to uniquely reduce each 

word over the alphabet {Y, X, y, x} to one of the six elements of S3 . To illustrate this, 

consider the word yXY x. Using the 10 element complete rewrite system C' obtained by 

using the Knuth-Bendix algorithm, there are several reduction paths for this word, as 

illustrated by the following diagram. 

However, by involutively reducing the word yXY x with respect to the 19 element invo­

lutive complete rewrite system C", there is only one reduction path, namely 

yXYx 

l Yx-+yx 

yXyx 

l Xyx-+xy 

yxy 

l yxy-+X 

X 
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5. 7.3 Comparison of Divisions 

Following on from the S 3 example above, consider the basis F := {x4 - l , y3 -1, (xy)2 -

l , Xx - l , xX - l , Yy- l, yY -1} over the polynomial ring Q(Y, X, y, x) corresponding 

to a monoid rewrite system for the group S4 . With the monomial ordering being DegLex, 

below we present some data collected when, whilst using a prototype implementation 

of Algorithm 12 (as given in Appendix B), an lnvolutive Basis is computed for F with 

respect to several different involutive divisions (the reduced DegLex Grebner Basis for F 

has 21 elements). 

Remark 5.7.4 The program was run using FreeBSD 5.4 on an AMD Athlon XP 1800+ 

with 512MB of memory. 

Key Involutive Division Key lnvolutive Division 

1 Left Division 7 Subword-Free Left Overlap Division 

2 Right Division 8 Right Overlap Division 

3 Left Overlap Division 9 Strong Right Overlap Division 

4 Strong Left Overlap Division 10 Two-Sided Right Overlap Division 

5 Two-Sided Left Overlap Division 11 Suffix-Only Right Overlap Division 

6 Prefix-Only Left Overlap Division 12 Subword-Free Right Overlap Division 

Division Size of Basis Number of Number of Time 

Prolongations Involutive Reductions 

1 73 104 15947 0.77 

2 73 104 13874 0.74 

3 65 64 10980 8.62 

4 73 94 15226 23.14 

5 77 70 12827 16.04 

6 65 64 10980 8.97 

7 65 64 10980 7.13 

8 73 76 11046 13.27 

9 73 95 13240 26.16 

10 87 80 13005 24.53 

u 73 76 11046 13.40 

12 69 82 10458 9.52 
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We note that the algorithm completes quickest with respect to the global left or right 

divisions, as (i) we can take advantage of the efficient involutive reduction with respect 

to these divisions (see Section 5.5.1); and (ii) the multiplicative variables for a particular 

monomial with respect to these divisions is fixed ( each time the basis changes when us­

ing one of the other local divisions, the multiplicative variables have to be recomputed). 

However, we also note that more prolongations are needed when using the left or right 

divisions, so that, in the long run, if we can devise an efficient way of finding the multi­

plicative variables for a set of monomials with respect to one of the local divisions, then 

the algorithm could (perhaps) terminate more quickly than for the two global divisions. 

5.8 Improvements to the Noncommutative lnvolu­

tive Basis Algorithm 

5.8.1 Efficient Reduction 

Conventionally, we divide a noncommutative polynomial p with respect to a set of poly­

nomials P using Algorithm 2. In this algorithm, an important step is to find out if a 

polynomial in P divides one of the monomials u in the polynomial we are currently re­

ducing, stated as the condition 'if (LM(p1) I u) then' in Algorithm 2. One way of finding 

out if this condition is satisfied would be to execute the following piece of code, where 

a := deg(u); /3 := deg(LM(p1)); and we note that a - {3 + 1 operations are potentially 

needed to find out if the condition is satisfied. 

i = 1; 

while (i ~ a - {3 + 1) do 

if (LM(p1) == Subword(u, i, i + {3 - 1)) then 

return true; 

else 

i = i + l ; 

end if 

end while 

return false; 

When involutively dividing a polynomial p with respect to a set of polynomials P and 

some involutive division I, the corresponding problem is to find out if some monomial 
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LM(pj) is an involutive divisor of some monomial u. At first glance, this problem seems 

more difficult than the problem of finding out if LM(pj) is a conventional divisor of u , as 

it is not just sufficient to discover one way that LM(pj) divides u ( as in the code above) 

- we have to verify that if we find a conventional divisor of u, then it is also an involutive 

divisor of u. Naively, assuming that thin divisors are being used, we could solve the 

problem using the code shown below, code that is clearly less efficient than the code for 

the conventional case shown above. 

i = 1; 

while (i ~ a-,8+ 1) do 

if (LM(py) == Subword(u, i, i + ,8 - 1)) then 

if ((i == 1) or ((i > 1) and (Subword(u, i - 1, i - 1) E M r(LM(pj), LM(P )))) 

then 

if ((i == a - ,8 + 1) or ((i < a - ,8 + 1) and (Subword(u, i + ,8, i + ,8) E 

Mf(LM(pj), LM(P)))) then 

r eturn true; 

end if 

end if 

else 

i = i + l ; 

end if 

end while 

return false; 

However, for certain involutive divisions, it is possible to take advantage of some of the 

properties of these divisions in order to make it easier to discover whether LM(pj ) is an 

involutive divisor of u. We have already seen this in action in Section 5.5.1, where we 

saw that LM(pj) can only involutively divide u with respect to the left or right divisions 

if LM (Pi) is a suffix or prefix of u respectively. 

Let us now consider an improvement to be used whenever (i) an 'overlap' division that 

assigns all variables to be either left multiplicative or right multiplicative is used (ruling 

out any ' two-sided' overlap divisions); and (ii) thick divisors are being used. For the case 

of such an overlap division that assigns all variables to be left multiplicative (for example 

the left overlap division), the following piece of code can be used to discover whether or 

not LM(pi) is an involutive divisor of u (note that a similar piece of code can be given 

for the case of an overlap division assigning all variables to be right multiplicative). 
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k = a; skip = 0; 

while (k ~ /3 + 1) do 

if (Subword(u, k, k) (/_ Mf(LM(pj), LM(P))) then 

skip = k; k = /3; 
else 

k = k - 1; 

end if 

end while 

if (skip == 0) then 

i = l; 

else 

i = skip - /3 + 1; 

end if 

while (i ~ o: - /3 + 1) do 

if (LM(pj) == Subword(u, i, i + /3 - 1)) then 

return true; 

else 

i = i + 1; 

end if 

end while 

return false; 
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We note that the final section of the code (from 'while (i ~ o: - /3 + 1) do' onwards) 

is identical to the code for conventional reduction; the code before this just chooses the 

initial value of i (we rule out looking at certain subwords by analysing which variables in 

u are right nonmultiplicative for LM(pj)). For example, if u := xy2xyxy; LM(pj) := xyx; 

and only the variable x is right nonmultiplicative for Pj, then in the conventional case 

we need 4 subword comparisons before we discover that LM(pj) is a conventional divisor 

of u; but in the involutive case (using the code shown above) we only need 1 subword 

comparison before we discover that LM(pj) is an involutive divisor of u (this is because 

the variable Subword( u, 6, 6) = x is right nonmultiplicative for LM(pJ), leaving just two 

subwords of u that are potentially equal to LM(pj) in such a way that LM(pj) is an 

involutive divisor of u). 
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Conventional Reduction 

X Y Y X Y X Y 

i= l X Y X 

i=2 X Y X 

i=3 X Y X 

i= 4 X Y X 

Involutive Reduction 

i =4 

X Y Y X Y X Y 

X Y X 
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Of course our new algorithm will not always 'win' in every case (for example if u := 

xyx2y xy and LM(pj) := xyx), and we will always have the overhead from having to 

determine the initial value of i, but the impression should be that we have more freedom 

in the involutive case to try these sorts of tricks, tricks which may lead to involutive 

reduction being more efficient than conventional reduction. 

5.8.2 Improved Algorithms 

Just as Algorithm 9 was generalised to give an algorithm for computing noncommutative 

lnvolutive Bases in Algorithm 12, it is conceivable that other algorithms for computing 

commutative Involutive Bases (as seen for example in [24]) can be generalised to the 

noncommutative case. Indeed, in the source code given in Appendix B, a noncommutative 

version of an algorithm found in [23, Section 5] for computing commutative lnvolutive 

Bases is given; we present below data obtained by applying this new algorithm to our S4 

example from Section 5.7.3 (the data from Section 5.7.3 is given in brackets for comparison; 

we see that the new algorithm generally analyses more prolongations but performs less 

in vol u ti ve reduction). 
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Division Size of Basis Number of Number of Time 

Prolongations Involutive Reductions 

1 73 (73) 323 (104) 875 (15947) 0.72 (0.77) 

2 73 (73) 327 (104) 929 (13874) 0.83 (0.74) 

3 70 (65) 288 (64) 831 (10980) 5.94 (8.62) 

4 73 (73) 318 (94) 863 (15226) 4.62 (23.14) 

5 70 (77) 288 (70) 831 (12827) 5.79 (16.04) 

6 70 (65) 288 (64) 831 (10980) 5.71 (8.97) 

7 69 (65) 288 (64) 833 (10980) 5.33 (7.13) 

8 68 (73) 358 (76) 1092 (11046) 28.51 (13.27) 

9 73 (73) 322 (95) 917 (13240) 6.39 (26.16) 

10 68 (87) 358 (80) 1092 (13005) 28.75 (24.53) 

11 68 (73) 358 (76) 1092 (11046) 28.54 (13.40) 

12 66 (69) 364 (82) 1127 (10458) 28.87 (9.52) 

5.8.3 Logged lnvolutive Bases 

A (noncommutative) Logged Involutive Basis expresses each member of an Involutive 

Basis in terms of members of the original basis from which the Involutive Basis was 

computed. 

Definition 5.8.1 Let G = {g1 , ... ,gp} be an Involutive Basis computed from an initial 

basis F = {Ji, .. . , fm}- We say that G is a Logged Involutive Basis if, for each gi E G, 

we have an explicit expression of the form 

(3 

9i = L fcr.fkarcr., 
cr.=1 

where the fa and the rcr. are terms and fka E F for all 1 ~a~ (3. 

Proposition 5.8.2 Let F = {Ji , ... , fm} be a finite basis over a noncommutative poly­

nomial ring. If we can compute an Involutive Basis for F, then it is always possible to 

compute a Logged Involutive Basis for F. 

Proof: Let G = {g1 , ... , gp} be an Involutive Basis computed from the initial basis 

F = {11, ... , fm} using Algorithm 12 (where Ji E R(x1, ... , Xn) for all Ji E F). If an 

arbitrary gi E G is not a member of the original basis F, then either gi is an involutively 
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reduced prolongation, or 9i is obtained through the process of autoreduction. In the 

former case, we can express 9i in terms of members of F by substitution because either 

(J 

9i = Xjh - L/ahkara 
a=l 

or 
(J 

9i = hxj - L fahkara 
a=l 

for a variable xj; terms fa and ra; and polynomials h and hk
0 

which we already know 

how to express in terms of members of F. In the latter case, 

(J 

9i = h - L fahk0 ra 
a=l 

for terms fa, ra and polynomials h and hk" which we already know how to express in 

terms of members of F, so it follows that we can again express 9i in terms of members of 

F. o 

Example 5.8.3 Let F := {Ji, h} = {x3 + 3xy - yx, y 2 + x} generate an ideal over the 

polynomial ring Q(x, y); let the monomial ordering be DegLex; and let the involutive divi­

sion be the left division. In obtaining an Involutive Basis for F using Algorithm 12, a poly­

nomial is added to F; Ji is involutively reduced during autoreduction; and then four more 

polynomials are added to F, giving an Involutive Basis G := {g1 , 92, 93, 94, 9s, 96, 97} = 

{x3 + 2yx, y2 + x, xy -yx, y2x + x 2 , xyx - yx2 , y2x 2 - 2yx, xyx2 - 2x2}. 

The five new polynomials were obtained by involutively reducing the prolongations hY, 
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hx, 93x, 94x and 95x respectively. 

hY Y3 + xy 

- y3 + xy - y(y2 + x) 
<l h 

xy -yx; 

94x y2x2 + x3 

~91 y2 x2 + x3 - ( x3 + 2yx) 

y2x2 
- 2yx; 

9sX = xyx2 - yx3 

~
91 

xyx2 - yx3 + y(x3 + 2yx) 

xyx2 + 2y2x 

~
94 

xyx2 + 2y2x - 2(y2x + x2) 

xyx2 - 2x2 • 

These reductions (plus the reduction 

!1 ~ 93 x3 + 3xy - yx - 3(xy - yx) 

= x3 + 2yx 
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of f1 performed during autoreduction after 93 is added to F) enable us to give the following 

Logged Involutive Basis for F. 

Member of G Logged Representation 

91 = x3 + 2yx Ji - 3hy + 3yh 

92 = Y2 + X h 
93 = xy - yx hY - Y h 

94 = y2x + x 2 hx 

9s = xyx - yx2 hyx - yhx 

96 = y2x 2 
- 2yx - Ji+ hx2 + 3hy - 3yh 

97 = xyx2 - 2x2 yfi + 3y2 h + hyx2 - 2hx -yhx2 - 3yhy 
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Grabner Walks 

When computing any Grabner or Involutive Basis, the monomial ordering that has been 

chosen is a major factor in how long it will take for the algorithm to complete. For 

example, consider the ideal J generated by the basis F := { - 2x3z + y4 + y3 z - x3 + 
x 2y, 2xy2 z + yz3 + 2yz2

, x 3y + 2yz3 - 3yz2 + 2} over the polynomial ring Q[x, y, z]. Using 

our test implementation of Algorithm 3, it takes less than a tenth of a second to compute 

a Grebner Basis for F with respect to the DegRevLex monomial ordering, but 90 seconds 

to compute a Grabner Basis for F with respect to Lex. 

The Grabner Walk, introduced by Collart, Kalkbrener and Mall in [18], forms part of 

a family of basis conversion algorithms that can convert Grabner Bases with respect to 

' fast' monomial orderings to Grabner Bases with respect to 'slow' monomial orderings (see 

Section 2.5.4 for a brief discussion of other basis conversion algorithms). This process is 

often quicker than computing a Grabner Basis for the 'slow' monomial ordering directly, 

as can be demonstrated by stating that in our test implementation of the Grabner Walk, 

it only takes half a second to compute a Lex Grabner Basis for the basis F defined above. 

In this chapter, we will first recall the theory of the (commutative) Grabner Walk, based 

on [18] and a paper [1] by Amrhein, Gloor and Ki.ichlin; the reader is encouraged to read 

these papers in conjunction with this Chapter. We then describe two generalisations of 

the theory to give (i) a commutative Involutive Walk (due to Golubitsky [30]); and (ii) 

noncommutative Walks between harmonious monomial orderings. 

165 
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6.1 Commutative Walks 

To convert a Grabner Basis with respect to one monomial ordering to a Grabner Basis 

with respect to another monomial ordering, the Grabner Walk works with the matrices 

associated to the orderings. Fortunately, [48] and [56] assert that any commutative mono­

mial ordering has an associated matrix, allowing the Grabner Walk to convert between 

any two monomial orderings. 

6. 1.1 Matrix Orderings 

D efinit ion 6 .1.1 Let m be a monomial over a polynomial ring R[x1 , ... , Xn] with as­

sociated multidegree (e1, ... ,en) . If w = (w1, ... ,wn) is an n-dimensional weight vector 

(where wi E Q for all 1::,;; i::,;; n), we define thew-degree of m, written degw(m), to be the 

value 

Remark 6. 1.2 Thew-degree of any term is equal to thew-degree of the term's associated 

monomial. 

Definition 6.1.3 Let m 1 and m 2 be two monomials over a polynomial ring R[x1 , .. . , Xn] 
with associated multi degrees e1 = ( eL ... , ef) and e2 = ( et ... , e2); and let n be an N x n 
matrix. If wi denotes then-dimensional weight vector corresponding to the i-th row of n, 
then n determines a monomial ordering as follows: m1 < m2 if degwJm1) < degwJm2) 

for some 1::,;; i::,;; N and degw.(m1) = degw.(m2) for all 1 ::,;; j < i. 
J J 

Definition 6.1.4 The corresponding matrices for the five monomial orderings defined in 

Section 1.2.1 are 

1 0 0 0 0 0 0 0 0 1 

0 1 0 0 0 0 0 0 1 0 

0 0 1 0 0 
Lex= InvLex = 

0 0 1 0 0 

0 0 0 1 0 0 1 0 0 0 

0 0 0 0 1 1 0 0 0 0 
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1 1 1 1 1 

1 0 0 0 0 

0 1 0 0 0 
DegLex = 

0 0 1 0 0 

0 0 0 1 0 

1 

0 

0 
DegRevLex = 

0 

0 

DeglnvLex = 

1 1 1 

0 0 0 

0 0 -1 

0 -1 0 

-1 0 0 

1 1 1 1 1 

0 0 0 0 1 

0 0 0 1 0 

0 

0 

1 

-1 

0 

0 

0 

0 

1 

1 

0 

0 0 

0 0 
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Example 6 .1.5 Let m 1 := x2 y2 z2 and m 2 := x2y3 z be two monomials over the polyno­

mial ring R := (Q[x, y, z]. According to the matrix 

representing t he DegLex monomial ordering with respect to R, we can deduce that m 1 < 
m2 because degw1 (m1) = degw

1
(m2) = 6; degw

2
(mi) = degw

2
(m2) = 2; and degw

3
(m1) = 

2 < degw
3
(m2) = 3. 

Definition 6 .1.6 Given a polynomial p and a weight vector w, the initial of p with 

respect tow, written inw(P), is the sum of those terms in p that have maximal w-degree. 

For example, if w = (0, 1, 1) and p = x 4 + xy2z + y 3 + xz2
, then inw(P) = xy2z + y3 . 

Definition 6.1.7 A weight vector w is compatible with a monomial ordering O if, given 

any polynomialp = t 1 +· · ·+tm ordered in descending order with respect to 0, degw(t1) ~ 

degw( ti) holds for all 1 < i ~ m. 

6.1.2 T he Commutative Grabner Walk A lgorithm 

We present in Algorithm 17 an algorithm to perform the Grabner Walk, modified from 

an algorithm given in [l]. 
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Algorithm 17 The Commutative Grebner Walk Algorithm 

Input: A Grebner Basis G = {g1, g2 , ... , gm} with respect to an admissible monomial or­

dering O with an associated matrix A, where G generates an ideal Jover a commutative 

polynomial ring R, = R[x1 , ... , Xn]. 
Output: A Grebner Basis H = {h1, h2, .•. , hp} for J with respect to an admissible 

monomial ordering 0' with an associated matrix B. 

Let w and T be the weight vectors corresponding to the first rows of A and B; 

Let C be the matrix whose first row is equal tow and whose remainder is equal to the 

whole of the matrix B ; 

t = O; found = false; 

repeat 

Let G' = {inw(9i) } for all 9i E G; 

Compute a reduced Grebner Basis H' for G' with respect to the monomial ordering 

defined by the matrix C (use Algorithms 3 and 4); 

H = 0; 
for each h' E H' do 

Let 'L{= 1p;g~ be the logged representation of h' with respect to G' (where g~ E G' 

and Pi ER), obtained either through computing a Logged Grebner Basis above or 

by dividing h' with respect to G'; 

H = HU {'L{=1Pi9i}, where inw(9i) = g~; 

end for 

Reduce H with respect to C (use Algorithm 4); 

if (t == 1) then 

found = true; 

else 

t = min({s I degw(s)(P1) = degw(s)(Pi),degw(o)(P1) f. degw(o)(Pi), 

h = P1 + ··· +Pk EH} n (0, 1]), where w(s) := w + s(T - w) for O ~ s ~ 1; 

end if 

if (t is undefined) then 

found = true; 

else 

G = H; w = (1 - t)w + tT; 

end if 

until (found = true) 

return H; 
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Some Remarks: 

• In the first iteration of the repeat ... until loop, G' is a Grabner Basis for the ideal1 

inw(l) with respect to the monomial ordering defined by C, as w is compatible with 

C. During subsequent iterations of the same loop, G' is a Grabner Basis for the 

ideal inw(J) with respect to the monomial ordering used to compute H during the 

previous iteration of the repeat ... until loop, as w is compatible with this previous 

ordering. 

• The fact that any set H constructed by the for loop is a Grabner Basis for J with 

respect to the monomial ordering defined by C is proved in both [1] and [18] (where 

you will also find proofs for the assertions made in the previous paragraph). 

• The section of code where we determine the value of t is where we determine the 

next step of the walk. We choose t to be the minimum value of s in the interval 

(0, 1] such that, for some polynomial h E H, thew-degrees of LT(h) and some other 

term in h differ, but the w(s)-degrees of the same two terms are identical. We say 

that this is the first point on the line segment between the two weight vectors w and 

T where the initial of one of the polynomials in H degenerates. 

• The success of the Grobner Walk comes from the fact that it breaks down a Grabner 

Basis computation into a series of smaller pieces, each of which computes a Grabner 

Basis for a set of initials, a task that is usually quite simple. There are still cases 

however where this task is complicated and time-consuming, and this has led to the 

development of so-called path perturbation techniques that choose 'easier' paths on 

which to walk (see for example [1] and [53]). 

6.1.3 A Worked Example 

Example 6.1.8 Let F := {xy - z, yz + 2x + z} be a basis generating an ideal Jover 

the polynomial ring Q[x, y, z]. Consider that we want to obtain the Lex Grabner Basis 

H := {2x + yz + z, y2z + yz + 2z} for J from the DegLex Grabner Basis G := {xy -

z, yz + 2x + z, 2x2 + xz + z2 } for J using t he Grabner Walk. Utilising Algorithm 17 to 

do this, we init ialise the variables as follows. 

1The ideal inw(J) is defined as follows: p E J if and only if inw(P) E inw(J). 
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A=U nB=o 
1 1 1 

1 0 0) 
1 0 ; w = (1, 1, l); T = (1, 0, 0); C = 

1 0 0 
0 

0 1 0 
1 0 1 

0 0 1 
t = 0; found = false. 

Let us now describe what happens during each pass of the repeat ... until loop of Al­

gorithm 17, noting that as A is equivalent to C to begin with, nothing substantial will 

happen during the first pass through the loop. 

Pass 1 

• Construct the set of initials: G' := {g~ , g~, g~} = {xy, yz, 2x2 + xz + z2 } (these 

are the terms in G that have maximal (1, 1, 1)-degree). 

• Compute the Grabner Basis H' of G' with respect to C. 

S-pol(g~, g~) 

It follows that H' = G'. 

xyz (xy) _ xyz (yz) 
xy yz 

O; 
x2y x2y 
- (xy) - -

2 2 (2x2 + xz + z2) 
xy X 

1 l 2 --xyz - -yz 
2 2 
1 2 --yz 
2 

0 (by Buchberger's First Criterion). 

• As H' = G', H will also be equal to G, so that H := {h1, h2 , h3} = {xy - z, yz + 
2x + z, 2x2 + xz + z2 } . 

• Let 

w(s) .- w + s(T - w) 

(1, 1, 1) + s((l, 0, 0) - (1, 1, 1)) 

= (1, 1, 1) + s(O, -1, - 1) 

(1, 1 - s, 1 - s) . 
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To find the next value of t, we must find the minimum value of s such that the 

w(s)-degrees of the leading term of a polynomial in H and some other term in the 

same polynomial agree where their w-degrees currently differ. 

Thew-degrees of the two terms in h1 differ, so we can seek a value of s such that 

degw(s)(xy) 

1 +(1 -s) 

1 

degw(s)(z) 

(1 - s) 

0 (inconsistent) . 

For h2 , we have two choices: either 

or 

degw(s) (yz) 

(1 - s) + (1 - s) 

2 - 2s 

s 

degw(s) (yz) 

(1 - s) + (1 - s) 

(1 - s) 

s 

degw(s)(z) 

(1 - s) 
0 

l. 

Thew-degrees of all the terms in h3 are the same, so we can ignore it. 

It follows that the minimum value of s (and hence the new value oft) is ½- As 

this value appears in the interval (0, 1], we set G = H; set the new value of w 

to be (1 - ½)(1, 1, 1) + ½(1, 0, 0) = (1, ½, ½) (and hence change C to be the matrix 

Pass 2 

1 ½ ½ 
1 0 0 

0 1 0 

0 0 1 

); and embark upon a second pass of the repeat ... until loop. 

• Construct the set of initials: G' := {gi, g;, gD = {xy , 2x + yz, 2x2 } (these are the 



CHAPTER 6. GROBNER WALKS 172 

terms in G that have maximal (1, ½, ½)-degree). 

• Compute the Grabner Basis of G' with respect to C. 

S-pol(g~, g~) 

S-pol(g;, g~) 0 (by Buchberger's First Criterion); 

S-pol(g;,g~) 0 (by Buchberger 's First Criterion). 

It follows that G' = {g~, g;, g;, g~} = {xy, 2x+yz, 2x2
, -½y2z} is a Grabner Basis 

for inw ( J) with respect to C. 

Applying Algorithm 4 to G', we can remove g; and g; from G' (because LM(gD = 
y x LM(g;) and LM(g;) =xx LM(g;)); we must also multiply g; and g~ by½ and - 2 

respectively to obtain unit lead coefficients. This leaves us with the unique reduced 

Grabner Basis H' := {h~, h;} = {x + ½vz, y2z} for inw(J) with respect to C. 

• We must now express the two elements of H' in terms of members of G'. 

hi 2 2=yz 

1 I 

2g2; 

- 2 ( (xy) - ~y(2x + yz)) (from the S-polynomial) 

( 
/ 1 /) - 2 gl - 2Yg2 . 

Lifting to the full polynomials, h~ lifts to give the polynomial h1 := x + ½yz + ½z; 

h; lifts to give the polynomial h2 := -2((xy - z) - ½v(2x + yz + z)) = - 2xy + 
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2z + 2xy + y2 z + yz = y2 z + yz + 2z; and we are left with the Grabner Basis 

H := {h1, h2} = {x + ½yz + ½z, y2z + yz + 2z} for J wit h respect to C. 

• Let 

Finding the minimum value of s, for h1 we can have 

degw(s)(z) 
1 
-(1 - s) 
2 

s - 1 (undefined: we must have s E (0, 1]). 

Continuing with h2, we can either have 

s 

or 

degw(s) (y2 z) 

3(1(1 -s)) 

1- s 

s 

degw(s)(yz) 

2(1(1 -s)) 

0 

1; 

= 

= 

degw(s) (z) 

1 -(1 - s) 
2 
0 

1. 

It follows that the minimum value of s (and hence the new value oft) is 1. As 

this value appears in the interval (0, 1], we set G = H; set the new value of w 
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to be (1 - 1)(1, ½, ½) + 1(1, 0, 0) = (1, 0, 0) (and hence change C to be the matrix 

1 0 0 

1 0 0 

0 1 0 

0 0 1 
repeat ... until loop. 

Pass 3 

~ ~ ) ); and embark upon a third (and final) pass of the 

0 1 

• Construct the set of initials: G' := {gi , g~} = {x, y2z + yz + 2z} (these are the 

terms in G that have maximal (1, 0, 0)-degree). 

• Compute the Grobner Basis H' of G' with respect to C. 

S-pol(g~, g;) = 0 (by Buchberger 's First Criterion). 

It follows that H' = G'. 

• As H' = G', H will also be equal to G, so that H := {h1, h2 } = {x+½yz+½z, y2z + 

yz + 2z }. Further, as t is now equal to 1, we have arrived at our target ordering 

(Lex) and can return H as the output Grobner Basis, a basis that is equivalent to 

t he Lex Grobner Basis given for J at the beginning of this example. 

We can summarise the path taken during the walk in the following diagram. 

1 

1 
2 

z 

1 
2 

y 

1 

Pass 1 
(1,1, 1) 

X 
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Algorithm 18 The Commutative Involutive Walk Algorithm 

Input: An Involutive Basis G = {g1, 92, ... , 9m} with respect to an involutive division I 

and an admissible monomial ordering O with an associated matrix A, where G generates 

an ideal Jover a commutative polynomial ring R = R[x1, . . . , Xn]-
Output: An Involutive Basis H = {h1, h2, ... , hp} for J with respect to I and an admis­

sible monomial ordering 0' with an associated matrix B. 

Let w and T be the weight vectors corresponding to the first rows of A and B; 

Let C be the matrix whose first row is equal tow and whose remainder is equal to the 

whole of the matrix B; 

t = O; found = false; 

repeat 

Let G' = {inw(gi)} for all 9i E G; 

Compute an Involutive Basis H' for G' with respect to the monomial ordering defined 

by the matrix C ( use Algorithm 9); 

H = 0; 
for each h' E H' do 

Let ~ {=1 Pi9~ be the logged representation of h' with respect to G' (where g~ E G' 

and Pi ER), obtained either through computing a Logged Involutive Basis above 

or by involut ively dividing h' with respect to G'; 

H =HU {~{=1 Pi9i} , where inw(9i) = g~; 

end for 

if (t == 1) then 

found = true; 

e lse 

t = min( { s I degw(s)(P1) = degw(s) (Pi), degw(O) (P1) -/= degw(O) (Pi), 

h = P1 + ··· +Pk EH} n (0, 1]), where w(s) := w + s(T - w) for O ~ s ~ 1; 

end if 

if (t is undefined) then 

found = true; 

else 

G = H ; w = (1 - t)w + tT; 

end if 

until ( found = true) 

return H; 
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6. 1.4 The Commutative lnvolutive Walk Algorithm 

In [30], Golubitsky generalised the Grobner Walk technique to give a method for convert­

ing an Involutive Basis with respect to one monomial ordering to an Involutive Basis with 

respect to another monomial ordering. Algorithmically, the way in which we perform this 

Involutive Walk is virtually identical to the way we perform the Grobner Walk, as can be 

seen by comparing Algorithms 17 and 18. The change however comes when proving the 

correctness of the algorithm, as we have to show that each G' is an lnvolutive Basis for 

inw(J) and that each His an lnvolutive Basis for J (see [30] for these proofs). 

6.2 Noncommutative Walks 

In the commutative case, any monomial ordering can be represented by a matrix that 

provides a decomposition of the ordering in terms of the rows of the matrix. This decom­

position is then utilised in the Grobner Walk algorithm when (for example) we use the 

first row of the matrix to provide a set of initials for a particular basis G ( cf. Definition 

6.1.6). 

In the noncommutative case, because monomials cannot be represented by multidegrees, 

monomial orderings cannot be represented by matrices. This seems to shut the door on 

any generalisation of the Grobner Walk to the noncommutative case, as not only is there 

no first row of a matrix to provide a set of initials, but no notion of a walk between two 

matrices can be formulated either. 

Despite this, we note that in the commutative case, if the first rows of the source and 

target matrices are the same, then the Grobner Walk will complete in one pass of the 

algorithm, and all that is needed is the first row of the source matrix to provide a set of 

initials to work with. 

Generalising to the noncommutative case, it is possible that if we can find a way to 

decompose a noncommutative monomial ordering to provide a set of initials to work 

with, then a noncommutative Grobner Walk algorithm could complete in one pass if the 

source and target monomial orderings used the same method to compute sets of initials. 
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6.2.1 Functional D ecompositions 

Considering the monomial orderings defined in Section 1.2.2, we note that all the orderings 

are defined step-by-step. For example, the DegLex monomial ordering compares two 

monomials by degree first, then by the first letter of each monomial, then by the second 

letter, and so on. This provides us with an opportunity to decompose each monomial 

ordering into a series of steps or functions, a decomposition we shall term a functional 

decomposition. 

Definition 6 .2.1 An ordering function is a function 

0: M-----. Z 

that assigns an integer to any monomial m E M, where M denotes the set of all monomials 

over a polynomial ring R(x1, . . . , xn)- We call the integer assigned by 0 tom the 0-value 

of m. 

Remark 6.2.2 The 0-value of any term will be equal to the 0-value of the term's asso­

ciated monomial. 

D efinition 6 .2 .3 A functional decomposition 0 is a (possibly infinite) sequence of order­

ing functions, written 0 = {01 , 02, ... }. 

Definition 6.2.4 Let O be a monomial ordering; let m1 and m2 be two arbitrary mono­

mials such that m1 < m2 with respect to O; and let 0 = { 01, 02, . . . } be a functional 

decomposition. We say that 0 defines O if and only if 0i(m1) < 0i(m2) for some i ~ 1 

and 0j(m1) = 0j(m2) for all 1 ~ j < i. 

To describe the functional decompositions corresponding to the monomial orderings de­

fined in Section 1.2.2, we first need the following definition. 

D efinition 6.2.5 Let m be an arbitrary monomial over a polynomial ring R(x1, . . . ,xn)­

The i-th valuing function of m, written vali(m), is an ordering function that assigns an 

integer tom as follows. 

if Subword(m, i, i) = Xj (where 1 ~ j ~ n). 

if Subword(m, i, i) is undefined. 



CHAPTER 6. GROBNER WALKS 178 

Let us now describe the functional decompositions corresponding to those monomial or­

derings defined in Section 1.2.2 that are admissible. 

Definition 6.2.6 The functional decomposition 8 = {01, 02 , .. . } corresponding to the 

DegLex monomial ordering is defined (for an arbitrary monomial m) as follows. 

if i = l. 

if i > l. 

Similarly, we can define DeglnvLex by 

and DegRevLex by 

0i(m) = 

if i = l. 

if i > l. 

{ 

deg ( m) if i = l. 

valdeg(m)+2-i(m) if i > l. 

Example 6.2.7 Let m1 := xyxz2 and m2 := xzyz2 be two monomials over the poly­

nomial ring IQ(x, y, z) . With respect to DegLex, we can work out that xyxz2 > xzyz2 , 

because 01(m1) = 01(m2) (or deg(m1) = deg(m2)); 02(m1) = 02(m2) (or n+l-val1(m1) = 

n + l - val1(m2), 3 + 1 - 1 = 3 + 1 - 1); and 03(m1) > 03(m2) (or n + l - vab(m1) > 
n + l - vab(m2), 3 + 1 - 2 > 3 + 1 - 3). Similarly, with respect to DeglnvLex, we can 

work out that xyxz2 < xzyz2 (because 03(m1) < 03(m2), or 2 < 3); and with respect to 

DegRevLex, we can work out that xyxz2 < xzyz2 (because 04 (mi) < 04(m2), or 1 < 2). 

Definition 6.2.8 Given a polynomial p and an ordering function 0, the initial of p with 

respect to 0, written ino(P), is made up of those terms in p that have maximal 0-value. For 

example, if 0 is the degree function and if p = x4 +zxy2 +y3 +z2 x, then in0 (p) = x4 +zxy2 . 

Definition 6.2.9 Given an ordering function 0, a polynomial p is said to be 0-homogeneous 

if p = ino(p). 

Definition 6.2.10 An ordering function 0 is compatible with a monomial ordering O if, 

given any polynomial p = t1 + · · · + tm ordered in descending order with respect to 0, 
0(t1) ~ 0(ti) holds for all 1 < i ~ m. 
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D efinition 6.2.11 An ordering function 0 is extendible if, given any 0-homogeneous poly­

nomial p, any multiple upv of p by terms u and v is also 0-homogeneous. 

R emark 6 .2.12 Of the ordering functions encountered so far , only the degree function, 

vali and2 valdeg(m) (for any given monomial m) are extendible. 

D efinition 6.2.13 Two noncommutative monomial orderings 0 1 and 0 2 are said to be 

harmonious if (i) there exist functional decompositions 8 1 = { 011> 012 , . .. } and 8 2 = 

{ 021, 022 , • •• } defining 0 1 and 0 2 respectively; and (ii) the ordering functions 011 and 021 
are identical and extendible. 

Remark 6 .2.14 The noncommutative monomial orderings DegLex, DeglnvLex and De­

gRevLex are all (pairwise) harmonious. 

6.2.2 The Noncommutative Grabner Walk Algorithm for Har­

monious Monomial Orderings 

We present in Algorithm 19 an algorithm to perform a Grabner Walk between two har­

monious noncommutative monomial orderings. 

Termination of Algorithm 19 depends on the termination of Algorithm 5 as used (in Al­

gorithm 19) to compute a noncommutative Grabner Basis for the set G'. The correctness 

of Algorithm 19 is provided by the following two proposit ions. 

Proposition 6.2.15 G' is always a Grabner Basis for the ideaf3 in0(J) with respect to 

the monomial ordering O. 

P roof: Because 0 is compatible with O (by definition), the S-polynomials involving 

members of G will be in one-to-one correspondence with the S-polynomials involving 

members of G', wit h the same monomial being 'cancelled ' in each pair of corresponding 

S-polynomials. 

Let p be an arbitrary S-polynomial involving members of G (with corresponding S­

polynomial q involving members of G'). Because G is a Grobner Basis for J with respect 

2 Think of valdeg(m) as finding the value of the final variable in m (as opposed to val1 finding the value 
of the first variable in m). 

3The ideal in0(J) is defined as follows: p E J if and only if in0(p) E in0(J). 
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Algorithm 19 The Noncommutative Grabner Walk Algorithm for Harmonious Monomial 
Orderings 

Input: A Grabner Basis G = {g1 , 92, ... , 9m} with respect to an admissible monomial 

ordering O with an associated functional decomposition A, where G generates an ideal 

Jover a noncommutative polynomial ring R = R(x1, ... , Xn) . 
Output: A Grabner Basis H = {h1 , h2 , ... , hp} for J with respect to an admissible 

monomial ordering 0' with an associated functional decomposition B, where O and 0' 

are harmonious. 

Let 0 be the ordering function corresponding to the first ordering function of A; 

Let G' = {ino(gi)} for all 9i E G; 

Compute a reduced Grabner Basis H' for G' with respect to the monomial ordering O' 

(use Algorithms 5 and 6); 

H=0; 
for each h' E H' do 

Let I::{=1 .f.ig;ri be the logged representation of h' with respect to G' (where g; E G' 

and the .f.i and the ri are terms), obtained either through computing a Logged Grabner 

Basis above or by dividing h' with respect to G'; 

H =HU {I::{=1 .f.igiri }, where ino(gi) = g;; 

end for 

Reduce H with respect to O' (use Algorithm 6); 

return H; 
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to 0, p will reduce to zero using G by the series of reductions 

where 9i1 E G for all 1 ~ j ~ a. 

Claim: q will reduce to zero using G' (and hence G' is a Grabner Basis for in0(J) with 

respect to Oby Definition 3.1.8) by the series of reductions 

where O ~ {3 ~ a. 

Proof of Claim: Let w be the overlap word associated to the S-polynomial p. If 

0(LM(p)) < 0(w) , then because 0 is extendible it is clear that q = 0, and so the proof is 

complete. Otherwise, we must have q = ino(P), and so by the compatibility of 0 with 0, 

we can use the polynomial ino (%) E G' to reduce q to give the polynomial q1 . We now 

proceed by induction (if 0(LM(p1 )) < 0(LM(p)) then q1 = 0, .. . ), noting that the process 

will t erminate because ino(Pa = 0) = 0. D 

Proposition 6.2.16 The set H constructed by the for loop of Algorithm 19 is a Grabner 

Basis for J with respect to the monomial ordering 0'. 

Proof: By Definition 3.1.8, we can show that H is a Grabner Basis for J by showing 

that all S-polynomials involving members of H reduce to zero using H. Assume for a 

contradiction that an S-polynomial p involving members of H does not reduce to zero 

using H, and instead only reduces to a polynomial q 1 0. 

As all members of H are members of the ideal J (by the way H was constructed as 

combinations of elements of G), it is clear that q is also a member of the ideal J, as all we 

have done in constructing q is to reduce a combination of two members of H with respect 

to H. It follows that the polynomial in0(q) is a member of the ideal in0 (J). 

Because H' is a Grabner Basis for the ideal in0(J) with respect to O', there must be a 

polynomial h' E H' such that h' I in0(q). Let Lti fig;ri be the logged representation of 
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h' with respect to G'. Then it is clear that 

j 

L J!ig:ri I ino ( q). 
i=l 

However 0 is compatible with 0', so that 

j 

L J!igiri I q. 
i=l 

It follows that there exists a polynomial h E H dividing our polynomial q, contradicting 

our initial assumption. □ 

6.2.3 A Worked Example 

Example 6.2.17 Let F := {x2 + y2 + 8, 2xy + y2 + 5} be a basis generating an ideal J 

over the polynomial ring Q(x, y). Consider that we want to obtain the DegLex Grebner 

Basis H := {2xy + y2 + 5, x2 + y2 + 8, 5y3 
- lOx + 37y, 2yx + y2 + 5} for J from the 

DegRevLex Grebner Basis G := {2xy- x2 
- 3, y2 + x2 + 8, 5x3 + 6y + 35x, 2yx - x2 

- 3} 

for J using the Grebner Walk. Utilising Algorithm 19 to do this, we initialise 0 to be the 

degree function and we proceed as follows. 

• Constructthesetofinitials: G' := {g~, g~, g;, g~} = {-x2+2xy, x2+y2
, 5x3

, - x2+ 
2yx} ( these are the terms in G that have maximal degree). 

• Compute the Grobner Basis of G' with respect to the DegLex monomial ordering 

(for simplicity, we will not provide details of those S-polynomials that reduce to zero 
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or can be ignored due to Buchberger's Second Criterion) . 

(- x2 + 2xy) - (- l )(x2 + y2) 

2xy + y2 =: g;; 

S-pol(l,g~,l,g~) (-l)(-x2+2xy)-(-l)(-x2 +2yx) 

= -2xy+ 2yx 

---+95 -2xy + 2yx + (2xy + y2) 

= 2yx + y2 =: g~; 

S-pol(y, g~, 1, g~) 2y(- x2 + 2xy) - (- 1)(2yx + y2)x 

= 4yxy + y2x 

---+95 4yxy + y2x - 2y(2xy + y2
) 

y2x - 2y3 
1 

---+96 y2x - 2y3 - 2y(2yx + y2) 

5 3 I 
-2,y = : 91· 

183 

After g; is added to the current basis, all S-polynomials now reduce to zero, leaving 

the Grabner Basis G' = {g~ , g;, g~, g~, g;, g~, g;} = {-x2+ 2xy, x2+y2, 5x3, -x2+ 

2yx , 2xy + y2, 2yx + y2, -!y3 } for in0 (J) with respect to 0'. 

Applying Algorithm 6 to G', we can remove g~, g; and g~ from G' (because their 

lead monomials are all multiplies of LM(g~)); we must multiply g~, g;, g~ and g; by 

-1, ½, ½ and -~ respectively (to obtain unit lead coefficients); and the polynomial 

g~ can (then) be further reduced as follows. 

g~ x2 
- 2yx 

---+96 x2 - 2yx + 2 (yx + ty2) 

x2 + y2. 

This leaves us with the unique reduced Grebner Basis H' := {h~, h~, h;, h~} 

{x2 + y2, xy + ½Y2, yx + ½Y2, y3} for in0(J) with respect to 0'. 
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• We must now express the four elements of H' in terms of members of G'. 

hi 3 4=y 

Lifting to the full polynomials, we obtain the Grebner Basis H := {h1 , h2 , h3 , h4 } 

as follows. 

hi 92 

x2 + y2 + 8; 
1 

h2 2(91 + 92) 

1 

2(-x2 + 2xy - 3 + x2 + y2 + 8) 

1 2 5 
xy + 2Y + 2; 
1 

h3 2(92 + 94) 

1 
2(x2 + y2 + 8 - x2 + 2yx - 3) 

1 2 5 
yx + 2Y + f 

h4 = -~ (92X - tY92 + 94x - }y94) 

2(3 2 5 2 53 - 5 x + y x + 8x - 2yx - 2y - 20y 

3 2 1 2 2 3) -x + 2yx - 3x + 2yx - y x + 2y 

3 37 
y - 2x + 5Y· 

The set H does not reduce any further, so we return the output DegLex Grebner 

Basis {x2 + y2 + 8, xy + ½Y2 + ~, yx + ½Y2 + ~, y3 
- 2x + 3

5
7 y} for J, a basis 
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that is equivalent to the DegLex Grobner Basis given for J at the beginning of this 

example. 

6.2.4 The Noncommutative lnvolutive Walk Algorithm for Har­

monious Monomial Orderings 

We present in Algorithm 20 an algorithm to perform an Involutive Walk between two 

harmonious noncommutative monomial orderings. 

Algorithm 20 The Noncommutative Involutive Walk Algorithm for Harmonious Mono­
mial Orderings 

Input: An lnvolutive Basis G = {g1 , g2, ... , 9m} with respect to an involutive divi­

sion I and an admissible monomial ordering O with an associated functional decom­

position A, where G generates an ideal J over a noncommutative polynomial ring 

'R, = R(x1, .. ,, Xn), 

Output: An Involutive Basis H = {h1 , h2, . .. , hp} for J with respect to I and an admis­

sible monomial ordering O' with an associated functional decomposition B, where 0 

and 0' are harmonious. 

Let 0 be the ordering function corresponding to the first ordering function of A; 

Let G' = {inu(gi)} for all 9i E G; 

Compute an lnvolutive Basis H' for G' with respect to I and the monomial ordering 

0' (use Algorithm 12) ; 

H=0; 

for each h' E H' do 

Let L{=1 f.ig~ri be the logged representation of h' with respect to G' (where g~ E 

G' and the R.i and the ri are terms), obtained either through computing a Logged 

lnvolutive Basis above or by involutively dividing h' with respect to G'; 

H =HU {L{=1 f.igiri}, where ine(gi) = g~; 

end for 

return H; 

Termination of Algorithm 20 depends on the termination of Algorithm 12 as used (in Al­

gorithm 20) to compute a noncommutative lnvolutive Basis for the set G'. The correctness 

of Algorithm 20 is provided by the following two propositions. 
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Proposition 6.2.18 G' is always an Involutive Basis for the ideal in0( J) with respect to 

I and the monomial ordering O. 

Proof: Let p := ugv be an arbitrary multiple of a polynomial g E G by terms u and v . 

Because G is an lnvolutive Basis for J with respect to I and 0 , p will involutively reduce 

to zero using G by the series of involutive reductions 

where gi; E G for all 1 ~ j ~ a . 

Claim: The polynomial q := uin0(g)v will involutively reduce to zero using G' (and hence 

G' is an lnvolutive Basis for in0(J) with respect to I and O by Definition 5.2. 7) by the 

series of involutive reductions 

where 1 ~ /3 ~ a. 

Proof of Claim: Because 0 is extendible, it is clear that q = in0(p). Further, because 0 

is compatible with O (by definition), the multiplicative variables of G and G' with respect 

to I will be identical, and so it follows that because the polynomial 9ii E G was used to 

involutively reduce p to give the polynomial p1 , then the polynomial ino(gii) E G' can be 

used to involutively reduce q to give the polynomial q1 . 

If 0(LM(p1)) < 0(LM(p)), then because 0 is extendible it is clear that q1 = 0, and so 

the proof is complete. Otherwise, we must have q1 = in0(p1), and so (again) by the 

compatibility of 0 with 0, we can use the polynomial in0(gi2 ) E G' to involutively reduce 

q1 to give the polynomial q2. We now proceed by induction (if 0(LM(p2)) < 0(LM(p1)) 

then q2 = 0, .. . ), noting that the process will terminate because in0(Pc, = 0) = 0. D 

Proposition 6.2.19 The set H constructed by the for loop of Algorithm 20 is an Invo­

lutive Basis for J with respect to I and the monomial ordering 0'. 

Proof: By Definition 5.2.7, we can show that His an lnvolutive Basis for J by showing 

that any multiple upv of any polynomial p E H by any terms u and v involutively reduces 

to zero using H. Assume for a contradiction that such a multiple does not involutively 

reduce to zero using H, and instead only involutively reduces to a polynomial q-/= 0. 
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As all members of H are members of the ideal J (by the way H was constructed as 

combinations of elements of G) , it is clear that q is also a member of the ideal J, as all 

we have done in constructing q is to reduce a multiple of a polynomial in H with respect 

to H. It follows that the polynomial in0(q) is a member of the ideal in0(J). 

Because H' is an Involutive Basis for the ideal in0(J) with respect to I and 0', there must 

be a polynomial h' E H' such t hat h' 11 in0(q). Let ~ {=1 f.ig~ri be the logged representation 

of h' with respect to G'. Then it is clear that 

j 

L Pig:ri 11 in0(q) . 
i=l 

However 0 is compatible with 0' (in particular the multiplicative variables for H' and H 

with respect to I and 0' will be identical) , so that 

j 

L Pigiri 11 q. 
i=l 

It follows that there exists a polynomial h E H involut ively dividing our polynomial q, 

contradicting our init ial assumption. □ 

6.2.5 A Worked Example 

Example 6.2.20 Let F := {x2+y2 +8, 2xy+y2 + 5} be a basis generating an ideal Jover 

the polynomial ring Q(x, y). Consider that we want to obtain the DegRevLex Involutive 

Basis H := {2xy - x2 - 3, y2 + x2 + 8, 5x3 + 6y + 35x , 5yx2 + 3y + lOx, 2yx - x2 
- 3} 

for J from the DegLex Involutive Basis G := {2xy + y2 + 5, x2 + y2 + 8, 5y3 
- lOx + 

37y, 5xy2 + 5x - 6y, 2yx + y2 + 5} for J using the Involut ive Walk, where Hand Gare 

both Involutive Bases with respect to the left division <J . Utilising Algorithm 20 to do 

this, we initialise 0 to be the degree function and we proceed as follows. 

• Construct the set of initials: 

( these are the terms in G that have maximal degree). 

• Compute the Involutive Basis of G' with respect to <J and the DegRevLex monomial 
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ordering. Step 1: autoreduce the set G'. 

I y2 + 2xy 91 = 

- y2 + 2xy - (y2 + x2) 
<I 92 

2xy - x2 =: g~; 

G' = (G' \ {g~}) U {g~}; 

g; y2 + x2 

- y2 + x2 - (y2 + 2yx) 
<J g~ 

-2yx + x2 
=: g~; 

G' - (G' \ {g;}) u {g~}; 

g; - 5y3 

- 5y3 - 5y(y2 + 2yx) 
<J g; 

-lOy2x 

- - l0y2x - 5y(-2yx + x2) 
<I 91 

-5yx2 =: g~; 

G' (G' \ {g; }) u {g~}; 
I 

g4 5xy2 

- 5xy2 - 5x(y2 + 2yx) 
<I g; 
= - lOxyx 

- -lOxyx - 5x(-2yx + x2) 
<I 91 

-5x3 = : g~; 

G' (G' \ {g~}) u {g~}; 

g; y2 + 2yx 

- y2 + 2yx + (-2yx + x2) 
<I 91 

y2 + x2 =: 9~o; 

G' (G' \ {g~}) u {g~0}. 

Step 2: process the prolongations of the set G' = {g~, g~, g~, g~, g~0}. Because all ten 

of these prolongations involutively reduce to zero using G' , we are left with the lnvo­

lutive Basis H' := {h~, h~, h;, h~, h;} = {2xy-x2
, -2yx+x2

, - 5yx2, -5x3
, y2 + 
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x2 } for in0 ( J) with respect to <J and 0'. 

• We must now express the five elements of H' in terms of members of G'. 

h~ = 2xy- x2 

h; = -2yx + x2 

h; = -5yx2 

h~ = -5x3 

9~ - 9; (from autoreduction); 
I I 

92 - 95; 

9; - 5y9~ - 5y(9; - 9~) 

= -5y9; + 9;; 

9~ - 5x9~ - 5x(9; - 9;) 

-5x9; + 9~; 

9; + (9; - 9;) 

189 

Lifting to the full polynomials, we obtain the Involutive Basis H := { h 1, h 2 , h 3 , h4 , h5} 

as follows. 

h1 91 - 92 

(y2 + 2xy + 5) - (y2 + x2 + 8) 

2xy - x2 - 3; 

h2 92 - 95 

- (y2 + x2 + 8) - (y2 + 2yx + 5) 

-2yx + x2 + 3; 

h3 -5y92 + 93 

-5y(y2 + x2 + 8) + (5y3 + 37y - lOx) 

-5yx 2 - 3y - lOx; 

h4 -5x92 + 94 

-5x(y2 + x2 + 8) + (5xy2 - 6y + 5x) 

= -5x3 - 6y - 35x; 

h5 = 92 

y2 + x2 + 8. 

We can now return the output DegRevLex Involutive Basis H = {2xy - x2 -

3, -2yx + x2 + 3, -5yx2 - 3y - lOx, -5x3 - 6y - 35x, y2 + x2 + 8} for J with 
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respect to <l, a basis that is equivalent to the DegRevLex Involutive Basis given for 

J at the beginning of this example. 

6.2 .6 Noncommutative Walks Between Any Two Monomial Or­

derings? 

Thus far, we have only been able to define a noncommutative walk between two harmo­

nious monomial orderings, where we recall that the first ordering functions of the func­

tional decompositions of the two monomial orderings must be identical and extendible. 

For walks between two arbitrary monomial orderings, the first ordering functions need 

not be identical any more, but it is clear that they must still be extendible, so that (in an 

algorithm to perform such a walk) each basis G' is a Grabner Basis for each ideal in0(J) 
(compare with the proofs of Propositions 6.2.15 and 6.2.18). This condition will also ap­

ply to any 'intermediate' monomial ordering we will encounter during the walk, but the 

challenge will be in how to define these intermediate orderings, so that we generalise the 

commutative concept of choosing a weight vector wi+l on the line segment between two 

weight vectors wi and T. 

Open Question 4 Is it possible to perform a noncommutative walk between two admis­

sible and extendible monomial orderings that are not harmonious? 



Chapter 7 

Conclusions 

7.1 Current State of Play 

The goal of this thesis was to combine the theories of noncommutative Grebner Bases 

and commutative Involutive Bases to give a theory of noncommutative Involutive Bases. 

To accomplish this, we started by surveying the background theory in Chapters 1 to 4, 

focusing our account on the various algorithms associated with the theory. In particular, 

we mentioned several improvements to the standard algorithms, including how to compute 

commutative Involutive Bases by homogeneous methods, which required the introduction 

of a new property ( extendibility) of commutative involutive divisions. 

The theory of noncommutative Involutive Bases was introduced in Chapter 5, where 

we described how to perform noncommutative involutive reduction (Definition 5.1.1 and 

Algorithm 10); introduced the notion of a noncommutative involutive division (Definit ion 

5.1.6); described what is meant by a noncommutative Involutive Basis (Definition 5.2.7); 

and gave an algorithm to compute noncommutative Involutive Bases (Algorithm 12). 

Several noncommutative involutive divisions were also defined, each of which was shown 

to satisfy certain properties (such as continuity) allowing the deductions that all Locally 

Involutive Bases are Involutive Bases; and that all Involutive Bases are Grebner Bases. 

To finish, we partially generalised the theory of the Grebner Walk to the noncommuta­

t ive case in Chapter 6, yielding both Grebner and Involutive Walks between harmonious 

noncommutative monomial orderings. 

191 
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7.2 Future Directions 

As well as answering a few questions, the work in this thesis gives rise to a number of 

new questions we would like the answers to. Some of these questions have already been 

posed as 'Open Questions' in previous chapters; we summarise below the content of these 

questions. 

• Regarding the procedure outlined in Definition 4.5.1 for computing an Involut ive 

Basis for a non-homogeneous basis by homogeneous methods, if the set G returned 

by the procedure is not autoreduced, under what circumstances does autoreducing 

G result in obtaining a set that is an Involutive Basis for the ideal generated by the 

input basis F? 

• Apart from the empty, left and right divisions, are there any other global noncom­

mutative involutive divisions of the following types: 

( a) strong and continuous; 

(b) weak, continuous and Grabner? 

• Are there any conclusive noncommutative involutive divisions that are also contin­

uous and either strong or Grabner? 

• Is it possible to perform a noncommutative walk between two admissible and ex­

tendible monomial orderings that are not harmonious? 

In addition to seeking answers to the above questions, there are a number of other di­

rections we could take. One area to explore would be the development of the algorithms 

introduced in this thesis. For example, can the improvements made to the involutive 

algorithms in the commutative case, such as the a priori detection of prolongations that 

involutively reduce to zero (see [23]), be applied to the noncommutative case? Also, can we 

develop multiple-object versions of our algorithms, so that (for example) noncommutative 

Involutive Bases for path algebras can be computed? 

Implementations of any new or improved algorithms would clearly build upon the code 

presented in Appendix B. We could also expand this code by implementing logged versions 

of our algorithms; implementing efficient methods for performing involutive reduction (as 

seen for example in Section 5.8.1); and implementing the algorithms from Chapter 6 
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for performing noncommutative walks. These improved algorithms and implementations 

could then be used (perhaps) to help judge the relative efficiency and complexity of the 

involutive methods versus the Grebner methods. 

Applications 

As every noncommutative Involutive Basis is a noncommutative Grebner Basis (at least 

for the involutive divisions defined in this thesis), applications for noncommutative lnvo­

lutive Bases will mirror those for noncommutative Grebner Bases. Some areas in which 

noncommutative Grebner Bases have already been used include operator theory; systems 

engineering and linear control theory [32]. Other areas in noncommutative algebra which 

could also benefit from the theory introduced in this thesis include term rewriting; Petri 

nets; linear logic; quantum groups and coherence problems. 

Further applications may come if we can extend our algorithms to the multiple-object 

case. It would be interesting (for example) to compare a multiple-object algorithm to a 

(standard) one-object algorithm in cases where an lnvolutive Basis for a multiple-object 

example can be computed using the one-object algorithm by adding some extra relations. 

This would tie in nicely with the existing comparison between the commutative and 

noncommutative versions of the Grebner Basis algorithm, where it has been noticed that 

although commutative examples can be computed using the noncommutative algorithm, 

taking this route may in fact be less efficient t han when using the commutative algorithm 

to do the same computation. 



Appendix A 

Proof of Propositions 5.5.31 and 

5.5.32 

A .1 Proposition 5.5.31 

(Proposition 5 .5.31) The two-sided left overlap division Wis continuous. 

Proof: Let w be an arbitrary fixed monomial; let U be any set of monomials; and 

consider any sequence (u1, u2, . .. , uk) of monomials from U (ui EU for all 1 ~ i ~ k), 

each of which is a conventional divisor of w (so that w = Ciuiri for all 1 ~ i ~ k, where the 

Ci and the ri are monomials). For all 1 ~ i < k, suppose that the monomial ui+1 satisfies 

exactly one of the conditions (a) and (b) from Definition 5.4.2 (where multiplicative 

variables are taken with respect to W over the set U). To show that Wis continuous, we 

must show that no two pairs (Ci, ri) and (Cj, rj) are the same, where if- j . 

Assume to t he contrary that there are at least two identical pairs in the sequence 

so that we can choose two separate pairs ( Ca, r a) and ( Cb, rb) from this sequence such that 

(Ca, ra) = (Cb, rb) and all the pairs (Cc, re) (for a~ c < b) are different. We will now show 

that such a sequence ((Ca, ra), ... , (Cb, rb)) cannot exist. 

To begin with, notice that for each monomial ui+1 in the sequence (u1 , ... , uk) of mono-

194 
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mials (1 ~ i < k) , if ui+1 involutively divides a left prolongation of the monomial ui (so 

that ui+l lw (Suffix(fi, l))u;), then ui+1 must be a prefix of this prolongation; if ui+1 invo­

lutively divides a right prolongation of the monomial ui (so that ui+1 lw u;(Prefix(r;, 1))), 

then ui+1 must be a suffix of this prolongation. This is because in all other cases, ui+1 

is either equal to u;, in which case ui+l cannot involutively divide the (left or right) pro­

longation of ui trivially; or U;+1 is a subword of u;, in which case ui+1 cannot involutively 

divide the (left or right) prolongation of u; by definition of W. 

Following on from the above, we can deduce that ub is either a suffix or a prefix of a 

prolongation of ub-l, leaving the following four cases, where xL1 = Suffix(fb-l , 1) and 

xL1 = Prefix(rb-l, 1). 

These four cases can all originate from one of the following two cases (starting with a left 

prolongation or a right prolongation), where x~ = Suffix(l'a, 1) and x: = Pre.fix(ra, 1). 

Case 1 Case 2 

So there are eight cases to deal with in total, namely cases 1-A, 1-B, 1-C, 1-D, 2-A, 2-B, 

2-C and 2-D. 

We can immediately rule out cases 1-C and 2-A because we can show that a part icular 

variable is both multiplicative and nonmultiplicative for monomial u 0 = ub with respect 

to U , a contradiction. In case 1-C, the variable is x~: it has to be left nonmultiplicative 

to provide a left prolongation for u 0 , and left multiplicative so that ub is an involutive 

divisor of the right prolongation of Ub- i; in case 2-A, the variable is x:: it has to be 

right nonmultiplicative to provide a right prolongation for Ua, and right multiplicative 
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so that ub is an involutive divisor of the left prolongation of ub-l · We illustrate this in 

the following diagrams by using a tick to denote a multiplicative variable and a cross to 

denote a nonmultiplicative variable. 

Case 1-C Case 2-A 

Ua xr a 
X X 

e Xb-1 Ub-1 

Ub = Ua xr a 

✓ ✓ 

For all the remammg cases, let us now consider how we may construct a sequence 

((Pa, ra), .. . , (Pb, rb) = (fa, ra)). Because we know that each Uc+l is a prefix (or suf­

fix) of a left ( or right) prolongation of Uc ( where a ::;; c < b), it is clear that at some stage 

during the sequence, some Uc+l must be a proper suffix (or prefix) of a prolongation, or 

else the degrees of the monomials in the sequence ( Ua, ... ) will strictly increase, meaning 

that we can never encounter the same (P, r) pair twice. Further, the direction in which 

prolongations are taken must change some time during the sequence, or else the degrees 

of the monomials in one of the sequences (Pa, ... ) and (ra, . .. ) will strictly decrease, again 

meaning that we can never encounter the same (P, r) pair twice. 

A change in direction can only occur if Uc+l is equal to a prolongation of Uc, as illustrated 

below. 

Left Prolongation Turn 

X 
Uc+l 

X 

Right Prolongation Turn 

Xe 
c+l 

X 

X 

However, if no proper prefixes or suffixes are taken during the sequence, it is clear that 

making left or right prolongation turns will not affect the fact that the degrees of the 

monomials in the sequence ( Ua, ... ) will strictly increase, once again meaning that we can 

never encounter the same (P, r) pair twice. It follows that our only course of action is to 
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make a (left or right) prolongation turn after a proper prefix or a suffix of a prolongation 

has been taken. We shall call such prolongation turns prefix or suffix turns. 

Prefix Turn Suffix Turn 

Xe 
C Uc Uc xr 

C 

X X 

e 
Xc+l Uc+l X~+2 

e 
Xc+2 Uc+l X~+l 

X ✓ ✓ X 

Uc+2 X~+2 
e 

Xc+2 Uc+2 

X X 

Claim: It is impossible to perform a prefix turn when W has been used to assign multi­

plicative variables. 

Proof of Claim: It is sufficient to show that W cannot assign multiplicative variables 

to U as follows: 

Consider how Algorithm 16 can assign the variable x~+2 to be right nonmultiplicative for 

monomial Uc+2. As things are set up in the digram for the prefix turn, the only possibility 

is that it is assigned due to the shown overlap between Uc and Uc+2· But this assumes 

that these two monomials actually overlap (which won't be the case if deg(uc+i) = 1); 

that Uc is greater than or equal to Uc+2 with respect to the DegRevLex monomial ordering 

(so any overlap assigns a nonmultiplicative variable to Uc+2, not to uc); and that, by the 

time we come to consider the prefix overlap between Uc and Uc+2 in Algorithm 16, the 

variable x~ must be left multiplicative for monomial Uc- But this final condition ensures 

that Algorithm 16 will terminate with x~ being left multiplicative for Uc, contradicting 

Equation (A. l ). We therefore conclude that the variable x~+2 must be assigned right 

nonmultiplicative for monomial Uc+2 via some other overlap. 

There are three possibilities for this overlap: (i) there exists a monomial ud E U such that 

Uc+2 is a prefix of ud; (ii) there exists a monomial ud E U such that Uc+2 is a subword of 

ud; and (iii) there exists a monomial ud E U such that some prefix of ud is equal to some 

suffix of Uc+2· 



APPENDIX A. PROOF OF PROPOSITIONS 5.5.31 AND 5.5.32 198 

Overlap (i) Overlap (ii) 

X~+2 
e 

Xc+l Uc+l X~+2 

X ✓ X ✓ 

X~+2 Uc+2 X~+2 

X X 

Ud Ud 

Overlap (iii) 

e 
Xc+l Uc+l X~+2 

X ✓ 

Uc+2 X~+2 

X 

Ud 

In cases (i) and (ii), the overlap shown between Uc+i and ud ensures that Algorithm 16 

will always assign x~+2 to be right nonmultiplicative for monomial Uc+l, contradicting 

Equation (A.l). This leaves case (iii), which we break down into two further subcases, 

dependent upon whether Uc+l is a prefix of ud or not. If Uc+l is a prefix of ud, then 

Algorithm 16 will again assign x~+2 to be right nonmultiplicative for Uc+l, contradicting 

Equation (A.l). Otherwise, assuming that the shown overlap between Uc+2 and ud assigns 

x~+2 to be right nonmultiplicative for Uc+2 (so that the variable immediately to the left 

of monomial ud must be left multiplicative), we must again come to the conclusion that 

variable x~+2 is right nonmultiplicative for Uc+l (due to the overlap between Uc+l and ud), 

once again contradicting Equation (A.l). 

Technical Point: It is possible that several left prolongations may occur between the 

monomials Uc+l and Uc+2 shown in the diagram for the prefix turn, but, as long as no 

proper prefixes are taken during this sequence (in which case we potentially start another 

prefix turn), we can apply the same proof as above (replacing c + 2 by c + c') to show 

that we cannot perform an extended prefix turn (as shown below) with respect to W. 
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Extended Prefix Turn 

X 

X ✓ 

X 

X 

X 

X 

D 

Having ruled out prefix turns, we can now eliminate cases 1-D, 2-C and 2-D because 

they require (i) a proper prefix to be taken during the sequence (allowing deg(rb-i) = 
deg(rb) + 1); and (ii) the final prolongation to be a right prolongation, ensuring that a 

turn has to follow the proper prefix, and so an (extended) prefix turn is required. 

For Cases 1-A and 1-B, we start by taking a left prolongation, which means that some­

where during the sequence a proper suffix must be taken. To do this, it follows that we 

must change the direction that prolongations are taken. Knowing that prefix turns are 

ruled out, we must therefore turn by using a left prolongation turn, which will happen 

after a finite number a' ~ l of left prolongations. 
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X 

X 

X 

X 

X 

Considering how Algorithm 16 assigns the variable x:+a' to be right nonmultiplicative for 

monomial Ua+a', there are three possibilities: (i) there exists a monomial ud E U such that 

Ua+a' is a prefix of ud; (ii) there exists a monomial ud E U such that Ua+a' is a subword of 

ud; and (iii) there exists a monomial ud E U such that some prefix of ud is equal to some 

suffix of Ua+a'. In each of these cases, there will be an overlap between ua and ud that will 

ensure that Algorithm 16 also assigns the variable x:+a' to be right nonmultiplicative for 

monomial Ua· This rules out Case 1-A, as variable x:+a' must be right multiplicative for 

monomial ub = Ua in order to perform the final step of Case 1-A. 

