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Summary

The theory of Grébner Bases originated in the work of Buchberger [11] and is now con-
sidered to be one of the most important and useful areas of symbolic computation. A
great deal of effort has been put into improving Buchberger’s algorithm for computing a
Grobner Basis, and indeed in finding alternative methods of computing Grébner Bases.
Two of these methods include the Grobner Walk method [1] and the computation of
Involutive Bases [58].

By the mid 1980’s, Buchberger’s work had been generalised for noncommutative poly-
nomial rings by Bergman [8] and Mora [45]. This thesis provides the corresponding
generalisation for Involutive Bases and (to a lesser extent) the Grobner Walk, with the
main results being as follows.

(1) Algorithms for several new noncommutative involutive divisions are given, including
strong; weak; global and local divisions.

(2) An algorithm for computing a noncommutative Involutive Basis is given. When used
with one of the aforementioned involutive divisions, it is shown that this algorithm
returns a noncommutative Grébner Basis on termination.

(3) An algorithm for a noncommutative Grébner Walk is given, in the case of conversion
between two harmonious monomial orderings. It is shown that this algorithm gener-
alises to give an algorithm for performing a noncommutative Involutive Walk, again
in the case of conversion between two harmonious monomial orderings.

(4) Two new properties of commutative involutive divisions are introduced (stability and
extendibility), respectively ensuring the termination of the Involutive Basis algorithm
and the applicability (under certain conditions) of homogeneous methods of comput-
ing Involutive Bases.

Source code for an initial implementation of an algorithm to compute noncommutative
Involutive Bases is provided in Appendix B. This source code, written using ANSI C and
a series of libraries (AlglLib) provided by MSSRC [46], forms part of a larger collection of
programs providing examples for the thesis, including implementations of the commutative
and noncommutative Grobner Basis algorithms [11, 45]; the commutative Involutive Basis
algorithm for the Pommaret and Janet involutive divisions [58]; and the Knuth-Bendix
critical pairs completion algorithm for monoid rewrite systems [39).
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“No one has ever done anything like this.”

“That’s why it’s going to work.”

The Matrix [54]
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Introduction

Background

Grobner Bases

During the second half of the twentieth century, one of the most successful applications of
symbolic computation was in the development and application of Grébner Basis theory
for finding special bases of ideals in commutative polynomials rings. Pioneered by Bruno
Buchberger in 1965 [11], the theory allowed an answer to the question “What is the
unique remainder when a polynomial is divided by a set of polynomials?”. Buchberger’s
algorithm for computing a Grébner Basis was improved and refined over several decades
(1, 10, 21, 29], aided by the development of powerful symbolic computation systems over
the same period. Today there is an implementation of Buchberger’s algorithm in virtually
all general purpose symbolic computation systems, including Maple [55] and Mathematica

[57], and many more specialised systems.
What is a Grébner Basis?

Consider the problem of finding the remainder when a number is divided by a set of
numbers. If the dividing set contains just one number, then the problem only has one
solution. For example, “5” is the only possible answer to the question “What is 20 = 4?”.
If the dividing set contains more than one number however, there may be several solutions,

as the division can potentially be performed in more than one way.

Example. Consider a tank containing 21L of water. Given two empty jugs, one with
a capacity of 2L and the other 5L, is it possible to empty the tank using just the jugs,
assuming only full jugs of water may be removed from the tank?



21L 5L 2L

Trying to empty the tank using the 2L jug only, we are able to remove 10 x 2 = 20L of
water from the tank, and we are left with 1L of water in the tank. Repeating with the
5L jug, we are again left with 1L of water in the tank. If we alternate between the jugs
however (removing 2L of water followed by 5L followed by 2L and so on), the tank this
time does become empty, because 21 =2+54+24+5+2+ 5.

The observation that we are left with a different volume of water in the tank dependent
upon how we try to empty it corresponds to the idea that the remainder obtained when
dividing the number 21 by the numbers 2 and 5 is dependent upon how the division is

performed.

This idea also applies when dividing polynomials by sets of polynomials — remainders
here will also be dependent upon how the division is performed. However, if we divide
a polynomial with respect to a set of polynomials that is a Grobner Basis, then we will
always obtain the same remainder no matter how the division is performed. This fact,
along with the fact that any set of polynomials can be transformed into an equivalent set
of polynomials that is a Grébner Basis, provides the main ingredients of Grobner Basis
theory.

Remark. The ‘Grébner Basis’ for our water tank example would be just a 1L jug,

allowing us to empty any tank containing nL of water (where n € N).
Applications

There are numerous applications of Grébner Bases in all branches of mathematics, com-
puter science, physics and engineering [12]. Topics vary from geometric theorem proving
to solving systems of polynomial equations, and from algebraic coding theory to the design

of experiments in statistics.



Example. Let F = {z+y+2=6,22+ 4>+ 22 = 14, 23 + y* + 2° = 36} be a set
of polynomial equations. One way of solving this set for z, y and z is to compute a
lezicographic Grobner Basis for F'. This yields the set G := {z+y+2 =6, y* +yz + 2% —
6y — 62 = —11, 2* — 622 + 112 = 6}, the final member of which is a univariate polynomial
in z, a polynomial we can solve to deduce that z = 1, 2 or 3. Substituting back into the
second member of G, when 2 = 1, we obtain the polynomial y? —5y+6 = 0, which enables
us to deduce that y = 2 or 3; when z = 2, we obtain the polynomial y? — 4y + 3 = 0,
which enables us to deduce that y = 1 or 3; and when z = 3, we obtain the polynomial
y*> — 3y + 2 = 0, which enables us to deduce that y = 1 or 2. Further substitution into
T +y+ 2z = 6 then enables us to deduce the value of z in each of the above cases, enabling
us to give the following table of solutions for F.

x[3 2 31 2 1
vy[(2 3 1 3 1 2
z|1 1 2 2 3 3

Involutive Bases

As Grobner Bases became popular, researchers noticed a connection between Buchberger’s
ideas and ideas originating from the Janet-Riquier theory of Partial Differential Equations
developed in the early 20th century (see for example [44]). This link was completed for
commutative polynomial rings by Zharkov and Blinkov in the early 1990’s [58] when they
gave an algorithm to compute an Involutive Basis that provides an alternative way of
computing a Grobner Basis. Early implementations of this algorithm (an elementary
introduction to which can be found in [13]) compared favourably with the most advanced
implementations of Buchberger’s algorithm, with results in [25] showing the potential of
the Involutive method in terms of efficiency.

What is an Involutive Basis?

Given a Grobner Basis G, we know that the remainder obtained from dividing a polyno-
mial with respect to G will always be the same no matter how the division is performed.
With an Involutive Basis, the difference is that there is only one way for the division to
be performed, so that unique remainders are also obtained uniquely.

This effect is achieved through assigning a set of multiplicative variables to each polynomial



in an Involutive Basis H, imposing a restriction on how polynomials may be divided
by H by only allowing any polynomial h € H to be multiplied by its corresponding
multiplicative variables. Popular schemes of assigning multiplicative variables include
those based on the work of Janet [35], Thomas [52] and Pommaret [47].

Example. Consider the Janet Involutive Basis H := {2y — z, yz + 2z + 2, 22% + 2z +
2%, 2%z + x2% + 2*} with multiplicative variables as shown in the table below.

Polynomial Janet Multiplicative Variables
zy — 2 {z,y}
yz+2x+z {z,y, =}
222 4+ 2 + 22 {5':}
222z + 2% + 28 {z, 2}

To illustrate that any polynomial may only be involutively divisible by at most one member
of any Involutive Basis, we include the following two diagrams, showing which monomials
are involutively divisible by H, and which are divisible by the corresponding Grébner
Basis G := {ay — 2, yz + 2z + 2, 22% + z2z + 2%}.

Grobner Basis Z Involutive Basis

Note that the irreducible monomials of both bases all appear in the set {1, z, v*, 2*, z2'},
where ¢ 2 1; and that the cube, the 2 planes and the line shown in the right hand diagram
do not overlap.



Noncommutative Bases

There are certain types of noncommutative algebra to which methods for commutative
Grobner Bases may be applied. Typically, these are algebras with generators {z1,...,z,}
for which products ;z; with j > i may be rewritten as (z;x;+ other terms). For example,
version 3-0-0 of Singular [31] (released in June 2005) allows the computation of Grébner

Bases for G-algebras.

To compute Grobner Bases for ideals in free associative algebras however, one must turn to
the theory of noncommutative Grébner Bases. Based on the work of Bergman (8] and Mora
[45], the theory answers the question “What is the remainder when a noncommutative
polynomial is divided by a set of noncommutative polynomials?”, and allows us to find
Grobner Bases for such algebras as path algebras [37].

The final piece of the jigsaw is to mirror the application of Zharkov and Blinkov’s Involu-
tive methods to the noncommutative case. This thesis provides the first extended attempt
at accomplishing this task, improving the author’s first basic algorithms for computing
noncommutative Involutive Bases [20] and providing a full theoretical foundation for these

algorithms.

Structure and Principal Results

This thesis can be broadly divided into two parts: Chapters 1 through 4 survey the
building blocks required for the theory of noncommutative Involutive Bases; the remain-
der of the thesis then describes this theory together with different ways of computing

noncommutative Involutive Bases.

Part 1

Chapter 1 contains accounts of some necessary preliminaries for our studies — a review
of both commutative and noncommutative polynomial rings; ideals; monomial orderings;

and polynomial division.

We survey the theory of commutative Grobner Bases in Chapter 2, basing our account
on many sources, but mainly on the books [7] and [22]. We present the theory from
the viewpoint of S-polynomials (for example defining a Grébner Basis in terms of S-



polynomials), mainly because Buchberger’s algorithm for computing a Grobner Basis
deals predominantly with S-polynomials. Towards the end of the Chapter, we describe
some of the theoretical improvements of Buchberger’s algorithm, including the usage of

selection strategies, optimal variable orderings and Logged Grébner Bases.

The viewpoint of defining Grébner Bases in terms of S-polynomials continues in Chapter
3, where we encounter the theory of noncommutative Gribner Bases. We discover that
the theory is quite similar to that found in the previous chapter, apart from the definition
of an S-polynomial and the fact that not all input bases will have finite Grébner Bases.

In Chapter 4, we acquaint ourselves with the theory of commutative Involutive Bases.
This is based on the work of Zharkov and Blinkov [58]; Gerdt and Blinkov [25, 26]; Gerdt
(23, 24]; Seiler [50, 51]; and Apel [2, 3], with the notation and conventions taken from a
combination of these papers. For example, notation for involutive cones and multiplicative
variables is taken from [25], and the definition of an involutive division and the algorithm

for computing an Involutive Basis is taken from [50].

As for the content of Chapter 4, we introduce the Janet, Pommaret and Thomas divisions
in Section 4.1; describe what is meant by a prolongation and autoreduction in Section 4.2;
introduce the properties of continuity and constructivity in Section 4.3; give the Involutive
Basis algorithm in Section 4.4; and describe some improvements to this algorithm in
Section 4.5. In between all of this, we introduce two new properties of involutive divisions,
stability and extendibility, that ensure (respectively) the termination of the Involutive
Basis algorithm and the applicability (under certain conditions) of homogeneous methods

of computing Involutive Bases.

Part 2

The main results of the thesis are contained in Chapter 5, where we introduce the theory
of noncommutative Involutive Bases. In Section 5.1, we define two methods of performing
noncommutative involutive reduction, the first of which (using thin divisors) allows the
mirroring of theory from Chapter 4, and the second of which (using thick divisors) allows
efficient computation of involutive remainders. We also define what is meant by a non-
commutative involutive division, and give an algorithm for performing noncommutative

involutive reduction.

In Section 5.2, we generalise the notions of prolongation and autoreduction to the non-



commutative case, introducing two different types of prolongation (left and right) to
reflect the fact that left and right multiplication are different operations in noncommuta-
tive polynomial rings. These notions are then utilised in the algorithm for computing a

noncommutative Involutive Basis, which we present in Section 5.3.

In Section 5.4, we introduce two properties of noncommutative involutive divisions. Con-
tinuity helps ensure that any Locally Involutive Basis is an Involutive Basis; conclusivity
ensures that for any given input basis, a finite Involutive Basis will exist if and only if
a finite Grobner Basis exists. A third property is also introduced for weak involutive
divisions to ensure that any Locally Involutive Basis is a Grébner Basis (Involutive Bases

with respect to strong involutive divisions are automatically Grébner Bases).

Section 5.5 provides several involutive divisions for use with the noncommutative Involu-
tive Basis algorithm, including two global divisions and ten local divisions. The properties
of these divisions are analysed, with full proofs given that certain divisions satisfy certain
properties. We also show that some divisions are naturally suited for efficient involutive

reduction, and speculate on the existence of further involutive divisions.

In Section 5.6, we briefly discuss the topic of the termination of the noncommutative
Involutive Basis algorithm. In Section 5.7, we provide several examples showing how
noncommutative Involutive Bases are computed, including examples demonstrating the
computation of involutive complete rewrite systems for groups. Finally, in Section 5.8, we
discuss improvements to the noncommutative Involutive Basis algorithm, including how

to introduce efficient involutive reduction and Logged Involutive Bases.

Chapter 6 introduces and generalises the theory of the Grobner Walk, where a Grébner
Basis with respect to one monomial ordering may be computed from a Grobner Basis
with respect to another monomial ordering. In Section 6.1, we summarise the theory of
the commutative Grobner Walk (based on the papers [1] and [18]), and we describe a
generalisation of the theory to the Involutive case due to Golubitsky [30]. In Section 6.2,
we then go on to partially generalise the theory to the noncommutative case, giving algo-
rithms to perform both Grobner and Involutive Walks between two harmonious monomial

orderings.

After some concluding remarks in Chapter 7, we provide full proofs for two Propositions
from Section 5.5 in Appendix A. Appendix B then provides ANSI C source code for an

initial implementation of the noncommutative Involutive Basis algorithm, together with



a brief description of the AlgLib libraries used in conjunction with the code. Finally, in
Appendix C, we provide sample sessions showing the program given in Appendix B in

action.



Chapter 1
Preliminaries

In this chapter, we will set out some algebraic concepts that will be used extensively in
the following chapters. In particular, we will introduce polynomial rings and ideals, the

main objects of study in this thesis.

1.1 Rings and Ideals

1.1.1 Groups and Rings

Definition 1.1.1 A binary operation on a set S is a function * : S x S — S such that
associated with each ordered pair (a,b) of elements of S is a uniquely defined element
(axb) €8S.

Definition 1.1.2 A group is a set G, with a binary operation =, such that the following
conditions hold.

(a) g1 % g2 € G for all g1, 92 € G (closure).

(b) g1 * (g2 * g3) = (g1 * g2) * g3 for all g, go, g3 € G (associativity).

(c) There exists an element e € G such that for all g € G, e ¥ g = g = g * e (identity).

(d) For each element g € G, there exists an element g=! € G such that g7lxg = e = gxg~!

(inverses).
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Definition 1.1.3 A group G is abelian if the binary operation of the group is commuta-
tive, that is gy * go = g * g; for all g1, g2 € G. The operation in an abelian group is often

written additively, as g; + g2, with the inverse of g written —g.

Definition 1.1.4 A rngis a set R with two binary operations + and x, known as addition
and multiplication, such that addition has an identity element 0, called zero, and the

following axioms hold.

(a) R is an abelian group with respect to addition.
(b) (r1 X ra) X 73 =11 X (rg x r3) for all r1, 79,73 € R (multiplication is associative).

(€) 1 X (ro+rs) =riXra+rixryand (ri+ry) xr3 =711 Xr3+rgxXrgforall ry,re,r3 € R
(the distributive laws hold).

Definition 1.1.5 A rng R is a ring if it contains a unique element 1, called the unit
element, such that 1 #0 and 1 xr=r=rx 1forallr € R.

Definition 1.1.6 A ring R is commutative if multiplication (as well as addition) is com-
mutative, that is r; X ro = ro X 7 for all r1,7 € R.

Definition 1.1.7 A ring R is noncommutative if r1 X ry # ro X 1 for some ry, 75 € R.

Definition 1.1.8 If S is a subset of a ring R that is itself a ring under the same binary
operations of addition and multiplication, then S is a subring of R.

Definition 1.1.9 A ring R is a division ring if every nonzero element r € R has a
multiplicative inverse r—!. A field is a commutative division ring.

1.1.2 Polynomial Rings

Commutative Polynomial Rings

A nontrivial polynomial p in n (commuting) variables z1,...,z, is usually written as a
sum
5 1 2
Z e e’ elt
p - aixla 3:2! Wi .’Ent 3 (1-1)
i=1

where k is a positive integer and each summand is a term made up of a nonzero coefficient

. ; el e? er ;
a; from some ring R and a monomial xy'x,' ...z, in which the exponents e},..., el are
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nonnegative integers. It is clear that each monomial may be represented in terms of its
exponents only, as a multidegree e; = (e},e?,...,€el), so that a monomial may be written
as a multiset x* over the set {z1,...,z,}. This leads to a more elegant representation of
a nontrivial polynomial,
= Z 0 (1.2)
aghNn
and we may think of such a polynomial as a function f from the set of all multidegrees

N" to the ring R with finite support (only a finite number of nonzero images).

Example 1.1.10 Let p = 4z%y + 2z + % be a polynomial in two variables z and y with
coefficients in Q. This polynomial can be represented by the function f : N? — Q given
by

4, a=(21)
, a=(1,0)
fla)=4 1o
30° (87 ::(D,O)
0 otherwise.

Remark 1.1.11 The zero polynomial p = 0 is represented by the function f(a) = 0p for
all possible . The constant polynomial p = 1 is represented by the function f(a) = 1p
for « = (0,0,...,0), and f(a) = 0 otherwise.

Remark 1.1.12 The product m; X msy of two monomials m;,ms with corresponding
multidegrees e;,e; € N" is the monomial corresponding to the multidegree e; + e,. For
example, if m; = 232,73 and my = 212223 (s0 that e; = (2,1,3) and e; = (1,1,2)), then

m1 X mg = z3ziz} as e) + ez = (3,2,5).

Definition 1.1.13 Let R[zy, s, ..., z,] denote the set of all functions f: N™ — R such
that each function f represents a polynomial in n variables zi,...,z, with coefficients
over a ring R. Given two functions f,g € R[z1,zs,...,x,], let us define the functions
f+gand f x g as follows.

(f+9)(a) = fla) + g(a) for all & € N™;
(Fxg)@)= D> F(B) xg() forallaeN"
Bt+y=a
Then the set R[z1, %2, ..., z,] becomes a ring, known as the polynomial ring in n variables

over I, with the functions corresponding to the zero and constant polynomials being the
respective zero and unit elements of the ring.
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Remark 1.1.14 In Rz, zs,...,z,|, R is known as the coefficient ring.

Noncommutative Polynomial Rings

A nontrivial polynomial p in n noncommuting variables z1, ..., z, is usually written as a

sum )
p= Zaiwi, (1.3)
i=1

where k is a positive integer and each summand is a ferm made up of a nonzero co-
efficient a; from some ring R and a monomial w; that is a word over the alphabet
X = {z1,29,...,2,}. We may think of a noncommutative polynomial as a function
f from the set of all words X* to the ring R.

Remark 1.1.15 The zero polynomial p = 0 is the polynomial Oze, where ¢ is the empty
word in X*. Similarly 1ze is the constant polynomial p = 1.

Remark 1.1.16 The product w; X wy of two monomials wy, ws € X* is given by con-
catenation. For example, if X = {21, %2, 23}, w1 = 2iz; and wy = 23x3, then wy x wy =

rizexiTs.

Definition 1.1.17 Let R{(z1,s,...,z,) denote the set of all functions f : X* — R
such that each function f represents a polynomial in n noncommuting variables with
coefficients over a ring R. Given two functions f,g € R{zy, %, ...,2,), let us define the
functions f + g and f x g as follows.

(f +g)(w) = f(w) + g(w) for all w € X*;
(fxg)w)= > f(u)xg(v) forallwe X"
uUXv=w
Then the set R{z1,a,...,z,) becomes a ring, known as the noncommutative polynomial

ring in n variables over R, with the functions corresponding to the zero and constant

polynomials being the respective zero and unit elements of the ring.

1.1.3 Ideals

Definition 1.1.18 Let R be an arbitrary commutative ring. An ideal J in R is a subring
of R satisfying the following additional condition: jr € J for all j € J, r € R.
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Remark 1.1.19 In the above definition, if R is a polynomial ring in n variables over
aring R (R = R[z1,...,z,]), the ideal J is a polynomial ideal. We will only consider

polynomial ideals in this thesis.

Definition 1.1.20 Let R be an arbitrary noncommutative ring.

o A left (right) ideal J in R is a subring of R satisfying the following additional
condition: rj € J (jre J) forallj € J, r e R.

o A two-sided ideal J in R is a subring of R satisfying the following additional condi-
tion: ryjry € Jfor all j € J, r1,19 € R.

Remark 1.1.21 Unless otherwise stated, all noncommutative ideals considered in this

thesis will be two-sided ideals.

Definition 1.1.22 A set of polynomials P = {p1,pa,...,pm} is a basis for an ideal J of

a noncommutative polynomial ring R if every polynomial ¢ € J can be written as

k
q= Zfipi?‘z’ (i €ER, m € P). (1.4)

i=1
We say that P generates J, written J = (P).

Remark 1.1.23 The above definition has an obvious generalisation for left and right
ideals of noncommutative polynomial rings and for ideals of commutative polynomial

rings.

Example 1.1.24 Let R be the noncommutative polynomial ring Q(z, ), and let J = (P)
be an ideal in R, where P := {z%y + yz — 2, yzy — = + 4y}. Consider the polynomial
q =223y +ya’y+2vyx — 4’y +2° — 22y — 4, and let us ask if ¢ is a member of the ideal.
To answer this question, we have to find out if there is an expression for g of the type
shown in Equation (1.4). In this case, it turns out that ¢ is indeed a member of the ideal
(because q = 2z(z?y + yz — 2) + (22y + yo — 2)zy — 2*(yay — = + 4y)), but how would we
answer the question in general? This problem is known as the Ideal Membership Problem
and is stated as follows.

Definition 1.1.25 (The Ideal Membership Problem) Given an ideal J and a poly-
nomial g, does g € J?
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As we shall see shortly, the Ideal Membership Problem can be solved by dividing a poly-
nomial with respect to a Grobner Basis for the ideal J. But before we can discuss this,
we must first introduce the notion of polynomial division, for which we require a fixed

ordering on the monomials in any given polynomial.

1.2 Monomial Orderings

A monomial ordering is a bivariate function O which tells us which monomial is the larger
of any two given monomials m; and my. We will use the convention that O(m;,my) = 1 if
and only if m; < mg, and O(m4, ms) = 0 if and only if my = my. We can use a monomial
ordering to order an arbitrary polynomial p by inducing an order on the terms of p from

the order on the monomials associated with the terms.

Definition 1.2.1 A monomial ordering O is admissible if the following conditions are
satisfied.

(a) 1 < m for all monomials m # 1.

(b) my < my = memim, < mymem, for all monomials! my, ma, me, m,.

By convention, a polynomial is always written in descending order (with respect to a given

monomial ordering), so that the leading term of the polynomial (with associated leading
coefficient and leading monomial) always comes first.

Remark 1.2.2 For an arbitrary polynomial p, we will use LT(p), LM(p) and LC(p) to
denote the leading term, leading monomial and leading coefficient of p respectively.

1.2.1 Commutative Monomial Orderings

A monomial ordering usually requires an ordering on the variables in our chosen polyno-
mial ring. Given such a ring R[z1, 29, ..., 2,], we will assume this order to be z; > 23 >

oo > I

We shall now consider the most frequently used monomial orderings, where throughout m;

and my will denote arbitrary monomials (with associated multidegrees e; = (el,e2,...,¢e})

'For a commutative monomial ordering, we can ignore the monomial m...
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n

and ex = (el €3,...,e})), and deg(m;) will denote the total degree of the monomial m;

(for example deg(x?yz) = 4). All orderings considered will be admissible.
The Lexicographical Ordering (Lex)

Define m; < my if €} < e} for some 1 < i < nande] =e¢j for all 1 < j < i. In words,
m1 < mg if the first variable with different exponents in m; and my has lower exponent

in mp.
The Inverse Lexicographical Ordering (InvLex)

Define m; < mq if €} < ¢ for some 1 < i < n and & = ¢} for all i < j < n. In words,
my < mgy if the last variable with different exponents in m; and ms has lower exponent

in my.
The Degree Lexicographical Ordering (DegLex)

Define m; < mg if deg(my) < deg(my) or if deg(mi) = deg(msa) and m; < my in the
Lexicographic Ordering.

Remark 1.2.3 The DegLex ordering is also known as the TLex ordering (T for total
degree).

The Degree Inverse Lexicographical Ordering (DeglnvLex)

Define m; < my if deg(mi) < deg(mz) or if deg(my) = deg(msz) and m; < mg in the

Inverse Lexicographical Ordering.
The Degree Reverse Lexicographical Ordering (DegRevLex)

Define m; < my if deg(mi) < deg(ms) or if deg(m,) = deg(mz) and m; < mg in the
Reverse Lexicographical Ordering, where m; < my if the last variable with different
exponents in my and my has higher exponent in my (e} > e} for some 1 < i < n and
e =ej for all i < j < n).

Remark 1.2.4 On its own, the Reverse Lexicographical Ordering (RevLex) is not ad-

missible, as 1 > m for any monomial m # 1.



CHAPTER 1. PRELIMINARIES 16

Example 1.2.5 With = > y > z, consider the monomials m; := 2%yz; my = 2% and
mg 1= zyz%, with corresponding multidegrees e; = (2, 1,1); e2 = (2,0,0) and e3 = (1, 1, 2).
The following table shows the order placed on the monomials by the various monomial
orderings defined above. The final column shows the order induced on the polynomial

p := my + mg + my by the chosen monomial ordering.

Monomial Ordering O | O(my, m2) | O(mi,m3) | O(me, m3) P

Lex 0 0 0 vyz + 2% + zy2?
InvLex 0 1 1 zyz?® + 2’yz + 2
DegLex 0 0 1 iyz + zyz® + 2?
DeglnvLex 0 1 1 ayz? + 2%yz +
DegRevLex 0 0 1 2?yz + zyz® + 2

1.2.2 Noncommutative Monomial Orderings

In the noncommutative case, because we use words and not multidegrees to represent
monomials, our definitions for the lexicographically based orderings will have to be adapted

slightly. All other definitions and conventions will stay the same.
The Lexicographic Ordering (Lex)

Define m; < mgy if, working left-to-right, the first (say i-th) letter on which m; and my
differ is such that the i-th letter of m; is lexicographically less than the i-th letter of ms
in the variable ordering. Note: this ordering is not admissible (counterexample: if z > y

is the variable ordering, then @ < zy but 2? > ayz).

Remark 1.2.6 When comparing two monomials m; and mgy such that m, is a proper
prefix of m, (for example m; := z and my = zy as in the above counterexample), a
problem arises with the above definition in that we eventually run out of letters in the
shorter word to compare with (in the example, having seen that the first letter of both
monomials match, what do we compare the second letter of my with?). One answer is to
introduce a padding symbol § to pad m; on the right to make sure it is the same length
as mg, with the convention that any letter is greater than the padding symbol (so that
my < mg). The padding symbol will not explicitly appear anywhere in the remainder of
this thesis, but we will bear in mind that it can be introduced to deal with situations

where prefixes and suffixes of monomials are involved.
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Remark 1.2.7 The lexicographic ordering is also known as the dictionary ordering since
the words in a dictionary (such as the Oxford English Dictionary) are ordered using the
lexicographic ordering with variable (or alphabetical) ordering a < b < ¢ < ---. Note
however that while a dictionary orders words in increasing order, we will write polynomials

in decreasing order.

The Inverse Lexicographical Ordering (InvLex)

Define m; < mgy if, working left-to-right, the first (say ¢-th) letter on which m; and my
differ is such that the i-th letter of m; is lexicographically greater than the i-th letter of
mgy. Note: this ordering (like Lex) is not admissible (counterexample: if z > y is the

variable ordering, then zy < z but ayz > 2?).
The Degree Reverse Lexicographical Ordering (DegRevLex)

Define my < my if deg(mi) < deg(ms) or if deg(m,) = deg(ms) and m; < ms in the
Reverse Lexicographical Ordering, where m; < my if, working in reverse, or from right-
to-left, the first (say i-th) letter on which m, and ms differ is such that the i-th letter of

my is lexicographically greater than the i-th letter of ms.

Example 1.2.8 With 2 > y > z, consider the noncommutative monomials m, := zayz;
mg := xzx and mg := y?zz. The following table shows the order placed on the monomials
by various noncommutative monomial orderings. As before, the final column shows the
order induced on the polynomial p := m; + ms + m3 by the chosen monomial ordering.

Monomial Ordering O | O(my,mz) | O(my,m3) | O(mg, ms) p

Lex 1 i 0 T2z + y?2z + 20y
InvLex 0 0 1 zzyx + Y2z + z2x
DegLex 0 1 1 yizx + zzyc + x2x
DeglnvLex 0 0 1 zzyz + ylzx + x2z
DegRevLex 0 1 1 Y22z + 2Ty + T2T

1.2.3 Polynomial Division

Definition 1.2.9 Let R be a polynomial ring, and let O be an arbitrary admissible

monomial ordering. Given two nonzero polynomials p;, p; € R, we say that p; divides
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po (written p; | p2) if the lead monomial of p; divides some monomial m (with coefficient
¢) in py. For a commutative polynomial ring, this means that m = LM(p;)m’ for some
monomial m/; for a noncommutative polynomial ring, this means that m = m,LM(p;)m,

for some monomials mg and m, (LM(p;) is a subword of m).

To perform the division, we take away an appropriate multiple of p; from p; in order to
cancel off LT(p;) with the term involving m in ps. In the commutative case, we do

p2 — (cLC(p1) ™ )prm’;
in the noncommutative case, we do

p2 — (cLC(p1) " Hmeprm,.

It is clear that the coefficient rings of our polynomial rings have to be division rings in
order for the above expressions to be valid, and so we make the following assumption

about the polynomial rings we will encounter in the remainder of this thesis.

Remark 1.2.10 From now on, all coefficient rings of polynomial rings will be fields unless

otherwise stated.

Example 1.2.11 Let p; = 522z + 24> + 2 + 4 and py := 3zyzz®2® + 222 be two
DegLex ordered polynomials over the noncommutative polynomial ring Q(z,y, z). Be-
cause LM(pz) = zyz(222)2?, it is clear that p; | ps, with the quotient and the remainder
of the division being

q:= (2) aya(52"z + 2y + z + 4)a?

and
ro= 3ayzz’az® + 222 — (2) syx(52%z + 2% + 2 + 4)a?
= 3zyzz®z® + 22% — Sxyxza® — (g) zyTy’T® — (%) zyzt — (1—52-) zyzd
= (8) eyera? - (3) ayet — (2) ayad + 202
respectively.

Now that we know how to divide one polynomial by another, what does it mean for a
polynomial to be divided by a set of polynomials?

Definition 1.2.12 Let R be a polynomial ring, and let O be an arbitrary admissible
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monomial ordering. Given a nonzero polynomial p € R and a set of nonzero polynomials
P ={p1,pa,...,pm}, with p; € R for all 1 < i < m, we divide p by P by working through
p term by term, testing to see if each term is divisible by any of the p; in turn. We
recursively divide the remainder of each division using the same method until no more

divisions are possible, in which case the remainder is either 0 or is irreducible.

Algorithms to divide a polynomial p by a set of polynomials P in the commutative and
noncommutative cases are given below as Algorithms 1 and 2 respectively. Note that they
take advantage of the fact that if the first N terms of a polynomial g are irreducible with
respect to P, then the first N terms of any reduction of ¢ will also be irreducible with

respect to P.

Algorithm 1 The Commutative Division Algorithm

Input: A nonzero polynomial p and a set of nonzero polynomials P = {p1,...,pn} over
a polynomial ring Rz, ...z,]; an admissible monomial ordering O.
Output: Rem(p, P) := r, the remainder of p with respect to P.
r=0;
while (p # 0) do
u = LM(p); ¢ = LC(p); j = 1; found = false;
while (7 < m) and (found == false) do
if (LM(p;) | u) then
found = true; v’ = w/LM(p;); p = p — (cLC(p;) " )p;u’;
else
J=3+1
end if
end while
if (found == false) then
r =1+ LT(p); p=p— LT(p);
end if
end while

return 7;

Remark 1.2.13 All algorithms in this thesis use the conventions that ‘=" denotes an

assignment and ‘==" denotes a test.
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Algorithm 2 The Noncommutative Division Algorithm

To divide a nonzero polynomial p with respect to a set of nonzero polynomials P =
{p1,...,Pm}, where p and the p; are elements of a noncommutative polynomial ring
R{(z1,...,z,), we apply Algorithm 1 with the following changes.

(a) In the inputs, replace the commutative polynomial ring R[z1,...,] by the noncom-

mutative polynomial ring R{zy,...,z,).

(b) Change the first if condition to read

if (LM(p;) | ) then
found = true;
choose u; and u, such that v = u,LM(p;)u,;
p=p— (cLC(p;) ™" Juepjus;

else
j=i+tL

end if

Remark 1.2.14 In Algorithm 2, if there are several candidates for u, (and therefore for
u,) in the line ‘choose u, and w, such that v = u,LM(p;)u,’, the convention in this thesis
will be to choose the u, with the smallest degree.

Example 1.2.15 To demonstrate that the process of dividing a polynomial by a set of
polynomials does not necessarily give a unique result, consider the polynomial p := ayz+z
and the set of polynomials P := {py, pa} = {2y — 2, yz + 2z + z}, all polynomials being
ordered by DegLex and originating from the polynomial ring Q[z,y, z]. If we choose to
divide p by p; to begin with, we see that p reduces to zyz+ 2z — (zy — 2)z = 2® + 2, which
is irreducible. But if we choose to divide p by ps to begin with, we see that p reduces to
tyz + z — (yz + 2z + 2)z = —22% — xz + =, which is again irreducible. This gives rise
to the question of which answer (if any!) is the correct one here? In Chapter 2, we will
discover that one way of obtaining a unique answer to this question will be to calculate a

Grébner Basis for the dividing set P.

Definition 1.2.16 In order to describe how one polynomial is obtained from another
through the process of division, we introduce the following notation.

(a) If the polynomial r is obtained by dividing a polynomial p by a polynomial ¢, then

we will use the notation p — r or p —, r (with the latter notation used if we wish to
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show how r is obtained from p).

(b) If the polynomial r is obtained by dividing a polynomial p by a sequence of polyno-
mials g1, g, . . ., ga, then we will use the notation p — 7.

(c) If the polynomial r is obtained by dividing a polynomial p by a set of polynomials @,
then we will use the notation p —¢ r.



Chapter 2
Commutative Grobner Bases

Given a basis F' generating an ideal J, the central idea in Grobner Basis theory is to use
F' to find a basis G for J with the property that the remainder of the division of any
polynomial by G is unique. Such a basis is known as a Grobner Basis.

In particular, if a polynomial p is a member of the ideal J, then the remainder of the
division of p by a Grobner Basis G for J is always zero. This gives us a way to solve the
Ideal Membership Problem for J — if the remainder of the division of a polynomial p by
G is zero, then p € J (otherwise p ¢ J).

2.1 S-polynomials

How do we determine whether or not an arbitrary basis F' generating an ideal J is a
Grobner Basis? Using the informal definition shown above, in order to show that a basis
is not a Grébner Basis, it is sufficient to find a polynomial p whose remainder on division
by F' is non-unique. Let us now construct an example in which this is the case, and let

us analyse what can to be done to eliminate the non-uniqueness of the remainder.

Let pp=a1+as+ - +au; p2=by+by+---+bgand ps =c1 +c2 + -+ + ¢y be three
polynomials ordered with respect to some fixed admissible monomial ordering O (the a;,
b; and c; are all nontrivial terms). Assume that p; | p3 and ps | p3, so that we are able
to take away from ps multiples s and t of p; and ps respectively to obtain remainders 4

22
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and 7o,

™ = P3— 5N
= cag+ctt+ey—slartar+---+aq)
= c+ -+ ¢y —S0g— — 5aq;

Te = p3—tps
= e+ ot ey—thy—--r—thg.

If we assume that r; and 7, are irreducible and that r; # 7, it is clear that the remainder
of the division of the polynomial p3 by the set of polynomials P = {p;,p2} is non-unique,
from which we deduce that P is not a Grobner Basis for the ideal that it generates. We
must therefore change P in some way in order for it to become a Grobner Basis, but what
changes are required and indeed allowed?