For Case 1-B, we must now make an (extended) suffix turn as we need to finish the 

sequence prolongating to the left. But, once we have done this, we must subsequently 

take a proper prefix in order to ensure that ub-l is a suffix of Ua = ub, Pictorially, here 

is one way of accomplishing this, where we note that any number of prolongations may 

occur between any of the shown steps. 

✓ 

X 

X 

✓ 

X 

Once we have reached the stage where we are working with a suffix of ua, we may continue 

prolongating to the left until we form the monomial ub = Ua, seemingly providing a 
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counterexample to the proposition (we have managed to construct the same (£, r) pair 

twice) . However, starting with the monomial labelled Ua+a" in the above diagram, if we 

follow the sequence from Ua+a" via left prolongations to ub = ua, and then continue with 

the same sequence as we started off with, we notice that by the time we encounter the 

monomial Ua+a' again, an extended prefix turn has been made, in effect meaning that the 

first prolongation of Ua we took right at the start of the sequence was invalid. 

X ✓ 

X 

X 

X 

Ua+l 

X 

X 

X 

X 

This leaves Case 2-B. Here we start by taking a right prolongation, meaning that some­

where during the sequence a proper prefix must be taken. To do this, it follows that we 

must change the direction that prolongations are taken. There are two ways of doing this: 

(i) by using an ( extended) suffix turn; (ii) by using a right prolongation turn. 

In case (i), after performing the (extended) suffix turn, we need to take a proper prefix 

so that the next monomial (say uc) in the sequence is a suffix of ua; we then continue 

by taking left prolongations until we form the monomial ub = Ua, This provides an 

apparent counterexample to the proposition, but as for Case 1-B above, by taking the 

right prolongation of Ua the second time around, we perform an extended prefix turn, 

rendering the first right prolongation of Ua invalid. 
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Case (i) 

X ✓ 

X 

X 

X 

In case (ii), after we make a right prolongation turn (which may itself occur after a finite 

number of right prolongations), we may now take the required proper prefix. But as we 

are then required to take a proper suffix (in order to ensure that we finish the sequence 

taking a left prolongation), we need to make a turn. But as this would entail making an 

( extended) prefix turn, we conclude that case (ii) is also invalid. 

An Example of Case (ii) 

Ua xr 
a 

X 

e 
Xa+l Ua+l 

X 

e 
Xa+2 Ua+2 

X ✓ 

Ua+3 

X 

As we have now accounted for all eight possible sequences, we can conclude that W is 

continuous. D 
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A.2 Proposition 5.5.32 

(Proposition 5.5.32) The two-sided left overlap division W is a Grobner involutive 

division . 

Proof: We are required to show that if Algorithm 12 terminates with W and some 

arbitrary admissible monomial ordering O as input, then the Locally Involutive Basis 

G it returns is a noncommutative Grobner Basis. By Definition 3.1.8, we can do this 

by showing that all S-polynomials involving elements of G conventionally reduce to zero 

using G. 

Assume that G = {g1, ... , gp} is sorted (by lead monomial) with respect to the DegRevLex 

monomial ordering (greatest first), and let U = { u 1 , ... , up} := {LM(g1), ... , LM(gp)} be 

the set of leading monomials. Let T be the table obtained by applying Algorithm 16 to 

U. Because G is a Locally lnvolutive Basis, every zero entry T( ui, x;) (r E { L, R}) in 

the table corresponds to a prolongation 9iXJ or XJ9i that involutively reduces to zero. 

Let S be the set of S-polynomials involving elements of G, where the t-th entry of S 

(1 ~ t ~ ISi) is the S-polynomial 

with ftuirt = /l.~uir~ being the overlap word of the S-polynomial. We will prove t hat every 

S-polynomial in S conventionally reduces to zero using G. 

Recall (from Definition 3.1.2) that each S-polynomial in S corresponds to a particular type 

of overlap - 'prefix', 'subword' or 'suffix'. For the purposes of this proof, let us now split 

the subword overlaps into three further types - 'left', 'middle' and 'right', corresponding 

to the cases where a monomial m2 is a prefix, proper subword and suffix of a monomial 

Left Middle Right 

This classification provides us with five cases to deal with in total, which we shall process 

in the following order: right, middle, left, prefix, suffix. 
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(1) Consider an arbitrary entry St E S (1 ~ t ~ ISi) corresponding to a right overlap 

where the monomial ui is a suffix of the monomial ui. This means that St = Ct9i - c~f_~gi 

for some 9i,9i E G, with overlap word ui = f_~ui. Let ui = Xi1 .• . xi0 ; let Uj =xii ... Xj13 ; 

and let D = a - (3. 

Because ui is a suffix of ui, it follows that T(uj, xf
0

) = 0. This gives rise to the prolon­

gation xio9i of 9i · But we know that all prolongations involutively reduce to zero (G is 

a Locally lnvolutive Basis), so Algorithm 10 must find a monomial uk = Xk1 ••• xk.., E U 

such that Uk involutively divides xio ui. Assuming that Xk-, = Xi", we can deduce that 

any candidate for Uk must be a suffix of Xioui (otherwise T(uk,xt+J = 0 because of the 

overlap between ui and uk) . But if uk is a suffix of xio Uj, then we must have Uk = Xio Uj 

( otherwise T( Uk, xf;,_..,) = 0 again because of the overlap between ui and uk). We have 

therefore shown that there exists a monomial Uk = Xk1 ••• Xk-, E U such that uk is a suffix 

of ui and 1 = /3 + 1. 

In the case D = 1, it is clear that uk = ui, and so the first step in the involutive reduction 

of the prolongation xii9i of gj is to take away the multiple ( ff- )gi of gi from Xi i9J· to leave 
ct 

the polynomial Xi 1 gj - ( ff- )gi = -( l, )st. But as we know that all prolongations involutively 
Ct Ct 

reduce to zero, we can conclude that the S-polynomial St conventionally reduces to zero. 

For t he case D > 1, we can use the monomial Uk together with Buchberger's Second 

Criterion to simplify our goal of showing that the S-polynomial St reduces to zero. Notice 

that the monomial uk is a subword of the overlap word ui associated to St, and so in order 

to show that St reduces to zero, all we have to do is to show that the two S-polynomials 

and 
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reduce to zero (1 ~ u, v ~ ISi). But Sv is an S-polynomial corresponding to a right overlap 

of type D = 1 (because -y - /3 = 1), and so Sv reduces to zero. It remains to show that the 

S-polynomial Su reduces to zero. But we can do this by using exactly the same argument 

as above - we can show that there exists a monomial u'lf = X7r1 •.. X7r6 E U such that u'lf 

is a suffix of ui and 8 = 'Y + 1, and we can deduce that the S-polynomial Su reduces to 

zero (and hence St reduces to 0) if the S-polynomial 

reduces to zero (1 ~ w ~ ISi). By induction, there is a sequence { Uq0 , Uq
0

_ 1 , ... , Uq2 } of 

monomials increasing uniformly in degree, so that St reduces to zero if the S-polynomial 

reduces to zero (1 ~rt~ ISi). 

x · 11 

But s,,, is always an S-polynomial corresponding to a right overlap of type D = 1, and so 

s,,, reduces to zero - meaning we can conclude that s1 reduces to zero as well. 

(2) Consider an arbitrary entry St E S (1 ~ t ~ ISi) corresponding to a middle overlap 

where the monomial Uj is a proper subword of the monomial ui. This means that s 1 = 
c1gi - c~f.~gjr~ for some gi, gj E G, with overlap word ui = f.~ujr~. Let ui =Xii ... Xi,,; let 

Uj = Xj1 •.. Xjf3; and choose D such that Xiv = Xjf3· 

Because Uj is a proper subword of ui , it follows that T(uj, xi+J = 0. This gives rise to 
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the prolongation gjxio+i of 9}· But we know that all prolongations involut ively reduce 

to zero, so there must exist a monomial uk = xk, ... Xk'Y E U such that uk involutively 

divides UjXio+i. Assuming that Xk'Y = Xi", any candidate for uk must be a suffix of UjXio+i 

(otherwise T(uk, xt+J = 0 because of the overlap between ui and uk)- Unlike part (1) 

however, we cannot determine the degree of uk (so that 1 ::;;; 1 ::;;; /3 + 1); we shall illust rate 

this in the following diagram by using a squiggly line to indicate that the monomial uk 

can begin anywhere ( or nowhere if uk = Xio+i) on the squiggly line. 

We can now use the monomial Uk together with Buchberger's Second Criterion to simplify 

our goal of showing that the S-polynomial St reduces to zero. Notice that the monomial 

uk is a subword of the overlap word ui associated to St, and so in order to show that St 

reduces to zero, all we have to do is to show that the two S-polynomials 

and1 

reduce to zero (1 ::;;; u, v:,;;; ISl)-

For the S-polynomial Sv, there are two cases to consider: 1 = 1, and 1 > l. In the 

former case, because ( as placed in ui) the monomials Uj and uk do not overlap, we can use 

Buchberger's First Criterion to say that the 'S-polynomial' Sv reduces to zero (for further 

explanation, see the paragraph at the beginning of Section 3.4.1). In the latter case, 

note that Uk is the only involutive divisor of the prolongation UjXio+i, as the existence 

of any suffix of UjXio+ i of higher degree than Uk in U will contradict the fact that uk is 

an involutive divisor of u 1xio+ i; and the existence of Uk in U ensures that any suffix of 

u 1xio+i that exists in U with a lower degree than uk will not be an involutive divisor of 

u 1xio+i. This means that the first step of the involutive reduction of g1xio+ i is to take away 

the multiple (~)(x1i ... Xio+,-'Y)gk of 9k from 9JXio+i to leave the polynomial 9}Xio+i -
V 

1Technical point: if 1 =/= {3 + 1, the S-polynomial Sv could in fact appear as Sv = Cv9jXiv+i -

c~(xii ... Xiv+ 1_.,)gk and not as Sv = Cv(Xji ... Xiv+i--, )gk - c'v9JXiv+i; for simplicity we will treat both 
cases the same in the proof as all that changes is the notation and the signs. 
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(£JL)(xj1 ... xio+i- )gk = -(+)sv. But as we know that all prolongations involutively 
~ ~ ~ 

reduce to zero, we can conclude that the S-polynomial Sv conventionally reduces to zero. 

For the S-polynomial Su, we note that if D = a-1, then Su corresponds to a right overlap, 

and so we know from part (1) that Su conventionally reduces to zero. Otherwise, we 

proceed by induction on the S-polynomial Su to produce a sequence { Uqv+i, Uq0 + 2 , . .. , Uq"' } 

of monomials, so that Su (and hence St) reduces to zero if the S-polynomial 

reduces to zero (1 ::;; r,::;; ISi), whereµ = deg(uqJ, 

~ --
Xk~ 

~ 

But s., always corresponds to a right overlap, and so s., reduces to zero - meaning we 

can conclude that St reduces to zero as well. 

(3) Consider an arbitrary entry St E S (1 ::;; t ::;; ISi) corresponding to a left overlap where 

the monomial Uj is a prefix of the monomial ui. This means that St = Ct9i - c~gjr~ for 

some 9i, 9i E G, with overlap word ui = ujr; . Let u i = Xi1 ... xi"' and let Uj = Xj1 ••. XjfJ· 

Because Uj is a prefix of ui, it follows that T(uj, xt+J = 0. This gives rise to the 

prolongation gjxifJ+ i of 9j· But we know that all prolongations involut ively reduce to 

zero, so there must exist a monomial uk = Xk 1 ••• Xk~ E U such that Uk involutively 

divides UjXifJ+ i. Assuming that Xk~ = xi", any candidate for uk must be a suffix of UjXifJ+i 
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(otherwise T(uk, x~+J = 0 because of t he overlap between ui and uk)-

If a = 'Y, then it is clear t hat uk = ui, and so the first step in the involutive reduction 

of the prolongation gjxio: is to take away the multiple (~ )gi of 9i from gjxi"' to leave the 

polynomial gJ-xia - (ff )gi = -(➔)st, But as we know that all prolongations involutively c, c, 

reduce to zero, we can conclude that the S-polynomial St conventionally reduces to zero. 

Otherwise, if a > 'Y, we can now use the monomial Uk together with Buchberger 's Second 

Criterion to simplify our goal of showing that the S-polynomial St reduces to zero. Notice 

that the monomial Uk is a subword of the overlap word ui associated to St, and so in order 

to show that St reduces to zero, all we have to do is to show that the two S-polynomials 

and 

reduce to zero (1 ~ u, v ~ JSJ). 

The S-polynomial Sv reduces to zero by comparison with part (2). For the S-polynomial 

Su, first note that if a = (3 + 1, then Su corresponds to a right overlap, and so we know 

from part (1) that Su conventionally reduces to zero. Otherwise, if 'Y -/:. (3 + 1, then Su 

corresponds to a middle overlap, and so we know from part (2) that Su conventionally 

reduces to zero. This leaves the case where Su corresponds to another left overlap, in which 

case we proceed by induction on Su, eventually coming across either a middle overlap or a 

right overlap because we move one letter at a t ime to the right after each inductive step. 
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(4 and 5) In Definition 3.1.2, we defined a prefix overlap to be an overlap where, given 

two monomials m 1 and m2 such that deg(m1) ;?: deg(m2), a prefix of m 1 is equal to a 

suffix of m2; suffix overlaps were defined similarly. If we drop the condition on the degrees 

of the monomials, it is clear that every suffix overlap can be treated as a prefix overlap 

(by swapping the roles of m1 and m2); this allows us to deal with the case of a prefix 

overlap only. 

Consider an arbitrary entry St E S (1 :::; t :::; ISi) corresponding to a prefix overlap where 

a prefix of the monomial ui is equal to a suffix of the monomial u1. This means that 

St= Ctftgi - c~gir~ for some 9i, 91 E G, with overlap word Rtui = u1r~. Let ui = Xi 1 ••• Xi,,; 

let u1 = xii ... x113 ; and choose D such that xiv = x113 . 

By definition of W, at least one of T(ui, xf13 _v ) and T(u1, x{;+J is equal to zero. 

• Case T(u1, xi+J = 0. 

Because we know that the prolongat ion g1xiv+i involutively reduces to zero, there 

must exist a monomial uk = Xk1 ••• Xk-r E U such that Uk involutively divides UjXio+i . 

This Uk must be a suffix of UjXiv+i (otherwise, assuming that xk-r = Xj,_, we have 

T(uk, xi+J = 0 if,= /3 (because of the overlap between ui and uk); T(uk, xf13_-r) = 

0 if 1 < /3 and K = /3 (because of the overlap between u1 and uk); and T(uk , xf+J = 

0 if 1 < /3 and K < /3 ( again because of the overlap between Uj and uk)) . 

Let us now use the monomial uk together with Buchberger's Second Criterion to 

simplify our goal of showing that the S-polynomial St reduces to zero. Because uk is 

a subword of the overlap word ftui associated to St, in order to show that St reduces 

to zero, all we have to do is to show that the two S-polynomials 

if 1 > D + 1 

if 1 :::; D + 1 
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and 

reduce to zero (1 ~ u, v ~ ISi). 
The S-polynomial Sv reduces to zero by comparison with part (2). For the S­

polynomial Su, first note that if a = D + 1, then either Uk is a suffix of ui, ui is a 

suffix of uk, or Uk = ui; it follows that Su reduces to zero trivially if Uk = ui , and Su 

reduces to zero by part (1) in the other two cases. 

If however a -:/= D + 1, then either Su is a middle overlap (if 1 < D + 1), a left 

overlap (if,= D+ 1) , or another prefix overlap. The first two cases can be handled 

by parts (2) and (3) respectively; the final case is handled by induction, where we 

note that after each step of the induction, the value a + /3 - 2D strictly decreases 

(regardless of which case T(uj,xf;+) = 0 or T(ui ,xff3-D) = 0 applies), so we are 

guaranteed at some stage to find an overlap that is not a prefix overlap, enabling 

us to verify that the S-polynomial St conventionally reduces to zero. 

• Case T(ui, xff3_0 ) = 0. 

Because we know that the prolongation xif3-o9i involutively reduces to zero, there 

must exist a monomial uk = xk1 ••• Xk.., E U such that uk involutively divides xif3-D ui. 

This uk must be a prefix of xif3- D ui ( otherwise, assuming that Xk.., = Xi", we have 

T(uk, xt_
0

) = 0 if , = a (because of the overlap between Uj and uk); T(uk , xt_..,) = 

0 if, < a and K = a (because of the overlap between ui and uk); and T ( uk, xt + J = 0 

if , < a and K < a ( again because of the overlap between ui and uk)). 

Let us now use the monomial Uk together with Buchberger's Second Criterion to 

simplify our goal of showing that the S-polynomial St reduces to zero. Because uk is 

a subword of the overlap word ftui associated to St, in order to show that St reduces 

to zero, all we have to do is to show that the two S-polynomials 
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and 

reduce to zero (1 (; u, v (; ISi). 

if 1 > D + 1 

if 1 (; D + 1 
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The S-polynomial Su reduces to zero by comparison with part (2) . For the S­

polynomial Sv, first note that if /3 - D = 1, then either Uk is a prefix of u1, u1 is a 

prefix of uk, or Uk = u1; it follows that Sv reduces to zero trivially if uk = u1, and 

Sv reduces to zero by part (3) in the other two cases. 

If however /3 - D # 1, then either Sv is a middle overlap (if 1 < D + 1), a right 

overlap (if 1 = D + 1), or another prefix overlap. The first two cases can be handled 

by parts (2) and (1) respectively; the final case is handled by induction, where we 

note that after each step of the induction, the value a + /3 - 2D strictly decreases 

(regardless of which case T(u1, x{;+J = 0 or T(ui , xf~_
0

) = 0 applies), so we are 

guaranteed at some stage to find an overlap that is not a prefix overlap, enabling 

us to verify that the S-polynomial St conventionally reduces to zero. 

D 



Appendix B 

Source Code 

In this Appendix, we will present ANSI C source code for an initial implementation of the 

noncommutative Involutive Basis algorithm (Algorithm 12), together with an introduction 

to Algl ib, a set of ANSI C libraries providing data types and functions that serve as 

building blocks for the source code. 

B.1 Methodology 

A problem facing anyone wanting to implement mathematical ideas is the choice of lan­

guage or system in which to do the implementation. The decision depends on the task 

at hand. If all that is required is a convenient environment for prototyping ideas, a 

symbolic computation system such as Maple [55], Mathematica [57] or MuPAD [49] may 

suffice. Such systems have a large collection of mathematical data types, functions and 

algorithms already present; tools that will not be available in a standard programming 

language. There is however always a price to pay for convenience. These common systems 

are all interpreted and use a proprietary programming syntax, making it it difficult to 

use other programs or libraries within a session. It also makes such systems less efficient 

than the execution of compiled programs. 

The Alglib libraries can be said to provide the best of both worlds, as they provide data 

types, functions and algorithms to allow programmers to more easily implement certain 

mathematical algorithms (including the algorithms described in this thesis) in the ANSI 

C programming language. For example, Alglib contains the FMon [41] and FAlg [40] 
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libraries, respectively containing data types and functions to perform computations in 

the free monoid on a set of symbols and the free associative algebra on a set of symbols. 

Besides the benefit of the efficiency of compiled programs, the strict adherence to ANSI 

C makes programs written using the libraries highly portable. 

B .1.1 MSSRC 

Alglib is supplied by MSSRC [46], a company whose Chief Scientist is Prof. Larry Lambe, 

an honorary professor at the University of Wales, Bangor. For an introduction to MSSRC, 

we quote the following passage from [42]. 

Multidisciplinary Software Systems Research Corporation (MSSRC) was con­

ceived as a company devoted to furthering the long-term effective use of math­

ematics and mathematical computation. MSSRC researches, develops, and 

markets advanced mathematical tools for engineers, scientists, researchers, 

educators, students and other serious users of mathematics. These tools are 

based on providing levels of power, productivity and convenience far greater 

than existing tools while maintaining mathematical rigor at all times. The 

company also provides computer education and training. 

MSSRC has several lines of ANSI C libraries for providing mathematical sup­

port for research and implementation of mathematical algorithms at various 

levels of complexity. No attempt is made to provide the user of these libraries 

with any form of Graphical User Interface (GUI). All components are compiled 

ANSI C functions which represent various mathematical operations from basic 

( adding, subtracting, multiplying polynomials, etc.) to advanced ( operations 

in the free monoid on an arbitrary number of symbols and beyond). In order 

to use the libraries effectively, the user must be expert at ANSI C program­

ming, e.g., in the style of Kernighan and Richie [38] and as such, they are not 

suited for the casual user. This does not imply in any way that excellent user 

interfaces for applications of the libraries cannot be supplied or are difficult 

to implement by well experienced programmers. 

The use of MSSRC's libraries has been reported in a number of places such 

as [43], [14], [16], [15] and elsewhere. 
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B.1.2 AlgLib 

To give a taste of how Alglib has been used to implement the algorithms considered in this 

thesis, consider one of the basic operations of these algorithms, the task of subtracting 

two polynomials to yield a third polynomial (an operation essential for computing an 

S-polynomial). In ordinary ANSI C, there is no data type for a polynomial, and certainly 

no function for subtracting two polynomials; Alglib however does supply these data types 

and functions, both in the commutative and noncommutative cases. For example, the 

Alglib data type for a noncommutative polynomial is an FAlg, and the Alglib function 

for subtracting two such polynomials is the function JAlgMinus. It follows that we can 

write ANSI C code for subtracting two noncommutative polynomials, as illustrated below 

where we subtract the polynomial 2b2 +ab+ 4b from the polynomial 2 x (b2 + ba + 3a) . 

Source Code 

# include <fralg.h> 

int 
main( argc, argv ) 

int argc; 

char *argv[]; 

{ 

} 

II De.fine Va.'f'iol,l,;s 

FAlg p, q, r; 

Qlnteger two; 

II S<-:t Mm1.omfol 0-l'derin_q (D,wLe:1:) 

theOrdFun = fMonTLex; 

I I ln·iti<tlise Viiria.bh;s 

p = parseStrToFAlg("b"2u+ub*au+u3*a"); 

q = parseStrToFAlg("2*b"2u+ua*bu+u4*b"); 
two = parseStrToQ("2"); 

I I Pfffoi-rr,. th,: cnl<:ulnticm. ancl diwl«y th~ re.sul/. on _screen 

r = fAlgMinus( fA!gScaTimes( two, p ), q ); 

printf("2*('l.s)u-u(i.s)u•u1/,s\n", fAlgToStr( p ), fAlgToStr( q ) , fAlgToStr ( r) ); 

return EXIT.SUCCESS; 

Program Output 

ma6:mssrc- aux/thesis> fA!gMinusTest 

2*(b"2 + b a+ 3 a) - (2 b"2 +ab+ 4 b) = 2 b a - ab -4 b + 6 a 

ma6:mssrc- aux/thesis> 
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B.2 Listings 

Our implementation of the noncommutative Involutive Basis algorithm is arranged as 

follows: involutive.c is the main program, dealing with all the input and output and calling 

the appropriate routines; the '_functions' files contain all the procedures and functions 

used by the program; and README describes how to use the program, including what 

format the input files should take and what the different options of the program are used 

for. 

In more detail, arithmetic_functions. c contains functions for dividing a polynomial by 

its (coefficient) greatest common divisor and for converting user specified generators to 

ASCII generators (and vice-versa); file_functions.c contains all the functions needed to 

read and write polynomials and variables to and from disk; fralg_functions.c contains 

functions for monomial orderings, polynomial division and reduced Grabner Bases com­

putation; lisLfunctions.c contains some extra functions needed to deal with displaying, 

sorting and manipulating lists; and ncinv_functions.c contains all the involutive routines, 

for example the Involutive Basis algorithm itself and associated functions for determining 

multiplicative variables and for performing autoreduction. 

Contents 
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240 
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APPENDIX B. SOURCE CODE 

B.2.1 README 

**************************************************************** 
* HOW TO USE THE INVOLUTIVE PROGRAM - QUICK GUIDE * 
**************************************************************** 

NAME 

involutive - Computes Noncommutative Involutive Bases for ideals. 

SYNOPSIS 

involutive [ OPTION] ... [FILE] ... 

DESCRIPTION 

Here are the options for the program. 

- a 

e.g. > involutive -d - a file. in 

Optimises the lexicographical ordering according to 

the frequency of the variables in t he input basis 

( most frequent = lexicographically smallest). 

-c(n) 

-d 

e.g. > involutive -c2 file . in 

Chooses which involutive algorithm to use. 

n is a required number between 1 and 2. 

1: •DEFAULT * Gerdt's Algorithm 

2: Seiler 's Algorithm 

e.g. > involutive -d file. in 

Allows the user to calculate a DegLex 

lnvolut ive Basis for the basis in file . in. 

-e(n) 

e.g. > involutive -e2 -s2 file. in 

Allows the user to select the type of Overlap 

Division to use. n is a required number between 

1 and 5. Note: Must be used with either the 
-sl or -s2 options. 

Left Overlap Division: 

A B C 

-----x ----x - ---x 

1: * DEFAULT * A, B, C (weak, Gr\"obner) 
2: A, B, C, Strong (strong if used with - m2) 

3: A, B, C, D (weak, Gr\"obner) 

4: A, B (weak, Gr\"obner) 

5: A (weak, Gr\"obner) 

D 

x---

216 



APPENDIX B. SOUR CE CODE 

-f 

- l 

Right Overlap Division: 

A B C D 

x----- x--- x-- - - ---x 

1: * DEFAULT * A, B, C (weak, Gr\"obner) 

2: A, B, C, Strong (strong if used with -m2) 

3: A , B, C, D (weak, Gr\"obner) 

4: A, B (weak, Gr\"obner) 

5: A (weak, Gr\"obner) 

e. g. > involutive -f file . in 

Removes any fractions from the input basis. 

e.g. > involutive - l file . in 

A !lows the user to calculate a Lex 

Involutive Basis for the basis in file . in . 

Warning: program may go into an infinite loop 

(Lex is not an admissible monomial ordering). 

-m(n) 

e .g. > involutive - m2 file .in 

Selects which method of deciding whether a monomial 

involutively divides another monomial is used. 

n is a required number between 1 and 2. 

1: * DEFAULT* 1st letters on left and right (thin divisor) 

2: All letters on left and right ( thick divisor) 

-o(n) 

-p 

e.g. > involutive - o2 file. in 

Allows the user to select how the basis is sorted 

during the algorithm. n is a required number between 
1 and 3. 

1: * DEFAULT * DegRevLex Sorted 
2: No Sorting 

3: Sorting by Main Ordering 

e.g. > involutive -l -p file . in 

An interactive Ideal Membership Problem Solver. 

There are two ways the solver can be used: 

either a file containing a list of polynomials 

( e . g. X*y-z; 

x·2- z"2+y"2; ) can be given, or the 

polynomials can be input 

manually (e.g. X*y-z). T he solver tests to see 

whether the lnvolutive Basis computed in the 

algorithm reduces the polynomials given to zero. 
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-r * DEFAULT * 
e.g. > involutive -r file . in 

Allows the user to calculate a DegRevLex 

Involutive Basis for the basis in file . in. 

-s(n) 

e.g. > involutive -s2 file . in 

Allows the user to select the type of lnvolutive 

Basis to calculate . n is a required number between 

1 and 5. Note: If an 'Overlap' Division is selected , 

the type of Overlap Division can be chosen with 

t he -e(n) option. 

1: Left Overlap Division (local, cts , see - e option) 

2: Right Overlap Division (local , cts, see -e option) 

3: * DEFAULT * Left Division (global, cts, strong) 

4: Right Division (global, cts, strong) 

5: Empty Division (global, cts, strong) 

-v(n) 

- w 

-x 

e.g. > involutive - v3 file. in 

Changes the amount of information given out by the 

program (i.e. t he 'verbosity' of the program). 
n is a number between O and 9. Rough Guide: 

0: Silent (no output given) . 

1: * DEFAULT * 
2: Returns Number of Reductions Carried Out, 

Prints Out Every Polynomial Found 

3: More Autoreduction Information , 

Prolongation Information 
4: More Details of Steps Taken in Algorithm 

5: More Global Division Information 

6: Step-by-Step Reduction, Overlap Information 

7: Shows Multiplicative Grids 

8: More Overlap Division Information 

9: All Other Information 

e.g. > involutive -w fi le. in 

Allows the user to calculate an Involutive Basis 

for the basis in file . in using the Wreath 

Product Monomial Ordering. 

e.g. > involutive -x file. in 

Ignores any prolongations of degree greater t han or 

equal to 2d, where d is a value determined by the degree 

of the largest degree lead monomial in the current minimal basis. 
Warning: May not return a valid lnvolutive Basis 

(only a valid Gr\"obner Basis). 
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FILE FORMATS 

There is one file format for the input basis: 

IDEALS: 

Xj y; z; 

X*Y - Zj 

2*X + Y*Z + z; 

First line = List of variables in order. In the 

above, x; y; z; represents x > y > z. 

Remaining lines= Polynomial generators (which must be 

terminated by semicolons) . 

OUTPUT 

As output, the program provides a reduced Gr\"obner Basis and 

an Involutive Basis for the input ideal (if it can calculate it). 

For the following, assume that our input basis was given as file . in. 

* If a DegRevLex Gr\"obner Basis is calculated, it is stored as file . drl. 

* If a DegLex Gr\"obner Basis is calculated, it is stored as file . deg. 
* If a Lex Gr\" obner Basis is calculated, it is stored as file . lex . 

* If a Wreath Product Gr\"obner Basis is calculated, it is stored as file . wp. 

The lnvolutive Basis is given as <Gr\"obner Basis>.inv. 
For example, if a DegLex lnvolutive Basis is calculated, 

it is stored as file . deg.inv. 

Note t hat the program has the ability to recognise the . in suffix and 
replace it with . drl , . deg, . lex or . wp as necessary. 

If your input fil e does not have a . in suffix then t he program will 

simply append t he appropriate suffix onto the end of t he file name. 

For example, using the command 

> involut ive FILE 

we obtain file . drl if FILE= file.in 

and obtain e.g. file . other. drl if FILE= fi le.other. 

B.2.2 arithmetic_functions.h 

; .. 
2 * F'ik: a.1·il/1.rr,.di1;_f1mctim1.,,.h 

:l * Au.th.or: Gard.h Cvan.s 

,l * last. Modified: 2/Jt/,. Sc-:]lt<·:mlic,· :!00.i 

" *I 
1·i 

7 / / Jnitinlisc file definition 

R # ifnde f ARITHMETIC..FUNCTIONS_HDR 

fl # define ARITHMETIC..FUNCTJONS..HDR 
J.() 
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11 I I Inclnde M88R.C: /, ibn,ries 

12 # include <fralg.h> 
1:1 

J.1 II 
15 I I Nm,w-ri~a.l flmr.t.ion., 

l(i II 
17 

18 I I Ikt·u.rn,, the n ·u.me·1·iml ·u,1./i,,) of tt :J Lett.er word 

I ll ULong ASCIIVal( String ); 
20 I I Ret-u.rns the 3 letter word of a m,mcrical val·u.e 

21 String ASCIIStr( U Long ); 

22 I I Re.tu.rns the monom·iQ/ cn rres'µonriing t" the 8 letter wurd nf a nwmcrica.l ,,afoe 

2:1 FMon ASCIIMon( ULong ); 
24 

25 II 
26 II Q /nt.,;9er Pundi.on .. i 

:n II 
28 
29 I I C1t/cu.ln'/:,) Al/.,; r r,.n/:ive LCM ,,f 2 Qlnt<:ge1·.s 

:m Qlnteg er AltLCMQinteger ( Qlnteger, Qlnteger ) ; 
:n 
:12 II 
:n I I FA lg Pu.nr:lfons 

:H II 
:rn 
;',G II Di·vidcs the inp1</ PAlg hy it .. ~ r.<•m11wn COD 

:\, FAlg findGCD( FAlg ) ; 

;J8 I/ Hcturns ma:cir,wl dc9rne of le,ul l.e:rm }irr /.he given FAl,ql,ist 

:111 ULong maxDegree( FAlgList ); 

40 I I Ikt·u.rns the 71ositi,m. of lhe s·m.n/fosl: LM(g) in the yiv,m PAlgU.st 

,j I ULong fAlgListLowest ( FAlgList ); 
,12 

,1:1 # endif II ARITJJME?'I CLPUNCTI ONS_ ffDR 

B.2.3 arithmetic_functions.c 

/ -1< 
2 * File: Qrithmctic-funclions. c 
:1 * Anthor: C<Lreth E-u,w._-

,1 * Last Mod~fie<l: ./1th fl,&,.11.C1.ry 2005 

$ .-1 
(j 

8 • =================== 
9 * Nmnerico.l H,r/./:tions 

10 -. ===·====·==·========·== 
11 */ 
l.2 

1:i I* 
H * Pwnr:tion N«me: A8CII\/al 

15 • 

Hi • Ol!(:1'1Jiew: Ret.1,-rns / /,e num.m-i.m.l vafo.c-: of n. ,Y letter word 
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17 * 
18 * /),;ta.i i: C:i-ocn a. St'f'iri.y conl,uining .'/ le/.tf.1·,, from the .H:t 

Ill * { A , B , ... , Z }.. /,his fmtc-/.iun rcl·i,rns the n·11.met·iwl 

20 * va.luc of /.he String accm·din!/ /.o the followin_q rn.lf:: 

21 * AAA = I , AAB = 2, ... , AAZ = 26, ABA = 27, AIW = 28, 

22 * ... , ABZ --== 52. AGA ·"' ,5S .... 

2:1 * 
2,1 *I 
25 ULong 

'.W ASCIIVal( word ) 

27 String word; 

21l { 

W ULong back = 0; 

:10 

;n II Add on 17576,,i,o.lnc of J.,t lctt,,ir (A = 0, B = I, .. . ) 

:.l'.! back= back+ 17576*( (ULong)( (int)word[0] - (int}'A' ) ); 

;n II Add on 26*111J.l1te of 2nd le/:1.tff (A ·"' 0. B ·"" 1 ... .) 

:1,.1 back= back + 26*( (ULong)( (int)word[l] - (int}'A') ); 

:l!'., II Add on the vul·uc of l:he .1rd ldter (A = 1, B = 2, ... ) 

:lG back= back+ (ULong)( (int}word[2] - (int)'A' + 1 }; 

:37 

:1s return back; 
:l!) } 

:J(l 

·ti I* 
,12 •· I'\.1,w:l:iun N am,;: ASCilStt· 

-1:1 * 
,1,1 •· (hu:1 -itiew: F/.cl.7ffns I.he :J lei/cl' 1J1ord of a. nv,,n.1:1·iml 11a.l1tc 

,j5 .. 

46 * LJc.:to.il: Given a l/Long, /.h-i.~ fwnction rel.,,ms /,he 

,1.7 • .'I le/.ter S ti·ing ,:-01~1,s1,ondi119 1.,1 the follo·wing i·u.l,;: 

48 * 1 --== AAA. 2 --= AAB, .... 2U ·"' AAZ. 27 = ABA. 28 = ABB, 

-19 * ... , ,52 = A.BZ, 5.J = ACA, ... 

r,o * 
;:q •I 
T,2 String 

3'.1 ASCIIStr( number ) 

5--l ULong number; 

;;5 { 

56 String back = strNew(}; 

:,7 int i = 0, j = 0 , k; 

[>8 

S9 /I 1hk,; 11wwy ·mnlt·iples of 21i • 2 to _qcit the }'irst lt-:Uer 

(iO while( number > 17576 ) 

61 { 

(\2 i++; 
(;:l number = number - 17576; 

r;,1 } 

65 
GG I I './"/Ike ,rway rn·u.ltiple., of 26 /.o U"'· the .5cc:on<l lc/./.1:1· 

li7 while( number > 26 ) 

G8 { 
lit! i++; 
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7ll number = number - 26; 

71 } 

i2 

73 / / We nrc no'IJJ lt;f/. wilh /he /.hil'll le/.te,· 

74 k = (int) number - 1; 
7:) 

76 / / Con•1Je1·/. th,! rmm.hers to a. String 

77 sprintf( back, "i.ci.ci.c" , (char)( (int) 'A' + i ) , 
7::, (char)( (int)' A' + j ), 

79 (char)( (int)' A' + k ) ); 

80 

81 // Tr.cium /he. t.hre.c lcttC'rs 
82 return back; 

~:\ } 

8-1 
~5 ;,. 

l'.\G * Fu.nc-J.ion N,i·me: ASCllStr 

88 * Oven;fow: Udnrn.; th,) monom:ia.l co,-re.spondir,-9 lo th,! 

li9 * 8 le'/.tc1· wo,Yl of ,t n-wne.1·irnl value 

no * 
Dl .. Detail: Given a. ULong. lhi.< function 1v-:l:u.rns /he 

fl:! • rnunom.·i11l cor-reswmdinr, t" the following ru.le: 

fl:\ *.I = AAA, 2 = .AAB . .. . , 26 = AAZ, 27 ""-' ABA, 2S =· AFIFI. 

84 • ... . .52 = ABZ,.5S = ACA, ... 

95 * 
!l6 •/ 

97 FMon 
9::l ASCIIMon( number ) 

\)9 ULong number; 

100 { 

I !)l / / 01,ta.in the St1·ing ~cn~ri.;ponchn_q /:11 the -inpu/. 

1.02 / / nwmbcr and chunyc ii t:o a.n FM on 

J.l):l return parseStrTo FMon( ASCIIStr( number ) ); 

JO,l 

l05 
IOG /• 

l 07 ., ------ ------------
108 ,. Qfnteyc•;,· P1tw:-/.ic,ns 

100 •================== 
110 •/ 

l l I 

112 /• 

I lei * Function N,mw: AltLCMQ!nteger 

I. l.-t. * 
I lf> * Overview : Crilcula,/.es an 'a.llern.11tit1e' LCM nf 2 Q.fnter,ers 

l 16 * 
11.7 " l.klo.il: Gimm lwo (Jlnl,?.ge1·8 n. = cm/n.d nncl /, = bn/ lul, 

1111 * t.h-i., fnnclion c;a.lculn.le.s t.h1-: LCM giv<·:n 

1 HJ , by o.l.Uc:m{«, b) = («•bJ/(nlL_qccl{a, b)) 

120 * ·"' ("'Hlm*wµbd)/{,td*l>d,g<xl("'i. lm)•_qcd(a.d, bd)) 

121 • =- (n:n•lm)/(gcd(m1., bn)*!/Cd{nd, bd)). 

·122 * 
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:t'.n *I 
1 :2,1 Qinteger 

125 AltLCMQinteger( a , b) 

12G Qinteger a, b; 

127 

128 Integer an = a - > num, 

129 ad= a-> den, 

l:lO bn = b -> num, 

l'.!l bd = b - > den; 

1. :u 
13:t return qDivide( zToQ( zTimes( an, bn ) ), 

'[ :l4 zToQ( zTimes( zGcd( an, bn ), zGcd( ad, bd)) ) ); 

135 

1'.lf> 

l :l7 j , 

l ~l.i * ============== 
139 • E4!g Pm,dions 

J.10 " ·====-====·====--=c==== 
141 .. ; 

1-12 

1.4'.l I* 
l ,M * F\mr.t-ion N<lrne: findC:CD 

].').'} * 
1'11> * Ovc1·111.c10: Divides the inp·ul FAly hy ·it, r.ornrnon GCD 

1·17 * 
148 • Dc-:to.il: Given o.n E4lg, this fu.nc/.ion clilli<l~s the 

·1,.W * pol1rnmnial by ·its mrnmon OCD .;o that. 1./1.,, cmt7,n/. 

150 * 7,olynomia.t g cannot. be ·11wi.tlen as g = "!I'. ·,,i/wri, 

15 1 * g · is a. 1wlyiwm.io.l u.nd ,; ·is 1t-r1. int:i;r,er. c > .I. 

IG2 * 
15:J .. ; 

l !,4 FA!g 
155 findGCD( input) 

l.:,G FAlg input; 

157 

15.i FA!g output = input, process = input; 

l ;\() Qinteger coef; 

160 Integer GCD = zOne, numerator, denominator; 

l Gl Bool first = 0, allNeg = qLess( fAlgLeadCoef( input ), qZero() ); 

ll\2 

I G:l if( (ULong) fAlgNumTerms( input ) == 1 ) // If p,1ly ha_, ,i11st. 1 lci-rn 

]t,4 { 

I G:"i / / fl r;tv.,-n tluit /.c,-,n ·with o. "nil coefl,cienl 

l(j(, return fAlgMonom( qOne(), fAlgLeadMonom( input ) ); 

l fi7 

J(l8 else // Poly has more tlwn 1 term 

I. (;!) { 

l 70 while( process ) // Oo thro·,,.gh c:/l.ch l.rrm. 

m { 
172 coef = fAlgLeadCoef( process ); // n ead /.he l cacl coe,tlicient 
.l i'.! numerator = coef - > num; // Break the meffki<:n/; down 

I. 74 denominator = coef - > den; / / inl.o ,1 n-u.mero.tor Q.nd a tlcno·m'iriQ.tor 

l i f> process = fAlgReductum( process ); / / Get. r eacly 1:o look a.l th« ne,vl le1·m 
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l.7(i 

177 if( zlsOne( denominator ) != (Boo!) 1 ) // ff we ~nonm.ter ,i jh,rt.ion 

l71l 

l 71) 

l:SO 
181 

l S2 

{ 
r e tur n input; / / W e c1J.m1ot dfoid,; lhm'/J,_qh 1,,y c, OGD sr; .J'll,,/. m t11'm /.he in7'11/. 

e lse I/ The-: cl)ejJicient. 1110 .. 5 nn intc,11er 

I 1l:l if( first = = 0 ) // If thi.5 is th,) Jfrst term 

IM { 
L85 first = (Bool) 1; 

181•: GCD = numerator; // Set the GCD tu l,e the cu1Tent nmr11:mtor 

187 } 

188 e lse /I Rec·u.,·si·uely calculate the GCD 

w:1 GCD = zGcd( GCD, numerator ); 
H)(l } 

Hll } 
Jf):2 

l!J;l if( zLess( GCD, zZero ) == (Bool) 1 ) // i f the GCD is 'flf;g,itive 

l ll4 GCD = zNegate( GCD ); /I Nc,110.te the GCD 

1 !J5 if( zLess( zOne, GCD ) == (Bool) 1 ) I I ff I.he GCD 'i., > 1 

HlG output = fAlgZScaDiv( output , GCD ); I/ Divide the poly by the GCD 

]'Ji' 

l !lll 

H)!J if( allNeg == (Boo!) 1 ) I/ If the l)riginal ,:ocjficien/. was ncf;a.tive 

200 r eturn fAlgZScaTimes( zMinusOne, output); /I (/du111 the ncy«f,.,d volynornio.l 

:Wl e lse 

202 return output; 

20:.1 
2(),t 

20,; I* 
Z(lli * F\,nctfon No.me: ma1De91t«l 

207 * 

:208 * Overview: Returns mu:1:ima.l degree of lca,t /cnn fnr lhP. rriven FAlgl,-ist 

20n * 
:21.0 * Dcla,i l: Given am. PAlgl,ist, th·is f1,nciiun calcnlute.s the dcrrree 

21 1 " of th1; len.d /.c1·rr,. for each elem ent of /.he Us/. and re/.,wns 

'.HZ ,. the, lo.,gc-;.5/. 11al-itc: jil'u.nd. 

21 :1 ., 

:.ll •l *I 
215 ULong 
2J(i maxDegree( input) 

Z 17 FAlgList input; 

218 { 

:21!) ULong test, output = O; 

2'.lO 

:2'2 1 while( input ) / / Fnr ench volynomi<Ll in the lisl 

22:2 

2:23 // Cnl<:·1,,la/13 tlw degree of the lrn.d mc,nc,mia.l 

224 test= fMonLength( fAlgLeadMonom( input -> first) ); 

2:.l5 if( test > output ) output = test; 

226 input = input -> rest ; II Advm1r.e the list 

228 
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22!) / / T-let11rn the ma:1·1.mal value 

2:'>0 return output; 

2:11 } 

2:1:1 I * 
'.!:J.·I * Fund.ion Name: JAlgL·ist.Lo·we.~t 

2as * 
2:36 * Ove1·uiew: l fol!rm.~ l/1.1) posi/.ion of I.he smalle.it LM(g) ·in /:h(• 9i1>en F'AlgList 

2:11 ,. 

2:18 * Detail: Given cm FAlgDisl, this function looks CLl all the lea.ding 

:.l,19 * monomials of lit e clt:ments in the list a.nd returns the position uf 

240 * the smallest le,i ci monomial with 1·cspt:cf. to the monomial orderinr1 

:M.I * currently being 11.sed. 

24.2 * 
:!,•J,.l *I 
2•JA U Long 
24G fAlgListLowest( input ) 

2-JG FAlgList input ; 

247 { 

:MS ULong output = 0, i, len = fAlgListLength( input ); 

24\l FMon next, lowest; 
:.Jj(l 

2"il if( input ) / / f\.~su.me the I sl lead m,mnmial is the smallest to bf!.gin with 

:.1:;2 { 

25:1 lowest= fAlgLeadMonom( input -> first); 

2:;,1 output = 1; 

255 } 

256 for( i = 1; i < len; i++ ) // For /.he 'f'et/111,ininy polynorn·ia.ls 

257 { 

2ci8 input = input-> rest; 

259 / / Ertmd. the ne,;/. l,)atl rnm1.orn,ial 

'.!GO next= fAlgLeadMonom( input-> fi rst) ; 

261 
2fi2 // If th.i., ka.d monomia.l is smaller tlw.n the c·u.rrenl snwllc,• f 

:.l6'.l if( theOrdFun( next, lowest ) == (Boal) 1 ) 

2ti4 { 

2G;, // M<Lk,i t/li.s lc<Ul uw11omial th~ .mw.llesl 

2tltl output = i+l; 

'.W7 lowest = fAlgScaTimes( qOne(), next ); 
2tlS 

'.!(;9 

270 

271 // !'let,n·rn J>osition >Jf .s1n.1.l/c.st lewl monomial 

272 return output; 

27:1 

:.l7,J 

27;, I* 
:l7(i )!· =========== 
277 ., Bnd of Vifo 

'.278 )j· =========== 
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B.2.4 file_functions .h 

l /• 

2 * File: .file_ftmctions.h 

:l * A-u.th.or: Gareth Evu.n.s 

,1 * fo,,i- Modifi,;d: 11,th .Jul:~ :JOO./ 

" *I 
1: 
7 I I lnih.al-i.sc file definition 
8 # ifndef FILE..FUNCTIONS_HDR 

!l # define FILE..FUNCTIONS-HDR 

10 

11 I I lnclwle M88EI.C Li&mrir.s 

12 # include <fralg.h> 

.l '.S 

14 I I MAX LINE d,-:notes tlu-: kn!)t,h of th,; fongG.sl. nllowa/J/e line •1:n a. fil« 

15 # define MAXLINE 5000 

lG 

17 II 
18 I I l,ow Le-ucl Pile Handl·iny Functions 

19 II 
20 

21 I I Rcrid a I-in« ],·,mt a. fifo; relwrn lenylh 

22 int getLine( FILE *, char[], int ); 

:!3 I I Pfrk an inl,iger fr-<,m a li.s/ . .s·u.d,. 11s '':1, 5, a,•· 
2·l int intFi·omStr( char[], int , int * ); 
:l!i I I Pick n 1111.!'iob/1; fr-om a. list .sv.ch a.s ''a: &; c; ,. 

26 String variable F'romStr( char [) , int, int*); 

'27 / / P1ick an PA-1on from. a, l·isJ. sudi n., ''a; b: Ci,: 

"28 FMon fMonFromStr( char[], int, int * ); 
'.W I I Pick nn PAlg from ri sti·ing such as ''.,*1J - z; ., 

/IO FAlg fAlgF'romStr( char[], int, int * ); 

'.l I 

:)2 II 
'.l'.l I I High Lcv<!l File Hc-:n.diny F\inctio-,,s 

3,J II 
'..\5 

:lG I I Routine to read a.n FMonList from the firs/. line ,)j n fil,; 

:17 FMonList fMonListFromFile( FILE*); 
:l8 I I f/.ont-ine lo nmd an E4lgList from n ,file 

:19 FAlgList fAlgListFromFile( FILE* ); 
4.0 

•H II 
4.:l I I Nigh Level Pile Writing 1'hnctivns 

.-1:J II 
-14 

.-1,, II W1·ite..< m1. PMon (in pm·$e format} follower/ by ,i .semicolon t.o a file 

,16 void fMonToFile( FILE*, FMon ); 
47 I I Writc-s an PlvlonList lo a Ji.le on a. s·in.<Jl<'. line 

,ts void fMonListToFile( FILE *, FMonList ); 

49 

50 II 
;; 1 I I Pile Nwne Modijication Fll-nctions 
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;;2 II 
53 
54 II A7ipend.s ''.drl" onfo a sf.ring {t!:u:epf. in -,pr:cial co.se "* .in") 

55 String appendDotDegRevLex( char[] ); 

?i6 II A7ipend,s ''.deg'' onto,, .,ti-ing (c:c('ept in. -s1,1:c:ia.l cci-,e ''*,in") 

G7 String a ppendDotDegLex( char[] ); 

f.8 II A7ipend.s ··.tee:'' onl.o a . . 5lrin_q (e:cc•!l)f ·in HJ!eda.l co.se ''*:in'') 

!j!) String appendDot Lex( char[] ); 

t,O I I An,end.s ''.wp '' ont:11 a. string (1!:cc:epl: in spcecia.l c .. ,.sc "*.i'fl.'') 

61 String appendDotWP( char[]); 
62 / I Calculates the lennth of an input siring 

(i:l int filenameLength( char[] ); 

M 

f>5 # endif I I FlLE.FUNC'l'lONSJ([)n 

B.2.5 file_functions.c 

I I* 
2 •· File: file-f11ncl.iot1.s.c: 

:i ·• .4 1tlhor: Gon:th Bw.n., 

,1 * L,., .. ,t l\fodified: 1 Uth A.119,ist 2001, 

5 •/ 
(j 

7 ; .. 

H •----~-- --- --- ----- ------------

9 * Lot11 Lcud Pile Han,Lliny Pnnctions 

Ill • (Used in the high level fnnctiuns) 

'1..1. * ==·=• .. =====-·========-·====·============= 
12 ·•/ 

13 

l ·l I* 
1,; * Fu.nd.ion Nnm.1!: get.Line 

I !l * 
17 * (),.e1·uiew: n,:a.tl " Lin,; from a. file; '1'1:hirn lt-:nut-h 

18 * 
19 • Defoil: Given " file _infiL. we re.ad the first. Line 

20 * nf the .file, ;,lac-ing the conten'ls into the string _s_. 

21 • The thinl para.meter _l-i,n_ determines the ""'~'imnm length 

'22 •· nf a.ny /i-ne to he retm·ne,1 (when w e mil /:he fwnr.tion 

2:i * /,/,..;., -i., ·11 .. rnolly MAXLJNfi:); th.ti rntu·mt:d 'inlt!g~-r tells 

:i.-J * 11.s th(, le1111th of the li11c -me h.o,uc _ins/. rea.,l. 

25 * 
:l<J * /(1to,on Iss1ui.s: Tiu: lc-:ngl,h of ,1 line is somct:iines n-:t-u.n,.,;d 

27 * in~orru;tly 1J1hen "· file· sa-,,1-:d in Windows fa u.«:d 

:l/3 * on a. UNIX ma.chin,! . Uesa.1•e your jilt: in UNIX. 

w *I 
:io int 

31 getLine( infil, s, lim ) 

:12 FILE *infil; 

3:1 chars[]; 
:14 int Jim; 

:~5 
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:ir; int c, i; 

:iil I* 
;',!) ·• Pla,ce cha.1nct.,:rs in _s_ a.s lon9 a .. , ( 1) we do not e:cu;ed _lim_ nwmbcr of 

4.0 * cha.met.,;,·.;; (2) the end of th e file is not ew:ount.«1crl; (8) the tmd of the; 

41 * hne 'i.s no/. t:ncou.ntcr,;d. 

-12 *I 
4:l for ( i = O; ( i < lim-1) && ( ( c = fgetc(infil)) != -1) && ( c != (int)'\n' ); i+ +) 
,J,t { 

,,tr, s[i] = (char)c; 
.1,, } 
•17 if( c == (int) ' \n' ) I I if the for /o()p wns terminntcd d1£e. to re.nching end of line 
,18 { 

•ti s[i] = (char)c; II add the newl-inc d1.c,ract.,:,· t.o 01tr 8/.ring 

50 i++; 
51 } 

!'.i2 s[i] = '\0'; II \V' is the null 1:harac:ter 
5'.J 

G4 return i - 1; II The - 1 is 1ts,:rl to compcn.rn/.c for llw n,tll ,;hm·acter 

55 } 
:}(j 

;'), I* 
G~ * Punct;ion Name: ·inlProlllStr 
;')9 • 

till ., Owrufow: Piel,: ll'fl. •1:11tc9N from a. list. s11.ch as ''2 , ti, Ii,•· 

Gl •· 
ti2 ,, Del.nil: St.nrting from 71os-ition -J- in " st1·in9 _,,__ 

G,l • mad in an inf.<.:gcr and. rdurn i i .. Note lha.t lhc intey1:1· 

l>•1 * in t.he .st·r·i'flg m1<st be t<!rminntcd ·11•if.h tt co·mm.a nn d tlwt 

(;;:; * !he sign of th.ii i nt1:gc1· 'i$ takc"n ·inl,o ,1.c,;01tnt. 

l>b * Once t:hc· mtey«r ho.s bc-,;n rend, plo.ce J.h,; po.sif.'ion w,; 
G7 * ha:uc ,·,-.11.che<l in the: string in. thc-: 11a.ri11/Jle _pk_. 

c,8 *I 
6!) int 

70 intFromStr ( s, j , pk ) 

71 char s(]; 
72 int j, *Pk; 

7:1 { 
7,'.J char c; 

rn int n = 0, sign = 1, k = j ; 

76 c = s[k]; 
77 
78 I I Thw,;rsc thmv,qh. ,my empty sp1lcc 

70 while( c == 'u' ) 

k++; 

c = s[k]; 

85 // If o. sign i.'J p1'f;senl, 7Jroces.r; ·it 

So if( c == '+' ) 
87 { 
SS k++; 
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89 c = s[k]; 

90 

fJ I else if( c == ' - ' ) 

92 { 

!.l:l sign = -1; 

1),1 k++; 

% c = s[k]; 
f) (j 

!}7 

>18 I I Until a comma. i.s encomi t.ered (signalling the 

99 I I end nf /he. intege1) 

lllll while( c != ',' ) 

IOI. { 

HJ2 if( ( C >= '0' ) && ( C <= '9' ) ) 

103 { 

l04 n = lO•n + (int)(c - '0'); II the '' '()''' is necd('ll /.o (/d th,-; cornx:/, ·inkger-

ll)!j } 

106 else 
107 

I OS prin tf(" Error : ulncorrectulnputuinuFileu O:cui sunOtuaumunber) , \n" , c); 
10!) exit( EXJT_FAILURE ); 

I]() 

1.11 k++; 
112 c= s[k]; 
11:.i 

I J.,J •pk = k+l; I I return /.lie f,'.ni.sh'i-ny position 

115 

I Hi I• 
l l T * N olc-:: In l/1i.$ J1m.ction we. r·ect·u.rr,. *Pk = k+ 1 ,1.n,t not *Pk --= k c,.s 

118 * in .s1,bseqwmt f1md.ion., bec,ms(• lh-i.1 function ha-~ a .sli.lJhlLy 

l Ill * di}Te-reo.l .s/.;-u.clwm d-u.1-: lo hn·uin.lJ l:o dml will,. the + ,,.,,_,t -
120 -• c/u1raclers ,,t the l1eginnir1.y ()! the .sl:r ing. 

121. *I 
.l22 

1 '2:\ return sign•n; /I -re/11.rn. the intcycr 

124 

12(i I• 
127 * Fu.nd·ion Nnr11e: 11al'ic,/Jle/"1-om8t1· 

12S * 
129 * Overview: Pick a. 1,a.ric,hlc /nm,. a list .s1id1 a .. , '',1; h: c·; '' 
J:10 .. 

I :l 1 * Detail: Sta.rtinq from. po.sit.ion -.i- ·in a . .s·/.ri,n.g -S-, 

132 * n;ud in" Strin9 and retu-m -it. Nole. llw.t the String 

I :i:s -. in the stri:ng m ust. be tenn-i'.nate.rl. with a semicolon. 

I ;\,j * 0 nr;e t.hc 8trin!I has been 1Yc:11d, place the pv.silion we 

l'.15 -. ha11e re.ached ·in the slr-ing -in lhe 11aria.hlc -Pk--

J;}(; •-/ 

137 String 

1:38 variableFromStr( s, j , pk ) 

1:rn char s[]; 
140 int j, *Pk; 

l,jJ { 
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L42 char c = 'u'i 

1-t3 int i = 0, k = j; 
l·H String back= strNew(), concat; 

l-'15 

L ·\6 sprintf( back, "" ) ; / / lnitfolise back 

147 

1 •Hl // Until o. scmi('l)l<m is encown.te!t'd 

1,19 while( c != ';' ) 

150 

Vi 1 c = s[k]; // Pi,:;k a ch<Lrn.,:;ter /mm tht: string 

J::i2 

I.S:l // If a. sem:iculon was enco1mt:e,·cd 

I 2>.:J if( c == ' ; ' ) 
155 { 

15G concat = strNew(); 

157 sprintf( concat, "¼c''i 1 \0 1 
); 

I !i8 back = strConcat( back, concat ); // Fiaish with l.h,; nnll c/1nro.cter 

15(1 } 

J(jO e lse if( c != 'u') 

llil 

l.(jl concat = strNew(); 

I 6:\ sprintf( concat, 0 1/.c", c ) ; 

1.64 // 7h111.s/e.r character tr, o-u.tput String 

165 if( i == 0 ) back = strCopy( concat ); 

1tifi e lse back = strConcat( back, concat ); 

JG7 i++ ; 

16/l 

JGD k++; 

liO } 

171 *Pk = k; / / Plctr:<, fini.ih posi/.im,. in lh,; v<wia./Jle _p/..:_ 

li2 

I 7:l return back; // l'/.ct.,,.,.n tin: 81:-ring 

J 74 

li!i 

171, I* 
1i7 " P1mdion No.me: JMor,fihmtSt,· 
17F >t· 

l i tl " Ovenn,;w: P id : an [•'Mot, frnm "li.~/. -such a.; ''a; b: r:; '' 

180 ,-

1~ l * Dc·l,l'il: S/.11rtir1!J fr-om 7'0Sit·ion -J- in a st,·ing _s_, 

1132 • read in cm. PMon mul rdwm it .. Notr-: th.at t/u; Flvlon 

rn:1 * in /.he siring rnnst be t«nfl:inntcd ·11•·il.h ri st:mi,;olon. 

J 13,1 * Once the PM on ha.• b,)en -rc(J.(t, 71l,1.cc the 7Jos-itio-n we 

I f-5 * hnvc l'eachc<l in lhc string in the 11ari!tble _pk.. . 

ll3(i *I 
1~7 FMon 
l /38 fMonFromStr( s, j, pk ) 

J 81) char s [l ; 

l!.l(J int j , *Pk; 

I ill { 

l'J2 char c = 'u', a[MAXLINE]; 

19:l int i = 0, k = j; 
J 'J,t FMon back; 
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ll)ij 

HJG 

1!)7 

198 

l!W 

'.WO 

201 

202 

203 

204 

205 
20(i 

207 
20.l 

'.!09 

210 

'.! II 

212 

'.l J:l 
2 [,J 

2 1:i 

:ll.i> 

2 17 } 
:lJ.f; 

/ / Until a scmicolo·r,, i ,s enw·11.nt,crnd 

while( c != ';' ) 

} 

c = s[k]; / / Fick a. chnm<:tff from the, st1·in9 

/ / lf we luruc found a s,m,.icolon 

if( C == ' ;' ) 

{ 
a[i] = '\0' ; // Finish the string 1Hiih the mill charar.ter 

} 
else 

a [i] = c; // Cor,ti11,1ie to prnc1!ss .. . 

i++; 

k++; 

*Pk = k; // Pl!!c·ci the finish position. i'fl. the variahle _pk_ 

back= parseSt rToFMon( a); // Convert the .strin[I tu an E'Mon 

return back; // Ret.-u,•n the F'Afon 

2W I* 
:l:20 , Pund ion N!!mt!: fAluf•,·owSt,· 

221 ·• 

222 ,. 0111:1·uiew: 1-'-ick a.n FAl!/ fmrn. " strin!J s11ch as ''1·•y .... z; '' 

22:l * 
22:t * Detail: Sta.1·/:ing from. pm~it.ion -.i- ·in a. .51":ring _.s_, 
225 • rt!a.d in ,m P4l9 wru/ rct.nrn ii;. Not.1; lfrn/. the FA lg 

'.!:.W • in the string 11i:u .. st lie t,;m i·inatc,;,l with a. 8ernic:olon. 

:l27 * Once the FA lg hits been read, vl«cc the position w,: 

2'.lli • have reached in the str-in[I in the wwia.ble _p/,:_. 

:22!) •/ 

2:.10 FAlg 
'.!:H fAlgFromStr( s, j , pk ) 

2:12 char s[]; 

2:13 int j , *Pk; 

2:M { 

2:l!; char c = 'u' , a[MAXLINE]; 

2:16 int i = 0 , k = j; 

2:l7 FAlg back; 

:l3f; 

2:l!! // Until I t sem-icolnn is encou11:le1·cd 

:!,I() while( c != '; ' ) 

241 

2,12 c = s [k] ; // Head 11 dui.1v,ctm· /nm,. th,-: .string 

24.:1 

2.t,1 // ff" .sem'icolon is cncom1/.m·1:d 

2,15 if( C == ' ; ' ) 
24G { 

2,1.7 a[i] = '\0' ; // P.in;.,I,. with the null c:hl!racter 
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248 } 

'..!-"19 else 

250 { 

'.l51 a[i] = c; // Cont-im,.e to 11·ro1:c,.s.s ... 

252 i++; 
2s:3 

25,1 k++; 

256 •pk = k; / / Pfo.c,: t/1,: finish po.~ition -in the va.1'iable _7,L 
2:J7 

2::;~ back = parseStrToFAlg( a); // Convert the .st-rinf/ lo an .FAlg 

2,j!) return back; // Return the FAlg 

2(;(1 

2til 

'..!G2 / • 

2~ •---------------------------------
2(;:I * High L,:uel Pile Heading F\tn.ction,s 

2l'l5 :t ·= =:::-::=====·====·=·====·====:::::=..--;;:;=.=::::::=:.~ .«:::::::::=.=== 

2GG *-/ 
2ti7 

268 I* 
2(j9 * P1'nr.l.iun Name: f Monl iistFmmFilc 

27l) * 
27:1 * Ouc,vicw: Routine l:u read an PMonf,i.st. from t.hc j,rst line of a. },le 

272 * 
'..!7;J ,. Ddo.il: Civen o.n in}lnt file, this /11.nct·ion 
274 •• rm.els /he first. line of th,: f ile wid rntHm., 

'..!75 ,. the .,c:mi,x,lo-r,. 8ep1110.te<l FA:fonl,ist fmmd on tfrnt. li1Jc. 

276 * Por e1;,impl,;, ·i,f the ·inpnt is 11 Ii.st .mch a.~ 11; /,: A; B; 

277 * then th,: out1mt ·i.1 t.h,: P'MonLi.sl. (a., b, A, B). 

2,8 *I 
279 FMonList 
WO fMonListFrornFile ( infil ) 

2iil FILE *infil; 

282 

2;:n FMon w; 

'..!8.:J FMonList words = fMonListNul; 
285 char s [MAXLINE]; 

28G int j = 0, k = 0, len = O; 

287 

288 / / c,,t th« .first; line of t;he Ji.le (1r1.d -it., l,;ngth 

28H Jen = getLine( infil, s, MAXLINE ); 

WO 

::rn:i / / While lherc ,ire rnure PMons to be fnmul 

2fl2 while( j < len ) 

29:\ { 

294 w = fMonFrornStr( s, j , &k ); // Ohtain a.n PMon 

2!U j = k; // Set /he t 11J:r.t .st.wrl.ing 7,Qsition 

2% words = fMonListPush( w, words ); / / Const.rw;t the list 

'..!97 } 

2:18 

:.rn9 / / Rct.>Lni the-; list - n o tee tlw.t w1: •m·tLSt n:i,erse t:he list: 

:3(10 / / hec:01,.-e it /,as be«n read -i.n never.sc m·dcr-. 
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:lOI return fMonListFXRev( words); 

;102 

:io:1 

:.\0-1 /• 

305 ·• f'm,,<:tion No.me: fA/gl,i.stHomPile 
:WG ,. 

:3()7 * Ownrim11: flottline t,i 1t'ltd a.n l':--llgl.,·i.<I frnrn <l fil,i 
:H)8 ,. 

:,(19 * Dci-<l'il: (}ivcn ""'· ·inp-i,t jifo, th-is f1mdi,m 
:110 * tnJ,;es erich line of the Jile ·in turn. p1tshi119 une FA lg from 

:3.1.J. • each line onto ,in FAtgList. This pm~css is 

:11:2 * continued ttntil there a.re no mor·c l-ines in the file 

31:1 • to 1irocess. F'or eiwnple, if the ·input ·is " list such as 
:1 14 ., 

;n,, * 2*:r. ···· 4*Y: 

:116 * 5•3;,i,y; 

:117 * J, + 5,-:,; + (il)*y; 

:ns -• 
:I 19 ,. then t./1,: ,,·u.tpnl: -is t.h,: F'.4/gLi.st 

:320 • (2:c-4-y, 51'!J, ,/+.5:c+(!Oy). 

:121 *I 
:322 FAlgList 
:12:\ fAlgListFromFile( infil ) 

:ru FILE *infil ; 

:)25 

;12c; FAlg entry; 

'..127 FAlgList back = fAlgListNul; 

;121' char s[MAXLINE]; 

:,w int j = 0, k = 0, len; 

:1:io 
:3:11 I I C:el; t.he }ii-st line of the-: .file 

:1:l:l len = getLine( infil, s, MAXLINE ); 
;33;1 

:n,i II Wh·ile there. Cl-1'1': still l-ines tn process 

:\3$ while( len > 0 ) 

:135 { 

:l:37 entry = fAlgFromStr( s, j , &k ); I/ Ohta.in cm. PAlg J\-in11 a. li·n.c 

:l'.!~ back = fAlgListPush( entry, back ); II Pti.<h t.he PAl_q c,nt,o I.he /isl 

;J;',!J !en = getLine( infil, s , MAXLINE ); I/ Cct. "new line-: 
;3,10 } 

:l41 

:342 I I f/1-:tt,,,.,,_ t.lw l'i.s"/. - ·n,JI.•! th111: -wr: mu.</: rt'u,:rsr-: tf,.,: li.sl 

;1,1:3 I I bccwu .. $G it lws been n;,1.d in r,:-,,ei·sr-: onfo-r. 