Consider that we want to add a polynomial to P. To avoid changing the ideal that is being
generated by P, any polynomial added to P must be a member of the ideal. It is clear
that r; and ry are members of the ideal, as is the polynomial py = 7y — 7y = —tpy + sp1.
Consider that we add py to P, so that P becomes the set

{ar+ag+ -4 aq, by +ba+---+bg, —thy —ths — -+ —thg + saz + saz + -+ - + 504}

If we now divide the polynomial ps by the enlarged set P, to begin with (as before) we
can either divide p3 by p; or p; to obtain remainders r; or r5. Here however, if we assume
(without loss of generality') that LT(py) = —tbs, we can now divide 73 by p4 to obtain a

new remainder

s = Tg—P4
= cyt - tey—thy— - —tbg — (—tby — thg — -+ — thg + sag + saz + - + sa,)
= Cpt+ - FteCy—8a3— " — 80,
= i,

It follows that by adding ps; to P, we have ensured that the remainder of the division
of ps by P is unique? no matter which of the polynomials p; and ps we choose to divide

!The other possible case is LT(p4) = sas, in which case it is 7; that reduces to r; and not 75 to ry.
2This may not strictly be true if ps is divisible by p4; for the time being we shall assume that this is
not the case, noting that the important concept here is of eliminating the non-uniqueness given by the
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pa by first. This solves our original problem of non-unique remainders in this restricted

situation.

At first glance, the polynomial added to P to solve this problem is dependent upon the
polynomial ps. The reason for saying this is that the polynomial added to P has the form

P4 = 5p; — tpa, where s and t are terms chosen to multiply the polynomials p; and p; so

LT(p3) and £ = LT (ps)

that the lead terms of sp; and ¢ps equal LT (p3) (in fact s = () pz})

However, by definition, LM(p3) is a common multiple of LM(p;) and LM(p,). Because all
such common multiples are multiples of the least common multiple of LM(p;) and LM(ps)
(so that LM(p3) = p(lem(LM(p;), LM(p2))) for some monomial p), it follows that we can

rewrite py as

o= Ll (M) M), lomLN () ) )

LT(py) b= LT (p»)

Consider now that we add the polynomial ps = LC( 5 to P instead of adding p4 to P.
It follows that even though this polynomial does not depend on the polynomial ps, we
can still obtain a unique remainder when dividing p3 by p; and py, because we can do
r3 = 19 — LC(ps)ups. Moreover, the polynomial ps solves the problem of non-unique
remainders for any polynomial ps that is divisible by both p; and py (all that changes is
the multiple of ps used in the reduction of 3); we call such a polynomial an S-polynomial’

for p; and ps.

Definition 2.1.1 The S-polynomial of two distinct polynomials p; and ps is given by the

expression

lcm(LM(pl),LM(pz)) _ lCIIl(LM(p1),LM(p2))
LT(p1) . LT(p,) "

S-pol(p1, p2) =

Remark 2.1.2 The terms lcm([’wg,ﬁ;ll)’wm) nd lcm(wgfr’z) I;M(pz)) can be thought of as the

terms used to multiply the polynomials p; and py so that the lead monomials of the

multiples are equal to the monomial lem(LM(p;), LM(pa)).

Let us now illustrate how adding an S-polynomial to a basis solves the problem of non-

unique remainders in a particular example.

choice of dividing ps by p; or p, first.
3The S stands for Syzygy, as in a pair of connected objects.
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Example 2.1.3 Recall that in Example 1.2.15 we showed how dividing the polynomial
p := xyz -+ by the two polynomials in the set P := {p1, p2} = {2y — 2, yz+ 2z + 2} gave
two different remainders, r; := 2% + z and ry ;== —22% — 22 + z respectively. Consider
now that we add S-pol(p1, ps) to P, where
TYZ Yz
S-pol(p1,p2) = m—i(wy —z)— y—yz(yz + 2z + 2)

= (zyz—2%) — (zyz + 222 + 22)

= —22% —zz - 27
Dividing p by the enlarged set, if we choose to divide p by p; to begin with, we see that p
reduces (as before) to give zyz + = — (vy — 2)z = 2% + @, which is irreducible. Similarly,
dividing p by p» to begin with, we obtain the remainder zyz + z — (yz + 2z + 2)z =
—222 — 7z + x. However, whereas before this remainder was irreducible, now we can
reduce it by the S-polynomial to give —22% — 2z + z — (—22° — 22 — 2%) = 2% + , which

is equal to the first remainder.

Let us now formally define a Grébner Basis in terms of S-polynomials, noting that there
are many other equivalent definitions (see for example [7], page 206).

Definition 2.1.4 Let G = {g1,...,9n} be a basis for an ideal J over a commutative
polynomial ring R = R|®1,...,%,). If all the S-polynomials involving members of G
reduce to zero using G (S-pol(g;, g;) —¢ 0 for all i # 7), then G is a Grébner Basis for J.

Theorem 2.1.5 Given any polynomial p over a polynomial ring R = R[z1,...,z,], the
remainder of the division of p by a basis G for an ideal J in R is unique if and only if G
is a Grobner Basis.

Proof: (=) By Newman’s Lemma (cf. [7], page 176), showing that the remainder
of the division of p by G is unique is equivalent to showing that the division process is
locally confluent, that is if there are polynomials f, fi, f» € R with f; = f — t1¢; and
fa = f — tags for terms ¢y, ¢ and g1, g2 € G, then there exists a polynomial f3 € R such
that both f; and f; reduce to f3. By the Translation Lemma (cf. [7], page 200), this in
turn is equivalent to showing that the polynomial fo — f1 = t19; — t2g; reduces to zero,

which is what we shall now do.
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There are two cases to deal with, LT(¢1g1) # LT (¢292) and LT(t191) = LT(t292). In the
first case, notice that the remainders f; and f; are obtained by cancelling off different
terms of the original f (the reductions of f are disjoint), so it is possible, assuming
(without loss of generality) that LT(¢191) > LT(f292), to directly reduce the polynomial
fo — fi = tig1 — t2ge in the following manner: ti1g; — togs —4, —t2g2 —4, 0. In the
second case, the reductions of f are not disjoint (as the same term ¢ from f is cancelled
off during both reductions), so that the term ¢ does not appear in the polynomial ¢;¢; —
tags. However, the term ¢ is a common multiple of LT(¢1g:1) and LT(¢2g2), and thus the
polynomial t1g; — t2g2 is a multiple of the S-polynomial S-pol(g1, ¢2), say

t1g1 — tags = p(S-pol(g1, g2))

for some term p. Because G is a Grébner Basis, the S-polynomial S-pol(gy, g5) reduces to
zero, and hence by extension the polynomial ¢;g; — t2go also reduces to zero.

(<) As all S-polynomials are members of the ideal J, to complete the proof it is sufficient
to show that there is always a reduction path of an arbitrary member of the ideal that
leads to a zero remainder (the uniqueness of remainders will then imply that members of
the ideal will always reduce to zero). Let f € J = (G). Then, by definition, there exist
g; € G and f; € R (where 1 < i < j) such that

J
J= Z figi-
i=1

We proceed by induction on j. If j = 1, then f = f1g1, and it is clear that we can use g
to reduce f to give a zero remainder (f — f — fig1 = 0). Assume that the result is true
for j = k, and let us look at the case j = k + 1, so that

k
f= (Z figz) + fir19k41-

i=1

By the inductive hypothesis, ZLI figi is a member of the ideal that reduces to zero. The
polynomial f therefore reduces to the polynomial f' := fi.1gx+1, and we can now use
gr+1 to reduce f' to give a zero remainder (f' — f' — fri19k41 = 0). a

We are now in a position to be able to define an algorithm to compute a Grébner Basis.
However, to be able to prove that this algorithm always terminates, we must first prove
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a result stating that all ideals over commutative polynomial rings are finitely generated.
This proof takes place in two stages — first for monomial ideals (Dickson’s Lemma) and

then for polynomial ideals (Hilbert’s Basis Theorem).

2.2 Dickson’s Lemma and Hilbert’s Basis Theorem

Definition 2.2.1 A monomial ideal is an ideal generated by a set of monomials.

Remark 2.2.2 Any polynomial p that is a member of a monomial ideal is a sum of terms

p =), t;, where each ¢; is a member of the monomial ideal.

Lemma 2.2.3 (Dickson’s Lemma) FEvery monomial ideal over the polynomial ring R =
R[z1,...,x,| is finitely generated.

Proof (cf. [22], page 47): Let J be a monomial ideal over R generated by a set of
monomials S. We proceed by induction on n, our goal being to show that S always has
a finite subset T generating J. For n = 1, notice that all elements of S will be of the
form m{ for some j = 0. Let T be the singleton set containing the member of S with the
lowest degree (that is the 2/ with the lowest value of j ). Clearly T is finite, and because
any element of S is a multiple of the chosen !, it is also clear that T generates the same
ideal as S.

For the inductive step, assume that all monomial ideals over the polynomial ring R' =
Rlz1,...,%,_1] are finitely generated. Let Cy € C; C Cy C -+ be an ascending chain of
monomial ideals over R/, where*

¢y = (8,)n R, Sj={mues}.
Let the monomial m be an arbitrary member of the ideal J, expressed as m = m/zF,
where ' € R’ and k > 0. By definition, m’ € Cy, and so m € zX¥C,. By the inductive
hypothesis, each Cj is finitely generated by a set Tk, and so m € z*(T}). From this we
can deduce that
T=Ty Uz, Us2ThU -+

is a generating set for J.

“Think of Cy as the set of monomials m € J which are also members of R'; think of C; (for j > 1) as
containing all the elements of C;_; plus the monomials m € J of the form m = m/z}, m' € R'.
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Consider the ideal C' = UC} for j > 0. This is another monomial ideal over R', and so by
the inductive hypothesis is finitely generated. It follows that the chain must stop as soon

as the generators of C are contained in some C,, so that C, = C,4; = --- (and hence
T, = Tp41 = --+). It follows that Ty Uz, T3 U 22Ty U --- U 2T, is a finite subset of S
generating J. O

Example 2.2.4 Let S = {y*, zy4, 2%%, 2%%, 2y, 2%} be an infinite set of monomials
generating an ideal J over the polynomial ring Q|z,y], where k is an integer such that
k = 5. We can visualise J by using the following monomial lattice, where a point (a, b)
in the lattice (for non-negative integers a, b) corresponds to the monomial %y®, and the
shaded region contains all monomials which are reducible by some member of S (and

hence belong to J).

2=

=
’é/ 7

i\\\\\\\\\f

To show that J can be finitely generated, we need to construct the set T as described in
the proof of Dickson’s Lemma. The first step in doing this is to construct the sequence
ofsetsSj:{mHES} for all j > 0.

So = {y, =y, %P, %P, 2y, =¥} =S

Si = {f, b, 2h?, oo, ot o*)
Sy = {4, =y, 2%y, 2y, o4, =¥}
Ss = {y, ay, 2°, °, 24, a*}

8 = {=1, ¢, 22, 2% o, %}

Sjq1 = S; forallj+125.

Each set S5; gives rise to an ideal C; consisting of all monomials m € (S;) of the form
m = a* for some ¢ > 0. Because each of these ideals is an ideal over the polynomial ring
Q[z], we can use an inductive hypothesis to give us a finite generating set T; for each Cj.
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In this case, the first paragraph of the proof of Dickson’s Lemma tells us how to apply
the inductive hypothesis — each set 7T} is formed by choosing the monomial m € §; of

lowest degree such that m = z* for some 7 > 0.

T = 2%}
Ty = {3¢}
T, = {z*}
T3 = {2%}

T4 = {$0=1}
Ty = T; forallk+135.

We can now deduce that
T = {2z} U{z*y} U {a""} U {z*} U {y"} U {s"} U --

is a generating set for J. Further, because T 1 = T} for all K+ 1 > 5, we can also deduce
that the set

is a finite generating set for J (a fact that can be verified by drawing a monomial lattice

for 7" and comparing it with the above monomial lattice for the set ).

Theorem 2.2.5 (Hilbert’s Basis Theorem) FEvery ideal J over a polynomial ring R =
R[z1, ...,z is finitely generated.

Proof: Let O be a fixed arbitrary admissible monomial ordering, and define LM(J) =
(LM(p) | p € J). Because LM(J) is a monomial ideal, by Dickson’s Lemma it is finitely
generated, say by the set of monomials M = {my,...,m,}. By definition, each m; € M
(for 1 < i < r) has a corresponding p; € J such that LM(p;) = m;. We claim that
P = {py,...,p} is a generating set for J. To prove the claim, notice that (P) C J so
that f € (P) = f € J. Conversely, given a polynomial f € J, we know that LM(f) € (M)
so that LM(f) = am; for some monomial @ and some 1 < j < r. From this, if we define
al = E‘g(%))a, we can deduce that LM(f —a'p;) < LM(f). Since f —a'p; € J, and because
of the admissibility of O, by recursion on f — a'p; (define fii1 = fi — ofp;, for k > 1,
where fi — aip;, := f — oa/p;), we can deduce that f € (P) (in fact f = 3 1, a}p;, for
some finite K). O
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Corollary 2.2.6 (The Ascending Chain Condition) Every ascending sequence of ide-
als J; C Jy C --- over a polynomial ring R = R[zy,...,z,) ts eventually constant, so
that there s an i such that J; = Jip1 =+

Proof: By Hilbert’s Basis Theorem, each ideal Ji (for & > 1) is finitely generated.
Consider the ideal J = UJg. This is another ideal over R, and so by Hilbert’s Basis
Theorem is also finitely generated. From this we deduce that the chain must stop as soon
as the generators of J are contained in some J;, so that J; = Ji.1 =+, O

2.3 Buchberger’s Algorithm

The algorithm used to compute a Grébner Basis is known as Buchberger’s Algorithm.
Bruno Buchberger was a student of Wolfgang Grobner at the University of Innsbruck,
Austria, and the publication of his PhD thesis in 1965 [11] marked the start of Grébner
Basis theory.

In Buchberger’s algorithm, S-polynomials for pairs of elements from the current basis are
computed and reduced using the current basis. If the S-polynomial does not reduce to
zero, it is added to the current basis, and this process continues until all S-polynomials
reduce to zero. The algorithm works on the principle that if an S-polynomial S-pol(g;, g;)
does not reduce to zero using a set of polynomials G, then it will certainly reduce to zero

using the set of polynomials G' U {S-pol(gi, g;)}.

Theorem 2.3.1 Algorithm 8 always terminates with a Grobner Basis for the ideal J.

Proof (cf. [7], page 213): Correctness. If the algorithm terminates, it does so with
a set of polynomials G' with the property that all S-polynomials involving members of
G reduce to zero using G (S-pol(g:, g;) —¢ 0 for all i # j). G is therefore a Grébner
Basis by Definition 2.1.4. Termination. If the algorithm does not terminate, then an
endless sequence of polynomials must be added to the set G so that the set A never
becomes empty. Let Go C Gy € G5 C -+ be the successive values of G. If we consider
the corresponding sequence LM(Gq) € LM(G;) € LM(G3) C --- of lead monomials, we
note that these sets generate an ascending chain of ideals Jy C J; C J; C --- because
each time we add a monomial to a particular set LM(Gy) to form the set LM(Gy41), the
monomial we choose is irreducible with respect to LM(G}y), and hence does not belong to

the ideal J,. However the Ascending Chain Condition tells us that such a chain of ideals
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Algorithm 3 A Basic Commutative Grobner Basis Algorithm

Input: A Basis F' = {f1, fa,..., fm} for an ideal J over a commutative polynomial ring
R|z1,...x,); an admissible monomial ordering O.
Output: A Grobner Basis G = {g1,92,...,9p} for J.

Let G = F and let A = 0
For each pair of polynomials (g, ¢;) in G (i < 7),
add the S-polynomial S-pol(g;, g;) to A;
while (A is not empty) do
Remove the first entry s; from A;
s7 = Rem(s;, G);
if (s} # 0) then
Add s} to G and add all the S-polynomials S-pol(g;, s7) to A (g; € G, g; # s1);
end if
end while

return G;

must eventually become constant, so there must be some ¢ 2 0 such that J; = Ji.p = -+ -.
It follows that the algorithm will terminate once the set GG; has been constructed, as all
of the S-polynomials left in A will now reduce to zero (if not, some S-polynomial left in A
will reduce to a non-zero polynomial s} whose lead monomial is irreducible with respect to
LM(G;), allowing us to construct an ideal Ji11 = (LM(G;)U{LM(s])}) D (LM(G;)) = J;
contradicting the fact that Ji, = J;.) O

Example 2.3.2 Let F = {f1, fo} = {2? — 22y + 3, 22y + y* + 5} generate an ideal
over the commutative polynomial ring Q[z, y], and let the monomial ordering be DegLex.
Running Algorithm 3 on F, there is only one S-polynomial to consider initially, namely
S-pol(f1, f2) = y(f1) — 32(f2) = —%myz — %m + 3y. This polynomial reduces (using f3) to
give the irreducible polynomial %y‘? = %:E + %Zy =: f3, which we add to our current basis.
This produces two more S-polynomials to look at, S-pol(fi, f3) = ¥3(f1) — %3:2( fa) =
—2zy* +22° — Ty + 3y® and S-pol(fa, fs) = 3y7(f2) — 22(fs) = 3y +22% — Lay + 2,
both of which reduce to zero. The algorithm therefore terminates with the set {22 —2zy+
3, 2zy +y* + 5, 3y° — 2z + &y} as the output Grobner Basis.

Here is a dry run for Algorithm 3 in this instance.
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G i3 A 51 s
{fi,fo} |12 0

{S-pol(f1, f2)}

{fifa f3} | 1 0 —3xy® — Sz + 3y f3
2 {S-pol(f1, f3)}

{S-pol(f2; f3), S-pol(f1, f3)}
{S-pol(f1, f3)} ' +22% = Fay+3y* | 0
0 —2ay? + 228 — 551992?; +33 | 0

2.4 Reduced Grobner Bases

Definition 2.4.1 Let G = {g1,...,9,} be a Grobner Basis for an ideal over the poly-
nomial ring R|z1,...,2,]). G is a reduced Grobner Basis if the following conditions are
satisfied.

(a) LC(g;) = 1g for all g; € G.

(b) No term in any polynomial g; € G is divisible by any LT(g;), j # .

Theorem 2.4.2 Fuvery ideal over a commutative polynomial ring has a unique reduced

Grobner Basis.

Proof: Euristence. By Theorem 2.3.1, there exists a Grébner Basis G for every ideal
over a commutative polynomial ring. We claim that the following procedure transforms
( into a reduced Grobner Basis G'.

(i) Multiply each g; € G by LC(g;)~".
(ii) Reduce each g; € G by G \ {g:}, removing from G all polynomials that reduce to

ZEero.

It is clear that G’ satisfies the conditions of Definition 2.4.1, so it remains to show that
G’ is a Grobner Basis, which we shall do by showing that the application of each step of

instruction (ii) above produces a basis which is still a Grobner Basis.

Let G = {g1,...,9p} be a Grobner Basis, and let g/ be the reduction of an arbitrary
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g; € G with respect to G\ {g;}, carried out as follows (the t) are terms).

gi=g— tgi.- (2.1)
k=]

Set H = (G\{g:})U{gi}if g} # 0, and set H = G\ {g:} if g = 0. As G is a Grébner Basis,

all S-polynomials involving elements of G reduce to zero using G, so there are expressions

u
taga — tsgs — Y tufe, =0 (2:2)
u=1
for every S-polynomial S-pol(ga, gs) = taga — tsgs, Where ga, g, ge, € G. To show that H
is a Grobner Basis, we must show that all S-polynomials involving elements of H reduce
to zero using H. For distinct polynomials g,, g, € H not equal to g, we can reduce the
S-polynomial S-pol(g,, g») using the reduction shown in Equation (2.2), substituting for
g; from Equation (2.1) if any of the g., in Equation (2.2) are equal to g;. This gives a
reduction to zero of S-pol(g,, g») in terms of elements of H.

If g; = 0, our proof is complete. Otherwise consider the S-polynomial S-pol(g;, g.). We
claim that S-pol(g;, ga) = t19i —tage = S-pol(g;, ga) = t19; —t2g4. To prove this claim, it is
sufficient to show that LT(g;) = LT(g;). Assume for a contradiction that LT(g;) # LT (g;).
It follows that during the reduction of g; we were able to reduce its lead term, so that
LT(g;) = tLT(g;) for some term ¢ and some g; € G. By the admissibility of the chosen
monomial ordering, the polynomial g; — tg; reduces to zero without using g;, leading to

the conclusion that g; = 0, a contradiction.

It remains to show that S-pol(g!, ga) —m 0. We know that S-pol(g;, ga) = t16:—t29. —¢ 0,
and Equation (2.2) tells us that ¢19; — taga — Y t,_; tuge, = 0. Substituting for g; from
Equation (2.1), we obtain®

i B
13} (Q’; + Z tkgjk) —t29a — Z tuge, =0
k=1 u=1
or

m K
bt i (z: R ztltkgjk) _o,
u=1 k=1

5Substitutions for g; may also occur in the summation X _. t,gc,; these substitutions have not been
u=1 g u
considered in the displayed formulae.
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which implies that S-pol(g}, g.) —# 0.

Uniqueness. Assume for a contradiction that G = {g1,...,9,} and H = {hq,..., hy} are
two reduced Grobner Bases for an ideal J, with G # H. Let g; be an arbitrary element
from G (where 1 < i < p). Because g; is a member of the ideal, then g; must reduce
to zero using H (H is a Grobner Basis). This means that there must exist a polynomial
h; € H such that LT(h;) | LT(g;). If LT(h;) # LT(g;), then LT(h;) xm = LT(g;) for some
nontrivial monomial m. But h; is also a member of the ideal, so it must reduce to zero
using G. Therefore there exists a polynomial g € G such that LT(g;) | LT(h;), which
implies that LT(gx) | LT(g;), with k& # ¢. This contradicts condition (b) of Definition
2.4.1, so that G cannot be a reduced Grobner Basis for J if LT(h;) # LT(g;). From this
we deduce that each g; € G has a corresponding h; € H such that LT(g;) = LT(h;).
Further, because G and H are assumed to be reduced Grobner Bases, this is a one-to-one

correspondence.

It remains to show that if LT(g;) = LT(h;), then g; = h;. Assume for a contradiction
that g; # h;, and consider the polynomial g; — h;. Without loss of generality, assume
that LM(g; — h;) appears in g;. Because g; — h; is a member of the ideal, then there is a
polynomial g; € G such that LT(gx) | LT(g; — h;). But this again contradicts condition
(b) of Definition 2.4.1, as we have shown that there is a term in g; that is divisible by
LT(gy) for some k # 4. It follows that G cannot be a reduced Grébner Basis if g; # hy,
which means that G = H and therefore reduced Grébner Bases are unique. 4

Given a Grobner Basis G, we saw in the proof of Theorem 2.4.2 that if the lead term of
any polynomial g; € G is reducible by some polynomial g; € G (where g; # ¢;), then g;
reduces to zero. We can use this information to refine the procedure for finding a unique
reduced Grobner Basis (as given in the aforementioned proof) by allowing the removal of
any polynomial g; € G whose lead monomial is a multiple of some other lead monomial
LM(g;). This process, which if often referred to as minimising a Grobner Basis (as in
finding a Grobner Basis with the minimal number of elements), is incorporated into our

refined procedure, which we state as Algorithm 4.

2.5 Improvements to Buchberger’s Algorithm

Nowadays, most general purpose symbolic computation systems possess an implemen-

tation of Buchberger’s algorithm. These implementations often take advantage of the
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Algorithm 4 The Commutative Unique Reduced Grobner Basis Algorithm

Input: A Grobner Basis G = {g1,92, .-, 9m} for an ideal J over a commutative polyno-
mial ring R[z1, ... z,]; an admissible monomial ordering O.
Output: The unique reduced Grobner Basis G’ = {g}, 95,...,g,} for J.
G' =0
for each g; € G do
Multiply g; by LC(g:)™;
if (LM(g;) = uLM(g;) for some monomial v and some g; € G (g; # g:)) then
G =G\ {a}i
end if
end for
for each g; € G do
g; = Rem(¢;, (G\ {g:}) U G');
G=G\{a} G'=GU{g};
end for

return G';

numerous improvements made to Buchberger’s algorithm over the years, some of which

we shall now describe.

2.5.1 Buchberger’s Criteria

In 1979, Buchberger published a paper [10] which gave criteria that enable the o priori
detection of S-polynomials that reduce to zero. This speeds up Algorithm 3 by drastically
reducing the number of S-polynomials that must be reduced with respect to the current

basis.

Proposition 2.5.1 (Buchberger’s First Criterion) Let f and g be two polynomials
over a commutative polynomial ring ordered with respect to some fized admissible mono-
mial ordering O. If the lead terms of f and g are disjoint (so that lem(LM(f),LM(g)) =
LM(f)LM(g)), then S-pol(f,g) reduces to zero using the set {f,g}.
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Proof (Adapted from [7], Lemma 5.66): Assume that f =3 7 s, and g = Z?=1 T

where the s; and the ¢; are terms. Because s; and ¢; are disjoint, it follows that

S-pol(f,9) = tf —sig
= ti(so+ -+ 8a) —s1(ta+ - +1tg). (2.3)

We claim that no two terms in Equation (2.3) are the same. Assume to the contrary
that t1s; = s1t; for some 2 < i < a and 2 < j < B. Then ¢;s; is a multiple of both ¢;
and s1, which means that ¢;s; is a multiple of lem(¢;, s1) = t151. But then we must have
t18; = t181, which gives a contradiction (by definition s; > s;).

As every term in t;(sy+- -+ + 84) is a multiple of ¢;, we can use g to eliminate each of the

terms ¢84, t184-1, - - -, t182 in Equation (2.3) in turn:

ti(sa+ -+ 84) — s1(ta 4+ -+ tg)
— ti(sa+ -+ 8q) —si{to+ - +t5) — Sag
= ti(sa+ -+ 8q-1) —s1(ta + - +tg) — Sata + -+ + tg)
— ti(sa+ -+ 8a—2) — (614 801+ 8a)(ta + - +5)

— —(s1t szt +sa)(tat+ e+ tp)
= —si(ta+-+tg)— = Salta+ - +1t5). (2.4)

We do this in reverse order because, having eliminated a term ¢;s, (where 3 < v < a), to
continue the term ¢;5,_; must appear in the reduced polynomial (which it does because
t1Sy—1 > S5ty forall y < d < aand 2 < < ).
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We now use the same argument on —si(ty + -+ + tg), using f to eliminate each of its

terms in turn, giving the following reduction sequence.

—s1(ta+ - F1g) — o = Salta + -+ 1p)
— —si(ta+--+ig) = —salta+ -+ tg) +taf
= —s1(tat - +tg) = —Salta+ - +tg) +tas1+-+5a)
= —si(ts+---+tg) — - —Salts+ - +tp)
— —sy(ty + - o tg) — oo — Salls + -+ tg)

Technical point: If some term s;t; (for 4,5 > 2) cancels the term sit; (for £ > 3) in
Equation (2.4), then as we must have j < & in order to have s;t; = s1t;, the term s:; will
reappear as s;t; when the term s;¢; is eliminated, allowing us to continue the reduction
as shown. This argument can be extended to the case where a combination of terms of
the form s;t; cancel the term s,ty, as the term s;¢; will reappear after all the terms s;¢,
(for 2 € k < k) have been eliminated. O

Proposition 2.5.2 (Buchberger’s Second Criterion) Let f, g and h be three mem-
bers of a finite set of polynomials P over a commutative polynomial ring satisfying the
following conditions.

(a) LM(h) | lem(LM(f), LM(g)).

(b) S-pol(f,h) —p 0 and S-pol(g, h) —p 0.
Then S-pol(f,g) —p 0.

Proof: If LM(h) | lem(LM(f),LM(g)), then m;LM(h) = lem(LM(f),LM(g)) for some
monomial my,. Assume that lem(LM(f), LM(g)) = m;LM(f) = m,LM(g) for some mono-
mials mys and my. Then it is clear that m;LM(f) = myLM(h) is a common multiple of
LM(f) and LM(h), and myLM(g) = m,;LM(h) is a common multiple of LM(g) and
LM(R). It follows that lem(LM(f), LM(g)) is a multiple of both lem(LM(f), LM(k)) and
lem(LM(g), LM(h)), so that

lem(LM(f), LM(g)) = mnlem(LM(f), LM(h)) = mgnlem(LM(g), LM(h)) (2.5)
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for some monomials my, and mgy.

Because the S-polynomials S-pol(f, k) and S-pol(g, k) both reduce to zero using P, there

are expressions

S-pol(f, h) — Zszpa—(l

and

S-pol(g, h thpj = {j,

where the s; and the t; are terms, and p;,p; € P for all ¢ and j. It follows that

B
(S pol(f, k) Zszpz) = Mg (S'POI(Q, h) — thpj) ;

., (lcm(LM(f),LM( b} . JoTMICH, IR, 5™ | o

LT(f) LT(h)

i=1

B
- (1cm(LM(g), LM(h)) = lem(LM(g), LM(R)) Z tjpj) ;

LT(q) 9 LT(k)
lem(LM(f), LM(g)) , lem(LM(f),L
thgn ( m g LT(f) /= mthT h Zszpz) -

lem(LM(f),LM(g)) lem(LM(f), LM(g))
Mgh ( mghLT( ) qg— mghLT(h h — th‘pj) )

1 m(LM( ), LM(g lem(LM( ), LM(g
- (f) f Mfh Z S = Cm( LEF()g) g — Mygh Z tjpj;

S-pol(f,g) — Z MhSiP; + Z mgrtip; = 0.

i=1 j=1

To conclude that the S-polynomial S-pol(f, g) reduces to zero using P, it remains to show
that the algebraic expression — Y o, mssip; + Zle mgnt;p; corresponds to a valid re-
duction of S-pol(f, g). To do this, it is sufficient to show that no term in either of the sum-
mations is greater than lem(LM(f), LM(g)) (so that LM(ms:p;) < lem(LM(f), LM(g))
and LM(mgut;p;) < lem(LM(f), LM(g)) for all ¢ and j). But this follows from Equation
(2.5) and from the fact that the original reductions of S-pol(f, k) and S-pol(g, h) are valid,
so that LM(s;p;) < lem(LM(f),LM(h)) and LM(¢;p;) < lem(LM(g), LM(h)) for all ¢ and
j. 0
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2.5.2 Homogeneous Grobner Bases

Definition 2.5.3 A polynomial is homogeneous if all its terms have the same degree. For
example, the polynomial z2y+4y2%+32® is homogeneous, but the polynomial z3y-+4z%+45

is not homogeneous.

Of the many systems available for computing commutative Grébner Bases, some (such as
Bergman [6]) only admit sets of homogeneous polynomials as input. This restriction leads
to gains in efficiency as we can take advantage of some of the properties of homogeneous
polynomial arithmetic. For example, the S-polynomial of two homogeneous polynomials
is homogeneous, and the reduction of a homogeneous polynomial by a set of homogeneous
polynomials yields another homogeneous polynomial. It follows that if G is a Grobner
Basis for a set F' of homogeneous polynomials, then G is another set of homogeneous

polynomials.

At first glance, it seems that a system accepting only sets of homogeneous polynomials
as input is not able to compute a Grobner Basis for a set of polynomials containing one
or more non-homogeneous polynomials. However, we can still use the system if we use an

extendible monomial ordering and the processes of homogenisation and dehomogenisation.

Definition 2.5.4 Let p = py + -+ + p, be a polynomial over the polynomial ring
R[z1,...,x,), where each p; is the sum of the degree i terms in p (we assume that p,,, # 0).

The homogenisation of p with respect to a new (homogenising) variable y is the polynomial

h(p) = poy™ + pry™ " + - + Pm—1¥ + P,

where h(p) belongs to a polynomial ring determined by where y is placed in the lexico-
graphical ordering of the variables.

Definition 2.5.5 The dehomogenisation of a polynomial p is the polynomial d(p) given
by substituting y = 1 in p, where y is the homogenising variable. For example, the
dehomogenisation of the polynomial z} + @122y + z1y* € Q[z1, @, y] is the polynomial
o3 + z120 + 71 € Q1,29

Definition 2.5.6 A monomial ordering O is extendible if, given any polynomial p =

t1 + -+ - + t, ordered with respect to O (where t; > --- > t,), the homogenisation of p

/

.1 for all 1 € 4 < a—1, where the homogenisation

preserves the order on the terms (¢} > ¢!
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process maps the term t; € p to the term ¢, € h(p)).

Of the monomial orderings defined in Section 1.2.1, two of them (Lex and DegRevLex)
are extendible as long as we ensure that the new variable y is lexicographically less than
any of the variables 1, ..., z,; another (InvLex) is extendible as long as we ensure that

the new variable y is lexicographically greater than any of the variables x4, ..., z,.

The other monomial orderings are not extendible as, no matter where we place the new
variable y in the ordering of the variables, we can always find two monomials my and mq
such that, if p = my+mz (with my > my), then in h(p) = m) +mj, we have m| < m},. For
example, m; := 2125 and my := 2? provides a counterexample for the DegLex monomial

ordering.

Definition 2.5.7 Let F' = {fi,..., fm} be a non-homogeneous set of polynomials. To
compute a Grobner Basis for F' using a program that only accepts sets of homogeneous
polynomials as input, we proceed as follows.

(a) Construct a homogeneous set of polynomials F' = {h(f1),...,(fm)}.
(b) Compute a Grobner Basis G’ for F".

(c) Dehomogenise each polynomial g’ € G’ to obtain a set of polynomials G.

As long as the chosen monomial ordering O is extendible, G will be a Grébuer Basis for
F with respect to O [22, page 113]. A word of warning however — this process is not
necessarily more efficient that the direct computation of a Grébner Basis for F' using a

program that does accept non-homogeneous sets of polynomials as input.

2.5.3 Selection Strategies

One of the most important factors when considering the efficiency of Buchberger’s algo-
rithm is the order in which S-polynomials are processed during the algorithm. A particular
choice of a selection strategy to use can often cut down substantially the amount of work

required in order to obtain a particular Grobner Basis.

In 1979, Buchberger defined the normal strategy [10] that chooses to process an S-
polynomial S-pol(f,g) if the monomial lem(LM(f),LM(g)) is minimal (in the chosen
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monomial ordering) amongst all such lowest common multiples. This strategy was refined
in 1991 to give the sugar strategy [29], a strategy that chooses an S-polynomial to pro-
cess if the sugar of the S-polynomial (a value associated to the S-polynomial) is minimal
amongst all such values (the normal strategy is used in the event of a tie).

Motivation for the sugar strategy comes from the observation that the normal strategy
performs well when used with a degree-based monomial ordering and a homogeneous ba-
sis; the sugar strategy was developed as a way to proceed based on what would happen
when using the normal strategy in the computation of a Grébner Basis for the correspond-
ing homogenised input basis. We can therefore think of the sugar of an S-polynomial as
representing the degree of the corresponding S-polynomial in the homogeneous computa-

tiomn.

The sugar of an S-polynomial is computed by using the following rules on the sugars
of polynomials we encounter during the computation of a Grobner Basis for the set of

polynomials F' = {f1,..., fm}.

(1) The sugar Sugy, of a polynomial f; € F'is the total degree of the polynomial f; (which
is the degree of the term of maximal degree in f;).

(2) If p is a polynomial and if ¢ is a term, then Sug,, = deg(t) + Sug,.

(3) If p = p1 + pa, then Sug, = max(Sug, ,Sug,,).

It follows that the sugar of the S-polynomial S-pol(g, h) = lcm(wéfl?()g’;‘wh)) —lcm(Ll\gfi:‘"(ﬁ‘M(h)) h

is given by the formula

SUBg-pol(e,ny = max(Sug, — deg(LM(g)), Sug, — deg(LM(h))) + deg(lem(LM(g), LM(R))).

Example 2.5.8 To illustrate how a selection strategy reduces the amount of work re-
quired to compute a Grébner Basis, consider the ideal generated by the basis {23! — 28 —
z—vy, «® — z, z'® —t} over the polynomial ring Q[x, y, z,¢]. In our own implementation of
Buchberger’s algorithm, here is the number of S-polynomials processed during the algo-
rithm when different selection strategies and different monomial orderings are used (the
numbers quoted take into account the application of both of Buchberger’s criteria).
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Selection Strategy | Lex | Deglex | DegRevLex
No strategy 640 275 320
Normal strategy | 123 63 61
Sugar strategy 96 55 54

2.5.4 Basis Conversion Algorithms

One factor which heavily influences the amount of time taken to compute a Grobner
Basis is the monomial ordering chosen. It is well known that some monomial orderings
(such as Lex) are characterised as being ‘slow’, while other monomial orderings (such as
DegRevLex) are said to be ‘fast’. In practice what this means is that it usually takes far
more time to calculate (say) a Lex Grobner Basis than it does to calculate a DegRevLex

Grobner Basis for the same generating set of polynomials.

Because many of the useful applications of Grébner Bases (such as solving systems of
polynomial equations) depend on using ‘slow’ monomial orderings, a number of algorithms
were developed in the 1990’s that allow us to obtain a Grébner Basis with respect to one

monomial ordering from a Grobner Basis with respect to another monomial ordering.

The idea is that the time it takes to compute a Grébner Basis with respect to a ‘fast’
monomial ordering and then to convert it to a Grobner Basis with respect to a ‘slow’
monomial ordering may be significantly less than the time it takes to compute a Grobner
Basis for the ‘slow’ monomial ordering directly. Although seemingly counterintuitive, the

idea works well in practice.

One of the first conversion methods developed was the FGLM method, named after the
four authors who published the paper [21] introducing it. The method relies on linear
algebra to do the conversion, working with coefficient matrices and irreducible monomials.
Its only drawback lies in the fact that it can only be used with zero-dimensional ideals,
which are the ideals containing only a finite number of irreducible monomials (for each
variable z; in the polynomial ring, a Grobner Basis for a zero-dimensional ideal must
contain a polynomial which has a power of z; as the leading monomial). This restriction
does not apply in the case of the Grobner Walk [18], a basis conversion method we shall
study in further detail in Chapter 6.
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2.5.5 Optimal Variable Orderings

In many cases, the ordering of the variables in a polynomial ring can have a significant
effect on the time it takes to compute a Grébner Basis for a particular ideal (an example
can be found in [17]). This is worth bearing in mind if we are searching for any Grébner
Basis with respect to a certain ideal, so do not mind which variable ordering is being used.
A heuristically optimal variable ordering is described in [34] (deriving from a discussion
in [9]), where we order the variables so that the variable that occurs least often in the
polynomials of the input basis is the largest variable; the second least common variable
is the second largest variable; and so on (ties are broken randomly).

Example 2.5.9 Let F := {y?2*+ 2%, zy'2+2y?z+y®, y"+232} generate an ideal over
the polynomial ring Q[z,y, 2]. Because z occurs 8 times in F, y occurs 19 times and z
occurs 5 times, the heuristically optimal variable ordering is z > ¢ > y. This is supported
by the following table showing the times taken to compute a Lex Grobner Basis for F
using all six possible variable orderings, where we see that the time for the heuristically
optimal variable ordering is close to the time for the true optimal variable ordering.

Variable Order | Time | Size of Grobner Basis
T>Y>z 1:15.10 6
T>z> 0:02.85 7
y>z>z 2:19.45 i

y>z>cw 2:16.09 f

8
8

2> >y 0:05.91
z>y>zx 5:44.38

2.5.6 Logged Grobner Bases

In some situations, such as in the algorithm for the Grobner Walk, it is desirable to be
able to express each member of a Grobner Basis in terms of members of the original basis
from which the Grébner Basis was computed. When we have such representations, our
Grobner Basis is said to be a Logged Grébner Basis.

Definition 2.5.10 Let G = {g1,...,9,} be a Grébner Basis computed from an initial
basis F' = {fi,..., fm}. We say that G is a Logged Grébner Basis if, for each g; € G, we
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have an explicit expression of the form

B
g = Z tafkqs
a=1

where the t, are terms and f, € F foralll < a < 3.

Proposition 2.5.11 Given a finite basis F' = {f1,..., fm}, it is always possible to com-
pute a Logged Grobner Basis for F.

Proof: We are required to prove that every polynomial added to the input basis F' =
{f1,..., fm} during Buchberger’s algorithm has a representation in terms of members of
F. But any such polynomial must be a reduced S-polynomial, so it follows that the first
polynomial f,,.1 added to F will always have the form

B
i1 = SOl fir £5) = > tafras
a=1

where f;, f;, fr, € F and the {, are terms. This expression clearly gives a representation
of our new polynomial in terms of members of F, and by induction (using substitution) it
is also clear that each subsequent polynomial added to F' will also have a representation

in terms of members of F. O

Example 2.5.12 Let F' = {f1, fo, f3s} = {2y — 2, 22 + yz + 2, © + yz} generate an
ideal over the polynomial ring Q[z,y, 2], and let the monomial ordering be Lex. In
obtaining a Grobner Basis for F' using Buchberger’s algorithm, three new polynomials
are added to F, giving a Grébner Basis G := {¢1, 92, 93, 94, 95, g6 } = {2y — 2, 20 + yz +
2z, -+ 1z, —%yz + %z, —222, —2z}. These three new polynomials are obtained from the S-

polynomials S-pol(2z+yz+2z, z+yz), S-pol(zy—2z, —3yz+1z) and S-pol(zy—z, 2z+yz+2)
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respectively:

S-pol(2z + yz + 2z, z + yz)

S-pol (Q:y =K —%yz - %z)

S-pol{zy — 2, 20 +yz + 2)

1
= 5(2$+yz—l—z)—(x+yz)
1

1
= —iyz T 52'

1 1
= z(zy—2)+2z (—Eyz + §z)

= 55'2—22

1
— :cz—zz—iz(2$+yz+z)

1 3
— _§y22 — §z2
1 , 3 1]
—} —— — — —_— —— —_—
s —g¥ — 5% —z|—gyrtg2
= 222

1
= (-2 -5y +yz+2)
1 1

— ) _
= 2yz 2yz Z

1, 1 1 1
gy —~2—y z—ayz—z—y —Eyz—i—iz
= —yz—=z

1 1

i —yz—z—Z(—Eyz—&-Ez)
= =z

These reductions enable us to give the following Logged Grébner Basis for F.

Logged Representation

Member of G
=2y —=
P=2z+yz+=z
g3 =T+ Yz
9= —dvz+ b2
gs = —22°

g = —2

¥

fa

f3

52— f3

zfi+(z—2)fo+ (22 +2)fs
Hh+(-y-1Dfe+(y+2)fs

45



Chapter 3

Noncommutative Grobner Bases

Once the potential of Grobner Basis theory started to be realised in the 1970’s, it was only
natural to try to generalise the theory to related areas such as noncommutative polynomial
rings. In 1986, Teo Mora published a paper [45] giving an algorithm for constructing a
noncommutative Grobner Basis. This work built upon the work of George Bergman; in

particular his “diamond lemma for ring theory” [8].

In this chapter, we will describe Mora’s algorithm and the theory behind it, in many
ways giving a ‘noncommutative version’ of the previous chapter. This means that some
material from the previous chapter will be duplicated; this however will be justified when
the subtle differences between the cases becomes apparent, differences that are all too

often overlooked when an ‘easy generalisation’ is made!

As in the previous chapter, we will consider the theory from the point of view of S-
polynomials, in particular defining a noncommutative Grobner Basis as a set of polyno-
mials for which the S-polynomials all reduce to zero. At the end of the chapter, in order
to give a flavour of a noncommutative Grébner Basis program, we will give an extended
example of the computation of a noncommutative Grébner Basis, taking advantage of
some of the improvements to Mora’s algorithm such as Buchberger’s criteria and selection

strategies.

46
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3.1 Overlaps

For a (two-sided) ideal J over a noncommutative polynomial ring, the concept of a Grobner
Basis for J remains the same: it is a set of polynomials G generating .J such that remain-
ders with respect to G are unique. How we obtain that Grobner Basis also remains the
same (we add S-polynomials to an initial basis as required); the difference comes in the
definition of an S-polynomial.

Recall (from Section 2.1) that the purpose of an S-polynomial S-pol(p;, ps) is to ensure
that any polynomial p reducible by both p; and p; has a unique remainder when divided by
a set of polynomials containing p; and py. In the commutative case, there is only one way
to divide p by p; or ps (giving reductions p — t1p; or p — tap, respectively, where ¢, and ¢,
are terms); this means that there is only one S-polynomial for each pair of polynomials. In
the noncommutative case however, a polynomial may divide another polynomial in many
- different ways (for example the polynomial zyz — z divides the polynomial zyzyz + 4z2
in two different ways, giving reductions zyz + 42* and zyz + 42%). For this reason, we
do not have a fixed number of S-polynomials for each pair (p1,ps) of polynomials in the
noncommutative case — that number will depend on the number of overlaps between the

lead monomials of p; and p,.

In order to explain what an overlap is, we first need the following preliminary definitions

allowing us to select a particular part of a noncommutative monomial,

Definition 3.1.1 Consider a monomial m of degree d over a noncommutative polynomial

ring R.

o Let Prefix(m, i) denote the prefix of m of degree i (where 1 < i < d). For example,
Prefix(z?yz, 3) = 2%y; Prefix(2yz?, 1) = z and Prefix(y2zz, 4) = y2zz.

o Let Suffix(m, i) denote the suffix of m of degree i (where 1 < i < d). For example,
Suffix(z%yz, 3) = zyz; Suffix(2y2?, 1) = = and Suffix(y?2z, 4) = y2zz.

e Let Subword(m,i, j) denote the subword of m starting at position 4 and finishing
at position j (where 1 < i < j < d). For example, Subword(zyz?,2,3) = yuz;
Subword(zyz?,3,3) = z and Subword(y?zz, 1,4) = y2zz.

Definition 3.1.2 Let m; and m; be two monomials over a noncommutative polynomial
ring R with respective degrees d; > dy. We say that m; and my overlap if any of the
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following conditions are satisfied.
(a) Prefix(my, i) = Suffix(ma,1) (1 €1 < d»);

(b) Subword(my,t,i+ds—1) =ma (1 <i < dy —dy+1);

(c) Suffix(my, i) = Prefix(ms, 1) (1 <7 < da).

We will refer to the above overlap types as being prefix, subword and suffix overlaps

respectively; we can picture the overlap types as follows.

Prefix Subword Suffix
my mq m1
———
ma My ma

Remark 3.1.3 We have defined the cases where my is a prefix or a suffix of m; to be

subword overlaps.

Proposition 3.1.4 Let p be a polynomial over a noncommutative polynomial ring R that
is divisible by two polynomials p1,ps € R, so that £LM(p1)r1 = LM(p) = £,LM(pa)rs for
some monomials {1, €y, m1,72. As positioned in LM(p), if LM(p1) and LM(py) do not
overlap, then no matter which of the two reductions of p we apply first, we can always

obtain a common remainder.

Proof: We picture the situation as follows (v is a monomial).

PR
6 LM(p1) 1
LM(p)
1@2 LM (Pz) T

We construct the common remainder by using ps to divide the remainder we obtain by
dividing p by p; (and vice versa).
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Reduction by p; first

p — p—(LC()LC(p1) " )ipim:
= (p LT(p)) — (LC(p)LC(p1)~")1(pr — LT (p1))m1
= (p—LT(p)) — (LC(p)LC(p1)~")41(p1 — LT (p1))uLM(p2)rs
= (p = LT(p)) — (LC(p)LC(p1) "' LC(p2) )1 (p1 — LT(p1))u(p> — LT(p2))r>
Reduction by p, first
p — p—(LC(p)LC(ps)~")lapara
= (p—LT(p)) - (LC(p)LC(p2) " )la(p2 — LT(p2))r2
= (p—LT(p)) — (LC(p)LC(pa) )1 LM(p1)u(pa — LT(pa))r2
= (p—LT(p)) — (LC(p)LC(p1)~'LC(p2) )1 (p1 — LT (p1))u(pz — LT(ps))r2

Let p, p1, p2, £1, £a, r1 and rp be as in Proposition 3.1.4. As positioned in LM(p), in
general the lead monomials of p; and p, may or may not overlap, giving four different
possibilities, each of which is illustrated by an example in the following table.

LM(p) 6 |[LM(py) | m fy | LM(ps) | 2 Overlap?
r2yzayd || 2lyz | xyd 1 22y 2T y3 || Prefix overlap
yzayd | x| ayzzy | ? 22 yzz | 3° || Subword overlap
oiyzoyd | 2 vyz | zy® || 2%y zz | y® | Suffix overlap
aiyzay? || 2? Y zzy? || 2?yz | xy? Yy No overlap

In the cases that LM(p;) and LM(py) do overlap, we are not guaranteed to be able to
obtain a common remainder when we divide p by both p; and ps. To counter this, we
introduce (as in the commutative case) an S-polynomial into our dividing set to ensure
a common remainder, requiring one S-polynomial for every possible way that LM(p)
and LM(p;) overlap, including self overlaps (where p; = ps, for example Prefix(zyz, 1) =
Suffix(zyz, 1)).

Definition 3.1.5 Let the lead monomials of two polynomials p; and p; overlap in such a
way that £4LM(p1)r1 = £oLM(pa)ra, where £y, f5, 7, and 75 are monomials chosen so that
at least one of ¢; and /> and at least one of r; and r; is equal to the unit monomial. The
S-polynomial associated with this overlap is given by the expression

S-POI(fl,Phgz;pﬂ = c1lipir1 — calapars,
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where ¢; = LC(ps) and ¢; = LC(py).

Remark 3.1.6 The monomials ¢; and ¢, are included in the notation S-pol(41, p1, £, p2)
in order to differentiate between distinct S-polynomials involving the two polynomials p;
and p, (there is no need to include 77 and r; in the notation because r and r are uniquely

determined by ¢; and ¢, respectively).

Example 3.1.7 Consider the polynomial p := zyz 4 2y and the set of polynomials P :=
{p1,p2} = {zy — z,yz — z}, all polynomials being ordered by DeglLex and originating
from the polynomial ring Q(z, y, z). We see that p is divisible (in one way) by both of the
polynomials in P, giving remainders 2% + 2y and z* + 2y respectively, both of which are

irreducible by P. It follows that p does not have a unique remainder with respect to P.

Because there is only one overlap involving the lead monomials of p; and ps, namely
Suffix(zy, 1) = Prefix(yz, 1), there is only one S-polynomial for the set P, which is the

2 — 22, When we add this polynomial to the set

polynomial (zy — 2)z — z(yz —z) = z
P, we see that the remainder of p with respect to the enlarged P is now unique, as the
remainder of p with respect to py (the polynomial z? + 2y) is now reducible by our new
polynomial, giving a new remainder 22 + 2y which agrees with the remainder of p with

respect to p;.

Let us now give a definition of a noncommutative Grébner Basis in terms of S-polynomials.

Definition 3.1.8 Let G = {g1,..., g} be a basis for an ideal J over a noncommutative
polynomial ring R = R(zi,...,z,). If all the S-polynomials involving members of G

reduce to zero using G, then G is a noncommutative Grébner Basis for J.

Theorem 3.1.9 Given any polynomial p over a polynomial ring R = R{xy,...,T,), the
remainder of the division of p by a basis G for an tdeal J in R is unique if and only if G

is a Grobner Basis.

Proof: (=) Following the proof of Theorem 2.1.5, we need to show that the division
process is locally confluent, that is if there are polynomials f, fi, fo € R with f; =
f—tigir1 and fo = f — £ogars for terms ¢y, ly, 71,79 and g1, g2 € G, then there exists a
polynomial f3 € R such that both f; and fs reduce to f3. As before, this is equivalent to

showing that the polynomial f; — f; = #1917 — 29272 Teduces to zero.




CHAPTER 3. NONCOMMUTATIVE GROBNER BASES 51

If LT(¢1g171) # LT(lyger2), then the remainders f; and f, are obtained by cancelling
off different terms of the original f (the reductions of f are disjoint), so it is possible,
assuming (without loss of generality) that LT(¢1g171) > LT (f2g272), to directly reduce
the polynomial f; — fi = £1g171 — £agers in the following manner: £1g171 — lagars —,

—829‘2?"2 —>g2 0.

On the other hand, if LT(¢1¢171) = LT (¢agars), then the reductions of f are not disjoint
(as the same term ¢ from f is cancelled off during both reductions), so that the term ¢ does
not appear in the polynomial ¢;g171 — fagars. However, the monomial LM(¢) must contain
the monomials LM(g;) and LM(g2) as subwords if both g, and g, cancel off the term ¢,
so it follows that LM(g;) and LM(gs) will either overlap or not overlap in LM(t). If they
do not overlap, then we know from Proposition 3.1.4 that f; and f; will have a common
remainder (fi — f3 and f) — f3), so that fo— f; = fs—f3 = 0. Otherwise, because of
the overlap between LM(g;) and LM(gs), the polynomial £;g;7m1 — €2go7 will be a multiple
of an S-polynomial, say £1g171 —¥fagars = €3(S-pol(#,, g1, &5, g2))r3 for some terms ¢3, r3 and
some monomials £, £5. But G is a Grobner Basis, so the S-polynomial S-pol(¢, g1, 45, g2)
will reduce to zero, and hence by extension the polynomial £1¢;71 — £agers will also reduce

to zero.

(«=) As all S-polynomials are members of the ideal J, to complete the proof it is sufficient
to show that there is always a reduction path of an arbitrary member of the ideal that
leads to a zero remainder (the uniqueness of remainders will then imply that members of
the ideal always reduce to zero). Let f € J = (G). Then, by definition, there exist g; € G
(not necessarily all different) and terms ¢;,7; € R (where 1 < i < j) such that

J
F= Z tigirs.
=1

We proceed by induction on j. If j =1, then f = £1¢171, and it is clear that we can use
g1 to reduce f to give a zero remainder (f —,, f — 19171 = 0). Assume that the result
is true for j = k, and let us look at the case j = k + 1, so that

k
F= (Zfi!}m) + Lot 19k +1T k41
i=1

By the inductive hypothesis, Zle £;g;r; is a member of the ideal that reduces to zero.

The polynomial f therefore reduces to the polynomial f' := £ 1917141, and we can
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now use gr4+1 to reduce f’ to give a zero remainder (f' —g, ., f' — lp1gk417e41 =0). O

Remark 3.1.10 The above Theorem forms part of Bergman’s Diamond Lemma [8, The-

orem 1.2].

3.2 Mora’s Algorithm

Let us now consider the following pseudo code representing Mora’s algorithm for comput-

ing noncommutative Grébner Bases [45].

Algorithm 5 Mora’s Noncommutative Grébner Basis Algorithm

Input: A Basis F' = {fi, f2,..., fm} for an ideal J over a noncommutative polynomial
ring R{z1,...2,); an admissible monomial ordering O.
Output: A Grobner Basis G = {g1,92,...,0p} for J (in the case of termination).

Let G=F and let A =0,
For each pair of polynomials (g;, g;) in G (i < j), add an S-polynomial S-pol(¢y, g;, £2, g;)
to A for each overlap ¢£;LM(g;)r; = ¢;LM(g;)r2 between the lead monomials of LM(g;)
and LM(g;).
while (A is not empty) do
Remove the first entry s; from A;
si = Rem(s1, G);
if (s} # 0) then
Add s} to G and then (for all g; € G) add all the S-polynomials of the form
S-pol(4y, gi, €, 8}) to A4;
end if
end while

return G;

Structurally, Mora's algorithm is virtually identical to Buchberger’s algorithm, in that we
compute and reduce each S-polynomial in turn; we add a reduced S-polynomial to our
basis if it does not reduce to zero; and we continue until all S-polynomials reduce to zero
— exactly as in Algorithm 3. Despite this, there are major differences from an implemen-
tation standpoint, not least in the fact that noncommutative polynomials are much more
difficult to handle on a computer; and noncommutative S-polynomials need more com-
plicated data structures. This may explain why implementations of the noncommutative

Grobner Basis algorithm are currently sparser than those for the commutative algorithm;
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and also why such implementations often impose restrictions on the problems that can
be handled — Bergman [6] for instance only allows input bases which are homogeneous.

3.2.1 Termination

In the commutative case, Dickson’s Lemma and Hilbert’s Basis Theorem allow us to prove
that Buchberger’s algorithm always terminates for all possible inputs. It is a fact however
that Mora’s algorithm does not terminate for all possible inputs (so that an ideal may have
an infinite Grobner Basis in general) because there is no analogue of Dickson’s Lemma

for noncommutative monomial ideals.

Proposition 3.2.1 Not all noncommutative monomial ideals are finitely generated.

Proof: Assume to the contrary that all noncommutative monomial ideals are finitely
generated, and consider an ascending chain of such ideals J; C Jy C - --. By our assump-
tion, the ideal J = UJ; (for ¢ > 1) will be finitely generated, which means that there
must be some k > 1 such that J, = Jy1 = ---. For a counterexample, let R = Q(z,y)
be a noncommutative polynomial ring, and define J; (for ¢ > 1) to be the ideal in R
generated by the set of monomials {zyz, zy’z,...,zy'z}. Because no member of this set
is a multiple of any other member of the set, it is clear that there cannot be a k > 1 such
that Jy = Jy41 =« - - because zy*+1z € Jyyy and ay**+lz ¢ J, for all k > 1. O

Another way of explaining why Mora’s algorithm does not terminate comes from consid-
ering the link between noncommutative Grobner Bases and the Knuth-Bendix Critical
Pairs Completion Algorithm for monoid rewrite systems [39], an algorithm that attempts
to find a complete rewrite system for any given monoid presentation. Because Mora’'s
algorithm can be used to emulate the Knuth-Bendix algorithm (for the details, see for
example [33]), if we assume that Mora’s algorithm always terminates, then we have found
a way to solve the word problem for monoids (so that we can determine whether any word
in a given monoid is equal to the identity word); this however contradicts the fact that
the word problem is actually an unsolvable problem (so that it is impossible to define an

algorithm that can tell whether two words in a given monoid are identical).
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3.3 Reduced Grobner Bases

Definition 3.3.1 Let G = {g1,...,g,} be a Grébner Basis for an ideal over a polynomial
ring R(z1,...,%,). G is a reduced Grobner Basis if the following conditions are satisfied.
(a) LC(g;) = 1g for all g; € G.

(b) No term in any polynomial g; € G is divisible by any LT(g;), j # 1.

Theorem 3.3.2 If there exists a Grébner Basis G for an ideal J over a noncommutative
polynomial ring, then J has a unique reduced Grobner Basis.

Proof: FEzistence. We claim that the following procedure transforms G into a reduced
Grobner Basis G'.

(1) Multiply each g; € G by LC(g;)~".

(ii) Reduce each g; € G by G\ {g:}, removing from G all polynomials that reduce to

Zero.

It is clear that G’ satisfies the conditions of Definition 3.3.1, so it remains to show that
G" is a Grobner Basis, which we shall do by showing that the application of each step of
instruction (ii) above produces a basis which is still a Grobner Basis.

Let G = {¢1,...,9,} be a Grobner Basis, and let g, be the reduction of an arbitrary
g: € G with respect to G \ {g;}, carried out as follows (the ¢ and the r;, are terms).

9 =gi— ka!}jk'f”k- (3.1)
k=1

Set H = (G\{g:})U{g:} if g # 0, and set H = G\ {g;} if g, = 0. As G is a Grobner Basis,
all S-polynomials involving elements of G reduce to zero using G, so there are expressions

i
beagara = Cagbgb'rb S Z EuQCuTu =0 (32)
u=1

for every S-polynomial S-pol(£s, ga, £, 9) = colagaTa — CalbgoTs, Where ¢, = LC(g,); ¢ =
LC(gp); the £, and the r, are terms (for 1 < u < p); and gq, g, o, € G. To show that H is
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a Grobner Basis, we must show that all S-polynomials involving elements of H reduce to
zero using H. For polynomials g, g» € H not equal to g;, we can reduce an S-polynomial
of the form S-pol(¢,, ga, &, g») using the reduction shown in Equation (3.2), substituting
for g; from Equation (3.1) if any of the g., in Equation (3.2) are equal to g;. This gives a
reduction to zero of S-pol(4,, ga, £y, g») in terms of elements of H.

If g; = 0, our proof is complete. Otherwise consider all S-polynomials S-pol(£, ¢., £, gs)
involving the pair of polynomials (g, g»), where g, € G\ {g;}. We claim that there exists
an S-polynomial S-pol({1, gi, 42, g5) = csl1gir1 — cilagere such that S-pol(4, gi, €y, gs) =
cyl1gir1 — cilagyra. To prove this claim, it is sufficient to show that LT(g;) = LT(g)).
Assume for a contradiction that LT(g;) # LT(g;). It follows that during the reduction of
g: we were able to reduce its lead term, so that LT(g;) = ¢LT(g;)r for some terms £ and r
and some g; € G. Because LM(g; — £g;7) < LM(g;), the polynomial g; — £g;r must reduce

to zero without using g;, so that g/ = 0, giving a contradiction.

It remains to show that S-pol(;,g;, s, 95) —u 0. We know that S-pol(¢y, i, £a, gp) =
CbglgiTl—CiEQQbT‘g — 0, and Equa,tion (32) tells us that Cbglg,;?”l—cifng’f‘g—zﬁzl ‘gugcu'ru =
0. Substituting for g; from Equation (3.1), we obtain!

K "
cply (9; + kagjﬂk) r1 — Cilagyra — Z falle, B =0

k=1 u=1

or
H K
belg;?“l - C?;Jé’ng?"g = (Z Eugcu'r'u -— Z C{,f;f;ﬂgjk’r'k?"l) = 0,
=1 k=1

which implies that S-pol(¢;, gi, €, g») — g 0. The only other case to consider is the case of
an S-polynomial coming from a self overlap involving LM(g;). But because we now know
that LT(g}) = LT(g;), we can use exactly the same argument as above to show that the
S-polynomial S-pol(¢1, g}, £a, g;) reduces to zero using H because an S-polynomial of the
form S-pol(¥1, gi, €2, g;) will exist.

Uniqueness. Assume for a contradiction that G = {g1,...,9,} and H = {hy,...,h,} are
two reduced Grobner Bases for an ideal J, with G # H. Let g; be an arbitrary element
from G (where 1 < i < p). Because g; is a member of the ideal, then g; must reduce
to zero using H (H is a Grobner Basis). This means that there must exist a polynomial

M

1Substitutions for g; may also occur in the summation i}

been considered in the displayed formulae.

£y 9e, Ty; these substitutions have not
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h; € H such that LT(h;) | LT(g;). If LT(h;) # LT(g;), then £ x LT(h;) x r = LT(g;) for
some monomials £ and r, at least one of which is not equal to the unit monomial. But h;
is also a member of the ideal, so it must reduce to zero using G. Therefore there exists
a polynomial g, € G such that LT(gx) | LT(h;), which implies that LT(g;) | LT(g;), with
k # i. This contradicts condition (b) of Definition 3.3.1 so that G cannot be a reduced
Grébner Basis for J if LT(h;) # LT(g;). From this we deduce that each g; € G has a
corresponding h; € H such that LT(g;) = LT(h;). Further, because G and H are assumed
to be reduced Grobner Bases, this is a one-to-one correspondence.

It remains to show that if LT(g;) = LT(h;), then g; = h;. Assume for a contradiction
that g; # h; and consider the polynomial g; — h;. Without loss of generality, assume
that LM(g; — h;) appears in g;. Because g; — h; is a member of the ideal, then there is a
polynomial g; € G such that LT(gx) | LT(g; — hy). But this again contradicts condition
(b) of Definition 3.3.1, as we have shown that there is a term in g; that is divisible by
LT(gx) for some k # 4. It follows that G cannot be a reduced Grobner Basis if g; # h;,
which means that G = H and therefore reduced Grobner Bases are unique. O

As in the commutative case, we may refine the procedure for finding a unique reduced
Grobner Basis (as given in the proof of Theorem 3.3.2) by removing from the Grébner
Basis all polynomials whose lead monomials are multiples of the lead monomials of other
Grobner Basis elements. This leads to the definition of Algorithm 6.

3.4 Improvements to Mora’s Algorithm

In Section 2.5, we surveyed some of the numerous improvements of Buchberger’s algo-
rithm. Let us now demonstrate that many of these improvements can also be applied in
the noncommutative case.

3.4.1 Buchberger’s Criteria

In the commutative case, Buchberger’s first criterion states that we can ignore any S-
polynomial S-pol(f, g) in which lem(LM(f), LM(g)) = LM(f)LM(g). In the noncommuta-
tive case, this translates as saying that we can ignore any ‘S-polynomial’ S-pol(¢y, f, £z, g) =
LC(g)¢1fr1 — LC(f)€agrs such that LM(f) and LM(g) do not overlap in the monomial
& LM(f)r1 = €,LM(g)re. We can certainly show that such an ‘S-polynomial’ will reduce
to zero by utilising Proposition 3.1.4, but we will never be able to use this result as, by
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Algorithm 6 The Noncommutative Unique Reduced Grébner Basis Algorithm

Input: A Grébner Basis G = {g1,92,...,9m} for an ideal J over a noncommutative
polynomial ring R{zy,...2,); an admissible monomial ordering O.
Output: The unique reduced Grébner Basis G' = {g,93,...,9,} for J.
G =8
for each g; € G do
Multiply g; by LC(g;) ™"
if (LM(g;) = {LM(g;)r for some monomials ¢, and some g; € G (g; # ¢:)) then
G=G\{a}
end if
end for
for each g; € G do
9i = Rem(g, (G\ {g:}) U G");
G=G\{a} G'=G"U{g}
end for
return G’;

definition, an S-polynomial is only defined when we have an overlap between LM(f) and
LM(g). It follows that an ‘S-polynomial’ of the above type will never occur in Mora’s
algorithm, and so Buchberger’s first criterion is redundant in the noncommutative case.
The same cannot be said of his second criterion however, which certainly does improve
the efficiency of Mora's algorithm.

Proposition 3.4.1 (Buchberger’s Second Criterion) Let f, g and h be three mem-
bers of a finite set of polynomials P over a noncommutative polynomial ring, and consider

an S-polynomial of the form

S-pol(4y, f, €, g) = caly fr1 — c1fagrs. (3.3)
If LM(h) | £LM(f)r1, so that

GLM( f)r1 = £3LM(h)rs = £,LM(g)ry (3.4)

for some monomials £3,73, then S-pol(fy, f, €3, g) —p 0 if all S-polynomials corresponding
to overlaps (as placed in the monomial £,LM(f)ry) between LM(h) and either LM(f) or
LM(g) reduce to zero using P.
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Proof (cf. [37], Appendix A): To be able to describe an S-polynomial corresponding
to an overlap (as placed in the monomial £;LM(f)r;) between LM(h) and either LM(f)
or LM(g), we introduce the following notation.

e Let {13 be the monomial corresponding to the common prefix of £; and £3 of maximal
degree, so that ¢; = {130} and {3 = {13¢;. (Here, and similarly below, if there is no

common prefix of /; and /3, then {13 =1, #; = ¢ and ¢ = {3.)

o Let /53 be the monomial corresponding to the common prefix of £ and £5 of maximal
degree, so that £, = €3¢} and {5 = £o30}.

e Let 13 be the monomial corresponding to the common suffix of r; and 75 of maximal

degree, so that r; = r{ri3 and r3 = rirs.

e Let 73 be the monomial corresponding to the common suffix of r5 and r3 of maximal

degree, so that ro = r§ry3 and r3 = rfras.

We can now manipulate Equation (3.3) as follows (where c; = LC(h)).

c3(S-pol(fy, f,€s,9)) = cscolyfry — cacilagrs
= czcly fr1 — crcelahry + cicalshrs — cacilagry
= ca(cslyifri — cilshrs) — c1(esbagrs — calzhrs)
= cyesbisly friris — crlralyhrirs)
— c1(cslaslygryras — calaalyhryras)

! ! ! / 14 ' 0 "
= cpliz(csly fry — erlshry)ris — erlag(calogry — calghry)ras.

As placed in £,LM(f)r; = €sLM(h)rs, if LM(f) and LM(h) overlap, then the S-polynomial
corresponding to this overlap is? S-pol(¢}, f, £, h). Similarly, if LM(g) and LM(h) overlap
as placed in £&;LM(g)rz = £3LM(h)rs, then the S-polynomial corresponding to this overlap
is S-pol({3, g, {3, h). By assumption, these S-polynomials reduce to zero using P, so there
are expressions

csty fri — erlyhry — Z u;piv; = 0 (3.5)

i=1

2For completeness, we note that the S-polynomial corresponding to the overlap can also be of the form
S-pol(¢3, h, £1, f); this (inconsequentially) swaps the first two terms of Equation (3.5).
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and

B
calogry — colyhry — Z u;p;v; = 0, (3.6)
j=1

where the u;, v;, u; and v; are terms; and p;,p; € P for all 7 and j. Using Proposition
3.1.4, we can state that these expressions will still exist even if LM(f) and LM(h) do not
overlap as placed in £;LM(f)r; = £3LM(h)rs; and if LM(g) and LM(h) do not overlap as
placed in £,LM(g)ry = €3LM(h)rs. It follows that

c3(S-pol(4y, f,42,9)) = caliz(calyfry — cilshry)ris — cilos(calygry — colyhry)ras

o B
= cali3 (Z uipivz') 13 — C1fa3 (Z “jpj”j) 23

i=1 j=1

« el
= E Cz£13“ipi'f-’i7"13_§ 1423 P;V;T23;

i=1 j=1
a Ié)

S-pol(fy, f, b, 9) = ZCEICZEIBUiPiUiTL’E = Z ¢35 c1bozu;p;v;Tas.
i=1 =t

To conclude that the S-polynomial S-pol(¢;, f, 2, g) reduces to zero using P, it remains
to show that the algebraic expression — 3 o, cglczflguipiv,;rlg + Zf:1 c3 1c1€23ujpjvjr23
corresponds to a valid reduction of S-pol(¢y, f,#2,g). To do this, it is sufficient to show
that no term in either of the summations is greater than the term ¢;LM(f)r; (so that
LM(€13uipviris) < £HLM(f)ry and LM(fagu;jpjvsras) < £LM(f)ry for all i and 7). But
this follows from Equation (3.4) and from the fact that the reductions of the expressions
caly fry — cilshry and cs3ligry — cplihry in Equations (3.5) and (3.6) are valid, so that
LM(uipsvs) < LM(£] fr]) and LM(u;p;v;) < LM(€4gry) for all 4 and j. 0

Remark 3.4.2 The three polynomials f, g and & in the above proposition do not neces-
sarily have to be distinct (indeed, f = g = h is allowed) — the only restriction is that the
S-polynomial S-pol({1, f, £2, g) has to be different from the S-polynomials S-pol(#,, f, £, h)
and S-pol(4y, g, £3, h); for example, if f = h, then we cannot have ¢ = £,

3.4.2 Homogeneous Grobner Bases

Because it is computationally more expensive to do noncommutative polynomial arith-
metic than it is to do commutative polynomial arithmetic, gains in efficiency due to

working with homogeneous bases are even more significant in the noncommutative case.
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For this reason, some systems for computing noncommutative Grébner Bases will only
work with homogeneous input bases, although (as in the commutative case) it is still
sometimes possible to use these systems on non-homogeneous input bases by using the
concepts of homogenisation, dehomogenisation and extendible monomial orderings.

Definition 3.4.3 Let p = py + -+ + p, be a polynomial over the polynomial ring
R(z1,...,2,), where each p; is the sum of the degree i terms in p (we assume that
pm # 0). The left homogenisation of p with respect to a new (homogenising) variable y is
the polynomial

he(p) = y™po+ Y™ ' pr+ - + YD1 + Pm;

and the right homogenisation of p with respect to a new (homogenising) variable y is the
polynomial
he(p) = poy™ + p1y™ " + - + Py + Prm.

Homogenised polynomials belong to polynomial rings determined by where v is placed in
the lexicographical ordering of the variables.

Definition 3.4.4 The dehomogenisation of a polynomial p is the polynomial d(p) given
by substituting y = 1 in p, where y is the homogenising variable.

Definition 3.4.5 A monomial ordering O is eztendible if, given any polynomial p =
t; + -+ + t, ordered with respect to O (where t; > -+ > ¢,), the homogenisation of p
preserves the order on the terms (¢ > ¢, for all 1 < i < a— 1, where the homogenisation
process maps the term ¢; € p to the term ¢}).

In the noncommutative case, an extendible monomial ordering must specify how to ho-
mogenise a polynomial (by multiplying with the homogenising variable on the left or on
the right) as well as stating where the new variable y appears in the ordering of the vari-
ables. Here are the conventions for those monomial orderings defined in Section 1.2.2 that
are extendible, assuming that we start with a polynomial ring R{z1, ..., z,).

Monomial Ordering | Type of Homogenisation | Position of the new variable y

in the ordering of the variables

InvLex Right y < x; for all z;
DegLex Left y < z; for all z;
DeglnvLex Left y > x; for all z;

DegRevLex Right y > x; for all z;
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Noncommutativity also provides the possibility of the new variable y becoming ‘trapped’
in the middle of some monomial forming part of a polynomial computed during the course
of Mora’s algorithm. For example, working with DegRevLex, consider the homogenised
polynomial h,(z? 4+ #1) = z% + z,y and the S-polynomial

S-pol(z1, 73 + my, 1,23 + z1y) = z1(z] + 21y) — (23 + 21y) 71 = 2y — vy,

Because y appears in the middle of the monomial ziyz;, the S-polynomial does not
immediately reduce to zero as it does in the non-homogenised version of the S-polynomial,

S-pol(z1, 23 + &1, 1,27 + 1) = z1(2? + 21) — (22 + 21)3, = 0.