3,:[,j return fAlgListFXRev( back ); 

~\4:i 

;l,:11; 

:1,17 I* 
:148 • ================================= 
,M!l • .ffi_qh Lr:11cl File W,·i./.it,.y Functions 

:1:;o ,. ================================= 
:351 •/ 

:l-'>:l 

;35:1 I* 
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:1r,4 * .flmclion Na.me: JMon ToFilc 

,156 • 011,)rvimu: W1•ilr.s am. FMon (·in pm·.sr. fornwl} fc,Llowe<l by n .s,-;mic:ol,m lu ,1 Jilt! 

35.j * Dd.cdl: G·i11en cm -inp1</. file; a.nd an PMon. /hi.s f1m c/.ion 

3G9 •· writ.es t.he PAfon lo j,le 'ir1 pnr.sc fornwt followwl by o .. s,)m-'icolon. 

:3tl0 *I 
:w1 void 
:3ti2 fMonToFile( infil, w ) 

:W:3 FILE •infil; 

:3M FMon w; 
:wr, { 
:36ti FMon wM; 

3ti7 ULong length; 

:1G8 

:rnt-1 II If 1./1tJ FMon i., non-----,;mpt.y 

370 if ( fMonEqual( w, fMonOne() ) != (Boo!) 1 ) 
;37 [ { 

:372 I I While there 11re letter., kft in the FM011 

;373 while ( w ) 

:174. { 

375 wM = fMonLeadPowFac( w ); I I Obttt·in a .factm · 

:17(i fprintf( infil, "%s", fMonToStr( wM) ); II W rite the factor to ]Uc 

;377 length = fMonLength( wM ); 

37.j w = fMonSuffix( w, fMonLength( w ) - length ); 

:179 if ( fMonEqual( w, fMonOne() ) != {Boo!) 1 ) 

3~0 { 

:1i-1 I I fr,. r(!r.se Jon,w.t, t<, sr.p,iratc, ·vm·ia./,le.s we 1<se an a .. ,/.1;risl,; 

:JS2 fprintf( infil, "•" ); 

:11l:l 
;31;,1 

;313r, fprintf( infil, ";" ); I I /\I. lh1) ,md write tt .;1;micolon lo jile 

:381·, } 

:11!7 e lse I I Jttsl writ.,:; n sem-icolon lo file 
;Jl,f< 

:1~(-1 fprintf( infil, ";" ); 

:rno 
:1u1 
:!92 

:393 I* 
:HM * Fu.nN-ion Nnm.e: JAJonLi.,t'lhPile 
:3~}5 ;1': 

:HJG * Ovc,r·uiew: Wr;te.s nn F'MonL·is/. t.o ,1 }1/e m,. ,1 sin9l,i line 

:l!Ji •· 
:1nis * Dei<Lil: G-iven an ,.nput. file rind ,in FMonl,is l , th.is .fu.nct fon 

:lmJ * writes th e list to Jilc a.s ll; 12; l-'.1.: . .. 

,.100 *I 
401 void 
•W'.! fMonListToFile( infil , L ) 

'10:.t FILE •infil; 
,104 FMonList L; 

41):, { 

,JOt, ULong i, length = fMonListLength{ L ); 
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•lll7 

·10/; I I Fo,· C£1,<:h dem.cnl of lht! l•is/. 

,J()!l for( i = 1; i <= length; i++ ) 
,no { 
,J 11 I I Write a,n FM on lo file 

,•112 fMonToFile( infil, L - > first ) ; 
,'11:l 

,·11 ,1 II ff t/,.,m: (l.1'e mo-re FJJ/rm._s lefl lo look al: 

.-J l5 if( i < length ) 

4 lfi { 

417 fprintf( infil, "u" ); I I Pmuide a. space between elements 
,Jl8 

.-119 e lse II else terminntc the line 

·120 { 
421 fprintf( infil, "\n" ); 
,122 

.-12:l L = L - > rest; 
,:124 } 

.-110 

.-12tl 

,J27 I• 
4~ •===============-===============-
•12!) * File Name Mod·i.ficrition P.u.nctinns 

4W •===============-=======--======= 
,131 *I 
·J:12 

,J:l:j / •· 

4:1,1 •· Fimct·ion Nam,:: a.ppendDolDC'yl?e-u[,1::c 
.,:rn • 
-·l:lu * Ouer·uiew: Appends '' .drl'' on/:o a. $lr;n_q (1:,ccq1t in s71e,:iol case "*.in '') 
.-1:17 • 

.-1:18 * Detail: G'-iocn a.n ·input cho.rucl1•:i· 1irmy, tld.s f1m.cUor1 . 

.-i:m • a,11pends the St1in9 ''.drl" onto the end of the character army. 

,;,10 * In the special r;tse lho,t the inpu.t ends wiih '' .in", the function 

:l,'11 * replaces lhc '' .in" with ''. drl''. 

,J·l2 •/ 
4,1:1 String 
:[,J,t appendDotDegRevLex( input ) 

4,1:; char input[]; 
.j ,j() { 

.-147 int length = (int) strlen( input ); 

:J,18 String back = strNew(); 

449 

430 I I Firsi ch.13c/,: for . in al the end of ihc file name 

•-Fil if ( input[length-1] == 'n' & input[length- 2] == 'i' & input[length-3] == ',' ) 
,1::;2 { 

.-J!i:l input[length-2] = 'd'; 

4 ,i,1 input[length-lj = 'r'; 

,150 sprintf( back, 11 1/.s'l.s 11
, input, 11 111 )i 

4,>li 

-157 else I I Ju.st. nppend w·ith ''. drl'' 

4:,8 { 

•159 sprintf( back, "1/.s1/.s'', input , 11 .drl" ); 
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,J(iO } 

,1Gl 

,rn2 return back; 

4G:J 
,JtH. 

,w r, I* 
,Jti6 * F\m.ction Na.me: apperi.dDotD1:_qLe.c 

·167 * 
,1(i8 * Ove,~riew: App<-nds '' .dt:g'' onl,) o . .s/.rin,q (,:,ci:epl· in spc-:do.l m..rn ''* .in") 

,J(jf) * 

4 70 * Detail: Oi-uen an input ch.amctcr array. th·is Junction 

,J71 * <ippemls lhe Striny ''.iicg'' onto the end of the cha.mct:er army. 

472 * In the special ca.se tlwt the ·input. cnd8 with •·.in'·, the funct:-ion 
,·J7:1 -1e repla.ce8 the :' .·in'' w'ith ''.deg:•_ 

47,J ,; 

,175 String 

.-17(; appendDotDegLex( input ) 

.177 char input[]; 

.-178 { 

,179 int length= (int) strlen( input); 

,J/lll String back= strNew(); 

481 
,182 II First. check for .in a.t the end of the file name 

48,\ if( input[length-1] == 'n' & input[length-2] == 'i ' & input[length-3] == 
:J/H { 

.-185 input[length-2] = 'd' ; 

486 input[length-1] = 'e'; 

:187 sprintf( back, "1/.s¼s 11
, input, 11 g 11 

); 

,188 } 

,189 e lse I I .Jn.,t a.pp,;nd with '' .de.9'' 
.J()() { 

4H1 sprintf( back, 111/.s'l.s", input, u .deg"); 

4D2 } 
,1\J:J 

.,w4 return back; 
,j!)5 } 
49(; 

iJ(l7 I* 
,198 ,. flmcf.·ion NM111:: a-7,pcmdDoll,,:,c 

:1()9 * 

500 •· Ov«1·uiew: Appends "'.kr:" onf.o ,,. st1·i.nr, (c:ccepl in .s7,eciol ms,-; •·*.in'') 

50l * 
51)2 * Delo.ii: Oim:n a.n -in.71·,,t r.ho.md<-:i· ,irrny, ih:is f11nction 

50:l * appends the String ''.le,-" onto the end of the clw.mcler arr{).y. 

R04 * in the .special r.ase lhal th,,: inpv.t en ds with ''.in"', the j1,nction 

G05 * n:pl,ices the ''.in" with ''.lex''. 

f>ll6 *I 
507 String 

f>01l appendDotLex( input ) 

509 char input[]; 
r, 10 { 

51 J int length = (int) strlen( input); 

:,12 String back = strNew(); 
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5 I :l 

51..-1 / / Fi1·sl check .fo1· . in a /. t.!w end of lh.t: file nm,w 

r, 15 if ( input[length-1) == ' n' & input[length-2) == 'i' & input[length-3) == 

51.G { 

:,17 input(length-2) = 'l'; 

51.$ input[length-1) = 'e'; 

!;1!:1 sprint£( back, 11{.s'l.s 11
, input, "x11 

) ; 

5:W } 

521 e lse // Jvsl: rippend with ''.lex'' 
a·>·> { 

52:t sprintf( back, 111/.s'l.s 11
, input, ". lex" ); 

52.5 

r:,2() return back; 

5:!7 } 

52~ 

52!) / • 

'.i~IO • F\,nctfon Name: app<:ndDot V.1P 

531 *-

5;12 • Owri,im,i: Ap7wn1ls ''. wp" onto n string (e~:,;ept in spedal cos<: "*.in'') 

ri:n * 
534 • Detail: Given an inp-ut cha.meter a.rray. this Junction 

5:lr, • appends the St1"'ing ''. v,p•· unln the end of the charncf.cr ai-ra.y. 

531, • In the si,ecial ca .. ie tlwt I.he inp1tl- ends with ''.in'', the function 
:,'.l7 ·• repla.cc8 I.he ".-in •· with " .wp 

5:J8 • / 
!',:HI String 

5:10 appendDotWP( inp ut ) 

:,,1 l char input[); 

54:! { 

:,,J:1 int length = (int) strlen( input); 

54,1 String back= strNew(); 

545 

54.fi // First. check for .in at the end of the Jilc na.m.e 

5,17 if( input[length- 1) == 'n' & input[length-2) == 'i' & input[length-3) == 

M.ll { 

5-'l!J input[length- 2) = 'w'; 

:•50 input[length - 1) = 'p' ; 

531 sprintf( back, "'l.s", input); 
!j52 

5:;:3 e lse // .l1t.st 0,7,pend wWi ·•.v,p '' 

:,5,1 { 

5.S:j sprintf( back, "'l.s'l.s 11
1 input, 11

• wp 11 )i 
551) } 

fiT,7 

/551' return back; 

5.:,n 
5GO 
, ,6 1 ;, 

5G2 ,. Fu.nct·ion Nnme: .fil~nn,,,d,,.ngt.h 

0t-i:{ * 
5G4 •- Ove1'uiew: Ca.lci,lo.les the lcn11t-h of ,m 'inpuJ. _string 

Gti5 * 
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566 * Del<Li./.· Given an input clwra.cter nrmu, this fu.nction 

r,G7 •· finds lhc; lc:nyt.h of tlwt cha.meter mrcl!I 

fH)~ ·If./ 
5G!J int 
:,70 filenameLength( s ) 

571 chars[]; 
:.i7'..i { 

57:3 int i = O; 
(17,1. 

fi7!\ while( s[i] != '\0' ) i++; 

f177 return i; 

578 } 

580 I* 
r;,~I ., =========== 
5~:l * End of Pifo 

G8:.i * -===·= -=---==·==--::::= 

B.2.6 fralg_functions.h 

I* 
2 * Pile: frnl,q_f,;w·f-'ion.d,. 

:l * A-u.th.() r: Gareth Evans 

,J * fost. .Modi}icd: 10th Aurrust 2005 

r, *I 
1, 
7 I I lni.tio.li8e fil e; dc:Jin·il,iori 

8 # ifndef FRALG..FUNCTIONS..HDR 

}J # define FRALG..FUNCTJONS_HDR 

10 

11 I I Jndwlc 1W88fl() L-ilm,.ri,;s 

1:l # include <fralg.h> 
1:1 

14 I I Jnr.lnde Sµstem. Librn:ries 

1$ # include <limits.h > 
l(j 

17 I I hi elude ·•-fnndions U /Jra.1·i1,s 

Ill # include "list_functions.h" 

HJ # include "arithmetic_functions.h" 

20 

:l l I/ 
22 I I Erf.t;1·fl.al Va-ria./Jfos lleq,dr,;d 

:n II 
24 

'.lfi extern ULong nRed; II Stores how many reci-u.ctiu-n.< have been pe1forme,l 

21; extern int nOfGenerators, / I [fnlcls the m 1m.ber of gen.em.tors 

27 pl; I I Holds the "Print LP.vel'' 

28-

2\1 II 
;10 II flmction , Definecl in jh,lg_fttnt;/.ion.,.~ 
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:11 II 

:.n II 
;~4 I I Onler ing Fu.ncl-ion.s 

:.l5 II 
;JG 

:ti I I l/,c/.-nrns .1 ,f J.sl: wrg <-{ Le:c) 2nd m11 

:38 Boot fMonLex( FMon, FMon ); 

:19 I I Flet.nrn.s 1 if fr/: arg <-UrwLe1:} 2nd a.rg 

4ll Boo! fMonlnvLex( FMon, FMon ); 

-1l II Retu.,.ns I ~f 1st ary <-{Dcr1 ficvl,ex} 2nd arg 

4.2 Boo! fMonDegRevLex( FMon, FMon ); 

4:\ II Returns L if Isl arg <-{ \•iireaihPmducl.} 2nd my 

H Boot fMonWreathProd( FMon, FMon ); 
:J!j 

1f\ II 
47 I I Alphabet Manipttlnti.on. F\wctinns 

,1.8 II 
,H) 

50 II Su/J.st.itutes ASCII genc<1v.tor., far 01·ig-irwl !7mu:rator.s 'in ,t list of p,>lynomi<tl.s 

SI FAlgList preProcess( FAlgList, FMonList ); 

J2 II Subslit.·ute.s origin«l gencmtors Jnr ASC:n generators in n given polynominl 

.'i:3 String postProcess( FAlg, FMonList ); 
J,j. I I As a/Jove but gives bnc/,: ifs output in pnrsc fnrma.t 

55 String postProcessParse( FAlg, FMonList ); 

,i(i II Ar(jusls the ori.gi1wl 91:ncrn.t.01· ord,:1· (isl. mg} w:cording lo freqn,.•ncy of ge.r11m,/.or.s in 2nd M\/ 

57 FMonList alphabetOptimise( FMonList, FAlgList ); 

,i8 

59 II 
GO I I Pol·!Jrunnfol Ma.nip·ulati.on Functio·11,, 

\11 /I 
G2 
G:\ II fidwrns all poss·ible wa:us that 2nd c,rq divides Isl a.rg: :Jrd <Lrg :=: is d-i11isivn possible? 

fi:l FMonPairList fMonDiv( FMon, FMon, Short*); 
(;fi II fidurns the firs / w11y /:hut 2nd arg divides .ls/ w:7; .'frd a.1'.1/ = ,:_. di'Vis-inn 7>ossil,lc? 

Ho FMonPairList fMonDivFirst( FMon, FMon, Short*); 
G7 II Finds a.ll 71ossihl,, overlaps of 2 PMon .. s 

o~ FMonPairList fMonOverlaps( FMon, FMon ); 

G!) II Hc·:l11,111s the: dc:gret·-.. /,osed i11iti,il of o. 7,olynomio.l 

70 FAlg deglnitial( FAlg ); 

71 I I R1-:verst>.s a monomial 

72 FMon fMonReverse( FMon ); 

7:3 

7,1 II 
7:, I I Croelincr Basis Functi.ons 

71; II 
77 

78 II Returns the: nm·mal form af a. polynomial 111.r./ .. a l-i.,/. of polynomials 

7'.l FAlg polyReduce( FAlg, FAlgList ); 
80 I I Mi-n.irnises a given Groe/m.c:r Bc,,;i .. s 

8 1 FAlgList minimalGB( FAlgList ) ; 

>l2 /I lk,lw:c·s ench 11wrnber· of a Groebner Ba.sis ,,,.r .t .. all 0th.ff m,m,./J,)rs 

s:J FAlgList reducedGB( FAlgList ); 
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84 / / '.fe.sts whether n given FAlg reduces to 0 ·t,sinf! the given FAlgfast 

85 Bool idealMembershipProblem( FAlg, FAlgList ); 

86 
87 # endif // FF/.AUJ_PUNC'.l'JON8JIJ)I/. 

B.2.7 fralg_functions .c 

/ • 
2 * Pile: fm/g_.f,,.nc/.-ic,n .. u : 

:~ • Author: Gnrct.h Evcm.s 

,.1 * Lc,,,t Modifi,;d: 1 /Jth A·u.gusl: :JOOS 

r, *I 
ll 

7 I* 
s .. .......... =="'-·================ .. ···c:.·===·==-·========== 
!) * Global \/a1·inl,lc,• fur fmlg_fu,nct·iuns,c 

w ~====================================== 
II *I 
1.2 

J:! static int bigVar = 1; / / /s'e:rps /.rnck of i/,cmt.-ion clep/.h ·in Wrna,th.Pr-c,d 
1,1 

15 I * 
J(j • ····· -· .. ..... ..... - .. ...... __ ....... .......... ..................... ..... .......... . 

17 * OrrJc1·in_q Ptmcl.'ions 

18 • ================== 
19 *I 
:.w 
2.1 I* 
22 11c f i'?.inctio·11 No.ntc~: flldr11; l,e;r, 

2:-1 * 

2-1. * Overuiew: Hct-u,,·11s .I if Isl o.,y <-{ Lc:1:} :Jn il 0.1:9 

2::. ,t: 

2ti * Dcfoil: Gi11c"fl. two !"Mons :c cmcl '/I, this fu,nc-hon 

:l7 • com.7ic,rcs the two m,0-,1,omio,l.s u.-ing the /e:i:ii:o!/mph-ic 

28 * ordedn9, n:lv.niinr, 1 if :c < '!J ,ir,.d 0 if :c >·= y. 

20 * 
30 * Descript-i.un of tht: Lex ordc,·ing: 

:n * 
32 * x < 1J {(f (wl)rking left- to- 1-ight) the first (.sa,y -ill,) 

:1:i * lt!tler- or,, whfrh 3; a.nd y diff'c-:1- ·is 

:~.-J * .<11c:h that. :c..i < y_i in the: onlerir1y of the-: 11n.1·in/1fos . 

:_rn * 
:lG * 1£:tlei-nnl \/nrio.ble.1 f'lc,qnin;d: ·mt pl; 

~{7 :1C 

:l 8 * Nole!: This code is b,1.;,;d cm L. La.m/Jc ·., '"fMonTLc:c'' ,;ode. 

:w .. ; 
,JO Boo! 

,J..I fMonLex( x, y ) 

-12 FMon x, y; 

.rn 
-14 ULong lenx, leny, min, count= 1; 

.J,; int j; 
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4G Boo) back; 
.'17 

·l1j if( pl> 8) printf("EnteredutOucompareuxu•u¼suwithuyu•u¼s .. ,u\n", fMonToStr( x ), fMonToStr( y) ); 
40 if( x == (FMon) NULL )// Jf :r, is wq,ty 11Jt! only ha.1,e lo di.eek that. y is n,m .. ·-emp/.y 

5() { 

GI if( pl> 8) printf("xuisuNULLuSOutestinguifuyuisuNULL .. . \n"); 

52 return (Bool) ( y != (FMon) NULL ); 

G:~ } 

54 else if( y = = (FMon) NULL ) // If y Ls wmpt.y x ca.nno/. he le.,.s lhan it so fllsl n:t·u.,·n I) 

G5 { 

51> if( pl > 8) printf("yuiSuNULLusoureturninguO .. . \n"); 

;;7 return (Bool) O; 

~8 } 

5'.l else // Both r10r1.-euiply 

GO { 
6 1 lenx = fMonLength( x ); 

G:l leny = fMonLength( y ); 
li:! 

(j,J if( lenx < leny ) // ~= ha .. , m·in·imurr,. len9th 

(j(j min = lenx; 

(ji back= (Bool) l; // .If limil. i·car.ht:cl w~ know 1· < y sv re/.·u.m 1 
(i8 

(i!J else // 11 has rninim.um length 

70 { 

71 min = lenyj 

72 back= (Bool) O; // ·if limit ·rwchccl we koow :c >= y M rnl'l),m. 0 

7:-1 } 
7,1 

7:j while( count<= min) // Por each 9enmnt.or 

ill 
77 if( pl> 8) 
71' { 

rn printf("Comparingu¼suwithu'l.s\n", fMonLeadVar( fMonSubWordLen( x, count, 1 ) ), 

RO fMonLeadYar( fMonSubWordLen( y, count, 1 ) ) ); 
81 } 

82 / / Compo.,·,: gwera.t.01·s 

8:1 if( ( j = strcmp( fMonLeadYar( fMonSubWordLen( x, count, 1 ) ), 

84 fMonLeadVar( fMonSubWordLen( y, count, 1 ) ) ) ) < 0) 

85 
86 if( pl > 8) printf("xuisulessuthanuy,. ,u\n"); 

87 return (Bool) 1; 

88 } 

8!) else if( j > 0 ) 
\l(J { 

[).I. if( pl> 8) printf("yuisulessuthanux,. ,u\n"); 

\l:l return (Bool) O; 

93 
94 count++; 
95 
fJG 

97 
98 // Limit: now rmclwl; rnti.n1 pm11i,>-u.sly a . .<1n:,:d solu'/.ion 
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fl!l if( pl> 8) printf("Returningu'l.i.. -u\n", (int) back); 

I 00 return back; 
l(JI 

102 

10:.i I* 
l!M * Fu.net.ion Nn-rru;: JMonlnvL,;t: 

1(15 * 
JOG * Over-view: Hetnrn., 1 if hi cir9 <-{hwLc-:i:} rdnd arg 

107 * 

l08 * De.lai.l: G-iven two F Mons 1: and y, this /1tnc tion 

109 * cumpares the two monomillls using the in·uersc le.u:corrroph:ic 

l 10 * orde1·in9, rctnrning 1 if :c < y and O ·if :i; >= y. 

I l.:I ,. 

112 ·• D esc:i·iption of tlw lnvLe:i: rn·deri.n_q: 

I I.a ' 
l 14 * :c < y ijf (working 1·igh/.·····l.o····left,) the fir.~/ (rn11 Uh) 

I JG * le/1.m· on whi.1:/1. :t and y d·i_g;w i.• 

l l ti * sw;h. that :1:_i < y_·i. in th,; o rde1·in9 of th,; vwriables. 

11.7 * 

l l8 ·• Ext.ernol Va1·iables R ctJu.ireil: int pl; 

lln * 
I W * Note : T hi.s code ·i.s l,a.sed on L . [,a,m.bc 's ''.{Mon T De:r.'' code. 

l2I *I 
122 Boo! 

12:1 fMonlnvLex( x, y ) 

I 2,J FMon x, y; 

125 

J:W ULong lenx, leny, min, count = O; 

127 int j; 

128 Boo) back; 

129 

l:lO if( pl> 8) printf("Enteredutoucompareuxu•u'l.suwithuyu•u'l.s .. -u\n", fMonToStr( x ), fMonToStr( y) ); 

13.1. if( x == (FMon) NULL) // .ff :tis em7,ty 1ue on(q lw.ve lo r.h.,,:ck llwt y is nun-em:µty 

l'.l2 { 

1~1:1 if( pl> 8) printf("xuisuNULLusoutestinguifuyuisuNULL ... \n") ; 

1:.\4 return (Boo!) ( y != (FMon ) NULL ); 

1:w else if( y == (FMon) NULL) // Uy is ,m,pf.11 ,1: cm1110 / he k.is //w.n ii. so f1LS /. rnlurn 0 

1:18 

J:39 
] ,10 

{ 
if( pl > 8 ) printf("yuisuNULLusoureturninguO ... \n" ); 

return (Bool) O; 

I ,11 else // Both. non-cm7,ty 

] ,12 { 

l4:l lenx = fMonLength( x ) ; 

1,1,1 leny = fMonLength( y ); 

14!\ 

J.·j(, if( lenx < leny) // l : has m.in-i1rmm l,m_qlh 

1·1.7 

J.-J!s min= lenx; 

J,J.9 back = (Bool) l; // If l-imif. ri)a.chcd we hto'U' x < y so n:t·u.,-r,. 

1:,0 

151 e lse / / y ha..s 111inim·11.m length 
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133 min = leny; 

154 back= (Boo!) O; // if lit11-il. ,wcl!Cll w<: know :r. >= y so ·r·du.m 0 

155 

156 

I,, 7 while( count < min ) // For eo.ch genera.tor 

15::! { 

J G9 if( pl > 8 ) 

lliO { 
161 printf("Comparingu1/.suwithu1/.s\n" , fMonLeadVar( ™onSubWordLen( x, lenx- count, 1) ), 

l 62 fMonLeadVar( ™onSubWordLen( y, leny- count, 1 ) ) ); 
16:l } 

l (i ,l / / Com.prirc generators _in, reverse_ 

lti5 if( ( j = strcmp( fMonLeadVar( fMonSubWordLen( x, lenx-count, 1 ) ), 

JGG flvlonLeadVar( ™onSubWordLen( y, leny-count, 1 )))) < 0) 
167 

I G8 if( pl> 8) printf("xuisulessuthanuy .. ,u\n"); 

H,9 return (Boo!) l; 

170 } 

1 7 1 e lse if( j > 0 ) 

172 { 

17'.I if( p l > 8) printf("Yuisulessuthanux .. ,u\n"); 

174 r eturn (Boo!) 0; 

175 

176 count++; 

177 } 

17~ 

ml 
l i,O / / l,-im.it: now 1·mchc«l; n;tm~1 pt·c-:11io·u_sl:u a.gn:,;d _solul.icm 

I 81 if( pl > 8 ) printf("Returningu1/.i. .. u\n" , (int ) back); 

l.i,2 r eturn back; 

I ~:l 

184 

18:i I* 
I 81, * F\.inct·ion No.me: f1\.fonDer,HcvLe3: 

187 * 
188 * 0111:,·,ti«w: n,; /.11rns 1 if hi. c1·rg <-l DcgRr:oLc::c) 2nd ,,.rg 

li,\I ~ 

190 •· l.kta.·il: C:i·cum two [•'Mons 3; n.nd 1;. lhi.i f11nction 
WI * comp,.,.,·e.i l/1.,; lwo monomial.s ,uin11 th,; dcgre,; n;vc-:,·,se le~;icoymph.ic 

11)2 * oi·d,;ring. rd.un1.iny 1 i,f ,, < y o.nd (1 ·if,. > •"' y. 

FJ:l * 
I \),J ,. Dcs,;ri7ition of the Dc-:yf/e11l,el: o·r·derin!J: 

1D5 * 
Ulfi * 2: < y if]' deg(l) < deg(y) 01· deg(x) = deg(y) 

H>i * a.nd ;r, <-{FlcvLex} y. that ;,,, wo1kin9 rir1ht to leJt 

19~ • the Ji,·st (sa.y i lh) letter nn which x a.nd y di_(Ter ·i.:! 

I 99 , . . , 11ch J.ho./. ,c_i > y_i ·in the <•rclcring of I.he 110.1·ialifos. 

200 " 
:.!01 * E:1:tc-:mal Vwria.ble., Reqnin,d: 'inf, pl: 

202 * 
'.W:l * Nole: Th-is wdt: i.i ba .. ied. on L . Da.mbe'.i 'J/\.f,m'TL,~c" ,;ode. 

2("1 .. ; 
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20:i Boo) 

:!OG fMonDegRevLex( x, y ) 

207 FMon x , y; 

:!08 { 

2mi ULong lenx , leny, count; 

210 int j; 

211 

212 if( pl> 8) printf("Enteredutoucompareuxu•u1/.su11ithuYu•u1/.s .. ,u\n" , fMonToStr( x ), fMonToStr( y) ); 

21:i 

214. if( x == (FMon) NULL ) / / ff xis em.ply we only have lo cher.k 1/w.i y is non-empty 
:ns { 
21G if( p l > 8 ) print f("xuisuNULLusoutest inguifuYuisuNULL . .. \n"); 

217 r eturn (Bool) ( y != (FMon ) NULL); 

21~ } 

:!l.9 else if( y == (FMon) NULL ) // If y i.; c1117,ty :,; ('/lnnot be l1!.s.; than ii. so just, re/.11·,·n. 0 

220 { 

22] if( p l > 8 ) printf("yuisuNULLuSOureturni nguO ... \n"); 

222 return (Boo!) O; 

'.!:l:3 } 

22,1 e lse // Bot.h rw·o.-empt;y 

22:l { 

221l lenx = fMonLength( x ); 

227 leny = fMonLength( y ); 

22R 

22:1 // In JJ1;9[/.c11Le1·, c:omparc !he d.egn;e.; first ... 

:!;lO if( lenx < leny ) 

2:i1 { 

:!;~2 if( pl > 8 ) printf("xuisulessuthanuY•. ,u\n") ; 

2:1:i return (Boo!) l ; 

2;!4 } 

2:rn e lse if( leny < lenx ) 

2:!0 { 

:i:1, if( pl > 8 ) print[(" Yuisulessuthanux ... u \n"); 

2:18 r e turn (Boo!) O; 

239 } 

2·10 e lse // The degree.~ nre lhc .same-;. now 11.;c; Fw·uf,c;;c ... 

:!•"11 

2·l2 count= lenx; // len,c i; o.rbit.mry ( /)(;co.11.;c; /cw;= lcny) 
2-·]3 

2,M while( count > 0 ) / / Work in _-re·ueroie_ 

2,1.'j { 

;Mti if( pl > 8 ) 

~47 { 

:} •. JI( printf( "Compari ngu1/.suwi thu1/.s \n" , fMonLeadVar( fMonSub Word Len( x, count , 1 ) ) , 

24.0 fMonLeadVar( fMonSubWordLen( y, count , 1 ) ) ); 

2;,\0 

2:i l if( ( j = strcmp( fMon.LeadVa r( fMonSubWordLen( x, count, 1 ) ), 

:!:52 fMonLeadVar( fMonSubWordLen( y , count, 1 ) ) ) ) > 0 ) 

25:1 { 

2:5:J if( pl > 8) printf("xuisulessuthanuy, . ,u\n" ); 

255 r e turn (Bool) l ; 

2GG 

257 e lse if( j < 0 ) 
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2:i~ { 

23!) if( pl> 8) printf("yuisulessuthanux,. ,u\n"}; 

2tl0 return (Boo!) O; 

'.!Gl } 

262 count- -; 

2G:3 } 
2ti4 

~(j!) 

2lio 
2(i7 

26~ 

26\l 

:.'!70 

271 

} 

// No differe,ices found so mu-numials mu.st ue the .snmc 

if( pl> 8) printf("Same,ureturninguO ,. , u\n"}; 

return (Boot) O; 

:!72 /• 

27:l " Pnnctio11 Na.me: JMon W.,-eaf.hProcl 

2,.-1 * 
275 * O-vm'1ricw: Het,.wn.s .I if 1st 0.1:q <-{ Wn:,i.thProduct} f/,'(l.,l il1'{! 

27G * 
277 * Dd.ail: G-iwn two FMon., .r. and !I, this Ju.nc·l'i.or,. 

278 * com.,,arus the t:wo rnnnom.ials ·using the w7'uath. in·ocluct 

27!! * nrdering, rel-urn.in{/ 1 if :r < '!J m1.1l O if x > = y. 

280 * Thi.o ftinct.ion i .< re.cursive. 

Wl * 
282 * Desc:ri;,tion of the Wreath Procl-u.c:/, 01'Clcring: 

'.!8:J * 
284 * Ld the fl,lplwbcl ha·uc a /.,ital on/qr (,i._g . 11 < Ii < .. .) 
2 8:i ,. Co1Cn/. the n-,,m.ber of occ:1t·r,·c:nces of the high.c-:s/. weight.1:d /ellc-:r {c·: .y. z). 

286 * lht: sl:ring w,.t.h. /./,.1; mo.st ·1.s !Jigger. 

287 * If /10th .str·ings hm!f: tlw .,ctm.,i 1m·mlwr of lho.se lelt.ers. /:he:~ r.a-n 

288 * be w1·itten •1in·i.q11,1ly: 

'28!J * sl = xO z :1:1 z :c2 ... z ~;n 

:.'!90 •· s:3 = yli z y 1. z 112 ... z vn 

2fll * 
:292 * Then sf < s:3 if 

w:.i • :ell < yO o-r 

:!9.-J , ,:O = 110 a.nd tc.l < y .l. ct.c. 

2!15 " ( < = wn:a.th. i,-roc/1.u:t onlc1·in9 ·,m ·y ': i/.cm/.c as -r,.,x:decl) 
'.!% • 

2!,7 * E,:am7,lcs: 

298 * o ' 100 < aba '2 bmmse J < b 

2~J9 * uhu, "i.! < a. "2Ua bec£1,u.-;e b == f1 and ,,. < a,. 2 

:lllO * a ·21,a < h ·2n l1eca.11.se b < b ·2 

301. * b ' !!<L < bab bcca1,sc b ' !! = b ' !! and 1 < ,, (sl - tbll,a ands!!= .tbabl) 

:l():.'! */,ah< nb'2 hewuse 1,·2 == 1,·2 o.nd .1. < a. (s.1. = .tbabl a.nd s2 = ri/,Jbl} 

:io:1 * 

:\(H * .E.clerna.l Variaules [-1.cqu-ired: int pl, nOJGencmtors.: 

;lO;> •· Global \la-rialik., u.~ecl: int. l,iy Vo.r; 

306 * 
:l07 •· Note: This code is /,ased on L. Lo.mlie's ''fM0·11'/'L,~c •' codf: . 

:,os *I 
:HJ!J Boot 
:3 lO fMonWreathProd( x, y } 
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:J I I FMon x, y; 

:n2 
3 1 :.l FMonList xList = fMonList Nul, yList = fMonListNul; 

;n:J FMon xPad = fMonOne(), yPad = fMonOne() , xLetter, yLetter, bigMon; 

;; 15 ULong xCount = 0, yCount = 0, i = 0 ; 

:l!G 

:JJ7 /• 

:ll 8 • Not~: the glob,11 va.-i<tble 'big \io.r' i .; 1,sr:d to ket:1> 

:JI 9 • trn.c/1 of /:he 'ite-ro.tfon depth. The o.l,qo1-ilhm. is ,fos-igned 

:;20 • su I /t(J.l the V(J./uc of bi[/ \iar is a.l-wa.y.s re./:u.mcd to its 

:321 • original vnlue (which is usually 1) 

:;2:i •/ 

:l2'.l 

'.l2.,t if( pl > 8 ) printf( "EnteredufMonWreathProdu ('l.i) utoucompareuxu•u'l.Sulli thuyu•u'l.s ... u \n" , 

:l:l5 bigVar, fMonToStr( x ), fMonToStr( y) ); 

:.i26 

:i:l7 / / Fa.ii .rnfe cher;k - cu.nnol hw,;,: m orn ·ile·mtion.s t:/um 9,;ru:mlon: 

:J2S / / v<tl-u.e 1 chosen by ('()n,1ent.ion (in !:he case of ,:qu.al-ity) 

:l:l9 if( !( nOfGenerators - bigVar >= 0 ) ) return (Boo!) 1; 

:rnJ 
:n I // Deal ,uilh sp~c·inl cases first. 

:3;;12 if( x == (FMon) NULL) // Jf xis empty 1oe u11l·y ha.veto r.he;d,: that. ·y ·is n on-empty 

:i:n { 
3:14 if( pl> 8) printf("xuisuNULLusOutestinguifuYuisuNULL ... \n") ; 

'.l~5 return (Boo!) ( y != (FMon) NULL ); 

:l3G 

::i:.17 e lse if( y == (FMon) NULL ) / / If y ·is em.ply :i; t:Q.1!'/lOI be le.ss /./um. it. so fus/. ,·c-;tum 0 

:i:,8 
:J;{!J if( pl > 8) printf("yuisuNULLuSOureturningu0.,. \n"); 

:140 return (Boo!) 0; 
:J,j. I 

:14:l e lse if ( fMonEqual( x, y ) == (Boo!) 1 ) I I If 1: == y just ret.w•r,. Ii 
34:1 { 

:HA. if( pl > 8) printf("xu•uYuSOureturningu0, .. \n"); 

:H5 return (Bool) 0; 

3-l6 

:l:17 e lse I/ BoU,. non··-cm11t.y an1l no/. 1:q,,al 

3·1::S 

:J.HJ II C,m_sf.rn~I- t./1tJ gwt!m.l.01· for this i/.1:,·Micm. 

:35() bigMon = ASC IIMon( (ULong) nOfGenerators - (ULong) bigVar + 1 ); 
:i,; I 

:352 I/ Process 1: lct:t«1· by frlle1', c:1rn.t-i119 lists of ·in/e11"rwlic1/.e te1·m.s 

:i,;:3 while( fMonlsOne( x ) != (Boo!) 1 ) 

:3M { 

:;;;ri xLetter = fMonPrefix( x, 1 ) ; / / Look: a.I: the first letter 

:~0!> if( fMonEqual( xLetter, bigMon) == (Boo!) 1) I/ if x[,ctler == biy.Mon 

:m { 
:l38 xCount++; / I lnc:,m.;c-; th,-: nu.mb,i,· of dem.cnL, ir,, the 1-i.~t 

:l5\l xList = fMonListPush( xPad, xList ); 

:wo xPad = fMonOne(); I/ Resc:t 
:Jl> I } 

:w:i e lse 

:3tt.l { 
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:1(M. xPad = fMonTimes( xPad, xLetter ); // Build n7, next clement 

:l G5 } 

/l(i6 x = fMonSuffix( x, fMonLength( x) - 1 ); // Dool.; at. nc::r,/, le/.1.a 

:l G7 } 

:JoK xList = fMonListPush( xPad, xList ); // Pl1<sh cni.t the remainder 

:lG!l 

:)70 // Proce8s y let.im• by letter 

:m while( fMonlsOne( y ) != (Boo!) 1 ) 

:372 { 

:!Tl yLetter = fMonPrefix( y, 1 ); // Lnok al the first le/W• 

37•1 if( fMonEqual( yLetter, bigMon ) == (Boo!) 1 ) // if y [,et'ler == higMl)n 
:m; { 
:37,; yCount++; // Increase 'l/1.c m,mber nf elements -in the li,• I 

., 1, yList = fMonListPush( yPad, yList ); 

378 yPad = fMonOne(); / / Resf:I. 

:.l7!J } 

:!80 else 

:33 l { 

:lll2 yPad = fMonTimes( yPad, yLetter ); // Bui.ld ·u7, ,w:ct d erru:nt 

:is:i } 

:11'!,J y = fMonSuffix( y , fMonLength( y) - 1 ); // [,ook «t n c,r,l lett.~r 

:l /;5 } 

:l~(i yList = fMonListPush( yPad, yList ); // Plush out the remainder 
3/;7 

:is~ /•· 
;',~O • 11 .~siim.i11y rnp·rcs<m /.at.ion.~ 

3 (l(J * :r. = J:0 ;; :cl .? J;!t . .. ;:; .r.11, and 

:'>91 • y = yO ;; y l .~ y2 ... i yrn, 
:)'J2 • 

:rn:3 * We now ha.,,e 

a !J,1 • :cLi.~t ·"" (:en, ... , ,v2, :t.l , xO), 

:11JG • ·µLi.st =- (:i,rn, ... , y:.!, yl, y/J). 

:301; • a.nd ,cCO'lmt and yCownl huld the n-u.mb~r of 

:l\l7 ~ : 's in .c a.ii d y rcspechvcly. 

:rn~ • 
.19\J */ 
400 

•IO 1 / / If J:C01ml '= yCown /. t /i,m w,: luwc a. rn.mll,. .. 
•102 if( xCount < yCount ) 

,10:1 { 

,ll):I if( pl > 8 ) printf("xuhasulessuofutheuhighestuweighteduletterusoureturningu l ... \n") ; 

,105 return (Boo!) 1; 

•·ll)(i } 

407 e lse if( xCount > yCount ) 

,108 

:lO!J if( pl > 8 ) printf("xuhasumoreuofutheuhighestuweighteduletteruSOureturninguO ... \n"); 

,J 10 return (Boo!) O; 

4 11 } 

,j 12 else // ... olht::1·wis<, 11J<! have /.o look at flu: i.ntermcdi«/.e t<:1'Tfl.$ 

413 { 

•I l•1 / / Rever.~c th,; hs/.s /:() ob/a.in 

41 .; // :,;List = (J:0, x1, :c2 . ... , :en) and 

•llo //yList, = (yO, yl, y2, ... , 1m) 
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417 xList = fMonListFXRev( xList ); 

'118 yList = fMonListFXRev( yList ); 
,JW 

420 // Increase lhe it.c,mtion ·ual1w ..... -·-· w e will now cmnpn1'(' the 

,121 // elem.uifs (,j the lists w .·r . t .. the t H!:cl higlwst va.i-i.a/ilt) 

·\:l:l big Var++; 

,:123 while( xList ) 
,12,1 { 

,125 i++; 

,J2(i if( fMon Wreath Prod( xList -> first , yList -> first ) == (Boo!) 1 ) 

427 { 

,,12~ if( pl > 8 ) printf( "Onucomponentu%u, uXu<uy .. . \n" , i) ; 

429 bigVar--; // n:scl before 1·ctum 

.-J:,l(J return (Boo!) 1; 

431 } 

,1:i2 else if( fMonWreathProd( yList -> first, xList - > first)== (Boo!) 1 ) 

13:3 { 

,:l:l4 if( pl > 8 ) printf("Onucomponentu%u, uYu<ux, . . \n", i); 

•1:l'.i bigVar--; / / resc-:t lic.fom rntUl'fl, 

,1:Hi return (Boo!) O; 

•J:l7 } 

,[38 e lse // (equal) 
,J:l!) { 

,J.J() / / Look at th.P. nc:cl ual-u.es in the se'}uencc 

,.J,tl xList = xList -> rest; 

4,·12 yList = y List - > rest; 

.-1-1,:1 } 

,14.-J } 

.-1,rn I* 
•140 * Not,,i: we shcJ'llld never 1'C·:a.ch this pa.rl: of th,! ,;ode 

.-J,1,7 * lm;a11.s,-: 1vc kno,11 that a.t le,1.st oru: Ii.it cornpuri.rnn 

,•148 * will n:tw·r,. ,i result (not all Li.st w rnpari.,ons ,,,,ill 

,[I!!) * return 'cqunl' hecause we know by this stuge tlw.t 

4ii0 * :i: fa no/, CQ>L<ll lo y). However we ca1·ry un f rn-

43.1. * ~omplction. 

,rn2 *I 
•153 bigVar--; // lkset, 

,15-1 

,i06 

,11,7 printf( "ExecutinguUnreachableuCode \n" ); 

.-153 exit( EXIT ...FAILURE); 

4:i9 ret urn (Boo!) O; 
.'l(i() 

46 1 

4r-;2 I* 
,1(;:l ,. ========·.-:.-.-:""'=====-,=== -- -== -·-========= 
4G,J * Alphabet, Man·ipula.tim1 flmct.ion,, 

1M • =============================== 
,[ (j(i •/ 

.-lt>i 

,1w, I* 
-fo9 * F\,nction Na.me,: 71-rePr,,c:e.s.1 

248 
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,J7l) * 
,171 • Ove1·view: Sv.b8/.itu.te., A SClf umiera.ti,r., for 01·iyinal uene·,-o.U,r., in IL list of polynomials 

,172 ·tc 

4 73 •· Dt:tri.il: T h·i.s Jimctfon /.11ke.s a. li.,t of 7,olynomia.l.s _,n·i_qinalPolys_ 

,174 * in IL set of gcnern/.ors _01'i9inalCJe1wmt01·s_ o.nd retwms the 

,t7:, * .rnme set. of 7wlynom'ia.ls in ASCII genera.tors. wh<Jr,i th,i f-.rst 

-17tl * element. of _o·ri9ino.lGen,;mt.ors_ -is t eplo.ced l>y 'A AA '. 1:/ie 

·177 • second elmnent: by 'AA B', ti le. 

,J,S * 
,J7!) * For e:w.mplc, if _origino.LGenerntors_ = (:r,. y, z) so tha.t the 

480 * ge.ncrntor order ·is :r, < y < z, and ,f _or1.ginnlPolys_ == (."*y-z. 4*,r, ·2-/i*::), 

48 1 * the output li.•I 1.s (AA[hA AB-AAC, 4*,'\ AA ':!-/i*AAO). 

482 * 
,j /;:! *I 
48,1 FAlgList 

,1S5 preProcess( originalPolys, originalGenerators ) 
·l'5G FAlgList originalPolys; 

4S7 FMonList originalGenerators; 

41l8 { 
,Jf<!:J FAlgList newPolys = fAlgListNul; 

..Jllll FAlg oldPoly , newPoly, adder; 

4fJl ULong i, oldPolySize, genLength, posit ion; 

49:.l FMon firstTermMon, newFirstTermMon, multiplier, gen; 

49'.l Qinteger firstTermCoef; 
,HH 

49!i I I G o lhrnugh e«ch polynomial in turn ... 
,Jll6 while( originalPolys ) 

,197 { 

,.Jf)8 oldPoly = originalPolys -> first; I I E:r:trnd a poly·,, ,nnwl 

.•HJ9 origina!Polys = originalPolys -> rest; 

WO oldPolySize = (ULong) fAlgNumTerms( old Poly ); I I Obt:,iin the n·u.mbm· of '/.m·ms 

5lll new Poly = fA lgZero(); I I ln-itio.lisc: the nm,, 7wlyrwmia.l 

502 

f,():l for( i = l ; i <= oldPolySize; i++) II for ea.(:h term in the polynom-inl 

5(H { 

::,05 firstTermMon = fAlgLeadMonom( oldPoly ); I I BJ:/.rnr./. mmwm.iol 

50(; firstTermCoef = fAlgLeadCoef( oldPoly ); I I B:r:t.mc/. c:01if]idm/, 

!'.07 oldPoly = fAlgReductum( oldPoly ); II Oc:t ,u,dy to look Ct/. I.he ne.,:/ /.mw 

508 newFirstTermMon = fMonOne(); I/ foitiali.se I/le new ·mor,om-iul 

:,(\i) 

510 I I Go l:hr-011!/h (•o.dt l:1:nn repla.dng genao to1·s as ffCJni.md 

!j 11 while( fMonlsOne( firstTermMon ) != (Bool) 1 ) 

5 I :.l { 
51.:\ gen= fMonPrefix( firstTermMon, 1 ); II 'I'a.ke /hP. first letter 'x' 

fi 14 position = fMonListPosition( gen, originalGenerators ); I I find !he posil-ion of tht: letter in the list 

Gl.5 multiplier= ASCI!Mon( position ); I I Olrtmn the ASCU gencr.,/or co,-re.sponding to x 

fi lG genLength = fMonLeadExp( firstTermMon ); II Find the exponent '«'a.sin x · « 

517 II A-folli7,l!J new 111.onomial by ( ASCII) x•o. 

;:, l.l newFirstTermMon = fMonTimes( newFirstTermMon, fMonPow( mult iplier, genLength ) ); 

5 HJ I I Dose ,: 'o, frnm cwigina.l monomial 

:,20 firs tTermMon = fMonSuffix( firstTermMon, fMonLength( firstTermMon ) - genLength ); 

5:21 

02'.'l 

249 
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,,:n adder= fAlgMonom( firstTermCoef, newFirstTermMon ); / / C:onsti-u.ct the new ASC:U term. 

5~.-1 new Poly = fAlgPlus( newPoly, adder); // Add /,he nmu 118Cll term to the 011.l)ml, polynomial 

~125 } 

5:lfi newPolys = fAlgListPush( new Poly, newPolys ); / / P11 .. sh new w,tyno•m.iol ont.o 0·11.tpn/. li.s/. 

!127 } 

5~8 
:,2!) / / ilcet·u.-rn /.he r,,verscA [isl (it; was read in rn1,e1·se) 

5:l0 return fAlgListFXRev( newPolys ); 
r,:lJ 

r,;1:1 I* 
1\:1.-1 * .Function Name: postProcess 

c.'.l6 * (h1cn1fow: S'1tl1sl.it.u /c:.s 01·iginal y,m,;rn.tor., for 118(,'[J 9c,·11ern/.o·rs in c,. gi-ucn 71olynor11'iol 

5:37 * 
,,:1~ * De/.wU: This fu.ncl-i.on tokc:s a polynomial _c,l,/Polu- in A S'Cll 11enerolors 

5:19 *- and rct-u.ni.s tlw sm,u) polynomial ·in o. c:m~·,,spondfr19 .11)( of gc·r,.cm/.ors 

!'.i40 * _ori17ino.lC:enerfft.o·rs_. The ov.l7ml: ·is rct:1.t1ned a .. s n 8/.?·ing 

5,1 I. ,. ·in fA lg'I'oS'tr( ... } formal. 

!j42 * 

'"n * For e:wm7>l e, if _orig·inalGcn,:m.l.ors_ = {:,;. y, z) _so lha,l th,: 

5,:11I * 9encn1t.or order ·is :i: < y < i, and if _oldPnly_ =· ~i...B-C:'2, then 

fd5 * t:he 011,t p'lll St1·in9 i$ ''x y - z "2 '' . 

541• * 
!'-d7 • / 

5.-18 String 

G·.W postProcess( oldPoly, originalGenerators) 

5:i0 FA!g oldPoly; 

:,5 1 FMonList originalGenerators; 

5:.i:2 

:,5:l FA!g adder; 

5;:;,1 Boo! result; 

55.5 FMon firstTennMon, gen, newFirstTermMon, multiplier; 

fi:io Qlnteger firstTermCoef; 

537 ULong i, match, oldPolySize, genLength; 

c,5~ String back = strNew(); 
5,i!J 

r:,fi() sprintf( back, "" ) ; // Jni/.ial,ise &a.ck 

5Gl 
Gtl2 / / Oblf!•in the nv.mb,,r of f:,,rms in /.ft,, polyn,nn-ial 

5G:l oldPolySize = (ULong) fAlgNumTerms( oldPoly ); 
5t'\-1 

5GG for( i = l; i <= oldPolySize; i++ ) / / fihr mch term 

5(ll• { 

.5fi7 firstTermMon = fAlgLeadMonom( oldPoly ); / / Obtnin the lca.d m.nnom.ial 

5(li< firstTermCoef = fAlgLeadCoef( oldPoly ); // Obtain the lca.d coef]ic-ienl 

fi(;!/ result= qLess( firstTermCoef, qZero() ); // '.rest if cocf)icienl is - ve 
570 oldPoly = fAlgReductum( oldPoly ); // Gc-:t n,ady to loo~: a/. t./w ,1.e]:/. 1.,:n11 
::,71 newFirstTermMon = fMonOne(); / / Ir,.iliaU.sc /.he nc-:w mm1,0111'ial 

572 
G,:l / / Go lhro1,9h /'he ,.,,nn replw:ing g,mera.tor., a_s n ,quired 

57,1 while( fMonlsOne( firstTermMon ) != (Boo!) 1 ) 

!j75 { 
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.'\76 gen= fMonPrefix( firstTermMon, 1 ); // Obtain the first. lrttc1· '.r· 

577 genLength = fMonLeadExp( firstTermMon ); // ()/,ta.in 'a' a.sin :c·a 

!',7il // CJalc'IJlut.,: /.he ASCII 1Jnltw ('AAA'= .l. 'AAB' = 2 .... ) 

579 match = ASCIIVal( fMonToStr( gen ) ); 

::,80 multiplier= fMonListNumber( match, originalGenerators ); //Pinc/I.he miginal _gc-:neral.01· 

581 multiplier = fMonPow( multiplier, genLength ); 

!'..82 newFirstTermMon = fMonTimes( newFirstTermMon, multiplier); // M-ultiply new m.onomia.l l,y the ori9 i.no.l :t ' ct 

58:3 // R,)movc A8CI11:' o. from original m onomfol 

:,8,1 firstTermMon = fMonSuffix( firstTermMon, fMonLength( firstTermMon ) - genLength ); 

58() 

587 / / Now 11dd the term to the O'lltput st.ring 

588 if( i == 1) // Fir.st t en ,, 

c•ilfl back = strConcat( back, fAlgToStr( fAlgMonom( firstTermCoef, newFirstTermMon ) ) ); 

590 else // Musi insert. /.he ccn·red sign (11l·ii.; or minus) 

::•\JI 

5H2 if( result == 0 ) // Coe<[ficicnt is +vc 

r:.n { 
5H.-I adder = fAlgMonom( firstTermCoef, newFirstTermMon ); // Consli·i,('/: /.h,? new J,errn 

!'.,!)5 back = strConcat( back, "u+u" ); 

fi!lfi back= strConcat( back, fAlgToStr( adder) ); 

51)7 } 

5ll8 else // Coefficient is - ve 

MHJ { 

(i(l() adder= fAlgMonom( qNegate( firstTermCoef ), newFirstTermMon ); // Const1·11.(:/ /./tr: new /.,:rm 

fi01 back= strConcat( back, "u-u" ); 

002 back = strConcat( back, fAlgToStr( adder ) ) ; 

G03 } 
(i()4 } 

60:, } 

GOG 

607 return back; 

G08 
t,ll!l 

GlO I* 
li 11 ., Pnnction No.me: postP-roees.!PC1rS1) 

61.2 • 

(i I :i ., Ov,iruitiw: A.s c,,/,01•e b'/J.l 9ivc:.9 /10.d,; i f .~ rm/p·11.t in po.r.«i foi·maf 

6J.:l * 
(i 15 * Dr:l.ct'il: This fu.nc/:i.on la.kes n polynomfal _oldPol·µ_ in A SCI I gmie1'a.lor,5 

61 G ~ and 1·c·: lv.n1B Ow sr1nu1 polynomial in o. cmT,)spondiny .set of genimrtors 

G 17 * .orir,i.na.LC:er1,cm/:ors_, 'J'hc ov.tvul: ·is rct:,,1ned o.s n St.ring in 

618 *- po.r·.se format (wif.h aslc·:i·i-sk.s). 

619 * 
1•;:w * Pvr exa.mplc, if _oriyinalGenera.i()rs_ = (x. y, z) so lha.t the 

6:./l * gencm/.or orde,· -isl'< y < z, and if _old.Poly_ == ihB- (':'2, then 

l'l'.?2 * the ouipuf Sir ing is ''ny - ~ · 2 1
' . 

G::!3 •· 

li24 ~/ 

62[> String 

(i26 postProcessParse( old Poly, original Generators ) 

627 FAlg oldPoly; 

G28 FMonList originalGenerators; 
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H2!l 

c;:~n Short first = 1, written; 

(;'..l l FMon firstTermMon, gen, multiplier; 

(;;~2 Qlnteger firstTermCoef; 

(;'.J:l ULong i , match, oldPolySize, genLength; 

6:l,J String back = strNew(); 

c;:15 

6:lG sprintf( back, "" ) ; I I 1-nW.alisc· back 

G'.17 

tn~ if( !oldPoly ) I I ff -inp,,t is NU LL u·u.tp1tl the zero po/ynom.ia.l 

G39 { 
1·,,Hl back = strConcat( back, "0" ); 

G4.L return back; 

li.t2 } 
(j.-J3 

G,H II Obtain th.c mm,.o,)r c,J terms •in 1./w polynoininl 

64G oldPolySize = (ULong) fAlgNumTerms( oldPoly ); 
(i,16 

6°17 for( i = l; i <= oldPolySize; i++) II (,hr m ch tc·rm 

G,18 { 

1-,49 II A.,swne t.o /Je.gin with /./w t nothing has been adrlcd to 

Ci~() I I the St,·iny regarding the term we are now lool,in!/ at 

ti:i I written = O; 

6~2 

\i5'.l I I 1-11-euk down a term of the polynmnictl into i/.s pieces 

65:J firstT ermMon = fAlgLeadMonom( oldPoly ); I I (}/,to.in I.he lewl r11-o-r1tn1tial 

li55 firstT ermCoef = fAlgLeadCoef( oldPoly ); / I Olita.i-r, lite foo.<l coeJJi<:im1.t 

fi5(i 

657 if( qLess( firstTermCoef, qZero() ) == (Boal) 1 ) I I If the: co.:,[J-ir,ie11t i.i --u1) 

6:,8 { 

GMJ if( first == 1 ) I I If this is th,) fii-st term en,;01,nte1·ed 

6GO { 
6G.L fi rst = O; I I Set. t:o «void this loo11 'in future 

l.fi2 

6G:\ I I Note: there is no need for " s11ace l,e.fure. the mi.m,.o sirrn. 
\iti-1 back = strConcat( back, " - " ) ; 
6(ir) } 

Ui6 e lse II Thi.s i.s t10/ //, c Jil-st term 

6G7 { 

Gti8 I I S,)pc,.-rate /.·u•o te1·rr1.s with o, mitl,'U.s s-ign 

6G9 back= strConcat( back, "u- u " ); 

G70 } 

671 

672 I I Now th.Ill: we ha,ve mrittcn the ncyativc sign we c,m nu1kc 

m:1 /I the cnejlir.icn.l )'Osiliuc 

674 firstTermCoef = qNegate( firstTermCoef ); 

i,7!\ } 

G7G e lse I/ '!'he coe[ficien.l is ·1--vc 
li77 { 

G78 if( first == 1 ) I I ff lhis is lhc first, t.,:rn,. ,m.c:.i·u,ntc-red 
(ii(J { 

680 first = O; I I Set lo a.w·icl /:hi .. ~ loop i'll fi,t.m·e 

6Sl 
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1,13:l I I Recall I.hat there i.s no need to write out a plm 

683 II siyn for- f,htJ Jfrst term in a pol:1no111io,l 

li::!4 } 

68;) e lse I I Thi.; i.; not the; fi-rsf, t1nn 

(i86 { 

687 I I Sepa.rate two km1., with a pl1,s S'i,qn 

G~8 back= strConca t( back, "u+u" ); 

688 } 

WJO } 
1,91 

GD2 i f( q lsOne( firstTermCoef ) != (Boo)) 1 ) I I If the coefficient ·is not one 

ilfl:.l { 

GfM written = 1; I/ Denote 't/ia/, we a,rc goin9 to wri te the coe,(ficient lo lh c String 

(i(l5 if( fMonEqual( firstTermMon, fMonOne()) != (Bool) 1) // U f/, c lead t11onomial is r11i /. 

fHJ(i { 

li!J7 I I Pro11i<le n:11 11 .. ;te1·i .. sk /,o deno/.1J the,/. /.ht: r:otJ/jidcnf, is 

Gfl8 I/ rrmlti1,U<-:d by the nwnomic1l 

GfJ9 back = strConcat( back, qToStr( firstTermCoef) ); 

71)0 back = strConcat( back, "*" ) ; 

7(1 1 

Tll:l e lse 
m1 { 
704 I I As the monom-i,,l is I then,: is no need to write the 

705 I I rnonomfol ont and we mn j11,sl write out the coeJricicnt 

706 back = strConcat( back, qToStr( firstTermCoef) ); 

707 } 

70K } 

709 

7 IO // If /;he lead monomial ;,, not on,: 

Tl l if( fMonlsOne( firstTermMon) != (Bool) 1) 

7 12 { 

T 1 :J written = 1; I/ Deno/,,: thnt, ,i,e a.n: qoing to ,i•ril<· /.he ·m,onornfo.l ·/.o 1:he St1'inr1 
7J.,j 

ii 5 / I Oo thro1,gh the term repla.r,ing gP.ncral ors a.s reqnh'cd 

71. t> while( firstTermMon ) 

717 { 

718 gen = fMonPrefix( firstTennMon, 1 ) ; / / Oblc1in lh<-: fir.st. fo /.te'r ',: ' 

71\l genLength = fMonLeadExp( firstTermMon ); /I Obtain 'o,' a.sin .1: 'o, 

no 
721 // Ga-lr:nlote /:he ASCII va,l1te ('AAA '= 1, 'AAB' == 2, .,.) 

7:l2 match = ASCIIVal( fMonToStr( gen ) ); 

72:1 multiplier = fMonListNumber ( match , origina!Generators ); /I Piull the ol'iqinal g,meral(W 

7:l,J multiplier = fMonPow( multiplier, genLength ); 

7'25 

726 / I Add -nmltiplie1· onto /he String 

7'27 back = strConcat( back, fMonToStr( multiplier ) ); 

721> 

72H I/ M ovc: the mono.mini onward., 

,:10 firstTermMon = fMonSuffix( firstTermMon, flvlonLength( firstTermMon) - genLength ); // 17emove AS(![[ .r.·a 

7:H if( firstTermMon ) back = strConcat( back, "•" ); 

7:12 } 

7:l:l 

7:i4 
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7:l!5 I I ff the cue,Uicient is .I and the monomi1tl is I and nnthing 

7:lG II ha .. s yet. 1,cen ·tJn-itlco. cilumt /hi-, term, w1·it(, ".I" to the String 

7'.l7 / I {Tlris is /,o catch tlw ca.se w/u;n; the term is ·--I) 

7:38 if( ( q lsOne( firstTermCoef) == (Boo!) 1 ) 

7'.W && ( fMonisOne( firstTermMon ) == (Boo!) 1 ) 

740 && ( written == 0 ) ) 

74 l { 

7,1:l back= strConcat( back, "1" ); 

7,1:1 

74.4 

7,15 oldPoly = fAlgReductum( oldPoly ); II Get reo.dy to look (I/. the ne:i:t term 

7¥i 

7.:17 

741l return back; 
7,'HJ 

750 

7:il I* 
752 * flm.ction No.me: nlpha./J«tOpt,i'rni.sc 

70:3 * 
75'1 * Ovmvii;,,11: Adju_sts the 01,:gin,1l !Jn1,m1tor orde1· (ht. <l'rg} accm·rl·in!J to 

7::i.'i * Jrcq'U,ency of genera.ton in !)nd <t.r9 

731) * 

7!i7 * Detail: Git1en an P/Jfon l,i.•/. _oldGens_ sto r ing the gi'Ucn gcncrntor 

7::.8 * order. this f"nction optimises this order according lo the 
7 5(,1 ,, fa,qncn cy of the 9c11,m1/ or., in th,,; J!Olynom.ia./, list, _polys_, 

7GO , Mort? S)!ccificn.lly. the rrw.~l jhJqw:nl.ly o~<:wn·ing 9,m.e1·0,/.or 

761 , is set. /.11 be th(, .,malles /. ,qeo.,m1f ,ir, the ,;er.orul most fnJf/'IJ.t:111.iy 

7G2 , ot:cwri·ing gcncmt.or fa .;et lo be th e second srnallc-;.~/. ,<;<·:nrmlo,-, 

7t\3 * Few 1/w 1rnsaning bdi-ind this optirn.i,;llf:ion, ~ee <, p11p1Jr mllP,,.i 

7G4 * ''A case ,r,hem choosin!J a. 11-,·od·u.ct onl,)1' ma.Ices th,i 

7li5 * c,1.lc1,lo.lum,< of ,1 Grod,ncr- brtsis much ji,.stet '' hy 

7(;G * Freyja. f-fremsdotti1· (.Jou.,·ruil of Sym.bolic Compn/:n/.ion). 

76i * 

7G:-l * Nole: This /1tnclion is desi11n~d to be 1,sd bLJjore the 

7"9 * generators a.nd polynomia./s are c1.mver/:cd to .4 SC/I ord~1·. 

770 * 
771 ,. E:1:/.c1·nal ·u,wiablc-:s nc-:~ded.: inl pl; 

772 * 
773 ,.; 

771 FMonList 
T7!', alphabetOptimise( oldGens, polys ) 

7itl FMonLis t oldGens; 

777 FAlgList polys; 

77c- { 
779 ULong i, j , letterLength, size = fMonListLength( oldGens ), scores[size] ; 

780 FMon monomial, letter, theLetters[size]; 

7:-ll FAlg poly; 

782 FMonList newGens = fMonListNul; 

78:1 

78,l if( pl > 0 ) 

785 { 

7/l(i printf( "OlduOrderingu•u" ); 

787 fMonListDisplayOrder( oldGens ); 
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7/'ltl printf("\n"); 

780 } 

790 

7fJ l. I I Set. ·1t1• c"rmys 

792 for( i = O; i < size; i++ ) 

rn:1 { 
7')-1 theLetters[i] = oldGens -> first; / I 1'h,·nsfei· 9,,,u:mtor to cmuy 

n):, oldGens = oldGens -> rest; 

7(Jo scores[i] = O; I I fri.itialisc score.• 
rn7 } 
7!J8 

799 II Analyse the generator.< fu-u.nd in each polynun,·ial 

800 while( polys ) 
RO ] { 

l'l02 poly = polys - > first; I I B1,t.,w,t. 11 polynomial 

80:.l if( pl > 2 ) printf("Countingugeneratorsuinupolyu'l.s\n", fAlgToStr( poly ) ); 

80:1 polys = polys - > rest; 

805 
806 while( poly ) I I for ,w:/J. teT'm. in t.hc p1>lyn ,nnial 

807 { 
808 monomial= fAlgLeadMonom( poly); II Ertr«cl lhc lea.it nwnumial 

t.-09 poly = fAlgReductum( poly ); 

8 1U 

lill while( fMonlsOne( monomial ) != (Boo!) 1 ) 

-"- 1'..! { 

l'l l :1 letter = fMonPrefix( monomial, 1 ); I I 'li,/.;c I.he Jint le/I.er ',c ' 

8 1·.I letterLength = fMonLeadExp( monomial); II £-'incl //1 c e,cJicmenf. 'o.-' o.s ·in 1; ' 0 

111,, j = O; 

81.li while( j < size ) I I Locate tlu: lc-:tt,,r ir,. the g~n,,•mf:or mniy 

817 { 

8 l8 if( fMonEqual( letter, theLettersLJ] ) == (Boo!) 1 ) 

819 { 

8:.10 I I .Ma.tch fownrl. , inacasc .scores a.ppropria.tely 

82 1 scoresLJ] = scoresLJ] + letterLength; 

822 j = size; I I 8hortc u.t sca.,-ch 

s2:1 } 

8:2.-J e lse j++; 

fi25 } 

255 

82G monomial = fMonSuffix( monomial, fMonLength( monomial ) - letter Length ) ; I I Dose :c • c, from old monomicil 

827 } 

8j8 

829 } 

8:lO 

831 if( pl > 0 ) I I Provide so,ne ·information on , c1-ecn 
s:u { 
8'3:\ printf( "Frequenciesu•u"); 

8:M for( i = O; i < size; i++ ) 

8;15 { 

.o.:w printf("'l.u,u", scores[size-1-i] ); 

li:n 
s:18 printf("\n"); 

8:!9 

8,10 
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/,4 I / / Sorl sco1·cs by " quicksort algorithm. a.djust.ing the yenera.toi-s a.s ,uc go along 
8,12 alphabetArrayQuickSort( scores, theLetters, 0 , size-1 ); 

$-1:1 

i;4,J / / Bn-ild n1, new al;,haln:l 

8·15 for( i = l; i <= size; i++ ) 

84G newGens = fMonListPush( theLet ters[size-ij, newGens ); 

847 

848 if( pl > 0 ) 

849 { 
8:iO printf( "Newu0rderingu•u" ); 

1';;;:1, fMonListDisplayOrder( newGens ); 

8:i2 printf( "\n"); 

83'.\ 

854 

8:55 I I l?e/.ur·n the sortul a.l71ha.bct li.;t 

856 return newGens; 

~:')7 

8~9 I* 
8l>0 * .. - ........................ .................................................... ........................ ---·-----·---.. ·- - .. -
861 * Pnlynom·inl Ma.nip1ilalion Fnnctions 

~(i2 * =======·==·===·====·=====-·===·====·===== 
Sf;:\ *I 
864 

1-65 /* 
8GG * Fu.ncl:ion N1<111c: .fMonDiv 
R67 i1c 

llG8 * 011e1·view: Ret.-iwn., all pos.;ibfo ways that. :~nil ai:q divi.,fo.i 1st <L·ru.: 

8li\l * :Jrr.t aiy ,,, is di/Ji.,ion po.ssi/1/,)? 