We must therefore make certain that y only appears on one side of any given mono-
mial by introducing the set of polynomials H = {hy,hs,...,hn} = {yz1 — 21y, Yyz0 —
ToY, ..., YTn — Tpy} into our initial homogenised basis, ensuring that y commutes with
all the other variables in the polynomial ring. This way, the first S-polynomial will reduce
to zero as follows:

2 2 2
1Y — T1YZ1 —n; Ty — 27y = 0.

Which side y will appear on will be determined by whether LM(yz; — z;y) = ya; or
LM(yz; — z;y) = 2;y in our chosen monomial ordering (pushing y to the right or to the
left respectively). This side must match the method of homogenisation, which explains
why Lex is not an extendible monomial ordering — for Lex to be extendible, we must
homogenise on the right and have y < ; for all «;, but then because LM (ya; — TY) = Ty
with respect to Lex, the variable y will always in practice appear on the left.

Definition 3.4.6 Let F' = {fi,..., fim} be a non-homogeneous set of polynomials over
the polynomial ring R(z1,...,2,). To compute a Grébner Basis for F using a program
that only accepts sets of homogeneous polynomials as input, we use the following proce-

dure (which will only work in conjunction with an extendible monomial ordering).
(a) Construct a homogeneous set of polynomials F' = {h(f1),... , he(fm)} or F' =
{he(f1), ..., he(fm)} (dependent on the monomial ordering used).

(b) Compute a Grobner Basis G’ for the set F' U H, where H = {yz — 21y, yzs —
Lol o« o5 Ys — Balhhs

(¢) Dehomogenise each polynomial g' € G' to obtain a Grébner Basis G for F, noting
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that no polynomial originating from H will appear in G (d(h;) = 0 for all h; € H).

3.4.3 Selection Strategies

As in the commutative case, the order in which S-polynomials are processed during Mora’s
algorithm has an important effect on the efficiency of the algorithm. Let us now generalise
the selection strategies defined in Section 2.5.3 for use in the noncommutative setting,

basing our decisions on the overlap words of S-polynomials.

Definition 3.4.7 The overlap word of an S-polynomial S-pol(¢y, f, €2, g) = LC(g)¢; fr1 —
LC(f)Egg?“g is the monomial ElLM(f)T'l (= EgLM(g)T‘g)

Definition 3.4.8 In the noncommutative normal strategy, we choose an S-polynomial to
process if its overlap word is minimal in the chosen monomial ordering amongst all such

overlap words.

Definition 3.4.9 In the noncommutative sugar strategy, we choose an S-polynomial to
process if its sugar (a value associated to the S-polynomial) is minimal amongst all such

values (we use the normal strategy in the event of a tie).

The sugar of an S-polynomial is computed by using the following rules on the sugars
of polynomials we encounter during the computation of a Grobner Basis for the set of
polynomials F' = {f,..., fm}.

(1) The sugar Sug, of a polynomial f; € F is the total degree of the polynomial f; (which
is the degree of the term of maximal degree in f;).

(2) If pis a polynomial and if t; and ¢, are terms, then Sug, ,,, = deg(t,)+Sug,+deg(t2).

(3) If p=p1 + pa, then Sug, = max(Sug,, ,Sug,,).

It follows that the sugar of the S-polynomial S-pol(¢1, g, £2, h) = LC(h)¢1gr1 — LC(g)éshrs

is given by the formula

SUBs-pol(ey,9,6,,0) = Max(deg(1) + Sug, + deg(r1), deg(fs) + Sugy, + deg(r2)).
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3.4.4 Logged Grobner Bases

Definition 3.4.10 Let G = {g1,...,9,} be a noncommutative Grébner Basis computed
from an initial basis F' = {f1,..., fm}. We say that G is a Logged Grébner Basis if, for
each g; € G, we have an explicit expression of the form

féi
gi = Z ‘gcszarm
a=1

where the £, and the r, are terms and fi, € F forall 1 < a <.

Proposition 3.4.11 Let F = {fi,..., f} be a finite basis over a noncommutative poly-
nomial ring. If we can compute a Grobner Basis for F, then it is always possible to
compute a Logged Gribner Basis for F.

Proof: We refer to the proof of Proposition 2.5.11, substituting

a
S'pol(flr f'i: 62) f_:l) - Z gagqua
a=1

for fim+1 (the £, and the r, are terms). O

3.5 A Worked Example

To demonstrate Mora’s algorithm in action, let us now calculate a Grébner Basis for the
ideal J generated by the set of polynomials F' := { fy, f2, fa} = {zy— 2, yz+2x+ 2, yz +2}
over the polynomial ring Q(,y,z). We shall use the DegLex monomial ordering (with
x >y > z); use the normal selection strategy; calculate a Logged Grébner Basis; and use

Buchberger’s criteria.

3.5.1 Initialisation

The first part of Mora's algorithm requires us to find all the overlaps between the lead
monomials of the three polynomials in the initial basis G := {g1, g2, 93} = {zy — z,y2 +
2z + z,yz + x}. There are three overlaps in total, summarised by the following table.
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Overlap 1 Overlap 2 Overlap 3
Overlap Word yz Yz TYz
Polynomial 1 yz +2r+ 2z Ty — 2 TY — 2
Polynomial 2 yz + yz+2z+4+2 yz+z
4 1 1 1
™ 1 2 z
12 1 T T
T2 1 1 1
Degree of Overlap Word 2 3 3

Because we are using the normal selection strategy, it is clear that Overlap 1 will appear
in the list A first, but we are free to choose the order in which the other two overlaps
appear (because their overlap words are identical). To eliminate this choice, we will use
the following tie-breaking strategy to order any two S-polynomials whose overlap words

are identical.

Definition 3.5.1 Let s; = S-pol(¢y, g4, %2, g») and sy = S-pol({s, g, £4,94) be two S-
polynomials with identical overlap words, where g,, g, 9c; 94 € G = {01, .., ga}. Assum-
ing (without loss of generality) that a < b and ¢ < d, the tie-breaking strategy places s;

before s in A if a < c or if a = ¢ and b < d; and later in A otherwise.

Applying the tie-breaking strategy for Overlaps 2 and 3, it follows that Overlap 2 =
S-pol(1, g1, x, g2) will appear in A before Overlap 3 = S-pol(1, g1, z, g3).

Before we start the main part of the algorithm, let us note that for the Logged Grobner
Basis, we begin the algorithm with trivial expressions for each of the three polynomials
in the initial basis G in terms of the polynomials of the input basis F': ¢g; = 2y — 2z = fy;

Ggp=yz+2z+z2= fo;and gs =yz+ 2z = fs.

3.5.2 Calculating and Reducing S-polynomials

The first S-polynomial to analyse corresponds to Overlap 1 and is the polynomial
Wyz4+2z+2)1 - 1(yz+z)l=2z+2z—z=2+2.

This polynomial is irreducible with respect to G, and so we add it to G to obtain a new
basis G = {zy—z,yz+2c+2,y2+2z,x+2} = {91, g2, 93, g4 }. Looking for overlaps between
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the lead monomial of z + z and the lead monomials of the four elements of G, we see that
there is one such overlap (with g;) whose overlap word has degree 2, so this overlap is
added to the beginning of the list A to obtain A = {S-pol(1,zy — 2,1,z +z2), S-pol(1, zy —
z,2,yz + 2z + z), S-pol(1l,zy — z,z,yz + z)}. As far as the Logged Grébner Basis goes,
ga=x+z=1yz+2z+2)1 - 1(yz+z)l = fo — f5.

The next entry in A produces the polynomial
ey —2)1—-1(z+2)y = —zy — 2.

As before, this polynomial is irreducible with respect to G, so we add it to G as the fifth
element. There are also four overlaps between the lead monomial of —zy — 2z and the lead

monomials of the five polynomials in G:

Overlap 1 Overlap 2 Overlap 3  Overlap 4
Overlap Word z2yz 2yz Y2y Yyzy
Polynomial 1 yz+2z+2 yz4+z yz+2zx4+z yz+z
Polynomial 2 —2Y— 2 —2Y — 2 —BY— 2 —2y — 2
4 Z z 1 1
T 1 1 Yy Y
£y 1 1 Yy y
Tg 2 2 1 1
Degree of Overlap Word 3 3 3 3

Inserting these overlaps into the list A, we obtain

A={ Spol(z,yz+2z2+2,1,—2y — 2), S-pol(z,yz + =,1, —2y — 2),
S-pol(1,yz + 22 + z,y, —2y — z), S-pol(1,yz + z,y, —zy — 2),
S-pol(1,zy — z,z,yz + 2z + z), S-pol(1,zy — z,z,yz + z) }.

The logged representation of the fifth basis element again comes straight from the S-

polynomial (as no reduction was performed), and is as follows: g5 = —2y — z = 1(zy —
2)1-1(z+2)y =1 )1 - 1fa — )y = fr — fay + fay.

The next entry in A yields the polynomial

—2(yz+2z 4+ 2)1 — 1(—2y — 2)z = 223 — 2% + 2° = —2zz.
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This time, the fourth polynomial in our basis reduces the S-polynomial in question, giving
a reduction —2zz —,, 22°. When we add this polynomial to G and add all five new
overlaps to A, we are left with a six element basis G = {zy — z,yz+ 2z + z,yz + =,z +

z,—2y — z,22°} and a list

A={ S-pol(1,22% 2,22, S-pol(z, 222 1,22%),
S-pol(z, —zy — 2, 1,22%), S-pol(z,yz + z, 1, —zy — 2),
S-pol(1,yz + 2z + z,, 22%), S-pol(1,yz + =, y, 22°%),
S-pol(l,yz + 2z + z,y, —2y — z), S-pol(l,yz + z,y, —zy — 2),
S-pol(1, zy — 2,2, yz + 2z + z), S-pol(1,zy — z,z,yz + x) }.

We obtain the logged version of the sixth basis element by working backwards through

our calculations:

g = 22°
= —2z22+ 2z(z+2)
= (—z2(yz+2z+2)1 — 1(—2y — 2)z) + 22(z + 2)
= (—2(f2) = (/i — fay + f3y)2) + 22(f2 — f3)
= —fiztzfo+ faye —2efs — fsyz.

3.5.3 Applying Buchberger’s Second Criterion

The next three entries in A all yield S-polynomials that are either zero or reduce to
zero (for example, the first entry corresponds to the polynomial 2(222)z — 22(22%)1 =
423 — 423 = 0). The fourth entry in A, S-pol(z,yz + ,1, —2y — 2), then enables us (for
the first time) to apply Buchberger’s second criterion, allowing us to move on to look
at the fifth entry of A. Before we do this however, let us explain why we can apply

Buchberger’s second criterion in this particular case.

Recall (from Proposition 3.4.1) that in order to apply Buchberger’s second criterion for
the S-polynomial S-pol(z,yz + z, 1, —zy — z), we need to find a polynomial g; € G such
that LM(g;) divides the overlap word of our S-polynomial, and any S-polynomials cor-
responding to overlaps (as positioned in the overlap word) between LM(g;) and either
LM(yz + x) or LM(—2y — z) reduce to zero using G (which will be the case if those
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particular S-polynomials have been processed earlier in the algorithm).

Consider the polynomial gy = yz+ 2z + z. The lead monomial of this polynomial divides

the overlap word zyz of our S-polynomial, which we illustrate as follows.

LM(ga)
LM(gs)
z Y z
LM(gz)

As positioned in the overlap word, we note that LM(gy) overlaps with both LM(gs)
and LM(gs), with the overlaps corresponding to the S-polynomials S-pol(1, g2, 1,93) =
S-pol(1,yz + 2z + 2,1,yz + x) and S-pol(z, g2,1,95) = S-pol(z,yz + 2z + 2,1, —2zy — 2)
respectively. But these S-polynomials have been processed earlier in the algorithm (they
were the first and third S-polynomials to be processed); we can therefore apply Buch-

berger’s second criterion in this instance.

There are now six S-polynomials left in A, all of whom either reduce to zero or are
ignored due to Buchberger’s second criterion. Here is a summary of what happens during
the remainder of the algorithm.

S-polynomial Action
S-pol(l, yz + 2z + z,y, 22%) Reduces to zero using the division algorithm
S-pol(1,yz + z, v, 22%) Ignored due to Buchberger’s second criterion

(using yz + 2z + 2)
S-pol(1,yz + 2z + z,y, —2y — z) | Reduces to zero using the division algorithm

S-pol(l,yz + z,y, —zy — 2) Ignored due to Buchberger’s second criterion
(using yz + 2z + 2)

S-pol(l,zy — z,x,yz + 22+ 2) | Ignored due to Buchberger’s second criterion
(using z + z)

S-pol(1, zy — z,z,yz + ) Ignored due to Buchberger’s second criterion

(using yz + 2z + 2)

As the list A is now empty, the algorithm terminates with the following (Logged) Grobner
Basis.
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Input Basis F' Grobner Basis G

fi=zy—2z g=ay—z=h
fo=yz+2x+z|gp=yz+2c+2=fy
fai=yz+z G=yz+z=f3

u=c+z=Jfo—f3
g=—2zy—z=jfi— fay+ fay
g6 =222 = —fiz + zfo + foyz — 22f3 — fayz

3.5.4 Reduction

Now that we have constructed a Grobner Basis for our ideal J, let us go on to find the

unique reduced Grobner Basis for J by applying Algorithm 6 to G.

In the first half of the algorithm, we must multiply each polynomial by the inverse of
its lead coefficient and remove from the basis each polynomial whose lead monomial is a
multiple of the lead monomial of some other polynomial in the basis. For the Grobner
Basis in question, we multiply gs by —1 and gg by %; and we remove g; and gs from the
basis (because LM(g1) = LM(g4) x y and LM(g2) = LM(g3)). This leaves us with the
following (minimal) Grobner Basis.

Input Basis F Grobner Basis G

fi=zy—=z GB=yz+z=_f3
fo=yz+2z+z |gu=z+2=f1— f
fai=myz+z g =zy+z=—f+ foy— fay

gs =22 = —3fiz+3z2fa+ 3foyz — 2f3 — 3 fayz

In the second half of the algorithm, we reduce each g; € G with respect to (G\ {g:}) UG,
placing the remainder in the (initially empty) set G’ and removing ¢; from G. For the
Grobner Basis in question, we summarise what happens in the following table, noting that
the only reduction that takes place is the reduction yz 4+ —,, yz+z—(z+2) =yz— 2.
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G G gi gi
{yz+a,z+ 2,29+ 2,22} | 0 yz+x | yz — 2z
{x+ 2 2y + 2,2%} {yz — z} T4z |z4+2
{zy + 2, 2%} {yz — 2,z + 2} 2y+z | zy+=2
{52} {yz — z,z + 2z, 2y + 2} & 2
0 {yz — z,2+ 2, 2y + 2, 2%}

We can now give the unique reduced (Logged) Grébner Basis for J.

Input Basis F

Unique Reduced Grobner Basis G’

h=zy—=z
fo=yz+2x+ 2
fi=yz+tz

Y2 —2=—Jz +2f3
T+z=fo—f3
2y+z=—fi+ fay — fay

22 = —%f1z + %Zfz =4 %fzyz —igfa— %fgyz




Chapter 4
Commutative Involutive Bases

Given a Grobner Basis G for an ideal J over a polynomial ring R, we know that the
remainder of any polynomial p € R with respect to G is unique. But although this
remainder is unique, there may be many ways of obtaining the remainder, as it is possible

that several polynomials in G divide our polynomial p, giving several reduction paths for

p.

Example 4.0.2 Consider the DegLex Grébner Basis G := {g1, 9,3} = {z* — 2y +
3, 2zy +y®+5, 3yt — Zu+ 8%y} over the polynomial ring R := Q[z,y] from Example
2.3.2, and consider the polynomial p := 2%y + 3> + 8y € R. The remainder of p with
respect to G is 0 (so that p is a member of the ideal J generated by G), but there are two

ways of obtaining this remainder, as shown in the following diagram.

a?y +4° + 8y (4.1)
/ X
2zy® + 33 + By —seyt+y® — Sz + 8y
gﬂl lgz
0 23— 2o+ 3y

An Involutive Basis is a Grébner Basis G for J such that there is only one possible

reduction path for any polynomial p € R. In order to find such a basis, we must restrict

70
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which reductions or divisions may take place by requiring, for each potential reduction of
a polynomial p by a polynomial g; € G (so that LM(p) = LM(g;) x u for some monomial
u), some extra conditions on the variables in u to be satisfied, namely that all variables
in u have to be in a set of multiplicative variables for g;, a set that is determined by a

particular choice of an involutive division.

4.1 Involutive Divisions

In Definition 1.2.9, we saw that a commutative monomial u; is divisible by another mono-
mial ug if there exists a third monomial u3 such that uy = upus; we also introduced the
notation us | u; to denote that wuy is a divisor of u;, a divisor we shall now refer to as a
conventional divisor of u;. For a particular choice of an involutive division I, we say that
uy s an involutive divisor of wuy, written ug |; ui, if, given a partitioning (by I) of the
variables in the polynomial ring into sets of multiplicative and nonmultiplicative variables
for ug, all variables in uj are in the set of multiplicative variables for u,.

Example 4.1.1 Let u; := zy?2?; v} := 2%yz and uy := 2z be three monomials over the
polynomial ring R := Q|z, y, 2], and let an involutive division / partition the variables in
R into the following two sets of variables for the monomial uy: multiplicative = {y, z};
nonmultiplicative = {z}. It is true that uy conventionally divides both monomials u; and
uj, but uy only involutively divides monomial u; as, defining uz = y®z and u} = ay
(so that uy = upus and uw) = wugu}), we observe that all variables in ug are in the set of
multiplicative variables for uy, but the variables in wj (in particular the variable z) are

not all in the set of multiplicative variables for us.

More formally, an involutive division / works with a set of monomials U over a polynomial
ring R[zy,...,%,] and assigns a set of multiplicative variables M;(u,U) C {z1,...,2,}
to each element u € U. It follows that, with respect to U, a monomial w is divisible by a
monomial u € U if w = wv for some monomial v and all the variables that appear in v
also appear in the set M;(u, U).

Definition 4.1.2 Let M denote the set of all monomials in the polynomial ring R =
Rlz1,...,2y), and let U C M. The involutive cone C;(u,U) of any monomial u € U with

respect to some involutive division I is defined as follows.

Cr(u,U) = {uv such that v € M and u |; uv}.
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Remark 4.1.3 We may think of an involutive cone of a particular monomial « as con-
taining all monomials that are involutively divisible by u.

Up to now, we have not mentioned any restriction on how we may assign multiplicative
variables to a particular set of monomials. Let us now specify the rules that ensure that a
particular scheme of assigning multiplicative variables may be referred to as an involutive

division.

Definition 4.1.4 Let M denote the set of all monomials in the polynomial ring R =
Rlz1,...,2,). An involutive division I on M is defined if, given any finite set of monomials
U C M, we can assign a set of multiplicative variables My(u,U) C {=1,...,3,} to any
monomial v € U such that the following two conditions are satisfied.

(a) If there exist two monomials uq,us € U such that Cr(uy, U) N Cr(ug, U) # 0,
then either Cr(uy, U) C Cr(uqg,U) or Cr(ug,U) C Cr(us,U).

(b) If V C U, then M;(v,U) C M(v,V) forallv € V.,

Remark 4.1.5 Informally, condition (a) above ensures that a monomial can only appear
in two involutive cones Cr(uy,U) and Cr(ug,U) if u; is an involutive divisor of us or
vice-versa; while condition (b) ensures that the multiplicative variables of a polynomial
v € V C U with respect to U all appear in the set of multiplicative variables of v with
respect to V.

Definition 4.1.6 Given an involutive division I, the involutive span C;(U) of a set of

monomials U with respect to I is given by the expression

cr(U) = | er(w, U).

uel

Remark 4.1.7 The (conventional) span of a set, of monomials U is given by the expression

cw) =),

uel

where C(u, U) = {uv | v is a monomial} is the (conventional) cone of a monomial u € U.

Definition 4.1.8 If an involutive division I determines the multiplicative variables for a
monomial u € U independent of the set U, then I is a global division. Otherwise, I is a
local division.
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Remark 4.1.9 The multiplicative variables for a set of polynomials P (whose terms are
ordered by a monomial ordering O) are determined by the multiplicative variables for the
set of leading monomials LM(P).

4.1.1 Involutive Reduction

In Algorithm 7, we specify how to involutively divide a polynomial p with respect to a

set of polynomials P.

Algorithm 7 The Commutative Involutive Division Algorithm

Input: A nonzero polynomial p and a set of nonzero polynomials P = {p,...,pn} over a
polynomial ring R[zy, ... z,|; an admissible monomial ordering O; an involutive division
I.

Output: Rem;(p, P) := r, the involutive remainder of p with respect to P.

r =
while (p # 0) do
u = LM(p); ¢ = LC(p); j = 1; found = false;
while (j < m) and (found == false) do
if (LM(p;) |7 u) then
found = true; «' = u/LM(p;); p = p — (cLC(p;)~1)p;u;
else
F=g 15
end if
end while
if (found == false) then
r=r+LT(p); p=p— LT(p);
end if
end while

return r;

Remark 4.1.10 The only difference between Algorithms 1 and 7 is that the line “if
(LM(p;) | u) then” in Algorithm 1 has been changed to the line “if (LM(p;) |; u) then”
in Algorithm 7.

Definition 4.1.11 If the polynomial r is obtained by involutively dividing (with respect
to some involutive division I) the polynomial p by one of (a) a polynomial g; (b) a sequence
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of polynomials ¢1,¢s,...,¢a; or (¢) a set of polynomials (), we will use the notation
P —, 5 B _;> r and p ——_r respectively (matching the notation introduced in

I Q
Definition 1.2.16).

4.1.2 Thomas, Pommaret and Janet divisions

Let us now consider three different involutive divisions, all named after their creators in
the theory of Partial Differential Equations (see [52], [47] and [35]).

Definition 4.1.12 (Thomas) Let U = {uy,...,un,} be a set of monomials over a poly-
nomial ring R[z1,...,,], where the monomial u; € U (for 1 < j < m) has corresponding
multidegree (ej, 3, ...,€}). The Thomas involutive division 7 assigns multiplicative vari-

ables to elements of U as follows: the variable z; is multiplicative for monomial u; (written
x; € Mz (u;,U)) if €} = maxy e, for all 1 < k < m.

Definition 4.1.13 (Pommaret) Let u be a monomial over a polynomial ring
R[z1,...,z,] with multidegree (e!,€?,...,e"). The Pommaret involutive division P as-
signs multiplicative variables to u as follows: if 1 < i < n is the smallest integer such that
€' > 0, then all variables 1, zs,. .., z; are multiplicative for u (we have z; € Mp(u) for

all 1 < j <)

Definition 4.1.14 (Janet) Let U = {uy,...,u,} be a set of monomials over a polyno-
mial ring R[21,...,%y], where the monomial u; € U (for 1 € j € m) has corresponding
multidegree (e}, e?, p— e;?). The Janet involutive division 7 assigns multiplicative vari-
ables to elements of U as follows: the variable x,, is multiplicative for monomial u; (written
T, € Mg(uy,U)) if €] = maxy e} for all 1 < k < m; the variable z; (for 1 <4 < n) is mul-
tiplicative for monomial u; (written z; € Mz(u;, U)) if €} = maxy e}, for all monomials
uy € U such that ej- =el foralli << n.

Remark 4.1.15 Thomas and Janet are local involutive divisions; Pommaret is a global

involutive division.

Example 4.1.16 Let U := {2%y?z, a'yz?, 2%y%2, zy23, x2°, 422, 2} be a set of mono-
mials over the polynomial ring Q[z,y, 2], with # > y > 2. Here are the multiplicative
variables for U according to the three involutive divisions defined above.
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Monomial | Thomas | Pommaret | Janet
z°y’z {z,y} {z} {z,y}
ztyz® 0 {z} {z,y}
z?y’z {y} {z} {v}
zy® {z} {z} {z,y,2}

z2® {z} {=} {z,z}
¥z {y} {z,y} {y}
z 0 {z,y,2} {z}

Proposition 4.1.17 All three involutive divisions defined above satisfy the conditions of
Definition 4.1.4.

Proof:  Throughout, let M denote the set of all monomials in the polynomial ring
R = R[z1,...,z,); let U = {u,...,un} C M be a set of monomials with corresponding
multidegrees (e}, €3, ..., ef) (where 1 < k < m); let uy,u; € U (where 1 < 4,7 < m, i # j);
and let my,my € M be two monomials with corresponding multidegrees (f}, f7,..., 1)
and (f3, f3,..., f%). For condition (a), we need to show that if there exists a monomial
m € M such that mu; = m = mgu; and all variables in my and mgy are multiplicative
for u; and u; respectively, then either u; is an involutive divisor of u; or vice-versa. For
condition (b), we need to show that all variables that are multiplicative for u; € U are
still multiplicative for u; € V C U.

Thomas. (a) It is sufficient to prove that u; = u;. Assume to the contrary that u; # u;,
so that there is some 1 € k& < n such that ef -2 e;-“. Without loss of generality, assume
that ef < ej-"' . Because e} + ff = e;‘-' + f&. it follows that ff > 0 so that the variable zy
must be multiplicative for the monomial u;. But this contradicts the fact that z, cannot
be multiplicative for u; in the Thomas involutive division because ef > ef. We therefore

have u; = u;.

(b) By definition, if z; € Mz (u;, U), then ¢} = maxye] for all ux € U. Given a set
V C U, it is clear that ef = maxy, e“}'c for all u, € V, so that z; € Mz (u;, V) as required.

Pommaret. (a) Let v and 4 (1 < @, 8 € n) be the smallest integers such that e¢ > 0 and
g
J
we must have ff = f¥ = 0 for all @ < k < n because the z; are all nonmultiplicative for

e; > 0 respectively, and assume (without loss of generality) that « > 3. By definition,
u; and u;. It follows that e} = e? for all @ < k < n. If & = (3, then it is clear that w, is

an involutive divisor of u; if ef < e, and wu; is an involutive divisor of u; if e > ef. If
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o

a > 3, then f§' = 0 as variable z, is nonmultiplicative for u;, so it follows that e < e

and hence u; is an involutive divisor of w;.
(b) Follows immediately because Pommaret is a global involutive division.

Janet. (a) We prove that u; = u;. Assume to the contrary that u; # uj, so there exists
a maximal 1 < & < n such that ef # ef. Without loss of generality, assume that ef < €.
If £ = n, we get an immediate contradiction because Janet is equivalent to Thomas for
the final variable. If K = n — 1, then because e + 7! = e;,f‘“l + f7t, it follows that

7=l > ( so that the variable z,_; must be multiplicative for the monomial w;. But
this contradicts the fact that z,_; cannot be multiplicative for u; in the Janet involutive
division because ej ™' > ]! and ¢} = €. By induction on k, we can show that ef = ek

for all 1 < k < n, so that u; = u; as required.

(b) By definition, if z; € M (u;, U), then €] = maxy e} for all monomials u; € U such
that €l = ei. for all i <l < n. Given a set V C U, it is clear that e:f = maxy ei for all
u, € V such that e} = e}, for all i <1< n, so that z; € Mz (u;, V) as required. O

The conditions of Definition 4.1.4 ensure that any polynomial is involutively divisible
by at most one polynomial in any Involutive Basis. One advantage of this important
combinatorial property is that the Hilbert function of an ideal J is easily computable
with respect to an Involutive Basis (see [4]).

Example 4.1.18 Returning to Example 4.0.2, consider again the DegLex Grébner Basis
G = {2* — 22y +3,2zy + 3> + 5,%° — Sz + 8Ty} over the polynomial ring Q[z,y]. A
Pommaret Involutive Basis for G is the set P := G U {g4 := —5zy® — bz + 6y}, with
the variable z being multiplicative for all polynomials in P, and the variable y being
multiplicative for just g3. We can illustrate the difference between the overlapping cones

of G and the non-overlapping involutive cones of P by the following diagram.
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y Grébner Basis G y Pommaret Basis P

B

| N

5

The diagram also demonstrates that the polynomial p := 2%y + y3 4 8y is initially con-
ventionally divisible by two members of the Grébner Basis G' (as seen in Equation (4.1)),
but is only involutively divisible by one member of the Involutive Basis P, starting the

following unique involutive reduction path for p.

oy + 3 + 8y

g2

—52y* + 93 — Sa + 8y
g4

y® — 2420y

g3

0

4.2 Prolongations and Autoreduction

Whereas Buchberger’s algorithm constructs a Grébner Basis by using S-polynomials, the
involutive algorithm will construct an Involutive Basis by using prolongations and autore-

duction.

Definition 4.2.1 Given a set of polynomials P, a prolongation of a polynomial p € P is
a product pz;, where z; ¢ M(LM(p), LM(P)) with respect to some involutive division I.

Definition 4.2.2 A set of polynomials P is said to be autoreduced if no polynomial p € P
exists such that p contains a term which is involutively divisible (with respect to P) by
some polynomial p’ € P\ {p}. Algorithm 8 provides a way of performing autoreduction,
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and introduces the following notation: Let Rem;(A, B, C') denote the involutive remainder
of the polynomial A with respect to the set of polynomials B, where reductions are only

to be performed by elements of the set C' C B.

Remark 4.2.3 The involutive cones associated to an autoreduced set of polynomials are
always disjoint, meaning that a given monomial can only appear in at most one of the

involutive cones.

Algorithm 8 The Commutative Autoreduction Algorithm

Input: A set of polynomials P = {p1,ps,...,ps}; an involutive division I.
Output: An autoreduced set of polynomials @ = {¢1,qa,...,95}
while (3 p; € P such that Rem;(p;, P, P\ {p:}) # p:) do
P = Rem;(p;, P, P\ {p:});
P=P\{p};
if (p; # 0) then
P=PU{p};
end if
end while
Q=P
return Q;

Proposition 4.2.4 Let P be a set of polynomials over a polynomial ring R = Rz, ..., 2y,
and let [ and g be two polynomials also in R. If P is autoreduced with respect to an in-
volutive division I, then Rem;(f, P) + Rem;(g, P) = Rem;(f + g, P).

Proof: Let f':= Rem;(f, P); ¢ := Rem;(g, P) and &' := Rem;(h, P), where h := f+g.
Then, by the respective involutive reductions, we have expressions

A
ff = f - Zpaata.;
a=1

B
g =9- pat
b=1
and

(o}
h =h-— Zp%tc,
c=1
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where pg,, Pg,, Pv. € P and t,,ty,t, are terms which are multiplicative (over P) for each
Paa, Ps, and p,, respectively.

Consider the polynomial ' — f' — ¢’. By the above expressions, we can deduce! that

A B (&4 D
h - f'r - g’ = Zpaata + Zpﬁ'btb - Zp'yctc == Zp&dtd-
a=1 b=1 =] d=1

Claim: Rem;(h' — f' — ¢',P) = 0.

Proof of Claim: Let ¢ denote the leading term of the polynomial 25:1 ps;ta. Then
LM(t) = LM(ps,tx) for some 1 < k < D since, if not, there exists a monomial LM (p;,, tx) =
LM(ps, ter) =: u for some 1 < k', k" < D (with ps,, # ps,,,) such that w is involutively
divisible by the two polynomials ps, and ps,,, contradicting Definition 4.1.4 (recall that
our set P is autoreduced, so that the involutive cones of P are disjoint). It follows that

we can use ps, to eliminate t by involutively reducing k' — f' — ¢’ as shown below.

D k-1 D
leadtd - Zpﬁdtd+ Z Dsytd- (4.2)
d=1 d=1

d=k+1

By induction, we can apply a chain of involutive reductions to the right hand side of
Equation (4.2) to obtain a zero remainder, so that Rem;(h' — f' — ¢/, P) = 0. o

To complete the proof, we note that since f’, ¢ and A’ are all involutively irreducible, we
must have Rem;(h' — f' — ¢', P) = b’ — f' — ¢. It therefore follows that b’ — f' — ¢’ =0,
or ' = f'+ ¢’ as required. O

Remark 4.2.5 The above proof is based on the proofs of Theorem 5.4 and Corollary 5.5
in [25].

Let us now give a definition of a Locally Involutive Basis in terms of prolongations. Later
on in this chapter, we will discover that the Involutive Basis algorithm only constructs
Locally Involutive Bases, and it is the extra properties of each involutive division used with
the algorithm that ensures that any computed Locally Involutive Basis is an Involutive
Basis.

Definition 4.2.6 Given an involutive division / and an admissible monomial ordering

For 1 <d < A, psyta = paste (1 < a < A); for A+1<d< A+ B, ps,ta = pa,te (1 <b< B); and
for A+ B+1<d< A+B+C =D, psta=py.tc (1 <cg ).
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O, an autoreduced set of polynomials P is a Locally Involutive Basis with respect to I
and O if any prolongation of any polynomial p; € P involutively reduces to zero using P.

Definition 4.2.7 Given an involutive division I and an admissible monomial ordering
O, an autoreduced set of polynomials P is an Involutive Basis with respect to I and O
if any multiple p;t of any polynomial p; € P by any term ¢ involutively reduces to zero
using P.

4.3 Continuity and Constructivity

In the theory of commutative Grobner Bases, Buchberger’s algorithm returns a Grébner
Basis as long as an admissible monomial ordering is used. In the theory of commutative
Involutive Bases however, not only must an admissible monomial ordering be used, but

the involutive division chosen must be continuous and constructive.

Definition 4.3.1 (Continuity) Let I be an involutive division, and let U be an arbi-
trary set of monomials over a polynomial ring R[z1, ..., z,]. We say that I is continuous
if, given any sequence of monomials {uy,us,...,uy} from U such that for all i < m,
we have w1 |1 uiw;, for some variable z;, that is nonmultiplicative for monomial m; (or
zj, € Mr{w;,U)), no two monomials in the sequence are the same (u, # u, for all r # s,

where 1 < r, s < m).

Proposition 4.3.2 The Thomas, Pommaret and Janet involutive divisions are all con-

tinuous.
Proof:  Throughout, let the sequence of monomials {uy,...,u;,...,un} have corre-
sponding multidegrees (e!,e?,...,e?) (where 1 < i < m).

Thomas. If the variable x;, is nonmultiplicative for monomial w;, then, by definition,
elt # max, e} for all u; € U. Variable z;, cannot therefore be multiplicative for monomial
Uiy if e{jrl < e:f", so we must have eﬁfﬂrl = egi + 1 in order to have w41 |7 wiz;,. Further,
for all 1 < k < n such that k # j;, we must have e, = e as, if ef,; < e, then z;, cannot
be multiplicative for monomial u;4; (which contradicts w41 |7 wiz;). Thus wip = wzy,,

and so it is clear that the monomials in the sequence {u, us, ..., u,} are all different.

Pommaret. Let o; (I € o; < n) be the smallest integer such that e > 0 (where

1 <14 < m), sothat ef =0 for all £ < «;. Because w4y |p wizj, for all 1 < i < m,
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and because (by definition) j; > ay, it follows that we must have ef,; = 0 for all k£ < a;.
Therefore a1 2 o; for all 1 < ¢ < n. If a1 = oy, we note that eff; < e because
Q

variable x4, is multiplicative for monomial u;y1. If then we have eff; = ¢, then because

the variable z;, is also nonmultiplicative for monomial u;4;, we must have e}, = e}* + 1.

It is now clear that the monomials in the sequence {uy, us, . . ., u, } are all different because
(a) the values in the sequence o = {a1, s, . . ., @y, } monotonically increase; (b) for consec-
utive values g, @511, .. ., @ste i @ that are identical (1 < s < m, s+ o < m), the values
in the corresponding sequence E = {e$*, €51, ..., €51, } monotonically decrease; (c) for
consecutive values ef®, ef?;, ..., ef;, in E that are identical (s <t < s+o0,t+7 < s+40),

the degrees of the monomials u;, usy1, .. . , U, strictly increase.

Janet. Consider the monomials u;, 1y and the variable z;, that is nonmultiplicative for
uy. We will first prove (by induction) that eb = ei for all j; < ¢ < n. For the case
i = m, we must have el = e otherwise (by definition) variable z,, is nonmultiplicative
for monomial uy (we have ef < e}), contradicting that fact that ws |7 wiz;,. For the
inductive step, assume that e} = e} for all k£ < i < n, and let us look at the case i = k—1.
If ei~1 < 1, then (by definition) variable z;_; is nonmultiplicative for monomial s,

k=1 k—1
2 .

again contradicting the fact that us |7 uiz;,. It follows that we must have e5™" = ef

Let us now prove that ¢} = e]' + 1. We can rule out the case €j' < ef' immediately
because this implies that the variable z; is nonmultiplicative for monomial us (by defi-
nition), contradicting the fact that us |7 uiz;. The case el! = el' can also be ruled out
because we cannot have €5 = e} for all j; < i < n and variable z;, being simultaneously
nonmultiplicative for monomial u; and multiplicative for monomial ws. Thus e%" = e{l +1.
It follows that u; < us in the InvLex monomial ordering (see Section 1.2.1) and so, by
induction, u; < ug < - -+ < Uy in the InvLex monomial ordering. The monomials in the

sequence {uj, Ug, ..., Un} are therefore all different. O

Proposition 4.3.3 If an involutive division I is continuous, and a given set of polyno-
mials P is a Locally Involutive Basis with respect to I and some admissible monomial

ordering O, then P is an Involutive Basis with respect to I and O.

Proof: Let I be a continuous involutive division; let O be an admissible monomial
ordering; and let P be a Locally Involutive Basis with respect to I and 0. Given any
polynomial p € P and any term t, in order to show that P is an Involutive Basis with

respect to I and O, we must show that pt =y 0.
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If p |; pt we are done, as we can use p to involutively reduce pt to obtain a zero remainder.
Otherwise, 3y, ¢ M;(LM(p), LM(P)) such that ¢ contains 3;. By Local Involutivity, the
prolongation py; involutively reduces to zero using P. Assuming that the first step of this

involutive reduction involves the polynomial p; € P, we can write

A
Py =pit1+ Y Payta (4.3)
a=1

where p,, € P and t,t,, are terms which are multiplicative (over P) for p; and each p,,

t

o we obtain the equation

respectively. Multiplying both sides of Equation (4.3) by

A
t t
pt = pit1— + Paibay—> 4.4
1 ; : hn (44

If pi |1 pt, it is clear that we can use p; to involutively reduce the polynomial pt to
obtain the polynomial Zlepaat%ﬁ. By Proposition 4.2.4, we can then continue to
L individually

involutively reduce pt by repeating this proof on each polynomial p,,ta, =

(where 1 < a < A), noting that this process will terminate because of the admissibility
of O (we have LM(pq,ta,-) < LM(pt) for all 1 < a < A).

i

Otherwise, if p; does not involutively divide pt, there exists a variable y € y—’] such
that y, € M;(LM(p1), LM(P)). By Local Involutivity, the prolongation pyy; involutively
reduces to zero using P. Assuming that the first step of this involutive reduction involves

the polynomial p; € P, we can write

B
P2 =pata + Y Pyt (4.5)
b=1

where pg, € P and t,1p, are terms which are multiplicative (over P) for p, and each pg,

respectively. Multiplying both sides of Equation (4.5) by AL, we obtain the equation

B
t tyt tit

piti— =pata——+ > pgls,—. 4.6

(A1 Y1l ; e ﬁby1y2 ( )

Substituting for pltly—tl from Equation (4.6) into Equation (4.4), we obtain the equation
A B
t1t t i1t

pt = pota—— + Jog— + tg,—. 4.7
o Zpa vy > s, m (4.7)

a=1 b=1
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If ps |1 pt, it is clear that we can use p, to involutively reduce the polynomial pt to obtain
the polynomial 34 paataui 52 p'@btﬁbﬁ%. As before, we can then use Proposition
4.2.4 to continue the involutive reduction of pt by repeating this proof on each summand

individually.

Otherwise, if po does not involutively divide pt, we continue by induction, obtaining a
sequence p, p1, P2, Ps, . . . of elements in P. By construction, each element in the sequence
divides pt. By continuity, each element in the sequence is different. Because P is finite and
because pt has a finite number of distinct divisors, the sequence must be finite, terminating
with an involutive divisor p' € P of pt, which then allows us to finish the proof through
use of Proposition 4.2.4 and the admissibility of O. O

Remark 4.3.4 The above proof is a slightly clarified version of the proof of Theorem 6.5
in [25].

Definition 4.3.5 (Constructivity) Let I be an involutive division, and let U be an
arbitrary set of monomials over a polynomial ring R[zq,...,z,|. We say that I is con-
structive if, given any monomial « € U and any nonmultiplicative variable z; ¢ M(u, U)
satisfying the following two conditions, no monomial w € C;(U) exists such that uz; €
Crlw, U U {w}).

(a) uz; & Cr(U).

(b) If there exists a monomial v € U and a nonmultiplicative variable z; ¢ M;(v,U)
such that ve; | uz; but ve; # uwz;, then vz; € Cr(U).

Remark 4.3.6 Constructivity allows us to consider only polynomials whose lead mono-

mials lie outside the current involutive span as potential new Involutive Basis elements.

Proposition 4.3.7 The Thomas, Pommaret and Janet involutive divisions are all con-

structive.

Proof: Throughout, let the monomials u, v and w that appear in Definition 4.3.5 have

corresponding multidegrees (e}, €2,...,e?), (el, €2,...,e") and (e}, €2,...,e?); and let the

monomials wy, wy, ws and p that appear in this proof have corresponding multidegrees
1 2 n 1 2 n 1 2 n I .2 n

b e 1B s Wi Baire » -xBags by Wiy Sy v o) B (g 0, .. - e

To prove that a particular involutive division I is constructive, we will assume that a

monomial w € Cr(U) exists such that uz; € Cr(w,U U{w}). Then w = pw; for some



CHAPTER 4. COMMUTATIVE INVOLUTIVE BASES 84

monomial 4 € U and some monomial w; that is multiplicative for p over the set U
(e’;;l > 0=z, € Mp(p,U) for all 1 € k < n); and uz; = ww,y for some monomial wy
that is multiplicative for w over the set U U {w} (ef, > 0= z, € Mp(w,UU{w}) for all
1< k < n). It follows that uz; = pwiws. If we can show that all variables appearing in
we are multiplicative for u over the set U (efU2 >0=az, € Mi(p,U) forall 1 < k < n),

then p is an involutive divisor of uz;, contradicting the assumption uz; ¢ C;(U).

Thomas. Let 7 be an arbitrary variable (1 < k < n) such that e, > 0. If £ > 0, then
it is clear that z;, is multiplicative for p. Otherwise efui = 0 so that ¥ = eﬁ. By definition,

this implies that 2, € My (p,U) as o, € My(w,U U {w}). Thus z, € Mz(p,U).

Pommaret. Let a and § (1 < n) be the smallest integers such that ef > 0
and e > 0 respectively. By deﬁmtlon, e}
g

)
< a (because w = pw,), so for an arbitrary
lgk\n,mfollowsthate >0=k<0<

a =z € Mp(p, U) as required.

Janet. Here we proceed by searching for a monomial v € U such that uz; € Cs(v,U),
contradicting the assumption uz; ¢ C7(U). Let @ and 8 (1 € o, 8 < n) be the largest
integers such that e% > 0 and €5 > 0 respectively (such integers will exist because if
deg(w;) = 0 or deg(wy) = 0, we obtain an immediate contradiction uz; € C7(U)). We
claim that 1 > max{a, 5}

e If i < f, then e < ef which contradicts 23 € My (w,U U {w}) as e, = ¢ for all
v > (3. Thusi > j.

e If i < a, then as § < i we must have e = e for all < v < n. Therefore

e < eg = o § Mg(p,U), a contradiction; it follows that i > o

o If i = o, then either 8 < aor f = a. If § = q, thenas e}, > 0; ¢, > 0 and
e, +1=e, +el, +el,, wehave ¢, > €}, = x4 ¢ Mg(u,U), a contradiction. If
B <a,thenel, +1=¢ +el, . Ifel, >2, weget the same contradiction as before
(T & Mg(p,U)). Otherwise e}, = 1so that e] =] forall a <y < n. Ifw = pw;,
then as e, < e we have z5 ¢ Mz (w,U U {w}), a contradiction. Else let § (where
1 £ 6 < a) be the second greatest integer such that ej, > 0. Then, as e}, < ¢} and
e}, = ey for all § <~ < n, we have 25 € Mz(u, U), another contradiction. It follows

that ¢ > max{qa, 8}, so that e} =] for all i <y < nand e}, + 1 =€,

If uz; ¢ C7(U), then there must exist a variable z; (where 1 < k < %) such that ef_ > 0
and x ¢ Mz(u,U). Because e}, > 0, we can use condition (b) of Definition 4.3.5 to give
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us a monomial u; € U and a monomial wy multiplicative for u; over U (e;’JEl >0=>z, €
Mz (u1,U) for all 1 € v < n) such that

ur; = MHWiws

Wy
= upzpur | —
HT W1 -
Wa

= pmwswy | — |-
Ty

If py |7 uzy, then the proof is complete, with = p;. Otherwise there must be a variable
xj appearing in the monomial w;(#2) such that zy & Mz (u1,U). To use condition (b)

of Definition 4.3.5 to yield a monomial yus € U and a monomial w, multiplicative for us

over U such that
Wa wyWsy
Hiwzwy | — | = HalWy Wa,
T TpTp

it is sufficient to demonstrate that at least one variable appearing in the monomial

wgwl(%f) is multiplicative for p; over the set U. We will do this by showing that
To € Mg(u1,U) (recall that e > 0).

By the definition of the Janet involutive division,

e?“ = ez forallk <y <n (4.8)

and
eﬁl = eﬁ +1, (4.9)

so that ¢ < g in the InvLex monomial ordering. If we can show that a > k, then it is
clear from Equation (4.8) and z, € Mg (p,U) that z, € Mg(u1,U).

o If o > 3, then a > k because k < 3 by definition.

e If o =, then o > k if k < 3; otherwise k& = 3 in which case z, € M7 (u,U) is
contradicted by Equations (4.8) and (4.9).

e If @ < 3, then €], = ¢, for all & < v < n. Thus k < o otherwise 2, € My (w,U U
{w}) = z, € Mg(1,U), a contradiction. Further, k& = o« is not allowed because
To € Mg(p,U) and zy & Ms(u,U) cannot both be true; therefore o > k again.
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If s |7 uw;, then the proof is complete, with v = uy. Otherwise we proceed by induction
to obtain the sequence shown below (Equation (4.10)), which is valid because po_1 < fig
(for o > 2) in the InvLex monomial ordering allows us to prove that the variable x, (that
appears in the monomial w,) is multiplicative (over U') for the monomial p,; this in turn
enables us to construct the next entry in the sequence by using condition (b) of Definition
4.3.5.

Wa w1 W Wa W3
HunWe = fiWswy | — | = laWy W3 = UaWs | —— | Wy
Tk LTk LT T

Because yt < pi1 < pg < -+ in the InvLex monomial ordering, elements of the sequence

(4.10)

Hy i1, fig, . .. are distinct. It follows that the sequence in Equation (4.10) is finite (ter-
minating with the required v) because p and the p, (for ¢ = 1) are all divisors of the

monomial uz;, of which there are only a finite number of. O

Remark 4.3.8 The above proof that Janet is a constructive involutive division does not
use the property of Janet being a continuous involutive division, unlike the proofs found
in [25] and [50].

4.4 The Involutive Basis Algorithm

To compute an Involutive Basis for an ideal J with respect to some admissible monomial
ordering O and some involutive division /, it is sufficient to compute a Locally Involutive
Basis for J with respect to I and O if I is continuous; and we can compute this Locally
Involutive Basis by considering only prolongations whose lead monomials lie outside the
current involutive span if [ is constructive. Let us now consider Algorithm 9, an algorithm

to construct an Involutive Basis for J (with respect to I and O) in exactly this manner.

The algorithm starts by autoreducing the input basis F using Algorithm 8. We then con-
struct a set .S containing all the possible prolongations of elements of F, before recursively
(a) picking a polynomial s from S such that LM(s) is minimal in the chosen monomial
ordering; (b) removing s from S; and (c) finding the involutive remainder s’ of s with
respect to F.

If during this loop a remainder s’ is found that is nonzero, we exit the loop and autoreduce
the set F'U {s'}, continuing thereafter to construct a new set S and repeating the above

process on this new set. If however all the prolongations in .S involutively reduce to zero,
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Algorithm 9 The Commutative Involutive Basis Algorithm

Input: A Basis F = {fi, f2,..., fm} for an ideal J over a commutative polynomial
ring R[z1,...z,]; an admissible monomial ordering O; a continuous and constructive

involutive division [.
Output: An Involutive Basis G = {g1, g2,...,gp} for J (in the case of termination).

G=0
F = Autoreduce(F);
while (G == 0) do
S={aif | f€F 2 & Mi(f, F)};
8 =10
while (S # 0) and (s’ ==0) do
Let s be a polynomial in S whose lead monomial is minimal with respect to O;

§ =89\ {s}h
s’ = Remy(s, F);
end while

if (s’ # 0) then
F = Autoreduce(F U {s'});
else
= B
end if
end while

return G;
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then by definition F' is a Locally Involutive Basis, and so we can exit the algorithm with
this basis. The correctness of Algorithm 9 is therefore clear; termination however requires

us to show that each involutive division used with the algorithm is Noetherian and stable.

Definition 4.4.1 An involutive division I is Noetherian if, given any finite set of mono-
mials U, there is a finite Involutive Basis V' O U with respect to I and some arbitrary

admissible monomial ordering O.

Proposition 4.4.2 The Thomas and Janet divisions are Noetherian.

Proof: Let U = {uy,...,un} be an arbitrary set of monomials over a polynomial ring
R = Rl[z1,...,z,] generating an ideal J. We will explicitly construct an Involutive Basis
V for U with respect to some arbitrary admissible monomial ordering O.

Janet (Adapted from [50], Lemma 2.13). Let x4 € R be the monomial with multi-
degree (e, €3, ..., ep) defined as follows: e, = max,ep €, (1 <7 < n). We claim that the
set V' containing all monomials v € J such that v | u is an Involutive Basis for U with
respect to the Janet involutive division and O. To prove the claim, first note that V is a
basis for J because U C V and V C J; to prove that V is a Janet Involutive Basis for J
we have to show that all multiples of elements of V' involutively reduce to zero using V,
which we shall do by showing that all members of the ideal involutively reduce to zero
using V.

Let p be an arbitrary element of J. If p € V, then trivially p € C7(V') and so p involutively
reduces to zero using V. Otherwise set X = {z; such that €]y, > €}, and define
the monomial p’' by e;, — eiM(p) for z; € X; and e;, = eL for z; € X (so that e;',, =
min{ef ), €.}). By construction of the set V' and by the definition of y, it follows
that v € V and X C Mz(p/,V). But this implies that LM(p) € C4(p',V), and thus
P77 (p — LM(p)). By induction and by the admissibility of O, p —>, 0 and thus V

is a finite Janet Involutive Basis for J.

Thomas. We use the same proof as for Janet above, replacing “Janet” by “Thomas”
and HJ” by HTH. D

Proposition 4.4.3 The Pommaret division is not Noetherian.

Proof: Let J be the ideal generated by the monomial u := zy over the polynomial ring
Q[z,y]. For the Pommaret division, Mp(u) = {z}, and it is clear that Mp(v) = {z} for
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allv € Jasv € J = v = (zy)p for some polynomial p. It follows that no finite Pommaret
Involutive Basis exists for J as no prolongation by the variable y of any polynomial p € J
is involutively divisible by some other polynomial p' € J; the Pommaret Involutive Basis
for J is therefore the infinite basis {zy, zy°, zy?, ...}. O

Definition 4.4.4 Let u and v be two distinct monomials such that « | v. An involutive
division I is stable if Rem;(v, {u,v}, {u}) = v. In other words, u is not an involutive

divisor of v with respect to / when multiplicative variables are taken over the set {u,v}.

Proposition 4.4.5 The Thomas and Janet divisions are stable.

Proof: Let u and v have corresponding multidegrees (el,...,e?) and (el,...,e"). If

Py

u | v and if u and v are different, then we must have e, < € for at least one 1 < i < n.
Thomas. By definition, z; ¢ M~ (u, {u,v}), so that Rems (v, {u, v}, {u}) = v.

Janet. Let j be the greatest integer such that e < ef. Then, as ef = e* forall j < k < n,

it follows that z; ¢ Mg(u, {u,v}), and so Remz(v, {u, v}, {u}) = v. O

Proposition 4.4.6 The Pommaret division is not stable.

2 over the polynomial ring Q[z].

Proof: Consider the two monomials u :=z and v 1=z
Because Mp(u, {u,v}) = {z}, it is clear that u |p v, and so the Pommaret involutive

division is not stable. O

Remark 4.4.7 Stability ensures that any set of distinct monomials is autoreduced. In
particular, if a set U of monomials is autoreduced, and if we add a monomial v & U to U,
then the resultant set U U {u} is also autoreduced. This contradicts a statement made on
page 24 of [50], where it is claimed that if we add an involutively irreducible prolongation
uz; of a monomial u from an autoreduced set of monomials U to that set, then the resultant
set is also autoreduced regardless of whether or not the involutive division used is stable2.
For a counterexample, consider the set of monomials U := {u1,us} = {zy, 2%y} over the

polynomial ring Q[z,y], and let the involutive division be Pommaret.

u | Mp(u,U)
zy {z}
| |z}

*This claim is integral to the proof of Theorem 6.4 in [50], a theorem that states than an algorithm
corresponding to Algorithm 9 in this thesis terminates.
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Because the variable y is nonmultiplicative for the monomial zy, it is clear that the set U
is autoreduced. Consider the prolongation zy? of the monomial u; by the variable y. This
prolongation is involutively irreducible with respect to U, but if we add the prolongation
to U to obtain the set V' := {vy, vo, vs} = {zy, 2%y?, zy?}, then v; will involutively reduce

vy, contradicting the claim that the set V' is autoreduced.

v | Mp(v,V)

zy {z}
oy {z}
zy? {z}

Proposition 4.4.8 Algorithm 9 always terminates when used with a Noetherian and sta-

ble involutive division.

Proof: Let I be a Noetherian and stable involutive division, and consider the computa-
tion (using Algorithm 9) of an Involutive Basis for a set of polynomials F' with respect to
I and some admissible monomial ordering O. The algorithm begins by autoreducing F' to
give a basis (which we shall denote by F) generating the same ideal J as F'. Each pass of
the algorithm then produces a basis F;; = Autoreduce(F; U {s,}) generating J (i > 1),

where each s; # 0 is an involutively reduced prolongation. Consider the monomial ideal
(LM(F;)) generated by the lead monomials of the set F;. Claim:

(LM(F1)) € (LM(F)) © (LM(F3)) € - (4.11)

is an ascending chain of monomial ideals.

Proof of Claim: It is sufficient to show that if an arbitrary polynomial f € F; does not
appear in Fi 1, then there must be a polynomial f’ € F;;; such that LM(f) | LM(f). It is
clear that such an f" will exist if the lead monomial of f is not reduced during autoreduc-
tion; otherwise a polynomial p reduces the lead monomial of f during autoreduction, so
that LM(p) | LM(f). If there exists a polynomial p’ € Fi;1 such that LM(p') = LM(p),
we are done; otherwise we proceed by induction on p to obtain a polynomial ¢ such that
LM(q) |; LM(p). Because deg(LM(f)) > deg(LM(p)) > deg(LM(q)) > ---, this process
is guaranteed to terminate with the required f'. o

By the Ascending Chain Condition (Corollary 2.2.6), the chain in Equation (4.11) must
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eventually become constant, so there must be an integer N (IV > 1) such that
(LM(Fn)) = (LM(Fny2)) = -+ .

Claim: If Fj; = Autoreduce(F; U {s}}) for some k& > N, then LM(s}) = LM(fx;) for
some polynomial f € F, and some variable z; & M;(f, F) such that s, = Rem;(fz;, Fr).

Proof of Claim: Assume to the contrary that LM(s}) # LM(fx;). Then because
s = Rem(fx;, Fy), it follows that LM(s}) < LM(fz;). But (LM(F})) = (LM(Fj41)), so
that LM(s}) = LM(f'u) for some f’ € F}, and some monomial u containing at least one
variable z; & M;(f', F},) (otherwise s}, can be involutively reduced with respect to Fj, a
contradiction).

Because O is admissible, 1 < 2, and therefore z; < u, so that LM(f'z;) < LM(f'u) <
LM(fz;). But the prolongation fz; was chosen so that its lead monomial is minimal
amongst the lead monomials of all prolongations of elements of F, that do not involu-
tively reduce to zero; the prolongation f'z; must therefore involutively reduce to zero, so
that LM(f'z;) = LM(f"u’) for some polynomial f” € F} and some monomial %' that is
multiplicative for f” over Fy. But s, is involutively irreducible with respect to Fj, so a
variable = ¢ M;(f", F};) must appear in the monomial ;—;

It is now clear that we can construct a sequence f'z;, f” s o

continuous, so all elements in the corresponding sequence LM(f"), LM(f"),... of mono-

. of prolongations. But I is

mials must be distinct. Because F}, is finite, it follows that the sequence of prolongations
will terminate with a prolongation that does not involutively reduce to zero and whose
lead monomial is less than the monomial LM( fz;), contradicting our assumptions. Thus
LM(sy) for & = N is always equal to the lead monomial of some prolongation of some
polynomial f € Fj. a

Consider now the set of monomials LM(Fj;). Claim: LM(F1) = LM(F,) U {LM(s})}
for all & > N, so that when autoreducing the set Fj U {s}}, no leading monomial is

involutively reducible.

Proof of Claim: Consider an arbitrary polynomial p € Fj, U {s}}. If p = s}, then
(by definition) p is irreducible with respect to the set Fg, and so (by condition (b) of
Definition 4.1.4) p will also be irreducible with respect to the set F U {s}}. If p # s},
then p is irreducible with respect to the set Fj, (as the set Fj, is autoreduced), and so
(again by condition (b) of Definition 4.1.4) the only polynomial in the set Fj U {s}}
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that can involutively reduce the polynomial p is the polynomial s;,. But I is stable, so
that s} cannot involutively reduce LM(p). It follows that a polynomial p’ will appear in
the autoreduced set Fi, such that LM(p') = LM(p), and thus LM(F}.1) = LM(F;) U
{LM(s})} as required. o

For the final part of the proof, consider the basis Fy. Because I is Noetherian, there exists
a finite Involutive Basis Gy for the ideal generated by the set of lead monomials LM(Fly),
where Gy 2 LM(Fy). Let fz; be the prolongation chosen during the N-th iteration of
Algorithm 9, so that LM(fz;) ¢ C;(Fn). Because Gy is an Involutive Basis for LM(Fy),
there must be a monomial g € G such that g |; LM(fz;). Claim: g = LM(fz;).

Proof of Claim: We proceed by showing that if g # LM(fz;), then g € C;(LM(Fy))
so that (because of condition (b) of Definition 4.1.4) LM(fz;) € Cr(Gn) = LM(fx;) €
Cr(g, LM(Fy) U {g}), contradicting the constructivity of 7 (Definition 4.3.5).

Assume that g # LM(fz;). Because (Gy) = (LM(Fy)), there exists a polynomial f; € Fy
such that LM(f;) | g. If LM(f1) |; g with respect to Fy, then we are done. Otherwise
LM(g) = LM(fi)u; for some monomial u; # 1 containing at least one variable z;, ¢
M;(f1, Fn). Because deg(g) < deg(LM(fz;)) and LM(f1)z;, | LM(fz;), we must have
LM(f1)z;, < LM(fa;) with respect to our chosen monomial ordering, so that LM(f;)z;, €
Ci(Fy) by definition of how the prolongation fz; was chosen. It follows that there exists
a polynomial f, € Fy such that LM(fs) |; LM(f1)x;, with respect to Fn. If LM(fy) |1 g
with respect to Fy, then we are done. Otherwise we iterate (LM(f1)z;, = LM(f2)ug for
some monomial uy containing at least one variable z;, ¢ M;(fs, Fx)...) to obtain the
sequence (f1, fa, f3,...) of polynomials, where the lead monomial of each element in the
sequence divides g and LM(fr41) |7 LM(f)2;, with respect to Fy for all k > 1. Because
I is continuous, this sequence must be finite, terminating with a polynomial f, € Fy (for
some k 2 1) such that fj |; g with respect to Fiy. a

It follows that during the N-th iteration of the algorithm, a polynomial is added to the
current basis Fy whose lead monomial is a member of the Involutive Basis Gy. By
induction, every step of the algorithm after the N-th step also adds a polynomial to the
current basis whose lead monomial is a member of G. Because Gy is a finite set, after a
finite number of steps the basis LM(F},) (for some &k > N) will contain all the elements of
Gn. We can therefore deduce that LM(Fy) = Gy; it follows that LM(F}) is an Involutive
Basis, and so Fy is also an Involutive Basis. O
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Theorem 4.4.9 Every Involutive Basis is a Grobner Basis.

Proof: Let G = {¢1,...,9m} be an Involutive Basis with respect to some involutive
division I and some admissible monomial ordering O, where each g; € G (for all 1 < i <
m) is a member of the polynomial ring R[zy, ..., z,]. To prove that G is a Grébner Basis,

we must show that all S-polynomials

lem(LM(g;), LM(g;)) ~ lem(LM(gi), LM(g;))

S-pol(gi, g;) = g g;

AGtsEg) LT(g:) ’ LT(g;) ’
conventionally reduce to zero using G (1 < 4,7 < m, © # j). Because G is an Involu-
tive Basis, it is clear that lcm(Lhi(q?E)g;I)‘M(gj D, . 0 and ]C‘“(LNI{%?E;EM(Q" ) j —> 0. By

Proposition 4.2.4, it follows that S-pol(g;, g;) —> 0. But every involutive reduction is
a conventional reduction, so we can deduce that S-pol(g;, g;) —¢ 0 as required. O

Lemma 4.4.10 Remainders are involutively unique with respect to Involutive Bases.

Proof: Given an Involutive Basis G with respect to some involutive division I and
some admissible monomial ordering O, Theorem 4.4.9 tells us that G is a Grobner Basis
with respect to O and thus remainders are conventionally unique with respect to G. To
prove that remainders are involutively unique with respect to GG, we must show that the
conventional and involutive remainders of an arbitrary polynomial p with respect to G are
identical. For this it is sufficient to show that a polynomial p is conventionally reducible
by G if and only if it is involutively reducible by G. (=) Trivial as every involutive
reduction is a conventional reduction. (<) If a polynomial p is conventionally reducible
by a polynomial g € G, it follows that LM(p) = LM(g)u for some monomial u. But G is
an Involutive Basis, so there must exist a polynomial g € G such that LM(g)u = LM(g')«/
for some monomial v’ that is multiplicative (over G) for ¢’. Thus p is also involutively
reducible by G. |

Example 4.4.11 Let us return to our favourite example of an ideal J generated by the
set of polynomials F := {fi, fo} = {2® — 22y + 3, 2zy + y* + 5} over the polynomial ring
Qlz,y,2]. To compute an Involutive Basis for F' with respect to the DegLex monomial
ordering and the Janet involutive division 7, we apply Algorithm 9 to F', in which the first
task is to autoreduce F'. This produces the set F' = {fa, f3} = {2zy+y2+5, 2% +y*+8}
as output (because f; = z? — 2zy + 3 —, 22 +y? + 8 =: f3 and f, is involutively

irreducible with respect to f3), with multiplicative variables as shown below.
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Polynomial Mz (fi, F)
fa=2zy+y*+5| {z,9}
=g tyit8 | (a)

The first set of prolongations of elements of F' is the set S = {f3y} = {2%y + v + 8y}.
As this set only has one element, it is clear that on entering the second while loop of the
algorithm, we must remove the polynomial s = z%y + y* + 8y from S and involutively
reduce s with respect to F to give the polynomial s’ = 3y® — 2z + 3Ty as follows,

1
s=s~:2y+y3+8y w2y+y3+8y——m(2my+y2+5)

?fz 2
_ N
= %Y + vy 2:c-|—8y
s Tgdigf Tpaggl (2zy + y* + 5)
77 g%tV gz +8y+ ou(Zay+y
9 b} 37
= Zyskféfﬂrzy:s’:ﬁi-

As the prolongation did not involutively reduce to zero, we exit from the second while
loop of the algorithm and proceed by autoreducing the set FU{ f4} = {2zy+y*+5, 22+
y? + 8, 3y3 — 2z + 3y}t This process does not alter the set, so now we consider the
prolongations of the three element set F' = {fs, f3, f1}.

Polynomial Mz (fi, F)
fo=2zy+y*+5 {z}
fa=a*+y*+8 {z}

fa=2 - 20+ 38y | {z,y}

We see that there are 2 prolongations to consider, so that S = {fay, fay} = {2zy° + 13 +
5y, %y + 4y +8y}. As 2y® < 2%y in the DegLex monomial ordering, we must consider

Zi?_’
i

As before, the prolongation did not involutively reduce to zero, so now we autoreduce the
set FU{fs} = {22y +4°+5, 2+ 12 +8, 397 — 3z + Yy, 22y + 2z — 2y}, Again this
leaves the set unchanged, so we proceed with the set F' = {fs, f3, f1, [5}.

the prolongation foy first.

R

= 2 3
fy=2ey" +y" +5y  —>,

4 75 5
2:cy2+y3+5y—5 (Zya—ax—i—

12
2:179'2 + 2z — ?y =; f5.
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Polynomial Mg (fi, F)
fa=2zy+y*+5 {z}
fs=a22+1y*+8 {z}

fo=3 -3+ Ty | {z,y}
fs = 2zy° + 22 — %y {z}

This time, S = {foy, fay, fsy} = {229° + * + 5y, «®y +¢* + 8y, 2zy® + 2ay — Ly},
and we must consider the prolongation foy first.

12
fay=2ay* +y’ +5y — 2zy’ +y°+5y— (2my2 + 2z — —y)

J fs 5
= y3—2w+35—7y

3 g Dl S S B EL
Ta Y TETEYTE\Y T Y
— 0.

Because the prolongation involutively reduced to zero, we move on to look at the next
prolongation f3y (which comes from the revised set S = {fsy, fsy} = {2%y + v* +
8y, 2zy° + 20y — 2y°}).

1
fay =22y +4* + 8y 2’y +y° + 8y — -2—55(2:.cy + 3%+ 5)

J
= —%my2+y3—gm+8y

1L 5.5 8 1 " 12
= e o {2 Y ——
75 gty Ty 2$+8y+4(wy+m =

37

¢ 2m+£ - 53—§$+ﬂ

e 5Y 5 \aY T Y

— 0.
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Finally, we look at the prolongation fsy from the set S = {2zy® + 2zy — lf-yz :

fsy = 2zy° + 2zy — %yz —, 2097+ 22y - %yg —~ %x (%ya ~ gﬂ: + %y)
= 4 — %wy —_ %yg
% 4z — 6—54531; - ~1—E—)2-y2 —4(z* +y* + 8)
- —%%:cy - éyz — 32
N —%xy - %gyz - 32+ %(ny +y* +5)
= 0.

Because this prolongation also involutively reduced to zero using F, we are left with
S = (0, which means that the algorithm now terminates with the Janet Involutive Basis
G={2zy+y*+5, 2* +y*+8, 2® — 2x+ 3y, 229 + 22 — L2y} as output.

4.5 Improvements to the Involutive Basis Algorithm

4.5.1 Improved Algorithms

In [58], Zharkov and Blinkov introduced an algorithm for computing an Involutive Basis
and proved its termination for zero-dimensional ideals. This work led other researchers to
produce improved versions of the algorithm (see for example [4], [13], [23], [26], [27] and
[28]); improvements made to the algorithm include the introduction of selection strategies
(which, as we have seen in the proof of Proposition 4.4.8, are crucial for proving the
termination of the algorithm in general), and the introduction of criteria (analogous to
Buchberger’s criteria) allowing the a priori detection of prolongations that involutively
reduce to zero.

4.5.2 Homogeneous Involutive Bases

When computing an Involutive Basis, a prolongation of a homogeneous polynomial is
another homogeneous polynomial, and the involutive reduction of a homogeneous poly-
nomial by a set of homogeneous polynomials yields another homogeneous polynomial.

It would therefore be entirely feasible for a program computing Involutive Bases for ho-
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mogeneous input bases to take advantage of the properties of homogeneous polynomial

arithmetic.

It would also be desirable to be able to use such a program on input bases containing non-
homogeneous polynomials. The natural way to do this would be to modify the procedure
outlined in Definition 2.5.7 by replacing every occurrence of the phrase “a Grébner Basis”

by the phrase “an Involutive Basis”, thus creating the following definition.

Definition 4.5.1 Let F = {f,..., fm} be a non-homogeneous set of polynomials. To
compute an Involutive Basis for £ using a program that only accepts sets of homogeneous

polynomials as input, we proceed as follows.

(a) Construct a homogeneous set of polynomials F' = {h(f1),..., (fm)}.
(b) Compute an Involutive Basis G’ for F".

(¢) Dehomogenise each polynomial ¢’ € G’ to obtain a set of polynomials G.

Ideally, we would like to say that G is always an Involutive Basis for F' as long as the
monomial ordering used is extendible, mirroring the conclusion reached in Definition 2.5.7.
However, we will only prove the validity of this statement in the case that the set G is
autoreduced, and also only for certain combinations of monomial orderings and involutive

divisions — all combinations will not work, as the following example demonstrates.

Example 4.5.2 Let F := {a? + 23, 1 + 23} be a basis generating an ideal J over the
polynomial ring Q[z1, 22, 23], and let the monomial ordering be Lex. Computing an
Involutive Basis for F' with respect to the Janet involutive division using Algorithm 9, we

obtain the set G := {z8 + a§, 122 + 22z}, 2129 + 2225, 23 — 28, 21 + 23}

Taking the homogeneous route, we can homogenise F' (with respect to Lex) to obtain the
set F' := {22y + @3, z1y* + z3} over the polynomial ring Q[z1, z2, z3,y]. Computing an
Involutive Basis for F' with respect to the Janet involutive division, we obtain the set
G = {ady’+af, 2123y’ +o3aly, 212y +oady, 21y +afy, Tyt +ad, erady—ady®, alady+
a3k, Blzsy+adzs, 2iy+a3, 2123 —23y}. Finally, if we dehomogenise G, we obtain the set
H = {28428, z125+2323, 7120+ 2223, m1+23, 2123 —23, alod+2d2s, vins+adzs, oi+ad);
however this set is not a Janet Involutive Basis for F', as can be verified by checking that

(with respect to H) the variable z3 is nonmultiplicative for the polynomial 23 + 25, and
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the prolongation of the polynomial z3 + z§ by the variable z3 is involutively irreducible
with respect to H.

The reason why H is not an Involutive Basis for J in the above example is that the Janet
multiplicative variables for the set G’ do not correspond to the Janet multiplicative vari-
ables for the set H = d(G"). This means that we cannot use the fact that all prolongations
of elements of G’ involutively reduce to zero using G’ to deduce that all prolongations of
elements of [/ involutively reduce to zero using H. To do this, our involutive division must
satisfy the following additional property, which ensures that the multiplicative variables
of G and d(G’) do correspond to each other.

Definition 4.5.3 Let O be a fixed extendible monomial ordering. An involutive division

1 is extendible with respect to O if, given any set of polynomials P, we have

Mi(p, P)\ {y} = Mi(d(p), d(P))

for all p € P, where y is the homogenising variable.

In Section 2.5.2, we saw that of the monomial orderings defined in Section 1.2.1, only Lex,
InvLex and DegRevLex are extendible. Let us now consider which involutive divisions

are extendible with respect to these three monomial orderings.

Proposition 4.5.4 The Thomas involutive division is extendible with respect to Lex,
InvLex and DegRevLez.

Proof: Let P be an arbitrary set of polynomials over a polynomial ring containing vari-
ables x1,...,x, and a homogenising variable . Because the Thomas involutive division
decides whether a variable z; (for 1 € ¢ < n) is multiplicative for a polynomial p € P
independent of the variable y, it is clear that z; is multiplicative for p if and only if z;
is multiplicative for d(p) with respect to any of the monomial orderings Lex, InvLex and
DegRevLex. It follows that Mz (p, P) \ {y} = Mz (d(p), d(P)) as required. O

Proposition 4.5.5 The Pommaret involutive division s extendible with respect to Lex
and DegRevLex.

Proof: Let p be an arbitrary polynomial over a polynomial ring containing variables

Z1,...,T, and a homogenising variable y. Because we are using either the Lex or the
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DegRevLex monomial orderings, the variable y must be lexicographically less than any
of the variables z1, ..., z,, and so we can state (without loss of generality) that p belongs
to the polynomial ring Ry, ..., 2, y]. Let (e}, e?,...,e" e"!) be the multidegree corre-
sponding to the monomial LM(p), and let 1 €< 7 €< n+ 1 be the smallest integer such that
e’ > 0.

If i = n + 1, then the variables y,...,z, will all be multiplicative for p. But then d(p)
will be a constant, so that the variables z,...,z, will also all be multiplicative for d(p).

If ¢ < n, then the variables z, ..., z; will all be multiplicative for p. But because y is the
smallest variable, it is clear that ¢ will also be the smallest integer such that f* > 0, where
(fY, f%,..., f™) is the multidegree corresponding to the monomial LM(d(p)). It follows
that the variables @1, ..., z; will also all be multiplicative for d(p), and so we can conclude
that Mp(p, P)\ {y} = Mp(d(p),d(P)) as required. O

Proposition 4.5.6 The Pommaret involutive division is not extendible with respect to
Invlex.