870 * 
871 •• Def.nil: Gi1ie-n two FMons -"- and _b_, I.his function re'/.mn.i n.ll pos.s·ibl<-: 
872 * ways th.at. _/,_ ci'i1•ides _,i_ in the fmm of o.n FMonPnirLi.;l. Th<' third 

!::7'.I * pan,·mule1· _Jlur1- records whether or not (trne/f'alse) any di-vis-ions 

,~74 * <1re pos.<ihle. For c.cmnple, if t = abd11b1i/1c and b = ""' the1t the 
1,;,S * 01Llpnt FM1mPair!,,ist: is ((nbdab, c). (ahd. a.be), (1, do.babe)) 11.nd wr 
876 , 8d. _J-fog_ = trn.e. 

H77 * 
87.l * Ext<:·rnn.l 11ariab[('_s n,;cxfr,l: int. 7,l; 

871) •· 

880 *I 
881 FMonPairList 

882 fMonDiv( t, b, flag ) 

88:s FMon t, b; 

81-.:J Short *flag; 

88:', { 

tiRt·, ULong i, ti, bl, diff; 

887 FMonPairList back = ( FMonPairList )theAllocFun ( sizeof( *back) ); 

1188 

81\tl back = fMonPairListNul; // fniUalis,1 tlw 011.t)'1<t, l-i.st. 

890 
8!H *flag = false; / / Ass-u.,ne there n.n: no vo.ssihfo di.visions to begin with 

8\J:l ti = fMonLength( t ); 

8'>:I bl = fMonLength( b ); 
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894 

895 if( ti < bl ) / / Thc,rn (·<tr,. br n<> poss-U,lc: div-is·io·r,,s if I ti < I hi 

l,!.l6 { 

897 return back; 

.'\!}11 

809 e lse // J\fo mnst now cousidf:7' ,,a.di. vos.,ibility in twm 

I)()() 

901 diff = ti-bl; 

902 for( i = O; i <= diff; i++ ) // Workinr, left to ,-iyht. 

9():l { 

(J()4 / / /, the .mbwnrd oft uf length lbl .st c1rt.in9 11t position i+.l cqua-l to h? 

90:, if( fMonEqual( b, fMonSubWordLen( t, i+l, bl ) ) == (Boo!) 1 ) 

!)()1; { 

U07 //Match found; push the-: /c;ft ancl -right Ji,ct.o-rs on./.o the o-u.t1•1if- list, 

\IOI'- back= fMonPairListPush( fMonPrefix( t, i ), fMonSuffix( t, tl-bl-i ), back); 

CJ()(I if( pl> 6) printf("iu•u'l.i:u'l.su•u'l.s•('l.s)•'l,s\n", i+l, fMonToStr( t ), 

!llO fMonToStr( fMonPrefix( t, i ) ), fMonToStr( b ), fMonToStr( fMonSuffix( t, tl-bl-i ) ) ); 

9 LI } 

912 

0 1:3 

914 

!Jl5 // If "'c fnuncl so-rnc m a:tchcs set _)lag_ to be trne 

91 (i if( back ) •flag = true; 

!)l i return back; / / Ret·u.rn, ihc o·u,lput 1-ist 

Ulll 

Hl!l 
no;, 
!•21 ,. Func:t-ion NM,1 ,:: fMonD'ivFir-st 

!)22 • 

9:n * 0111<r·view: /{,;t1,rn.1 u,.,: Jii-,<t wriv /.hat 2nd arg dh•ide., 1st a.i:q; 

024 • .'I-rd urg --== is divfrion 710.ssihk f 
~}2!j )t: 

* Dela.ii: Oi-ucn twu FMons _lL and _b_, th,j /·unction returns llw first 

* -way that _/,_ divides _,L in the form uf nn FMnnPa.irL-isl:, The third 

* pa.,-11-mde.r _jlC1rt- records whether or no/. (trne//'e1lsc) u.ny divisinns 

* ci-rr po.ss·i&I,;, For 1-;:wmple, if t = abdabc,/,r ,wd h = ct/,, t,hen the 

, 011/.p·u,t FMonPa.irLisl is ({ I, dc,bfl.bc)) ctncl we: 
* 8e/. -flag_ = l1·1w, 

9;1:1 * Extc-rnfll , ,o,rinliles neolecl: int 71/; 

9:lc( * 
9:15 *I 
}l:l(i FMonPairList 
!J<li fMonDivFirst( t, b, Aag ) 

!J:38 FMon t, b; 

1)::9 Short *flag; 

940 { 

\141 ULong i, ti, bl, diff; 

94'.! FMonPairList back= ( FMonPairList )theAllocFun( sizeof( *back )); 
i1,1a 

944 back = fMonPa.irListNul; // f'nil:ial-is ,) t,he out7111l list, 
94;, 

!),J.o *flag = false; / / Assume the1'e <.1.rn no J>ossibk cl-ivisions lo &,)fJin wit/,, 
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947 ti = fl'v1onLength( t ); 

fJ,18 bl = fl'v1onLength( b ); 

9·.W 

fl50 if( ti <bl) // 'J'hi;rn wn /,c no po,;sil,lc divisions if [ti < [bl 

051 { 

!l:,:.l return back; 

95:_1 } 

µr,,1 else // !1-fo must 1ii1w r,msidec:1· ,ia.ch po.s.;ib·il-ity in turn 

955 
9:i(i cliff = ti-bl; 

:J;',7 for( i = O; i <= cliff; i++ ) // Working left lo right 

9"1l { 

!)::i9 // Is the snl,wor,l oft v/ length [bl sforting 111: position i+l e,11ial to b? 

IJti0 if( fMonEqual( b, fMonSubWorclLen( t, i+l, bl ) ) == (Boo!) 1 ) 

:JGl { 

96'.! //Maleh fonnd; push thi; /i;f/. cm.cl right. }<wt.ors on/.o the m,tint/, l-i.5/, "r,cl td,11.1·n. i i 

!:lG:l back= fMonPairList Push( fMonPrefix( t, i ), fMonSuffix( t , t l- bl-i ), back); 

9li4 if( pl > 6 ) printf(" iu•u'l.i: u'l.su•u'l.s• ('/.s) •'/.s\n", i+l , fMonToStr( t ) , 

tlG:, fMonToStr( fMonPrefix( t , i) ), fMonToStr( b ) , fMonToSt r( fMonSuffix( t , tl-bl- i)) ); 

%tl •flag = true; / / l ndir;a.te tlwt we Jw,,e fo-u.nd a rncdch 

9(i7 return back; 

%8 } 

96!) 

!J7() } 

971 

\172 return back; // R.d,,wn. the i;mpty l•7tlpv.t li.;t .... no m-Ct/.c:/1.,J.~ 111ern fom/.Cl 

97:1 } 

975 I* 
!l76 * Fu.nc-/.ion NC1·me: fA4onOvc-:1'laps 

977 * 
l-178 * Ove1·view: Find.; all vos.;ible 011er/aps of 2 J,'Mon.s 

!J7U * 
980 * Deluil: G-vven t:wo F'Mnns, this /11.nr:t-i:on rctunis all 

!J8l * possible wa.ys in viliich /.he two mnnnmia.ls 01,erlnp. 

9~'.! ·• Fo·r e1:o.m71lcJ, if _a._ = 11./;m.bc 11ncl _h_ = c11h, I.hen 

:18:J ,. I.he OHl7J·u.t FM cmP,iirLi.~t is 

!l84 "((1, I}, (ah. c), (r, 1), (I. cabc}. (1, a/1), (ahca.b , 1}) 

H85 •· OS i.n 

9i:i6 * h(a.bccil,c)*J = ab .. (mh,hc, 

l-1137 * c•(C1l>mhc:)*J = 1*(m1J)•m.bc. 

!)i,;8 * h(abm/)(:}•nb = o.br.-«b•(cc1l1)*l. 

!l89 • 
'J!l() * Extc,-,ial van able,, -n ceded: int 711; 

9\ll * 
'.)92 *I 
98:l FMonPairList 
\>(M fMonOverlaps( a , b ) 

!l!.l5 FMon a , b; 

:>% { 

!l'Ji FMon still, move; 

!l98 Short type; 

!lfJtl ULong la, lb, ls, Im, i; 
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HlOO FMonPairList back= ( FMonPairList )theAllocFun( sizeof( •back )); 

lll0l 

1002 back = fMonPairListNul; // Jnit-io/,:.sc tlw 011.tp1tl, l-i.st. 

IUO:J 

lOQ-1. la = fMonLength( a); 

100!, lb = fMonLength( b ); 

1006 
I Oll7 // Ch.e,('k for the l,ri·uiu,l moo.o·rnfol 

1008 if( ( la== 0 ) II ( lb == 0 ) ) return back; 
.LOO!) 

101() / / Determine which monomial has the greater len9th 

LO 11 if( la < lb ) 

1012 { 

1(1 1:\ still= b; ls= lb; 

!UJ..-l move = a; Im = la; 

1() I 5 type = 1; / / Rernemher that. I al < I hi 
1010 } 
1017 else 

101$ { 

10 l9 still = a; ls = la; 

1020 move = b; Im = lb; 

1 U1 I. type = 2; / / Rum.embe,· /./wt I al > = I bl 
.1.02:l } 

102:1 

102-l // /•'i-r.st. ,lca.l with pnfi1: nn,l .mlfi,c ovc7'1np.s 

lU:lf, for( i = 1; i <= lm-1; i++) 
1(126 { 

lll27 // PRHF[X 011e1fo.1, -·- ·1.s ,i wefiJ; of still eqtw.l to" ,mJJiJ: ofm,ruc? 

1028 if( fMonEqual( fMonPrefix( still, i ), fMonSuffix( move, i ) ) == (Boo!) 1 ) 

IO:l9 { 

Jo:JO if( type == 1) // .s/!ill = b, ·mou,i -= a. 
l();l] { 

1032 // Need to multi7,ly non the ri9ht and b on the left to construct t l,c overlap 

10:n back= fMonPairListPush( fMonPrefix( a, la-i ), fMonOne(), back); // b 

103,1, back= fMonPairListPush( fMonOne() , fMonSuffix( b, lb-i ), back); // a, 

1035 if( pl > 5 ) printf("Leftu0verlapuFoundufOru('l.s ,u'l.s) : u ('l.s ,u'l.s, u'l.s ,u'l.s) \n" , 

!U:1(i fMonToStr( a), fMonToStr( b ), fMonToStr( fMonOne() ), 

1():\7 fMonToStr( fMonSuffix( b, lb-i ) ), fMonToStr( fMonPrefix( a, la-i ) ), 

l ll;-18 fMonToStr( fMonOne() ) ); 

10:19 } 

I (1'10 else // .~till ·= a., rnovc = b 

104 l { 

I 042 / / N,:ed t,, m·u,ltiply a. on th ,1 left ,md b on the ·r·i.r,ht to c·o·r,.Sf:-rw:t the-: 0·1Jc-:1'lo1> 

104:1 back = fMonPairListPush( fMonOne(), fMonSuffix( a , la-i ), back ); // b 

l044 back= fMonPairListPush( fMonPrefix( b, lb- i ), fMonOne() , back); //" 

10,1,:, if( pl> 5) printf("Leftu0verlapuFounduforu('l.s,u'l.s) :u('l.s,u'l.s,u'l.s,u'l.s)\n" , 

HHG fMonToStr( a), fMonToSt r( b ), fMonToStr( fMonPrefix( b, lb-i ) ), 
IU-17 fMonToStr( fMonOne() ), fMonToStr( fMonOne() ), 

10-11! fMonToStr( fMonSuffix( a, la - i ) ) ); 
llJ.'l!l } 

l050 } 
1()5) 

1052 / / SUFP!X ou1wlo-7> - ;,s a . . wffb: of st.ill equ1tl to a 7rn?ji" of mo11cd 
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l0S:l if( fMonEqual( fMonSuffix( still, i ), fMonPrefix( move, i ) ) == (Boo!) 1 ) 
1()5:J { 

1055 if( type == 1 ) // still = l,, rnov,: = a. 
105G { 

1057 // Need t.o m.11ll-i11ly a. on I.he lefi ,md I> on t.lw right. t.o 1:on.itrucf. the 011e-rl11p 

l0'i8 back = fMonPairListPush( fMonOne(), fMonSuffix( a, la-i ) , back ); //Ii 
I0MJ back= fMonPairListPush( fMonPrefix( b, lb- i ), fMonOne(), back); // a 
l0G0 if( pl > 5 ) printf("Rightu0verlapuFounduforuCl,s ,u'l.s) :u('l.s, u'l.s ,u'l.s ,u'l.s) \n", 

I0til fMonToStr( a), fMonToStr( b ), fMonToStr( fMonPrefix( b, lb- i) ), 

l0fi:l fMonToStr( fMonOne() ), fMonToStr( fMonOne() ), 

l0G'.I fMonToStr( fMonSuffix( a, la- i ) ) ); 

1064. 

IO(i5 else / / sl:ill == a, move c=.· b 

lOtill { 

10G7 // Ncc·xl lo Hmltiply <1 on th ,?. ·right. and I> on the left t,o c:or,st,ruc/. th,: ovalop 

106tS back= fMonPairListPush( fMonPrefix( a, la-i ), fMonOne(), back ); // /, 

I0G!l back= fMonPairListPush( fMonOne(), fMonSuffix( b, lb-i ), back); //,,. 

l 070 if( p l > 5 ) printf( "Rightu0verlapuFounduforu ('l.s ,u'l.s): u('l.s , u'l.s, u'l.s ,u'l.s) \n", 

1071 fMonToStr( a), fMonToStr( b ), fMonToStr( fMonOne() ), 

.1072 fMonToStr( fMonSuffix( b , lb-i) ), fMonToStr( fMonPrefix( a, la-i) ), 

107:l fMonToStr( fMonOne() ) ) ; 

IU7•l } 

Hl7!i } 
IU,1, 
1(177 

I 078 // Sv,/,word ooerlo.ps 

107\1 for( i = l; i <= ls-lm+l; i++) 

l080 { 

1081 if( fMonEqual( move, fMonSubWordLen( still, i, lm) ) == (Boo!) 1 ) 

I0>l:l { 

10!:<l if( type== 1 ) / / st.-ill = b. ·m.o·uP- ·= a. 

l()Jl,1 { 

10R5 // Need to multiply ,, on the left a.nd iight in con.;tru.r.t the overlap 

108(i back= fMonPairListPush( fMonOne(), fMonOne(), back); // b 

1087 back = fMonPairListPush( fMonPrefix( b, i-1 ), fMonSuffix( b , lb+l-i-lm ), back); // a 
lflStS if( pl > 5 ) printf("Middleu0verlapuFounduforu ('l.s ,u'l.s): u('l.s ,u'l.s , u'l.s ,u'l.s) \n", 

]()8!) fMonToStr( a), fMonToStr( b ), fMonToStr( fMonPrefix( b, i- 1 ) ), 

10!.l(J fMonToStr( fMonSuffix( b, lb+l-i-lm) ), fMonToStr( fMonOne() ) , 

1091 fMonToStr( fMonOne() ) ); 

ion 
101):l else // still ·= a, ·,no-ve = b 

.10!)4 { 

I (HJ:, // N,:eJ/ to ·1n-ultiply I, on llw lef!. 11ri.1l ri9ht; lo const.mr.t the Ol>e<rlnp 

I0()1l back= fMonPairListPush( fMonPrefix( a, i-1 ), fMonSuffix( a, la+l - i-Jm ), back); // b 

1097 back= fMonPairListPush( fMonOne(), fMonOne(), back); // a. 

1()$)~ if( pl > 5 ) printf("Middleu0verlapuFounduforu ('l.s , u'l.s) : u('l.s, u'l.s , u'l.s, u'l.s) \n", 

l0M fMonToStr( a), fMonToStr( b ), fMonToStr( fMonOne() ), 

I JOO fMonToStr( fMonOne() ), fMonToStr( fMonPrefix( a, i-1) ), 

llOl fMonToStr( fMonSuffix( a, la+l-i-lm) ) ); 
1102 } 

]1(13 } 

11 1),1 } 

] 1(15 
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l lOG return back; 

1107 

llOIS 

1100 /• 
ll 10 ., .flmction Nrmie: 1foglni/.ia.l 

I Ill ,. 

l l 12 * Ou,;nriew flet·u.,-11,• the rkgn:e-ba.icd in:itial of ,, r,iv<-:n polynomilll 

11 J:3 • 
l l l•l * Dct.wil: Gitieri. " p,1lyno11ri11l _ir,pt,L, this J1,r1.ctio11. r,;/.nrn.i the 

.1."I J;i * initia.l of thn.t w>lynornfo.l w.r.t. dcyref.. in other wont~. 

11 11, • all terms of highc.<t de91·cc are ret.urnc,l. 

.1117 * 
l ll.1' • / 

11 1\•I FAlg 
I J :lO degln it ial( input ) 

11.21 FAlg inp u t ; 

l l :.tl { 

112:1 FAlg output= fAlgZero () ; 

l I 24 ULong max = 0, next ; 

1125 

.1. l '.lG // ff the input. is trivial. the 01tlp·1Ll ·is trivial 

11 '27 if( !in p ut ) r eturn input; 

l.l '.llS 

l 12!) / / Ff)r e11ch term in th,; irwut polynomial 

ll'..l(J while( input ) 

l 1:ll { 

1 L'.l2 // F-ind t.h.1: dcw·,;c 1,f /he r11:.ct term fr,. the 710/ynom.iol 

11 :l:-J next = fMonLength( fAlgLeadMonom( input ) ); 

11:l•I 

I I :3!:i // lf WI' find a l.crm. of hi.glwr degree 

l l :rn if( next > max ) 

I I :l7 { 

l 13~ / / Set 1, new ma:i:im.,m, 

u.:l!J max = next; 

11 ,1n / / Siar/: 1,u·i.lrling up I.he output pulynomiul a.go.in 

1 lA I output = fAlg LeadTerm( input) ; 

11-12 } 

n ,1.:.l / / Bl.sc·: if we }incl a /.,:rm of ,:qua/ m a.:,:im.m11 <frgn:c 

114.-J e lse if( next == max ) 

JI,15 { 

I 14(i // Add the tc.:nn to the o·u.tp,L'/. polynomial 

ll ,17 output = fAlgPlus( ou tpu t, fAlgLeadTerm( input ) ) ; 

114$ } 

IJ.1!J 

I I ;;o / / Get r ca.dy to look at the nc.tl term of the i.npuf pulynomi,il 

l l :-, .1. in put= fAlgReductum( input ); 

I. [ij2 

1153 

11 ,H // fie tum f.lte htitia.l 

1155 return outpu t; 

1156 

11:,7 

1158 / ,r. 
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1. L:ifl * Fimct.ion Na.me: fMonReve,·se 

l lGO * 
l ·1 ti I -, Ovcr,,i<Jw: //.werses a, m.mi.om.io.l 

l JG2 * 
i:w:i , Del-11--il : Ofoen. 11 mCJnomial -rn = :r._./:c-iL. :r,_n, I.hi., 
I. I (;,I ,. J,_,n,; lion retm-r,.s /:he ·mon1>·mi.al ·rn' -= a:_n:c_{ n-1) .. . 1,_:2,;_J. 

Jlli5 • 

I IGG •/ 
1Jti7 FMon 
I.I (ii:! fMonReverse( input ) 

11 (i9 FMon input; 

1 1.70 

1171. FMon output = fMonOne(); 
1]72 
ll73 

ll74 

/ / Fo1' ea.-:/1. ·,mria.hfo in the-: irlp·1J,l monomial 

while( input ) 
117!; 

1176 

l 177 

1173 

ll7\I 

{ 
output = fMonTimes( fMonPrefix( input, 1 ), output ) ; 

input = fMonRest( input ); 

11 80 

l.l81 

/ / Rel·u.1-n. lhc rcver.,e,t m.onumial 

return output; 
1182 } 
1rn:.1 
11 s,1 /-• 

1135 * ------------------------
l 18G ,- (}ro,,bnr:r Basis l"u.w:lion.s 

1137 • --===--==-:c==-=======-==-===-----=-==-=== 
1 l 1j$ •/ 

1139 

1100 /• 

11 rn • F\m.r.l-ion NCLmc: pol-y{frcluce 

.1 lfl1 * 
11 fJ:\ • O-ue1·1ne"': Fl.elw-ns the no-rma.l form of a polynomial ,u. r . l. a li.~l of polynomials 

lHH ·• 

1195 •· Dc-:la.il: Gi-uen an E'llg ancl ,m PAlyLiM., this f1m(:/ion 

ll!.ltl ·• cl·i.vi,fo.< lhc-: FA lg w. r·. t. lh e PA/_qU.sl. rdu·ming the-: 

1 l 97 ,- 1101-m.111 form of the i n1mf polynom·i.ul w. 1·.I,. /.he list. 

11 'JS • 

I I 1)9 * B:tl<-:rn.«l Vc1-r-it1.bles Req11in:d: int pl; 

12(10 * Glob,1.l Vm-io.ble.s U.,<-:d: IJ Lmtg rilled; 

120] * 
1:202 *I 
1.20:\ FAlg 
J :2().1 poly Reduce( poly, list ) 

120!\ FAlg poly; 

l'.!0G FAlgList list; 

1207 { 

l'.!08 ULong i, numRules = fAlgListLength( list); 

120Y FAlg back= fAlgZero(), lead, upgrade, LHSA[numRules] ; 

l'.!10 FMon leadMonomial, leadLoopMonomial, LHSM[numRules]; 
12 l I FMonPair List factors; 
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l2 12 Qlnteger leadQ, leadLoopQ, lcmQ, LHSQ(numRules]; 
l'.213 Short flag, toggle; 

121 ·l 

l '.2 If> / / Cc,,werl the i-n.7"11.l /isl. of polynomial., to an nn-ay and 

1216 // creo.tc-, ormys of lea./l rrwr,.om·ic,ls t/,nd lm.d cocffici,:nl., 

1217 for( i = O; i < numRules; i++) 
1218 { 

1219 if( pl> 5) printf("Polyu'l.uu•u'l.s\n", i+l, fAlgToStr( list-> first)); 

1220 LHSA[i] = list -> first ; 

.L221 LHSM[i] = fAlgLeadMonom( list ->first); 

l'.!22 LHSQ[i] = fAlgLeadCoef( list - > first ); 

I 2'.l:l list = list - > rest; 

1224 

1225 

l '.!2G / / Hie will now ·recursi1•dy n :dv.c;e eve1;v l.c-rm in the polynomiol 

1227 // ·1ml·i.l no more ,·,!duct-ions (t.'rc po.,si.blc: 

1228 while( fAlgisZero( poly ) != (Boo)) 1 ) 
1229 { 

t2:l0 if( pl> 5) printf("LookinguatuLeaduTermuofu1/.s\n" , fAlgToStr ( poly)); 

12:1 l toggle = 1; / / A ssum.c no 1·,-:ductions are 7Jos.,ible /;,) hr·:gin with 
12:12 lead = fAlgLeadTerm( poly ); 

I 2:1:1 leadMonomial = fAlgLeadMonom( lead ); 
·12:1,1 leadQ = fAlgLeadCoef( lead); 

1:235 i = Oi 
12:w 

I '.!:37 while( i < numRules ) // Por ea~h 1,otynominl in the Li.,t 

12:.l~ { 

l'.!:19 leadLoopMonomial = LHSM[i]; // P-ick a. lest monomirtl 

1240 flag = false; 

1241 / / Doe., the ilh polynorriial di1drk our polynomfol? 

l2•1-2 factors= fMonDivFirst( leadMonomial, leadLoopMonomial , &flag) ; 
12,1:l 

124•'1 if( flag== true) // 'l.C. lcadMonomial = fa.r.tor.s -> l.f/. * leaclLoopA.fonominl * f11ctors -> rt 
1245 

1241, if( pl > 1 ) nRed++; // lncrense the. nmnbc1· of red·ur.tinns carrie.d ont 

12·17 if( pl> 5) printf("Foundu'l.su•u('l.s)u•u ('l.s)u•u('l.s)\n", fMonToStr( leadMonomial ), 

l '.!-'18 fMonToStr( factors - > 1ft ), fMonToStr ( leadLoopMonomial ), 
12·HI fMonToStr( factors-> rt) ); 

l '.!30 toggle = O; // Jrul-ica/,c " red·,J.(;tior, ha .. , l,e1;n rnn·icr! 011/. t.o e,cil the loop 

1251 leadLoopQ = LHSQ[i] ; // P-ick lhe diuisor ·s lea.ding ,:oeJJicimil 

1'.!'i2 lcmQ = AltLCMQinteger( leadQ, leadLoopQ ); // Pick 'nice ' ca.ncdlir,.g r:ocffir.icmt,.s 
125:; 

12;;,1 / / Consl-rucl 1wl11 #i * - 1 * ou:flicienl. lo get lefld terms /.he .,a.nw 

1235 upgrade= fAlgTimes( fAlgMonom( qOne() , factors-> 1ft ), LHSA[i] ); 

.1.2:i(i upgrade= fAlgTimes( upgrade, fAlgMonom( qNegate( qDivide( lcmQ, leadLoopQ) ), factors -> rt )); 
l'.!37 

l.2:i8 / / Add in poly * cocf]icienl to caned ojf the lead tenns 

l:!39 upgrade= fAlgPlus( upgrade, fAlgScaTimes( qDivide( lcmQ, leadQ ), poly)); 
12(i() 

l:!Gl / / We r,,,n.,t. also now m'Ultiply th,-; c1rrrcnl disc(t.'rderl rcm.<1inder /Jy , i fr1c/.or 

l 2ti2 back= fAlgScaTimes( qDivide( lcmQ, leadQ ), back ); 

I 2G:l poly = upgrade; / / In thr: ne1:t if',:rMion. we ul'ill be n:d1ici.n.9 I.he new polynomh1l upgm<le 

12ti4 if( pl > 5 ) printf( "Ne11u\.lordu•u1/.s ; uNe11uRemainderu•u'l.s\n" , fAlgToStr( poly ), fAlgToStr( back ) ); 
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126:, } 

1:!GG if( toggle== 1) II '/'h(• Uh polynomic,l did 110/, divide poly 

12ti7 i++; 
1 :!GR e lse I I A 1'f:dnct.ion was mrried 01tl, c:r:i/. th" loop 

12tW i = numRules; 

1'.l70 } 

1271 

1272 

12,:1 

1.274 

1:275 

127() 

1:277 

if( toggle == 1 ) I I No reduct.ions wen< cwrritoi on/': now look o.l the- n,):i:l lc-nn 

1271! 

1:.mJ 

12~0 

{ 
I I .Add lead term tn remainder 1mrl reduce the rest of the polynomial 

back = fAlgPlus( back, lead ); 

poly = fAlgReductum( poly ); 

if( pl > 5 ) printf("NewuRemainderu•u'l.s\n" , fAlgToStr( poly ) ); 

I :!Rl return back; I I lk t.nrn tlu: n:dv.1x-d m1,d sir11pliji,:d 7iolyn.om.ia.l 

1.21;2 

128:~ 

12M I• 
.1.28:, * Function Name: m.in-irn.al.GB 

!21\1, * 

1287 ·• Overview: Mini111i$eS a given Croe&n,>.r Basis 

l::?1'8 * 
12~'.J * Drf.rtil: Givc-r,. r.r, -inpv.t. Cmdmc-:1· EJC1si.< . /.hi8 f1w.ct.ion 

l'.!90 •· will dimina/1) f1t,m. thr: lm.,i.< uny poli1r,omiaL1 who.51) 

12!)1 * lead m.onornfols a.rn m1<lti71lc8 of some•: 1>/.hcr le.ad 

l '.!92 * monomial. 

12!):J * 

l2tM * B:r;tl:rrwl v1i1'io.bles '!>)quired: ·inl. vl; 

1295 * 
12\)(j *I 
1::?!J7 FAlgList 
l2!ltj minimalGB( G ) 

1::?'J!J FAlgList G; 

UlOU { 

1;101 FAlgList G_Minimal = fAlgListNul, G_Copy = fAlgListCopy( G ); 

1302 ULong i, p, length = fAlgLis tLength( G ); 

1:10;3 FMon checker[length]; 

J:)M FMonPairList sink; 

L:lll:, Short flag, b lackList[length]; 

J:306 
t:lll7 I/ Cre11/-,) 11r1. 11rmy of lead ·rn•>nmni.als and in-iti,1.li.<1! 1,lo.c:kLisl 

1:3()~ I I which will store which monom-i.als a.re to be deleted fr<>m the basi.s 

.t:IO!l for ( i = O; i < length; i++ ) 

1:no { 

1:111 blackList[i] = O; 
l ;lJ2 checker[i] = fAlgLeadMonom( G_Copy - >first); 

1:n:.i G_Copy = G_Copy - > rest; 
);j]_,J } 

J:3[5 

l<l 1G I I T'csl: divisi/Jilil:y of ea.ch rn.or1.o·mia.l ·u•.r . /. all oi.her monomiiils 

l :J[ 7 for ( i = O; i < length; i++ ) 
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1:ws { 
1am p=O; 

1:120 while( p < length ) 

1 :l:.ll { 

1:122 I I ff 11 ,;., dijj',:renl from i und p h«.s nol yet. /1c1:n ',lelcf.t.:d' from. t.l,.c ba.;i,; 

1:1:n if( ( p != i ) && ( blackList[p] != 1 ) ) 
l ;32,1 { 

1:ur, 

1:J2tl 

1:!27 

l3W 

1:i2n 

1:3::0 

13'.ll 

1:rn2 

flag = false; 

sink = fMonDiv( checker[i], checker[p), &flag); 

if( flag== true) II poly i's lea.d t.crm ·is a. mulliple of voly p's lca.d term 

{ 
blackList[i] = l; II Ensure polynomi«l i is deleted later on 

break; II /J:.cit. from the while /0071 

} 

D:ri p++; 
1:u,i 

1 ;3:1[> 

1:i:w 
1:3:17 I I Pns/J. 011,to t/1,: ,,.u,t7mf: l-ist. elements not bl,u:ld·istcd 

1:l:l8 for( i = O; i < length; i++ ) 
1;i;:9 { 

1:,<.10 if( blackList[ij == 0) II Not tn he deleted 

1:34 I { 

1:.l-12 G_Minimal = fAlgListPush( G -> first, G_Minimal ); 

l:l-'13 

l'.l·H G = G -> rest; I I Ad1umr:1; th1: li.;l 

l:l-'15 

1:),jl') 

I :1,17 I I As it w1i.; constn,ct,:d in reverse. we must rc·ver.rn (;_Minimal /,cfom rdnrnin.lJ it, 

J:Wl return fAlgListFXRev( G_Minima l ); 

l:!49 

1:3;;0 

1:1r,1 I* 
1352 * F\.,nr.t·ion Nume: reJ.ncedOB 
1:1ri:1 ., 

1;i;;,J ,, Ouc1·1riew: Rccl11c·,:., ca.ch rnembt!'I' of a. Groeb,ic-r Bu,.sis w .1·.t . all other mernb1:1·s 

1~;fj5 ii' 

J:l3G ,. !JctfJ.il: C:i:ucn a. list. of 71olynomirl.ls, I.hi,; f1mcl'ion loh., t!fJ.d1. 

1 :357 ·• mr:m/x:r of t./1,e Ii.sf, ·in ·/.1J:T'n., red·u.cir,.g tfu: 11olynornial w. r . l. a.I! 

I :!:38 * oth1:1· ·mcmb,w.; of the l,11si.,. 

1:359 • 

I :!GO * Note: This fnnclion doe.; not cho:k 1.11h.dh.er n polynomial m,l-u.ce.• lo 

1 :361 • zcru or not (we u.sua.lly wnni lo delete polynomials th«l reduce tn 

1:w2 • zero from nur basis) - ·ii is o.sst,m.,:cl lhfJ.i no member of the hasis will 

1:lG:I * ri:,lnce to ze1'1) (which will he the ~a.se 'i;f we stnrt with a rrr.in:imal Groel,nc,· 

:i.:w,i • /Jasis). Also, at the end of the 11lr1orithm, the tot:fJ.l number of rccl1,ctions 

1 :!G;) * wr,·it:d ou/, cluri,n_q the *Whole progmm.• is ·rrport.ecl if the, 7,rint level 

1:to6 " (1,l) e~:cecds I. 
1:1r;7 ,. 

1:ltl8 • Extc:rnal 11ai-i1thlcs req•tircd: int 71l: 

1:wo * 
l:l70 •I 
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1:rTl FAlgList 
1:172 reducedGB( GBasis) 

137:l FAlgList GBasis; 
1:11,1 { 

1375 FAlg poly; 

1:liu FAlgList back = fAlgListNul, old_G , new_G; 

J:)77 ULong i, sizeOflnput = fAJgListLength( GBasis ); 

1:m, 
1:rnJ if( s izeOflnput > 1) // /f lGBasisl > J 

1.:1130 { 

1 ;!81 i = O; // i keeps track of which polynnmial we ,ire looking fl,t 

J:182 

138!1 // Start by m aking a copy of G for J>rocessing 

1384 old_G = fAlgListCopy( GBasis ); 

l :l85 

1:.186 while( old_G ) // Fur each polynomfol 

l:lll7 { 

1:)88 i++; 
1 :lll9 poly = old_G - > first; / / E,·tmt:/. « p1llynomial 

1:)'J0 o ld_G = old _G -> rest ; / / Ad1Jar1.cc- t.hc lis1. 

1:1n1 if( pl> 2) printf("\nLookinguatuelementupu•u1/.SuOfubasis\n", fAlgToStr( poly ) ); 
1:.rn2 

1:1n:3 // C:onstrnct ba8i.< without '7,oly' by a.ppcnding 

139,J. / / the n:111a.in·inq polynomials tn the reduced polynomials 

13!.lii new_G = fAJgListAppend( back, old _G ); 

l :lOG 

13!)7 poly= polyReduce( poly, new_G ); // l foduce 110/y 111.r.t .. 1ww_C 

l :l98 poly= findGCD( poly); // Divide ,mt by the GCD 
1:3')\l 

141)0 if( pl > 2) printf("Reduceduputou1/.s\n" , fAlgToStr( poly)); 

1401 // Add the rc-d-uccd polynornia.l lo t.h1: Ust. 

1.-1!):l back= fAlgListAppend( back, fAlgListSingle( poly ) ); 
1,w:1 } 

l4!M } 

1405 

1·106 

e lse // else I GBasisl 

{ 
1407 r eturn GBasis; 

1-10~ } 
140!) 

1 a.nd there is no point in ,loing 11-ny rcdnc/.ion 

):j 10 / / Flc-:port: on Uu: lolctl m.mibr-:1· of ri,d,id.'io,u i;a.1·ried ov.l dnring l/1.,: *'U1holc- pmgm.m* 

141] if( pl > 1 ) printf("Numberuof uReductionsuCarrieduoutu• u1/.u\n", nRed ); 
J.:J 12 

1.-1 J:3 return back; 
1,n,1 } 

l'.1 1:, 

1411, I* 
l.•11 7 ·• .Function Name: ·idca./J\:fember8hipProblem 
141.8 , 

1'J W • Ovwn,it)w: 'l'e.; t., wh.cthc-:,· a given l1'.4ly r,:dnce., /.o O v .. sing the gh•en F'1\lgl,i.;/. 
J..12() ,. 

1 :J2 l • Dct.CLil: Given " /-i.st of pol.vrimn-ials. I.his furu:tion tcst.s whe/.her 

1.-1:l:l * a. giv,m r•olynomiil.l reduces lo uro u,sing thi:; li:;l. Thi,< is 

J ,-12:i * cfon,, nsing a mor/-1.fied vtrsion of the- f,mction polyFl.c-1l'uc:1J in t:h,i.t 
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J ,)24 * the rnomenl a.n frre,lu.cible rnvnom:ial is encountered, the algorithm 

1425 * terminc,t,:,$ wit,h the hwwledy,: that the 7)()lynornial w;ll. not 

1·126 * redw:e J,o 0. 

1427 < 

1·12~ " E:cle·rnol ua.riribles n:q·,dred: int i,l: 
[,129 * 
l,J:;() *I 
1,1:11 Bool 
1,1:12 idea lMembershipProblem( poly, list) 
,1,,n:1 FAlg poly; 

143.:I FAlgList list ; 
1,n;; { 

14::,; ULong i, num Rules = fAlgListLength( list ); 

1,1:n FAlg back = fAlgZero(), lead , upgrade, LHSA[numRules]; 

14:~8 FMon leadMonomial, leadLoopMonomial, LHSM [numRules]; 

14:w FMonPairList factors ; 

1,140 Qlnte ge r leadQ, leadLoopQ, lcmQ, LHSQ[numRules]; 

J ,j,j 1 Short flag, toggle; 

14-12 

1,1,13 //Convert.th,; ·input list of}lolynomia.ls t.o o.n o.1·my a.nd 

] 44.'l / / crea.te anay.s of lead mono11iials and lca.d cneJJicicnt, 

14•15 for ( i = O; i < numRules; i++ ) 
t ,J4G { 

1,1,17 if( pl > 5) printf("Polyu1/.uu• u'l.s \ n " , i+l, fAlgToStr( list-> first )); 

lH11 LHSA[i] = list-> first; 

1449 LHSM[i] = fAlgLeadMonom( list - > first); 

1-150 LHSQ[i] = fAlgLeadCoef( list - > first); 

14:il list= list - > rest; 
1-'152 

1,1:;:1 

14:;,1 // We will now 1·<x"1L1',<ivdy ·,·,xh,ce every tcinn in the polyn,mt'ial 

I ,I',:, / / until ,1.n ii-red-u.cibfo te1·m is cncou.ntcrcd or 1w more n;dw:lions am 1)08.iible 
14;:,,; while( fAlglsZero( poly ) != (B ool) 1 ) 
J.,1:,7 { 

1,t;:is if( pl > 5 ) printf(" Looki nguatuLeaduTermuof u'l.s\n" , fAlgToStr( poly ) ); 

1•15(-1 toggle = l; // As_swrrHJ no n:d1,ct.ions ci,·c possible t.o b1;gin with 

1-IGO lead = fAlgLeadTerm( poly ); 

1,161 leadMonomial = fAlgLeadMonom( lead ); 

14G2 leadQ = fAlgLeadCoef( lead ); 

l ,-Jt,:1 i = O; 

146-1 

J.-Jt;5 while( i < numRules) // i:,,r ca.ch polynmnia,l in the list. 

I4GG { 

14Ci7 leadLoopMonomial = LHSM[i]; // Pick CL test monomial 

J4(i8 flag = false; 

l4M) / / Does the ith 11olynomia.l divide 011,r polynomia.l? 

1.470 factors = fMonDivFirst( leadMonomial, leadLoopMonomial, &flag ); 

l47l 

1-172 if( flag == true ) // i.e. lmd/1.fonomial = fo.ctor., -·> /ft, • k<ulLoopM,momi«l <· fac/o·rs ..... > rt 

1473 { 

1,174 if( pl > 5) printf("Foundu1/.su• u ('l.s) u•u (1/.s)u• u(1/.s)\n" , fMonToStr( leadMonomial ), 

147:, fMonToStr( factors - > 1ft ), fMonToStr( leadLoopMonomial ), 

1,176 fMonToStr( factors - > rt ) ) ; 
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J.-177 

1478 

1.-mi 

1,180 

1,J8 I 

1482 

1-H<l 
J.-p;,J 

l-185 
:J,18(i 

1-187 

148~ 

l4R9 

l•HllJ 

1491 

l·'Hl2 
J -1!):3 

1--J!JI\ 

[.-H)!j 

i .-.1'>0 
] ,H\7 

1498 

J.4f)!) 

150() 

l!',01 

1502 

1r:,o:i 
1504 

1!:.05 
151)(; 

IGOi 

I* 

toggle = O; I I Indicate " re,t-u.ctiun has hecn ciin-ied Ot<I, t.o exit the [0071 

leadLoopQ = LHSQ[i]; I I Pick the di'lti.~or'8 leod·ing cc,e1]icfont 

lcmQ = AltLCMQinteger( leadQ, leadLoopQ ); II P.ick 'nice ' cancdlfoy coeffic·icnt.s 

I I Con-~l•f'!lc/. poly # ·i * ····· l * c0<!]Jicien/. /.o get lc:ad terms the sa.m.c 

upgrade= fAlgTimes( fAlgMonom( qOne() , factors-> 1ft ), LHSA[i) ); 

upgrade= fAlgTimes( upgrade, fAlgMonom( qNegate( qDivide( lcmQ, leadLoopQ) ), factors-> rt) ); 

I I Acid ·in J>oly * coejfit:ient to c·nnccl o[f the fo,,d tcirm.s 

upgrade = fAlgP lus( upgrade, fAlgScaTimes( qDivide( lcmQ, leadQ ), poly ) ); 

I I We m·u.st. alsc, now mult·iply th e cu'f'1'cnt discarded remainder by a factor 

back = fAlgScaTimes( qDivide( lcmQ, leadQ ), back ); 

poly = upgrade; I I hi. lht, ncJ;/. -iteration, 1JJf! wilt b,i niducing 1-h~ r, ew polynomial up_gmdc 

if( pl > 5) printf("Ne11uWordu•u1/.s;uNe11uRemainderu•u1/.s\n", fAlgToStr( poly), fAlgToStr( back)); 

if( toggle == 1 ) I/ 1'/11) ith volynom.ia.l cl-id not di1rid,1 -poly 

i++; 
e lse /I A r~cfo.ct-ion '<•a.s co.n-ied oul .. e3,i/ the! loo11 

i = numRules; 

* If toggle ==== .l , lhi.s 1,wans I.hat no rnle $implificd the lead term. nf 'puly' 

* -~o I.hat. we h1we e11-r,1J1!nl.<.n:d o.n irn;cl-ud/,lc n ,onmnial. ln this rnsc. /.he -polynomial 

* tut~ <trtJ rcdar.:ing wil l not. n:.d1tt:c to zero, ~',.O we ca.n now n~/.1ffn 0. 

*I 
if( toggle == l ) 

return (Boo !) O; 

1508 

1509 
/ I If we: n;,u :h here. !ht polynom·i11l m ,fo.ccd to (} so -u1« ret-u.i·r,. a p,>sit.iH, re.mlt. 

return (B oo!) 1; 

J.f,10 } 
151.l 

1r,12 I* 
1513 •· 
l~• 1,1 -, Bnd of F-ilc 

1515 •· =========== 
1Gl6 *I 

B.2.8 list_functions.h 

I* 
2 * File: li.sLfi.ru:tion,s.h 

:i " Ani'lwr: C:a.reth E-uo.ns 
4 * Last Mud·1:fied: 9/:h A-ugusl :W0-5 

fi *I 
(j 

7 / I Initialise. file definit·inn 

~ # ifnde f LIST_FUNCTIONS..HDR 

!J # d efine LIST_FUNCTIONS..HDR 

268 



APPENDIX B. SOURCE CODE 

10 

l.l // lndudc, MSSnC l,ibm.,·h:s 

12 # include <fralg.h> 

i:i 

l ·l // 
1,; // B.ckrno.L Va.,·iab/c" R,iquimd 

In// 
17 

rn extern int pl; // Holds the ''Pi-int Level" 

1n 
20 // 

21 / / msplay Amctions 

22 // 
n 
2.-J // Ois1,ln11s a,n FManLi.,I. fr,. t.h,i fon11a.t ll\ n 12\n L:f\n ... 

'./5 void fMonListDisplay( FMonList ); 

:W // Displnys 0,11 FMonList in the fwm1tt l1 > lz > l:1 ... 

2i void fMonListDisplayOrder( FMonList ); 

28 / / Displnys o,n FMonPairL'i.,t in l/1e fo,-,nnt (ll, 12)\n {13, 11)\n ... 

W void fMonPairListMultDisplay( FMonPairList ); 
:ill // D,.splay.s 0.,1 FAlg.l,ist. in /.he fnmwt 71/\n p2\n p3\n .. . 

:H void fAlgListDisplay( FAJgList ); 
:u 
:3:1 II 
:n / / Li,/. EJ:/.m('lion P\1,ncticm.s 

:}5 II 
:16 
:H /I H<-:ltLrits the ith r,,emb,i·r <•f 0.,1 FAfonList (i = I.st 0.1:q) 

,18 FMon fMonListNumber( ULong, FMonList ) ; 

:J!) I/ R<·:t-u.rn.s Uie i/.h rncmb,ir of 0.11 FMon PafrList (i = 1st ai:q) 

,1() FMonPair fMonPa irListNumber( ULong, FMonPairList ); 

41 /I Hd·u.rns the it.h ·m.cmb,ir of a.n I''.4lgLisl: (i ·= hi. 11r_q) 

,12 FAlg fAlgListNumber( ULong, FAlgList ); 
4:l 

,1,1 II 
45 I/ IA.,/, Afombership P11w:-t,ions 

.JG II 
J.7 

.-18 /I Does the l''.-tlg "1'1'Wr in lh,i r:•11lgL-ist? (.t = yes) 
,1.9 Boo! fAlgListlsMember( FA!g, FAlgList ); 
:,0 

51 II 
:,2 / / !Ji.st Posit.ion Fwu·l.ions 

3'.I /I 
'.d 

35 I/ C:ive.s J>Os·itiun of /st appeamncc of FMon in PMunLis/. 

!\G ULong fMonListPosit ion( FMon, FMonList ); 
,'\7 / I Clive.~ po.;iticm. of Isl. ap71e11m.1t(·c of P'.4/g in FAl!Jl,is/ 

5~ ULong fAlgListPosit ion( FA!g, FAlgList ); 

30 

liO // 
G l // Sorting Fu.ncho-ns 

ti2 II 
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(i'.l 

c;,J II Swo/)8 2 dcmerit .. s ·in rwra.ys of Ul,ongs Q.nd PMons 

ti5 void alphabetArraySwap( ULong[], FMon[], ULong, ULong ); 
GG II Sorts Ml- "-rmy of ULonys (l"·rgesf first) and Q-/1plie.s the S(tmc r:hcm._qe.; to t.lw PMon "·rmy 

ti7 void alphabetArrayQuickSort( ULongQ, FMon[] , ULong, ULong ); 

G8 I I Swa11s 2 ele11wnt.s -in array.s of PAlgs mul F/1-fans 

lHl void fAlgArraySwap( FA!g[I , FMon[], ULong, ULong ); 
70 II Sort., cm wrmy of PAl_gs ·u.;ing DegRe-uLcx (fory1est _(,,rs/.) 

i L void fAlgArrayQuickSortDRL( FA!gj], FMon[], ULong, ULong ); 
72 

7'.\ II Surts Cln army of PAlgs -u.sing lheOrdl?un (la.ryes/ first) 

74. void fAlgArrayQuickSortOrd( FA!gj], FMon[], ULong, ULong ); 

, o I I Sorts lln PAlgList (lc,rge.st fir.st) 

76 FAlgList fAlgListSort( FAlgList, int ); 
71 II 8WQ-1)S 2 dc-:menl:s -in Q.i·m.y.s of l•'M,m.s, (}Longs n.nd ULongs 

1/j void multiplicativeArraySwap( FMon[], ULong[], ULong[], ULong, ULong ); 
79 II S/lrls input dnt.n lo Overl,ip[)i,, w.r.t. DegFleuLc:c (ln.r:qc·st firs/) 

80 void multiplicativeQuickSort( FMon[] , ULong[], ULong[], ULong, ULong ); 
81 

s2 II 
,n I I Insertion Sort Functions 

M II 
~r, 

81, I I lnsf.:rt intu list uccoTYiin11 to DegRevLc:t 

87 FAlgList fAlgListDegRevLexPush( FA!g, FAlgList ); 

88 II A.; above:, /,nl nl..io ret.m•r,.s /.he ·inserl·ion 110.sition 

8(1 FAlgList fAlgListDegRevLexPushPosition( FAlg, FAlgList, ULong * ); 
90 I/ lnser-t. into li.sf. "cc:01-d.ing /.o /.he c:-nr,·ent 111onornial ordedng 

!) I FAlgList fAlgListNormalPush( FA!g, FAlgList ); 

92 I I As a/,011«, but ,ilMJ ·ret.·urn.s the inse1·tion 710sitiun 

9:3 FAlgList fAlgListNormalPushPosition( FA!g, FAlgList, ULong * ); 
!)11 

:)5 II 
PG / I D elct:ion Fu.net.ions 

!J7 II 
H~ 

99 I/ [/,:mc,vc:s 1./w (.!st. llry)--- /./,, element frnm. /./w l'i.,t. 

lO(J FMonList fMonListRemoveNumber( ULong, FMonList ); 
101 II llc-:me>vc-:s tJw (.!.; /. C1r9}··- lh elcmc-:nt, fnm,. /.heh;/. 

102 FMonPairList fMonPairListRemoveNumber( ULong, FMonPairList ); 
I 1):j I/ l/,c-:11101•«.; th,: (.! st a11·g)-lh dcmenf; Jir•m. the li.,t 

104 FAlgList fAlgListRemoveNumber( ULong, FAlgList ); 
llVi 

101, II 
l lli I/ Norrnal·ising Functions 

101< II 
l09 

110 I/ E?.c:movcs ,my Jmcti.ons found 'in tht? fo"'AlgL-is/. by .~cala-r m.11l/.i.pl-iml-ion 

l l I FAlgList fAlgListRemoveFractions( FAlgList ); 
11.2 

1 l:3 # endif II U ST_FUNCTIONS_H[)fl 
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B.2.9 list_functions.c 

1 /• 
2 * Fil,:: hsLfunct.ions. c· 

:3 * Av.th.or: GtLtct.h Evcms, Chris Wen.ilt;y 

,t • Last. 1\,/odifi~d: 9th A1,g·ust. 200{; 

G */ 
I> 

7 I* 
R *==============-== 
!J • Dis}llay £"unctions 

lO ,. ================= 
ll */ 
12 

1:1 /• 

111 * Func·licm Narn,i: fMonlistDi.;p/11.y 

15 .1( 

l(j * Over·uiew: Displa.ys m1. FMm,.Lisi: 'tn I.he for-mot ll\n 12\-11- l:J\n ... 

l7 * 
18 * Detail: Given ,m FMonLi.sl, this frmcti.on d·isplay-' the 

l!) * elements of the t,.st on screen i.n s1,ch a way thnt if the 

W * list. ·is {./'or c.rnmi,le) L = (1.1, 12, l:I, l4), the o-u.t]lut ·is 
21 ,. 

22 * l1 

2:t * 12 

24 . l;I 
~:) " 14 
2l) * 

28 void 

29 fMonListDisplay( L ) 

30 FMonList L; 
:11 

:~2 while( L ) 
:n { 
:,,J printf( "'l.s\n", fMonToStr( L -> fi rst)); 

:.l5 L = L -> rest; 

:lCi } 
;17 

:l8 

:w !• 
4ll ·• Function Na.mt::: fMmzf,istDisplayOrder 

.-JJ * 

4:.l • Overview: Displays an FMonl,ist in the /01,nat lJ < 12 < l.'i .. . 

,1:J * 
H • Det.c,'il: Gi11e.n nn l"Mo11Lisf., this fu.ncf.·ion di.;plo.ys I.he 

45 ,. ele.111<.•nts of th,i li.;t. on scnum ·in such o. way th.at if t/,e 

•16 * Ii.if. ,;,; (ji,-r <:'.C/l.itl)lle) l, = (ll, l2, l.'I, 14), the; cmtpu/. ,;,; 

:17 * 
•18 *l.i>l:l>l2>ll 

49 * 
50 • Ext:e·r-nal ,,o.,-iablc.s mquinid: int 71l: 

:,1 * 
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ri:2 *I 
,>3 void 

5.-1 fMonListDisplayOrder( L ) 

:;5 FMonList L; 

56 { 

G7 ULong i = 1, j = fMonListLength( L ); 

;j!) L = fMonListRev( L ); 
liC) 

61 while( L ) 

62 { 
(i'.l if( pl >= 1 ) 

M printf( "1/,s" , fMonToStr( L -> first ) ); 

tl5 if( pl > 1 ) 

(j(; { 

67 printf( "u('l.s) ", ASCIIStr( j + 1 - i ) ); 

G8 i++; 
l>9 

70 L = L - > rest; 
i I if( L ) / / ff th.m·e is anoth,)1· elem,mt left. pro,ridc ri '' > ., 
i2 { 

7'.\ printf( "u>u" ); 

74 } 

75 } 
76 

77 

71<, I* 
79 ,. Pu.n ct·ion. NMrHJ: fMonPairL-i.it.M·,1.ltD-i.~pla.y 

~() . 
81 * 0verniew: Displnoys 11·11. PA-fo-11.PairList. int.he f ormo.t (l l , 12)\n (l:J, l!,)\n ... 

~2 * 
8:l * [)(.;ta.il: Oiv,;n a.n FMonPn'irList, this f,m.ctfon 11-i.spl"!J-" tlw 

8,i * elements of the l·ist on screen in such a. way th,it. if the 

il:i * ii.st ·is {.fur· c.rn.rn1,lc) l, = ( (l! , 12). (l.1, l!,} . (l!S, 16)), the o,ttp·ut i.s 

81: * 
~7 * (ll, 12) 

8R * (lei, l.1) 

~\J * (l.5. lii) 
90 ,. 

!JI ·• flem,1rk: T'he ,. Mull'•' sta.nrJ.s for m-ulliplicat.ivc - this .fu.nc·Non is 71rim.11ril-y 

H:l * ·u,.~ecl to di.spiny (Left. Hight) ro.1t/ti.plic;,1.t-i·ve 110.rhtble.s. 

!J;l •/ 

!M void 
0$ fMonPairListMultDisplay( L) 

!lti FMonPairList L; 

97 { 
fl8 while( L ) 

99 { 

100 printf( "(1/,s,u'l.s)\n" , fMonToStr( L -> 1ft ), fMonToStr( L ->rt)) ; 

101 L = L - > rest; 

102 

10:l } 

l(H 

272 



APPENDIX B. SOURCE CODE 

1.0'\ ; .. 

1 or,; * Pundion Nll'r,rn: J:4l!/l,fal Displc,y 

107 * 
108 ,. Ove1•,yiew: Di.,vla.ys "" PAl_qLi.s/, in /he fc,,·111 ,1t pl\n p:t\n p.1\ n ... 

10:1 " 
I 10 • D<:to.il: Given a.n l':4/!]L•isf:, this fu.nct'ion d•i.,pla.y.s 1.hc 

111 * <ilcmenf.s of l.ht li$t on screen in .su.c:f,. " ·u1CJ,'J thnt ·if tht 

11:l • li., t ·is (Jo,· ,::w.rnplt} L ·"" (vl, p2, pS, p,i}, the o·,itpnt, i., 

11:1 * 
1.14 • pl 

115 .. p2 

1.l(i • p3 

117 * 114 
111l * 
l l.!J •·/ 
120 void 
I ::!l fAlgListDisplay( L ) 

122 FAlgList L; 

I ::!:3 { 
12,1 while( L) 

{ 

lW 

12\1 

mo 
131 /• 

printf( "'l.s\n", fAlgToStr ( L ->first)); 

L = L -> rest; 

I ~ ~========================= 
I :i:i * Lis/. E:ctro.cf.ior,. F\m.dions 

I~ •========================= 
iari *I 
I :JG 
1.:;, I• 
1.:i.i • F11nction Na.me: f/\:1011[,istNurnher 

139 * 
l ·tO " Overview: f!.d-u.rr18 the ill, ·m,:mb,:r of n.n FAfonl,isl (i = Is l. my) 
I .-11 ,. 

142 ·• Det.«·il: G·iver,. 11n PMon/,is/., I.his .f,,.nc/.i.on n:l,1Lrr1.,\ th<: 

I .-J;J ,. ii /I member of //w.l l(~l. wh.<:n: i is /.he Jir.,t o,,,rw11 ,m.t _m,.m&m·_, 

1,H * 
1,1:, •/ 

J.1ti FMon 
147 fMonListNumber( number, list ) 

141' ULong number ; 

14!1 FMonList list; 

150 

1:il ULong i ; 

152 FMon back= newFMon(); 

15:.1 

13,1 for( i = 1; i < number; i++ ) 

155 { 

l ;,(j list = list - > rest; / / 'Trav,,i·se list 

157 
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l:ili 

159 back = list - > first; 

ltiO return back; 

IGl 

162 

IG:3 I* 
1 l'4 * fl,-ru;t im1. Nome: fM1mPo.i1·L·ist.Nu.m/;,)r 

IG!'.i * 
lliti " Ou,)rvicw: Hel·u.n,,, the Uh memucr of an FMonPa·i?'/.,ist (i = 1st ,1.1r1) 

1.67 * 

](j~ * Dcta.i l: Given am. Flv/onPairl,ist:. thi.s J11nction ret·u.ms the 

I.6\l * ith member of 'tlwt list, where i is the first argument _nmnbe.r_, 

170 • 

171 *I 
1 72 FMonPair 

lTI fMonPairLis tNumber( number, list ) 

17,1 ULong number; 

175 FMonPairList list; 

17G { 

1 i7 FMonPair back; 

l78 ULong i ; 
I 79 

l~O for ( i = l ; i < number; i+ + ) 
) f;]. { 

182 list = list - > rest; / / '.l'mvers<.' list. 
183 } 
rn,t 

185 back.I ft = list - > 1ft; 

I 8ti b ack.rt = list - > r t; 

187 

J ~8 return back; 

189 
1 !)(l 

l ;l l I* 
I !)2 • F\.1,nr.tfon N<lmc: .fAlrtf,istN11'mhcr 

rn:1 " 
19,1 ,. Ovc1·11iew: Re/.nrn .. i the it,h mem/1e1· of wn. PA lg /Ast ('i = I st a.i:q) 

lH5 * 
19G * Dela.ii: Oiven a.n l':•lla[,i.,t, this funct'i.on. n;tu,111., the; 
l ')7 • ith m em.lwr of tit.at. list .. where i is thc-: first. l!'rfru.ment: _m,·rn/w,._. 

11)8 "' 

l'J!) *I 
2ll0 FAlg 
~Ol fAlgListNumber( number , list ) 

2ll2 ULong number; 

W:1 FAlgLis t list; 

204 { 

2W> ULong i ; 

206 FAlg back= newFAlg(); 

207 

208 for( i = l; i < number; i++ ) 
2l)9 { 

210 lis t = list - > rest; // 1hiver.se ti.st. 
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211 

'..!J.2 

21:l 

'..!J.:l 

215 

21G 
} 

back = list - > first; 
return back; 

217 /• 

218 * 
2 l!J • L-iM. Me111hership Pu.ncl'ior,.s 

220 •========================= 
221 *I 
222 

22:1 I * 
22,1 ·• Hu1clion Na.me: fAl9Li.,tlslv/c,nbe·1· 

226 * Ove,view: Does the FAl!J 1tpµmr in t.lw p,.)/g/,isl? (J = yes) 

22~ * Def.nil: Gi11cn ,m F'AlgLisl , t.hi.s fm/.i:tfon /.1;s/,s whet.ha 

220 ,. a. gi'IJ,;n l".4lg 1tp7'ears -in the list. 'l'hi.s is done hy 

2'.IO * moving t.hrough the lisl. nnd check:i:r,.y <·:itch ent.r-y 

'./:I 1 * sequentially. Once a uw.tch is fotind, a. positive res1,lt 

232 * is returned: otherwise nncc we ha.ve gone. throttgh the 

2:n * entire 1-ist, a. negative re.mlt is ret11nwi. 

2~\,j. * 
2:.15 ·•/ 
2;% Bool 
2:.17 fAlgListlsMember( w, L ) 
'..!;J8 FAlg w; 

2:1\J FAlgList L; 

240 { 
2,1 l while( L ) 

242 { 
2.1:1 if( fAlgEqual( w, L -> first)== (Boo)) 1 ) 

244 { 

:,M0 return (Bool) l ; //Match j'onnd 
2,J6 } 

'.!·'17 L = L -> rest; 
2·11! 

'..!4!l return (Boo)) O; / / No 11111lchcs found 

2Ml } 
2'.i I 

252 ; .. 

2~ • ===========- =======---= 
25•1 * List Position P1mctio11s 

2~ •-----------------------
25() *I 
2.:,7 

'.258 / • 

25\l ·• Hmction Na.me: fMor1Li-<IP08ition 

2GO ,, 

2li L * Ow,'1,imo: C:i'i!e.s position of 1 sl: ap11enranc,: of F!<fon in PMonList 

2G2 • 
2li:! * Dt'/11-il: Given ctn PMcmLi.st., thi.s Junct.ion rnturr,,, lhe 
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2(!4 * pusitinn of the first 11p)'ettrance o.f a. given FMon in that 

:.!G:\ * lisl. ff thr: FMon <locs not. ap;,c<,r in the li,;t .. 

2ti6 * 0 ·is ret.m ·n.«d. 

2fi~ *I 
'.W9 ULong 

270 fMonListPosition( w, L ) 

271 FMonw; 
272 FMonList L; 

27:l { 

:lH ULong p os = O; I I Cui·rent J>osilivn in list. 

:l7ti if( fMonListLength( L ) == 0 ) 

277 { 

'.!78 return (ULong) O; I I J>i.st. 'i.; em11t.y so ·110 111,itch 

27H 

280 while( L ) I I W/1ilr: lhc-:rn o.n; .sl.'ill clcm.i:nt.; in lh•: U.;/. 

28 1 { 

282 pos++; 

21;:1 if( fMonEquat( w, L ->first)== (Boot) 1 ) 

21!4. { 

:lf<S return pos; I I M(ltch found; rctuni pos·ilion 

286 } 

:l87 L = L - > rest; 
281l 

~89 return (ULong) O; II Ne, m.at.c:/1, fom/./l i.n thi: list 

WO } 

'..!91 

2')2 I* 
2fH * P'unc-'lion Nwm,;: f A /glA.s/Posilion 

2fJ,t * 
'..WS * Ove1·view: Gives position i).f 1.st a.ppco.rnncc of F'i\l!J in PA lg List 

:.:?Dtl * 
2fl7 * Detai l: G-i\,en an FAlgl,isl . this functio1t ret-u.rns the 

:lD~ * position of the jfrst appca.T"anr.e of n given FAlg in thnt 

29\I ·• list. If /.h~ Filly do,!s ·r,.o/. cippw·r in t./,.e li,;t. 0 is 1·c•; l11,rnl!rl. 
300 , . 

301 •I 
:l02 ULong 
:3(13 fAlgListPos ition( w, L) 
:Jl),l FAlg w; 

:305 FAtgList L; 

:l06 { 

307 ULong pos = O; I I C1wrcnt pos·ition ·in list. 

:m::s 
:l(l9 if( fAlgListLength( L ) == 0 ) 

:no { 
;n1 return (ULong) O; I I 1>;.s1. i.< em.11/.y so no 1Ht1.t,C"h 

:n2 } 
:n3 while( L ) I I W/ii.lt; lhc-;n; 0.'1'<! still clcrn,m./,., i 11 /.lw Us/. 

3 [,I { 

:ns pos++; 

:3 10 if( fAtgEquat( w, L ->first )== (Boot) 1) 
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'.ll7 { 
:nc: re turn pos; II M(lf.ch fo11n1l; retnn, i,ositio·r,. 

3W } 
:i20 L = L -> rest; 

,t2 l } 
:1~2 return (ULong) O; I I No rrwtc:h. found ·in the list 

:32:1 
:u,1 
:3'25 I* 
'.12G * -- ----------- --
327 * S ortinr, Ptm.ctio11s 

~H • =-=============== 
329 *I 
:130 

:i:n /• 
332 , P1tru:tio11 No.me: al)'habc:tArrn.ySwap 

:1:n * 
:J:14 * Ou,in,ie,o: Swap.~ ft 1,lement.s •in orm.ys of /JLonys n:nd FA-Ions 

:nr, * 
:3:10 * Del.it-ii: Gi11en n'fl. wrmy of ULongs a.nd cm a.rmy of PMons, 

'.l'.l7 * this function swaps the ·ith and jth elements of both array_s. 

338 * 
'.l'.l!) *I 
:1,10 void 

'.H. I alphabetArraySwap( arrayl , array2, i, j ) 

;i.-12 ULong arrayl (]; 

3·.tl FMon array2I]; 

;i4,1 ULong i , j ; 

:H5 { 
'.14() 

;3,1.7 

:1<18 

ULo n g swapl; 

FMon swa p2 = newFMon(); 

;l:J.!J swapl = arrayl(i); 

'.l;il) swap2 = array2(i); 

:35.1 a r rayl[i) = a rray lLl); 

'.l52 a rray2[i] = array2Ll); 

:i5'.J array 1 [j) = swap 1; 

35,1. array 2[j] = swap2; 

;1:;;; } 

:35o 

:1,;7 I* 
:)58 * Hmdim,. Na.me: nlphll.lu,tArmyQu-i<:kSort 

:ir,o * 
:360 * Ouci-view: Soi'/s an ai·ray of U Lnngs (la.rgest fir.st) and 

:w1 * c.ip1,li~:s the so.me change.; to the a.rray of FMons 

:3G2 * 

:w:i * Detail: Using a. Qu.icl.:Sort. a.lgo1-W1-m.. this f1mct.ion 

;l(;,1 •· sorts 1<n army of UL,1·111r- The :Jr-d. "n<l ,4th a1:g11m.ents 

365 • are ·1Jsed to fa.ciliu,t.,: thc-: n:c111·.~i1u; bd1a11io·u.r of 

;l(;(i * !he f ,mct.ion ·- --- the f1mi:tio11, ,sh.o'IJld initially be-: wlfod 

:3li7 * as alphabd.Arrn:y(Ju.ickSort( A, B. 0, IAl - 1 ). 
:lG8 * It ·is o .. ssurncd. thul I A I = I Bl a.nd th.1: r:hnngc-:., rnC1de t:,> A 
:)ti9 * dv.rinr, t:he ,1lyoi-il/1rn are also <1.JJ71l·icd lo 8. 
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'.170 * 
:171 * Fl.cfemr,.ce: "'Thr:. C Pro!Jmmm,ing Lar,.yuag(,'' 

:.172 * by Bri.cin W. I< cniiglwn ,m,l Denn·i.; Jl,,f. fi'itchfo 

:1n , (Sr:.cond. BJ.it.ion. J.988) Page 87. 