Proof: Let p := yzs + 7 be a polynomial over the polynomial ring Q[y, z1, zs], where
y is the homogenising variable (which must be greater than all other variables in order
for InvLex to be extendible). As LM(p) = yx2 with respect to InvLex, it follows that
Mp(p) = {y}. Further, as LM(d(p)) = LM(z2+27) = x5 with respect to InvLex, it follows
that Mp(d(p)) = {z1,2z2}. We can now deduce that the Pommaret involutive division is
not extendible with respect to InvLex, as Mp(p) \ {y} # Mp(d(p)), or O # {x1,z2}. O

Proposition 4.5.7 The Janet involutive division is extendible with respect to InuLex.

Proof: Let P be an arbitrary set of polynomials over a polynomial ring containing
variables zi,...,%, and a homogenising variable y. Because we are using the InvLex
monomial ordering, the variable y must be lexicographically greater than any of the
variables z1,...,%,, and so we can state (without loss of generality) that p belongs to
the polynomial ring Ry, z1,...,2,]. But the Janet involutive division will then decide
whether a variable z; (for 1 <7 < n) is multiplicative for a polynomial p € P independent
of the variable y, so it is clear that z; is multiplicative for p if and only if z; is multiplicative
for d(p), and so (with respect to InvLex) M (p, P) \ {y} = Mz(d(p),d(P)) as required.

O
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Proposition 4.5.8 The Janet involutive division is not extendible with respect to Lex or
DegRevlez.

Proof: Let U := {21y, 21y} be a set of monomials over the polynomial ring Q[z;, ],
where y is the homogenising variable (which must be less than z; in order for Lex and
DegRevLex to be extendible). The Janet multiplicative variables for U (with respect to
Lex and DegRevLex) are shown in the table below.

U Mj(u, U)
a1y {z1}
3313,'2 {mlay}

When we dehomogenise U with respect to y, we obtain the set d(U) = {22, z;} with
multiplicative variables as follows.

d(u) | Mg(d(u),d(U))

CE% {z1}

i @

It is now clear that Janet is not an extendible involutive division with respect to Lex or
DegRevLex, as Mg (1%, U) \ {y} # Mg (z1,d(V)), or {1} #0. O

Proposition 4.5.9 Let G’ be a set of polynomials over a polynomial ring containing vari-
ables x1, ..., x, and a homogenising variable y. If (i) G' is an Involutive Basis with respect
to some extendible monomial ordering O and some involutive division I that is extendible
with respect to O; and (1i) d(G') is an autoreduced set, then d(G') is an Involutive Basis
with respect to O and I.

Proof: By Definition 4.2.7, we can show that d(G’) is an Involutive Basis with respect
to O and I by showing that any multiple d(g)¢ of any polynomial d(g") € d(G’) by any
term ¢ involutively reduces to zero using d(G’). Because G’ is an Involutive Basis with
respect to O and I, the polynomial ¢'t involutively reduces to zero using G’ by the series
of involutive reductions

!
g t hq h.g . — 0
I g, T g, T g, Igh, "
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where g, € G’ forall 1 <7< A

Claim: The polynomial d(g')¢ involutively reduces to zero using d(G’) by the series of
involutive reductions

dlg )t —=, | d(h)

I d{ga, ) d(ha)

—_— o e —_—
I d(g;,,) 1 d(gy,) T d(g,)

where d(g,, ) € d(G") for all 1 < i < A,

1

Proof of Claim: It is clear that if a polynomial g; € G" involutively reduces a polynomial
h, then the polynomial d(g;) € d(G") will always conventionally reduce the polynomial
d(h). Further, knowing that I is extendible with respect to O, we can state that d(g;)
will also always involutively reduce d(h). The result now follows by noticing that d(G")
is autoreduced, so that d(g;) is the only possible involutive divisor of d(h), and hence the
above series of involutive reductions is the only possible way of involutively reducing the

polynomial d(g')t. O

Open Question 1 If the set G returned by the procedure outlined in Definition 4.5.1 is
not autoreduced, under what circumstances does autoreducing G result in obtaining a set

that is an Involutive Basis for the ideal generated by F'?

Let us now consider two examples illustrating that the set G returned by the procedure

outlined in Definition 4.5.1 may or may not be autoreduced.

Example 4.5.10 Let F' := {22129 + 27 + 5, 2% + z1 + 8} be a basis generating an ideal J
over the polynomial ring Q[z1, 22|, and let the monomial ordering be InvLex. Ordinarily,
we can compute an Involutive Basis G := {23 + 21 + 8, 2z123 + 22 + 5, 1029 — 23 — 42 —
37z1, o] + 4a? + 422? + 25} for F' with respect to the Janet involutive division by using
Algorithm 9.

Taking the homogeneous route (using Definition 4.5.1), we can homogenise F' to obtain
the basis F' := {2z120 + 23 + 5y%, 23 + yz1 + 8y} over the polynomial ring Qly, 21, z,],
where y is the homogenising variable (which must be greater than all other variables).
Computing an Involutive Basis for the set F' with respect to the Janet involutive division
using Algorithm 9, we obtain the basis G’ := {z3+yz1+8y?, 2z122+23+5y%, 10y%wy—23 —
dyx? — 37y*zq, o+ dyad + 42y%2? + 25¢y1}. When we dehomogenise this basis, we obtain
the set d(G') := {23+ 21 +8, 22122+ 23 +5, 102y — 23 —4a? — 372y, 2% + 423 + 4222 4 25}
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It is now clear that the set d(G’) is autoreduced (and hence d(G’) is an Involutive Basis
for J) because d(G") = G.

Example 4.5.11 Let F := {3+ 2z172+5, z2 + 2% + 8} be a basis generating an ideal J
over the polynomial ring Q[z1, z2], and let the monomial ordering be InvLex. Ordinarily,
we can compute an Involutive Basis G := {23 — 223 — 1621 + 5, 2o + 22 + 8, 2f — 223 +
1622 — 162, + 69} for F with respect to the Janet involutive division by using Algorithm
9.

Taking the homogeneous route (using Definition 4.5.1), we can homogenise F' to obtain
the basis F' := {22 + 22125 + 5y?, yzo + 2% + 8y} over the polynomial ring Q[y, x1, 23],
where y is the homogenising variable (which must be greater than all other variables).
Computing an Involutive Basis for the set F’ with respect to the Janet involutive division
using Algorithm 9, we obtain the basis G’ := {z% + 2212 + 5y°, 232y + 223 — 8yz? +
16y2@; — 69y°, yz120 + 23 + 84231, yzo + 23 + 8y2, 21 — 2yad + 16y%2? — 163z, + 69y},
When we dehomogenise this basis, we obtain the set d(G') = {23 + 2z129 + 5, 2225 +
223 — 8% + 162, — 69, z172+ 23 + 8%, o+ 27+ 8, x] — 223 + 1627 — 1621 +69}. This time
however, because the set d(G’) is not autoreduced (the polynomial 2125+ 23+ 8z, € d(G')
can involutively reduce the second term of the polynomial 23 + 2z1z5 + 5 € d(G")), we

cannot deduce that d(G’) is an Involutive Basis for J.

Remark 4.5.12 Although the set G returned by the procedure outlined in Definition
4.5.1 may not always be an Involutive Basis for the ideal generated by F', because the set
G" will always be an Involutive Basis (and hence also a Grébner Basis), we can state that
G will always be a Grobner Basis for the ideal generated by F' (cf. Definition 2.5.7).

4.5.3 Logged Involutive Bases

Just as a Logged Groébner Basis expresses each member of the Grébner Basis in terms
of members of the original basis from which the Grébner Basis was computed, a Logged
Involutive Basis expresses each member of the Involutive Basis in terms of members of

the original basis from which the Involutive Basis was computed.

Definition 4.5.13 Let G = {g,..., g,} be an Involutive Basis computed from an initial
basis F' = {f1,..., fm}. We say that G is a Logged Involutive Basis if, for each g; € G,
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we have an explicit expression of the form

B
gi = Z tafka:
a=1

where the t, are terms and f;, € F forall1 < a < g.

Proposition 4.5.14 Given a finite basis F' = {f1,..., fm}, i is always possible to com-
pute a Logged Involutive Basis for F.

Proof: Let G = {g1,...,9,} be an Involutive Basis computed from the initial basis
F = {fi,..., fm} using Algorithm 9 (where f; € R[zy,...,2,] for all f; € F). If an
arbitrary g; € G is not a member of the original basis F', then either g; is an involutively
reduced prolongation, or g; is obtained through the process of autoreduction. In the
former case, we can express g; in terms of members of F' by substitution because

Jé]
9i = hx; — Ztahka
a=1

for a variable z;; terms ¢, and polynomials h and hy, which we already know how to

express in terms of members of F. In the latter case,

Jé]
gi=h— Ztﬁ:hka
a=1

for terms t, and polynomials h and hy, which we already know how to express in terms

of members of F', so it follows that we can again express g; in terms of members of F. O



Chapter 5

Noncommutative Involutive Bases

In the previous chapter, we introduced the theory of commutative Involutive Bases and
saw that such bases are always commutative Grébner Bases with extra structure. In this
chapter, we will follow a similar path, in that we will define an algorithm to compute a
noncommutative Involutive Basis that will serve as an alternative method of obtaining a
noncommutative Grébner Basis, and the noncommutative Grébner Bases we will obtain

will also have some extra structure.

As illustrated by the diagram shown below, the theory of noncommutative Involutive
Bases will draw upon all the theory that has come before in this thesis, and as a con-
sequence will inherit many of the restrictions imposed by this theory. For example, our
noncommutative Involutive Basis algorithm will not be guaranteed to terminate precisely
because we are working in a noncommutative setting, and noncommutative involutive
divisions will have properties that will influence the correctness and termination of the

algorithm.

Commutative Grobner Bases ——— Commutative Involutive Bases

Noncommutative Grobner Bases — Noncommutative Involutive Bases

104
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5.1 Noncommutative Involutive Reduction

Recall that in a commutative polynomial ring, a monomial u, is an involutive divisor of a
monomial u; if u; = uguy for some monomial uz and all variables in u3 are multiplicative
for uy. In other words, we are able to form 1 from uy by multiplying us, with multiplicative

variables.

In a noncommutative polynomial ring, an involutive division will again induce a restricted
form of division. However, because left and right multiplication are separate processes in
noncommutative polynomial rings, we will require the notion of left and right multiplicative
variables in order to determine whether a conventional divisor is an involutive divisor, so
that (intuitively) a monomial us will involutively divide a monomial u; if we are able to
form wy from wuy by multiplying ug on the left with left multiplicative variables and on the

right by right multiplicative variables.

More formally, let u; and us be two monomials over a noncommutative polynomial ring,
and assume that u; is a conventional divisor of ug, so that u; = uguguy for some monomials
ug and uy. Assume that an arbitrary noncommutative involutive division I partitions the
variables in the polynomial ring into sets of left multiplicative and left nonmultiplicative
variables for us, and also partitions the variables in the polynomial ring into sets of right
multiplicative and right nonmultiplicative variables for us. Let us now define two methods
of deciding whether u, is an involutive divisor of u; (written wus |; uq), the first of which
will depend only on the first variable we multiply us with on the left and on the right in
order to form u;, and the second of which will depend on all the variables we multiply us

with in order to form w;.

Definition 5.1.1 Let u; = uguguy, and let I be defined as in the previous paragraph.

e (Thin Divisor) uy |; u; if the variable Suffix(us, 1) (if it exists) is in the set of left
multiplicative variables for uy, and the variable Prefix(u4, 1) (again if it exists) is in

the set of right multiplicative variables for ws.

e (Thick Divisor) us |; uy if all the variables in ug are in the set of left multiplicative
variables for us, and all the variables in wuy are in the set of right multiplicative

variables for us.

Remark 5.1.2 We introduce two methods for determining whether a conventional di-

visor is an involutive divisor because each of the methods has its own advantages and
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disadvantages. From a theoretical standpoint, using thin divisors enables us to follow the
path laid down in Chapter 4, in that we are able to show that a Locally Involutive Basis is
an Involutive Basis by proving that the involutive division used is continuous, something
that we cannot do if thick divisors are being used. On the other hand, once we have
obtained our Locally Involutive Basis, involutive reduction with respect to thick divisors
is more efficient than it is with respect to thin divisors, as less work is required in order to
determine whether a monomial is involutively divisible by a set of monomials. For these
reasons, we will use thin divisors when presenting the theory in this chapter (hence the
following definition), and will only use thick divisors when, by doing so, we are able to

gain some advantage.

Remark 5.1.3 Unless otherwise stated, from now on we will use thin divisors to deter-

mine whether a conventional divisor is an involutive divisor.

Example 5.1.4 Let u; := zyz?z; v} := yz?y and uy := 2% be three monomials over the
polynomial ring R = Q(z, y, ), and let an involutive division I partition the variables in
R into the following sets of variables for the monomial ug: left multiplicative = {z, y};
left nonmultiplicative = {z}; right multiplicative = {z, z}; right nonmultiplicative =
{y}. It is true that uy conventionally divides both monomials u; and u}, but uy only
involutively divides monomial u; as, defining us := @y; ug = «; v = y and uj, = y (so
that wy = ugupuy and uj = wuguguy), we observe that the variable Suffix(us, 1) = ¥ is in
the set of left multiplicative variables for uy; the variable Prefix(uy, 1) =  is in the set of
right multiplicative variables for us; but the variable Prefix(u), 1) = y is not in the set of
right multiplicative variables for us.

Let us now formally define what is meant by a (noncommutative) involutive division.

Definition 5.1.5 Let M denote the set of all monomials in a noncommutative polynomial
ring R = R{z1,...,%,), and let U C M. The involutive cone Cr(u,U) of any monomial
u € U with respect to some involutive division I is defined as follows.

Cr(u,U) = {viuvs such that v, vs € M and u |5 viuvs}.

Definition 5.1.6 Let M denote the set of all monomials in a noncommutative polynomial
ring R = R(x1,...,&,). A strong involutive division I is defined on M if, given any finite
set of monomials U C M, we can assign a set of left multiplicative variables M%(u, U) C
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{@1,...,2,} and a set of right multiplicative variables M%(u,U) C {z1,...,z,} to any
monomial v € U such that the following three conditions are satisfied.

o If there exist two elements u;,uz € U such that C;(uy,U) N Cr(ug, U) # @, then
either Cr(uy,U) C Cr(us, U) or Cr(uz, U) C Cr(uq, U).

e Any monomial v € C;(u,U) is involutively divisible by » in one way only, so that
if u appears as a subword of v in more than one way, then only one of these ways
allows us to deduce that u is an involutive divisor of v.

o If V C U, then M¥(v,U) € ME(w,V) and ME(v,U) C ME(v,V) for allv € V.

If any of the above conditions are not satisfied, the involutive division is called a weak

involutive division.

Remark 5.1.7 We shall refer to the three conditions of Definition 5.1.6 as (respectively)

the Disjoint Cones condition, the Unique Divisor condition and the Subset condition.

Definition 5.1.8 Given an involutive division I, the involutive span C;(U) of a set of

noncommutative monomials U with respect to I is given by the expression

cr(U) = | G, U).

uel

Remark 5.1.9 The (conventional) span of a set of noncommutative monomials U is given
by the expression
cw) = cwu),
uel

where C(u,U) = {vjuvy such that vy, vy are monomials} is the (conventional) cone of a

monomial u € U.

Definition 5.1.10 If an involutive division I determines the left and right multiplicative
variables for a monomial u € U independent of the set U, then I is a global division.

Otherwise, [ is a local division.

Remark 5.1.11 The multiplicative variables for a set of polynomials P (whose terms
are ordered by a monomial ordering O) are determined by the multiplicative variables for
the set of leading monomials LM(P).
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In Algorithm 10, we specify how to involutively divide a polynomial p with respect to a set
of polynomials P using thin divisors. Note that this algorithm combines the modifications
made to Algorithm 1 in Algorithms 2 and 7.

Algorithm 10 The Noncommutative Involutive Division Algorithm

Input: A nonzero polynomial p and a set of nonzero polynomials P = {pi1,...,pm}
over a polynomial ring R(z1,...%,); an admissible monomial ordering O; an involutive
division 1.

Output: Rem;(p, P) := r, the involutive remainder of p with respect to P.

r =0
while (p # 0) do
u = LM(p); ¢ = LC(p); 7 = 1; found = false;
while (j < m) and (found == false) do
if (LM(p;) |r u) then
found = true;
choose ug and w, such that u = u,LM(p;)u,, the variable Suffix(u,, 1) (if it exists)
is left multiplicative for p;, and the variable Prefix(u,,1) (again if it exists) is
right multiplicative for p;;
p=p— (cLC(p;) ™) wepjr;
else
F =+l
end if
end while
if (found == false) then
r=r+LT(p); p=p— LT(p);
end if
end while

return r;

Remark 5.1.12 Continuing the convention from Algorithm 2, we will always choose the
ug with the smallest degree in the line ‘choose u, and w, such that...” in Algorithm 10.

Example 5.1.13 Let P := {2? — 2y, ay — z, ¥° + 3} be a set of polynomials over the
polynomial ring Q{z,y} ordered with respect to the DegLex monomial ordering, and

assume that an involutive division I assigns multiplicative variables to P as follows.
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p | MF(LM(p), LM(P)) | MF(LM(p), LM(P))
x? — 2y {z,y} {z}
Ty — {y} {z,y}
v+ 3 {z} 0

Here is a dry run for Algorithm 10 when we involutively divide the polynomial p :=
2223 + yzy with respect to P to obtain the polynomial yz — 12y, where A; B; C and D
refer to the tests (p # 0)7; ((j < 3) and (found == false))?; (LM(p;) |r v)? and (found
== false)? respectively.

D r U ¢ | 7| found | wus | un A B C D
22293 + yay 0 true
23 | 2 false true | false
true | false
true | true
yxy — 62 true | 22 | 1 false false
true
Yy 1 | 1] false true | false
2 true | true
—622 + yx true | y | 1 false false
true
z? | —6 | 1| false true | true
yr — 12y true | 1 | 1 false false
true
Yy 1 1| false true | false
2 true | false
3 true | false
4 false true
—12y yx true
Y —12 | 1| false true | false
2 true | false
3 true | false
4 false true
0 yr — 12y false
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5.2 Prolongations and Autoreduction

Just as in the commutative case, we will compute a (noncommutative) Locally Involutive
Basis by using prolongations and autoreduction, but here we have to distinguish between
left prolongations and right prolongations.

Definition 5.2.1 Given a set of polynomials P, a left prolongation of a polynomial p €
P is a product z;p, where z; ¢ ME(LM(p), LM(P)) with respect to some involutive
division [; and a right prolongation of a polynomial p € P is a product pz;, where
z; ¢ ME(LM(p), LM(P)) with respect to some involutive division I.

Definition 5.2.2 A set of polynomials P is said to be autoreduced if no polynomial p € P
exists such that p contains a term which is involutively divisible (with respect to P) by

some polynomial p’ € P\ {p}.

Algorithm 11 The Noncommutative Autoreduction Algorithm

Input: A set of polynomials P = {p1,ps,...,ps}; an involutive division I.
Output: An autoreduced set of polynomials @ = {q1,¢2,..., s}
while (3 p; € P such that Rem;(p;, P, P\ {p:}) # p;) do
p; = Remy(p;, P, P\ {pi});
P =P\ {p}
if (p} # 0) then
P=PuU{p}h
end if
end while
Q=PF;

return @;

Remark 5.2.3 With respect to a strong involutive division, the involutive cones of an

autoreduced set of polynomials are always disjoint.

Remark 5.2.4 The notation Rem;(p;, P, P \ {p;}) used in Algorithm 11 has the same

meaning as in Definition 4.2.2.

Proposition 5.2.5 Let P be a set of polynomials over a noncommutative polynomial ring
R = R{x1,...,2y,), and let f and g be two polynomials also in R. If P is autoreduced with
respect to a strong involutive division I, then Rem;(f, P)+Rem/(g, P) = Rem;(f+g, P).
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Proof: Let f':= Remy(f, P); ¢ := Rem;(g, P) and h' := Remy(h, P), where h := f+g.
Then, by the respective involutive reductions, we have expressions

A
ff =f- Zuapaava;

a=1

B
g=g- Z UbPgy Vb
b=1

and
a
K =h- Z WPy, Ve
c=1

where pq,, ps,; Py, € P and ug, Vg, Uy, Uy, Uc, U, are terms such that each po,, pg, and p,,

involutively divides each wypa,Va, Uspg, s and u.p,, v. respectively.

Consider the polynomial ' — f' — ¢’. By the above expressions, we can deduce! that

A B c D
W= =g = UaPaVat D WPt — D UePole =0 D UdPs,Va-
a=1 b=1 e=1 d=1

Claim: Rem;(h' — f'—¢',P) = 0.

Proof of Claim: Let ¢ denote the leading term of the polynomial Zdﬁ;l UgPs, V4. Then

LM(t) = LM(uxps,vx) for some 1 < k < D since, if not, there exists a monomial
LM(Uk!pgk_,ka) = LM(Uk”pgk”Uku) =y

for some 1 < &', k" < D (with ps,, # ps,,) such that w is involutively divisible by the two
polynomials ps,, and pj,,,, contradicting Definition 5.1.6 (recall that I is strong and P is
autoreduced, so that the involutive cones of P are disjoint). It follows that we can use

ps,, to eliminate ¢ by involutively reducing ' — f' — ¢’ as shown below.

D k—1 D
D UdPsVd s, D UdPsVa+ D Uasgla (5.1)
d=1 d=1 d=k+1
By induction, we can apply a chain of involutive reductions to the right hand side of

Equation (5.1) to obtain a zero remainder, so that Rem;(h' — f' — ¢', P) = 0. o

For 1 € d € A, uaps,va = UaPa,Va (1 S @ € A); for A+1 < d < A+ B, ugps,Va = usPp,vs
(1<b<B)andlor A+ B+1<d< A+ B+ C =D, ugps,vq = Ucpy,ve (1 < c < C).
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To complete the proof, we note that since f’, ¢’ and A’ are all involutively irreducible, we
must have Rem;(h' — f' — ¢/, P) = h' — f' — ¢'. It therefore follows that h' — f' — ¢’ = 0,
or ' = f'+ ¢’ as required. O

Definition 5.2.6 Given an involutive division / and an admissible monomial ordering O,
an autoreduced set of noncommutative polynomials P is a Locally Involutive Basis with
respect to I and O if any (left or right) prolongation of any polynomial p; € P involutively
reduces to zero using P.

Definition 5.2.7 Given an involutive division I and an admissible monomial ordering O,
an autoreduced set of noncommutative polynomials P is an Involutive Basis with respect
to [ and O if any multiple up;v of any polynomial p; € P by any terms u and v involutively
reduces to zero using P.

5.3 The Noncommutative Involutive Basis Algorithm

To compute a (noncommutative) Locally Involutive Basis, we use Algorithm 12, an algo-
rithm that is virtually identical to Algorithm 9, apart from the fact that at the beginning
of the first while loop, the set S is constructed in different ways.

5.4 Continuity and Conclusivity

In the commutative case, when we construct a Locally Involutive Basis using Algorithm
9, we know that the algorithm will always return a commutative Grébner Basis as long
as we use an admissible monomial ordering and the chosen involutive division possesses

certain properties. In summary,
(a) Any Locally Involutive Basis returned by Algorithm 9 is an Involutive Basis if the
involutive division used is continuous (Proposition 4.3.3);

(b) Algorithm 9 always terminates if (in addition) the involutive division used is con-
structive, Noetherian and stable (Proposition 4.4.8);

(c) Every Involutive Basis is a Grébner Basis (Theorem 4.4.9).

In the noncommutative case, we cannot hope to produce a carbon copy of the above

results because a finitely generated basis may have an infinite Grobner Basis, leading to
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Algorithm 12 The Noncommutative Involutive Basis Algorithm

Input: A Basis F' = {fi, f2,..., fm} for an ideal J over a noncommutative polynomial
ring R{z1,...x,); an admissible monomial ordering O; an involutive division I.
Output: A Locally Involutive Basis G = {g1,92,...,9p} for J (in the case of termina-
tion).
G = 0
F = Autoreduce(F);
while (G == 0) do
S={z:if | f€F, o g MF(f,F)}U{fa;| f €F, z: ¢ M}, F)};
s’ =0
while (S # 0) and (s’ == 0) do

Let s be a polynomial in S whose lead monomial is minimal with respect to O;

S=8\{s}
s’ = Remy(s, F);
end while

if (s’ #0) then
F' = Autoreduce(F U {s'});
else
G =&
end if
end while

return G;
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the conclusion that Algorithm 12 does not always terminate. The best we can therefore
hope for is if an ideal generated by a set of polynomials F possesses a finite Grobner
Basis with respect to some admissible monomial ordering O, then F also possesses a
finite Involutive Basis with respect to O and some involutive division I. We shall call any
involutive division that possesses this property conclusive.

Definition 5.4.1 Let F' be an arbitrary basis generating an ideal over a noncommutative
polynomial ring, and let O be an arbitrary admissible monomial ordering. An involutive
division I is conclusive if Algorithm 12 terminates with F, I and O as input whenever
Algorithm 5 terminates with F' and O as input.

Of course it is easy enough to define the above property, but much harder to prove that a
particular involutive division is conclusive. In fact, no involutive division defined in this
thesis will be shown to be conclusive, and the existence of such divisions will be left as
an open question.

5.4.1 Properties for Strong Involutive Divisions

Here is a summary of facts that can be deduced when using a strong involutive division.

(a) Any Locally Involutive Basis returned by Algorithm 12 is an Involutive Basis if the

involutive division used is strong and continuous (Proposition 5.4.3);

(b) Algorithm 12 always terminates whenever Algorithm 5 terminates if (in addition) the

involutive division used is conclusive;

(c) Every Involutive Basis with respect to a strong involutive division is a Grébner Basis
(Theorem 5.4.4).

Let us now prove the assertions made in parts (a) and (c) of the above list, beginning by

defining what is meant by a continuous involutive division in the noncommutative case.

Definition 5.4.2 Let I be a fixed involutive division; let w be a fixed monomial; let U be
any set of monomials; and consider any sequence (u1, ug, ..., ug) of monomials from U
(u; € U for all 1 <4 < k), each of which is a conventional divisor of w (so that w = fu,r;
for all 1 <4 < k, where the ¢; and the r; are monomials). For all 1 < i < k, suppose that

the monomial u;,; satisfies exactly one of the following conditions.
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(a) u;+1 involutively divides a left prolongation of w;, so that deg(¥;) = 1; Suffix(¢;,1) ¢
ME(u;, U); and uigq |1 (Suffix(£;, 1))u;.

(b) u;+1 involutively divides a right prolongation of u;, so that deg(r;) = 1; Prefix(r;, 1) ¢
ME(u;, U); and iy |1 wi(Prefix(ry, 1)).

Then I is continuous at w if all the pairs (¢;, ;) are distinet ((¢;, ;) # (¢;,r;) for all i # j7);

I is a continuous involutive division if I is continuous for all possible w.

Proposition 5.4.3 If an involutive division I is strong and continuous, and a given set
of polynomials P is a Locally Involutive Basis with respect to I and some admissible

monomial ordering O, then P is an Involutive Basis with respect to I and O.

Proof: Let I be a strong and continuous involutive division; let O be an admissible
monomial ordering; and let P be a Locally Involutive Basis with respect to I and O.
Given any polynomial p € P and any terms u and v, in order to show that P is an

Involutive Basis with respect to I and O, we must show that upv —F7 0.

If p |; upv we are done, as we can use p to involutively reduce upv to obtain a zero
remainder. Otherwise, either 3y; ¢ MF(LM(p), LM(P)) such that y; = Suffix(u, 1),
or Jy; ¢ ME(LM(p), LM(P)) such that y; = Prefix(v,1). Without loss of generality,
assume that the first case applies. By Local Involutivity, the prolongation y;p involutively
reduces to zero using P. Assuming that the first step of this involutive reduction involves

the polynomial p; € P, we can write

A
1P = P11 + Y UayPagVau, (5.2)
a=1
where po, € P and uy, vy, Ug,, Vs, are terms such that p; and each p,, involutively divide
uyp1vy and each Uy, Pa, Vo, respectively. Multiplying both sides of Equation (5.2) on the
left by u' := Prefix(u, deg(u) — 1) and on the right by v, we obtain the equation

A
upv = w'uprv + Z U, Do, Ve V- (5.3)

a=1

If py |; upv, it is clear that we can use p; to involutively reduce the polynomial upv to

obtain the polynomial Zle U, Pa, Vo, V- By Proposition 5.2.5, we can then continue
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to involutively reduce upv by repeating this proof on each polynomial u'tuq,pa, Ve, v in-
dividually (where 1 € a < A), noting that this process will terminate because of the
admissibility of O (we have LM(u'ta, Pa, Vo, v) < LM(upv) for all 1 < a < A).

Otherwise, if p; does not involutively divide upv, either Jya ¢ M (LM(p;), LM(P)) such
that yo = Suffix(v/uq,1), or Jyz & MFLM(p1), LM(P)) such that yo = Prefix(viv, 1).
This time (again without loss of generality), assume that the second case applies. By
Local Involutivity, the prolongation p;y» involutively reduces to zero using P. Assuming
that the first step of this involutive reduction involves the polynomial p € P, we can

write
B

P1Y2 = Ugpavs + Z UG, D, Vy (5.4)
b=1

where ps, € P and us, v9, ug,, Ug, are terms such that p; and each pg, involutively divide
uppave and each ug,pg,vg, respectively. Multiplying both sides of Equation (5.4) on the
left by «'u; and on the right by v" := Suffix(v v, deg(viv) — 1), we obtain the equation

B

U Pp1vIv = U U Ugpavav’ + Z u'Uu1Ug, P, Vs,V - (5.5)
b=1

Substituting for u'u;pyv v from Equation (5.5) into Equation (5.3), we obtain the equation

A B
upv = wug Uy pavav’ + Z WU, Doy Vg ¥ + Z w'uytg,pp, Vs,V (5.6)

a=1 b=1
If po |7 upv, it is clear that we can use p, to involutively reduce the polynomial upv to
obtain the polynomial 77 | U'ta, PagVae¥ + Y opey Wlkits, s, Vs,V As before, we can then
use Proposition 5.2.5 to continue the involutive reduction of upv by repeating this proof

on each summand individually.

Otherwise, if py does not involutively divide upv, we continue by induction, obtaining a
sequence p, p1, P2, Pa, . .. of elements in P. By construction, each element in the sequence
divides upv. By continuity (at LM(upv)), no two elements in the sequence divide upv in
the same way. Because upv has a finite number of subwords, the sequence must be finite,
terminating with an involutive divisor p’ € P of upv, which then allows us to finish the

proof through use of Proposition 5.2.5 and the admissibility of O. O

Theorem 5.4.4 An Involutive Basis with respect to a strong involutive division is a

Grobner Basis.
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Proof: Let G = {gi1,...,9m} be an Involutive Basis with respect to some strong in-
volutive division I and some admissible monomial ordering O, where each g; € G (for
all 1 < i < m) is a member of the polynomial ring R(z1,...,z,). To prove that G is
a Grobner Basis, we must show that all S-polynomials involving elements of G conven-
tionally reduce to zero using G. Recall that each S-polynomial corresponds to an overlap
between the lead monomials of two (not necessarily distinct) elements g;, g; € G. Consider

such an arbitrary overlap, with corresponding S-polynomial
S-pol(4;, i, €5, g;) = caligiri — 185,75

Because G is an Involutive Basis, it is clear that cof;g;7; % 0 and ci4;g;,7; i 0.
By Proposition 5.2.5, it follows that S-pol(¢;, g;,¢;, g;) —, 0. But every involutive
reduction is a conventional reduction, so we can deduce that S-pol(¢;, g;, ¢;, g;) —¢ 0 as

required. O

Lemma 5.4.5 Given an Involutive Basis G with respect to a strong involutive division,

remainders are involutively unique with respect to G.

Proof: Let G be an Involutive Basis with respect to some strong involutive division I
and some admissible monomial ordering Q. Theorem 5.4.4 tells us that G is a Grobner
Basis with respect to O and thus remainders are conventionally unique with respect to
G. To prove that remainders are involutively unique with respect to G, we must show
that the conventional and involutive remainders of an arbitrary polynomial p with respect
to G are identical. For this it is sufficient to show that a polynomial p is conventionally
reducible by G if and only if it is involutively reducible by G. (=) Trivial as every
involutive reduction is a conventional reduction. (<) If a polynomial p is conventionally
reducible by a polynomial g € G, it follows that LM(p) = uLM(g)v for some monomials
w and v. But G is an Involutive Basis, so there must exist a polynomial ¢’ € G such that
LM(g") |r uLM(g)v. Thus p is also involutively reducible by G. O

5.4.2 Properties for Weak Involutive Divisions

While it is true that the previous three results (Proposition 5.4.3, Theorem 5.4.4 and
Lemma 5.4.5) do not apply if a weak involutive division has been chosen, we will now
show that corresponding results can be obtained for weak involutive divisions that are

also Grdbner involutive divisions.
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Definition 5.4.6 A weak involutive division [ is a Grébner involutive division if every

Locally Involutive Basis with respect to [ is a Grobner Basis.

It is an easy consequence of Definition 5.4.6 that any Involutive Basis with respect to a
weak and Grobner involutive division is a Grébner Basis; it therefore follows that we can
also prove an analog of Lemma 5.4.5 for such divisions. To complete the mirroring of
the results of Proposition 5.4.3, Theorem 5.4.4 and Lemma 5.4.5 for weak and Grdébner
involutive divisions, it remains to show that a Locally Involutive Basis with respect to a

weak; continuous and Grébner involutive division is an Involutive Basis.

Proposition 5.4.7 If an involutive division I is weak; continuous and Grébner, and if
a given set of polynomials P is a Locally Involutive Basis with respect to I and some

admissible monomial ordering O, then P is an Involutive Basis with respect to I and O.

Proof: Let I be a weak; continuous and Grébner involutive division; let O be an
admissible monomial ordering; and let P be a Locally Involutive Basis with respect to [
and O. Given any polynomial p € P and any terms u and v, in order to show that P is

an Involutive Basis with respect to I and O, we must show that upv — 0.

For the first part of the proof, we proceed as in the proof of Proposition 5.4.3 to find an
involutive divisor p’ € P of upv using the continuity of I at LM(upv). This then allows
us to involutive reduce upv using p’ to obtain a polynomial g of the form

A
q= Zuapaavaa (57)
a=1

where p,, € P and the u, and the v, are terms.

For the second part of the proof, we now use the fact that P is a Grébner Basis to find
a polynomial ¢’ € P such that ¢’ conventionally divides g (such a polynomial will always
exist because g is clearly a member of the ideal generated by P). If ¢’ is an involutive
divisor of g, then we can use ¢’ to involutively reduce ¢ to obtain a polynomial r of the
form shown in Equation (5.7). Otherwise, if ¢’ is not an involutive divisor of ¢, we can
use the fact that I is continuous at LM(g) to find such an involutive divisor, which we
can then use to involutive reduce g to obtain a polynomial r, again of the form shown in
Equation (5.7). In both cases, we now proceed by induction on r, noting that this process
will terminate because of the admissibility of O (we have LM(r) < LM(q)). O
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To summarise, here is the situation for weak and Grébner involutive divisions.

(a) Any Locally Involutive Basis returned by Algorithm 12 is an Involutive Basis if the
involutive division used is weak; continuous and Grébner (Proposition 5.4.7);

(b) Algorithm 12 always terminates whenever Algorithm 5 terminates if (in addition) the

involutive division used is conclusive;

(c) Every Involutive Basis with respect to a weak and Grébner involutive division is a

Grobner Basis.

5.5 Noncommutative Involutive Divisions

Before we consider some examples of useful noncommutative involutive divisions, let us
remark that it is possible to categorise any noncommutative involutive division somewhere

between the following two eztreme global divisions.

Definition 5.5.1 (The Empty Division) Given any monomial u, let w have no (left
or right) multiplicative variables.

Definition 5.5.2 (The Full Division) Given any monomial u, let u have no (left or
right) nonmultiplicative variables (in other words, all variables are left and right multi-

plicative for u).

Remark 5.5.3 It is clear that any set of polynomials G will be an Involutive Basis
with respect to the (weak) full division as any multiple of a polynomial ¢ € G will be
involutively reducible by g (all conventional divisors are involutive divisors); in contrast
it is impossible to find a finite Locally Involutive Basis for G with respect to the (strong)
empty division as there will always be a prolongation of an element of the current basis
that is involutively irreducible.