374 * 
:m, *I 
:Jitl void 
:177 alphabetArrayQuickSort( arrayl, array2, start, finish ) 

:rni ULong arrayl[); 

:1,n FMon array2[]; 

380 ULong start, finish; 

:1111 

:l82 ULong i, last; 

38:.J 

:18-·J if( start < finish ) 

:J!:!5 { 

:18u alphabetArraySwap( arrayl , array2, start, ( start + finish )/2 ); // Moi•ce 7,a.1·/:ition eh;m 

:3:;7 last = start; / / to array/OJ 

:l88 

:38H for ( i = start+l; i <= finish; i++) // Pm·til:ion 

:wo { 
:l9l if( arrayl[start] < arrayl(i] ) 

:rn2 { 
:39'.l alphabetArraySwap( arrayl, array2, ++last, i ); 

'.HH 

:rnr, } 
:.Hlfi alphabetArraySwap( arrayl , array2, start, last); // Res/on; 7w.,·t:ilion efom. 

if( last != 0 ) :rn7 
:398 { 
:mg if( start < last-1 ) alphabetArrayQuickSort( arrayl, array2, start, last-1 ); 

400 

.·!ill if( last+l <finish ) alphabetArrayQuickSort( arrayl, array2, last+l, finish); 

402 
,ll):l } 
;lQ,i 

.105 I * 

} 

40G * hmct,ion Nnriw: JAlyA·rmySwap 

-107 * 
408 * Ovc,·aiew: Sump., 2 d,im.cnls i-n. cuniys of f i l lys and FMcm.s 
,j(ltl * 
410 * D<-:to.il: GiTJen a.n a.rra.y of FA/gs a.nd ,in as.s1Jciated run1y 

••I 11 * of PMon.s, th.is fu.nc·Non .swaps the irh o.n d _jt:/z elem1mt.; 

.-11 :.l * of /;/u: 1wmy.;. 

4·1:1 * 
,.11 4 *I 
41.5 void 
,l!G fAlgArraySwap( polynomials, monomials, i, j ) 

417 FA!g polynomia ls []; 

•1111 FMon monomials []; 

'119 ULong i, j; 
420 

421 FAlg swapA = newFAlg(); 

422 FMon swapM = newFMon(); 
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,)2:l 

42,:J swapA = polynomials[i]; 

,125 swapM = monomials[i]; 

42G polynomials[i] = polynomialsLl]; 

:J27 monomials[i] = monomialsLl]; 
,128 polynomialsU] = swapA; 

:JW monomials Ll ] = swapM; 

4:l0 
,1:11 

-1:i2 /• 
43,! * Amction Name: f.Alg.ArmyQw.r.kSortDRl, 

,J;M, * 
435 • Ouer1n,;10: Sorts an a,,-ray nf PJ\lgs ttsing /Jegf-1.~vl,ex (laryc.st f irst} 

,j;lf, * 

4:n • Detail: Using a. (Juic:kSort o,lyo-ri.f.lun, lhi.~ funcl'i<m. 

,1 :.l::l ·• .rn,·/ .. ~ i:m a.,·ra.y of FAl!/S by so-rli-ny on the a.ssocfot wi. c,,r-my 

,1:l9 , of fi'1\1ons whi,:h ston: tlu: lmd monomfols ,).f t./1.,: pol!J11.0·11'1!ial.s. 

,J,10 • Th,: :htl arut ,1'1.h a.,:qwnmits an: •ttsed lo fo.C'itito.te the recwrsii>e 

,\41 , bd/.lwiu·ur of l/1.1; functum -- th,: .fund:'ion .1ho11-ld i nitially b,: 

,J,12 • 1:,1.lled as fAl,qkrn,yQ11ick8ort.DJU,( A, 8 , 0 , IA 1- 1 ). 

,,14:3 * 
:1,i,i • Hef e1·,;ncc: "The C Pror1rm1tminr1 Lan9ua.ge'' 

,J-J:, * l,y .rJ,rim1. W. K erniglw.n and Denn·,..s M . [{1.tchic 

4.:11> • (Second Bdilion. 1988) Pa.ge 87 . 

.-J·l.7 * 
4,11, *I 
,J,lf l void 

,J:,f) fAlgArrayQuickSortDRL( polynomials, monomials, start, finish ) 

,Jf>I FA!g polynomials[]; 

4 :i:l FMon monomials[]; 

,1r,:1 ULong start, finish; 

4,;,1 { 

435 ULong i, last; 
,Jf,(j 

:[37 if( start < fini sh ) 

·15~ { 

4:\D fAlgArraySwap( polynomials, monomials, start, ( start + finish )/2 ); // J\:/m1e pnrtif.'ion dem 

•1tilJ last = start; / / lo a.•r,·c,,y/0} 
,tGl 

•'lli2 for( i = start+!; i < = fin ish; i++) // Pnrli/:ion 
,l(j:3 { 

:lli•1 if( fMonDegRevLex( monomials [start], monomials[i] ) = = (Boo!) 1 ) 
.w:; { 
, l(i1, fAlgArraySwap( polynomials, monomials, ++last, i ); 
,,167 

4(\~ } 

,1()9 fAlgArraySwap( polynomials, monomials, start, last); // £le.store 71a,·titiun elem 

47() if( last != 0 ) 

471 { 

472 if( start < last- 1) fAlgArrayQuickSortDRL( polynomials, monomials, start, last-1 ); 
,17:1 

,17,1 if( last+l < finish ) fAlgArrayQuickSortDRL( polynomials , monomials, last+l, finish ); 
,175 } 
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•.17(i 

477 

.J7;; I* 
479 * Fu.nd-ion Nmrw: f AlgArmy (J11'ickSortOrd 
;JS() .• 

481 *- Over·uiew: S01·ts ,in m·my of f:4lgs -u.sing theO,·dP'itn (lwrgc.st [,rst) 

482 * 
•18:l *' D1-:ta.il: U.svr,.g u Qu:ic/;Sort a.lgoril:h-rn, thi.; fu.nction 

484 * .so1·/.s o.n o.rmy of f>\lg.< by .;o-rtir,g on the o.ssocia/:,;d cirra.y 

,18!'i * of FMons which storn the lmd 11wnomials of the i,olyn.omia-ls. 

481; • The 3-rcl a.nd 4th rtrgu.m.enls a.re used to facilitate the recursive 

,J;;7 * behavio1tr of the function - - the function should ·initia.lly be 

488 • called as fA /11/\rrayQuickSor tOnl{ A, B. 0, IAl-1 ). 
•1i!(l * 
490 * Hefen:nce: ''The C 1-'rogmmmin[J Dnr,.yna_qr:'' 
•Hl l ,, /,y Bri<m. \•\!. Kerniylwr,. and Dcnr,-i.; M. fl.-ilchie 

•HJ2 *' (Second Edil.ion, 1.988) Page 81. 

;J!J:l * 
49,1 .. ; 

,1% void 

4% fAlgArrayQuickSortOrd( polynomials, monomials, start, finish ) 

4(17 FA!g polynomials Q; 

,H)1J FMon monomials[]; 

,HJ!J ULong start, finish; 
!',()() 

501 ULong i, last; 
!';{)2 

50:J if( start < finish ) 

5(),1 { 

50(; fAlgArraySwap( polynomials, monomia ls, start, ( start+ finish )/2 ); // Mov,' pttrtil.ion elern 
!j()tj last = start; / / to um,y/0} 

507 

50~ for( i = start+l; i <= finish; i++) // P ,1rli/.ion 
f,O!) { 

51() if( theOrdFun( monomials[start], monomials [i)) == (Boo!) 1) 

r. 11 { 

512 fAlgArraySwap( polynomials, monomials, ++last, i ); 
!; 1:i } 

5J.'J } 

!'il5 fAlgArraySwap( polynomials , monomials, start, last); // Rc.st:ore pnrf.it-ion dc-:m 

51G if( last l= 0) 

!'i]7 { 

518 if( start < last- 1) fAlgArrayQuickSortOrd( polynomials , monomials, s tart , last-1 ) ; 
515) } 

fi'.!O if( last+l < finish) fAlgArrayQuickSortOrd( polynomials, monomials, last+l, fi nish); 

521. } 

52:J 

r:,2-1 I* 
52:'. •· Fuw; l ·ion Nrm1c: j'.419L-i8f.Sorl 

020 * 

527 *' Ove1·11iew: 8o1'ls ,m FAlgUsl. (lo.1r11·:sl fir.st) 

G28 :1c 
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52!) • Detail: This fwn.ction .<Oris an PAlgLi.<f by 

5:m * conve1·f.ing tlw I-is/. t.o cm r1rray, so1'/.in11 the nrmy 

:.:ll ·• wi./.h a Qnic:k8or/. c,l.901-dhm, a.nd c·ot1.v1:rt.i11.y 

5::12 * I.he army l,nc·k /.o cm FAlgLiM. which is llum. ret.unwl. 

~.:~:.1 * 

s:i,1 *I 
5:15 FAlgList 
5:30 fAlgListSort( L, type ) 

5:!'i FAlgList L; 

5:l8 int type; 

5:31) { 

5-•IO FAlgList back = fAlgListNul; 

5-1.1 ULong length = fAlgListLength( L ), i; 

, .. n FAlg polynomialsllength]; 

54:J FMon monomials[length]; 

i:-.-1-1. 

545 I I Ch.eel.: for empty lisl: or singleton list 

5.Jti if( ( !L) 11 ( length == 1 ) ) return L; 

:,,:18 I I 'l'ra.n4er dement,_, into army 

54!) for( i = O; i < length; i+ + ) 

550 { 

Iii, l polynomials Ii] = L - > first; 

552 monomialsli] = fAlgLeadMonom( L -> first); 
,,ii:! L = L -> rest; 
5;;,1 

55G I I 801'/. th,: army (sm.aUcs/ .... > lr1f'[)e.st) 

:;5; if( type == 1 ) I I Sor/: hy Oegf/euL c:c 

5i,8 fAlgArrayQuickSortDRL( polynomials, monomials, 0, lengt h-1 ); 

G5~1 else I I Sort hy /.he01·dP\m. 

5GO fAlgArrayQuickSortOrd ( polynomials, monomials, 0, length-1 ); 

501 

5(;2 I I 1'rtinsfe1· clements buck • ·in reverse• onto mt PAlgl ,is'l. 

56:1 for( i = length; i >= 1; i-- ) 

'>tH { 

5G[) back = fAlgListPush( polynomials[i- 1}, back); 
!';(i(i } 

5G7 

Gli8 I I f/f:tv.,·n I.he .,or/:i)d I-isl 

509 return back; 

:,70 } 
571 

572 I• 
57:l • .Ftmction No.me: nrnltiplica.livcArra.ySwctp 

57,1 * 
f,7!i * 011er·uicw: Swaps 2 f.icments in array.< of FMons. ULony.• a.nd ULongs 

57G * 
,,77 * Oet.ci-il: Given cm ttt-rtt·11 of [·'Mon.~ a.nd two o.ssc,r;ictled Cl'1~'0.y8 

578 •· of ULongs. t.h,s fim.c/.ion swnps the -Ith. cm.cl jth el<mwflf .. ~ 

!'.ii~ * of the affa.ys. 

580 * 
:;~[ ·•I 

281 



APPENDIX B. SOURCE CODE 

,,8:.l void 

583 multiplicativeArraySwap( monomials, lengths, positions, i, j ) 

::,84 FMon monomials[]; 

585 ULong lengths [). positions□ , i, j; 
!)86 { 

587 FMon swapM = newFMon(); 

!'i88 ULong swapUl , swapU2; 

589 

5fJO swapM = monomials[i]; 

5fll swapUl = lengths[i]; 

5!J2 swapU2 = positions[i]; 

iifl:l monomials[i] = monomialsLl] ; 

594 lengths[i] = lengths[j]; 

:,!l5 positions[i] = positionsLl]; 

59G monomialsLl] = swapM; 

W7 lengthsLl] = swapUl; 

598 positionsLl] = swapU2; 
!j()(! 

61)0 

GOI / • 

1,0:.l * Function Nnm.e: m.ultiplica.tivcCJu.ickSort 

60:1 * 

1')04 * Overview: Surls ·input ,fotri lo OucrlapDiv w.r.t. DegRev[,c:~ (largest fir.st) 

60~ * 
006 * Dr.t.,L'il: Us'ing o CJ1dckS01'/, 11l_qo1·ithm. thh fnnction 

fi07 * sorts <tn. 11rra11 of F'!lfons w .1·.L DegRcv[,1-::c a:nd <LP)>lfr,, t/1(: .rnrnr. 
(i01l * <:/1.,111.ges /.o 1-wo 1tss,><:io.led 11.1·my., of !/Longs. 

60!J •· Tiu: 4 /./,. and 5th o,1:q11111enls ,rre ·11.scd t.o fo.cilit.n/.1-: the: 1·c:cm·si-r!e 

G H) * behavfour of the, f,mclion - - /.hr. Junction slMmld ·ini.tio,lly be 

61 1 • called o.s nvu.ltipli,:ali-u1i(Ju.ick8orl( A, /3, C, 0, IAl-1 ). 
G 12 * 
f, I :l * lfofe-re'fu:e: "The C Progmrnm'i-ng Lm1 . .911,19c," 

Gl•l * by Bria.n W. [{crn-ighnn n.nd Dennis M. Flitd1:ie. 

1, Ir, * (Second Edition, .1981,) Par1e /J'l. 

Gll, * 

(il7 ·•/ 

618 void 

\il'.-l multiplicativeQuickSort( monomials, lengths, positions, start, fin ish ) 

620 F M on monomials[]; 

621 ULong lengths[I, positions[], start, finish; 

fi:.l2 { 

G2:1 ULong i , last; 
f,:.),j 

625 if( start < finish ) 

1)2G { 

G27 // Move 1m1·tilion elem to an-,1v(Oj 
1·,28 multiplicativeArraySwap( monomials, lengths, positions, start, ( st art + fin ish )/2 ); 

629 last = start; 

ti'.lO 

6,31 for ( i = start+l; i <= finis h; i++ ) // Pc,rtilion 

6:12 { 

6:l:3 if( fMonDegRevLex( monomials[start], monomials[i] ) == (Boo!) 1 ) 

G'.14 { 
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,nr, 
6:,G 

(i37 

6:~8 
(i'.\!l 

(l40 
(j,j( 

64:.? 

G4'.l 
1-,44 } 
G45 

ti4G 

G.:17 / • 

multiplicativeArraySwap( monomials, lengths, positions, ++last, i ); 

multiplicativeArraySwap( monomials, lengths, positions, start, last ); // Re.,toni partUion elem, 

if( last != O ) 

{ 
if( start< last-I) multiplicativeQuickSort( monomials, lengths, positions, start, last-I ); 

if( last+ I < finish ) multiplicativeQuickSort( monomials, lengths, positions, last+I, finish ); 

(i~ • ======================== 
6,-19 * hi$c-;1'1-icm 801'(, _H1nc;tio11s 

~u •======================== 
6::i l •/ 
G52 

6S:l /• 

GM- * F\,nctfon Name: JAl9ListD1;9!1c11Le:rP1,sh 
1•;:}:, * 

G;;iti * Overview: Insert mto list a,ccorcling lo Dcr1Hcvl ,o 

GJ~ * Dcia,il: Thi~ funct-ion:; inserts the pulyno111iltl -JJOly_ 

(i5ll * in/.o the f?AlgL-i,st _i,1,p1,/,_ so that, the-; li,;t 1-emo-ins 

fiGO ,- .,o-rte,l bu DegRevf, ,,,c ( lm:qest ,fir-st,). 

(itl I * 
fiG2 •-/ 

(H,:l FAlgList 

f,G:I fAlgListDegRevLexPush( poly, input) 

Gli5 FAlg poly; 

6G6 FAlgList input; 
(j(i7 { 

l'lfill FAlgList output = fAlgListNul; // ln-iiialisP. the return list 

G6!J FMon lead= fAlgLeadMonom( poly); 
(i7() 

fi7l if( !input ) / / If /,here i$ 110/h-ing i n th,-; inJ)'IJ,l list 

li72 { 

fi7:l // f!et11.111 a ,;in!lldon li.;/, 

67,-1 return fAlgListSingle( poly ); 

67!, 

676 e lse 

677 
G7~ // While the n ext eleme11i in the I-isl is lary1cr l/1,a,n _/wd_ 

1'17\l while( ( fAlgListLength( input ) > 0 ) 

Gf;O && ( fMonDegRevLex( lead, fAlgLeadMonom( input-> first) ) == (Boo!) I )) 
,-,13 1 

fi82 // P·,1.sh !he l(,l ekment, on/.o the 01,/,1)'1tl li$ 1, 

(i/;:J output= fAlgListPush( input-> first , output); 

r;s,1 input= input-> rest; // Acl-ucmce /,he li,,t 

(i35 } 

613(; / / Now p·u-sh tlw new element onto th,: h;t 

637 output = fAlgListPush( poly , output ); 
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t;88 / / Reverse the o·utput list (it ,vas const,-.ucted -in mvcrsc) 

G89 output = fAlgListFXRev( output ); 

G9ll / / If therc- i.~ n.n11thin.g lc:ft. ·in I.he -inp1tf. l'ist, ta.9 it. orito the c11,lp1t/. l'isf. 

691 if( input ) output= fAlgListAppend( output, input ); 

trn2 

6}):l return output; 

6(/.1 

fH)!; 

6!)6 

1;,17 I* 
698 * F\.1,nc.t·icm N«me: .fAlr1l,istDe9RevLcxPt1sh.Pos-ition 

fH-)!1 * 
700 * Overview: .4s above, but ,1[.5() returns the in.ser·tion posit-ion 

701 * 
702 * /),:ta.ii: This J\m.ct.ion.i in-se-rts /./,e poly-norni.c,l _poly_ 

7O:l " int.o the F'.-Hyl>isf. _inpnt._ .so I.hat the list n :mait1s 

10,1 * sorlc·cl 1,v Dc·gFkuLt:.c {l,1.1y;est first) . The prrnil:ion in 

70f> * 111hfrh the i ns,!rl'ion took 1,lr1a: is plnc-cd in th,! 

7l)(j * ·v111iuhle -))OS_. 

707 * 
708 *I 
709 FAlgList 

TIO fAlgListDegRevLexPushPosit ion( poly, input, pos) 

71 .l FAlg poly; 

71'.! FAlgList input; 

71:-l ULong *pos; 

71 ,1 

715 FAlgList output = fAlgListNul; // Jnif.ia.lise lhr: mtv.rn 1-iM, 
716 FMon lead = fAlgLeadMonorn( poly); 

717 ULong position = l ; 

7l8 

710 if( !input) // ff !hen- is nol.hing fa. th.r-: inpu.l list 

7:.m { 
721 *POS = l; // Inserted into the jil'sl position 

7"22 I/ T-lctnrn a. s-inr1letcm list 
72:l return fA lgListSingle( poly ); 

725 e lse 
72(; { 

727 I/ Wh'i/1! the ?U!l:/. eh;mc-:nt. in /,he /isl, i.1 lm:qer th.11n _/,)a.cl_ 

728 while( ( fAlgListLengt h( input ) > 0 ) 

729 && ( fMonDegRevLex( lead, fAlgLeadMonorn( input -> first) ) == (Boo!) 1)) 

7:lO { 

731 / / Push th>.! list element onto the oufpu.t list 

7:l2 output = fAlgListPush( input - > first , output) ; 

73:l input = input - > rest; / / Ad11a.nce the list 

;-:i,1. posit ion++; // .lnc1·cmenf. the -insertion position 

7;~::, } 

7:lfi // \l[/e now know the in~fjertiou posit-ion 

7:37 *POS = position; 

7:is I/ Push the ne111 elenumt onto the list 

-;-;!9 output = fAlgListPush( poly, output ); 

7,10 I/ Rcvcrnc·: the ou/,p·u,t list (-it was cm1.struc·/.cd in rt!VC'1'Sf!) 
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741 output = fAlgListFXRev( output ); 

7:J2 // If /./, ere is cmything left i n the in.pu.t list, la.git onto I.he 01,tp·llt list, 

7·1:l if( input ) output= fAigListAppend( output, input ); 
7:J,J 

7·1:i return output; 
74(j } 

71!7 

748 

7,19 I* 
7:i0 * Ptmct.ion Na,mE:: fAl9ListNurmalP1,.sh 

7~H * 
7:i2 * Overview: .Insert iniu l-i.st accordiny tu the i:l!rrcnt mono11tial orrlcrin9 

n:1 * 

7T,,[ ·• Dctcdt: This fu.nc:lions in,;at.s lhf: 1,olynomfol -/l<>ly_ 

755 * int(! the FAlgl.ist _inp·uL .,o Iha.I the list. remain., 

7ii6 * sorted by lhc c:urn11 f. monomfo} orde'l"inf/ (la,,ye.st ji,·,;t) . 

758 *I 
7:,9 FAlgList 
760 fAlgListNorma!Push( poly, input) 
761 FA!g poly; 

762 FAlgList input; 

76:\ 

764 FAlgList output = fAlgListNul; I I lnil-iril·1.se the rctnrn list, 

765 FMon lead = fAlgLeadMonom( poly ); 
7GG 

767 if( !input ) / I If t.!1tJ1·e i., nothin!) in the in1,1,1, li..s/. 

7G1' { 

7\l9 // Rcimn o, si.ngleton bst 

770 return fAlgListSingle( poly ); 

771 } 

772 else 

77:\ { 

774 I I ~1hilc tl,c next elem.en/ in the list i,s la,ge,· tha.n _leacL 

775 while( ( fAlgListLength( input ) > 0 ) 

77(; && ( theOrdFun( lead, fAlgLeadMonom( input - > first )) == (Boo!) 1)) 

777 { 

77~ /I Push t.h,l h,f. dement. onto t.h,: 0·11.t1n,t. Us/. 

771) output = fAlgListPush( input -> first, output ); 

7ii0 input = input -> rest; I/ Ad,,a.nrn t/,1) t,i.,t 

7rll 

732 / I No·11, 7msh t.h,: ,u:w clement onto J;he U~t 

,rl:\ output = fAlgListPush( poly, output ); 

78,1 I I {-{,cve.r.•e. the 011/.i,ut list (it, wa_s construcie,l in reverse) 

78:i output = fAlgListFXRev( output ); 

781, /I .fr there ·is <1n·ylhi.ng left in the inpu.t list, tar1 ·it onto the 01,ip·u.t li$t 

7~7 if( input ) output = fAlgListAppend( output, input ); 
788 

73\l return output; 

790 } 
7!) l 

7,,3 I* 
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i94 • Function Na,me: fAlgliistNurmalP11sh.Pn.sition 

79;;, " 

i!.l6 ., Ownrim11: A.s al,ove, lni/, also rd·1wn.s /.he insc;,'/.ion 1,o,5ition 

797 • 
i!.l.l • Del.ail: This f11.nc:tfrm,5 'in.,e,·/s the 110/yn omfol _poly_ 

7!)9 • into tfw l"AlgLi.st _-;n7mL so that. the Us/. rwrn.ain.s 

1-00 * so,·l.cd &y the , .. u.r tent. mono·m.ial ordering (larges/. fi,1·st) . 

801 • The po.sitio•fl. in wh'it:h th,: i11,serlion took vla.m •i.s v/Q.1:,:d 

1-02 • in the ·uario.ble. _7111.s_. 

so:i •• 
804 *I 
80:, FAlgList 
1,()1, fAlgListNormalPushPosition( poly, input, pos) 

1'07 FAlg poly; 

808 FAlgList input ; 

1:<cn-1 ULong •pos; 

8 10 

I< l l FAlgList output = fAlgListNul; / / !11-ilialiM: /,he rn/.1,·n, li.,l 

8 1:l FMon lead= fAlgLeadMonom( poly); 

I< l:I ULong position = l ; 

814 

815 if( !input ) / / If there i.s nothing in the inp,il list 

8 16 { 

t-l i •pos = l; // Jnserte,i ·into the first. JJOSition 

RI.:! // Re/.1m1. o, .~'i'n._qlc-;/rm li8l 

8l!l return fAlgListS ingle( poly ); 

R20 } 

8 :.!l e lse 
1-22 

8:H // Whill' /:he ne:ct e/e-,,1.,mt in tit.f: li.,l is larger Nwn _lead-

1-24 while( ( fAlgListLength( input ) > 0 ) 

8:l!j && ( theOrdFun( lead, fAlgLeadMonom( input-> first))== (Bool) 1) ) 
1,·21: 

U') "' ,"1_ , 

821< 

82!1 

8:10 

8'.\l 

/ / /J11sh the l-is/. clcm,enl onto the uutp11/, li,</. 

output = fAlgListPush( input -> first, outpu t ); 

input = input -> rest; // Advo,ncll 11,,, li.,t. 

position++; / / lnc·rcm,ml, /he in.ii,rti.on 71os-ilion 

832 // Wr nm.o know /he insm-t-icm pc,.sitio11 

1<:1:1 •pos = position; 

8:l4 // f'1,sh. l/11; new dmrumt. o-nto '/Ji,: U.11, 

8:15 output = fAlgListPush( poly, output ); 

8:l6 // I/cva.s,: the ou.t7m/; Kst: (it, ,i,a.s ,:onsti-udetl -in rev,?r.s,:) 

837 output = fAlgListFXRev( output ); 

8:l8 // If there is a.nything kfl ·in /he ·inpul 1-i.st, tag it. onto th e o·u./7'1tt list. 

t::\9 if( input ) output= fAlgListAppend( output, input ); 

/l4.0 

tl·H return out put; 

84.2 

8--13 } 
/<,14 

84:, /• 
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S47 ·• Deletion Pu.nctions 

~8 • ================== 
S·W *I 
850 

s51 I* 
8'.i:l * Pu.11ctio11 Name: fM011ListRe·mov,1Nu.mbe,· 

85:l * 
8'.i,J * Ov«ruiew: R~m.oucs the (1st my)-l:h element from l:hc l-ist 

835 * 
SGG • Defoil: Given an FP..JonList _/isl_, this function 1·cm.oues 

85 7 * from _lisL the element in position _nu.mbe1·_. 

s;;ll * 
t-39 • / 
/,(i(J FMonList 

llGl fMonListRemoveNumber( number, list) 

8tl2 ULong number; 

SG;l FMonList list; 

8\H { 

SG:, FMonList output = fMonListNul; 

8\i\) ULong i ; 

Sfi7 

86S for( i = l; i < number; i++ ) 

86i) { 

870 // Push t:he Ji1·st (rmrnber-1) dem.cnts onto the list 

871 output = fMonListPush( list - > first, output ); 

872 list = list -> rest; 

87:.l } 

87°1 

875 // De/el:e the num.ber-'/.h elerncnt l1y .ski7ipin!J 7,asl: it 

87G list = list -> rest; 

877 

8713 / / Pvsh the remn.ining dwrnn/.s onto the list 

t-79 while( list ) 

880 { 

t:~l output= fMonListPush( list -> first, ou tput); 

!:\82 lis t = list - > rest; 

883 } 

8;:H 

88,, / / Rehir11. lhe n 1,ers,1d Nst. (i.t. Wfl.i <:on.st1·u.dcd in re·uer.«!) 

8/il) return fMonListFXRev( output); 

887 

888 

889 I* 
t,D() * F'nnr.t-ion Name: fMonPa.irL-isl:Remo1,eN1,m.lwr 

8fll ·• 
8Wl * Oucrvi.,;w: Removes thr. (1st arg}-th element from the list 

8fl:l * 
89 .. J * Dctoil: Gi'IJmt o.n FA-fonP.tirl,i.sl _li.,L. this Jim.ct.ion ·rerruive.~ 

8% • frorn _li.,t._ the eh:ment i11 po.sit·ion _,mm.her_. 

89G * 
8!)7 ·•/ 

8913 FMonPairList 
8W fMonPai rListRemoveNumber( number, list ) 
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9llll ULong number; 

!101 FMonPairList list; 
!)()'./ 

'.103 FMonPairList output = fMonPairListNul; 

D04 ULong i; 
fll):, 

0(16 for( i = l ; i < number; i++ ) 

907 { 
()(18 // Pu.sh the .fir.st (o.11·mlu:r-J) elcm,mts on.to the li.~t 

90!) output= fMonPairListPush( list-> 1ft, list -> rt, output); 

!J 10 list = list - > rest; 

911 

'.Jl.2 

91:i // Ddel.1! /./,,; 111,mber ···lh elt?menl by skipviny 7J0$1, -it 

'.' l.:l list = list - > rest; 

915 

:11(; // Pu.sh the renrnin:ing elcmen/.s onto the list 

017 while( list ) 

9 18 { 

0Hl output = fMonPairListPush( list-> 1ft, list-> rt, output); 

920 list = list - > rest; 
!)2.] } 

!)2:l 

!):2:1 / / Rel·u.i-n. th~ rct•P.rserl Ii.</ (it was cnnslrucle1l ·in reverse) 

!)2·t return fMonPairListFXRev( output ); 

92tl 

:1:l7 /• 

928 * F\,nclfon Name: fAl!JLis/Remou,!Nmnom· 

!l:.?9 * 
9:{() * Ou,!·1vim11: l?c,mov<'S the ( L.~t c,.rg)-t/,. d,:men/. frnm the, list 

!l:31 * 
Da2 * Octa.ii: Given a.n FA.lgLi.,t _/isL, this functiun rcm.o·ucs 

9:l:l * from. _list_ the dcm.en/. ·in 71osit-ion _nu·m.ber_, 

!)84 * 
9:.15 •/ 

H:>G FAlgList 
!):.l, fAlgListRemoveNurnber( number, list ) 

i1:,R ULong number; 

9:19 FAlgList list; 

!140 

Ml FAlgList output= fAlgListNul; 

94:l ULong i; 
'.'!4'.I 

9'14 for( i = l; i < number; i++ ) 
n,:15 

[l,l(i / / Pu_sh. the first (n-u.mbc1·-.t) elements unlo the l-ist 

:l.-17 output= fAlgListPush( list-> first, output); 

!Hli list = list - > rest; 
[l,'lf) } 

050 

% I // Delde the ·r,.-1Lmh1-:i·- th dmnent by skippi.ng p,tst it. 

952 list = list - > rest; 
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!).",:l 

H3.-J I I P-ush lht: 1·<,maininy elements 011/,0 the list 

!)55 while( list ) 
[),, (i { 

!)57 output= fAlgListPush( list - > first, output); 

!l:i$ list = list - > rest; 

959 } 

!lGO 

9til I I Fletm·n I.he r ,)'11c,·sed list (it. was wnstn,r.tcd in m1wrse) 

!)(;2 return fAlgListFXRev( output ); 

%:I 

!)(A 

f)ij5 I* 
966 

%7 * Non,w.li.;ing fl,nctions 

!)fi.j ·• ===================== 
%9 *I 
970 

ll71 I* 
972 • F\inctfon Na.me: fA(qListnemou,;F\n,;tion.; 

97:3 * 
'.!74 * Oucnriew: Rernovcs a.ny frar.tfons fl)wtd in the PAlgl,ist by scalar m u liiplicntion 

llii, * 
!'/711 * Detail: Given a l-i.st. of i,olynnrnia.ls, this fnncliun analyses 

!)77 ,, ench pol·ynomiol in tm·n.. 11mlt.iplyir1y n polynoinfol b11 a.n 

\171, * appropriate ·int.eger if "frncf.iona.l co,!Jjich:nt. is 

!)7~1 ,, found Jiir riny tenn in the polynomial. F!,r r:nrnip/e, if one 

\180 , . ;,olynominl in th<! l-i.,t. i.; (!!./.'1):r:y ·f- (l/.5).1; + 211, 

981 * then the polynomfol is m ult.iplie1l b!I ;J* ,5 ·"' 1 ,5 to remmie 

982 * /.lte fmc/.io1wl r:oefficit:11/s, <1:nd the oui71u.t 7wlynorr,.ia.l 

98:1 * ·is therefor<: 1 (/J:y + S,c + ;JOy. 

fl8,1 * 

iiss *I 
9:lH FAlgList 
!)87 fAlgListRemoveFractions( input ) 

9~1l FAlgList input; 

'.189 

9ll0 FAlgList output = fAlgListNul; 

tl91 FA!g p, LTp, new; 

992 Integer denominator; 

993 
9!H while( input ) I I Fhr mch polynomio.l in /.lie Ust, 
µnr, 

!)% p = input - > first; II E.ctra.cl a 11olynomial 

9\17 input = input - > rest; I I Adva.ncc lhc List 

!Hl8 

!)fl!) new = fAlgZero(); I/ lnil-ial-isc the ne,u 71uly11omi1il 
1()()() w h ile( p) II Pm· Mc:h. tcnn of th,: w ,tyno·miol 71 

lOO! { 

lll02 LTp = fAlgLeadTerm( p ); I/ B,r.tmct the: lead term 

10(1:1 p = fAlgReductum( p ) ; II Ad•1Jnnce the pol:vn,nn'i.al 

1004 

1005 denominator = fAlgLeadCoef( LTp ) - > den; I I E,-/.mct the dawminntm· 
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l,()()(j if( zisOne( denominator ) == 0 ) I I lf the denom·ina.io,· is not 1 

ll)07 { 

100~ I I Mnltiply the whole )Jolynom.in.l by the dmwm.i-n.a /.or 

llJO!J if( p) p = fAlgZScaTimes( denominator, p ); I I Sti.ll to be lookt:d at. 

1(1 I() LTp = fAlgZScaTimes( denominator, LTp ); I I D1Jol.·ing r//, 

LO 11 new = fAlgZScaTimes( denominator, new ); I I l,ooked al 

]0 12 } 

IOL:l new= fAlgPlus( new, LTp ); II Add the-: term to the-: emtpul polyn.ermi<J.l 
10 [,1 

101!\ output= fAlgListPush( new, output); II Add the new 1,olµn.om.ial to the output. list. 

101" } 

ID 17 

!OJ.~ I I The n ew I-is/. was read i.n rnve.r8e so we m·ust reverse it befnrc rntwming it 

1(1 Ill return fAlgListFXRev( output ) ; 

1U20 

1021 

1022 I• 
1023 • ==·= .. ··=·====·== 

102,1 • End of Fifo 

1025 • ====·======= 
10:.w •I 

B.2 .10 ncinv _functions.h 

/• 
2 * Pik: n.dn:u_fnn.clions.h 

:l • Author: Oa.n.:lh E,,a.ns 

.:J * La.st l'vfodijicd: 6th Jilly 200[; 

5 •I 
G 

7 I I lnit.ia.li.,i; jilc d,;finitior,. 

8 # ifndef NCINV _FUNCTIONS_HDR 

9 # define NCINV _FUNCTIONS_}jDR 

IO 

I l I I Jnclwle M8SRC Libruri,,-< 

l:l # include <fralg.h> 
1:1 

14 II 
1..5 I I Bxterna.l Vn.riable.s nequfrcd 

16 II 
1.7 

I~ extern ULong nOfProlongations, I I 8/.orc.s the: nmn.b,:r of prolo11gat-iem.s calc:,ilri.tc,l 

I!J nRed; I I S t:ore.~ lww ·many n;dnct.ion.~ h1111e be1m pe1form.cd 

20 extern int degRest rict, I/ Determ.in,:.< whet.h,;r of riot p1·olonga'/.ion.$ nre rest, .. ic-ted by 1le11ree 

~ J EType, I I 81.on·s the type of Overlnp Divi.sion 

22 

'..!:.I 
2,1 

25 
w 
27 
28 I I 

!Type, I I St.ores the im1olnti.vc-: di11-ision used 

nOfGenerators, I I Holds the nu.m.bcr of gen.en1:tors 
pl, I I £folds the "Print Level" 

SType , I I Determin es how the /,a.sis is sorted 
MType; I I Dcte,--m:ine.s in.vol·atfoe di11ision. method 
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'.W I I F\m.ction.s Defined in ncinv-functfons.c 

:m II 
11 

;{2 II 
:.i:.1 I I Oo,:rfo.p flm.c/.ion., 

:M II 
:m 
:lG I I Fletvni.s the v.nion of (non-)m:altiplico.tiv,: 1•aria/Jle.s (1st o.,y) ,md a. _q<mcmtor- (2nd arg) 

:l7 FMon multiplicativeUnion( FMon, FMon ); 
:lti I I Docs the 11cnerator ( I s t arg) appear in the l-ist uf m11lt.ivlicat:it•e varia.hlcs {2nd nrg)? 

39 int fMonlsMultiplicative( FMon, FMon ); 

,Jl) II Docs the 1st arg apper1-r as a s-ub,vord in the 2nrl arg (yes (t)lno (V)) 

41 int fMonlsSubword( FMon, FMon ); 
42 I I ls /,he 1st ary 11 .;ubword fJf the :3n d n.i:q; ·if so, 1dv.n1 sta.1·/. 7ws in 2nd «rg 

,13 ULong fMonSubwordOf( FMon, FMon, ULong ); 

44 
45 I I R<:t·unM s-iz,: of smallest; o·ucrlap of type (s1,Jfi:i: of 1.,t a-t~J •"' pnfu: of 2nd a.i:q) 

4tl ULong fMonPrefixOf( FMon, FMon, ULong, ULong ); 

47 II !letv.rris size of .s-mallcs'I: ovcrlwp of /.ype (prnfb: of 1st a.,:IJ == svj]b: of 2nd a.,y) 

,JS ULong fMonSuffixOf( FMon, FMon, U Long, ULong ); 

4.!l 

50 II 
;; I I I Multiplicative Variubles Ft,nciior1.s 

52 II 
5:.1 

:;.-1 I I n,:twrns no ( 'empty') 111·u,ltipfica/.iw ·,u.-ria.blcs 

55 void EMultVars( FMon, ULong *, ULong * ); 

:\G I I Alt va,riahfos left. m.-1,ll. , no 11a.1·ia/,les right 111·,;lt. 

57 void LMultVars( FMon, ULong *, ULong * ); 

:,~ I I AIL 1•aric1.bles 1·igh.l nmlt,, r1.() ·uc,ria.ble.; foft ·rnult. 

39 void RMultVars( FMon, ULong •, ULong * ); 

GO I I Rf:l·urns loml oi,erlnp- ho.8cd m.1tlt-ipl·icn.tive vori.nhl,:.s 

Gl FMonPairList OverlapDiv( FAlgList ); 

62 
(i:t II 
64 I I PfJlynom.ial Redm:f-ion nnd Basis Com.plc/.ion Pu.nc:l:icms 

G5 II 
66 

G7 II 11edw:es Isl, a.i:q w.1·.l . . '3nd 0.1:q (li..sl) o.nd .'ird 01:q (onr.5) 

liS FA!g IPolyReduce( FAlg, FAlgList , FMonPairList ); 

69 I I A•utunedw;es an F'Al_qList rec1trsi11dy w,til no more rndv.ct-ions a.-1-,; J)O.Ssiblc 

70 FAlgList IAutoreduceFull( FAlgList ) ; 

71 I I 1-rnplemcnls Seiler·.~ cnig'ina.l aly1>-rithm for c1)r>1puting lt,ca.lly ·i1woi'ut·,11<a bnsc·:.5 

72 FAlgList Seiler( FAlgList ); 

7:3 I I lmple.mcnls Gerdl 's a.dvanccd nlyorithm for com7n,ting locally invol·utivc bases 

74 FAlgList Gerdt( FAlgList ); 

7G # endif II NCIN\1_FUNC1'JONS-1WR 

B.2.11 ncinv _functions.c 

l I• 
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2 * File: ncinv_functions.c 

3 * At1,tho-r: G«relh !Evnns 

4 • Lasl Modiffod: .I U/.h A-u.gusl 200.5 

5 */ 
6 

7 /• 

9 • Global Variables for ncinv_fu,nct-iori.s.i: 

LO * 
11 •/ 
12 

1 :l int headReduce = O; / / Controls type uf pol11nomial red·ucl:ion 

:J..1 ULong d, //SI oms the hound on the restrict.ion of pmlonga/·1nns 

15 twod; // St;on;., :J,,d .{01· cjfic-it-:iu:-y 

l.G 

17 /• 
18 • .......... .... ............................ .......... ........................ .. 

19 * 0-u,:rLap Punc/.ion, 

20 • .... -................ - ............................ .......... ....... .. 

21 •/ 
2:2 

23 / • 
2,1 • F,mction Na.rn~:: multiplica.livcUnion 

25 • 
26 * ()l1er11im11: l/.1:turns 1.11.(; union of (11rm--· )m.ulliplico.ti-ue 11a.ri1tbles 

27 * ( I st 0-1:q) ,mt! a. gen,m1/.or {2nd ary) 

2\°S * 
:rn * Dcta.il: This }11-nc/.ion in.rnrls a. gcnerato1· ·inlo a. rnonornia.t rq1reser,.t.ir1y 

:m * ( non- )rrmlti71li.c1itive 110.i-i.al,k, "" t.h«t t:hc A 8CJI onleriny of th« 

:ll • monom-inl i,, prn.,1:1~1ed. F'or c:i:mnple, ·(f .. 11- = A*B•C*E*F a.ri.d _r,_ == D. 

:12 * th.en I he output monomial is A* B·• C• D* E• F. 

:l:l • 
;1,1 •/ 

:1r, FMon 
8(1 multiplicativeUnion( a , b ) 

'.37 FMon a, b; 

:~8 
'.Ill FMon output= flvlonOne(); 

40 ULong test, insert = ASCIIVal( flvlonLeadVar( b) ), 

4 1 len = flvlonLength( a ); 

4:l 

,i.:i / / ff n is empt:y th.em i.~ no 7iroblem - we just ·return /, 

44 if( !a ) r e turn b; 

4.5 e lse 
,J(l { 

47 // Go thro1'gh ea.ch genera.tor in a, 

48 while( len > 0 ) 
.HJ { 

50 Jen--; 

31 // Obta.-i11 the nmnerical 1ml,u: of the fir.st. genera.I.or 

52 test = ASCIIVal( fMonLeadVar ( a ) ); 
,;:3 

54 if( test < insert ) // We nvust ski71 past t·h-i, 9cnemf.or 
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;,,; output= fMonTimes( output, fMonPrefix( a, 1 ) ); 

5G else if( test == insert ) / / b 'i .; lllrewly in II so we ju.;t rnt,,1.1·n I.he _originaL n 

57 return fMonTimes( output, a) ; 

58 else // We-: insert h in thi .; po8it.ion n.nd f.o.g on the rn11wincl,:r 

5ll return fMonTimes( output, fMonTimes( b, a ) ); 

GO 
l> I / / Get rcaclu '/:IJ look o.t the neJ:t gerwr ntm· 

G2 a = fMonTailFac( a ); 

li:l 
(;,I 

(j5 

66 // Deal iuilh the r.cw; ''insert> {e·ucrylhing in a} •· 
(ji return fMonTimes( output, b ); 

6~ 

(i9 

70 / • 
71 ,. Fu.nct:ion Nmni:: JM onJ.sMul"ti11l-i.mth,e 

i2 .• 

7:3 ,. 0 v,wuiew: Does th,; g,:nemto1· _,J._ appeo.1· -in the list of nwltiplico.tiue varinble.s _I,_? 

74 ·• 
7G * De.tm:l: Given u r1encrntor _a_; this /1.1.nction tests ·to see whether 
i 1, * _a_ appears in a. list of mu.ltiplicntive vttriables _/;_. 

77 * 

78 *I 
ill int 
80 fMonlsM ultiplicative( a, b ) 

8 1 FMon a, b; 

1'2 

8:1 ULong lenb = fMonLength( b ), i; 
8;1 

85 / / Fhr o ich pos.sil,/e owrlap 

80 for( i = 1; i < = lenb; i++ ) 

87 { 

88 if( fMonEqual( a, fMonSubWordLen( b, i, 1 ) ) == (Boo!) 1 ) 

8!) return 1; // MMch fn-uncl 
[l() } 

91 

!l2 return O; / / No mal,ch fO'Cmd 

93 
!).1 

9!:i I* 
!J6 * F\mc;lil)n Na.me: f l\f ,,•r,.IsSu.bword 

})7 :,t, 

98 * Ouervie,o: Docs -"- a,1,pcar as ,1 .ml,wnril in _/;_ (yes (1) /no (0)) 

M * 
10() * Dcta.il: This fun ction answers /.he question " ls-"- a. S'(lb>.oord of _1;_7 ·, 

lO 1 * The Junction re /.-urns 1 if _a._ is a subworcl of_/,_ and O otherwise. 

102 * 

Hn *I 
l 0,J int 

105 fMonlsSubword( a, b ) 

I OG FMon a, b; 

107 
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l08 ULong lena = fMonLength( a) , lenb = fMonLength( b ), i; 

109 

l IO // Por ea.ch possible overlap 

11.1 for( i = l ; i <= lenb- lena+l; i++) 

l 12 { 
I 1:3 if( fMonEqual( a, fMonSubWordLen( b, i, lena) ) == (Bool) 1 ) 

114 return l; / / Ovedap fonnd 

11:, 

116 

117 return O; // No overlap f01md 

118 } 

Ll!l 

120 I* 
121 " Pnnction Na.me: fMm1811/JwunlOf 

122 • 

12:1 ·• Oven>imu: {.; the /.~/. arg o . . Mbword of th<: 2nd wrg; if so, retmn ,;/.a,rl po,; in :2nd fJ.1'.<J 

12,1 * 
125 •• Dct.<iil: This Ju.net ion 1;,in m1.swer //rn qu.c·:.st:ion " J;, _smc,ll.... a s11,{noorcl ,Jf _/n1:qe_ !'' 

120 * T'he funct.ion rnt·u.,·ns i 'if _,rnwlL is a s-ubword of _fo-rg,•_, 

127 * ,,,l,.cem i -i.s /.he posil.ion in _fo'fge_ of /./w fi, ·st .rn/Jword .f,)-und. 

128 * and ret·u.rns 0 if no o·vcrla,p c,r;isls. We start lnnking for .s1tl1wnrds stnrting 

129 * at µositio11 _.start_ in _la117e_ nnd }i.nish lookinr1 for stLbworris when 

1:io * all possibil·ities hnuc been c,chansted (we work left-to-right}. It follows 

131 • that to test all i,os.sibilit·ies t.hc .'Jrd argnmcnt shonld be 1, but note tha.t 

1:.i2 ·• you, shc,1Lld 11s1; I.he above f11ndim1 (.fMonhSnbword) ·if '//Q1' only -,mmt /Q know 

I a:i ,. if a monornia.l is c1 s11bwonl of a'fwllie-r monomia,l (incl 11m not f1(s.ied 

1:l-1 * when: the; ovc1'ia1' ta,k1:s pla.ce. 

1:10 *I 
1;37 ULong 

1:.18 fMonSubwordOf( small, large, start ) 

1 :39 FMon small, large; 

l,10 ULong start; 

l4.I { 

J.:J'2 ULong i = start, sLen = fMonLength( small), !Len= flVlonLength( large); 

1-1:J 

144 / / While then: are more ,rn/111101·ds to te.;t for 

H5 while( i <= lLen-sLen+l ) 

14G { 

147 // If small i-s eqllO.l to c, s11ln11orcl of lm:qe 

14.8 if( fMonEqual( small, fMonSubWordLen( large, i, sLen) ) == (Bool) 1) 

1.19 { 

I ,,O return i ; / / Snbword fo11nd 

I 5.1 } 

l!i:.l i++; 
I ;,:\ } 

l!i4 return O; //No subwnrds fonnd 

105 

156 

151 I * 
158 * F\l'fl.c:lion Name: ffi.11m.Pn-fb;Of 

I G9 •· 

lliO * Ovenri1:i,1: Flet·un1s .;ize of .srr,.c,.l/est; ov,;rla,p of /,y)le (s11ffb; of 1st arg -= prefi,; of 2ncl Q.'1:q} 
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Hil * 
1 G2 •· D,:to.il: Thies funct.ion can a.n.s·111,:1· /.he question " /., _left_ a. ]lrefi:c of _1·igh.L?'1 

rn:.i * The function ref.urns ·i if a su.Jjb; o.f _left_ is eyua./ to " preji,1: of _right._, 

I G4 * where 'i i.; th.1: ll:11.gf.h of tlw sma.1/est ow,l'lnp. and n,tu,·ns 0 if no u·oerlap e:r.isls. 

165 * The lengths of t./w overlap8 we look al a.n ; conl.n>llcd by the .1rd and 4th 

1 OG * a.,:guments - we sfort by looking at th.: om:dap of .s-ize _sta.1'/._ "r,.d Jirt-i.,h 

lll7 * by looJ.,in9 ,it the o-ucrlap of size _/frniL I I; is I.he •u.ser's TC'S]lonsi oil-ity 

l68 * to en,,u.n; tlwl. these· bounds wre corred - no c/uic:ks (lrt! rrwde by t.he f1m.di<>n. 

J ti!! * To test a.LI po.ss·il>ilit.ies. the· .'Jr-d C!'f)/1Lmenf. shotild be 1 o.nd the f,mrth 

'170 * argu.m.ent shcru.ld be m-in( llef tl, 1,-ight l ) - I. 

17.l • 

172 *I 
17:1 ULong 

17,1 fMonPrefixOf( left, right, start, limit ) 

17,, FMon left, right; 

176 ULong start, limit; 

177 { 

178 ULong i = start; 

179 

l:iO while( i <= limit ) // Fo1· ea.ch owrla.p 

l1l l { 

I !<2 if( fMonEqual( fMonSuffix( left, i ), fMonPrefix( right, i ) ) == (Boo!) 1 ) 

l1l:l { 

I !<4 return i; / / Prefix / 01,nd 

1S5 } 

18G i++; 
1S7 } 

188 return O; // No prnji:ce.; fo1m.d 

Hi9 } 

I\JO 

rn1 I* 
I fl2 * Fune·/:'ion Nmfl.c: fMonS-uj]ii:Of 

UJ:l • 

Ul4 * O1,e-rvicw: T-icturns size of smnllest overlnp of 1-ypc (pre/fa- of I st a.rg = s,ijji:c of :3nt.L a.,y) 

I !)5 * 
196 * Df!.f.<t'il: Thi.s func:lion can answer the qu,,:s/.fon "ls _/1:fL "suffix of _righ.t_?'' 

197 • The /11.ncf.ion rnlu.,·r,s i if a prnfb: of _lefL is cqna/ f.o " .mt7i.1: of _r-ighL, 

:w.:i * whc·:n: i -i"~ /hf' length of the .;m.allt:sf. O'IJerlap, and rntm·n.; 0 'if no overlctp e1,'i.~t .. s. 

190 * T h.1: h:n_ql.hs of /,he 011e1'l,q,s ·cm: look ,,t are cont-rollccl by /./w :/·rd a.nd 4.th 

:WO * cir1r11.ments - we ,sto.,·t: l>y looking 11t the 1J11C'rlt1p of si::e _st.wrL a.nd finish 

201 * l>y look-in.g Cit tfu: 011,-:1'!,111 of siz,i _Umi/._, It is the 1e.ser·'.; r cspon8iliili ly 

202 * to en.,;,irr, l;/w.t tlwse bown.d-< a.n: o>n·,x·t - no ch.eek.$ a.rn mo.de 1,y the .fu.n('f.ion. 

20:3 •· 11> t.i:.,t. ctll pos.;ibil'ities, the .'!rd a.,ymfl,cnt .ihov,ld be 1 ctncl J.h,i fcmr-lh 

20,i * argument shonlcl be min( lle.f/1, lriyhtl ) - 1. 

20!i * 
:)()1, */ 
207 ULong 
208 fMonSuffixOf( left, right, start , limit ) 

20\l FMon left, right; 

'.!10 ULong start , limit; 

2 ll 

212 ULong i = start; 
21:1 
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214. while( i <= limit ) / / For en.ch overlap 

'.H5 { 

2 I 6 if( fMonEqual( fMonPrefix( left, i ) , fMonSuffix( right, i ) ) == (Bool) 1 ) 

'.H7 { 

21~ return i; // S11j]iJ; }i/'IJ.nd. 

219 

220 i++; 
2:ll 

222 return 0; / / No s11ffi,x·s .found 

22:l 

:l24 

225 I* 
22lt * ============:::.::=:::::=:::::==:::.::.===:::::==========:·-·-:::::.:::::-=.:;.::.:.: 
227 * Afo.l/.i1,l·iw/.i11e Vwriable.s F1tn1:tion.~ 

2~ • ================================== 
2W •/ 
2:lO 

2:u I* 
2:l:l * P'u.nc f:ion Nl!'lne: EM11lt \lars 

2:i:1 .• 

2:l4. • Otie·rview: Flcturns no ('empty') mu.ltiplicntive v<£ria.bles 

:l35 * 
2:w • Det<£;l: (}ive.n " monomial, th·,.s f1,nctiun ,iss·igns 

:l:17 * no mult.i71licn./.i11e variaJ,h;s. 

2:l~ • 

2:19 • E1:/.c·:·1·rwl Vuria.bfr:s R ec1nirnd: inl r,.OfC/ienern/ on; 

2,10 • 

2·'11 •/ 
2,J.2 void 

24:l EMultVars( mon, max, min) 

244 FMon mon; 

2•1'.i ULong *max, *min; 

:l4C. { 

247 // Nothing is ri.ght. mul/:i))l·tc<Ll-ive 

;l,.f~ *max = (ULong)nOfGenerators + l; 

24D / / Nothing is h:ft. m.1,ll.'i71hc:n.tivc 

2,)() *min = O; 

25 1 

232 

2s:i I* 
2S•I * Fund-ion Nnme: LJ\.h.tlt\ln.r·.s 

255 * 

2ii(i ,. Ove,·uiew: All um'ia.blc·:s left nw.ll., no 1,ariahles 1'i,qht m11U. 

2:i8 • Detail: Given « monomial, this f1tnction assigns 

:l39 * all va.1'i11l,lcs to be left m:11/tiplicati'Vc 11,nd <1ll 

260 • variables /:() be rirthl nonm.'llltiplica.tive. 

2G.l * 
2t>2 • B:r.t.e-mnl Vn.,·i.C!bltJ.~ n,JqttiH:.,l: in/. nOfGcn1<1'f1.tcw,;; 

2G:-.i * 
2t,01 *I 
26'.i void 

2t>tl LMultVars( mon, max, min) 
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2fi7 FMon mon; 

2G8 ULong *max, *min; 

269 { 

270 I I Nothin!/ -is right m.11.lt-iplico.tive 

271 *max = (ULong)nOfGenerators + l; 

27:l I I Evei·.vth1.n11 is left rmtltiplimt-ii>e 

:2i:I *min = (ULong)nOfGenerators + l; 
274 } 

275 

27G I* 
* A.net-ion Name: RM·u.lt \la.rs 

278 • 

279 * Ovc1vie1<1: All w .ri11bfos ri(lht mu.It., no va.riable.s left mull . 

280 • 

281 * IJ1;ta.il: Given a. monom.ia.l. this f1mc /.ion n .. ssiyn.s 

282 ·• all vc,riable,; tc, /;e -riyht, rn·,tltiplicoti-u,: ancl all 

'./8:3 * va.i·i.able.$ lo be hi.ft. nomm1ll.ipl'icc,l:i11e. 

284 • 
28:, * E:r:ternnl Viirirlbles iiequi.red: -int ·o.OfGenerat()rs; 

286 • 

287 •I 
28S void 

280 RMultVars( mon, max, min ) 

:WO FMon mon; 

291 ULong *max, *min; 

:!92 

w:.i I I B11erything is riyht rr,inlt·tplim.tiue 

29.-J *max = O; 

2% I I Nol:hin_q i.' left rrmlt.i11li.mt.i.1•e 

2f)(j *min = O; 

2!>7 

208 

wu I• 
:-l()l) • .Function Name: OverlapDiv 

:301 * 
'.l02 * 011crvim11: H,-:t-u.111,s local 01•crfap---bas1.•cl m1tlt·i.71l-i<:al,ivc: 11ari.<1bfos 

:io:i * 
:104 • Det.11-it: This fu.nc:t:i.on i111pfornent.s ·,mrious alymithrns 

:lOf> •· described -in the t,he.;i,; "Noncom.m11ta/!i1•c· lnvolv.t.i'tlc B,1.se.~ '' 

:306 • f01 · jindin!/ left a.nd right nmlt.-i))l·i.<:11-tii•ci -u,t1'i.a.blcs 

:Hl7 • for a ,<el: /JJ polynorn·i.als bnscd on the owdrtp.i 

:308 * bet.ween tlw leading monomia.l.s of the polyr,./Jmials. 

:Hl9 • 

3].() * Extenrnl Varia.bles Req·nired: int E'l'tJPe, II\J7,e, nOfGcnera.iors, pl. SType; 

:ll I * 
312 *I 
:i I :1 FMonPair List 
:n.-J OverlapDiv( list ) 

:1 I 5 FAlgList list; 

;nr; { 
:3I7 

:11.8 

:3 19 

FMonPairList output = fMonPairListNul; 

FMon generator; 

ULong listLen = fAlgListLength( list ) , 
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:120 monLength[listLen] , tracking[listLen], 

;321 i, j , first, limit, result, len, 

322 letterVall, letterVal2; 

:l23 FMon monomials[listLen) , monExcl, 

ni leftMult[listLen), rightMult[listLen]; 

:ur, short grid[listLen)[(ULong)nOfGenerators * 2] , 

:326 thresholdBroken, excludeL, excludeR; 

~t~7 

:328 II Gi·ue some hii/.io.L inf1mna.ti1m 

:129 if( pl > 3 ) 

:330 { 

:n l printf( "0verlapOi v' sulnputu•u \n "); 

:l32 fAlgListDisplay( list ) ; 
33:_1 } 
:i:{4 

:r.l5 if( !list ) return output; 

:1:HJ 
;337 I I St-!l 'U,J) l t T'l't!y,, 

'.l:l8 i = O; 

3;19 while( list ) I I Fbr wch polynominl 

:14l) { 

341 monomials[i] = fAlgLeadMonom( list-> first); II Bxtmcl le,1d monomial 

:14;2 monLength[i] = fMonLength( monomials[i] ); I I Find monomial length 

:3,:1:1 leftMult[i] = fMonOne(); I I l nit,ialisc left maltiplica.ii-vc ·varia.bles 

:1,14 rightMult[i] = fMonOne(); I I lnitiahse ,·iyht. m1<lt-i7,l-i.cat,ivc 11a.1·io.l,fo$ 

;J.·15 for( j = 0; j < (ULong) nOfGenerators*2; i++ ) 
3,15 { 

;347 I•· 
:348 * Fill llw m11lt-ipl-i1nt·i111-: g1·id ,.oith 1 '$, 

:.149 * wher-e the col·u.mns of the rrrid are 

:350 * ger,_ J 'L. 9e,i_J ' R , 91-:11_2 ' L, gc,u2 • H, ... , g,:n_{ nO.fGcner,1to1·s} ' fl 

;ir, 1 * and t.h,J row., of /:he 9·r'id a.,·e 

352 * rn.crnom:ials{Oj, monominls{.1/, .. .. m.unurnfols{/i.stf,cnj. 

:15:l *I 
:35,.i grid[i)Ll] = 1; 

355 } 

:l5G II ff S1')1pc > l tot) ne1Jd to Mr/. t/il! lm.,i,, ji1·st, kc-;eping tmck of 1hr chan_q,:., mad,; 

357 if( SType > 1 ) t racking[i] = i; 
:158 i++; 
:359 list = list - > rest; I I Ad1,anw the l-i.,l 

:wo } 
:3lil 

:!G2 if( pl > 7 ) printf("ArraysuSetuUpu (sizeuofuinputubasisu•u1/.u) \n" , listLen); 
;3(j:I 

:w4 II If ST,11pc > .I and there is more them one polynorwia.l in the l!ll.sis, 

:3(jf> I I we need to sort. the l,a.,·i.< w.r.t. Dcgf-levl,ex (Grentcs/. first) in orde,· 

'.WG I I t o be a.blc to 11pply the nlyorithm. 

'.lG7 if( ( SType > 1 ) && ( listLen > 1 ) ) 

3tl<l { 

'.Hi9 mult iplicativeQuickSort( monomials, monLength, t racking, 0 , listLen - 1 ); 

:no 
:m if( pl> 6) 

;372 { 
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:1Tl printf(" Sortedulnputu•u \n" ); 

;17:J for( i = 0; i < listLen; i++ ) printf("i.s\n", fMonToSt r( monomials(i] ) ); 

:i75 } 

:m; } 
:177 

:!71-3 I* 
:3i9 ,. No111 ei:,;l-ude m1ll!:iplicnt-il,e variables /Jascd on overlaps 

:l>lO *I 
:JS! 

:182 I I For ea.ch monomia.l 

38:1 for( i = 0; i < listLen; i++ ) 

:184 { 

385 thresholdBroken = 0; 
3S6 for( j = i; j < listLen; j++) II Fm· each. mcmornia,l le.~.; them. or eq·,wl to m.or,mwia.l ·i in DUI, 

:187 { 
3S~ /• 
:Hl9 * 1\) look for sv.bwo,-d,,, t/11, l,mgth of monomial .i ha .. ; to 

:3'J0 * be less Own lhe length of morwm:ial i . We v.s,i th,: ·,mria.ble 

:HJJ * tlw,,sholdBroker,. to storn whet:/1£•r monomi,ils of l,m.gth le.;s 

;392 * than /'he lenylh of mmwmia.l i hav<-: been tmcov.nt(•·recl y/Jl, 

:rn:i * a.nd ul,viously we ·mu.st hm,e j > ·i for this to be the case. 

:.rn,i *I 
:HJ:i if( ( j > i ) && ( thresholdBroken == 0 ) ) 

:l% { 

39·7 if( monLengthLl] < monLength (i] ) 

:l98 thresholdBroken = 1; I I ·if dey(j) < cleg(i) w,: can no1V sf.m"/. lo con.;·idc:1· w /nC1onl8 

:.HW } 

400 if( ( threshold Broken == 1 ) && ( EType != 5 ) ) I I Stage I: Look for s ,,bword.s 
,.101 { 

402 first = 1; 

,:JO:l I I 1'hen: a.r,, monLn,glh(i} - m.onLcng'lh(j} + 1 test snbword.; in a.ll 

.-1(),1 limit= monLength(i] - monLengthLlJ + 1; 

405 II Test whether monomial j i.s a s·u.bword of monomial i, s trirting with the first snl,wor,/. 

.10G result = fMonSubwordOf( monomialsLl], monomials [il, firs t ); 

40i if( pl > 8 ) printf( "fMonSubword0f (ui.s, ui.s, ui.uu) u•ui.u\n", fMonToStr( monomials Ll] ) , 

.JO~ fMonToStr( monomials(iJ ), first , result); 

409 
,:J 10 while( result != 0 ) I I Whilr /.her,: are ,;u/nuord,; to k p10C"e.ssed 

411 { 

,I 12 if( !Type == 1 ) I I Left Overlap Divisi.on 

4 1:l { 

,114 if( result < limit ) 

4J S { 

,1 ].(, if( ( EType < 4 ) 11 ( ( EType == 4 ) && ( result == 1 ) ) ) 

417 { 

418 I* 
,.II!) * E:r:clu.de right m.-ultiplica.li'Uc va.dable - overlap of type 'B' or •c· 
420 • -- ·-.. -· ....... _ - ....... _ ............. _._ .. -... monor11.i,al(i] 

,12 1 * .......... .................. .... _ .. _ ........ ,c monom.inl{jj (space on the ,·ight) 

4.22 • Note: /.he etlJ<,ve dia.gmm. (and the follov1i'11!J di.ttgmm,;) m.1111 

,12:i * not apvwr wrr-ectly in Ap]Jend-i:c B due t:o ·u .. sinr, Jfoa,ible col·u.mns . 
.-12,1 • The cm~Y<cl diaq,·am .• • (r,;Jeren.c,.'d l>y th,i letters 'A ' to 'D · can 

,:125 * be found in llw NEADMB fit,; in ApJJentl-i:c B . 



426 

427 

:l<\8 

,J3\l 

4-"10 
,H I 

442 

.-J ,:J:l 

444 
,j.j5 

44(; 

447 
4 '.1.8 
,[,HJ 

,J50 

451 

,:J52 

,1:i3 

.-154 

4G!J 

:lf>tl 

4G7 

4f.i0 
,j(iJ 

4G2 
4Ci:.! 
,t(i,J 

4 f;(i 

.-j(i7 

4G8 
4G9 
470 

-17:1 

472 

47'.l 

•174 

475 

:176 

477 

-"78 
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} 
} 

*I 
generator= fMonSubWordLen( monomials[i], result + monLengthLl], 1 ); 

letterVall = ASCJIVal( fMonLeadVar( generator ) ) - l; 

gridLll[2*letterVall+l] = O; / I 8ct riyh/. non mul/.ipliwt.ive 

e lse if( EType == 3 ) 

{ 

I• 
* Ei:dude left -rrmlt·ip/-ii;at·ive t•m·iable - overlap n f type 'D' 

• ------------- monomia.lfi/ 

* x-------- monomia.l[i/ (no s7,a.ce on the 1-ight) 

•I 
generator= fMonSubWordLen( monomiaJs[i], result-1, 1 ); 

letterVall = ASCJIVal( fMonLeadVar( generator ) ) - l; 

gridLll[2•letterVall] = O; I/ 8d left non r,,.-,;.ltiplicati-ue 

} 
} 
e lse / I R-iy/i.t Overlap Di'ui.~'ion 

{ 
if( result > 1 ) 

{ 
if( ( EType < 4) II ( ( EType == 4) && (result== limit) ) ) 

{ 

I• 
* l,.cdwle left. mul/.·iJ1l·iwt·i1•c 11ariahl1! .... 011e·rlnp of t.yp,i '!J' or 'C' 
* ... n .... .... H. , ... __ 1nonom,ial[i/ 

* J :•-·· ··-- ·· ····· ····· ·· • monomia.lfj/ (spa.ce on the l<;ft.) 

•I 
generator= fMonSubWordLen( monomials[i], result -1, 1 ); 

letterVall = ASCIIVal( fMonLeadVar( generator ) ) - l; 

gridLll[2•letterVall] = O; II Se!: left non m·ultiplir,a.ti-u1: 

} 
} 
else if( EType == 3 ) 

{ 

I• 
* E':cdnde r0i_qht 11w.l/.iplicativc v«-ria.ble ···· o·oerlap of tyJ1G '[) ' 
., .............. .............. -· ......... ... ..... -·-····· monomialfi.J 

• ------ ---1: monom,ialb] (no ,7,a.c:e m,. t./;,J foft) 

•I 
generator= fMonSubWordLen( monomials[i], result + monLengthLl], 1 ); 

letterVall = ASCl!Val( fMonLeadVar( generator ) ) - l; 

gridUl[2•letterVall+l] = O; I/ Set 1·1ght no,t nwltiplica,tivc 

} 
} 

I I Ul,.; will now look jc1-r the: ne1,t. (1'1Jt1-il«l,lc s1,bwonl 

firs t = result + l; 

if( first < = lim it ) I I If the limit ha.s n.o/. been e1:c(;edr:d 

{ 
result= fMonSubwordOf( monomialsU], monomials[i], first); II Look fo-r morn s-u.lnoor·ds 

if( pl > 8 ) printf("fMonSub.,ord□f (u'.l.s ,u'.l.s ,u'.l.uu) u• u'.l.u\n" , fMonToStr( monomialsLl] ), 
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47!) fMonToStr( monomials[i] ), first, result ); 

480 } 

,J81 else II Othe1wi8c e:r.it, Ji·om /,/w loop 

482 result = 0; 

48:.l } 
413,1 } 

.-J85 

48G I I 81,a!J'; 2: Look for pn,fixe.5 

,Ji,7 first = 1; 

188 I I There. a.re monLength{i/ - 1 t~st preji:r.cs ·in all 

41-!J limit = monLengthLJ] - l; 

,Jf)O I I Test whether I\ -,1,ffix of mu-norn·ial j is ll preji:1: of monomial i, st.a-rling t(rith the prcji,r, of l1mr1th 

4!JJ result = fMonPrefixOf( monomialsLl], monomials[i], first , limit ); 

,]!)2 if( pl > 8 ) printf("fMonPrefix0f Cu'l.s ,u'l.s ,u'l.u ,u'l.uu)u•u'l.u\n", fMonToStr( monomialsLJ] ) , 

493 fMonToStr( monomials[iJ ), first, limit, result ); 
,j!)s[ 

495 while( result != 0 ) I I While thcr1J an· pn:,(13:cs to be 7wo,;ess~d 

-'1!}6 { 

.-191 I* 
,1!)8 

Ml!) 

GOO 
501 

* Po.s,,il>l-y eJ:ch,d1-; 1·i,qhl mult:iphcc,t,i1,e ·urtriohl,; - overlap of f.ype 'A ' 

"' /------------- monom-ittlfi/ 

* ---------2 monornial{i/ 

*I 
502 generator = fMonSubWordLen( monomialsLl], monLengthLJ] - result, 1 ); 

~,o:i letterVall = ASCIIVal( fMonLeadVar( generator ) ) - l; 

r,O,-J generator = fMonSubWordLen( monomials[i], result + 1, 1 ); 

~,05 letterVal2 = ASCllVal( fMonLeadVar( generator ) ) - l; 

50G 
::,()7 if( !Type == 1 ) II Left 011erlcvp Divi-l'ion 

51)8 { 

!'i0!J if( EType != 3 ) I I As.5i9n -right no•o,m-ult-i7ilimthH: 

5 10 { 

511 gridLJJl2*letterVal2+1J = 0; I I Se.I j 1·ight non m-ultiplicative for '2' 

512 } 

51:> else I I Assirrn nonmultiplicatitie only 1J buth cu.rrently mulli),licttlive. 

51·1 { 

515 I I if monomia.l i ·i.s left mult.i)Jlfr:«t:i1,r, Ji,-r '1 ' awl ,i ,i!Jhf. m.1,lli7Jlimli,vc J01- '2 ' 

5 16 if( grid[iJl2*letterVallJ + gridLJJl2*letterVal2+1] == 2 ) 

517 gridLJJl2*letterVal2+1] = 0; II St:t .i ri.vht. non 11mlt·i7,l-icnl.-ive fo-r ':2' 

:,l8 } 
519 } 

S20 else I I Right Ouerla7, Divi.i'ion 

5:n 
522 

5'.H 

524 

52G 
r,27 

521, 

G29 

if( EType != 3 ) I I A ssirrn left nonm.ultipl·iwtive 

{ 
grid[iJl2*letterVall] = 0; I I Set ·i left non mull·i]Jliwtive for '.l' 

} 
else I I A ssi9n 1wniJL·11.ltipl-ica,ti·ue only i,f l,0/,/1 c1wrcnlly mul/.i7,Liw/.-i11e 

I I .If monomia.l i fa left 11wl/.i7,liwt.·i11e Jiir '1 ' m1rl ,i d yht. mull-ipl·ieative for '2' 

if( grid[il[2*letterVallJ + gridLJJl2*letterVal2+1] == 2) 

grid[il[2*letterVallJ = 0; I I Set i left nl)n m,nltipl·ica,ti-ue Joi· '1' 
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m:z 
r,;n 

, ,:.14 / / We will now look Ji>-r the ne1:t 11v<£·ilctl>le sujji3: 

r,;35 first = result + 1; 

C,'..l6 if( first <= limit ) / / if /,he limit ho,s not, been e,;c1x!ded 

5:W { 

G:18 result = fMonPrefixOf( monomials Li], monomials[i], first, limit ) ; / / Look for ·more prefb:.;s 

5:19 if( pl > 8 ) printf("fMonPretix0f (u'/4s ,u'/4s ,u'!.u,u'l.uu) u•u'!.u\n" , fMonToStr( monomials Li] ) , 
!j,j() fMonToStr( monomials[i] ), first, limit, result ); 

541 } 

5,12 e lse // Othern,i.se e:1.:it f rom /.he loop 

,,4;3 result = O; 

544 } 

!\4G // 8/.ci9e :I: l,ook Joi· ,rnj}i,:es 

r:,,17 first = 1; 

548 // Then: are monLen9th[i} - 1 t:esl .m[fi:ce.~ in all 

:,,:19 limit = monLength(j] - l; 

5;:;o // Tes'/. 111hdh1·:i· ,1 pn·:f1,3; of mor,.ornial j is a sv.jjb: of m.or1.om-io.l i, star'/.iug with the suffix of length 1 

G5 l result= fMonSuffixOf( monomials(j], monomials[i], first, limit ); 

5:,2 if( pl> 8) printf("fMonSuffix0fCu'l.s,u'l.s ,u'!.u,u'!.uulu•u'!.u\n", fMonToStr( monomials(j] ), 

!\511 fMonToStr( monomials[i] ), first, limit, result); 

5:,4 

505 while( result != 0 ) // While there 1,1se s-ufl,xes tn be proces.seil 
::,,'i6 { 

557 /ir. 
* Possibly e,·ch,d,: left. m.ulliplica.tiv,·: 1•0.rinl>lc · overlt£)' of t.ype 'A' 

!\39 • ................................. - ... ·-·--·-1 monomittlfi/ 

5(l0 * 2--------- •m.onom-ia,lb} 

5fil •/ 

Gtl2 generator = fMonSubWordLen( monomials(j], result + 1, 1 ); 

f,(j;~ letterVall = ASCIIVal( fMonLeadVar( generator ) ) - 1; 

GM generator= fMonSubWordLen( monomials[i], monLength[i] - result, 1 ); 

5(iS letterVal2 = ASCIIVal( fMonLeadVar( generator ) ) - l; 

56t) 

r:,ti7 if( !Type == 1 ) // Deft Ow:-rlap Di11i .. si.01,. 

SG8 { 
(',6H if( EType != 3 ) // A ss-i_qn right, nor1.rrmlti711icn.t·i1u: 

570 { 

57 l grid[il[2*letterVall+l] = O; // Set: i l'i.ght non m-u.ltiplicativc for 'J' 

572 } 

r,;:s else / / A s.sir,n •n.on1mtll'i7,UmN11e only if bolh cv.n-e·11.t.ly ·mt,ltipUca.tfor: 

57,1 { 

575 // ff m.onom.ia.l i is right multiplicative for '/' anti .i fofl m.ultiplicati'Ue for '2' 

fi76 if( grid(il[2*letterVall+l] + gridLil[2*letterVal2] == 2 ) 

577 grid[il[2*letterVall+lJ = O; // 8et i right. non multi7>lic(l/.ive for ·1 · 

578 } 

!>79 

::i~O e lse / / Ri_ghl Overlap Dfoi.s·i<m 

581 { 
:,1;2 if( EType != 3 ) / / As.sign left nonm.·ultiplica.live 

58:l { 

GM grid(jl[2*letterVal2] = 0; // Sd :i lc,jt non 111-vltiplir:ati-ue Jo,· '2' 
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58:i } 

5$(i else I I Assiyn 1w11111·11.ltiplicat.ivc only if bot./,, cnr-rently m11,l/.i11lim/.·i11e. 

5~7 { 
,,88 II ff nu,nc,m.ia.l i i.s right m·11./,tiplico,tive for ' I ' rmd j left. m.-1tlt-ipUcativc for '2' 

5~\I if( grid[il[2*letterVall+l) + gridLJl[2•letterVal2] == 2 ) 

500 gridLJ)[2*letterVal2) = O; II 8ct .i l<'fl non m-u.tliplicati·ue for '2 ' 

591 } 

502 } 

!j<J:I 

/\84 I I We will now look j,,r the next ,i-uuiluble sujfi:r: 

r,95 first = result + 1; 

f,86 if( first <= limit ) I I If the limit ha.s not 1,een exceeded 

597 { 

$!)~ result = fMonSuffixOf( monomialsLlJ. monomials[i], first, limit ); I I Look for rnore snjfi1:e.s 

r,99 if( pl> 8) printf("fMonSuffix0f(u'l.s,u'l.s,u'l.u,u'l.uu)u•u'l.u\n", fMonToStr( monomials LJ) ), 

HOO fMonToSt r( monomials[i) ), first , limit, result ); 

601 } 

602 else I I Othei·wiM: 1-::cil from tlu: loop 

61):~ result = O; 

60,1 

t\O!, 

601, } 

t,07 

608 if( EType == 2 ) 
(,()t-J { 

6 J.O I I Bn,mre nil conc-:s ,ire di.~joint 

li I J for( i = list Len; i > O; i-- ) I I For co.ch rno·rwm'icil (workin[J 1tJ,) 

fil.2 { 

(il :! for( j = listLen; j > O; j--) II Pew Mr:h ·rn,>·r1ominl 

6 14 { 

(j'l5 I • 
f, lG • We will n,,w 'fttake .sure that .some ·u1tr·ia.ble in monom.fol(i} is 

617 * right (left} nom,w.ltiplicative for monomialfij. 

1,18 •I 
(il.9 

02U I I i\.,,mm.e tc, l,e_qin with t/111l the abo·u,! hold8 

621 if( !Type == 1 ) 

(i22 { 

6:33 first = l ; II Used t.o ffr,.,l tlw jirsl 110.,·iablc 

(;';M excludeL = O; 

6:l!j } 

626 else excludeR = 0; 

627 

628 monExcl = monomials[j - 1); II F,3:tm ct n monom.-ial fnr 7,roce.<siny 

1>'.N Jen = fMonLength( monExcl ); / I Find /.he length of mnnExcl 

Gc!O 

t,'.ll while( ( len > 0) && ( ( excludeL + excludeR) != 1)) II For each 11a.1'i11blc ·in monomialfjj 

6:l2 { 

(;:1:.l len = len - fMonLeadExp( monExcl ) ; 

6:M 

/ I E:ctro.c:t a. 11a.ri.ahfo 

letterVall = ASCIIVal( fMonLeadVar( monExcl ) ) - l; 
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t140 

G50 

(;51 

if( !Type == 1 ) 

{ 
if( first == 1 ) 

{ 
letterVaJ2 = letter Vall ; I I Ston: the fir.st. ·1mria.bfr: e:nco11nt.en:d 

first = O; I I To enwn: this code only rnns once 

if( !Type == 1 ) I I Left Oucrla,p Di·uision 

{ 

} 

I I ff this varinhle is right. nmimnlti7>licrit.ive for monomia.lfif, change exdudel, 

if( grid[i-ll[2*letterVall+l) == 0) excludeL = l; 

652 e lse I I Right O u,;rlcq, Division 
(;5:1 { 

15;,,1 I I if thi., 1•arin1Jle ·i,.s left nom11.c1;lliJplico.ti'Uc for rn,morn-ialfi}. clw.nge cv;hidel'l 

H55 if( grid[i-ll[2*letterVall) == 0 ) excludeR = l; 

GGG } 

G57 monExcl = fMonTaiI F'ac( monExcl ); I I (;('(. r,;o.dy f.o loo!. o.t the n,i,ct 110.1·i<iblc 
t;.',8 } 

G59 
tlfill if( !Type == 1 ) I I [,cft Ovt:rl<ip D-itiisiun 

(i(il { 

(it)2 II lf no 110.ri,,IJle 'l))a,, 1'ight 11onm,,,ltiplico.tiJ,Jf; Jo,· m.onomialfij. . . 

6(i:-.1 if( excludeL == 0 ) 

litH grid[i-ll[2*letterVal2+1) = O; II ... set /.he first 110.,·ia/Jlc encm1,ll'te~cl to lie right 11.tmm·nll.iplica.tiv,; 

(j(i;', 

Glil) e lse I I Right. Oucrla7, Divi.,ion 

fiG7 
(ili8 

G72 } 

Vi'.! } 

67,l } 

I I ff no 110.rialile ·wa.s left n omnv.ltipliwtive for monomial{i} .. . 

if( excludeR == 0 ) 

grid[i-ll[2*letterVall) = O; I I ... set the la.st. vriri«ble encountered to be left nomm,lt.iplicnt.·ive 

67(; I I Pro11ide som.,-; int,e1·m"dia.t;e 011/,7'nt inf01·m.1ilil,n 

G77 if( pl > 6 ) 

678 { 
G7Y printf( "MultiplicativeuGrid: \n "); 

680 for( i = O; i < listLen; i++ ) 

G81 { 

t,::l:l printf("Monomialu%uu• u%s: \n" , i, fMonToStr( monomia.Js[i] ) ); 

GS:I for( j = O; j < (ULong) nOfGenerators * 2; H+) print f("%i, u ", grid[i]Ll] ); 

t,84 printf("\n"); 

685 } 

O::l6 printf("\n"); 

687 } 

GS8 

6139 I• 
G!J() • Convert t he grid to 2 M"l'1111s of Flvfons, where 
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tl,l I * each FA/on stnrcs a. list of m·ultiplica.tivc vnriables 

692 " ·in increasing ,,o,riabk ord,,;1· 

(i\l:l *I 
6!):J 

(i95 if( SType > 1 ) I I N1Y.,d lo sort ,, .. , well 

6,)(i { 

(i97 I I Convert the grid to monomio.l dal;i1 

698 for( i = O; i < listLen; i++ ) I I Nrr mch monomial 

(i!J!J { 

700 for( j = O; j < (ULong) nOfGenerators; j++ ) I I For each va,·iablc 

701 { 

702 if( grid[il[2*j] == 1 ) II DEPT Assignul 

10:1 { 

704 I I /1.fo,l/.i]'l,1 on the foft by n rn·u.ltiplfrc,,/.it,e ·•m·rin./;h; 

705 leftMult[tracking[il] = fMonTimes( leftMult[tracking[i]], ASCIIMon( j+l ) ); 

706 } 

71)7 if( grid[il[2*i+l] == 1 ) I I RIGHT /\-,.signed 

708 { 
709 I I Multiply on the left by a 1m,lti71li.mtive voriabl,: 

710 rightMult[tracking[i)] = fMonTimes( rightMult[tracking[i]] , ASCIIMon( j+l ) ); 

711 } 

7]2 } 

7 1:3 } 

71.4 } 

7 15 e lse I I No sortin!J req1J.i-red 

7Hi 

7 17 I I Con vert the gr·irJ to monomial dnl.a 

718 for( i = O; i < listLen; i++ ) II Ferr mc:h mMtomin.l 

719 { 

720 for( j = O; j < (ULon g) nOfGenerators; i++) II Jiirr· 6•tch ,,a.?'iablc 

721 { 

722 if( grid[il[2*j) == 1 ) I I LEFT A s.si.911ed. 

n:1 { 
724 I I Multiply on the left by a 11rnlti7,l'ic11t·ive. variahlc 

726 leftMult[i) = fMonTimes( leftMult[i), ASCIIMon( j+l ) ); 

726 } 

727 if( grid[il[2*j+l) == 1) II EU GHT A ssigne1l 

7211 { 
729 I I Mnlliply on flu, left. l,y c, m,ult-iplim.t·ivc va.,·iahle 

7:10 rightMult[i] = fMonTimes( rightMult[i], ASCIIMon( j+l ) ); 

7;31 } 

1:12 } 
7:3:l } 

734 } 
7'.l5 

731, I I Convert the two at-ra.ys of FMo-ns lo a.n Fi\4onPairLis t 

7'.l7 for( i = O; i < listLen; i++ ) 

7:{8 output = fMonPairListPush( leftMult[i], rightMult[i), output ); 

i3tl 

7:10 I I Provide .;om.e final output. info11w1f:ion 

7 4 I if( pl > 3 ) 

742 { 

7.J:l printf( "OverlapDi v' suOutputu (Left, uRight) u • u \n" ); 
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;4,1 fMonPairListMultDisplay( fMonPairListRev( output ) ); 

745 

746 

747 

74.i 

I I Re/.1.rn the n;11erse,l l-i., I (it. wa., con.,t1·11.c:tcd in re·oer.,1)) 
return fMonPairListFXRev( output ); 

749 } 
750 

;r,:3 * Polynurn-ial Reduction and Basis Completion Fknctions 

7:;,i * =====·=========================·======·"·•··•==·=========== 
;ri5 *I 
7:;1, 

7f:,7 / ir 
758 ,. Functi on Nu,m,,): /Polyfle,l-uce 

75H * 

7()0 * Oveniew: Fl.ed1tces 1st ur9 ,u.r.J.. 2nd cwg (list) mul .'/rd wr9 (v,1.rs) 

76l * 
T62 * Detail: Given o. polynom:io.l _poly_, th'i.s function invofotively 

7tl:! • n:duces the polynomial •u1ith respe,;t to t/1.f: 9i,Je11 FAlgl,ist. _lLsL 

764 * wit.Ji associated left. and ri£1hl m·ultiplica.ti-uc variables .vars_. 

765 • The type of redu ction (head reduction I full reduction) is 

766 * controlled l,y t.hc global variable hcadRed-ucc. 

767 • If [Type > 3 , we m n take adv«nt.agc of fa.st. gloual rcd·1tct.ion. 

76~ * 
7G9 • E:1:temnl Vnriable., R eqnired: U l,rmg nl/cd; 

ii() * int [Type, pl; 

771 * Global \lariahlcs Us('tl: ir,,t luxullledw:e; 

772 * 

77:l *I 
774 FAlg 

77:, !Poly Reduce( poly, list, vars ) 
77(; FA!g poly; 

777 FAlgList list; 

778 FMonPairList vars; 

77t-t 

i80 ULong i, numRules = fAlgListLength( lis t ), len, 

78 I cutoffL, cutoffR, value, lenOrig, lenSub; 

782 FA!g LHSA[numRules], back = fAlgZero(), lead, upgrade; 

78:l FMonPairList factors= fMonPairListNul; 

78,J FMon LHSM[numRules), LHSVL[numRules), LHSVR[numRules), 

785 leadMonomial, leadLoopMonomial, JLeft, JRight, 

78u facLft, facRt, JMon; 

78i Qlnteger LHSQ[numRules), leadQ , leadLoopQ, lcmQ; 

i:l8 short flag, toggle, M; 
789 int appears; 

790 

791 I/ Co,t.c:h .sp,)cial ccis1, list is rm.pl.y 

7!.l'.Z if( !list ) return poly; 

79'..I 

7!H I I Convei·/: f:h,) input lisi of 1wlynomia.ls fo o.n army and 

7% I I create cirmy.s of lead monomi11ls 11-rul lend w 1-;fli1;ienis 

7')6 for( i = O; i < numRules; i++ ) 
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7fl7 { 

798 if( pl> 5) printf("Polyu'l.uu•u'l.s\n", i+l, fAlgToStr( list-> first)); 

7!N LHSA[i] =list-> first; 

llOO LHSM[i) = fAlgLeadMonom( list-> first); 

801 LHSQ[i) = fAlgLeadCoef( list-> first); 

802 if( !Type < 3 ) // Usin!) Local Divi.si.cm 

803 { 

81)4 / / CreaJ.,J ar,·ny of m:11ltipli1x,.tiv,: 1,ari.ablc.s 

805 LHSVL[i] = vars - > 1ft; 

80G LHSVR[i] = vars - > rt; 

807 vars = vars - > rest; 

808 } 

1>09 list = list - > rest; 
,1;1() } 

81.l 

812 // We will now rncm·sfoely rcd-1m: c,1,ery tenn i11 /.he polynomial 

81 :l / / until r ,.,1 ·m11re ffduc:tions an: po.s,<il,fo 

8 .14 while( fAlglsZero( poly ) == (Bool) 0 ) 

81:, { 

816 if( pl > 5 ) printf("LookinguatuLeaduTermuofu'l.s\n", fAlgToStr( poly ) ); 

817 toggle= l ; // .4.,.rnmc nn reductions ri-re pussible to begin ,oith 

818 lead = fAlgLeadTerm( poly ); 

8 1 !) leadMonomial = fAlgLeadMonom( lead ); 

1>20 leadQ = fAlgLeadCoef( lead ); 

821 i = O; 

822 

82:.s while( i < numRules ) // Fo1· wu:h polynmnial i.n the li.~t 

82,1 { 

825 if( !Type >= 3 ) lenOrig = fMonLength( leadMonomial ); 

8:lG leadLoopMonomial = LHSM[i]; // Pick ,i test monomial 

827 flag= O; 

8:l8 

1>29 if( !Type < 3 ) / / Lnml Divi.sinn 

s:10 { 

1>31 // Does the i th polynomial divide our pulynomial? 

s :.12 // If so, )'lace a.ll pos.siblc wa.ys of doing /./,.·is in fc1clors 

8:1:l factors = fMonDiv( leadMonomial, leadLoopMonomial, &flag ); 

KM } 

8:15 else 
8:HJ { 

8:l7 if( !Type == 5 ) 

8:18 factors= fMonPairListNul; //No di.1ri.sors 111.r.t. Emp1.y Di,1ision 

8:39 e lse 
840 

lenSub = fMonLength( leadLoopMonomial ); 

/ / Check if a prefix/.mf]ix ·is possible 

if( lenSub < = lenOrig ) 

{ 
if( !Type == 3 ) / / Left D-ivi.~ion: look for S11ffi:r, 

{ 
if( fMonEqual( leadLoopMonomial, fMonSuffix( leadMonomial, lenSub ) ) == (Boo!) 1 ) 

{ 
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833 

854 

856 

853 
,%H 
!;(i() 

Mi l 

8(i2 

.<;6:l 

8G4 
865 
8(j(j 

} 

if( lenOrig == lenSub ) 

factors= fMonPairListSingle( fMonOne(), fMonOne() ); 

e lse 

factors= fMonPairListSingle( fMonPrefix( leadMonomial, lenOrig-lenSub }, fMonOne() }; 

flag= 1; 

e lse if( !Type == 4 ) // Righl Dfoision: look for Pn,fi:c 

{ 
if( fMonEqual( leadLoopMonomial, fMonPrefix( leadMonomial, lenSub ) ) == (Boo!) 1 } 

{ 

if( lenOrig == lenSub } 

factors= fMonPairListSingle( fMonOne(), fMonOne(} ); 

else 
factors = fMonPairListSingle( fMonOne(), fMonSuffix( leadMonomial, lenOrig-lenSub ) }; 

flag= 1; 

8G7 } 

868 } 

8ti9 } 

870 } 

871 
872 if( flag == 1 ) //i.e. leadLno1,Monomial d·i,ridcs leadMonominl 

1m { 
874 M = O; // A.%1tm.e lho.t the-; first: c<mvrmtiona,l cl·ivi.sion ·is not cm. in·ool-u.tive division 

~75 

876 // Whi/c-; lhc-:n-: a.re mn-urnt,:onal di-iris-ions left to look «t. M 1-<l 

877 / / while-: none of tht:se have yet. proved to he-; in11ol·11.tive cl·i1•isions 

878 while( ( fMonPairListLength( factors ) > 0 ) && ( M == 0 ) ) 

879 { 

830 // A ,,s'IL1ne J;ha.t 1:hi.s cm1.11r-:nlimwl cli1tision is a.n hwoluli11e divi.sion 

8)ll M = l; 
IS82 if( !Type < 3 ) // Locrtl Divi$·inn 

s,n { 
~1<,:J. // Extract the ith left f1 right m.1tlt-i11l•1:r.citive variables 

835 JLeft = LHSVL[i]; 

88G JRight = LHSVR[i); 

837 

/ / B:cl.-mcl. f/w lrft a.nd right. fQ.<:lo,·s 

facLft = factors - > 1ft; 

facRt = factors - > rt; 

/ / Tc.st 11.ll ·uario.bles ·i11 fnd,ft fo1· left 11wliiplical>ilit.y in /:he -i.th. mcmcrm'io.l 

!en = fMonLength( facLft }; 

/ / Decide ,vhethcr one/all va.ritlbles in fa.r,Lft are lejt m,,U-iplicat:it•e 

if( MType == 1 } / / Right-mos/. vnriable checked only 

{ 
if( !en > 0) 

{ 
JMon = fMonSuffix( facLft, 1 }; 

appears = fMonlsMultiplicative( J Mon, JLeft ); 

/ / ff i,h,) genera.to1· doe.m 't a.ppe"r this is not a.n 1m1olut·i11« di-vision 
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HOG 
907 
9013 
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lllO 

fJ II 

912 

01:1 

9 l4 

!H5 
9 l (i 

tl l.7 

955 
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if( appears == 0 ) M = O; 

} 
e lse / / All vo.,·i.ab/e,; clwclcr-:d 

{ 
while( len > 0 ) 

{ 
len = Jen - fMonLeadExp( facLft ) ; 

// Ei;tmd a genera.to,· 

JMon = fMonPrefix( facLft, 1 ); 

/ / Test to see 'if the genemtor a,ppca.rs in the list. of left m.·u/U.pl-icative va.rinules 

appears = fMonlsMultiplicative( JMon, JLeft ); 

/ / If the genernto,· cloe.m 't a.ppca.,· /.hi.s i.s not un ·involut.ive division 

if( appears == 0 ) 

{ 
M =0; 

break; / / Kd.t from the while loop 

} 
facLft = fMonTaiIFac( facLft ); // C:et rewl:4 t:,i look at the rt~J:/, f!en,m1to1· 

/ / Tc.st all v 11ria.bles in fnc:Rt for ·right m.ult-iplicabi l-ity in the ith monominl 

if( M == 1) 
{ 

Jen = fMonLength( facRt ); 

// Dccid1: whdhe,· one/all ·u11ri11.ble.; •in facRt a.n: left, r,,.·11.ltiplicotiv,: 

if( MType == 1 ) / / l1;ft.- mosf. 11m'i11hle checked onl:1/ 

{ 
if( Jen > 0 ) 

{ 
JMon = fMonPrefix( facRt , 1 ); 

a ppears = fMonlsMultiplicative( JMon, JRight ); 

/ / If the yenera:lor dvesn ·t appenr this is not a,n invol·u.tivc rtivi • .,:,m 

if( appears == 0 ) M = O; 

else // A ll ·u1tri a./Jlcs clwd.:cd 

{ 
while( Jen > 0 ) 

{ 
Jen = len - fMonLeadExp( facRt ); 

/ / E1·t.mct n, yenemtm· 

JMon = fMonPrefix( facRt, 1 ); 

// Test t.o sec if the genera.tor <tppet1rs -in the list of ·right nwltipl icati'Vc va.riables 

appears = fMonlsMultiplicative( JMon, JRight ); 

// If /.he genera.tor doe.;n 'I appear this is no/. rm inv(,ltit.ivc-: division 

if( appears == 0 ) 

{ 
M =O; 

break; // E:ti/. from. the ·>11hile loop 
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facRt = fMonTai!Fac( facRt ); 

} 
} 

} 
e lse I I Glolwl dfoi.s'ion 

{ 
M = l; I I Aln:.o.d.11 po/.rntfolly found o.n ·involntii•e d.iuism·, 

I I b·ut i-'ndndc c:o1fo below for n-:je-r,m.c:,) 

I* 
I I 01,ta·in r1lobill c·u.lofj' po.sitions 

if( tTwe == 3) J,Mult Vars( lwd.LoopMonomi<Ll, f'.1cu.tofJl,, f.•c-u.tof!R }; 

d-5e if( l'l11pe == 4- ) RM,.,.lt. \Im-., ( foa.ll f,oopMonMnia.l, fdculolfL. €1cut.ojf[1 ): 

else BMulf. Var.s( lmdLooJ1Monomial. f1cutoJJ[,, f.efc·11.tc,JJR. ); 

if( pl> 4) printf(''c11.toff(%.<J = (%,,, !!611.)\n". JMonTc,St1-( le,ull,oop!lfonomi<tl ), cuto/Jf,, ciit.offH ); 

I I Ei:trnr.t the left: 11rul right fnct.or.s 

f11r,Lft = fad or.< - > lfl; 

fo.cRt. = .f,i.ctl)r,< - > rt; 

/ / Test a.ll va.dnl,lcs in facl,.ft for left m1tlt:ivl-icilbilil11 m the ith ·rnonom·ial 

len = JMonl,cngth( facLft ); 

// l.h:cide whc:t.hc<1· one/all ·,mrin.blc-:.; in fad,ft 0.1·,i lejf m:u/tipli.ca.tivc 

if( M'J'y11c == .l ) / I Righi,···· moM vwri.11'1k dieckecl only 

{ 

if(lc-:11>0) 

{ 
.Jl\,fon == fMonSuf],,:{ f11cLfl .. 1 ); 

,,a.l,,e = ASCrIVa.l( fMunLmdV11r( .JMon} ); 

·if( va.l-uc-: > cnt:ol!R ) M = ll; 

else // All -V<lrio.bles checked 

{ 
while( lr:n > 0 ) 

{ 
len = /en -- fMonLeadE3,p( J11.cl,.ft, ) ; 

/ I Obtain the ASCJJ -unlue of the ne:J:/, gr:,wrn.to,· 

·unl-uc = ASCJJVal( JMonLco.ll\lm-( fa.cLft.) }: 

if( ·unlue > c-u.tojffl ) I/ if th t: gener11to,· ·is riot. left; ·m:1J.ltiplico.tiuc 

{ 

M == O; 

/Jrenk; I I E:ti/. from the u•hile loo)' 

fa.cl,ft = fMonTailF<lc( .facl,ft ); 

} 

/ / Te.$l c.ll 1•a.n:11l1les in fo.cFl.t for ri_qi,.t m1tlr.i71l'ic11b-ilit:q ·in the ith ·mm1.mniaJ 

len = JMonLength( facRt ); 
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100() 

1010 

1(111 

1012 

101:1 

10 1,1 

1015 
[()l(j 

1017 

lfll8 

1019 

1.0:.w 
1021 

1022 

10::!'.J 

102'.l 

10::!!; 

1026 
1027 

1028 
10'.W 

1030 

1.0:31 

1032 

10:.1:.i 
lll:3,:J 

10:.lf, 

1U:3G 

10:17 

10:38 

10:llcl 

} 

/ / Dec·ide whether one/all varial>lcs 'in facRt arc left mvltiplicafrvc 

if( M'l.ype == .l ) / / Lefl.•-m,o.,t 1,a.1·i.1i/1le clwd:cd only 

if( le11 > 0) 

{ 
·Uttluc == ASCJJVa.l( fMonLeodVar( fo.cRt) ); 

if( ual1te < <"u.tofJL ) M = (I; 

else. // All 1•ari11l,le.< checke,t 

1vhile( le.n > 0 ) 

fon = fon ·- fAfonD,!a.dE:cp( J<wRt }; 

// 0/1/,l!'in the A8Cll 1,alne of !he r,.e,cl ge:n.em/.or 

val·ue = ASCJlVal( fMonLeadVnr'( far,1/./.) ); 

·if( 1;a.l-uci < cn/:>JJTL ) // ff thl< 9er11:mt.or i., not r-irJf1t 11w.lt·ipl-imt.i11e 

M"" 0: 

l;r,:ak; / / B:cit from tlu: while loop 

facRt. = ji\:lon TaUPa.c{ fttcRt ); 

1 

/ / If I.hi.~ r.on.11en/.fona,l divi.,ion ·umsn 'l involu.ti'Ue. look a.t lhe ·,w,ct d•i11isi,m 

if( M == 0 ) factors = factors - > rest; 

1040 // If ltn in11ol·u.fave di11ision was fowid 

lo.tl if(M==l) 

HH2 { 

10,1:1 if( p l > 1 ) nRed++; // .Increase the number of reduction.s mn'i.cd nut 

HhH if( p l > 5) printf( "Foundu'l.su•u('l.s)u*u('l.s)u•u('l.s)\n", fMonToStr( leadMonomial ), 

IU45 fMonToStr( factors-> 1ft ), fMonToStr( leadLoopMonomial ), 

lf.H6 fMonToStr ( factors - > rt ) ); 

1U4 7 toggle = 0; // lndica.tc a. n:duct.ion ha,_s been 1:a·r·ri.ed o·u.t l,o exit th1: loop 

10,18 leadLoopQ = LHSQ[i]; // Pick the divisor's leading coef]iC'ient, 

1049 JcmQ = AltLCMQinteger( leadQ, leadLoopQ ); // Pi,;k 'ni,c;e' crincellin9 ,;oejfi1:i,mts 

1050 

lll!il 

1052 

Hl?i:l 

1054 

10.'i!i 

105(i 

1057 

1058 

1059 

I0G0 
lOti l 

// Consti-uct p,>ly f•i * -1 * wef]icient to fWI: lea.1l t.,:1-rns the ,am,: 
u pgrade= fAlgTimes( fAlgMonom( qOne(), factors-> 1ft ), LHSA[i] ); 

upgrade= fAlgTimes( upgrade, fAlgMonom( qNegate( qDivide( lcmQ, leadLoopQ) ), factors-> rt)); 

//Add in pnly * coe.t]icient to c«ncel of]' the lea.d /:c1·ms 

u pgrade= fA!gPlus( upgrade, fA!gScaTimes( qDivide( lcmQ, leadQ ), poly ) ); 

/ / W,: ,m~~t oL~o 11otu m.u/t'iply 1:/w r.w•f'l:nl di.«:o.rd,!d 1·cma.i1/(ler by a fa.i!lo1· 

back = fA!gScaTimes( qDivide( JcmQ, leadQ ), back ); 

poly = upgrade; / / In the w::ct iteration we-: wiJ.l be rndw:ing t.h,: 11.1-:w polynomial 'U,1JfJmde 

if( pl> 5) printf("NewuWordu•u'l.s;uNewuRemainderu•u'l.s\n", fAlgToStr( poly) , fAlgToStr( back)); 
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1062 } 
ll)(i,l } 

1064 if( toggle == 1 ) / / ThfJ ilh r,olynomilll d'id not irwolntivdy divide poly 

1UG5 i++; 
1066 else // A rednction. wa.s co.niecl out .. c:i,it the loop 

I OG7 i = numRules; 

lOliS } 

I0(i9 

1070 if( toggle== 1 ) // No rndw:lillns wwm ,x,.1·ried o·ut; 11.ow look n/. lh,; ,w1:I: t.,wm 

1071 { 

1072 / / If only hea.d reduct-ion is required, re/.·urn rud1,cer 

l.07:l if( headReduce == 1 ) return poly; 

107-1 

1075 // Ot,herwisc n.ct<l kwl le-rm to r-e.inn.inclcr o,nd sim11l·if,11 /.he rest 

107G lead = fAlgLeadTerm( poly ); 

1077 back = fAlgPlus( back, lead ); 

1078 poly= fAlgPlus( fAlgNegate( lead), poly); 

1079 if( pl > 5) printf("NewuRemainderu•u'l.s\n" , fAlgToStr( poly ) ); 

l080 } 

1.0SL 

1082 
108'.I return back; / / Rel-um the rcd1,ced ond sinq>lificd polynomial 

l().~4 } 
108.5 

1086 /* 
1087 * F11nct-i.on NM11-1J: I A1,f.0H«lnc,:F'ull 

10811 * 
!ll89 ,. 0 11c1view: .41,tortJducc-;.$ n.n FAlgL·ist. rec·11.1·sively ·u.nlil no mo·rc ri:d11ct'ions are po.;si.blc 

lO!JO * 

LO\) l * Dc-:ta.il: This furu:tion ·invoh,th,ely rnd-1.u;r:.< "ai:h 

10!J2 * mc-:mber of ,in P'AlgL'i.$l w.r.t . a.II the 0th.ITT· ·memb1i1·s 

JOi):3 * of th<: li-St., 1·ww1•ing t/u; 71olynomia./ from the-: list 

I 09,1. * if it -is hwolut-ively red11,ced tn 0. Thi.s process is 

Hl,l!:i • ·iterated -u.nt-il no m.nrc sud1 red·uct-inns are possible. 

JO!)(, * 

10!.l7 • B,:terno.l \fo.1'i.a/Jllls lleq"/J.i1~«l: int. <le_qlk~l:ric l, ! Type . J>l. S'l )n,e; 

1098 * Global Vwri.ahl(,.; Used: Ul,on_q d, l'IJlod: 
l()!}ll ,, 

1100 *I 
110.1 FAlgList 
I 10:l IAutoreduceFull( input ) 

l.lo:l FAlgList input; 

Ill),I { 

110.5 FAlg oldPoly, newPoly; 

110G FAlgList new, old , oldCopy; 

1107 FMonPairList vars = fMonPairListNul; 

:1108 ULong pos, pushPos, !en = fAlgListLength( input ); 

11 09 

ll l(J // lf t./,.e i11pul, bnsi.; has mort, them ,me d,:mc-:nf. 

1111 if( !en > 1 ) 

1112 { 
JI L:3 / / Sto.1·t. hy r.id,wing the Jin.al ,i foment. (working ba.c:kward.s m.ea.ns 

11 14 / / that lcs.s wnrk has lo /Jc don£• cakuloting ,rmlt-ivlimN1•« w.1-w.blcs) 
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1115 pos = len ; 
11 lG // lf we a.re 1<.sin_q a. local di11ision and the /Ja.si.s i.s sortc,<l /Jy DegFl,c'ULe:r., 

1117 / / th<·: last. polynomial i.s irretliu:iblc ,<o !II(' do not hc,·m: to can.side!' ii;. 

1111' if( (!Type< 3) && ( SType == 1)) pos --; 

Ul!l 

I UO // M oke a. copy of th,: irqml basis for lrnver.rnl 

1121 o ld = fAlgListCopy( input ); 

11:.l:.l 

112:l while( pos > 0 ) // For ca.ch polynomi.al fa old 

11'.H { 

1125 / / Ext.rac/. the pus-th elem.tent of the basis 

ll2G oldPoly = fAlgListNumber( pos, old ); 

1127 if( pl > 2) printf("Lookinguatuelementupu• u'l.suofubasis\n" , fAlgToStr( oldPoly) ); 

1121l 

112!) / / Const.,·uct basis w'itho·1tl, '1)()l?J' 

11:10 old Copy = fAlgListCopy( old ); / / Ma,kc•: a, co11y of old 

11:ll 

J 1:l'..! / / CalC'u.lnl:c Mu.lliplimtive \lc,riahles if u.-ing II local dfoision 

I l:l;l if( !Type < 3) 

11:M { 

ll:J5 vars = OverlapDiv( oldCopy ); 

1131, vars = fMonPairListRemoveNumber( pos, vars); 

11:i7 } 

1138 

11:w new= fAlgListFXRem( o ld, oldPoly ); // Hmnovc: oldPoly .from old 

I 1 .-10 old = fAlgListCopy( oldCopy ); // F/.~storc old 

lHl 

11.-12 // 'To ·rec:,11,. _o/d_ ·is now wnchrm.yed whilst _11cw_ /,.olds nll 

11•1:! / / the elemen/.s of _old_ ,;,r:cept _olc/Poly_. 

114.-J 

1 J ,1-5 / / fo.vol·u.tivdy r,)ducc-: the old polynomial w.1·. t. lhr. t1'u.nwt.cd list 

114G newPoly = !PolyReduce( oldPoly, new, vars ); 
I 1,'J., 

l.148 // ff the polynum-ial did nu/. reduce to 0 

11.:19 i f( fAlglsZero( newPoly) == (Boo!) 0 ) 

1150 { 

1151 / / Divid,,; the 11olynominl thnmgh by if.s GCD 

1152 newPoly = findGCD( n ewPoly ); 

1153 if( pl> 2) printf("Reduceduputou'l.s \n" , fAlgToStr( newPoly) ); 

1154 

11 GG / / Check for tril•i<il ideal 

11.56 if( fAlglsOne( newPoly ) == (Boo!) 1 ) return fAlgListSingle( fAlgOne() ); 

I J!j7 

1 l C,8 // If the old polynomial is eq·ual to the new polynomial 

ll:,!) //(no reducf.fon look plnce) 

1 JtiO if( fAlgEqual( oldPoly, newPoly ) == (Boo!) 1 ) 

lHi I { 
1 J G2 pos--; / / W11 m.1<y prncc-:ecl l.o look al the ne:ct polynomial 

116:! } 

J I G•J e lse // OOierwisc .;omr: ,r,dw:tion /.ook pla.ce so we lw.ve to .;/.C<rt a.goir,. 

ll65 

I IGG 

ll67 

/ / If we a,n1 n:slriding prolonga,tions bns,id on degree,, ... 

if( degRestrict = = 1 ) 
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l 1G9 

1170 

1 l 71 

lli2 
lli:l 

l J 74 

1 J 7!; 

1176 

1l77 

1 l 7~ 

ll79 

1180 

1181 

1182 

1rn:i 

l l tl:I 

1185 

118G 

1187 

ll:'l8 

11 89 

l UJO 

l 19l 

ll!J2 
11 9:-J 

lHM 
11 % 

11')!) 

l 107 

1,1')8 

l lf)9 

1:.lOO 

1201 

1:)02 
120:1 

120-J 

1205 
120G 

1207 

1208 

1209 
1210 

1:.ll.:I 

1212 
1:!]'.\ 

1214 

l:.!15 

121fi 

l:!17 

1218 
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} 

I I ... and if the 1lcgn:cJ of th.I! foad t.c;1-m of th1J ,ww 

I I polynomial cxc1;ccls the c·11.1·r1?nt bo-u.nd . .. 

if( fMonLength( fAlgLeadMonom( newPoly ) ) > d ) 

{ 
I I ... ·,,,e m-usl: 11,J,ju .. st. the bound acmrdingly 

d = fMonLength( fAlgLeadMonom( newPoly ) ); 

if( pl > 1 ) printf("Newuvalueuofudu•u'l.u\n", d ); 

I I Add the ne,u polynom-i11l onto the list 

if( !Type < 3 ) I/ Docal di1rision. 

{ 
if( SType == 1 ) I I Deg!/.evLe3; .1c11·ted 

{ 
I I P1,sh. the ,ww J!Olyr,.o·m-io,l mi.to Uw l'i.st. 

old = fAlgListDegRevLexPushPosit ion( newPoly, new, &pushPos ); 

I I ff ii. i.s in.1<:7'/.ed into l/1,1) so.me positi.or,. W£' rn,iy (·m,.tinue 11.nd look at the nt3:t. 1iolyrt0·rnfo.l 

if( pushPos == pas) pas--; 

I I ff it i.s in.<ertecl into a lat.er pos-i.tion we conlin'lle from one position above 

else if( pushPos > pos) pos = pushPos - l; 

I I N otc: the ca .. ,e pnshPos < 710s cannot occur 

else if( SType == 2) II No sorting 

{ 
I/ P·11 .. ~h the nl!w polynomial onto the, cm,d of the li8/. 

old = fAlgListAppend( new, fAlgListSingle( newPoly ) ); 

I I R lltnrn to the ("fl.d of I.he list rr,.fr1.·u.s one 

I I (wt: know t.hc l11.1t d.:ment is i-m;d1,,;ible) 

pos = fAlgListLength( old ) - l; 

else / / Sorted by ma.in ordering 

I I P11,sh the nc·w pol•yfiO'ftt.ial on/.o /.Ju; I-is/. 

old = fAlgListNormalPush( newPoly, new ); 

I I flc/.-11.rn /.o the end of the Ii.st 

pos = fAlgListLength( old ); 

else I I Globnl d:ivi.sior, 

{ 

} 

I I Push the ne,u polynom-i11l ont.o the en,t of the 1-ist 

old = fAlgListAppend( new, fAlgListSingle( newPoly ) ); 

I I n etum /.o the end of the l-ist minus one 

I I (we know the ltist element is irreducible) 

pos = fAlgListLength( old ) - l; 

I. 210 e lse I I The polynomial 1·ed1.,;ed /.o ;;em 

]220 
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1221 / / Remove the polynom-ial from the list 

1222 old = fAlgListCopy( new); 

122:i / / Conti.mW lo look at /.he ne:ct elcro<Jnt 

1224 pos--; 

1225 if( pl > 2 ) printf("Reduceduputou0\n"); 

122(; } 

1227 } 

12:lll } 

12W else // The ·input basis ·is 1)m.7>/.y m· consi.st., of a ,•in_gle polynomial 

12:30 return input; 

1231 

12:12 // Return the fully «utoreducetl b11sis 

12,lcl return old; 

1234 } 

12:w /* 
I ~:37 * Pu,nc'l.ion Narnc: S1!'iler 

12:18 * 
I '.l:39 * Over-view: hn7,lt;men/;_s 8cilc-:1·'s 01·ir1inal 11lr,01·i.th.m fo1· corrqndinr, locally iu:uolv.tivc bosc.s 

12·10 * 
124.l -. .Dei<Lil: Given " list of polynomials, this a.l_gorithrn comJHttes a 

124-2 * Locally lmml·utive Ba.sis for the inp-u.t basis by the .following 

124:3 * ·itemti-uc method: find all prolongations, choose llw 'lowest' 

12•"1-4 * one, autnred1tce, find all 7,rolnn9ations . .. . 

12slti * 
12.-!G * B,1,lcrn.al Vr,-rin.ble.; J-?e,,-uirnd: int der,Re.;/.l'icl, f'l'mie, nOJGcn,:rn.tor.;, -pl, S'l)nie; 

12•t7 * (Jl,ong nOf P-rolongat.irn,s; 

12.-18 ,, Glob"/ Va-rinhle., Used: ULon_q d, l'IJ!ocl; 

1249 * 
12,;o *I 
J25l FAlgList 
12,;2 Seiler( FBasis ) 

125:1 FAlgList FBasis; 

12:,4 { 

l:l5.5 FAlgList H = fAlgListNul, HCopy = fAlgListNul , soFar = fAlgListNul, S; 

1256 FA!g g, gNew, h; 

1257 FMonPairList vars= fMonPairListNul, varsCopy, 

1251l factors = IMonPairListNul; 

1259 FMon all, LMh, Lmult, Rmult, nonMultiplicatives; 

12li0 ULong precount, count, degTest, !en, i, cutoffL, cutoffR; 

12(;1 short escape, degBound, flag, trip; 

12li2 

l2fi:1 if( pl > 0) printf("\nComputinguanulnvolutiveuBasis ... \n"); 

l:!G4 

1265 if( !Type < 3 ) // Local division 

l:!Gi, { 

l 2fi7 / / Crea.le <L monomial contain·in9 a.ll r,e-ncrnt.ors 

l2G~ all= fMonOne(); 

126\1 for( i = 1; i <= (ULong) nOfGenerators; i++ ) 

1270 all= fMonTimes( all, ASCIIMon( i) ); 

1271 } 

l27~ 

1273 / / If p-rolonga.ti1m$ a.re ,·,,st,rit;ted by d,:gr,)e 
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127,1 if( degRestrict == 1 ) 

l 'J.75 { 

1276 d = maxDegree( FBasis ); // lnif.'ia,l,;,,,; th1; vc,lne. of d 

1277 if( pl> 1) printf("Initialuvalueuofudu•u'l.u\n", d ); 

12'i1S 

1279 /• 

l 2~0 * 'J'h1ir,; i., no voint -in lookiri.,g at 7mJlcmr;a.li()ns of length 

l'.!81 • 2*d O'f' mor,; as lhesi; cannot poss·ibly b,; associo.ted with 

12S2 * S-Polynornia.ls - they ctrc 'in effeet 'di.s,ioint 011<:rfap.s ' . 

.12:n *I 
l:lR4 twod = 2•d; 

1285 
12Rti 

12S7 // 'fom hwd rc«lu.i:lion ojf 

I :.!SI< headReduce = O; 

12S!l 

l :.mo / / Rr::movc dvpUmlc.• from the 'iiqnd /,a.sis 

129 l FBasis = fAlgListRemDups( FBasis ); 

l'.!H:l 

J 29:l / / If the ba.,'i., shcntld be /.;/;7J/, swted, do t/1.1; initial .,ortiny now 

12,H if( ( !Type < 3 ) && ( SType != 2 ) ) FBasis = fAlgListSort( FBasis, SType ); 

l 2D5 

129G // Now Au.toreduce PBri.si.s a.nd pla.r.e the rcs·u.lt in ff 

1297 if( pl > 1) printf("Autoreducing .. . \n"); 

1291S precount = fAlgListLength( FBasis ); / / Detc:nnirw si.~e of ba.,,i.5 be-fore a.n /orcd-11.c/:ion 

l '.?99 H = IAutoreduceF\Jll( FBasis ); / / 1;1,lly 11-11.ton:du,;c /,he basis 

1:.100 count = fAlgListLength( H ); // Det1mnine. .,ize of b11,;i., after wu.l.o1'lxl'l<ction 

I ;lf)l if( ( pl > 0 ) && ( count < precount ) ) 

1302 printf("Autoreductionureducedutheubasisutousizeu'l.u . .. \n", count) ; 

1:ltH 

1:l(M / / Check for t1·i1,itJ.l ideC1l 

1:IO!i if( (count == 1) & ( fA lglsOne( H ->first)== (Boal) 1 ) ) 

l:30n return fAlgListSingle( fAlgOne() ); 

l'.107 

uo8 I* 
l:lOtl * .;ofi'«r will sl-o·m ,ill poly1101nial~ that. will c,ppeo.r 1:n. J-1 

1:no " at «ny time so tlwt wee do no/; intnul·11.w cl·11.pl-;cr,/,es in.lo th,; s,it. 

1:-.l 11 * 'Lb /Jc,y-in ·111i/.h, all we lwv<: cmcount.,-:rnd are th1: 11olynomials 

LHZ " in the ,w.toreduccd inpnl /)(1,sis. 

J:31:l *I 
l:Jl,J soFar = fAlgListCopy( H ); 
1:3'15 

l :l 16 escape = 1; / / 'l'o 1:wible t:he following ,ohile loop to begin 

1:317 while( escape== 1 ) 

l'.llll { 

l:319 if( !Type < 3 ) / / Ca,/.c,,late m·u.lliplica.ti-uc varictble.s for GBa.s-is 
1:120 { 

1;~21 vars= OverlapDiv( H ); 

1:.122 varsCopy = fMonPairListCopy( vars ); / / IYfo/c,: a co7,y fo1· lnwer.rnl 

I :1'.!:J } 
1 a2,1 

1:i:i;, HCopy = fAlgListCopy( H ); // /1-fok,i n W])y of J-1 for tm'11Ci 1·sa,l 
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1:127 / / .':i will hold all the possi.hle prolongations 

l:lW S = fAlgListNul; 

rnw 
1:i:m while( HCopy) // For c:ach Sh \in EI$ 

1:n1 { 
l:J:l2 h = HCopy -> first; // E':ctrad a 7wlynomfo.l 

1 :i:i:.1 LMh = fAlgLeadMonom( h ); / / Fi11d /.he lead monomial 

1:.1;3,1 if( pl == 3 ) printf(" Analysingu%s ... \n" , fMonToStr( LMh ) ); 

rn:.15 if( pl > 3 ) printf(" Analysingu%s ... \n", fAlgToStr( h ) ); 

1:nu HCopy = HCopy -> rest; / / Advance to the next polyn.om:ial 

1:387 

1:1:38 // As.mme. lo begin with thnt any prolongatioi,s nf this 110lynomia.l nre OK 

13a9 degBound = O; 

J.:-140 if( degRestrict == 1 ) // [f we, n.n; n:s/.ri.cting 11rolon9a.tions hy degree ... 

l:l41 { 
1:.t4.2 // .. . ,md if the fongth of "n'!I pn,lon.<J«l.'ion of r, e,i:c:ec:d., the oou.n,l.. . 

I :14:l if( fMonLength( LMh ) + 1 >= twod ) 
1:3,1.,1 { 

1 :14r, // .. ignor,; all prolon_qa.tions i·r1.wl·uin17 I.his pQlynomial 

1;3,1.(5 degBound = l; 

1:14.7 if( pl> 2) printf("Degreeuofuleadutermuexceedsu2•d-1\n"); 

1 MR if( !Type < 3 ) / / Lor.al division - adt•ance to the ne:i:t polynomial 

l:l4!l varsCopy = varsCopy - > rest; 

1:350 } 

1351 } 

l:l52 

1:.15:1 // S1.e7, I •~· firul "ll pn>lonyat.ion.s 

l:l5•1 

J:355 if( ( !Type < 3 ) && ( degBound == 0 ) ) // Lo,;al c/i.1rision 

1:i:,u { 
1:357 // E~:trnd the lefl: 11nd ·right m,ultiplicalivc '>)(1·riahle., few I.his polynomial 

t:lG8 Lmult = varsCopy - > 1ft; 

l:l59 Rmult = varsCopy -> rt; 

1:wo varsCopy = varsCopy - > rest; 
J:36] 

1362 // LBFT PIWL0NGATJONS 

I:IG3 

136,t / / Con.,tru.d. lhe left. nonm·11.lt.iplir.a.t.ive. ·o«rio.bfos 

I :lG5 nonMultiplicatives = all; 

.1 :Jt\o while( fMonlsOne( Lmult ) != (Boo!) I ) // Pbr melt foft. m1,ll:iplimt.i1•e 11,11·ic./llc 

1:w7 { 
1 :3ti8 // Eliminate one m·ultiplica.tiv1! vminbll' 

I :l(J9 factors= fMonDivFirst( nonMultiplicatives, fMonPrefix( Lmult, 1 ), &flag); 

1370 nonMultiplicatives = fMonTimes( factors - > 1ft, factors-> rt); 

:L:-171 Lmult = fMonRest( Lmult ); 

1372 } 

1:1-;:i Lmult = nonMultiplicatives; 
I;l7,J //Fin.cl /./11; nur11//er of lr;ft nonm.ult·iplical.i.vc, vm·i<1/1le.s 

J:l75 Jen = fMonLength( Lmult ); 

l:l7G 

1:377 / / For '"a.ch. '1Ja'liable $x_·i:£ t.lwt fa no/: Left Mnlt.iplic:<1/h•e for $LiH ( g)$ 

1:178 for( i = l ; i <= Jen; i++) 

1379 { 
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1:180 if( pl == 3 ) printf(" AddinguLeftuProlongationubyuvariableu#'l.uutouS ... \n", i ); 

1:llH if( pl> 3) printf("AddinguLeftuProlongationubyu'l.sutouS, .. \n", fMonLeadVar( Lmult) ); 

1382 S = fA!gListPush( fA!gTimes( fAlgMonom( qOne(), fMonPrefix( Lmult, 1 ) ), h ), S ); 

l:l83 Lmult = fMonRest( Lmult ); 

1384 } 

138:, 

J:386 // RIGHT P!WLONGATJONS 

l:l87 

1:388 // Constru.d the -right r1.or1.m.nlti pli.m.t-ivf: 11a,1·inbfos 

1:18\l nonMultiplicatives = a ll; 

I :.390 while( fMonlsOne( Rmult ) != (Boo!) 1 ) // Fo1· each ri9ht m:ultiplica.ti-uc 11a,ri<lble 

1:191 { 

I :31)2 / / Eliminate one mult-ipl-icative vari.ltble 

1a9:i factors= fMonDivFirst( nonMultiplicatives, fMonPrefix( Rmult, 1 ), &flag); 

l;HJtJ nonMultiplicatives = fMonTimes( factors-> 1ft, factors -> rt); 

l'..195 Rmult = fMonRest( Rmult ); 

1:rnu 
13!!7 Rmult = nonMultiplicatives; 

1 :H>8 / / fi'-i.nd the nnrnber of 1·i.,qht nonm·ultipliwtiw ·1mri,1.bfos 

t :31)9 !en = fMonLength( Rmult ); 

1400 

J.-10.l // For each va1'i<1ble $~:_·,$that.is not: Ri11ht Mttlt:i7Jl-icut·ive for $.f,M(g)S 

1402 for( i = 1; i <= !en; i++ ) 

l :!0/1 { 

1.-J04 if( pl == 3 ) printf(" AddinguRightuProlongationubyuvariableu#'l.uutouS. , , \n", i ); 

1405 if( pl > 3 ) printf(" AddinguRightuProlongationubYu'l.sutouS . .. \n", fMonLeadVar( Rmult ) ); 

1,:J06 S = fAlgListPush( fAlgTimes( h, fAlgMonom( qOne(), fMonPrefix( Rmult, 1 ) ) ), S ); 

1407 Rmult = fMonRest( Rmult ); 
] :J(Jg } 

1·109 

1,1 LO else if( ( !Type >= 3 ) && ( degBound == 0 ) ) // Globnl division 

1-11 1 { 

1412 // .Find the m:ultiplicati-uc va:riables fo1· ·th:is m on omi.a.l 

.IAt:3 if( !Type== 3) LMultVars( LMh, &cutoffL, &cutoffR ); 

1414 else if( !Type == 4) RMultVars( LMh, &cutoffL, &cutoffR ); 

1-115 else EMultVars( LMh, &cutoffL, &cutoffR ); 

141.G if( pl> 4) printf("cutoff('l.s)u•u('l.u,u'l.u)\n" , fMonToStr( LMh ), cutoffL, cutoffR ); 

1,1'17 

1418 // DEPT P!WLON(}A'J'!ON8 
].j l[l 

1420 // Por <«ich variable $J:_i$ tlwt is nol Lc·ft M-ultiplico.liv,; fo1' $l,M(g)$ 

H2 I for( i = cutoffR; i < (ULong) nOfGenerators; i++ ) 

1422 { 

142:1 / / Const.rn,d a, nonmul'liplicntive ·uuria.ble 

1424 Lmult = ASCIIMon( i+l ); 

1425 
J ,J2(i 

14:27 

1-12~ 

14:29 

1.,1:io 

if( pl== 3 ) printf("AddinguLeftuProlongationubyuvariableu#'l.uutouS,,, \n" , i ); 

if( pl > 3 ) printf(" AddinguLeftuProlongationubYu'l.sutouS . .. \n", fMonToStr( Lmult ) ); 

S = fAlgListPush( fAlgTimes( fAlgMonom( qOne(), Lmult ), h ), S ); 

14:ll // E/JGH'J' PIWLONGATJONS 
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L4:l:l II Fo1· e.ach varfoble $,r:..i$ tlwl is not F-1:ighl Afoltiplicafruc for $l,M(g)$ 

14:,•J for( i = 1; i < cutoffL; i++ ) 

l •l35 { 

14:,0 I I Const.1·,u:t. o. nonm·11.ltiplico.tive 11C,·ria.blc 

1437 Rmult = ASCIIMon( i ); 

14:!8 

14:19 if( pl== 3) printf("AddinguRightuProlongationubyuvariableu#'l,uutouS, .. \n" , i-1 ); 

1-·140 if( pl> 3) printf("AddinguRightuPr olongationubyu'l.sutouS, .. \n", fMonToStr( Rmult) ); 

J.-J,1 I S = fAlgListPush( fAlgTimes( h, fAlgMonom( qOne(), Rmult) ), S ); 

1,142 

14-1:·I 

1,144 } 

14,15 

144.6 I I Step 2 •·· Find the l,rwcst. prolongC1tion w. r /,. ch.o.«:n m onomial rn·cfor 

1447 

H4~ I I '.[\i,n /, eQ.d rnd,,c/.ion on when finding a -111,ila.ble 1n·olon9at:ion 
1.,1'[!) headReduce = 1; 

J.-150 
14:il I I If th,;n; ar,) no prolonyo,tions we ·may e3:it lhe loop 

I 452 if( !S ) escape = O; 

J,JT,:.l e lse 

1:104 { 

]AT,:, I I Sort the list of prolonyC1t.it,ns w.r.t. the ch.nsen m.on.om.-ial order 

I 45(·, S = fAlgListSort( S, 3 ) ; 

1,:J 57 I I J1c11erse /.he Ii.st. -~o th.a/. th e 'lowr;l' )11'QlongC1tion mm.,;s Jfr.,l 

1438 S = fAlgListFXRev( S ); 

l•J5ll 

14GO I I (){,ta.ir, !hf? first non••··· zero hwd--rcdnced d«mer,.l of 1.h« list. 

J.,lli I g = S -> first; I I E,,trnct. a prolongat.ion 

l4G2 trip = O; 

1,w:1 I I While !;here 1tre prnl,mgntions left lo look at. «nd •1}1/1.-,fo we hnw 

14(;,I I I not Ne/: fcnmrl a. non- zero hc-;r,.d-·red,,c,;d vmton_q!J,l·io·n 

I :!GS while( ( fAlgListLength( S ) > 0 ) && ( trip == 0 ) ) 

.L466 { 

1-tGi II flwoluti-ucl-µ lwid- rcdnce the prolonyaf.ion 

H61l gNew = !PolyReduce( g, H, vars ); 

l 4G9 if( fAlglsZero( gNew ) == (Boo!) 0 ) I I ff th,1 prolcmga.lim,, ,U,l no/. redncc lo zero 

lol70 { 

1471 I I T\i-m ojj' hecul 1·eclu<:lion 

l.-li2 headReduce = O; 

147:l II 'F\tllv' imvol-u.tivdy r1)d1tcce 

1-17•1 gNew = !PolyReduce( gNew, H, vars); 

147G gNew = findGCD( gNew ); I I Di·uide th.mug/,. by th,: GCD 

1-t i'1\ I I Turn hca.d rcdt,ct-ion back on 

1477 headReduce = 1; 

14 i'!'- I I If we have not cncuun/,cred this polynomial before 

J,179 if( fAlgListisMember( gNew, soFar ) == (Boo!) 0) 

1480 { 

1-1~1 trip = 1; II W e rnny e3;il /.h(; loop 

1482 

1,1s:1 

1.-113,1 

J.:IS5 

headReduce = O; I I We clo not. ·n.c-;ed hecul rechu:licm wr,y more 

} 
else I I Otherwise we go on to look o.t the 1w,il 1wolonr10.tion 

{ 
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148G S = S - > rest; / / .4dvanr.e ·the list 

1487 if( S ) g = S -> first; // If /.here ,m, ony morn )1?"olon911tio11 .. s eJ:t rad. one 

14~~ } 

1480 } 

l .J!)O else // Ot.h erwi.,e we go on l.o look a.t tht: ?I.CJ:/. 71rolongo.tion 

14})} { 

J 4!)2 S = S -> rest; // A cluan,x· the N.st 

14}):3 if( S) g = S ->first; // if then: am 1m.y more prolonyatfons ,;:ctra.ct one 

WH } 

14M } 
149(, 

1497 // ff no su'itable prolonr1alions were fo"nd we may eJ.-it the Looi, 

1-198 if( !S ) escape = O; 

H!)\l else 

1500 

ir:,o l // Step :1 •- A ci<l the p<>ly11.omiul to t,he hasis 

1502 

l!:,0:l if( pl > 2 ) printf("FirstuNon-ZerouReduceduProlongationu•u%s\n", fAlgToStr( g ) ); 

151),l if( pl > 2 ) printf("Prolongationuafterureductionu•u%s\n", fAlgToStr( gNew ) ); 

1'>05 nOfProlongations++; / / I-r,.a;;11,.5e th.,: i:otinter· Joi· /:he mmtbr:1· of prolor,.gations 71ro,;es.5crJ. 
150G 
1507 / / Check for trivial ide<1l 

1508 if( fAlglsOne( gNew ) == (Boo!) 1 ) return fAlgListSingle( fAlgOne() ); 

1509 

ir, lO // Ad,f'11a9/. I.he 7irolon.ga.tion dcgn:c /ic,wul if necessary 

1511 if( degRestrict == 1 ) 

lG 12 { 
15 J.:~ if( fAlgEqual( g, gN ew ) == (Boo!) 0 ) / / If I hr p<>lynom-ial w<1.s icdv.ccd .. . 

1:,14 { 

151:, degTest = fMonLength( fAlgLeadMonom( gNew ) ); 
l:,lti if( degTest > d) / / ... 1111.,i ·if the degnx· of /.he m:111 polynomilll e1:r.ei:ds the bouf/.cl .. . 