5.5.1 Two Global Divisions

Whereas most of the theory seen so far in this chapter has closely mirrored the correspond-
ing commutative theory from Chapter 4, the commutative involutive divisions (Thomas,
Janet and Pommaret) seen in the previous chapter do not generalise to the noncommu-

tative case, or at the very least do not yield noncommutative involutive divisions of any
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value. Despite this, an essential property of these divisions is that they ensure that the
least common multiple lem(LM(p;), LM(p2)) associated with an S-polynomial S-pol(p;, p2)
is involutively irreducible by at least one of p; and po, ensuring that the S-polynomial
S-pol(p1, p2) is constructed and involutively reduced during the course of the Involutive
Basis algorithm.

To ensure that the corresponding process occurs in the noncommutative Involutive Basis
algorithm, we must ensure that all overlap words associated to the S-polynomials of a
particular basis are involutively irreducible (as placed in the overlap word) by at least
one of the polynomials associated to each overlap word. This obviously holds true for the
empty division, but it will also hold true for the following two global involutive divisions,
where all variables are either assigned to be left multiplicative and right nonmultiplicative,
or left nonmultiplicative and right multiplicative.

Definition 5.5.4 (The Left Division) Given any monomial u, the left division < as-
signs no left nonmultiplicative variables to u, and assigns no right multiplicative variables
to u (in other words, all variables are left multiplicative and right nonmultiplicative for

Definition 5.5.5 (The Right Division) Given any monomial u, the right division >
assigns no left multiplicative variables to u, and assigns no right nonmultiplicative vari-
ables to u (in other words, all variables are left nonmultiplicative and right multiplicative

for u).

Proposition 5.5.6 The left and right divisions are strong involutive divisions.

Proof: We will only give the proof for the left division — the proof for the right division
will follow by symmetry (replacing ‘left’ by ‘right’, and so on).

To prove that the left division is a strong involutive division, we need to show that the
three conditions of Definition 5.1.6 hold.

¢ Disjoint Cones Condition
Consider two involutive cones C4(u;) and C4(us) associated to two monomials uy, us
over some noncommutative polynomial ring R. If C4(u;) N Cq(usz) # B, then there
must be some monomial v € R such that v contains both monomials u; and us as

subwords, and (as placed in v) both % and u, must be involutive divisors of v. By
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definition of <, both u; and us must be suffices of v. Thus, assuming (without loss
of generality) that deg(u;) > deg(uz), we are able to draw the following diagram

summarising the situation.

U

U2
But now, assuming that u; = uguy for some monomial ug, it is clear that C4(u;) C
Ca(ug) because any monomial w € Cq(u;) must be of the form w = w'w; for some

monomial w'; this means that w = w'ugug € C4(up).

e Unique Divisor Condition
As a monomial v is only involutively divisible by a monomial u with respect to the
left division if u is a suffix of v, it is clear that u can only involutively divide v in at

most one way.

e Subset Condition

Follows immediately due to the left division being a global division.

Proposition 5.5.7 The left and right divisions are continuous.

Proof: Again we will only treat the case of the left division. Let w be an arbitrary fixed
monomial; let U be any set of monomials; and consider any sequence (uy, ug, ..., uy)
of monomials from U (u; € U for all 1 < ¢ < k), each of which is a conventional divisor
of w (so that w = fu;r; for all 1 < ¢ < k, where the ¢; and the r; are monomials). For
all 1 < 4 < k, suppose that the monomial u;; satisfies condition (b) of Definition 5.4.2
(condition (a) can never be satisfied because <1 never assigns any left nonmultiplicative
variables). To show that < is continuous, we must show that no two pairs (¢;, ;) and

(£;,7;) are the same, where % # j.

Consider an arbitrary monomial u; from the sequence, where 1 < i < k. Because <
assigns no right multiplicative variables, the next monomial wu;y; in the sequence must
be a suffix of the prolongation w;(Prefix(r;, 1)) of w;, so that deg(ri11) = deg(r;) — 1.
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It is therefore clear that no two identical (¢,7) pairs can be found in the sequence, as
deg(r1) > deg(rs) >+ -+ > deg(rs). 0

To illustrate the difference between the overlapping cones of a noncommutative Grébner
Basis and the disjoint cones of a noncommutative Involutive Basis with respect to the left

division, consider the following example.

Example 5.5.8 Let F':= {22y +y*+5, 2° + y*+ 8} be a basis over the polynomial ring
Q(z,y), and let the monomial ordering be DegLex. Applying Algorithm 5 to ', we obtain
the Grobner Basis G := {2zy+y?+5, 22+ y*+38, 5y> — 102+ 37y, 2yz+y*+5}. Applying
Algorithm 12 to F' with respect to the left involutive division, we obtain the Involutive
Basis H := {22y + 3* + 5, 2® + y* + 8, 5y® — 10z + 37y, 5zy? + 5z — 6y, 2yz + 3> + 5}.

To illustrate which monomials are reducible with respect to the Grébner Basis, we can
draw a monomial lattice, part of which is shown below. In the lattice, we draw a path
from the (circled) lead monomial of any Grébner Basis element to any multiple of that
lead monomial, so that any monomial which lies on some path in the lattice is reducible
by one or more Grébner Basis elements. To distinguish between different Grobner Basis
elements we use different arrow types; we also arrange the lattice so that monomials of

the same degree lie on the same level.

N %
N N N/ N K L
ot 2%y Pyr aya? yad ot? oyl YTy yaYE yriy yia? ay® yay? vPay iz ot

'y
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Notice that many of the monomials in the lattice are reducible by several of the Grébner
Basis elements. For example, the monomial z%yx is reducible by the Grébner Basis
elements 2zy + y? + 5; 2% + y? + 8 and 2yx + y* + 5. In contrast, any monomial in the
corresponding lattice for the Involutive Basis may only be involutively reducible by at
most one element in the Involutive Basis. We illustrate this by the following diagram,
where we note that in the involutive lattice, a monomial only lies on a particular path if

a member of the Involutive Basis is an involutive divisor of that monomial.

AN <o \
yeyT yaty y?a? ay® yay® Yoy vz oy

ot 2y 2yx ayz? yad 2%yt aylc TyTy E

Comparing the two monomial lattices, we see that any monomial that is conventionally
divisible by the Grébner Basis is uniquely involutively divisible by the Involutive Basis.
In other words, the involutive cones of the Involutive Basis form a disjoint cover of the

conventional cones of the Grobner Basis.

Fast Reduction

In the commutative case, we can sometimes use the properties of an involutive division
to speed up the process of involutively reducing a polynomial with respect to a set of
polynomials. For example, the Janet tree [27, 28] enables us to quickly determine whether
a polynomial is involutively reducible by a set of polynomials with respect to the Janet

involutive division.
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In the noncommutative case, we usually use Algorithm 10 to involutively reduce a poly-
nomial p with respect to a set of polynomials P. When this is done with respect to the
left or right divisions however, we can improve Algorithm 10 by taking advantage of the
fact that a monomial u; only involutively divides another monomial us with respect to

the left (right) division if u, is a suffix (prefix) of us.

For the left division, we can replace the code found in the first if loop of Algorithm 10 with
the following code in order to obtain an improved algorithm.

if (LM(p;) is a suffix of u) then

found = true;

p =p — (cLC(p;)"!)uep;, where u; = Prefix(p, deg(p) — deg(p;));
else

J=i+1
end if

We note that only one operation is required to determine whether the monomial LM(p;)
involutively divides the monomial u here (test to see if LM(p;) is a suffix of u); whereas in
general there are many ways that LM(p;) can conventionally divide u, each of which has
to be tested to see whether it is an involutive reduction. This means that, with respect
to the left or right divisions, we can determine whether a monomial u is involutively
irreducible with respect to a set of polynomials P in linear time (linear in the number of

elements in P); whereas in general we can only do this in quadratic time.

5.5.2 An Overlap-Based Local Division

Even though the left and right involutive divisions are strong and continuous (so that any
Locally Involutive Basis returned by Algorithm 12 is a noncommutative Grébner Basis),

these divisions are not conclusive as the following example demonstrates.

Example 5.5.9 Let F := {zy — 2, v + z, yz — 2z, ¥z, 2y + z, 2°} be a basis over the
polynomial ring Q(z, 3, z), and let the monomial ordering be DegLex. Applying Algorithm
5 to F, we discover that F' is a noncommutative Grobner Basis (F' is returned to us as
the output of Algorithm 5). When we apply Algorithm 12 to F with respect to the
left involutive division however, we notice that the algorithm goes into an infinite loop,
constructing the infinite basis G := FU{2y" — 2, zy" + z, 2y™ + 2z, 2y™ — 2}, where n > 2,

n even and m = 3, m odd.
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The reason why Algorithm 12 goes into an infinite loop in the above example is that the
right prolongations of the polynomials zy — z and zy + z by the variable y do not involu-
tively reduce to zero (they reduce to the polynomials zy® + z and zy* — z respectively).
These prolongations are the only prolongations of elements of F' that do not involutively
reduce to zero, and this is also true for all polynomials we subsequently add to F, thus
allowing Algorithm 12 to construct the infinite set G.

Consider a modification of the left division where we assign the variable y to be right
multiplicative for the (lead) monomials zy and zy. Then it is clear that F' will be a
Locally Involutive Basis with respect to this modified division, but will it also be true
that F' is an Involutive Basis and (had we not known so already) a Grébner Basis?

Intuitively, for this particular example, it would seem that the answer to both of the
above questions should be affirmative, because the modified division still ensures that
all the overlap words associated with the S-polynomials of F' are involutively irreducible
(as placed in the overlap word) by at least one of the polynomials associated to each
S-polynomial. This leads to the following idea for a local involutive division, where we
refine the left division by choosing right nonmultiplicative variables based on the overlap
words of S-polynomials associated to a set of polynomials only (note that there will also
be a similar local involutive division refining the right division called the right overlap

division).

Definition 5.5.10 (The Left Overlap Division O) Let U = {uy,...,u;} be a set of
monomials, and assume that all variables are left and right multiplicative for all elements
of U to begin with.

(a) For all possible ways that a monomial u; € U is a subword of a (different) monomial
u; € U, so that
Subword (ui, k, k + deg(u;) — 1) = u;

for some integer k, if u; is not a suffix of u;, assign the variable Subword(u;, & +

deg(u;), k + deg(u;)) to be right nonmultiplicative for w;.

(b) For all possible ways that a proper prefix of a monomial u; € U is equal to a proper
suffix of a (not necessarily different) monomial u; € U, so that

Prefix(u;, k) = Suffix(u;, k)
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for some integer £ and w; is not a subword of u; or vice-versa, assign the variable

Subword(u;, k + 1,k + 1) to be right nonmultiplicative for u;.

Remark 5.5.11 One possible algorithm for the left overlap division is presented in Al-
gorithm 13, where the reason for insisting that the input set of monomials is ordered with
respect to DegRevLex is in order to minimise the number of operations needed to discover
all the subword overlaps (a monomial of degree d; can never be a subword of a different

monomial of degree da < d).

Example 5.5.12 Consider again the set of polynomials F' := {ay — 2,z + 2, yz —
z, ¢z, 2y + 2, 2°} from Example 5.5.9. Here are the left and right multiplicative vari-
ables for LM(F') with respect to the left overlap division O.

u | ME(u, LM(F)) | ME(u, LM(F))
Ty {z,9,2} {z,y}

x {=,y,2} {z}

yz {z,y,2} {z}

Tz {2,y,2} {z}

2y {z,y,2} {z,y}

2 {2,y,2} {z}

When we apply Algorithm 12 to F' with respect to the DegLex monomial ordering and the
left overlap division, F' is returned to us as the output, an assertion that is easily verified
by showing that the 10 right prolongations of elements of F' all involutively reduce to zero
using F'. This means that F' is a Locally Involutive Basis with respect to the left overlap
division; to show that F' (and indeed any Locally Involutive Basis returned by Algorithm
12 with respect to the left overlap division) is also an Involutive Basis with respect to
the left overlap division, we need to show that the left overlap division is continuous and
either strong or Grobner; we begin (after the following remark) by showing that the left

overlap division is continuous.

Remark 5.5.13 In the above example, the table of multiplicative variables can be con-
structed from the table T' shown below, a table that is obtained by applying Algorithm
13 to LM(F).
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Algorithm 13 The Left Overlap Division O
Input: A set of monomials U = {uy,...,un} ordered by DegRevLex (u; = ug = -+ 2

Um), Where u; € R{x1,...,T,).
Output: A table T of left and right multiplicative variables for all u; € U, where each

entry of T is either 1 (multiplicative) or 0 (nonmultiplicative).

Create a table T' of multiplicative variables as shown below:

of of of of - b of
w|1l 1 1 1 ... 1 1
dg |1 L 1 X v 11
N [ SR T T (R A |
for each monomial u; € U (1 < i< m) do
for each monomial u; € U (i < 7 < m) do
Let w; = 24, %4, - - - Ty, A0 Uy = T5,Tj, . - - Ty

if (i # j) then
foreachk (1<k<a—-pF+1)do
if (Subword(u;, k,k+ 3 — 1) == u;) then
T(uj,zf, ) = 0;

end if
end for
end if
foreach k (1<k<f—-1)do
if (Prefix(u;, k) == Sufﬁx(uj,k)) then
T(uj,mfzﬂ) = 0
end if
if (Sufﬁx(ut, k) == Prefix(u;, k)) then
T(u“ Jk+1 =4
end if
end for
end for
end for

return 7




CHAPTER 5. NONCOMMUTATIVE INVOLUTIVE BASES 128

Monomial | z¥ =z yF yf 2F 2R
Ty 1 1 1 1 1 0
= 1 1 1 0 1 0
Yz . T I ® I @
Tz 1 1 1 0 1 0
2y 1 1 1 1 1 0
g 1 1 1 0 1 0

The zero entries in 7" correspond to the following overlaps between the elements of LM(F).

Table Entry Overlap
T(zy,z®) | Suffix(zy, 1) = Prefix(yz, 1)
Tz, y™) Subword(zy, 1,1) = z
Tz, 2%) Subword(zz,1,1) =z
T(yz,y®) | Suffix(yz,1) = Prefix(zy, 1)
T(yz,z%) | Suffix(yz, 1) = Prefix(2%, 1)
T(zz,y®) | Suffix(zz, 1) = Prefix(zy, 1)
T(xz,2%) | Suffix(zz,1) = Prefix(z2,1)
T(zy,2z%) | Suffix(zy, 1) = Prefix(yz, 1)
T(2%,y®) | Suffix(2?,1) = Prefix(zy, 1)
T(4 2%) | Suffix(#?, 1) =Prefix(#*,1)

Proposition 5.5.14 The left overlap division O is continuous.

Proof: Let w be an arbitrary fixed monomial; let U be any set of monomials; and
., ) of monomials from U (u; € U for all 1 <7 < k),

each of which is a conventional divisor of w (so that w = fu;r; for all 1 € 7 < k, where

consider any sequence (u1, Ug, ..

the £; and the r; are monomials). For all 1 < i < k, suppose that the monomial ;4
satisfies condition (b) of Definition 5.4.2 (condition (a) can never be satisfied because O
never assigns any left nonmultiplicative variables). To show that O is continuous, we

must show that no two pairs (¢;,7;) and (£;,7;) are the same, where 7 # j.

Consider an arbitrary monomial u; from the sequence, where 1 < i < k. By definition of
O, the next monomial u;,, in the sequence cannot be either a prefix or a proper subword
of u;. This leaves two possibilities: (i) u;+1 is a suffix of w; (in which case deg(u;41) <

deg(w;)); or (ii) w41 is a suffix of the prolongation w;v; of u;, where v; := Prefix(r;, 1).
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Example of possibility (i) Example of possibility (ii)
U Vs Uj Vi
i1 Uj+1

In both cases, it is clear that we have deg(r;1) < deg(r;), so that deg(r1) = deg(rs) =
.-+ = deg(rg). It follows that no two (¢, r) pairs in the sequence can be the same, because
for each subsequence g, %o+, - - ., up Such that deg(ry) = deg(raq1) = -+ = deg(ry), we
must have deg(/,;) < deg(lat1) < -+ < deg(p). O

Having shown that the left overlap division is continuous, one way of showing that every
Locally Involutive Basis with respect to the left overlap division is an Involutive Basis
would be to show that the left overlap division is a strong involutive division. However,
the left overlap division is only a weak involutive division, as the following counterexample
demonstrates.

Proposition 5.5.15 The left overlap division is a weak involutive division.

Proof: Let U := {yz,zy} be a set of monomials over the polynomial ring Q(z,y, z).
Here are the multiplicative variables for U with respect to the left overlap division O.

u | ME(w,U) | ME(w,U)
yz | {z,u.2} | {z9,2}
zy | {=,y,2} {z,y}

Because yzzy € Co(yz,U) and yzzy € Co(zy,U), one of the conditions Co(yz,U) C
Colzy,U) or Co(zy,U) C Col(yz,U) must be satisfied in order for O to be a strong
involutive division (this is the Disjoint Cones condition of Definition 5.1.6). But neither
of these conditions can be satisfied when we consider that zy ¢ Co(yz,U) and yz ¢
Co(zy,U), so O must be a weak involutive division. O

The weakness of the left overlap division is the price we pay for refining the left division
by allowing more right multiplicative variables. All is not lost however, as we can still
show that every Locally Involutive Basis with respect to the left overlap division is an

Involutive Basis by showing that the left overlap division is a Grobner involutive division.

Proposition 5.5.16 The left overlap division O is a Grobner involutive division.
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Proof: We are required to show that if Algorithm 12 terminates with @ and some
arbitrary admissible monomial ordering O as input, then the Locally Involutive Basis
G it returns is a noncommutative Grobner Basis. By Definition 3.1.8, we can do this
by showing that all S-polynomials involving elements of G conventionally reduce to zero
using G.

Assume that G = {g1, ..., gp} is sorted (by lead monomial) with respect to the DegRevLex
monomial ordering (greatest first), and let U = {w1,...,u,} := {LM(g1),...,LM(g,)} be
the set of leading monomials. Let T be the table obtained by applying Algorithm 13 to
U. Because G is a Locally Involutive Basis, every zero entry T'(u;,«}) (T € {L, R}) in
the table corresponds to a prolongation g;z; or x;g; that involutively reduces to zero.

Let S be the set of S-polynomials involving elements of G, where the ¢-th entry of S
(1 <t<|9]) is the S-polynomial

! ol !
8t = CelsgiTs — €407,

with fyur; = fju;r; being the overlap word of the S-polynomial. We will prove that every

S-polynomial in S conventionally reduces to zero using G.

Recall (from Definition 3.1.2) that each S-polynomial in S corresponds to a particular type
of overlap — ‘prefix’, ‘subword’ or ‘suffix’. For the purposes of this proof, let us now split
the subword overlaps into three further types — ‘left’, ‘middle’ and ‘right’, corresponding
to the cases where a monomial ms is a prefix, proper subword and suffix of a monomial

mi.

Left Middle Right
Ty mi My
Mo ™Mo Mo

This classification provides us with five cases to deal with in total, which we shall process
in the following order: right, middle, left, prefix, suffix.

(1) Consider an arbitrary entry s; € S (1 < t < |S|) corresponding to a right overlap
where the monomial u; is a suffix of the monomial u;. Because O never assigns any left
nonmultiplicative variables, u; must be an involutive divisor of ;. But this contradicts

the fact that the set G is autoreduced; it follows that no S-polynomials corresponding to
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right overlaps can appear in S.

(2) Consider an arbitrary entry s, € S (1 <t < |S|) corresponding to a middle overlap
where the monomial u; is a proper subword of the monomial u;. This means that s; =
agi — cibyg;r, for some g;, g; € G, with overlap word w; = fu;r,. Let w; = @y, ...z, let

Uj = Zj; ... T;,; and choose D such that z;, = z;,.

Uy = = = i e e

i1 Tip_g Tip_gy1Tip_pgia Tip_y  Tip  Tipy Tig

'U.j e C Bm TR Tm Ao e

R

Because u; is a proper subword of w;, it follows that 7'(u;, Tip

) = 0. This gives rise to
the prolongation g;z;,,, of g;. But we know that all prolongations involutively reduce
to zero (G is a Locally Involutive Basis), so Algorithm 10 must find a monomial u; =
Tk, - . - Ty, € U such that uy, involutively divides u;z;;, . Assuming that @), = ;,, we can
deduce that any candidate for uy must be a suffix of u;z;,,, (otherwise T'(uy, zf ) =0
because of the overlap between u; and w;). This means that the degree of u is in the
range 1 < v < 4+ 1; we shall illustrate this in the following diagram by using a squiggly
line to indicate that the monomial uj, can begin anywhere (or nowhere if up = 1) on

the squiggly line.

U; = - - = - - = - - =
Tiy Tip_p Tip_gr1%ip_pgia Tip_y  Tip  Tipy, Tig
U’J = e e N R B e
Tjy Ty Tig_, Tjg
U, =
k rTy

We can now use the monomial u;, together with Buchberger’s Second Criterion to simplify
our goal of showing that the S-polynomial s; reduces to zero. Notice that the monomial
uy is a subword of the overlap word u; associated to s;, and so in order to show that s,
reduces to zero, all we have to do is to show that the two S-polynomials

Su = Cudh = Tty -+ Ty V(T - 31,)

and?

. /
Sy = Cv(wjl . -CCiDH,.’,)Qk — CGiTipyy

*Technical point: if ¥ # B 4 1, the S-polynomial s, could in fact appear as Sy = CygjTip., —
&y (@j1 -+ Tippa_, )9k and not as sy = ¢y (5, ... Tip,y_, )9k — ChGjTip,,; for simplicity we will treat both

cases the same in the proof as all that changes is the notation and the signs.
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reduce to zero (1 < u,v < |9]).

For the S-polynomial s,, there are two cases to consider: v = 1, and v > 1. In the
former case, because (as placed in u;) the monomials u; and w, do not overlap, we can
use Buchberger’s First Criterion to say that the ‘S-polynomial’ s, reduces to zero (for
further explanation, see the paragraph at the beginning of Section 3.4.1). In the latter
case, we know that the first step of the involutive reduction of the prolongation g;z;,,, is
to take away the multiple (2)(zj, ... Zip,,_, )k of g from g;z;, , to leave the polynomial
9%ip, — ()@, .. Tip,,_ )9k = —(3)sy. But as we know that all prolongations invo-
lutively redt?;ce to zero, we can concludve that the S-polynomial s, conventionally reduces

to zero.

For the S-polynomial s,, we note that if D = a—1, then s, corresponds to a right overlap.
But we know from part (1) that right overlaps cannot appear in S, and so s, also cannot
appear in S. Otherwise, we proceed by induction on the S-polynomial s, to produce a
sequence {Ugp,,, Ugp,a, - - -, Ug, } Of monomials, so that s, (and hence s;) reduces to zero
if the S-polynomial

_ /
ST,' - C’f]'gi - Cr,l(xil Rt 'T'iu—u)QCIa

reduces to zero (1 < n < |S]), where p = deg(u,, ).

ui = e 3 SRR e
Ty Tip_g¥p_pgs1 Tip  Zipy1  Tipyg Tig_1 Tig
U; = —rirpree
4 Tjy Zig
U = U = R U R N PO
4D+1 k T,
Uiy = T T —
uqﬂ = et i e T e

But s, always corresponds to a right overlap, so we must conclude that middle overlaps
(as well as right overlaps) cannot appear in S.

(3) Consider an arbitrary entry s; € S (1 < ¢ < |S|) corresponding to a left overlap where

the monomial u; is a prefix of the monomial ;. This means that s; = ¢;g; — cig;ry for
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some g;, g; € G, with overlap word u; = u;ry. Let w; = xy, ... 3, and let u; = 2, ...,

U= 7 A e : s s ;
2 Tig_y  Tig  Tigyy Tig—1  Tia
U; = P

2 ZTig—1 Tig

Because u; is a prefix of w;, it follows that T(uj,mﬁﬂ) = 0. This gives rise to the

prolongation g;x;,,, of g;. But we know that all prolongations involutively reduce to
zero, so there must exist a monomial u, = =y, ...x, € U such that u, involutively

divides u;wy,,,. Assuming that zp, = ;,, any candidate for u; must be a suffix of u;

R
Tr+1

Ligia

(otherwise T'(ug,xt ) = 0 because of the overlap between w; and w). Further, any

candidate for uy, cannot be either a suffix or a proper subword of u; (because of parts (1)

and (2) of this proof). This leaves only one possibility for u, namely uy, = (T
Uy = S A
(] Ty Tiqg :Uiﬁm] .’1'.',"3 ﬂ:iﬁ+1 i,y Tig
U; = e
Tiy Ty Tig-1 ZTig
Up = o
Thy Thy Thy_g Thy_1  Thy

If @ = 41, then it is clear that ux = u;, and so the first step in the involutive reduction
of the prolongation g;z;, is to take away the multiple (%)g'i of g; from g;z;, to leave the
polynomial gjx;, — (2—;) 0§ = —(-C%)st. But as we know that all prolongations involutively

reduce to zero, we can conclude that the S-polynomial s; conventionally reduces to zero.

Otherwise, if & > 4 1, we can now use the monomial u; together with Buchberger’s
Second Criterion to simplify our goal of showing that the S-polynomial s, reduces to zero.
Notice that the monomial u; is a subword of the overlap word w; associated to s;, and
so in order to show that s; reduces to zero, all we have to do is to show that the two
S-polynomials

/
Su = Cufi — Cugk(wiﬁ+2 e ';E‘iu)

and
S’U = C’ng - ci)gjwlﬁ.}_l
reduce to zero (1 < u,v < |9)).
The S-polynomial s, reduces to zero by comparison with part (2). For the S-polynomial

sy, we proceed by induction (we have another left overlap), eventually coming across a

left overlap of ‘type a = 8 + 1’ because we move one letter at a time to the right after



CHAPTER 5. NONCOMMUTATIVE INVOLUTIVE BASES 134

each inductive step.

ui‘. — A i s, i
Ziq Lig :C,;B___l xiﬁ mi3+] Iiﬁ+2 Tig_q Tin
Ua = L
J : -
i1 Zja Tig—1 Tig
U = e
.."Jkl Z'kz 34k7_2 xk'r—l a:kw

(4 and 5) In Definition 3.1.2, we defined a prefix overlap to be an overlap where, given
two monomials m; and mg such that deg(m;) = deg(ms), a prefix of m; is equal to a
suffix of my; suffix overlaps were defined similarly. If we drop the condition on the degrees
of the monomials, it is clear that every suffix overlap can be treated as a prefix overlap
(by swapping the roles of m; and ms); this allows us to deal with the case of a prefix
overlap only.

Consider an arbitrary entry s; € S (1 < ¢ < |S]) corresponding to a prefix overlap where
a prefix of the monomial u; is equal to a suffix of the monomial u;. This means that
sy = cilyg; — cygyry for some g;, g; € G, with overlap word fyu; = wyry. Let uy = @y, ... 24,

let u; = @, ... 24, and choose D such that z;, = x;,.

Uy =

&1 Tig—p %ig-p41 Zig

By definition of @, we must have T'(u;,zft ) =0.

tZD+1)

Because we know that the prolongation g;z;,., involutively reduces to zero, there must
exist a monomial wy = @, ... zk, € U such that u; involutively divides w;z;;,,,. This u
must be a suffix of w;z;, , (otherwise, assuming that x;, = x;,, we have T'(uy, mﬁjﬂ) =0
if K = ( (because of the overlap between u; and wy); and T(uk,xﬁﬂ) = 0 i w < P
(because of the overlap between u; and uy)).

U‘l = _ —_-— — — — — —_—
Tiy Tip  Tipy Tig_y Tigy
W= T; T T T I 5 - T T E
i1 gD Tig—D41 ig
U = L  a U U
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Let us now use the monomial uy together with Buchberger’s Second Criterion to simplify
our goal of showing that the S-polynomial s; reduces to zero. Because u; is a subword
of the overlap word f;u; associated to s;, in order to show that s, reduces to zero, all we

have to do is to show that the two S-polynomials

CulThy o+« Bia_p )i — Cok(Tipyy - Tiw) ¥ >D+1

Sy =

Culi — Cagfugk(miu+z b ‘mia) if TS D+1

and
_ . !
Sy = CuGiTip,, — Cv(le e ‘Tjﬂﬁ-l—w)gk

reduce to zero (1 < u,v < |5)).

The S-polynomial s, reduces to zero by comparison with part (2). For the S-polynomial
sy, first note that if & = D + 1, then either u; is a suffix of u;, u; is a suffix of uy, or
u = u;; it follows that s, reduces to zero trivially if w; = w;, and (by part (1)) s, (and

hence s;) cannot appear in S in the other two cases.

If however oo # D + 1, then either s, is a middle overlap (if v < D + 1), a left overlap
(if v = D + 1), or another prefix overlap. The first case leads us to conclude that s,
cannot appear in .S; the second case is handled by part (3) of this proof; and the final case
is handled by induction, where we note that after each step of the induction, the value
o+ — 2D strictly decreases, so we are guaranteed at some stage to find an overlap that
is not a prefix overlap, enabling us either to verify that the S-polynomial s, conventionally
reduces to zero, or to conclude that s; can not in fact appear in S. O

5.5.3 A Strong Local Division

Thus far, we have encountered two global divisions that are strong and continuous, and one
local division that is weak, continuous and Grobner. Our next division can be considered
to be a hybrid of these previous divisions, as it will be a local division that is continuous
and (as long as thick divisors are being used) strong.

Definition 5.5.17 (The Strong Left Overlap Division S) Let U = {uy,...,u,} be
a set of monomials. Assign multiplicative variables to U according to Algorithm 15, which
(in words) performs the following two tasks.

(a) Assign multiplicative variables to U according to the left overlap division.
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(b) Using the recipe provided in Algorithm 14, ensure that at least one variable in every
monomial u; € U is right nonmultiplicative for each monomial u; € U.

Remark 5.5.18 As Algorithm 15 expects any input set to be ordered with respect to
DegRevLex, we may sometimes have to reorder a set of monomials U to satisfy this
condition before we can assign multiplicative variables to U according to the strong left

overlap division.

Algorithm 14 ‘DisjointCones’ Function for Algorithm 15

Input: A set of monomials U = {uy,...,uy} ordered by DegRevLex (u; > ug = --- >
U, ), where u; € R{z1,...,2y,); a table T of left and right multiplicative variables for
all u; € U, where each entry of 7" is either 1 (multiplicative) or 0 (nonmultiplicative).

Output: T.

for each monomial w; € U (m >
for each monomial u; € U (m > j
Let wj = 24Ty . - . Ty, A0 Uj = Tj,Tj, - . - Tyiy;
found = false;
k=1
while (k < ) do
if (T'(u;, ;) =0) then
found = true;
k=p+1;
else
k=k+1;
end if
end while
if (found == false) then
T(us, xft) = 0;
end if
end for

end for

return T
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Algorithm 15 The Strong Left Overlap Division S

Input: A set of monomials U = {uy,...,

Um), Where u; € R(z1,...,Zy).

um } ordered by DegRevLex (u;

>up >

>

Output: A table T of left and right multiplicative variables for all u; € U, where each

entry of T is either 1 (multiplicative) or 0 (nonmultiplicative).

Create a table T' of multiplicative variables as shown below:

of of of of .. ot of

uy | 1 1 1 1 1 1

wp |1 1 1 1 .- 1 1

wn |1 1 1 1 o 1 1
for each monomial u; € U (1 < i< m) do

m) do

Liy Ty« + o Ty, and Uj = Ty Tjy -+

i
for each monomial u; e U (i € § <
Let u; =
if (i # j) then
foreachk (1<k<a-0+1)do
if (Subword(u;, k,k + 8 — 1) == u;) then

*Zjg

T(uj,xfiw) =0
end if
end for
end if

foreachk (1<k<fF—-1)do
if (Prefix(u;, k) == Suffix(u;, k)) then
T (u;, aﬂﬂ) =i
end if
if (Suffix(u;, k) == Prefix(u;, k)) then
T (ui, xﬁﬂ) e {ls
end if
end for

end for
end for
T = DisjointCones(U, T');

return T

(Algorithm 14)
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Proposition 5.5.19 The strong left overlap division is continuous.

Proof: We refer to the proof of Proposition 5.5.14, replacing @ by S. O

Proposition 5.5.20 The strong left overlap division is a Grébner involutive division.

Proof: We refer to the proof of Proposition 5.5.16, replacing O by §. O

Remark 5.5.21 Propositions 5.5.19 and 5.5.20 apply either when using thin divisors or
when using thick divisors.

Proposition 5.5.22 With respect to thick divisors, the strong left overlap division is a

strong involutive division.

Proof: To prove that the strong left overlap division is a strong involutive division, we
need to show that the three conditions of Definition 5.1.6 hold.

e Disjoint Cones Condition

Let Cs{uy, U) and Cs(ug, U) be the involutive cones associated to the monomials u,
and uy over some noncommutative polynomial ring R, where {uj,us} CU C R. If
Cs(u1,U) N Cs(uz,U) # 0, then there must be some monomial v € R such that v
contains both monomials u; and us as subwords, and (as placed in v) both u; and
up must be involutive divisors of v. By definition of &, both w; and ws must be
suffices of v. Thus, assuming (without loss of generality) that deg(u;) > deg(us),
we are able to draw the following diagram summarising the situation.

U

Usg

For § to be strong, we must have Cs(uy, U) C Cs(uz,U) (it is clear that Cs(ug, U) ¢
Cs(u1,U) because uy ¢ Cs(u1,U)). This can be verified by proving that a variable
is right nonmultiplicative for u if and only if it is right nonmultiplicative for us.

(=) If an arbitrary variable z is right nonmultiplicative for us, then either some
monomial u € U overlaps with us in one of the ways shown below (where the

variable immediately to the right of us, is the variable z), or  was assigned right
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nonmultiplicative for us in order to ensure that some variable in some monomial

u € U is right nonmultiplicative for us.

Overlap (i) Overlap (ii)
U u
Usg Ug

If the former case applies, then it is clear that for both overlap types there will be
another overlap between u; and u that will lead S to assign z to be right nonmulti-
plicative for u;. It follows that after we have assigned multiplicative variables to U
according to the left overlap division (which we recall is the first step of assigning
multiplicative variables to U according to &), the right multiplicative variables of
uy and up will be identical. It therefore remains to show that if z is assigned right
nonmultiplicative for u; in the latter case (which will happen during the final step
of assigning multiplicative variables to U according to S), then z is also assigned
right nonmultiplicative for u;. But this is clear when we consider that Algorithm
14 is used to perform this final step, because for u; and wuy in Algorithm 14, we will

always analyse each monomial in U in the same order.

(«=) Use the same argument as above, replacing u; by us and vice-versa.

e Unique Divisor Condition
Given a monomial u belonging to a set of monomials U, u may not involutively
divide an arbitrary monomial v in more than one way (and hence the Unique Divisor
condition is satisfied) because (i) S ensures that no overlap word involving only u
is involutively divisible in more than one way by u; and (ii) S ensures that at least
one variable in u is right nonmultiplicative for u, so that if u appears twice in v
as subwords that are disjoint from one another, then only the ‘right-most’ subword

can potentially be an involutive divisor of v.

e Subset Condition
Let v be a monomial belonging to a set V' of monomials, where V itself is a subset of
a larger set U of monomials. Because S assigns no left nonmultiplicative variables,
it is clear that M%(v, U) € M%(v, V). To prove that ME(v, U) € ME(v, V), note
that if a variable z is right nonmultiplicative for v with respect to U and S (so
that @ ¢ MZ(v,U)), then (as in the proof for the Disjoint Cones Condition) either

some monomial u € U overlaps with v in one of the ways shown below (where the
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variable immediately to the right of v is the variable z), or « was assigned right
nonmultiplicative for v in order to ensure that some variable in some monomial

u € U is right nonmultiplicative for v.

Overlap (i) Overlap (ii)
u U
v v

In both cases, it is clear that, with respect to the set V', the variable £ may not be
assigned right nonmultiplicative for v if u ¢ V, so that ME(v,U) € ME(v,V) as
required.

O

Proposition 5.5.23 With respect to thin divisors, the strong left overlap division is a

weak involutive division.

Proof: Let U := {zy} be a set of monomials over the polynomial ring Q(x,y). Here are

the multiplicative variables for U with respect to the strong left overlap division S.

u | ME(u,U) | ME(w,U)
zy | {z,y} {y}

For S to be strong with respect to thin divisors, the monomial zy2zy, which is conven-
tionally divisible by zy in two ways, must only be involutively divisible by zy in one way
(this is the Unique Divisor condition of Definition 5.1.6). However it is clear that zy?zy
is involutively divisible by zy in two ways with respect to thin divisors, so S must be a

weak involutive division with respect to thin divisors. O

Example 5.5.24 Continuing Examples 5.5.9 and 5.5.12, here are the multiplicative vari-
ables for the set LM(F') of monomials with respect to the strong left overlap division S,
where we recall that F := {zy — 2z, * + 2, yz — 2, x2, zy + 2, 2°}.
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u | ME(u, LM(F)) | MEZ(u, LM(F))
Ty {z,y,2} {y}

x {z,y, 2} 0

yz {z,y,2} U

Tz G T 0

zy {z,y,2} {v}

2 {z,y,z} 0

When we apply Algorithm 12 to F' with respect to the DegLex monomial ordering, thick
divisors and the strong left overlap division, F' (as in Example 5.5.12) is returned to us

as the output Locally Involutive Basis.