1517 

151~ 

lfilH 

1520 
v:)21 

15:l2 

l!\2:.l 

152,1 

1025 

/ / ... o.djusl, the bound ar.cordinr,ly 

d = degTest; 

if( pl > 1 ) printf( "Newuvalueuofudu•u%u\n", d ); 

twod = 2*d; 

l 5:.W / / P11,sl,. th,: new pol!lnomial onl,o f.hc lisl: 

1 f-i27 if( !Type < 3 ) // Local di'll'i8'ion 

152~ { 

1529 if( SType == 1 ) H = fAlgListDegRevLexPush( gNew, H ); // DeyRei,Dc:r. sort 

15:10 else if( SType == 2 ) H = fAlgListAppend( H, fAlgListSingle( gNew ) ); // No sorl-ing - .iust ftp7,en11 

15,U else H = fAlgListNormalPush( gNew, H ); // Sort hy monnmia.l ordering 

15:12 } 

153:J else H = fAlgListAppend( H, fAlgLis tSingle( gNew) ); // Ju.it n.7,pe11d ,mlo end 

15'.H 

15:~5 count++; / / frl,c·rna .. se t./w counter J,,,. lite nmnber of pnlyiwmictl.s in /.he /,n..5i.s 

l r,:rn if( pl > 1 ) printf(" AddeduPolynomialu#%uutouBasis, unamely\nu%su\n" , count, fAlgToStr( gNew ) ); 

I f,:n if( pl == l ) printf( " AddeduPolynomialu#1/.uutouBasis ... \n", count ); 
I :,:18 / / lndi(;{J,t<: that we ho., ,e enconntered a new pol·!lnom-iu,l for fnt·un; na.fc-rc,u:~ 
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u;:rn 
IG.:10 

lM l 
15,12 

l!'d:l 
154,1 

15,1-5 

l54(j 

l!'i ,17 

1.548 

soFar = fAlgListPush( gNew, soFar ); 

precount = count; / / Detc-rmin.c siw of bn.,i., /,~fore ci·,,.tornd11ction 

H = IAutoreduceFull( H ); //Pully nulor,:dum th,-: basis 

count = fAlgListLength( H ); // Determine .1i.ze of ba.si., nft,-:1· n.11.torcduct:io11 

if( ( pl > 0 ) && ( count < precount ) ) 

printf( 11 Autoreductionureducedutheubasisutousizeu'l.u ... \n11
, count ); 

I 54B // Check for t1-i11ial ideal 

lf,:,l) if( ( count == 1 ) && ( fAlglsOne( H - > first ) == (Boo!) 1 ) ) 

15;",I return fAlgListSingle( fAlgOne() ); 

lf:,52 } 

15:\3 } 

l!',54 } 

I 5GS if( pl > 0) printf(" ... Invol utiveuBasisuComputed. \n"); 

1:,56 

15"7 headReduce = O; // lksd t/1.f; value of he11dRed1£cf: 

l :,58 return H; 
lf>.'i!l } 

I G60 

15(il /• 

1562 • Am.ct-ion Nume: <Jerclt 
lc,6:l * 
15(;,j * Ov,-:1·1Jietu: lmp ltJm,m /.s G1)rd/, '., 11d1•0.nwd c,,l!Jori lhm Jiir cm11p1tl.in9 iocn.lly in11ol·11.l.-i.ve ha,~es 

1065 * 
I 5GG ,. D,;to.il: Ci-mm Q. 1-i.,t of 7,oly nomia.ls, lhi., alyorilhin wrn1n1.le.s " 

15ll7 • Locally /tJ:,mfolivc Ba.,i.s for lhi; i npv.t basis 11.sing the method 

1568 * c:,1ithn ed in the pn11er "Jnvol·u.livc Di11isfon 1'echniqu.e: 

.15li9 * Som,-; gen ,miliso.tion.- a.n d opt.'imi.-alion s" by \I. P. Gerdl. 

1570 * 
157 1. * El·tcrnu.l Vi,-ria./Jles Re,,-uired: int dcy Restri.ct. 11\Jpe, n OJGencm tors, pl, SType; 

157:.l ,. Ul,ong n Of Prolongations: 

I 57:1 * Global Vriri.ables Used: U Dong d, twud; 

1:.7,t • in/. hcwtn,:d1<ce; 

l f>75 * 
1076 */ 
1:,77 FAlgList 

lS 78 Gerdt( FBasis ) 

1579 FAlgList FBasis; 

l!,SO { 

15~1 FAlgList GBasis = fAlgListNul, soFar = fAlgListNul, 
1582 Tp = fAlgListNul, Qp = fAlgListNul, 

l51l:3 Tp2 = fAlgListNul, Qp2 = fAlgListNul; 

158,1 FA!g f, g, h, gDotx, candidatePoly, testPoly; 

15:'l,i FMonPairList Tv = fMonPairList Nul, Qv = fMonPairListNul, 

158G Tv2 = fMonPairList Nul, vars = fMonPairListNul; 

1:,87 FMonList Tm = fMonListNul, Qm = fMonListNul, 

1588 Tm2 = fMonListNul; 
15S9 FMonPair P, fVars, gVars, hVars; 

15\JO FMon PL, PR, fVarsL, fVarsR, gVarsL, gVarsR, hVarsL, hVarsR, 

lG'J I LMf, LMg, LMh, all, DL, DR, gen, NML, NMR, u, 
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1592 candidateVariable, mult, compare; 

1593 ULong i , j , candidatePos, count, cutoffL, cutoffR, 

1594 degTest, lowest, precount, pos; 

15% short add, escape, LorR; 

l:;,()6 Boo! balance; 

15})7 

lG')S if( pl > 0) printf("\nComputinguanuinvolutiveuBasis ... \n") ; 

J5!)!) 

1600 if( !Type < 3 ) // Loc;al di1risicm 

H.01 { 

1602 // Create a monom:ial containing nil 9ene·mto1·.s 

H;o:3 all = fMonOne(); 

l (iO,i for( i = l; i <= (ULong) nOfGenerators; i++) 
l(i(l5 all = fMonTimes( all, ASCl!Mon( i ) ); 

160G } 

Hi07 

1608 // lf prnlmiyntions ctn- 1'estricttd by dcgrnc 

1609 if( degRestrict == 1 ) 

1610 { 

1611 d = maxDegree( FBasis ); // lnit.ia.l-i.,,, lhi: 110,l-,u, of d 

Hl12 if( pl> 1) printf("InitialuvalueuOfudu•ut.u\n", d ); 

161:1 

.1t>1c1 I* 
16 l 5 * There is no ))Dint in looking at 7,rolonr1utiun.~ of length 

1(\16 * :~•d c,r mon: a . .s these: mrc.nol, po.s.sibly be: a .. ~.socirttcd with 

1617 • S····Polynomfol.s ,., they Q )'(-; in ,)]},,cl. 'disjoin/. o·uerla,ps'. 

Hi!~ */ 
161!) twod = 2*d; 

1620 

162] 

1622 // 'l'm·n head 1n{w;tio11. oJJ 

1()2:3 headReduce = O; 

1624 

H,25 // Remnvc ri'U)'liC11ks from the inpnt basis 

16W FBasis = fAlgListRemDups( FBasis ); 

Hl27 

16:l8 / / If I.he b«si.~ .,h,nc.lcl h,; kept .,ortecl, do lhe ini./.ial 801·/.ing now 

Hi2\I if( ( !Type < 3 ) && ( SType != 2 ) ) FBasis = fAlgListSort( FBasis, SType ); 

16:30 
16:1 I // Now A-uton;d1,ce FBasis and J!lac-e the n;.mtl fr, PBcisis 

l6:l2 if( pl> 1) printf("Autoreducing,., \n"); 

I 6:13 precount = fAlgListLength( FBasis ); // Dderm0n,, size of /,a.sis hefm·e a.1d.ored1tcUon 

16:l,1 FBasis = IAutoreduceFull( FBasis ); / / F't,lly 11u.ton;rl.nce l'he ha,,;s 

l635 count = fAlgListLength( FBasis ); // Dctei~nine size of basis after ait/.oredur./.iu-n. 

ltl'.l6 if( ( pl > 0 ) && ( count < precount ) ) 

16:1, printf(" Autoreductionureducedutheubasisutousizeut.U ... \n" , count ); 

H;:l8 

1639 / / Check for lri-v-ial iclco.l 

lli40 if( ( count == 1 ) & ( fAlglsOne( FBasis - > firs t ) == (Bool) 1 ) ) 

1641 return fAlgListSingle( fAlgOne() ); 
l(i,1.2 

164:3 I* 
16•14 * ,io Fhr will .st.on, cill volynom-i.«l,, th.at will app,,a.r 
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:[t;4.!l * at any tim e so tha,t 1t1e do n ot introd11ce duplicMes into the set. 

I f,,l (i * To begin with, 11./l we luivc encov.nlered r,re /.he polyn omial., 

Hi47 * in the: autorn,l-u.ced inp1i/. basis. 

W48 *I 
Hl-1!< soFar = fAlgListCopy( FBasis ); 

l6GO 

JG5I II Choose IJ \in P with lowe.,l LM(g) w .r. t. < 
l6:i2 g = fAlgListNumber( ( fAlgListLowest( FBasis) ), FBasis ); 

165:! 

:Jt,;;4 I I Add entry ( g, l,M ( 9), (\ emptyset, \ emptysct)) to '.I' 

16~,5 Tp = fAlgListPush( g, Tp ); 

Jtir,(i Tm = fMonListPush( fAlgLeadMonom( g ), Tm ); 

IGC,7 Tv = fMonPairListPush( fMonOne(), fMonOne(), T v ); 

1G5~ 
I 6:S9 I I Add entry /.o 0 
Hi6(J GBasis = fAlgListPush( g, GBasis ); 

l6Gl if( pl> 1) printf("Addingu'l.sutouGu ('l.u) . .. \n", fAlgToStr( g ), fAlgListLength( GBasis) ); 

l(Hi2 e lse if( pl== 1) printf( "AddeduaufirstupolynomialutouG - .. \ n" ); 

160:l 

I (il\,1 I I fi<,r ,:nch f \-in PBasis\s,i tmi'f>-'1t., {9} ... 

H\Ci5 while( FBasis ) 

l(i6(i { 

1Mi7 f = FBasis - > first; 

1 G(j8 if( fAlgEqual( g, f ) = = (Bool) 0 ) 

l(i(i\l { 

lfi70 I I Add entry (J; LA:f(f}. (\,-;m71lyset. \e:mpl,yset)) /.o (J 

lVi I Qp = fAlgListPush( f, Qp ); 

lfi72 Qm = fMonListPush( fAlgLeadMonom( f ), Qm ); 

JGi:! Qv = fMonPairListPush( fMonOne(), fMonOne(), Qv ); 

167,1 } 

](i75 FBasis = FBasis - > rest; 

1676 } 

I G77 if( pl > 3) printf(" Cons tructeduQ- . . \n" ) ; 

J.678 

1679 do II Repeat until Q is empty 
l(i~(J { 

1681 h = fAlgZero() ; 

l(i~2 

11>8,J I I Whifo (J is not c-:m pt,y 11.nd h i., no/. 011U1l to 0 

161'4 while( ( fAlgList Length( Qp ) > 0 ) && ( fAlglsZero( h ) == (Boo!) 1 ) ) 

168!; { 

HiStl II Choose the: fl in (g, 1, (PD, PR)) \in CJ wi.th lowt:st LM(g) w .r .t. < 
l687 lowest = fAlgListLowest( Qp ); 

IGR~ g = fAlgListNumber( lowest, Qp ); 

H,8\l u = fMonListNumber( lowest, Qm ); 

LG90 P = fMonPa irListNumber( lowest, Qv ); 

HHl I if( pl > 2 ) printf( "Test ingugu•u'l.s . .. \n", fAlgToStr( g ) ) ; 

lfi92 

HH.l:.l II F/wwve en/.1;~ fro111 Q 

169,J Qp = fAlgListRemoveNumber( lowest, Qp ) ; 

1G% Qm = fMonListRemoveNumber( lowest, Qm ); 

l6% Qv = fMonPairListRemoveNumber( lowest, Qv ); 

1G97 
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H,fl8 if( !Type < 3 ) / / Fincl l,oca.l Mu.lt.iplic11titie Variables for GBa.s-;s 

1699 vars= OverlapDiv( GBasis ); 

1700 

1701 //If/he t::'rit.,irion is fa.lse ... (to he impfomented in the Ju.lure ... ) 

1702 // ·if( NC1:1·itc1-ion( !J· 11, Tp. Tm, G Ba.si.s. 11a.1·s ) == 0) 

lill:3 { 

l.7(H // .. . /.hen find the 11.or·m.alform ofg w.1·. t. GB,ui.~ 

170G soFar = fAlgListPush( g, soFar ); 
1706 h = !Poly Reduce( g, GBasis, vars ); // Find /.he fri-uolutiuc normo.l form 

.1707 h = findGCD( h ); // Divide th-ro1Lgh by the GGD 

1708 if( pl> 2) printf(" ... Reducedugutouhu•u'l.s ... \n", fAlgToStr( h) ); 

Jill0 } 

1710 // else if( pl > 2) print]('' ... Oritci'ion used to discard g .. . \n''); 

1711 } 

1712 

1,1:1 // If h \neq 0 

I 714 if( fAlglsZero( h ) == (Boo!) 0 ) 

l 7 l5 { 

1710 // Add. h f:o GBosis ,md m ;a.lcHla.te rn·ultiplir;at.iw: vnriahles if necess,I.1·y 

17 17 if( !Type < 3 ) 

.Ii l8 { 

1719 pos = l; 

1720 if( SType == 1 ) GBasis = fAlgListDegRevLexPushPosition( h, GBasis, &pos ) ; // Der1.Re1,f,e1: s01·t 

1721 else if( SType == 2) GBasis = fAlgListAppend( GBasis, fAlgListSingle( h) ); // No sorting - .iust nppend 

1722 else GBasis = fAlgListNormalPush( h, GBasis ); // Sort hy monomial onforiny 

17;13 

1724 vars = OverlapDiv( GBasis ); // Hill ·N?cnlc1dal,1J 

1725 } 

1726 e lse GBasis = fAlgListAppend( GBasis, fAlgListSingle( h) ); // Jv.sl: t1.P71end onl:o e11d 

17~7 

1728 if( pl > 1 ) printf(" Addedu'l.sutouGu('l.u) ... \n", fAigToStr( h ), fAlgListLength( GBasis ) ); 

I 7:l9 e lse if( pl == 1 ) printf( "AddeduaupolynomialutouGuuuuuuu ('l.u) ... \n", fAlgListLength( GBasis ) ); 
17110 

1,:ll LMh = fAlgLeadMonom( h ); 

1732 

17:n if( degRestrict == 1 ) / / ff w e a.I·1-; 11-;sf.rictiny prolonga.tion_s hu de!Jrne ... 

1n.-1 

17:11; degTest = fMonLength( LMh ); 

17:3G if( degTest > d ) // .. . a.nd if t./w d,i_q1-e,J of the n ew 1wlynom·ia.l (~cce<«l.s the b.nmd .. . 

17:17 { 

17:!8 // .. . ,id:fu.sl: tlw bouncl ,1ccord·in9ly 

11:w d = degTest; 

1740 if( pl > 1 ) printf("Ne11uvalueuofudu•u1/,u\n" , d ); 

17 4.l twod = 2•d; 

l i'.J2 } 

174:J } 

1,,14. 

174,> // If LM(h) == LM(g) 

174.6 if( fMonEqual( fAlgLeadMonom( g ), LMh ) == (Boo!) 1 ) 

17-'17 { 

1748 //A dd ent:ry to 'l' 

1749 Tp = fAlgListPush( h, Tp ); 
1750 Tm= fMonListPush( u, Tm ); 
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17:,I if( pl> 4) printf("ModifyinguTu(sizeu'l.u) ... \n", fA!gListLength( Tp) ); 

1752 

1;5:1 II Find intersection of P a.nd NNU{h. O} 

175,1 II (Note: NALI(h, G} = nonmvltiplirat.ivc ·011-riah/es) 

li55 PL=P.lft; 
17W PR= P.rt; 

1757 

17:,8 if( !Type < 3) II LoC11l di11is-ion 

1759 { 
.1760 II Finrl NALf(h, G'Bn.sis) 

1761 pos = fAlgListPosition( h, GBasis ); 

l76:l hVars = fMonPairListNumber( pos, vars); 

1761\ hVarsL = hVars.lft; 

l itH h VarsR = h Vars.rt; 

I7G5 

1766 
1767 

17!l8 

17G9 

17i0 

1771 
1772 

177:l 

1774 

1175 

177G 

li77 

177/; 

1779 
1780 

178 1 

NML = fMonOne() ; 

NMR = fMonOne(); 

j = l ; 

I I Cai<"u.la-r.1-; the ir1.f.cr.sedion 

while( j <= (ULong) nOfGenerators ) 

{ 
gen = ASCIIMon( j ); 

I I If gen itppeo.r., in PL (wmm.1ill.i11licati·o,).~} In,/. not in. /, VarsL (11mlt.i1dicat·i11es} 

if ( ( fMonlsMultiplicative( gen, PL) == 1) && ( fMonlsMultiplicative( gen, hVarsL) == 0)) 

NML = fMonTimes( NML, gen ) ; I I gen am1ewrs ·in I he left i-n.t.1:1·_sectio11 

II If _gen a.wean in PU (nonm·u.tt.iplicati11es) Intl. not. •i11. h Va-rsn (m.ult.i11l·imti.11e.~) 

if ( ( fMonlsMultiplicative( gen, PR) == 1 ) && ( fMonlsMultiplicative( gen, hVarsR) == 0) ) 

NMR = fMonTimes( NMR, gen ); II _gen a7171c!m·s -in Ua, r·i_qhl inter.sectfon 

178:l i++; I I Get rnady to look <1t the ne~:t ·un-ria.bli'. 

1713:1 } 
.1784 } 
l 7RB e lse if( !Type >= 3 ) I I Global divisfrm 

1786 { 
1787 / / Fiud th(~ 1n·u.ltiplir.at.i1H! v<ltria.ble:; 
1 i81l if( !Type == 3 ) LMultVars( LMh, &cutoffL, &cutoffR ); 

1789 e lse if( !Type== 4) RMultVars( LMh, &cutoffL, &cutoffR ); 

17fJO else EMultVars( LMh, &cutoffL, &cutoffR ); 

1791 NML = fMonOne() ; 

17!)2 NMR = fMonOne(); 

17\l:l 

1794 I I Calc·ulate the left intersection 

:rn:ir, for( j = cutoffR+l; j <= (ULong) nOfGenerators; i++ ) 

179ti { 

lill7 gen = ASCIIMon( j ) ; I I Obt«in a. nanmult·iplicn.tive -UCLriable 

1798 I I Jf it; nppw-rs -in Pl, it <tppea,·.i i n tlw ·int.ersw:tion 

l 7!.l!l if( fMonlsMultiplicative( gen, PL ) == 1 ) 

1800 

18()1 
1802 

l8o:l 

NML = fMonTimes( NML, gen ); 

} 

I I Calcu.late the 1·i.,qh.i inlc-:i·seclion 

325 
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1804 for( j = 1; j < cutoffL; i++ ) 
1805 { 

1806 gen = ASCIIMon( j ) ; / / Obt.11in a. nonrn·,,.ltiplircit.ivc ·11/lrin.blc 

[1j()7 //ff it. a7,pmr.s in PR 'i t o,p p t)(),?'S it,. the inf.er.~cct.ion 

1-,08 if( fMonlsMultiplicative( gen, PR ) == 1 ) 

18tHJ NMR = fMonTimes( NMR, gen); 

18 1.0 } 

1811 } 

18 12 

18 t:3 / / Add ,in. enl1'1J to Tu 

181-1 Tv = fMonPairListPush( NML, NMR, Tv ); 

181:, } 

I !ill> e lse / / Add cnt1'y to T «nd adjust the l'is f.s 

1817 { 

1818 // Add ent.17; f,o T 

181 (~ Tp = fAlgListPush( h, Tp ) ; 

IS20 Tm= fMonListPush( LMh, Tm); 

182 1 Tv = fMonPairListPush( fMonOne(), fMonOne(), Tv ); 

18:l:l if( pl> 4) printf("ModifyinguTu(sizeu¼u) ... \n" , fAlgListLength( Tp) ); 

182:l 

.L8'.M // Set. np l·ists for next opern,fion 

1825 Tp2 = fAlgListNul; 

:IS2G Tm2 = fMonListNul; 

1827 Tv2 = fMonPairListNul; 

1828 

ltWl // For w r it (J, v, (DI, . DH)) \in '.l' 
1-,:10 if( pl> 4) printf("AdjustinguMultiplicativeuVariables .. . \n"); 

18:n while( Tp ) 

18:l2 { 

1.8:l:3 f = Tp - > first; // B:r:lrnd a pol)lnmn-ittl 

18:M LMf = fAlgLeadMonom( f ); 

18:lr. 

I !i::11> 

18:17 

18~18 

18'.\tl 

J8,JO 

18•.l l 

[8,[2 

184:! 

184.4 

18,Jf, 

1846 

18-17 

1848 

1849 

18?;0 

1851 

1852 

l8,i3 

1854 

18.S!J 

1856 

if( pl> 4 ) printf("Testingu(¼s,u¼s)\n", fMonToStr( LMh ), fMonToStr( LMf) ); 

// If l ,M(h) < L.M(f) 
if( theOrdFun( LMh, LMf) == (Bool) 1 ) 

{ 

} 

/ / Add <mir y l o Q 

Qp = fAlgListPush( Tp - > firs t, Qp ); 

Qm = fMonListPush( Tm-> firs t, Qm ); 

Qv = fMonPairListPush( Tv -> 1ft, Tv -> rt, Qv ); 

// Di.sea.rd f from GB,tsis 

GBasis = fAlgListFXRem( GBasis, f ); 

if( pl > 1 ) printf("Discardedu¼sufromuGu('l.u) ... \n" , fAlgToStr( f ) , fAlgListLength( GBasis) ); 

e lse if ( p l == 1 ) printf("DiscardeduaupolynomialufromuGuC'l.u) . . . \n", fAlgListLength( GBasis ) ); 

e lse 

/ / Kcc11 ,mtry in 'I' 

Tp2 = fAlgListPush( Tp -> first, Tp2 ); 

Tm2 = fMonListPush( Tm - > first, Tm2 ); 

T v2 = fMonPairListPush( Tv - > 1ft, Tv - > rt, Tv2 ); 
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18:i7 } 

18:\8 I I Arivoncc-; the 1-i.st.5 to /.he nc·::r.l, ent1·11 

185!1 Tp = Tp -> rest; 

!~GO Tm= Tm-> rest; 

1861 Tv = Tv -> rest; 

1862 } 

18(1:l 

1864 I I Set u.p l-i.st.< for ne,:/: r1pc·mt-i.on 

l8l11i Tp = fAlgListNul; 

1866 Tm = fMonListNul; 

li.<67 Tv = fMonPairListNul; 

].8(i8 

1869 I I R ecalculate nmlti7>licat-ive -uarfab/es 

1870 if( !Type < 3 ) vars = OverlapDiv( GBasis ); 

1871 

18i2 I I Fo1· each (J; 11. (DL, DR)) \in 1' 

187:l while( Tp2) 
)1,7,1 { 

187~ 

1876 

1877 

1878 
.l87!l 

1880 
1881 
1882 
188:l 

188;1 

18S5 

188G 
18S7 
[888 

188!) 

lSHO 

18!Jl 
18!.12 

1893 

18!.H 

18!,tl 

1897 
18!}8 
1899 
100() 

1901 

1002 
19():3 

l \10:J 

l!J05 

1)10(> 

1907 

l!lil$ 

1909 

I I I( eep f 11nd ·u it,i they wre 

f = Tp2 - > first; 

Tp = fAlgListPush( f, Tp ); 

Tm= fMonListPush( Tm2 -> first, Tm); 

DL = Tv2 - > 1ft; 

DR = Tv2 -> rt; 

II Find iruc,r8ection of D and NM_ /(f, 0) 

if( !Type < 3) II Doml ,h,ri.sion 

{ 
II F-ind NAL I{f, GB0.5is) 

pos = fAlgListPosition( f, GBasis ); 

Nars = fMonPairListNumber( pos, vars ); 

NarsL = Nars.lft; 

NarsR = Nars.rt; 

NML = fMonOne(); 

NMR = fMonOne(); 

j = 1; 

I I C11lc·11.ln/.t1 the intei·.seetion 

while( j <= (ULong) nOfGenerators ) 

{ 
gen = ASCIIMon( j ); 

I I If yen 11ppears in DL (nvnm.ult·i-µl-ica.tives) b·u.t not in fVarsl, (nmltip/icn.tives) 

if ( ( fMonlsMult iplicative( gen, DL ) == 1 ) && ( fMonlsMultiplicative( gen, NarsL ) == 0 ) ) 

NML = fMonTimes( NML, gen ) ; I I yen avpears -in the left intc1·section 

II U gen appec,rs in /JR (nonmu./liplicative.s) but not in f\larsfi (m.ultipl·icati.ves) 

if ( ( fMonlsMultiplicative( gen, DR ) == 1 ) && ( fMonlsMultiplicative( gen, NarsR ) == 0 ) ) 

NMR = fMonTimes( NMR, gen ); I I gc-:n n.7,pmr.1 in the, 1·ight intc-:1·.~ectim, 

j++ ; / I Oet r-ea<iy to look nt. I.he nc,xt; va·rioh/e 

} 
} 
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1910 

I :J J.l 

HJl2 

l:!l:J 
HJl4 

l!-)J!, 

Hll6 

1\117 

19'18 

191!) 

1:)2() 

1921 

1022 

1!J2:l 

1:)2.-J 

1H25 
l!-):2(j 

1927 

1\1:2~ 

1929 

:w:io 
IV<ll 

19:1:2 

l:)3H 

H)34 

1:)% 

H)36 

1:1:37 

rn:is 
I \l:l9 

1940 

1\141 

e lse if ( !Type >= 3 ) // Global divisio-r,. 

{ 
/ / Find t.lw m1,ll:iphmtivf: 11a.1·iabfos 

if( !Type== 3) LMultVars( fAlgLeadMonom( f ), &cutoffL, &cutoftR ); 

else if( !Type == 4 ) RMultVars( fAlgLeadMonom( f ), &cutoffL, &cutoftR ); 

e lse EMultVars( fAlgLeadMonom( f ), &cutoffL, &cutoftR ); 

NML = fMonOne(); 

NMR = fMonOne(); 

/ / G!Llcu.latc th e left intersection 

for( j = cutoftR+l; j <= (ULong) nOfGenerators; j++ ) 

{ 
gen = ASCIIMon( j ) ; // Ob lo.in " nonm.ull-ipli.mtim: 110.ri.C1blt! 

// If -it appea.rs in J)I, if. C1PJ1e(l·rs in the -i.nlcrsect-i.on 
if( fMonisMultiplicative( gen, DL) == 1 ) 

NML = fMonTimes( NML, gen); 

/ / Calculo.te !,he riyht -i.n ters,x ·t'ion 

for( j = 1; j < cutoffL; i++ ) 

{ 

} 
} 

gen = ASCIIMon( j ) ; / / Ohta.in " nonm.-ult iplica.tivc va,riable 

// If it appcan in DR it ttp]!ears 'in the intersect-ion 
if( fMonisMultiplicative( gen, DR) == 1 ) 

NMR = fMonTimes( NMR, gen); 

// Add th.e nonnwltiplic(lti-ue VC1ria.bles to '1'11 

Tv = fMonPairListPush( NML, NMR, Tv ); 

I :)42 / / A dva.nr.c the l-ists 
194.:j Tp2 = Tp2 - > rest; 

I :)4,1 Tm2 = Tm2 - > rest; 

l!H5 Tv2 = Tv2 - > rest; 

Hl4G } 

l!J47 

IH-H, 
J 9,j.9 

I !ltiO / / l/,o:a,/c1,la.te rn:u.ltiplica.tive ·1mrit1.bles 

1051 if( !Type< 3) vars= OverlapDiv( GBasis ); 
Hl!,2 

1%:\ // While e.:i:ist (r;, 11, (Pl ,, PR)) \in T 11nil l' \m NM_{(g. C:Bn.,is)\P nnd, 

l9:i4 //if Q \neq \emptyset . . U. l,M{ln-olong(ltion) < f,M(f) fnr all f ·in 

I %5 // (!, v. (DI,, DR)) \in q do .. . 

19:ifi escape = O; 

1%7 while( escape== 0) 

195:l { 

I :159 // Con.,1.,·u,ct a. c:andidak sc:t for (!I, 11, (PL, PH)), :c 

19l>0 if( pl> 3) printf("Findingucandidatesuforu (g ,uu, u (PL,uPR)) ,ux, .. \n"); 

l!lGJ 

1%2 / / fnit-ia.Use ·ul!Tia.l,les 
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196:J Tp2 = fAJgListCopy( Tp ); 
l\lG-1 Tm2 = fMonListCopy( Tm ); 

HJ65 Tv2 = fMonPairListCopy( Tv ); 

I %G candidatePos = 0; 

19tl7 candidatePoly = fAlgZero(); 

1%8 candidateVariable = fMonOne(); 

HH,9 LorR = 0; 

1970 if( !Type< 3) vars = OverlapDiv( GBasis ); 

HJ7 I 

HJ72 // Por each (y, u, (PL, Pfi}) in T 

1117:t i = l; 
197,1 while( Tp2) 
1<m, { 

1976 // Bl'/.rnc/. infonnolion about the fir.;t <:nl,ry in T 

I }177 g = Tp2 - > first; 

l!J71S LMg = fAlgLeadMonom( g ); 

1979 PL= Tv2 -> 1ft; 

J980 PR = Tv2 - > rt; 

l!hll 

Jf.)82 / / A d11on(·c-: lh<: copy of 1' 

198:l Tp2 = Tp2 - > rest; 

1 !)84 Tm2 = Tm2 - > rest ; 

198!'.i Tv2 = Tv2 - > rest; 
1 (/8(, 

HJ87 if( [Type < 3 ) / / Local di-ui.;ion 

1H88 { 

HJS\-1 pos = fAlgListPosition( g, GBasis ); 

l :-!90 gVars = fMonPairListNumber( pos, vars); 

J 9'J I gVarsL = gVars.Jft; 

19!)2 gVarsR = gVars.rt; 

rnn 
1904 j = l; 
J(J% while( j < = (ULong) nOfGenera tors ) / / For each genemto·r 

199(; { 

1 !)97 gen = ASCIIMon( j ) ; 

HJ(llS 

H•99 / / LEEPT PFWLONGA TlONS' 

2000 

2001 // Look Jo,· nonmuUi1il'i<:a.t·i11e va.,·ictl,lc.s '//,()/. in Pl, (m1p-roc<:.;.secl) 
2002 if( ( fMonlsMultiplicative( gen, PL ) == 0 ) && ( fMonlsMultiplicative( gen, gVarsL ) == 0 ) ) 

200:3 { 

20CM add = 1; // C1mdida.le found 

200:, mult = fMonTimes( gen, fAlgLeadMonom( g) ); // C,m.~tn,c'I: l:. _q 

200(, 

2007 // .If Q is not cmp/.y 

2008 if( Qp ) 
20L)ll { 

2010 //Make.mm thal /,Af(:,:.g) < Lfv/(J) for a.ll f ·in (f, 1,. DJ \-in Q 

2011 Qp2 = fAlgListCopy( Qp ) ; // Make a c:01111 of Q fc,r p,·ow.ssiny 

2lll.2 while( ( fAlgListLength( Qp2) > 0) && ( add == 1 )) // For a.ll fin (J. 11, D) \in Q 

2013 { 

201 ,t // Ecr.lm1:t a. foo.d ·m.ono-rn·ial 

20·15 compare= fAlgLeadMonom( Qp2 - >first) ; 



20l(i 

'.!01.7 

2(l l1j 

20HJ 

2020 

2021 

2022 

202:l 

2024 

2025 

202l> 

2027 

2028 
202ll 

20:l0 

20'.l l 

20:l2 

20:i:1 
20:l4 

20:lfi 

20,17 

20:l1S 

2039 
20-10 
'.!041 

20·1.2 

20-·13 
20,1,1 

204:, 

20,16 

204 7 

2048 
2(),.li) 

2050 

2051 

20:12 

205:l 

20:\,j 

2055 
20GG 

2057 
20G8 

:2039 

2060 

2061 

2062 

20G,l 

2064 

20G5 
20t,6 

20(;7 

20t,8 
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Qp2 = Qp2 - > rest; 

// If LM(:c .g) not, le.s -5 /./ia.n U,-t (J') ignore thi.; c:mtdida.te 

if( theOrdFun( mult , compare ) == (Boo!) 0 ) add = O; 

if( add== 1) // Ccm didat.e four,dfor (g. u .. (PL. Pf/,)),:,; 

{ 
if( candidatePos > 0 ) // Th-is ·is not the Ji,-st cand-idn,t~ trie~l 

/ / Tietttms 1 1/ nw.lt < f!ll9Le.,1dMonom( cand1:rl,atePuly) 

balance = theOrdFun( mult, fAlgLeadMonom( candidatePoly ) ); 

// If ·w; are re.s/.ri.cting 11-rolon_qa.tions by deg·rec-: 

if( degRestrict == 1 ) 

{ 
// If / /t,J dcgre,: bo11ncl i"s noi c:cc,Jedcd nrul l:hc· ca.ndid"t,; is Mlid 

330 

if( ( fMonLength( LMg) + 1 < twod) && ( (balance== (Boo!} 1} II ( candidatePos = = 0) } } 

{ 

} 
} 

} 
} 

// Const1·,.tcf' rt c1m1lid<rte p-ralon.gation 

tes tPoly = fAlgTimes( fAlgMonom( qOne(}, gen ), g }; 

// .If we ha.ve not yet. ~nco·u.nte-red th-is polyn om-illl 

if( fAlgListlsMember( testPoly, soFar ) == (Boo!} 0 ) 
{ 
// We luwe ji1·11.nd a new r.a.ndidc,t.c 

candidatePos = i; 

candidatePoly = testPoly; 

candidateVariable = gen; 

LorR = O; // Left ]lmlonga.tion 

/ / .If we a.re not restricting pmlon9<Ll-ir>ns by degree, proceed if 

// the cnnrl·id<Lle ·is vnl-irt (if th.is is the Ji-rs/ candidritc 

// encountered or f ,M(x.9) < .[,M{c·u.i-re-n.t C<Ln didate)) 

e lse if( ( balance == (Boo!) 1 ) I ( candidatePos == 0 ) ) 

{ 
// Cor,,~tnict a mndido./.1; 1wolo!lgnt.ion 

testPoly = fAlgTimes( fAlgMonom( qOne() , gen ), g }; 

/ / ff wr. h,we no/: yd c·:itco'ml'ten;d this 11olynom:ial 

if( fAlgListlsMember( testPoly, soFar) == (Boo!) 0) 

{ 

} 

/ / H1,: h,we found a n«tu co.ndida.l« 

candidatePos = i; 

candidatePoly = testPoly; 

candidate Variable= gen; 

LorR = O; // Left pmlongal·ion 

// RIGHT PROLONGA TI ONS 



20(Hl 
2070 
2071 

2072 
207:.l 
207,1 

2075 
2076 

2077 
2078 
2070 

2080 
2081 

2082 

'..!083 

2084 

2()8!, 

2086 
2087 
2088 

208!) 

2090 
2091 

2092 

20!.l:I 
20().'I 

20% 

2ll9G 
20')7 

20913 
20'J9 
2 l ll0 

2101 

2102 
210:\ 

2104 

2 105 

2HJ6 
2 107 

:2108 

2 11)9 

:lJ J() 

211 J 

2 ll.2 

2 11:1 

21:14 
2 J l:i 

21 ]_(i 

21 17 
'.! 118 
21 HJ 

2120 

2121 
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I I Look Jo,· nor,.m1,U'i)1lic;a.l·ivt: 1,a.·1-ia/,le,, not. in P fl. (wnp-rocesscd) 

if( ( fMonlsMultiplicative( gen, PR) == 0 ) && ( fMonisMultiplicative( gen, gVarsR) == 0 ) ) 

{ 
add = 1; I I Co.ndidatr: fou,nd 

mult = fMonTimes( fAlgLeadMonom( g ), gen) ; II Cor1'<tr1,cl: fp: 

I I If Qi,, not £-rnpl:11 

if( Qp) 

{ 
II .Make s·ure tha.t [,1\,.1(9,1) < LM(f) Jnr all fin (!, v. D) \in q 
Qp2 = fAlgListCopy( Qp ); II Make a copy of (J for 7,rocessing 

while( ( fAlgListLength( Qp2) > 0 ) && (add== 1 ) ) II Fo1· all fin (I. 11, D) \in Q 

{ 
I I B:r,lmct It lead monomial 

compare= fAlgLeadMonom( Qp2 - > first ); 

Qp2 = Qp2 - > rest ; 

I I if LAf(y.3:} not l£-ss i.lrnn L'A.f(J) ignon-; lfi:i.~ ca:ndiilot£­

if( theOrdFun( mult, compare ) == (Boo!) 0 ) add = O; 

} 
} 

if( add == 1) II C'nndida.t(' Jinmd .fo·r· (9, 1,, (Pf,, PR)) , ~: 

{ 
if( candidatePos > 0 ) I I '.l'hi.< i., not. the; fir_sl co,ndida.t.1·: trie,l 

I I R,;tura.s 1 'if m-nlt < JAlgLcwlMonom.( wndid1tl1:.Poly ) 

balance = theOrdFun( mul t, fAlgLeadMonom( candidatePoly ) ); 

I I rr 'UI<< a.re restricting prolonga.tions by dey-rl'e 

if( degRestrict == 1 ) 

{ 
I I ff the degree bo11.nd ·is not ,,:xccedcd and the cu.ndidate is 1,alid 

331 

if( ( fMonLength( LMg) + 1 < twod ) && ( ( balance == (Boal) 1 ) II ( candidatePos == 0) ) ) 

{ 

} 
} 

I I Cons/met a ca.ndida.tc prolonga.l:i.on 

testPoly = fAlgTimes( g, fAlgMonom( qOne(), gen ) ); 

I I ff ·,ve ha·ue not yet cnm11.ntered 1:h-is p1Jlynomi<tl 

if( fAlgListisMember( testPoly, soFar ) == (Boo!) 0 ) 

{ 

} 

II We hw,e fo1m.d II new c1,ndi.1/1rt.1; 

candidateP os = i; 

candidateP oly = testPoly; 

candidateVariable = gen; 

LorR = l; II Right prolongation 

I I If we. a.rn not m .~t,·ictin.9 1wolonrJO-tions Iiµ de,Jnx-, vro,;eol if 
I I the mnrlidote is vttlirl ('if I.Ms is th,: first C<truhdatc 

II £-r1.co1tr1.te1-ed 01· LM(9. ,c) < LM(cun·1m/. ca.ndida.te}) 
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2122 

212'3 

2124 
2125 

2126 

2123 

2129 

21:m 

21:1 1 

2132 

21:n 

213,:J 

21:.15 

21'.\7 

2 l:l8 

e lse if( ( balance == (Boo!) 1 ) I ( candidatePos == 0 ) ) 

{ 
I I Con.st,rucl a m.ndido,/.e pm/0119ation 

testPoly = fAlgTimes( g, fAlgMonom( qOne(), gen ) ); 

I I Jf w,i have n ot ye/. cnconntcrnd thi,i p1,lynomic,l 

if( fAlgListlsMember( testPoly, so Far ) == (Boo!) 0 ) 

{ 

} 

II We ha11~ found <J, new c<1.ndidale 

candidatePos = i; 
candidatePoly = testPoly; 

candidate Variable= gen; 

LorR = l; II Hight prolnngation 

j + +; II Mouii o'fl.lo the next ·u11rin.ble 

21:19 } 

2140 } 

21 ,1.1 e lse if( !Type >= 3 ) I I Global d·i1•i.sion 

2142 { 
21411 I I Out11'ii1 the m,u.ltiplicativc variables for thi.s polynomial 

2144 if( !Type == 3 ) LMultVars( fAlgLeadMonom( g ), &cutoffL, &cutoffR ); 

2145 e lse if( !Type== 4) RMultVars( fAlgLeadMonom( g ), &cutoffL, &cutoffR ); 

214.fi e lse EMultVars( fAlgLeadMonom( g ), &cutoffL, &cutoffR ); 

2147 

2H<i 

21,rn 

2150 

2 1:,l 

2152 
2 1 r,;3 

215•1 

21:i:, 

2L>l> 
2157 

2151< 

215(-1 

21G0 

2HH 

2 1&2 

2Hi:I 

21<;,1 

2}(j5 

21GG 

2167 

2168 

21G\J 

2170 

2171 

2172 

217:l 

2174 

II LE£F1' PfWl,ONOAT!ONS 

I I F'or each left 1wn11w.ltiplica/.i'uc varia.bfo 

for( j = cutoffR+l; j <= (ULong) nOfGenerators; j++) 

{ 
gen = ASCIIMon( j ); 

if( fMonlsMultiplicative( gen, PL ) == 0 ) / I Not: in P {-u1qn·occss1,d) 

{ 
add = l; I I Co.ndido,tc: found 

mult = fMonTimes( gen, fAlgLeadMonom( g) ); // Conslmd i,.9 

I I If (J is not ernpl,y 

if( Qp) 

{ 
/I Make su.rn that: LM(.r,.9) < l, M{f) for ull f .,n (!, ·u, DJ \in q 
Qp2 = fAJgListCopy( Qp ); // Maki; a, co1iy of q for prvcessinr, 

while( ( fAlgListLength( Qp2) > 0) && (add== 1 ) ) I/ For all fin (I; v, D) \in Q 

{ 

} 

I/ E,ctra.ct a lea.d monnmial 
compare = fAlgLeadMonom( Qp2 ->first); 

Qp2 = Qp2 - > rest; 

II If DM(x.9) not lc•s.s t.hmi LM(f) ignore this mndida.te 

if( t heOrdFun( mult, compare ) == (Boo!) 0 ) add = 0; 
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217:, 

217G 
2177 

2178 
217ll 

2180 
2JS I 

2182 
:ns:1 
2184 

2185 
2l8G 
:l l 87 

2rn11 

2189 
21H(J 

211)1 
:ll 'J2 

211):3 
:ll!)4 

21\l'J 

:lJ9t, 

2Hl7 

2198 
21!.l(I 

2200 

2201 
2202 
22o:l 
220,1 

22()[, 

220G 

2207 
2208 
2209 
22!0 

'..!'..!1.1 

2212 

2213 
2214 
221:, 
2216 
221.7 

2218 
22 1!) 
:l~W 

2221 
2'.!22 
222:.1 

222•1 
2225 
2226 
2227 

APPENDIX B. SOURCE CODE 

if( add == 1 ) II Candi1ln.te. fmmd for (9, ll, (PL, PR)) . :1: 

{ 
if( candidatePos > 0 ) I I Thi, is not the fir·sl. ca.ndida/.f; t1·ie1l 

I I nctM11s 1 if mult < fAlr;Lead!..tonom( carul-idald"oly ) 

balance= theOrdFun( mult, fAlgLeadMonom( candidatePoly ) ); 

I I If we an: n:st.ri,,;ting pralon_qa.ti()ris oy degree 

if( degRestrict == 1 ) 

{ 
I I ff the riegree bonnd is n()t excccricd and the ~a.ndidate is valid 

333 

if( ( fMonLength( LMg) + 1 < twod ) && ( ( balance == (Boo!) 1 ) II ( candidatePos == 0) ) ) 

{ 

} 
} 

I I Consf.rw:t. a mndida,lc J"'olongaUon 

testPoly = fAlgTimes( fAlgMonom( qOne() , gen), g ); 
I I if w,; h1111e not ·yd <:nco·llntm-cd this 1)()l11no·mfol 

if( fAlgListlsMember( testPoly, soFar) == (Boo!) 0) 

{ 

} 

I I l-\lc ha11e fcnmd o, new ca.ndidate 

candidatePos = i; 

candidatePoly = testPoly; 

candidateVariable = gen; 

LorR = O; II Left prolon11ai'ion 

} 
} 
I I if w1: f!T(< no/, ·rostrir.:f•ing pn,long<tf.ions /,y dc91'f:t:, 1>mc:c1,cl if 

I I /:he cand·ida/.f; is ,,alid (if this is the .first. candido.te 

II ,;nco•1J,ntcr,;d or LM{x.g) < LM(c'U1'1'1mt ccmdidat,i)) 

else if( ( balance == (Boo!) 1 ) I ( candidatePos == 0 ) ) 

{ 
I I Co1is·t1•u,ct a. wndida.te prnlongation 

testPoly = fAlgTimes( fAlgMonom( qOne(), gen ), g ); 

I I ff we h/lvc not yet encountere,l this 1>0/ynnm.io.l 

if( fAlgListlsMember( testPoly, soFar ) == (Boo!) 0 ) 

{ 
I I W f; h1me fonncl a. new can<liclale 

candidatePos = i; 

candidatePoly = testPoly; 

candidate Variable= gen; 

LorR = O; I I Left p,vlong/11:'ion 

II fUOfJ'l' PROLONGATIONS 

I I F'or loll Ch dyhl n,mmnltipliwtiv,: ,,o,rialile 

for( j = 1; j < cutoffL; j++ ) 

{ 



2228 
2229 
22:10 

'..!2:H 

2232 

22:B 

22:11 

22:IG 
:22:115 
22:17 

22as 
22:19 

:l:l4() 

2241 

22-·12 

224.:J 
224,1 

22·15 

2'.!4.Ci 

2247 

224.8 

2249 
22:iO 
2231 
2252 

2254 

2255 

2256 

2258 

2259 
2260 
2261 
2262 
22tH 

22G4 

22fi5 

22GG 

22li7 

2268 
22lig 

2270 

2271 
2272 
2:27H 

227'1 

2276 

2277 
2278 
2279 
2:2~0 
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gen = ASCIIMon( j ); 

mult = fMonTimes( fAlgLeadMonom( g ), gen ); I I Cons/met g .:1: 

if( fMonlsMultiplicat ive( gen, PR) == 0) II Not. in P (v:nproccssed) 

{ 
add = l ; I I Cm,.,lidatc Joun,! 

I I U Q is not empt;y 

if( Qp) 

{ 
II Make s-ure that LAl(g .x) < LM(f) fo r all fin (f, v. D) \'in Q 

Qp2 = fAlgListCopy( Qp ); II lvfoke a. copy of Q for 1m,ce.ssing 

while( ( fAlgListLength( Qp2) > 0) && (add== 1 ) ) II Fo,· ,ill fin (f, 11, DJ \in (J 

{ 
I I Bxtr11.c/, a. lmd monomial 

compare= fAlgLeadMonom( Qp2 - >first); 

Qp2 = Qp2 - > rest; 

II .If LM{11-2:J not less t.ha.n l,M(/) i9no1·e thi.i c11.nd1:,Za.te 

if( theOrdFun( mult, compare ) == (Boo!) 0 ) add = O; 

} 
} 

if( add== 1 ) II C:awlida.tr:. fmmd fo-r- (g, -u, (Pl,, PH)). a: 

{ 
if( candidatePos > 0 ) I I This 'is not th,; fi ,·st candido,/.1; t,-ic,,l 

II l fotmns 1 4 rm,.lt < /11/gLr:.wlMonorn( can,li.datePoly) 

balance = theOrdFun( mult , fAlgLeadMonom( candidatePoly ) ); 

I I If 'U)(! o.n-, rns/.ridi·o.g 1i-rolon110.tiom by d1'!rrec, 

if( degRestrict == 1 ) 

{ 
I I ff the degree bou.nd is not •Jxccerlcd 11nd /:he ~andida.te is i1a.lid 

334 

if( ( fMonLength( LMg ) + 1 < twod ) && ( ( balance == (Boo!) 1 ) II ( candidatePos == 0) ) ) 

{ 
I I Con.strnct o, mndidolc 11rolong11t-ion 

testPoly = fAlgTimes( g, fAlgMonom( qOne(), gen ) ); 

I I ff we hn.i>e no/. yet. <;nw·1ml1mJd th.is polynorn-ial 
if( fAlgListisMember( testPoly, soFar) == (Boo!) 0 ) 

{ 

} 

I I W,J ha.ve fo-un,i o, new ,:a.ndidate 

candidatePos = i; 

candidatePoly = test Poly; 

candidateVariable = gen; 

LorR = l ; II R-ight 1rrolan9a.lion 

I I .ff we m-e not -rc,,trid.·ing p1-olo-nya/.ion.s /,y drgn:,,. iwoc:,,ul if 

I I the· ca.ndidaf.1; i.s wlid ( ;J this is the .fir.st. c:a.ndido.te 

II 1mcoun"tt:nJd or lM(.q.1:) < lM(1J,wr1Jnl mn1Ud11l.,J}) 

e lse if( ( balance == (Boo!) 1 ) I ( candidat ePos == 0 ) ) 
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2281 

'.l'.l82 

22s:i 

'.l'.!8.:J 

2285 
228(j 

2287 

22138 

2289 

22flll 

2291 

2292 

'.!291\ 

22!.H 

229[) 

2296 

22~)7 } 

/ / Con.;tmcl a. wn.iUdnte prolongation 

testPoly = fAlgTimes( g, fAlgMonom( qOne(), gen)); 

/ / ff we h11·ve nol yc:l e:n.i;o1mlern1l this 7,0/ynomia./ 

if( fAlgListlsMember( test Poly , soFar ) == (Boo!) 0 ) 

{ 

} 

// W e h.wve fowrul" ne-111 mnd-idntc 

candidatePos = i; 

candidatePoly = testPoly; 

candidateVariable = gen; 

LorR = l; //Right prnlongu/.ion 

22!)8 i++; // Mov<: ont:o /.he n 1~ct volynomi<JL 

22\J!) 
2:300 if( pl > 3) printf(" ... Elementu'l.uuchosenuasutheucandidateu(0u•unoneufound). \n" , candidatePos ); 

2:101 

2:302 / / [j there is a can,lidate 

2:10:l if( candidatePos > 0 ) 

23(),!J { 

2:.Hl5 // Con.st.11J.d the. candidate 

'.l:lO(i g = fAlgListNumber( candidatePos, Tp ); 

2307 u = fMonListNumber( candidatePos, Tm) ; 

'.l308 P = fMonPairListNumber( candidatePos, Tv ); 

2:3()9 if( pl > 2 ) 

2:110 { 
2:31 l if( LorR == 0 ) 
2:l U printf(" Analysinguleftuprolongat ionu(u('l.s) , u'l.su) ... \n", 

231:1 fAlgToStr( g ), fMonToStr( candidateVariable) ); 

2:.ll ,1. else 
'.l:H5 print f( "Analysingurightuprolongationu (u ('l.s) , u'l.su) .. . \n" , 
2:116 fAlgToStr( g ), fMonToStr( candidateVariable) ); 

2:117 } 

2:111! 
2:H9 // Adjust T ,,._ Remove (g, n. P) fnm,. T and add (g, n. (enla.1:qcd P)) 

2:320 Tp = fAlgListRemoveNumber( candidatePos, Tp ); 

2:w Tp = fAlgListPush ( g, Tp ); 

2:322 Tm = fMonListRemoveNumber( candidatePos, Tm ); 

2:12:3 Tm= fMonListPush( u, Tm ); 
2324 Tv = fMonPairListRemoveNumber( candidatePos, Tv ); 

2:125 
2:32ti if( LorR == 0 ) // l,eft prolongation 

2:127 P.lft = multiplicativeUnion( P. lft, candidateVariable ); 

2:128 else // Right pmlon!/af,ion 

2:.1w P.rt = multiplicativeUnion( P.rt, candidateVariable ); 

2:rno 
2:):{I T v = fMonPairListPush( P.lft, P .rt, Tv ); 

2:rn2 

:l:3:1:j / / Con.,t1·u.1:t the pml,mgaf;ion 
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2:n4 if( LorR == O ) 

2;rn5 gDotx = fAlgTimes( fAlgMonom( qOne(), candidate Variable), g ); 

2336 else 

2:l:37 gDotx = fAlgTimes( g, fAlgMonom( qOne(), candidateVariable) ); 

23311 

2:n9 / / ff the criterion is false . . . 

2:HO I I if( NCcritm-ion( gDot:c, u . Tp, Tm.. GBasis, vars) -== 0 ) 

2:l41 { 

2:J,12 

2:14:J 

2:344 
2:\4}) 

:l:l4i-, 

2:u, 
2:l-'18 

234\1 

2:iso 
:l:35 l 

2:ir,2 
;l:)5:l 

2:1:,4. 

23:;5 

2:l.':i(i 

~357 

2351! 

2:!39 

23ti0 

2:lGl 

:l:lt\2 

2:J(;:l 

2:lH.-1 
2~i(j!j 

:l36(\ 

2:w, 
2368 

23ti(l 

2:l70 

2371 

2:l72 

2:37:1 
2:37,1 

:t375 

2377 
2:-171) 

:l:l79 

2:1so 

2181 

2;1sa 

2:334 

2:J8G 

:l:3Stl 

II ... then find th,; normal fo1-m /Jf tl1.1; pmlon_qo.t fon w.-r.t. GBasis 

soFar = fAlgListPush( gDotx, soFar ); I I Jndic<1/c we ha·ue encountered another polynomial 

h = IPolyReduce( gDotx, GBasis, vars ); II Involu'lively -red-<1r.c gDot~: w.-r./ .. G'Bci.si.s 

h = findGCD( h ); I I Divide thnn1.9h by the GCD 

if( pl> 2) printf(" ... Reduceduprolongationutou'l.s ... \n" , fAlgToStr( h) ); 

nOfProlongations++; I I lncrernent I.he 11.mnhm· of pmlonycdion.s pmce.s.sed 

I/ Check for tl'ivi<tl ideal 

if( fAlglsOne( h ) == (Boo!) 1 ) return fAlgListSingle( fAlgOne() ); 

if( fAlglsZero( h ) == (Boo!) 0 ) I I ff the 7,rolonga.tion did no/. r,;di,c-<·: to (I 

{ 
I I Add h la GBasis a.nd reca.lc·ula.te mul-tipliclltive v<iria.bles ·if necessar_v 

if( !Type < 3 ) 

{ 

} 

pos = l; 

if( SType == 1 ) GBasis = fAlgListDegRevLexPushPosition( h , GBasis, &pos ); I I Dc9HcvL<,1; sort 

else if( SType == 2 ) GBasis = fAlgListAppend( GBasis, fAJgListSingle( h ) ); / I Just. <tppen<l 

else GBasis = fAlgListNorma!Push( h, GBasis ); I I 801·/. /1y m.orwmial o-rdcr·in!/ 

vars = OverlapDiv( GBasis ); I I Full rncalcula.te 

else GBasis = fAlgListAppend( GBasis, fAlgListSingle( h) ); /I .ht.it append on.to wd 

if( pl> 1) printf("Addedu'l.sutouGu('l.u) ... \n", fAlgToStr( h ), fAJgListLength( GBasis) ); 

e lse if( pl== 1) printf("AddeduaupolynomialutouGuuuuuuu('l.u) ... \n", fAJgListLength( GBasis )); 

LMh = fAlgLeadMonom( h ); 

if( deg Restrict == 1 ) I I lf we cire rn,~t-rir.t.ing prolonget/.ions /,y <lcgn«-; ... 

degTest = fMonLength( LMh ); 

if( degTest > d) II ... <tr/./l if Ute degn;e of t:h,; ,u-;w polynominl ea:ceeds t.h,! bonn<l .. . 

I I ... o.<ljust !.he bound o.cr:oniingly 

d = degTest; 

if( pl > 2 ) printf("Newuvalueuofudu•u'l.u\n", d ); 

twod = 2*d; 

} 
} 

I I if DM(h) == Llvl{rrolongation) 

if( fMonEqual( fAlgLeadMonom( gDotx ), LMh ) == (Boo!) 1 ) 

{ 
I/ Ad<l cnt1·11 (h. u , (\em7,t.ysl'l, \<miptyset)) to 'I' 
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2:187 

2:l88 
23::lt; 

2:l90 

2,Hll 

2:.rn2 
:i:3r;:i 
23))4 

2:3<;5 

2:l!l(i 

:.l:397 

2:198 

2399 

2-HlO 

2401 

2'102 
2.-10:l 
:l,'1()1 

24\):j 

:i,100 

2407 

2,108 

240!l 

2410 

2-111 

2412 

2,J 1:1 

24J.:l 

:l.:1 15 

2,1 J(i 

24 17 

2,11 8 

:l419 

2,120 

:l4'2l 

2:J22 

24'2,l 

2,12,1 

2425 

:l.-J26 

2427 
2,J2::; 

2429 

2430 
24'.ll 
2,rn2 

24'.l:l 

24:34 

2,1:.15 

2,rnG 

24:17 

24:18 

2,1:IY 

APPENDIX B. SOURCE CODE 337 

} 

Tp = fAlgListPush( h, Tp ); 

Tm = fMonListPush( u, Tm ); 
Tv = fMonPairListPush( fMonOne(), fMonOne(), Tv ); 

e lse / / Add c;n/,ry tc, T an.cl cuf._j-11 .. ~/. l'is/.$ 

{ 
// A del cn.tr-11 J,o 'J' 
Tp = fAlgListPush( h, Tp ); 

Tm = fMonListPush( LMh, Tm ); 

Tv = fMonPairListPush( fMonOne(), fMonOne() , Tv ); 
if( pl> 3) printf("Modif yinguTu(sizeu'!.u) ... \n", fAlgListLength( Tp) ); 

/ / Set ·u11 lists for next operation 

Tp2 = fAlgListNul; 

Tm2 = fMonListNul; 

Tv2 = fMonPairListNul; 

// F'or each{!, v. (DL, DH}) \in 1' 

if( pl > 4 ) printf(" AdjustinguMultiplicativeuVariables . . . \n"); 

while( Tp) 

{ 
f = Tp - > first; // Extmct a ,,olynomial 

LMf = fAlgLeadMonom( f ); 

if( pl> 4) printf("Testingu(1/.s , u'!.s)\n", fMonToStr( LMh ), fMonToStr( LMf) ); 

// If DM{h) < DA,f{J) 

if( theOrdF\m( LMh, LMf) == (Boo!) 1 ) 

{ 

} 

// Add enlry lo Q 

Qp = fAlgListPush( Tp -> first, Qp ); 

Qm = fMonListPush( Tm -> first , Qm ); 
Qv = fMonPairListPush( Tv -> 1ft, Tv -> rt, Qv ); 

// Discard f J1·om GBasi.• 
GBasis = fAlgListFXRem( GBasis, f ); 

if( pl > 1 ) printf("Discardedu'!.suf romuGu('!.u) ... \n" , fAlgToStr( f ), fAlgListLength( GBasis) ); 

e lse if( pl == 1 ) printf("Discardeduaupol ynomialufromuGu ('/.u) . . . \n", fAlgListLength( GBasis ) ); 

e lse 

} 

//Keep ,:nt;ryJ in 'J' 

Tp2 = fAlgListPush( Tp - > first, Tp2 ); 

Tm2 = fMonListPush( Tm - > first, Tm2 ); 

Tv2 = fMonPairListPush( Tv -> 1ft, Tv -> rt, Tv2 ); 

// Ad1,ance the lists f;u the n ext enti·y 

Tp = Tp - > rest; 

Tm= Tm -> rest; 

Tv = Tv -> rest; 

/ / S'et ·u7, li.s/,S for ne:id. operation 



2,!40 

24·'11 
2,142 

2443 
2,J<l4 

244!, 
:.M ,16 

2447 
:.M48 
2,1,w 

2450 

2401 

2452 
2,J5:.i 

245•1 
2,,]55 

2456 

2,157 

2-J:J8 
2.,159 

2 ,.1(;() 

2461 
2,rn2 

24c;:1 

2•Jti4 

24G5 
2466 

24G7 
:.l-'l(i8 

2400 
2,1 70 

247] 

2472 

2•17:l 

2474 

2tJ75 

247G 
2,177 

2478 

2479 

2480 
2481 
2482 

248:t 

2484 

2485 
248H 

2487 
2,rn.s 
2,180 

24 ')0 

24\JJ 
2.-J!J2 
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Tp = fAlgListNul; 

Tm = fMonListNul; 

Tv = fMonPairListNul; 

I I .Recal,;uln.te m·1tltiplicn.ti·u1i vttriahfos 

if( !Type < 3 ) vars = OverlapDiv( GBasis ); 

II N,,. each(!. v, (IJL. /JR)) \in '1' 

while( Tp2) 

{ 
I I Keep f and v as they a.,·c 

f = Tp2 - > first; 
Tp = fAlgListPush( f, Tp ); 
Tm= fMonListPush( Tm2 -> first, Tm); 

DL = Tv2 -> 1ft; 
DR= Tv2 -> rt; 

II Find inler.sc1:tior,. of D cmd NM_ f(f, G'Ba.si.s) 

if( !Type < 3 ) I I Loml di-vi.lion 

{ 
I/ Find NAU(J; G'Basi.s) 

pos = fAlgListPosition( f, GBasis ); 

fVars = fMonPairListNumber( pos, vars); 

fVarsL = fVars.lft; 

fVarsR = fVars.rt; 

NML = fMonOne(); 

NMR = fMonOne(); 

j = 1; 

I I G'alc'Ulai.t: Uw ir,.ter·.<ectiori. 

while( j <= (ULong) nOfGenerators ) 

{ 
gen = ASCIIMon( j ); 

II If ven a71pea.1·s in l)l, (nonumlt.ipl'ict1/,ivr:s} 1ml r,.o/ ·in f Va.r.sL (111·11.ltiplicat.imis) 

if ( ( fMonlsMultiplicative( gen, DL) == 1 ) 

&& ( fMonlsMultiplicat ive( gen, fVarsL ) == 0 ) ) 

NML = fMonTimes( NML, gen ); I I gc-:n a.7,pcm·.~ in th,; l,;f/. ini,,ir.,ec/.'ion 
I I If gen a.7,pea.rs in DR (nonr11:u,ltiplict1ti-ucs) but not in JVarsn (rr,.1tlt-i.plimt-ivt:s) 

if ( ( fMonlsMultiplicative( gen, DR) == 1 ) 

&& ( fMonlsMult iplicative( gen, fVarsR) == 0 ) ) 

NMR = fMonTimes( NMR, gen); II gen np11e1,.r.s in the 1·i9ht in. ter·ser:lir!t>. 

i++; I/ Get ready to look at the 1ie1:t va.riable 

} 
} 
e lse if (!Type > = 3) /I Global division 

{ 
I I Pint! the. m11.ltiplimti·ue ,mrinhle.; 

if( !Type == 3 ) LMultVa.rs( fAlgLeadMonom( f ), &cutoffL, &cutoffR ); 

e lse if( !Type == 4 ) RMultVars( fAlgLeadMonom( f ), &cutoffL, &cutoffR ); 
e lse EMultVars( fAlgLeadMonom( f ), &cutoffL, &cutoffR ); 

338 



APPENDIX B. SOURCE CODE 

249:l 

241M 

2,J(li\ 

'.WJG 

2.-J97 

2,JfJ9 

251l0 

:l5(l 1 

2f►02 

250,1 

25°'1 
2505 
2MJ6 

2507 

2::,01! 

251)9 

:lGIO 

2511 

25l2 
25 J:l 

25M 
2f.l5 

25W 
2::,17 

NML = fMonOne(); 

NMR = fMonOne() ; 

I I C nlculn.f.c /.he l~fl. int1'1·sedion 

for( j = cutoffR+l ; j <= (ULong) nOfGenerators; j++ ) 

{ 
gen = ASCIIMon( j ); I I Ohtain ,1. non·rn·u.lt-ipli,:o.tiw vari11ble 

I I If it. ttppear.s ·in D L it 11111ie111·s in the: iri.te1·seclion 

if( fMonlsMultiplicative( gen, DL ) == 1 ) 

NML = fMonTimes( NML, gen); 

/ I Ca.lcula.te the ri[thl inl er.<ecliun 

for( j = 1; j < cutoffL; H + ) 

{ 
gen = ASCIIMon( j ); I I Oht:nin a 11011111·11.ltiplica.tive 11Mia.blc·: 

I I If it. 11ppears in DR. ii: 11p7,rnrs in lhe intersect·ion 

if( fMonlsMultiplicative( gen, DR) == 1 ) 

NMR = fMonTimes( NMR, gen ); 

I I Add the nonmultiplicntive -unria.bles to Tu 

Tv = fMonPairListPush( NML, NMR, Tv ); 

2518 I I Advance the /-i.5/ .. s 

2::dll Tp2 = Tp2 - > rest; 

25:l0 Tm2 = Tm2 - > rest; 
:l!'.>2 I Tv2 = T v2 - > rest; 

2522 } 

2G23 } 

2524 
2525 } 
2f►2G I I dse -~/'( ]'l > 2) print!(' . . Criterion used lo disca.1·d pro/onga.lion . . \-n ''); 
:2527 } 

21:,21! else II ,~cit. Jmm. loop ...... no .s-u.i lnble prnlrmgalion .. s fon11d 

25:29 { 

2::,30 escape = 1; 

2581 

2::i:12 

25:l:l } 

:l:,:M while( Qp ); 

25:v:; 

2531·: if( pl> 0) printf(" ... InvolutiveuBasisuComputed . \n"); 

2s:n 

2538 return GBasis; 

25'.l\l } 
25.-10 

2::,-1 1 I* 
25.-12 * 
2:j,1 :l • End of File 
254~1 * =.-:::::::-:::::::: .=======::=::::;: 

2,,,15 *I 
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B.2.12 involutive.c 

1 I• 
2 * Pile: im,ol,,tive. c (Nonc:omm·uto.tiv,: fnvolnti.ve Basis Progmm) 

:3 * Au.th.or: Gnrct.h Evans 

,1 * Lust Mod~{icd: 1 //th A·u.gu..sl: '2011.'i 

r, *I 
(: 

7 II hu;lude MSSTiC Librnrie.s 

8 # include <fralg .h> 

f) 

J.0 I I fri.cludc·: ,._fwn.c:t'ioo .. ~ /,i//-rrwie.i 

11 # include "f ile_functions .h" 

J.2 # include "list_functions.h" 

1:1 # include "fralg_functions .h" 

14 # include "aritbmetic_functions. h" 

Hi # include "ncinv_functions.h" 

16 

17 I• 
18 • .......................... __ .. = ......... ......... =-·=· .. ··=====-·=· .... ·=====-·=· .. ········ .... ·======= ... = 
1H * External Variohles for ncinv_fundions.c 

~ . --======-=====-======================-=-
21 •I 
22 

2:'l ULong nOfProlongations; I I S t.ores the nu-mb,;r of prnlon!}<tl.ion .. s m.lc1da.ted 

2,l int degRestrict = 0, I I Dc,te-rmines whc-:t.hc·:1· of not. )!'mlongations o.n; res/.rict.ed hy di:gree 

2:, !Type= 3, II Ston:.s /.h,; i1woluli'ue rli,;ision ·u.sed ( 1,2 ·= L,;jl/Ri.ght Ouerla.J) , 3,1,. =- Lcil/Right, 5 = Empty) 

2ti EType = 0, I I Storns -/.he t.ype of Ove,-/op Division 

27 SType = l, I I Determines ho'/JI I-he bus;s i.s sorted 

28 MType = l ; I I Determ:ines 111el./w,l of involut·ive divis-ion 

2n 
30 I• 
31 • ============================-======-===-====================== 
;,2 * B:1:/.1:,·r,.«l Vu-riobles for frn/g_J\111.c/.ions.r: AND nc:inv_fu.nd·ions. <: 

:i:.l ·• ============================================================== 
;'M ,,j 

'..15 
:lG ULong nRed = 0; I I Stores how ·mmt!J r£•cfocl-icms ha.t'« been carried ou.t 

:!T int nOfGenerators, I I lfolcLs the 11·u.mbm· of gm1.e1·0..tors 

:38 pl = 1; I/ Holds the "Pr·int L1,1•el'' 

:19 

40 I* 
41 * = · .... ·====== ..... ===-·=========-·=-·=====-·====·====== 
42 • Global \la.i-ilibles for ncim•-funclions. c 

43 · ---=================================== 
,14 *I 
.:15 

4fi FMonList gens= fMonListNul; II St.oms /,he gen.1:m/.ors for !he: ha,,is 

47 FMonPairList multVars = fMonPairListNul; II 8/m·es 77mltipl'ic:at-ivc vm·io.bles 

,18 FAlgList F = fAlgListNul, I I Holt/.s l/1.1; input bll.si.s 

49 
50 
r,1 

G = fAlgListNul, I I Hold.s tlw Groelm.c•:1· Bnsis 

G _Reduced = fAlgListNul, II Hold.., Ute R1:d11cerl Groebner Ba.s-i.s 

IB = fAlgListNul, I I Holds the I-nvolu.ti-ue Ba.si.s 
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IMPChecker = fAlgListNul; I I Stores a list of polynomials for the IMP 

53 FMon al!Vars; II Stun,.s all the vnria.bfos 

54 int AlgType = 1, II 8/.o rrs which ·invol1,t·i11(, a.lgoril./m,. to -,w; 

,;5 order...switch = 1; II Storns the monor,rictl or-de1·in,9 -used 
5(; 

58 * Rcmu1r/.:: lh:n: o.re the possible -ualwi.s of orde1·_sw-itch: 

G9 * 1: DegUevl.,e:r: 

tlO * 2: D,JgL,J:& 

GI * .'J: Le:r: 

G2 * 9: Wreath Product 

{i:l *I 
G4 
65 I* 
G(i , . Fu.nct.-ion N11m,1: Normo/Bat.ch 

67 * 
08 * Ove,·uiew: Co.lculates an Trwolutivc Ba.sis ,mit o. 

tl9 * Red·u.c:cd M·inirnnl Gr()l!/,ner Ba..•i.• 

70 * 
7 J * Detail: Given an input bn,;•i.s. this function 1,ses the 

72 * functions in fra./g_functions.c and ncinv_funclions.,; 

7'.I * to mlcu.lnle an lnvolutivc Ba,,sis and a. m.inima.l 

7,1. * red·uccd Groclmer Ba.sis fur the inpu.t basis. 

75 * 
i6 * R:,;t,c·mo./, \lo.1·iables IJ.rnd: int pl.: 

77 * Glo/)((l Vwri11hles U.ml: FAlgl,isl P, G. G_l/c:d-u.<:cd; 

7~ * 
79 ,,; 

80 static void 

81 NormalBatch( ) 

82 { 
8:3 FAlgList Display = fAlgListNul; 

84 int p!Swap = pl; 

i!5 
8tl I I Ou.tr>iit some initial ·inform.a:tion to screen 

87 if( pl > 0) 

88 { 

8U printf( "\nPolynomialsuinutheuinputubasis: \n" ); 

90 Display = fAlgListCopy( F ); 

!J l while( Display ) 

f)2 { 

'Ja I I if pl === 1, cl-i.splo.y the pol-ynfJrn-io.l ·us·ing t.hc mig-inal gi:1wm.tors 

\J..I if( pl== 1) printf("'l.s, \n" , postProcess( Display-> first , gens)); 

% I I 0thcr10isc, if pl > 1, disvlay the polynomial 1,sing ASCII y~nera.tors 

HG else if( pl > 1) printf("'l.s, \n" , fAlgToStr( Display-> first)); 

9i Display = Display -> rest; I I Acl-u1mce the l-ist 

08 } 

99 printf(" (1/.uuPolynomials] \n", fAlgListLength( F ) ); 

10(1 } 

101 

102 II C:alcu.ln'l:c m,. fovolitlive BasLs for P 

I O:l if( A lgType == 1 ) G = Gerdt( F ) ; 

104 e lse G = Seiler( F ); 
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!OG 
l07 

108 

10ll 

J 10 

ll1 

J 12 

11:1 

u,1 
115 

l!(i 

ll.7 

11/l 

I.HJ 

120 

121 

J 22 

12:l 

12~ 
l2(; 

121) 

l 27 

1:1~ 

139 
HO 
l •U 

1'12 

1.,1;, 

J ,J/1 

1,1,; 

14tl 

147 

141l 

.14.9 

1.50 

11\ I 
J;,2 

15:.1 

I :,4 

155 

I GG 
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I I Displa.y calculalerl l,a.si., 

if( pl > 0) 

{ 
if( pl > 1 ) printf("NumberuofuProlongationsuConsideredu•u'l.u\n", nOfProlongations ) ; 

if( !Type < 3 ) I I Dom/ d·ivwio'fl. 

{ 

} 

printf(" \nHereui sutheuinvol uti veuBasis\n ((Left, uRight) uMul tiplicati veuVariablesuinuBrackets) : \n"); 

18 = fAlgListCopy( G ); 

Display = fAlgListCopy( G ); 

I I W e will now calculate the multi'J)licative t1ari<lbles silentl11 

pl = O; I I Set. silent print le1•el 

if( !Type < 3 ) multVars = OverlapDiv( G ); 

pl = plSwap; I I Reslon: original 1n-int le11el 

while( Display ) 

{ 

} 

I I If 11l '"' '"" 1, d!i.splay lfu; ])(ll,1111.om.-ia.l ·using t.he original gcnerato,·s 

if( pl == 1 ) printf( "'l.s, u ('l,s, u'l.s) , \n", postProcess( Display - > first, gens ) , 

postProcess( fAlgMonom( qOne(), fMonReverse( multVars - > 1ft ) ), gens), 

post Process( fAlgMonom( qOne(), fMonReverse( multVars -> rt )), gens)); 

II Ot:herwis e, if pl> .l , displciy the 71olynomia.l using ASCll generators 

else if( pl> 1) printf("'l.s,u('l.s,u'l.s), \n", fAlgToStr( Display-> first), 
fMonToStr( fMonReverse( multVars -> 1ft) ), 

fMonToStr( fMonReverse( multVars - >rt))); 

Display = Display - > rest; I I Arlvam.c:e th.1; 7wly-n.or11.-ia.l list. 

multVars = multVars -> rest; II Advnnce I.he rm1lti71 lim.li·111; 1,a.ri«bles li.~l 

print£(" ['l.uuPolynomials] \n", fAlgListLength( G ) ) ; 

e lse I I Globa.l dfoi.sion 

{ 
print£(" \ nHereuisutheui nvoluti veuBasis\n ((Left, uRight) uMul tiplicati veuVariabl esuinuBrackets) : \n" ); 

18 = fAlgListCopy( G ); 
Display= fAlgListCopy( G ); 

while( Display ) 

{ 
if( !Type == 3 ) I/ L(,jt Di11faion 

{ 

} 

II ,r pl == 1. dis71l11y the polynomiitl u.si ng the origi n,1/ ge'fl.emt.ors 

if( pl== 1 ) printf("'l.s,u('l.s,ul), \n", postProcess( Display-> first, gens), fMonToStr( allVars) ); 

II Oi/u;rwi.~c. ·if )'l > 1. di.•pl11y the polynomial vsing A8Cll gc~n cmtor,s 

e lse if( pl> 1) printf("'l.s,u(all,unone), \n", fAlgToStr( Display-> first)); 

e lse if( !Type == 4 ) I I Right Division 

{ 
II If pl == I, di.spiny lhe polynomial u,,in.g the; ori.gina.l gene·m for.s 

if( pl== 1) printf("'l.s, u (l,u'l.s), \n", postProcess( Display-> first, gens), fMonToStr( a llVars) ); 

I I Ot/wnlfise, if 71/ > 1. dis]llay the polynomi<Ll m ing ASC:Jl genemt01·s 

e lse if( pl > 1) printf("'l.s,u(none ,uall), \n" , fAlgToStr( Display-> first ) ); 

157 e lse if( !Type == 5 ) I I Empty D'i1n.,s,.,m 
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l?\8 

159 
160 
IGl 
162 

IG:3 
1(,,1 

IG:, 

llio 

Hi7 

168 
Hi9 

170 
171 

172 

17'..l 
17,1 

175 

17G 

li7 
178 

179 

l 80 
181 
182 

183 
l M 

185 
186 

187 
lii8 

189 
JDO 

l fll } 

} 

{ 

} 

I I If pl == .I. display th e polynomial 1<sing the original ge-r,.ernlor.s 

if( pl== 1) printf( "'l.s,u(1,u1), \n", postProcess( Display - > first, gens)); 

I I Ot/u;n11ise. if pl > 1. dis1'l<i11 /he polynomial using ASCII gen crat,01·s 

else if( p l > 1) printf("'l.s ,u(none, unone), \ n" , fAlgToStr( Display - > firs t )); 

Display = Display - > rest; I I Ad11a.nce the list 

printf(" ['l.uuPolynomials ]\n" , fAlgListLengt h( G ) ); 

I I Calculate a. reduced and minimal Groebner B r,sis 

if( pl > 0 ) printf("\nComputingutheuReduceduGroebneruBasis .. . \n ") ; 

G = minimalGB( G ); I I Minimise-; tht: basis 

G_Red uced = reducedGB ( G ); I I l led,u:f! the ua .. i 'i.i 

if( pl > 0 ) printf( " ... ReduceduGroebneruBasisuComputed . \n"); 

I I Di.~play some information on scrnmi 

if( pl > 0 ) 

{ 
print f( "\nHereuisutheuReduceduGroebneruBas is: \n ") ; 

Display = fAlgListCopy( G..Reduced ); 

while( Display ) 

{ 
I I If pl = = .I, dis11lay the 7,olynomial usiny tfu; ori[Jinal gen,m,tors 

if( pl== 1 ) printf( "'l.s, \n" , postProcess( Display - > first, gens )); 

I I Otherwise, if pl > .I. displny the polynomial using A SCJ/J ycmemton 

else if( pl > 1 ) printf( "'l.s,\n" , fAlgToSt r( Display - > first ) ); 

Display = Display - > rest; 

printf(" ['l.uuPolynomials] \n", fAlgListLength( G -Reduced ) ); 

192 

l!.l:l I•• 
J g.J * flmdion NC1mc: IMPSol-ut!1' 

l!.lf> * 
J 9G " Ovcr ,riew: 8olve.i the lilcal lvlc-:m/u;rship Pn, /,l,;m .fin · polyn011l'ic,ls 

l'Ji * so1<rcc,d f mm disk 01· f1'Cm1. '1LSe1· ·input 

I l)I:> * 

1!)9 * Ddwil: Gi11c"n n polynom·ial so·urc;,xJ fmm di8k or f rom u.ser 

'.WO * -in11ut, t hi., func:ti.or, so/i,es th ,i ideal m ernhership prnhkm 

201 • f or th<ll polynomiltl by reducing th,; polynomial w.r.l:. 

202 , a minim.al reduced Groebner Basis (u.si.ng a specia.lly 

20:1 • ada:pte,i Junction} and testing to sec whether the 

204 , polynomial reduces /,o zero or not, 

205 • 

206 ·• E:r:lcmo.l V,:wi«bfos U.rnd: FALg f,i.st. fMPChcckc·:1·; 

207 * FMonLisl gens; 

208 * in/. pl; 

209 *I 
2 lO static void 
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211 IMPSolver( ) 

212 { 
21:.1 FAlgList polynomials= fAlgListNul; 

'.!14 FA!g polynomial; 

2 15 int sink; 

'.! 1 G Short dk = 2; // Com,enlion: l = di.,k. 2 = 1.;eybortrd 

217 Boo! answer; 

'.!18 String inputChar = strNew(), inputStr = strNew(), 

219 polyFileName = strNew(), outputString = strNew(); 

220 FILE *PolyFile; 

'.!21 

222 // Determine "'he/her the inpu.i wi.ll cu·me from. dis/,: or from the keyl,oa.rd 

'.!2/1 printf(" ***uIDEALuMEMBERSHIPuPROBLEMuSOLVERu• ** \n \n "); 

224 printf("Source: uDisku(d)uoruKeyboardu(k) ?u ... "); 

225 sink= scanf( "%s", inputChar ); 

226 

227 // If the ·u.ser hasn't entered 'd ' or 'k', a . .1/.; f or a.nother let:t,:r 

228 while( ( strEqual( inputChar, "d" ) == 0) & ( strEqual( inputChar, "k" ) == 0 ) ) 

229 { 
:.l:10 printf("Error: uPleaseuenteruduoruku ... "); 

2'.ll sink= scanf( "%s" , inputChar ); 

232 } 

'.,!:1:l printf("\n"); 

2'.l5 // ff /.h e 7wlyrwm.·ials IJ.m to &e ob/.ained fmm di.ik 

'.t~G if( strEqual( inputChar, "d" ) == (Boo!) 1 ) 

237 { 

2:18 dk = l; // S'Ht inp·u.l frmn disk 

2:tll printf( "Pleaseuenterutheuf ileunameuofutheuinputupolynomialsu ... ") ; 

240 sink = scanf( "%s" , polyFileName ); 
;.l,j. j 

242 / / Rmd file fmrn di.sk 

2-:1:1 if( ( polyFile = fopen( polyFileName, "r" ) ) == NULL) 

214 { 

2rJ5 printf(" 'l,s\n", "Erroruopeningutheupolynomialuinputuf ile . "); 

246 exit( EXJT_FAILURE ); 

247 } 

241l 

249 // 0 1>/,ain the; 1iolynom.io.l.s J,-on1, t./w Jile 
:250 polynomials = fAlgListFromFile( polyFile ); 

2iil polynomials= preProcess( polynomials, gens ); // Chu.nr1e /:o ASCII orrler 

252 sink = fclose( polyFile ); 

2!'i:l } 

'.!54 else // Else obta·in the first polynom:ial fmm. the keyboarcl 

2r,;, { 

231l if( pl < 2 ) // Reqtiire polynom.ia.l ming orirri.,wl generators 

'.U,7 printf( "Pleaseuenteruaupolynomialu(e. g. ux•y-2-z) \n"); 

258 else // f !.eq11irc polynomi.al ·u.sing A 8C ll general.m·s 

25\1 printf("Pleaseuenteruaupolynomialu(e. g ,uAAA•AAB"2-AAC) \n"); 

2G() printf(" (Ausemicolonuterminatesutheuprogram) ... ") ; 

:.llil sink = scanf( "'l,s", inputStr ); 

2G2 

2\i'.l if( ( strEqual( inputStr, '"' ) == (Boo!) 1) I ( strEqual( inputStr, ";" ) == (Boo!) 1) ) 
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264 polynomials = fAlgListNul; I I No 7,oly given. terminate pmgram 

2G5 else 

266 { 

2(;7 I I P·,1 .. sh the 9i1•en polynomial onto I.he list 

26~ polynomials = fAlgListPush( parseStrToFAlg( inputStr ) , polynomials); 

'.W9 if( pl< 2) II Need t o com,ert lo A8CIJ ordt:r 

270 polynomials = preProcess( polynomials, gens ); 

27) } 

272 } 

27:l 

274 / I For each polynouiial in the list (for ke·µboa.rri entry the li# will hCLve I element) 

275 while( polynomials ) 

27(~ { 

277 

278 

27tJ 

280 

28 l 

282 
28:1 

284 

285 

286 

287 

2::!~ 

289 
2!,l() 

291 

:.l'J2 

2f):3 

:.l'J4 

2HG 
2()1, 

297 

29R 

2!)\J 

:mo 
301 

:102 
:3((1 

:10,1 

:3()5 

:HJG 
307 

:\08 

:309 

:.110 

:n1 
312 

:n3 
Tl4 } 
:II!, 

:316 I* 

polynomial = polynomials - > first; I I B:r:tmcl a i•olynomin./ to te.,t. 

polynomials= polynomials-> rest; II Advc,nw t.lw list 

I I Sol'UI: th.1: Idec,/ Memb!:r·shiJJ Problmn fr>r the 7>ol1ro.omial 

II u,•ing the Grl)ebner Bc,_sis ston:d in !MPChe1;ke1· 

answer= idealMembershipProblem( polynomial , IMPChecker ) ; 

I I Pre.pare to repo1-t the resuU co1·reclly 

if( pl < 2 ) outputString = postProcess( polynomial, gens ); 

else outputString = fAlgToStr( polynomial ); 

I I Ret.wn the n:.rnlts 

if( answer == (Bool) 0 ) 

printf("Polynomialu'l.suisuNDTuaumemberuofutheuideal , \n", outputString ) ; 

else 
printf("Polynomialu'l.suISuaumemberuofutheuideal. \n", outputString ); 

if( dk = = 2 ) I I Ob ta.in nnol:her poly from keybonrd 

{ 
if( pl < 2 ) I I Require polynomiill ·using original generators 

printf("Pleaseuenteruaupolynomialu(e . g, ux•y-2-z) \n"); 

else I I Heq,,irc polynomial 11sin9 A SCll generators 

printf( "Pleaseuenteruaupolynomia l u (e.g. uAAA•AAB-2-AAC) \n" ); 

printf(" (Ausemicol onuterminatesutheuprogram) .. , ") ; 

sink = scanf( "'l.s" , inputStr ); 

if( ( strEqua l( inputStr, "" ) == (Bool) 1 ) I ( strEqual( input Str, ";" ) == (Bool) 1 ) ) 

polynomials = fAlgListNul; I I No p,1ly given, tei-m.inQ.lC' pror,rwn 

e lse 

} 

I/ P1Lsh the given polynom:ia.l onto the l-i.st. 

polynomials = fAlgListPush( parseStrToFAlg( inputStr ), polynomials); 

if( pl < 2) II Need to convert to AS(:[[ order 

polynomials= preProcess( polynomials , gens); 
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'.1 17 * .Function Name: rnain 

:n1< * 
3 W * 01,c-n,imu: A Noncornm.1tt11t,iv1-: Jm10/,uf:ive Basis P1'0_qro.m 

:l20 * 
:121 * De/.«-il: Thi., f1mcl'ion. d,Yi.is with the inpnt., an.d o·ut7mts 

:l:l2 * of J:he prngro.m. In pwrtir.ular, thti commo.nd linti c1rg'U.ments n.rn 

:32:1 * processed, the in1mt ])le,• a.re rmd, a.nd on1;r, the fr1.vol·uti,11; 

:u,1 * Ba .. si.s ha.s been rnlculat,xi. it is ot1lp·ut to disk together with 

:325 ·• the mdttced ·m,inirn«l Grn,-;bn,!r Bo.sis. 

:1:w * 
:l:27 * External \/aria.hies Used: int nOfGcnerators, pl; 

:128 * Global \f0,1•i11blc8 Used: FAlgI,i.,t F; 

:l29 * FMonl,ist gens; 

330 * inf. ordcr_switch; 

a:n *I 
:i:n int 

:u:l main( argc, argv ) 

:3:1,1 int argc; 

;ur, char *argv[l; 

:J:l6 { 
:i:17 String filename = strNew(), // Used /.u create the nut.put file iwme 

:33is filename2 = strNew(); // Used to crwtc the invofotivc o·u.t;mt Jilc name 

:i:rn FAlg zeroOrOne; // U.se<I t.o test fnr trivi,1l basfa element, 

;3,10 FMonList gens_copy = fMonListNul; // Hold.< a copy of the genemtors 

:.1-11 ULong k; // U.,<Jd as a. wu.nlcr 

;142 int i , // Used as n. co·u.nter 
:J,t:\ length; / / Use,l f.o ston; lh,: lcni1t.h of n cormr,.11,nd 1-ine m;q11ment, 

;1,1,1 Short alpha.switch = 0, // Do 1111< ())1/,imise t:/w 9cmcra.to1· ()1·1ler le,;i.cogmphicnlly-? 

:H5 fractions= 0, / / D,l w,; i:1-imi.no.te fmctions from. th1, input brtwis? 

:14(J IMP = 0, // At. J.he mid of the alg,wit:hm, <lo w,i soh•e the IAfP? 

:H7 p; // Used to wmi.gat.e th.,·o·u.gh. lhfl commmid line c1rgume•fl.ts 

:1,18 FILE *grobdat a , // 8t.ores tht: inp-u.t .file 

:349 *Outputdata; // Used to constrnct the o-u.t7nit ])le 

:1r,o 
:led / / Process Corn.ma.nd Line Arrru-ments 

35~ if( argc < 2 ) 

;l53 { 

:J,:i-l printf("\nlnvalidulnputu-u"rongunumberuofuparameters . "); 

;135 printf( "\nSeeuREADMEuforumoreuinformat ion. \n \n"); 

:356 exit( EXIT_FAILURE ); 

:358 
:i;:;9 p = l; // p will ,;tcv thro·u.gh all the comm<1nd line ar9unie-11ts 

360 while( a rgv[p]I0) == ' - ' ) / / Wlrile lhern i.• a.no th.er command line argument. 

'.l61 { 

:362 length = (int) strlen( argv[p) ); // Determine length of n.rg-u.inent 

:wa if( pl > 8 ) printf("Lookinguatuparameteru'l.iuofulengthu'l.1 \n", p, length ); 

:H,4 

:165 if( length == l ) / / .!1,sl a. '' ..... '' was gfven 

:!GG 
:3ti7 print f(" \nlnvalidulnputu- uemptyuparameteru (posit ionu'l.i) . " , p); 

:!Gil printf( " \nSeeuREADMEuforumoreuinf ormat ion . \n \n"); 

:Jti9 exit( EXJT_FAILURE ); 
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'.170 

~171 

372 

:i73 

3 74 

:lio 

a96 

APPENDIX B. SOURCE CODE 

/ I W e wW 11010 deal wilh /:hi: dilferen/. «llowa/,lti )!ammcl-<:1·s 

switch( argv(pl[l] ) 

{ 
case 'a': 

alpha..switch = l; // 0 1ilim·isc t.lw genera /01· order le,:icogm p/,.frally 

break; 
case • c': / I Choose t/11) algorithm 1,sed to const.ruct th,-; invol·utivc bn-,is 

if( length ! = 3 ) 

{ 

} 

printf( "\ninval iduinputu-uincorrectulengthuonucodeuparameter . "); 

printf( "\nSeeuREADMEuf orumoreuinf ormat ion . \n \n"); 

exit( EXIT..FAILURE ); 

switch( argv(p](2] ) / / Choose the nl901·it/1,m. tw e 

{ 
case '1' : 

case '2' : 

AlgType = ( (int) argv[p]l2] ) - 48; 

break; 

default: 
printf( "\ninvaliduParameteru(Y.cuisuanuinvaliducodeuselectionucharacter) . ", argv(pl[2]); 

printf( "\nSeeuREADMEuforumoreuinformation. \n \n" ); 

exit( EXIT-FAILURE); 

break; 

;H)7 break; 

;~!JS case 'd': 

:HJ9 order..switch = 2; I/ Use t:h e Degle:c Mm1.o·rni.u/. 01·derin9 

.-.100 break ; 

40 I case 'e': I I Choose the Ovcirfo.7, D·/1,ision f.ype 

402 if( length ! = 3 ) 

,JO:l { 

404 printf(" \ninvaliduinputu-ui ncorrectulengthuonut ypeuof u0verlapuDi visionuparameter . "); 

,J05 printf(" \nSeeuREADMEuf orumoreuinf ormation. \n \n"); 

40G exit( EXIT..FAILURE ); 

-107 } 
408 switch( argv(pl[2] ) / I A ssi9n /.he f.ypc: 

.-109 { 

.-J l O case ' 1 ' 

.-1 l l case '2' 

4 12 case '3' 

,11:1 case '4' 

,114 case '5' 

Hf> EType = ( (int) argv[pl[2] ) - 48; 

4W break; 

4 17 default: 
,j l~ printf("\ninvaliduParameteru(Y.cuisuanuinvalidu-eucharacter). ", argv[p](2]) ; 

41.9 printf( "\nSeeuREADMEuforumoreuinformation . \n \n" ); 

420 exit ( EXIT..FAILURE ); 

-·121 break; 

.-122 } 
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4'.tl break; 

42,1 case 'f': 

:)25 fractions= 1; // Elirn-i.na.te Ji·action.~ fn,m th1; invv.t ba.;i,; 

42G break; 

•J27 case 'l' : 
428 order.switch= 3; // Use /;he Le:r.icogmphic Monomial Ordering 

429 break; 

.,\;JO case 'm': // Choose: mel:hod of im,olulive divi.sfon 

-i:1 I if( length != 3 ) 

,n:i { 
431\ printf( "\ninvaliduinputu-uincorrectulengthuonumethoduparameter. "); 

4:14 printf( "\nSeeuREADMEuf orumoreuinf ormat ion . \n \n"); 

435 exit( EXIT-FAILURE); 
,1'.Hl } 

4:37 switch( argv(p](2) ) // C:ha,w; the; method 

·13/i { 

,ng case ' 1 ' : 

.J,1() case '2' : 
441 MType = ( (int) argv(p](2) ) - 48; 

,142 break; 

,14.:1 default: 

:"14 printf("\ninvaliduParameteru('l.cuisuanuinvalidumethoducharacter). " , argv(p](2)); 

44.5 printf( "\nSeeuREADMEuf orumoreuinf ormation. \n \n "); 

,[.jfi exit( EXIT_FAILURE ); 

'14.7 break; 

448 

H!l break; 

450 case 'o': // Choo.;c-; how lh1; lm.;i.; i.; s/.orecl 

,151 if( length != 3 ) 

4S:l { 

,15:i printf("\ninvaliduinputu-uincorrectulengthuOnusortuparameter. "); 

4r,,1 printf( "\nSeeuREAOMEuforumoreuinformat ion . \n \n"); 

455 exit( EXIT _FAILURE); 
,J:,(j } 

457 switch( argv(p](2) ) // Choose the .sorting m ethod 
,:) 5/i { 

4j9 case '1' 

•160 case '2 • 

4Gl case '3' 
,Jtl2 SType = ( (int) argv[p](2) ) - 48; 

,l(j:3 break; 

,1M default: 

4G:, printf("\ninvaliduParameteru('l.cuisuanuinvalidusortucharacter). ", argv[p](2)); 

.'[(ifi printf("\nSeeuREADMEuforumoreuinformation . \n\n" ); 

467 exit( EXIT_SUCCESS ); 

46R break; 

,1(;9 } 

470 break; 

•171 case 'p': // C1J.l/,; the Interactive l cleo.l Meml!l:rship Problem 

4 72 IMP = 1; / / Solver after t/w Groelme1· Basis ha.; been fcm'Tld. 

,173 break; 

,174 case 'r': // l/,,e /:he De<gf/.evL,1:t Monomial Onlcrir,.g 

,175 break; // (w,: do r,.ol:hing hen-: - this is def,,-ult 07,t.ion) 
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47G case I s 1 : / / Choose an in11olulive divis-ion 

4 77 if( length != 3 ) 

,j7~ { 

4 79 printf( "\nlnvalidulnputu-uincorrectulengthuonuselectionuparameter. "); 

,180 printf( "\nSeeuREADMEuf orumoreuinformation. \n \n"); 

41ll exit( EXIT -5UCCESS ); 

-182 } 

41,:l switch( argv[p][2] ) // As.1-i,qn /.he -invol1tf,'ive divi.1ion tµpe 

,18,t { 

,.J85 case , 1' 

481> case 1 2 1 

487 case 1 3 1 

488 case 1 4 1 

,18tl case 1 5 1 

490 !Type = ( (int) argv[pl[2] ) - 48; 

,19 1 break; 

,192 default: 
,HJ:l printf(" \nlnvaliduParameteru (%cuisuanuinvaliduinvoluti veudi visionucharacter) , ", argv[pl[2]); 

4fl:J printf(" \nSeeuREADMEuforumoreuinformat ion, \n \n"); 

,195 exit( EXJT_FAILURE ); 

4!1G break; 

4Hi' } 

,1\18 break; 

41)9 case I v 1 : / / Choose the amou.nt. of informa.tion given 'to .screen 

:-,00 if( length != 3 ) 

501 { 

} 

printf( "\nlnvalidulnputu-uincorrectulengthuonuverboseuparameter . "); 

printf(" \nSeeuREADMEuf orumoreuinf ormat ion , \n \n"); 

exit( EX!T_FAILURE ); 

switch( argv[pl[2] ) 

507 
508 
f,()!) 

510 

::>II 

512 

!) l:.l 

51..-1 

!;i l5 

f, l(j 

Gl7 

518 

519 

.'\20 

52 1 

fi22 

523 

f>25 

{ 
case '0' 

case '1' 

case '2' 

case '3' 

case '4' 

case '5' 

case '6' 

case '7' 

case 1 8 1 

case '9' 

pl = ( (int) a rgv[pl[2] ) - 48; 

bre ak; 
default: 

printf( "\nl nvaliduParametersu (%cuisuanuinvaliduverboseucharacter) . ", argv[p] [2]) ; 

printf( "\nSeeuREADMEuf orumoreuinf ormat ion . \n \n"); 

ex.it( EXIT_FAILURE ); 

break; 

G26 break; 

527 case 'w-' : 

G28 order ..switch = 9; // Us,; the Wreath Pmdtu·t. Monomial Order-ing 
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52!l break; 

5:10 case 'x': 
r:,31 degRestrict = l; // '/\.in,.s on n:sl1·ict-ion of prolonga.lim1s hy derrree 

5;~2 break; 

r:;3:i default: 
5:l4 printf("\nlnvaliduParameteru('l.cuisuanuinvaliducharacter). ", argv[pl[l]); 

:;i'.{5 printf( "\nSeeuREADHEuf orumoreuinf ormation. \n \n" ); 

5:l6 exit( EXIT..FAILURE ); 

:,'.Ii break; 

5:J8 
539 p++; / / Gel rea.dy to look at the next 7,a.mm.1;ter 

540 

541 
54.2 p = p-1; // p now holds /he nmnbc1· of p11ramr.lers 11·rocesscd 

543 
r .... u // '.!'est (•vc:1'loudiny of s·111itches 

54'.i if( filenarneLength( argv[l+p] ) > 59 ) 

Mo { 
54 7 printf(" \nError: u Theuinputuf ilenameuJDUStunot \n"); 

:,,JS printf(" exceedu59ucharacters. uExi ting ... \n \n" ); 

/i49 exit( EXIT_SUCCESS ); 

550 } 

iifil 

552 if( ( EType > 0 ) && ( IType >= 3 ) ) 

f;,5:! { 

55-:1 print£( "\nError: uTheu-e (n) uopt ionuJDUStubeuuseduwi th \n" ); 

r-,55 printf("eitherutheu-s1uoru-s2uoptions ,uExiting . .. \n\n"); 

5:;(; exit( EXIT _SUCCESS ); 

!J57 } 

5.S8 
:,59 if( ( ETy pe == 2 ) && ( MType == 1 ) ) 

560 { 

5(\1 printf(" \n•••uuuWarning: u TheuSelecteduOverlapuDi visionuTypeuisunotuauuuu**•\n" ); 

562 printf(" ***ustronguinvoluti veudi visionuwhenuuseduYi thutheu-mluoption. u***\n 11 
); 

56'.I } 
M4 
5G::, // Open filr. sveciffod on the c;ornmmul line 

!"\66 if( ( grobdata = fopen ( argv[l+p], "r" ) ) == NULL ) 

5G7 { 
:;iliS printf( "Erroruopeningutheuinputuf ile. \n" ); 

5G9 exit( EXIT-FAILURE ); 

::i70 } 

571 

572 I* 
f.7:3 * The first line of the in7mt file .should conta·in the 

57,:J. * genera.tors in the forma.t a.; b.: c; .. . 

575 * (represent-inr, ,., > h > c > .. .). We w•ill nuw ,·cad the 

5 71.i ,, g,;nerato,·s from file a.nd rnlr.'IJ.lri/.c; the-: n-u.mber of 

G77 * ge·n.erMors obl<L"inecl. 

r,71, *I 
::i79 gens = fMonLis t FromFile( grobdata ); 

5~0 

::if;J /• 
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582 * As the rest of the program as.sum.cs a gencrntor order 

583 * a < b < c < .. . (for ASCII compa.,-i,~on), we now r-everse 

$84 * the list Qf genern.tor.,. 

585 *I 
5~6 gens = fMonListFXRev( gens ); 

587 
088 k = fMonListLength( gens); 

589 if( k >= (ULong) INT _MAX ) / / Check li'lnU 

!jf)O { 

f>fl 1 printf( "Error : uINT _MAXuExceededu (inumain) \n"); 

592 exit( EXJT_FAILURE ); 

5(1:3 } 

G\M else nOfGenerators = (int) k; 

59G // Chw:.k gm1ern.tor lum.nd 

r,97 if( nOfGenerators > 17576) 

51)8 { 

Gf)\I printf( "Error: uTheunumberuofugeneratorsumustunotuexceedu17576\n"); 

600 exit( EXIT ..FAILURE ); 

001 } 

602 
GO'.l if( !Type >= 3 ) // Gloual division 
1·104 { 

605 // Orente n m.onorni11./ .<toring all the genera.tors in ordei· 
(i()6 gens_copy = fMonListCopy( gens ); 

607 allVars = fMonOne(); 

GO~ while( gens-copy } 

G09 { 

GJO allVars = fMonTimes( allVars, gens_copy -> first); 

fill gens-copy= gens_copy -> rest; 

Gl2 } 

6 I :3 allVars = fMonReverse( allVars }; 

GVJ } 

1115 

GI.Ii // Weicom.e. 
(:; l 7 if( pl > 0 ) 

fil.8 { 

(i l\1 if( !Type < 3 ) printf("\n•**uN0NC0MMUTATIVEuINV0LUTIVEuBASISuPR0GRAMu(L0CALuDIVISIONlu**•u\n"}; 

620 else printf( "\n• ••uN0NC0MMUT A TIVEuINVOLUTIVEuBASISuPR0GRAMu ( GL0BALuDIVISION) u• ••u \n" ); 

G2l 

62:l 

G2:I // W c- will now c;/1.oose I.he ·m.n·r11>rnfol ,1rde1·ing tn be 1tsed. 

624 switch( order ..switch ) 

025 { 
tl2G case 1: 

G27 t heOrdFun = fMonDegRevLex; 

n28 if( pl > 0) printf("\nUsingutheuDegRevLexuDrderinguwithu"}; 

629 break; 

\i30 case 2: 

6;n theOrdFun = fMonTLex; 

0:12 if( pl > 0) printf("\nUsingutheuDegLexu0rderinguwithu"); 

6;3;3 break; 

c;;i.1 case 3 : 
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t,'.l!\ theOrdFun = fMonLex; 
6% if( pl > 0 ) printf("\nUsingutheuLexuOrderinguwithu"); 

G37 break; 

6;•lf.'. case 9: 

(i'..l\-1 theOrdFun = fMonWreathProd; 
640 if( pl > 0) printf("\nUsingutheuWreathuProductuOrderinguwithu"); 

041 break; 

64:.l default: 
(i,j.:J break; 

r;,1.4 

(i.J5 

t,.cl(i I I Outp-u.t the gencrntor Qrder in scre,;n ... 

04 i if( pl > 0 ) 
(i,J1S { 

6-l!J fMonListDisplayOrder( gens ); 

(i50 printf(" \n"); 

6GI 

U52 
6G:3 II NmJt ffJtd the 1,olynom.ia.ls from- disk 

65-1 F = fAlgLis t FromFile( grobdata ); 

t·1:J!J 

G5t, I I If necessn.ry. optim-isc the generator order 

t.-i7 if( alpha_switch == 1 ) gens= alphabetOptimise( gens, F ); 

G58 

G5\-I I * 
6G() * Now .si,/isf.it·u,ic originnl g~n,-:mf.o-rs for ASCll gc-:ne-ra.to1"s in all 

(i6 J * basis 1,0/ync,m.ia.ls. '.l'h-i., ·i., done beco.-use oll the monomial 

6G2 * o-rder·ings 1,sc ASCll st.ring (:0·11tpari,,o-n.s }il"r c:Jjiciency. 

06:l * f<Jr (i<CMnplc, if the ori9ina./ mcmomi11L ordering 'i., :1: > -y > z 

fi(j,J * wr1<l 11 polynomial :c,y- Z*Z ·is in the 1,a,sis, then the 110Lynomia.l 

(H;f, * we get afti;r .mbstit-nting for the A8Cll order (AAC' > AAB > AAA) i., 

6GG -• AAC*AAB-2*AAA. 

66, *I 
t,fi8 G = preProcess( F, gens); I I Nu/.e: pln.c(~·l in G fnr 711·occssing 

669 F = fAlgListNul; 

tiiO 
(i7J. 

672 
fi73 

674 

67G 

Gill 

677 

678 

686 

087 

I I If we: circ nskcd /,o n:inove a.II jh,c/.ion., from th,-: inpul bnsis. do so 11.ow. 

if( fractions == 1 ) G = fAlgListRemoveFractions( G ); 

II 'lest the list fo-r spec-fol ca-<e.< (t.rfoiol idwtl.~J 

while( G) 

{ 
zeroOrOne = G -> first; II E1,1.rnct. " polynomicil 
if( fAlglsZero( zeroOrOne) == (Boo!) 0) /I If the polynomial is no/. eqMl lo 0 ... 

F = fAlgListPush( zeroOrOne, F ); I I ... a.dd f.o /he inptt /. l·isf. 

I I Now divide by ihe leading cocJJicicnt lo get a ·unit coef]kienf. 

zeroOrOne = fAlgScaDiv( zeroOrOne, fAlgLeadCoef( zeroOrOne) ); 

if( fAlglsOne( zeroOrOne ) == (Boo!) 1 ) I I ff the 7,olynom.ifJl i., f:q-u.o.l /.o 1 .. . 

{ 
/ I . . . w,: have " /,ri.vi.a.L ·ideal 

F = fAlgListSingle( fAlgOne() ); 

break; 
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tl::lll G = G - > rest; I I A dmncc ihe list 

689 } 
(i!l() F = fAlgListFXRev( F ); II Reverse the l-is/, (i,/, 1Ms 1:onstm l:lcd in ·m'IJlirse) 

691 
(i!,)2 G = fAlgListNul; I I Rcsd for la.t,cr use 

69:3 
(Y)ll I I Calcu./a/:,: the ,mmbcr of 71olynomi0Ls -in the -in7mt lw .. s·i,s 

69:, k = fAlgListLength( F ); 

6% if( k >= (ULong) INT_MAX) II Check l'imit. 

tHl7 { 

(;!)/< printf( "Error: uINT _MAXuExceededu (inumain) \n" ); 

tlfl!l exit( EXIT _FAILURE) ; 

70() } 
70 1 

702 I I Ca,lcnla.te n.n /111,nlu/.-ive Basis fo1' F' /r!llnwcd by a 

70:,1 II rcdw:i:d a.nd mi·nimn.L Oro~hru;1· Brisi., fo1· £,' 

71),1 Norma!Batch(); 

705 

706 II W,'ii,: Flednccd Crodme.1· 8 11si.s to Oi., k 

7(17 if( pl > 0 ) printf("\nWritinguReduceduGroebneruBasisutouDisk .. -u"); 

708 

709 I I Choose the c;)rrect .s·ufjfa; fnr the. filena-m~ (tLrgvf 1 +p/ i.• the 01·iginnl filename) 

7 Ill switch( order ..switch ) 

711 { 

7 12 case 1: 

713 filename= appendDotDegRevLex( argv[l+p] ); 

; 1,1 break; 

715 case 2: 

7lll filename = appendDotDegLex( argv[l+p] ); 

717 break; 

7 LS case 3: 

719 filename = a ppend DotLex( argv[l+p] ); 

720 break; 

721 case 9: 

722 filename= a ppendDotWP( argv[l+p] ); 

72:J break; 

n ,1 default: 

725 printf(" \nERR0RuDURINGuSUFFIXuSELECTI0N\n \n"); 

726 exit( EXIT-FAILURE); 

727 break; 

72$ 

729 filename2 = strConcat ( filename, ". inv" ); 

7:lO 

nn I I Now open the out.pu.i .file 

7:l:l if( ( outputdata = fopen ( filename , "w" ) ) == NULL ) 

n:1 { 
7:34 printf("'l.s\n", "Erroruopeningu/ ucreatingutheu (first )uoutputufile . "); 

7:31, exit( EXIT_FAILURE ); 

7:_16 } 

7:18 I I Write- /.he {reversed) _qcncrntor cn-dcr lo ch1k 

7:!9 fMonListToFile( out putdata, fMonListRev( gens ) ) ; 

7,J.0 
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, ,ll II Write Polynomittls ln it·isk 

742 G = fAlgListNul; 
;,t:,1 

74,1 I I If we are requ-il'ed t,o solve t./w Jde,tl Mcmbe1'.,hi)1 Prn/,fom. 

7,1ii I I let. 11.< make c, c:opy of tlw mtl7-,nt. {,asis n.0111 

74.G if( IMP == 1 ) IMPChecker = fAlgListCopy( G_Reduced ); 

7,18 11 1--Ve wilt now r,om>ert all 71olynomial.s i,n the bu.,is 

H9 I I fmm. ASC'fl ordt:r bw;k to the 1w-:1"'s ord1-:1·, writing 

7:iO II /.he converted polynomials to Ji.le 11s we go. 

75.L while( G..Reduced ) 

7:i:?. { 

75'1 fprintf( outputdata, "1/,s; \n", postProcessParse( G..Reduced -> first, gens ) ); 

754 G_Reduced = G_Reduced -> rest; 

755 } 

756 

757 I I Clos<: o.ff th<-: 01it:pul file 

758 i = fclose( outputdata ) ; 

7ii9 

7ti0 if( pl> 0) printf("Done. \nWritinguinvolutiveuBasisutouDisk .. ,u") ; 

7(il 

762 I I Now write the Inuoluti-uc En.sis to dish 

76:l if( ( outputdata = fopen ( filename2, "w" ) ) == NULL ) 

764 { 

765 printf( "1/.s\n", "Erroruopeningu/ ucreatingutheu (second) u0Utputuf ile . "); 

7GG exit( EXIT_FAILURE ); 

767 

7G8 
7li9 II Write I.he (mve-rsed) genemtor order to 1li.1k 

770 fMonListToFile( outputdata, fMonListRev( gens ) ); 

77 1 
77:?. I I l f wt: a.re 11sing ,1 local di·ui.<ion we need to find the mv,llip l-ica.tive ·unriahle., no,11 

77'.I if( !Type < 3 ) multVars = OverlapDiv( IB ); 

774 

775 while( IB ) 

776 { 

777 fprintf( outputdata, "1/,s;u", postProcessParse( IB - > first, gens)); 

77~ if( !Type < 3 ) I I (J-ue1'lop--- based Divi.sion 

77H { 

780 fprintf( outputdata, "(1/,s ,u'l.s); \n" , 

71ll postProcess( fAlgMonom( qOne(), fMonReverse( multVars -> 1ft) ), gens), 

782 postProcess( fAlgMonom( qOne(), fMonReverse( multVars - > rt)), gens) ); 

78:l } 
71<•1 else if( !Type == 3 ) I I LeR Division 

,s,; { 
781·, fprintf( outputdata, "('l.s ,ull; \n", fMonToStr( allVars) ); 

787 

788 else if( !Type == 4 ) I I Fl.ight. 0-ivisian 

78\1 { 

79() fprintf( outputdata, " ( 1, u'l.s) ; \n" , fMonToStr( all Vars ) ) ; 

7!; I. 

792 else if( !Type == 5 ) / / Empl.!f Division 

7~:l { 
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7fl4. fprintf( outputdata, " ( 1, uO ; \n" ) ; 
79;) } 

7(16 

797 1B = IB -> rest; / / Advc,nw t.he l·iM of rnks 

7fM / / If rwc,l /if; . advance th.1; muUip/·imt·ive va1·iab/1:s li.st. 

799 if( !Type < 3) mult Vars = multVars -> rest; 

800 } 
8l)] 

802 / / Clo.~e ofI t.hc 011.t7mt }iii: 

80:3 i = fclose( outputdata ); 

804 
805 if( pl > 0) printf("Done. \n\n"); 

801> 
807 // ff the i deal Membesrsh·i7, Prol,lmn Solver i., req11,i1-ed, run if. 1!(1111. 

808 if( IMP == 1 ) IMPSolver(); 

8W 

810 return EXJT_SUCCESS; // B:rit .mcccs8jully 

8l.l } 

8 12 

8 L:I # include "file_functions, c" 

81 4 # include "list_functions. c" 

815 # include "f ralg_funct ions . c" 

8 lu # include "arithmetic_functions. c" 

817 # include "ncinv_functions.c" 

8l1l 

819 // Bnd of Pile 
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Program Output 

In this Appendix, we provide sample sessions showing how the program given in Appendix 

B can be used to compute noncommutative lnvolutive Bases with respect to different 

involutive divisions and monomial orderings. 

C .1 Sample Sessions 

C .1.1 Sess ion 1: Locally Involut ive B ases 

Task: If F := { x2y2 
- 2xy2 + x 2

, x2y- 2xy} generates an ideal J over the polynomial ring 

Q(x, y), compute a Locally lnvolutive Basis for F with respect to the strong left overlap 

division S; thick divisors; and the DegLex monomial ordering. 

Origin of Example: Example 5.7.1. 

Input File: 

I" ,:2:,·2 - 2,,,,·2 + ,·2, 
x•2*Y - 2*X*Yi 

P lan: Apply the program given in Appendix B to the above file, using the '-c2' option 

to select Algorithm 12; the '-d' option to select the DegLex monomial ordering; the 

'-m2' option to select thick divisors; and the '-e2' and '-s l ' options to select the strong 

left overlap division. 
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Program Output: 

ma6:mssrc-aux/thesis> time involutive -c2 -d -e2 - m2 -sl thesisl.in 

*** NONCOMMUTATIVE INVOLUTIVE BASIS PROGRAM (LOCAL DIVISION) *** 

Using the DegLex Ordering with x > y 

Polynomials in the input basis: 

x·2 y·2 - 2 x y·2 + x · 2, 

x·2y-2xy, 

[2 Polynomials] 

Computing an Involutive Basis .. . 

Added Polynomial #3 to Basis .. . 

Added Polynomial #4 to Basis .. . 

Autoreduction reduced the basis to size 3 ... 

Added Polynomial #4 to Basis ... 

Autoreduction reduced the basis to size 3 ... 

Added Polynomial #4 to Basis .. . 

Added Polynomial #5 to Basis .. . 

... Involutive Basis Computed . 

Here is the Involutive Basis 

((Left, Right) Multiplicative Variables in Brackets): 

X y ·2 x, (x y, 1), 

X y •2, (x y, y), 

X y x, (x y , 1), 

xy,(xy,1), 
x·2, (x y, 1), 

[5 Polynomials) 

Computing the Reduced Groebner Basis ... 

... Reduced Groebner Basis Computed. 

Here is the Reduced Groebner Basis: 

X y, 

x · 2, 

[2 Polynomials] 

Writing Reduced Groebner Basis to Disk ... Done. 

Writing lnvolut ive Basis to Disk ... Done. 

0.000u 0.007s 0:00.15 0.0% 0+0k 0+2io 16pf+0w 

ma6:mssrc-aux/thesis> 

Output File: 

x; Yi 

X*y"2*X; (x Y, 1); 

X*y"2; (x Y, y); 

X*Y*X; (x y, 1); 

X*Y; (x y , 1); 
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x"2; (x y, l) ; 

C.1.2 Session 2: lnvolutive Complete Rewrite Systems 

Task: If F := {x3 - 1, y2 - 1, (xy) 2 - 1, Xx - 1, xX - 1, Yy - 1, yY - 1} generates 

an ideal Jover the polynomial ring Q)(Y, X, y, x), compute an lnvolutive Basis for F with 

respect to the left division <J and the DegLex monomial ordering. 

Origin of Example: Example 5.7.3 (F corresponds to a monoid rewrite system for the 

group S3 ; we want to compute an involutive complete rewrite system for S3). 

Input File: 

Yi Xi Yi Xi 

x·3 - l; 

y·2 - l; 

(x*y)"2 - l; 

X•x - l ; 

X*X - l ; 

Y•y - l ; 

Y*Y - l ; 

Plan: Apply the program given in Appendix B to the above file, using the '-c2' option 

to select Algorithm 12 and the '-d' option to select the DegLex monomial ordering (the 

left division is selected by default). 

Program Output: 

ma6:mssrc-aux/thesis> time involutive -c2 - d thesis2.in 

*** NONCOMMUTATIVE INVOLUTIVE BASIS PROGRAM (GLOBAL DIVISION) *** 

Using t he DegLex Ordering with Y > X > y > x 

Polynomials in the input basis: 

x"3 - 1, 

y"2 - 1, 

X y X y - 11 

Xx - 1, 

x X - 1, 

y y - 1, 

y y - 1, 

[7 Polynomials] 

Computing an lnvolutive Basis ... 

Added Polynomial #8 to Basis ... 
Added Polynomial #9 to Basis ... 
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Added Polynomial #10 to Basis .. . 

Added Polynomial #11 to Basis .. . 

Added Polynomial #12 to Basis .. . 

Added Polynomial #13 to Basis .. . 

Autoreduction reduced the basis to size 11... 
Added Polynomial #12 to Basis .. . 

Added Polynomial #13 to Basis .. . 

Added Polynomial # 14 to Basis .. . 

Added Polynomial # 15 to Basis .. . 

Added Polynomial #16 to Basis .. . 

Added Polynomial #17 to Basis .. . 

Added Polynomial #18 to Basis .. . 
Added Polynomial #19 to Basis .. . 

Added Polynomial #20 to Basis .. . 

Added Polynomial #21 to Basis .. . 

Added Polynomial #22 to Basis .. . 

Added Polynomial #23 to Basis .. . 

Autoreduction reduced the basis to size 19 .. . 

Added Polynomial #20 to Basis .. . 

Autoreduction reduced the basis to size 19 .. . 

Added Polynomial #20 to Basis .. . 

Added Polynomial #21 to Basis .. . 

Added Polynomial #22 to Basis .. . 

Added Polynomial #23 to Basis .. . 

Added Polynomial #24 to Basis .. . 

Added Polynomial #25 to Basis .. . 

Added Polynomial #26 to Basis .. . 

Added Polynomial #27 to Basis .. . 

Added Polynomial #28 to Basis .. . 

Added Polynomial #29 to Basis .. . 

Added Polynomial #30 to Basis .. . 

Added Polynomial #31 to Basis .. . 

Added Polynomial #32 to Basis .. . 

Added Polynomial #33 to Basis .. . 

Added Polynomial #34 to Basis .. . 
Added Polynomial #35 to Basis .. . 

Added Polynomial #36 to Basis .. . 

Added Polynomial #37 to Basis .. . 

Added Polynomial #38 to Basis .. . 

Added Polynomial #39 to Basis .. . 

Added Polynomial #40 to Basis .. . 

Autoreduction reduced the basis to size 29 ... 

Added Polynomial #30 to Basis ... 

Autoreduction reduced the basis to size 19 ... 

.. .lnvolutive Basis Computed. 

Here is the Involutive Basis 

((Left, Right) Multiplicative Variables in Brackets): 

y·2 - 1, (Y X y x, 1), 

Xx - 1, (Y X y x, 1), 

x X - 1, (Y X y x, 1), 

Y y - 1, (Y X y x, 1), 
y·2 x - x, (Y X y x, 1), 
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Y - y, (Y X y x , 1), 

Y x - y x, (Y X y x, 1), 

Xx y - Y, (Y X y x, 1), 

Y y x - x, (Y X y x, 1), 

x·2 - X, (Y X y x, 1), 

x·2 - x, (Y X y x, 1), 

x y x - Y, (Y X y x, 1), 

X y - y x, (Y X y x, 1), 

X y x - x Y, (Y X y x, 1), 
x·2 y - y x, (Y X y x, 1), 

y X - x y, (Y X y x, 1), 

y x y - X, (Y X y x, 1), 

Y x y - X, (Y X y x, 1), 
Y X - x y, (Y X y x, 1), 

[19 Polynomials] 

Computing the Reduced Groebner Basis ... 

. . . Reduced Groebner Basis Computed. 

Here is the Reduced Groebner Basis: 

y·2 - 1, 

Xx - 1, 
XX - l , 

Y - y, 

x·2 - X, 

x·2 - x, 

X y X - y, 

X y - y x, 

y X - X Y, 

y X y - X, 
[10 Polynomials] 

Writing Reduced Groebner Basis to Disk ... Done. 

Writing Involutive Basis to Disk ... Done. 

0 .105u O.OOOs 0:00.16 62.5% 197+727k 0+2io Opf+Ow 

ma6:mssrc-aux/thesis> 

Output File: 

Y; X; y; x; 

y·2 - 1; (Y X y x, 1); 

X*X - 1; (Y X y x, 1); 

X*X - 1; (Y X y x, 1); 

Y*Y - 1; (Y X y x, 1}; 

y · 2*X - x; (Y X y x, 1}; 

Y - y; (Y X y x, 1}; 

Y*X - Y*X; (Y X y x, 1); 

X*X*Y - y; (Y X y x, 1); 

Y*Y*X - x; (Y X y x, 1); 
x · 2 - X; (Y X y x, 1}; 

x·2 - x; (Y X y x, 1); 

X*Y*X - y; (Y X y x, 1}; 
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X*Y - Y*X; (Y X y x, l); 

X*Y*X - X*Y; (Y X y x, l); 
x·2*Y - Y*X; (Y X y x, l); 
Y*X - X*y; (Y X y x, l); 

Y*X*Y - X; (Y X y x, l); 

Y*X*Y - X; (Y X y x, l); 

Y*X - X*Y; (Y X y x, l); 

C.1.3 Session 3: Noncommutative Involutive Walks 
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Task: If G' := {y2 + 2xy, y2 + x2, 5y3, 5xy2
, y2 + 2yx} generates an ideal J over 

the polynomial ring Q(x, y), compute an Involutive Basis for G' with respect to the left 

division <J and the DegRevLex monomial ordering. 

Origin of Example: Example 6.2.20 (G' corresponds to a set of initials in the non­

commutative lnvolutive Walk algorithm; we want to compute an lnvolutive Basis H' for 

G'). 

Input File: 

x; y; 

y·2 + 2*X*Y; 
y·2 + x·2; 

5*y·3; 

5•x•y·2; 

y·2 + 2•y•x; 

Plan: Apply the program given in Appendix B to the above file, using the '-c2' option to 

select Algorithm 12 (the DegRevLex monomial ordering and the left division are selected 

by default). 

Program Output: 

ma6:mssrc-aux/thesis> t ime involutive -c2 thesis3.in 

*** NONCOMMUTATIVE INVOLUTIVE BASIS PROGRAM (GLOBAL DIVISION) *** 

Using the DegRevLex Ordering with x > y 

Polynomials in the input basis: 

y•2 + 2 X y, 

y·2 + x·2, 

5 y·3, 

5 X y•2, 

y·2 + 2 y x, 

[5 Polynomials] 
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Computing an Involutive Basis ... 

.. .lnvolutive Basis Computed. 

Here is the Involutive Basis 
((Left, Right) Multiplicative Variables in Brackets): 

2 y x - x·2, (x y, 1), 

y x·2, (x y, 1), 
x·3, (x y, 1), 
2 x y - x ' 2, (x y, 1), 
y·2 + x'2, (x y, 1), 
[5 Polynomials] 

Computing the Reduced Groebner Basis ... 

... Reduced Groebner Basis Computed. 

Here is the Reduced Groebner Basis: 

2 y X - x·2, 
x·3, 

2 X y - x•2, 
y·2 + x·2, 

[4 Polynomials] 

Writing Reduced Groebner Basis to Disk ... Done. 

Writing Involutive Basis to Disk ... Done. 

0.005u 0.000s 0:00.07 0.0% 0+0k 0+2io 0pf+0w 

ma6:mssrc-aux/thesis> 
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More Verbose Program Output: (we select the '-v3' option to obtain more informa­

tion about the autoreduction that occurs at the start of the algorithm). 

ma6:mssrc-aux/thesis> time involutive -c2 -v3 thesis3.in 

*** NONCOMMUTATIVE INVOLUTIVE BASIS PROGRAM (GLOBAL DIVISION) *** 

Using the DegRevLex Ordering with x (AAB) > y {AAA) 

Polynomials in t he input basis: 

AAA '2 + 2 AAS AAA, 

AAA ' 2 + AAs·2, 

5 AAA ·3, 

5 AAB AAA·2, 

AAA '2 + 2 AAA AAB, 

[5 Polynomials] 

Computing an lnvolutive Basis ... 

Autoreducing ... 
Looking at element p = AAA ·2 + 2 AAA AAB of basis 

Reduced p to AAB AAA - AAA AAB 

Looking at element p = 5 AAB AAA · 2 of basis 

Reduced p to AAB AAA AAB 
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Looking at element p = AAB AAA - AAA AAB of basis 

Reduced p to AAB AAA - AAA AAB 

Looking at element p = 5 AAA ·3 of basis 

Reduced p to AAA ·2 AAB 

Looking at element p = AAB AAA AAB of basis 

Reduced p to AAB AAA AAB 

Looking at element p = AAB AAA - AAA AAB of basis 

Reduced p to AAB AAA - AAA AAB 

Looking at element p = AAA ·2 + AAB"2 of basis 

Reduced p to 2 AAA AAB - AAB·2 

Looking at element p = AAA ·2 AAB of basis 

Reduced p to AAA AAB ·2 

Looking at element p = 2 AAA AAB - AAB"2 of basis 

Reduced p to 2 AAA AAB - AAB"2 

Looking at element p = AAB AAA AAB of basis 
Reduced p to AAB.3 

Looking at element p = AAA AAB"2 of basis 

Reduced p to AAA AAB·2 

Looking at element p = 2 AAA AAB - AAB·2 of basis 

Reduced p to 2 AAA AAB - AAB ·2 

Looking at element p = AAB AAA - AAA AAB of basis 

Reduced p to 2 AAB AAA - AAB·2 

Looking at element p = AAB.3 of basis 

Reduced p to AAB"3 
Looking at element p = AAA AAB "2 of basis 

Reduced p to AAA AAB"2 

Looking at element p = 2 AAA AAB - AAB"2 of basis 

Reduced p to 2 AAA AAB - AAB"2 
Looking at element p = AAA ·2 + 2 AAB AAA of basis 

Reduced p to AAA · 2 + AAB · 2 

Looking at element p = 2 AAB AAA - AAB"2 of basis 

Reduced p to 2 AAB AAA - AAB"2 

Looking at element p = AAB.3 of basis 

Reduced p to AAB.3 

Looking at element p = AAA AAB"2 of basis 

Reduced p to AAA AAB"2 

Looking at element p = 2 AAA AAB - AAB·2 of basis 

Reduced p to 2 AAA AAB - AAB"2 

Analysing AAA AAB ... 

Adding Right Prolongation by variable #0 to S .. . 

Adding Right Prolongation by variable # 1 to S .. . 

Analysing AAA AAB"2 ... 

Adding Right Prolongation by variable #0 to S .. . 
Adding Right Prolongation by variable #1 to S .. . 

Analysing AAB"3 .. . 

Adding Right P rolongation by variable #0 to S .. . 

Adding Right Prolongation by variable #1 to S .. . 

Analysing AAB AAA .. . 

Adding Right Prolongation by variable #0 to S .. . 

Adding Right Prolongation by variable #1 to S .. . 
Analysing AAA ·2 .. . 

Adding Right Prolongation by variable #0 to S ... 

Adding Right Prolongation by variable #1 to S ... 

363 



APPENDIX C. PROGRAM OUTPUT 

.. .lnvolutive Basis Computed. 

Number of Prolongations Considered = 0 

Here is the Involutive Basis 

((Left, Right) Multiplicative Variables in Brackets): 

2 AAA AAB - AAB"2, (all, none), 

AAA AAB"2, (all, none) , 

AAB"3, (all, none), 

2 AAB AAA - AAB"2, (all, none), 

AAA"2 + AAB"2, (all, none) , 

[5 Polynomials] 

Computing the Reduced Groebner Basis ... 

Looking at element p = 2 AAA AAB - AAB · 2 of basis 

Reduced p to 2 AAA AAB - AAB ·2 

Looking at element p = AAB"3 of basis 

Reduced p to AAB.3 

Looking at element p = 2 AAB AAA - AAB·2 of basis 

Reduced p to 2 AAB AAA - AAB·2 

Looking at element p = AAA ·2 + AAB·2 of basis 

Reduced p to AAA ·2 + AAB.2 

Number of Reduct ions Carried out = 34 

... Reduced Groebner Basis Computed. 

Here is the Reduced Groebner Basis: 

2 AAA AAB - AAB.2, 

AAB"3, 

2 AAB AAA - AAB·2, 

AAA · 2 + AAB·2, 

[4 Polynomials] 

Writing Reduced Groebner Basis to Disk ... Done. 

Writing Involutive Basis to Disk ... Done. 

0.000u 0.005s 0:00.04 0.0% 0+0k 0+2io 0pf+0w 

ma6:mssrc-aux/thesis> 

Output File : 

x; Yi 
2*Y*X - x·2; (x Y, l}; 
Y*X.2; (x y, 1); 

x·3; (x y, 1); 

2*X*Y - x·2; (x Y, l}; 
y·2 + x · 2; (x y, 1}; 
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C.1.4 Session 4: Ideal Membership 

Task: If F := {x + y + z - 3, x2 + y2 + z2 - 9, x3 + y3 + z3 
- 24} generates an ideal 

Jover the polynomial ring Q(x, y, z), are the polynomials x + y + z - 3; x + y + z - 2; 

xz2 + yz2 - 1; zyx + 1 and x10 members of J? 

Input File: 

Xj y; Zj 

X + y + Z - 3; 

x·2 + y·2 + z·2 - 9; 

x·3 + y·3 + z·3 - 24; 

Plan: To solve the ideal membership problem for the five given polynomials, we first 

need to obtain a Grobner or Involutive Basis for F. We shall do this by applying the 

program given in Appendix B to compute an lnvolutive Basis for F with respect to 

the DegLex monomial ordering and the right division C> (this requires the '-d' and '-s4' 

options respectively). Once the Involutive Basis has been computed (which then allows 

the program to compute the unique reduced Grobner Basis G for F), we can start an 

ideal membership problem solver (courtesy of the '-p' option) which allows us to type in 

a polynomial p and find out whether or not p is a member of J ( the program reduces p 

with respect to G, testing to see whether or not a zero remainder is obtained). 

Program Output: 

ma6:mssrc-aux/thesis> involutive -c2 -d -p -s4 thesis4.in 

*** NONCOMMUTATIVE INVOLUTIVE BASIS PROGRAM (GLOBAL DIVISION) *** 

Using the DegLex Ordering with x > y > z 

Polynomials in t he input basis: 

X + y + Z - 3 , 

x·2 + y·2 + z·2 - 9, 
x·3 + y · 3 + z·3 - 24, 

[3 Polynomials] 

Computing an Involutive Basis ... 

Added Polynomial #4 to Basis ... 

Added Polynomial #5 to Basis .. . 

Added Polynomial #6 to Basis .. . 

Added Polynomial #7 to Basis .. . 

Added Polynomial #8 to Basis .. . 

Added Polynomial #9 to Basis ... 

Added Polynomia l #10 to Basis .. . 
Added Polynomial #11 to Basis ... 
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Added Polynomial #12 to Basis ... 

Added Polynomial #13 to Basis ... 

Added Polynomial #14 to Basis .. . 

Added Polynomial #15 to Basis .. . 

Added Polynomial #16 to Basis .. . 

Added Polynomial # 17 to Basis .. . 

Added Polynomial #18 to Basis .. . 

Added Polynomial #19 to Basis .. . 

Added Polynomial #20 to Basis .. . 

Added Polynomial #21 to Basis .. . 

Autoreduction reduced the basis to size 13 ... 

.. .Involutive Basis Computed. 

Here is the Involutive Basis 
((Left, Right) Multiplicative Variables in Brackets): 

X + y + Z - 3, (1, X y z), 

z x + z y + z·2 - 3 z, (1, x y z), 

y Z - Z y, (1 , X y z), 
z·3 - 3 z·2 + 1, (1, x y z), 

z·2 y·2 - y - z, (1, x y z), 

z·2 y x + z, (1, x y z), 
z · 2 y z - 3 z·2 y + y, (1, x y z), 

z y z - z·2 y, (1, x y z), 

Z y X + 1, (1, X y z), 
z y·2 + z·2 y - 3 z y - 1, (1 , x y z), 

z·2 x + z·2 y - 1, (1, x y z) , 

y x - z·2 + 3 z, (1, x y z), 
y·2 + z y + z·2 - 3 y - 3 z, (1, x y z), 

[13 Polynomials] 

Computing the Reduced Groebner Basis ... 

... Reduced Groebner Basis Computed. 

Here is the Reduced Groebner Basis: 

X + y + Z - 3, 
y z - z y, 

z · 3 - 3 z·2 + 1, 

y·2 + z y + z·2 - 3 y - 3 z, 

(4 Polynomials] 

Writing Reduced Groebner Basis to Disk ... Done. 

Writing lnvolutive Basis to Disk ... Done. 

*** IDEAL MEMBERSHIP PROBLEM SOLVER *** 

Source: Dis k (d) or Keyboard (k)? ... k 

Please enter a polynomial (e.g. X*y·2- z) 

(A semicolon terminates the program) ... x+y+z-3 

Polynomial x + y + z - 3 IS a member of the idea l. 

Please enter a polynomial (e.g. X*y·2- z) 

(A semicolon terminates the program) ... x+y+z-2 

Polynomial y + 2 z - 2 is NOT a member of the ideal. 
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Please enter a polynomial (e.g. x*y·2-z) 

(A semicolon terminates the program) ... X*z·2+y*z·2-1 

Polynomial x z·2 + y z·2 - l IS a member of the ideal. 

P lease enter a polynomial (e.g. X*y·2-z) 

(A semicolon terminates the program) ... Z*y*x+l 

Polynomial z y x + l IS a member of the ideal. 

Please enter a polynomial (e.g. X*y·2-z) 

(A semicolon terminates the program) ... x·10 

Polynomial x·10 is NOT a member of the ideal. 

Please enter a polynomial (e.g. X*y·2-z) 

(A semicolon terminates the program) ... ; 

ma6:mssrc-aux/thesis> 

Output File: 

x; Yi Zj 

X + y + Z - 3; (1, X y z); 

Z*X + Z*Y + z·2 - 3*z; (1, x y z); 

Y*Z - Z*Y; (1, X y z); 

z·3 - 3*z·2 + l; (1, x y z); 

z·2*y·2 - y - z; (1, x y z); 

z·2*Y*X + z; (1, x y z); 

z·2*Y*Z - 3*z·2*Y + y; (1, x y z); 

Z*Y*Z - z·2*y; (1, x y z); 

Z*Y*X + l; (1, X y z); 

Z*y•2 + z·2*Y - 3*Z*Y - l; (1, x y z); 

z·2*X + z·2*Y - l; (1, x y z); 

Y*X - z ·2 + 3*z; (1, x y z); 

y·2 + Z*Y + z·2 - 3*Y - 3*Z; (1, x y z); 
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