Remark 5.5.25 In the above example, even though we know that S is continuous, we
cannot deduce that the Locally Involutive Basis F' is an Involutive Basis because we are

using thick divisors (Proposition 5.4.3 does not apply in the case of using thick divisors).

What this means is that the involutive cones of F' (and in general any Locally Involutive
Basis with respect to § and thick divisors) will be disjoint (because S is strong), but will
not necessarily completely cover the conventional cones of F', so that some monomials
that are conventionally reducible by F' may not be involutively reducible by F'. It follows
that when involutively reducing a polynomial with respect to F', the reduction path will
be unique but the correct remainder may not always be obtained (in the sense that some
of the terms in our ‘remainder’ may still be conventionally reducible by members of F').
One remedy to this problem would be to involutively reduce a polynomial p with respect
to F' to obtain a remainder r, and then to conventionally reduce r with respect to F

to obtain a remainder 7" which we can be sure contains no term that is conventionally
reducible by F'.

Let us now summarise (with respect to thin divisors) the properties of the involutive
divisions we have encountered so far, where we note that any strong and continuous

involutive division is by default a Grobner involutive division.



CHAPTER 5. NONCOMMUTATIVE INVOLUTIVE BASES 142

Division Continuous | Strong | Grobner
Left Yes Yes Yes
Right Yes Yes Yes
Left Overlap Yes No Yes
Right Overlap Yes No Yes
Strong Left Overlap Yes No Yes
Strong Right Overlap Yes No Yes

There is a balance to be struck between choosing an involutive division with nice theo-
retical properties and an involutive division which is of practical use, which is to say that
it is more likely to terminate compared to other divisions. To this end, one suggestion
would be to try to compute an Involutive Basis with respect to the left or right divisions
to begin with (as they are easily defined and involutive reduction with respect to these
divisions is very efficient); otherwise to try one of the ‘overlap’ divisions, choosing a strong

overlap division if it is important to obtain disjoint involutive cones.

It is also worth mentioning that for all the divisions we have encountered so far, if Algo-
rithm 12 terminates then it does so with a noncommutative Grobner Basis, which means
that Algorithm 12 can be thought of as an alternative algorithm for computing noncom-
mutative Grobner Bases. Whether this method is more or less efficient than computing
noncommutative Grébner Bases using Algorithm 5 is a matter for further discussion.

5.5.4 Alternative Divisions

Having encountered three different types of involutive division so far (each of which has
two variants — left and right), let us now consider if there are any other involutive divisions

with some useful properties, starting by thinking of global divisions.
Alternative Global Divisions

Open Question 2 Apart from the empty, left and right divisions, are there any other
global involutive divisions of the following types:

(a) strong and continuous;

(b) weak, continuous and Grobner?
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Remark 5.5.26 It seems unlikely that a global division will exist that affirmatively an-
swers Open Question 2 and does not either assign all variables to be left nonmultiplicative
or all right nonmultiplicative (thus refining the right or left divisions respectively). The
reason for saying this is because the moment you have one variable being left multiplica-
tive and another variable being right multiplicative for the same monomial globally, then
you risk not being able to prove that your division is strong; similarly the moment you
have one variable being left nonmultiplicative and another variable being right nonmulti-
plicative for the same monomial globally, then you risk not being able to prove that your

division is continuous.

Alternative Local Divisions

So far, all the local divisions we have considered have assigned all variables to be mul-
tiplicative on one side, and have chosen certain variables to be nonmultiplicative on the
other side. Let us now consider a local division that modifies the left overlap division by
assigning some variables to be nonmultiplicative on both left and right hand sides.

Definition 5.5.27 (The Two-Sided Left Overlap Division W) Consider a set U =
{u1, ..., um} of monomials, where all variables are assumed to be left and right multiplica-
tive for all elements of U to begin with. Assign multiplicative variables to U according to

Algorithm 16, which (in words) performs the following tasks.

(a) For all possible ways that a monomial u; € U is a subword of a (different) monomial
u; € U, so that
Subword(u;, k, k + deg(u;) — 1) = u;

for some integer k, assign the variable Subword(u;, k—1, k—1) to be left nonmultiplica-
tive for u; if u; is a suffix of u;; and assign the variable Subword(u;, £ + deg(u;), k +

deg(u;)) to be right nonmultiplicative for u; if u; is not a suffix of u;.

(b) For all possible ways that a proper prefix of a monomial u; € U is equal to a proper
suffix of a (not necessarily different) monomial u; € U, so that

Prefix(u;, k) = Suffix(u;, k)

for some integer k and u; is not a subword of u; or vice-versa, use the recipe provided in

the second half of Algorithm 16 to ensure that at least one of the following conditions
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are satisfied: (i) the variable Subword(u;, k + 1,k + 1) is right nonmultiplicative for
uy; (ii) the variable Subword(u;, deg(u;) — k, deg(u;) — k) is left nonmultiplicative for

Uy

Remark 5.5.28 For task (b) above, Algorithm 16 gives preference to monomials which
are greater in the DegRevLex monomial ordering (given the choice, it always assigns
a nonmultiplicative variable to whichever monomial out of u; and wu; is the smallest);
it also attempts to minimise the number of variables made nonmultiplicative by only
assigning a variable to be nonmultiplicative if both the variables Subword(u;, k+ 1,k + 1)
and Subword(u;, deg(u;) — k, deg(u;) — k) are respectively right multiplicative and left
multiplicative. These refinements will become crucial when proving the continuity of the

division.

Example 5.5.29 Consider the set of monomials U := {zz?yxy, yzz, zy} over the poly-
nomial ring Q(z,y,2). Here are the left and right multiplicative variables for U with
respect to the two-sided left overlap division W.

U ML (w, U) | ME (u,U)
z?yzy | {z,9,2} | {z,9,2}

yzx {y, 2} {y, 2}

zy {z} {y, 2}

The above table is constructed from the table T shown below, a table which is obtained
by applying Algorithm 16 to U.

Monomial | z¥ zft yb yR 2L 2P
zaefyzy |1 1 1 1 1 1
YZT o o0 1 1 1 1
Ty 1 0 0 1 0 1

The zero entries in 7" correspond to the following overlaps between the elements of U
(presented in the order in which Algorithm 16 encounters them).
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Algorithm 16 The Two-Sided Left Overlap Division W
Input: A set of monomials U = {ui,...,un} ordered by DegRevLex (u; > ug > -+ >

U, ), Where u; € R{(z1,...,Zy).
Output: A table T of left and right multiplicative variables for all u; € U, where each

entry of T is either 1 (multiplicative) or 0 (nonmultiplicative).

Create a table T' of multiplicative variables as shown below:

L R L R L R

w |1 1 1 1 ... 1 1

1
< m) do

= e

Um | 1 1 1 1
for each monomial w; € U (1 < i
for each monomial u; € U (i < 7 < m) do
Let w; = @i, 24 . .. @y, and uj; = x5,35, . .. Tj;
f (i # j) then
foreachk (1<k<a-£+1)do
if (Subword(u;, k,k + 8 — 1) == u;) then
if (k <a—(G+1) then T(u;,z wc+ﬁ) =
else T'(u;j,z5_ ) =0;
end if
end if
end for
end if
foreachk (1<k<f—-1)do
if (Prefix(u;, k) == Suffix(u;, k)) then
if (T(wi, 25,_,) + T(uy,2fl, ) == 2) then T(u;, 2l ) =0;
end if
end if
if (Suffix(u;, k) == Prefix(uj,k)) then
i (Tlugal )+ T(upal ) == 2) then T{uy el ) =0;
end if
end if
end for
end for
end for

return T}
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Table Entry Overlap
T (yzz,zf) | Prefix(zz?yzy, 2) = Suffix(yzz, 2)
T(yzz,z") | Suffix(zz?yzy, 1) = Prefix(yzz, 1)
T (zy, z%) Subword(zz’yzy, 3,4) = xy
T (zy, y") Subword(zz?yzy, 5,6) = zy
T (zy, 25) Suffix(yzz, 1) = Prefix(zy, 1)

Notice that the overlap Prefix(yzz, 1) = Suffix(zy, 1) does not produce a zero entry for
T(zy, 2%), as by the time that we encounter this overlap in the algorithm, we have already
assigned T'(yzz, %) = 0.

Proposition 5.5.30 The two-sided left overlap division W is a weak involutive division.

Proof: We refer to the proof of Proposition 5.5.15, making the obvious changes (for
example replacing O by W). O

For the following two propositions, we defer their proofs to Appendix A due to their
length and technical nature.

Proposition 5.5.31 The two-sided left overlap division W is continuous.

Proof: We refer to Appendix A. O

Proposition 5.5.32 The two-sided left overlap division W is a Grdobner involutive divi-

S107.

Proof: We refer to Appendix A, noting that the proof is similar to the proof of Propo-
sition 5.5.16. O

Remark 5.5.33 Because a variable is sometimes only assigned nonmultiplicative if two
other variables are multiplicative in Algorithm 16, the subset condition of Definition 5.1.6
will not always be satisfied with respect to the two-sided left overlap division. This will
still hold true even if we apply Algorithm 14 at the end of Algorithm 16, which means
that the two-sided left overlap division cannot be converted to give a strong involutive
division in the same way that we converted the left overlap division to give the strong left
overlap division.
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To finish this section, let us now consider some further variations of the left overlap
division, variations that will allow us to assign more multiplicative variables than the left
overlap division (and hence potentially have to deal with fewer prolongations when using
Algorithm 12), but variations that cannot be modified to give strong involutive divisions
in the same way that the left overlap division was modified to give the strong left overlap
division (this is because there are other ways beside a monomial being a suffix of another
monomial that two involutive cones can be non-disjoint with respect to these modified

divisions).

Definition 5.5.34 (The Prefix-Only Left Overlap Division) Let U = {us,...,un}
be a set of monomials, and assume that all variables are left and right multiplicative for

all elements of U to begin with.

(a) For all possible ways that a monomial u; € U is a proper prefix of a monomial u; € U,
assign the variable Subword(u;, deg(u;)+ 1, deg(u;) + 1) to be right nonmultiplicative

for u;.

(b) For all possible ways that a proper prefix of a monomial u; € U is equal to a proper
suffix of a (not necessarily different) monomial u; € U, so that

Prefix(u;, k) = Suffix(u;, k)
for some integer k& and w; is not a subword of w; or vice-versa, assign the variable
Subword(u;, k + 1,k + 1) to be right nonmultiplicative for w;.

Definition 5.5.35 (The Subword-Free Left Overlap Division) Consider a set U =
{ui,...,um} of monomials, where all variables are assumed to be left and right multi-

plicative for all elements of U to begin with.

For all possible ways that a proper prefix of a monomial u; € U is equal to a proper suffix

of a (not necessarily different) monomial u; € U, so that
Prefix(u;, k) = Suffix(u;, k)

for some integer £ and u; is not a subword of u; or vice-versa, assign the variable
Subword(u;, k + 1,k + 1) to be right nonmultiplicative for u;.

Proposition 5.5.36 Both the prefiz-only left overlap and the subword-free left overlap

divisions are continuous, weak and Grébner.
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Proof: We leave these proofs as exercises for the interested reader, noting that the
proofs will be based on (and in some cases will be identical to) the proofs of Propositions
5.5.14, 5.5.15 and 5.5.16 respectively. O

Remark 5.5.37 To help distinguish between the different types of overlap division we
have encountered in this chapter, let us now give the following table showing which types

of overlap each overlap division considers.

Type A Type B Type C Type D

——

Overlap Division Type Overlap Type
B C

Left

Right

Strong Left

Strong Right
Two-Sided Left
Two-Sided Right
Prefix-Only Left
Suffix-Only Right
Subword-Free Left
Subword-Free Right

OO N RN NSRS S
X X X NN SN X SN XN
X X X X NSNS SN
X ¥ X %% % X % KU

5.6 Termination

Given a basis F' generating an ideal over a noncommutative polynomial ring R, does there
exist a finite Involutive Basis for F' with respect to some admissible monomial ordering
O and some involutive division /7 Unlike the commutative case, where the answer to the
corresponding question (for certain divisions) is always ‘Yes’, the answer to this question
can potentially be ‘No’; as if the noncommutative Grobner Basis for F' with respect to
O is infinite, then the noncommutative Involutive Basis algorithm will not find a finite
Involutive Basis for F' with respect to [ and O, as it will in effect be trying to compute
the same infinite Grébner Basis.
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However, a valid follow-up question would be to ask whether the noncommutative In-
volutive Basis algorithm will terminate in the case that the noncommutative Grébner
Basis algorithm terminates. In Section 5.4, we defined a property of noncommutative
involutive divisions (conclusivity) that ensures, when satisfied, that the answer to this
secondary question is always “Yes'. Despite this, we will not prove in this thesis that
any of the divisions we have defined are conclusive. Instead, we leave the following open

question for further investigation.

Open Question 3 Are there any conclusive noncommutative involutive divisions that

are also continuous and either strong or Grébner?

To obtain an affirmative answer to the above question, one approach may be to start by
finding a proof for the following conjecture.

Conjecture 5.6.1 Let O be an arbitrary admissible monomial ordering, and let I be
an arbitrary involutive division that is continuous and either strong or Grobner. When
computing an Involutive Basis for some basis F' with respect to O and I using Algorithm
12, if ' possesses a finite unique reduced Grobner Basis G with respect to O, then after
a finite number of steps of Algorithm 12, LM(G) appears as a subset of the set of leading

monomials of the current basis.

To prove that a particular involutive division is conclusive, we would then need to show
that once LM(G) appears as a subset of the set of leading monomials of the current basis,
then the noncommutative Involutive Basis algorithm terminates (either immediately or

in a finite number of steps), thus providing the required finite noncommutative Involutive
Basis for F.

5.7 Examples

5.7.1 A Worked Example

Example 5.7.1 Let F = {fi, fou} = {2%* — 2zy® + 22, 2%y — 2xy} be a basis for an
ideal J over the polynomial ring Q(z,y), and let the monomial ordering be Deglex. Let
us now compute a Locally Involutive Basis for F' with respect to the strong left overlap
division & and thick divisors using Algorithm 12.
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To begin with, we must autoreduce the input set F'. This leaves the set unchanged,
as we can verify by using the following table of multiplicative variables (obtained by
using Algorithm 15), where y is right nonmultiplicative for f, because of the overlap
LM(fz) = Subword(LM(f1), 1, 3); and « is right nonmultiplicative for f; because we need
to have a variable in LM( f2) being right nonmultiplicative for fi.

Polynomial ME(f, F) | ME(fi, F)
fi=a%? -2z + 22 | {z,y} {v}
fa = 2%y — 22y {z,y} {z}

The above table also provides us with the set S = {fiz, foy} = {z*y*z—2zy*z+23, 2%y*—
22y%} of prolongations that is required for the next step of the algorithm. As z%y* < z%y’z
in the DegLex monomial ordering, we involutively reduce the element foy € S first.

foy =2y’ = 2my®  —= 2%y - 2uy” - (2% - 209" + 27)

= —z2,
As the prolongation did not involutively reduce to zero, we now exit from the second
while loop of Algorithm 12 and proceed by autoreducing the set F U {f; = —z?} =
{a%y? — 2zy* + 2%, 2y — 2zy, —2?}.

Polynomial ME(fi, F) | ME(fi, F)
fi=a%2 -2z’ + 2% | {z,y} {v}
fo = 2Py —2ay {z,y} 0
fs=—a? {z,y} 0

This process involutively reduces the third term of f; using f3, leaving the new set
{fs = 2%? — 2xy?, fa, f2} whose multiplicative variables are identical to the multi-
plicative variables of the set {fi, fa, f3} shown above.

Next, we construct the set S = {fyz, foz, fay, f3z, fay} of prolongations, processing the
element f3y first.

fay = —z%y "% —2y + (2%y — 2zy)
= —2xy.
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Again the prolongation did not involutively reduce to zero, so we add the involutively
reduced prolongation to our basis to obtain the set {fi, fa, f3, f5 := —2zy}.

Polynomial ME(fi, F) | ME(fi, F)
fa=ay® =22y | {z,y} {y}
fo=a’y—2zy | {z,y} 0

fs=—a? {z,y} 0

fs = —2zy {z, v} 0

This time during autoreduction, the polynomial f; involutively reduces to zero with re-
spect to the set {f4, fs, fs}:

1
fo =1y —2xy 2’y — 2uy + Sa(—2ay)
= —2xy
— 20— (—2zy)

= 0.

This leaves us with the set {fy, f3, fs} after autoreduction is complete.

Polynomial ME(fi, F) | ME(fi, F)
f1 = z%y? — 223 {z,y} {y}
fa = —a? {z,y} 0
Js = —2zy {z,y} 0

The next step is to construct the set S = {fiz, faz, fay, fsz, fsy} of prolongations, from
which the element fsy is processed first.

Je = —23392 =: fe.

When the set {fi, f3, f5, fo} is autoreduced, the polynomial f; now involutively reduces
to zero, leaving us with the autoreduced set {fs, fs, fs} = {—2*, —2zy, —22y%}.

Polynomial | M4(f;, F) | ME(f;, F)
fa = —2? {z,y} 0

fs = —2zy {z,y} 0

fo=—2ay* | {=z,y} {v}
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Our next task is to process the elements of the set S = {fsz, f3y, fsz, fsy, fex} of
prolongations. The first element fsy we pick from S involutively reduces to zero, but the

second element f;z does not:

foy=—22y" —> 229" - (~2a3")

fsz = =2zyz = fr.

After constructing the set {fs, fs, fs, fr}, autoreduction does not alter the contents of
the set, leaving us to construct our next set of prolongations from the following table of

multiplicative variables.

Polynomial | M%(f;, F) | ME(fi, F)
fa = —a? {z,y} 0

Js = —2zy {z,y} 0

fo=—2zy* | {z,y} {y}

fr=2zyz | {z,y} 0

Whilst processing this (7 element) set of prolongations, we add the involutively irreducible
prolongation fsz = —2zy*z =: fs to our basis to give a five element set which in unaffected

by autoreduction.

Polynomial | MX%(fi, F) | ME(f:, F)
fa= —z? {w,y} 0
fs = —2zy {z,y} 0
fo=—2zy* | {=z,y} {v}
fr=—2azyz | {x,y} 0
fs = —2zy°z {z,vy} 0

To finish, we analyse the elements of the set

S= {f3$7 fSy: mea fSy: fﬁl:: fT:Ea f?y: fﬂx: fSy}



CHAPTER 5. NONCOMMUTATIVE INVOLUTIVE BASES 153
of prolongations in the order fsy, fsz, fsy, faz, foz, fry, fox, fsy, fez.

fex = —2zy’x? —2zy%2? — 224°(—2?)

= 0.

Because all prolongations involutively reduce to zero (and hence S = ), the algorithm
now terminates with the Involutive Basis

G = {-2*, —2zy, —2ay?, —2zyz, —2ay’x}

as output, a basis which can be visualised by looking at the following (partial) involutive
monomial lattice for G.

CHE N R U

‘..‘.._" " '.I. ._‘A.
zt 2y 2%yr aya? yad %P @ Tyry  YryT yaly y?2? xy® yay? ylzy Pz o

For comparison, the (partial) monomial lattice of the reduced DegLex Grobner Basis H
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for F is shown below, where H := {z?, zy} is obtained by applying Algorithm 6 to G.

gt 2y 2Pyx xya? ya® 2P aylr YTy yayr yzly %2 oyt yay? yloy iz oyt

Looking at the lattices, we can verify that the involutive cones give a disjoint cover of the
conventional cones up to monomaials of degree 4. However, if we were to draw the next
part of the lattices (monomials of degree 5), we would notice that the monomial zy’z is
conventionally reducible by the Grébner Basis, but is not involutively reducible by the
Involutive Basis. This fact verifies that when thick divisors are being used, a Locally
Involutive Basis is not necessarily an Involutive Basis, as for G to be an Involutive Basis
with respect to & and thick divisors, the monomial zy3« has to be involutively reducible
with respect to G.

5.7.2 Involutive Rewrite Systems

Remark 5.7.2 In this section, we use terminology from the theory of term rewriting that
has not yet been introduced in this thesis. For an elementary introduction to this theory,
we refer to [5], [19] and [36].

Let C = (A | B) be a monoid rewrite system, where A = {a;,...,a,} is an alphabet
and B = {b1,...,b,} is a set of rewrite rules of the form b, = ¢; — r; (1 < i < m;

l;,m; € A¥). Given a fixed admissible well-order on the words in A compatible with C, the
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Knuth-Bendix critical pairs completion algorithm [39] attempts to find a complete rewrite
system C' for C' that is Noetherian and confluent, so that any word over the alphabet
A has a unique normal form with respect to C’. The algorithm proceeds by considering
overlaps of left hand sides of rules, forming new rules when two reductions of an overlap

word result in two distinct normal forms.

It is well known (see for example [33]) that the Knuth-Bendix critical pairs completion
algorithm is a special case of the noncommutative Grébner Basis algorithm. To find a
complete rewrite system for C' using Algorithm 5, we treat C' as a set of polynomials
F={li—ry, ly—rs, ..., Ly —rn} generating a two-sided ideal over the noncommutative
polynomial ring Z{ay, ..., a,), and we compute a noncommutative Grobner Basis G for

F using a monomial ordering induced from the fixed admissible well-order on the words

in A.

Because every noncommutative Involutive Basis (with respect to a strong or Grébner
involutive division) is a noncommutative Grébner Basis, it is clear that a complete rewrite
system for C' can now also be obtained by computing an Involutive Basis for F', a complete

rewrite system we shall call an tnvolutive complete rewrite system.

The advantage of involutive complete rewrite systems over conventional complete rewrite
systems is that the unique normal form of any word over the alphabet A can be obtained
uniquely with respect to an involutive complete rewrite system (subject of course to
certain conditions (such as working with a strong involutive division) being satisfied), a

fact that will be illustrated in the following example.

Example 5.7.3 Let C = (Y, X,y,z | 2° — ¢,4? — ¢, (zy)? — ¢, Xz — ¢, 22X —
g, Yy — g, yY — €) be a monoid rewrite system for the group S3, where € denotes the
empty word, and Y > X > y > z is the alphabet ordering. If we apply the Knuth-Bendix
algorithm to C' with respect to the Deglex (word) ordering, we obtain the complete

rewrite system

o= (KXay):E'myx_}y: yry — X, x2~—+X, X — g, y2__}5.’ Xy — yz, X —
g, yX —ay, X2 -, Y —y).

With respect to the DegLex monomial ordering and the left division, if we apply Algorithm
12 to the basis F := {2*—1, y?—1, (ay)*—1, Xa—1, 2X -1, Yy—1, y¥ —1} corresponding

to C, we obtain the following Involutive Basis for F' (which we have converted back to a
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rewrite system to give an involutive complete rewrite system C” for C).

C" = X,yz |y —e, Xe—e,zX—e Yy—evProz, Yoy Yr—
yo, Xzy — y, Yyz -z, 2° = X, X? - @, zyz — y, Xy — yz, Xyz — 2y, 2%y —
yz, yX — xy, yay — X, Yoy - X, Y X — zy).

With the involutive complete rewrite system, we are now able to uniquely reduce each
word over the alphabet {Y, X, y,z} to one of the six elements of S;. To illustrate this,
consider the word y XY x. Using the 10 element complete rewrite system C’ obtained by
using the Knuth-Bendix algorithm, there are several reduction paths for this word, as

illustrated by the following diagram.

yXYzx
yX y w
zyYz yXyx
Xy—yz
Y=y yX—ay
zy’x y2a?
yioe 22X
¥
22 Y2 X
yX—ay
T2 X y2—e
X yzy

lymy—bx
X

However, by involutively reducing the word y XYz with respect to the 19 element invo-

lutive complete rewrite system C”, there is only one reduction path, namely

yXYzx

Y z—yz
yXyx
Xyz—zy
yry
yry—X

X
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5.7.3 Comparison of Divisions

Following on from the S; example above, consider the basis F := {z% -1, y* — 1, (2y)? —
1, Xe—1,2X -1, Yy—1, y¥Y — 1} over the polynomial ring Q(Y, X,y, z) corresponding
to a monoid rewrite system for the group S;. With the monomial ordering being DegLex,
below we present some data collected when, whilst using a prototype implementation
of Algorithm 12 (as given in Appendix B), an Involutive Basis is computed for F with
respect to several different involutive divisions (the reduced DegLex Grobner Basis for F
has 21 elements).

Remark 5.7.4 The program was run using FreeBSD 5.4 on an AMD Athlon XP 1800+
with 512MB of memory.

Key | Involutive Division Key | Involutive Division
1 | Left Division 7 | Subword-Free Left Overlap Division
2 | Right Division 8 | Right Overlap Division
3 | Left Overlap Division 9 | Strong Right Overlap Division
4 | Strong Left Overlap Division 10 | Two-Sided Right Overlap Division
5 | Two-Sided Left Overlap Division 11 | Suffix-Only Right Overlap Division
6 | Prefix-Only Left Overlap Division || 12 | Subword-Free Right Overlap Division
Division | Size of Basis | Number of Number of Time
Prolongations | Involutive Reductions

1 73 104 15947 0.77

2 73 104 13874 0.74

3 65 64 10980 8.62

4 73 94 15226 23.14

5 77 70 12827 16.04

6 65 64 10980 8.97

7 65 64 10980 7.13

8 73 76 11046 13.27

9 73 95 13240 26.16

10 87 80 13005 24.53

11 73 76 11046 13.40

12 69 82 10458 9.52
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We note that the algorithm completes quickest with respect to the global left or right
divisions, as (i) we can take advantage of the efficient involutive reduction with respect
to these divisions (see Section 5.5.1); and (ii) the multiplicative variables for a particular
monomial with respect to these divisions is fixed (each time the basis changes when us-
ing one of the other local divisions, the multiplicative variables have to be recomputed).
However, we also note that more prolongations are needed when using the left or right
divisions, so that, in the long run, if we can devise an efficient way of finding the multi-
plicative variables for a set of monomials with respect to one of the local divisions, then

the algorithm could (perhaps) terminate more quickly than for the two global divisions.

5.8 Improvements to the Noncommutative Involu-

tive Basis Algorithm

5.8.1 Efficient Reduction

Conventionally, we divide a noncommutative polynomial p with respect to a set of poly-
nomials P using Algorithm 2. In this algorithm, an important step is to find out if a
polynomial in P divides one of the monomials u in the polynomial we are currently re-
ducing, stated as the condition ‘if (LM(p;) | u) then’ in Algorithm 2. One way of finding
out if this condition is satisfied would be to execute the following piece of code, where
o := deg(u); B := deg(LM(p;)); and we note that & — 8 + 1 operations are potentially
needed to find out if the condition is satisfied.

2= 1
while { < a— G+ 1) do
if (LM(p;) == Subword(u,4,i+ 8 — 1)) then
return true;
else
B 4 12
end if
end while

return false;

When involutively dividing a polynomial p with respect to a set of polynomials P and

some involutive division /, the corresponding problem is to find out if some monomial
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LM(p,) is an involutive divisor of some monomial u. At first glance, this problem seems
more difficult than the problem of finding out if LM(p;) is a conventional divisor of u, as
it is not just sufficient to discover one way that LM(p;) divides w (as in the code above)
— we have to verify that if we find a conventional divisor of u, then it is also an involutive
divisor of w. Naively, assuming that thin divisors are being used, we could solve the
problem using the code shown below, code that is clearly less efficient than the code for
the conventional case shown above.
= 1
while ({ < a—f+1) do
if (LM(p;) == Subword (v, 4,7+ 3 — 1)) then
if (i ==1) or ((¢ > 1) and (Subword(u,i — 1,i — 1) € M¥(LM(p;), LM(P))))
then
if (l==a—-pF+1) or ((i <a-pF+1) and (Subword(u,i + B,i + 3) €
MEF(LM(p;),LM(P)))) then
return true;
end if
end if
else
=14 1;
end if
end while

return false;

However, for certain involutive divisions, it is possible to take advantage of some of the
properties of these divisions in order to make it easier to discover whether LM(p;) is an
involutive divisor of u. We have already seen this in action in Section 5.5.1, where we
saw that LM(p;) can only involutively divide u with respect to the left or right divisions
if LM(p;) is a suffix or prefix of u respectively.

Let us now consider an improvement to be used whenever (i) an ‘overlap’ division that
assigns all variables to be either left multiplicative or right multiplicative is used (ruling
out any ‘two-sided’ overlap divisions); and (ii) thick divisors are being used. For the case
of such an overlap division that assigns all variables to be left multiplicative (for example
the left overlap division), the following piece of code can be used to discover whether or
not LM(p;) is an involutive divisor of u (note that a similar piece of code can be given

for the case of an overlap division assigning all variables to be right multiplicative).
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k = a; skip = 0;
while (k > f+1) do
if (Subword(u, k, k) ¢ ME(LM(p,), LM(P))) then
skip=Fk; k=73,
else
k=k—1;
end if
end while

if (skip == 0) then
3 =1
else
i = skip — 8+ 1;
end if

while i <a—(G+1) do
if (LM(p,) == Subword(u,i,i+ 8 — 1)) then
return true;
else
t=14+1;
end if
end while

return false;

We note that the final section of the code (from ‘while (i < a — 8 + 1) do’ onwards)
is identical to the code for conventional reduction; the code before this just chooses the
initial value of ¢ (we rule out looking at certain subwords by analysing which variables in
u are right nonmultiplicative for LM(p;)). For example, if u := zy?zyzy; LM(p;) := zys;
and only the variable x is right nonmultiplicative for p;, then in the conventional case
we need 4 subword comparisons before we discover that LM(p;) is a conventional divisor
of u; but in the involutive case (using the code shown above) we only need 1 subword
comparison before we discover that LM(p;) is an involutive divisor of u (this is because
the variable Subword(u, 6,6) = z is right nonmultiplicative for LM(p;), leaving just two
subwords of u that are potentially equal to LM(p;) in such a way that LM(p;) is an

involutive divisor of u).
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Conventional Reduction Involutive Reduction
T ¥ Y z Yy z Yy z Y Yy z ¥y x Y
i=1 ¢ Y =z i1 =4 T Y
=2 T Y x
1=23 T ¥ z
=4 T Y w

Of course our new algorithm will not always ‘win’ in every case (for example if u :=
zyz®yzy and LM(p;) := zyz), and we will always have the overhead from having to
determine the initial value of ¢, but the impression should be that we have more freedom
in the involutive case to try these sorts of tricks, tricks which may lead to involutive

reduction being more efficient than conventional reduction.

5.8.2 Improved Algorithms

Just as Algorithm 9 was generalised to give an algorithm for computing noncommutative
Involutive Bases in Algorithm 12, it is conceivable that other algorithms for computing
commutative Involutive Bases (as seen for example in [24]) can be generalised to the
noncommutative case. Indeed, in the source code given in Appendix B, a noncommutative
version of an algorithm found in [23, Section 5] for computing commutative Involutive
Bases is given; we present below data obtained by applying this new algorithm to our S,
example from Section 5.7.3 (the data from Section 5.7.3 is given in brackets for comparison;
we see that the new algorithm generally analyses more prolongations but performs less

involutive reduction).
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Division | Size of Basis | Number of Number of Time
Prolongations | Involutive Reductions
1 73 (73) 323 (104) 875 (15947) 0.72 (0.77)
2 73 (73) 327 (104) 929 (13874) 0.83 (0.74)
3 70 (65) 288 (64) 831 (10980) 5.94 (8.62)
4 73 (73) 318 (94) 863 (15226) 4.62 (23.14)
5 70 (77) 288 (70) 831 (12827) 5.79 (16.04)
6 70 (65) 288 (64) 831 (10980) 5.71 (8.97)
7 69 (65) 288 (64) 833 (10980) 5.33 (7.13)
8 68 (73) 358 (76) 1092 (11046) 28.51 (13.27)
9 73 (73) 322 (95) 917 (13240) 6.39 (26.16)
10 68 (87) 358 (80) 1092 (13005) 28.75 (24.53)
11 68 (73) 358 (76) 1092 (11046) 28.54 (13.40)
12 66 (69) 364 (82) 1127 (10458) 28.87 (9.52)

5.8.3 Logged Involutive Bases

A (noncommutative) Logged Involutive Basis expresses each member of an Involutive
Basis in terms of members of the original basis from which the Involutive Basis was

computed.

Definition 5.8.1 Let G = {g,...
basis F' = {fi,..
we have an explicit expression of the form

,gp} be an Involutive Basis computed from an initial
., fm}. We say that G is a Logged Involutive Basis if, for each ¢; € G,

a
gi = Z EJa.ffko,""m
=l

where the £, and the r, are terms and f, € F forall 1 < a < g.

Proposition 5.8.2 Let F' = {f1,..
nomial ring. If we can compute an Involutive Basts for F', then it is always possible to

., fm} be a finite basis over a noncommutative poly-

compute a Logged Involutive Basis for F.

Proof: Let G = {¢1,...,9p} be an Involutive Basis computed from the initial basis
F = {f1,..., fm} using Algorithm 12 (where f; € R{zy,...,z,) for all f; € F). If an
arbitrary g; € G is not a member of the original basis F', then either g; is an involutively
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reduced prolongation, or g; is obtained through the process of autoreduction. In the

former case, we can express g; in terms of members of F' by substitution because either

a
g = xjh — Z .

a=1

or
B
gi = hmj - Zgafhkara
a=1
for a variable z;; terms ¢, and r,; and polynomials h and hy, which we already know
how to express in terms of members of F'. In the latter case,

B
gi=h-— Zgahkaroz
a=1

for terms f,,7r, and polynomials h and hy, which we already know how to express in

terms of members of F', so it follows that we can again express g; in terms of members of
F. O

Example 5.8.3 Let F := {f1, fo} = {2 + 32y — yz, y® + 2} generate an ideal over the
polynomial ring Q(z, y); let the monomial ordering be DegLex; and let the involutive divi-
sion be the left division. In obtaining an Involutive Basis for F' using Algorithm 12, a poly-
nomial is added to F'; fi is involutively reduced during autoreduction; and then four more
polynomials are added to F', giving an Involutive Basis G := {g1, g2, 93, 94, g5, g6, 97} =
{@* + 2yz, v* + 2, zy — yz, viz + 2%, zyz — ya?, y?a? — 2yx, ayx® — 222},

The five new polynomials were obtained by involutively reducing the prolongations fay,
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fox, gaz, gux and gsx respectively.

Ry = ytay
—, Vo -y +a)
= Y-y
2T = *z + mz;
f y
gsT =  ayz—yzd
g4 = y*z? + 28
— s yix? 4 23 — (2% + 2y2)
=y’ -2y
gz = ayz’ —yz®

—  ayz® —yz® +y(z® + 2yz)
= ryz® + 2
—  xyz® + 2%z — 2(y%z + 2?)

= Ty’ — 22°.
These reductions (plus the reduction

fi —=, 2+ 3ay —yx —3(ay —yz)
= 2% + 2yz

of f performed during autoreduction after g is added to F') enable us to give the following
Logged Involutive Basis for F'.

Member of & Logged Representation

g1 =2+ 2yz f1—=3fy+3yf

g=y+z f2

g3 = 2oy —yz Fy—yk

gp=yz+a* | for

gs = TYT — y:z:Q foyz — yfox

96 = y°2® = 2yz | —fi + fau® + 3foy — By fe

gr = zyz® — 227 | yfi + 32 fa + foyz® — 2fax — yfor® — 3y foy




Chapter 6

Grobner Walks

When computing any Grébner or Involutive Basis, the monomial ordering that has been
chosen is a major factor in how long it will take for the algorithm to complete. For
example, consider the ideal J generated by the basis F = {—2z%z + y* + 332 — 2% +
z?y, 2zy’z +y2® +2yz?, 23y + 2yz3 — 3y2? + 2} over the polynomial ring Q[z,y, z]. Using
our test implementation of Algorithm 3, it takes less than a tenth of a second to compute
a Grobner Basis for F' with respect to the DegRevLex monomial ordering, but 90 seconds
to compute a Grobner Basis for F' with respect to Lex.

The Grobner Walk, introduced by Collart, Kalkbrener and Mall in [18], forms part of
a family of basis conversion algorithms that can convert Grébner Bases with respect to
‘fast’ monomial orderings to Grébner Bases with respect to ‘slow’ monomial orderings (see
Section 2.5.4 for a brief discussion of other basis conversion algorithms). This process is
often quicker than computing a Groébner Basis for the ‘slow” monomial ordering directly,
as can be demonstrated by stating that in our test implementation of the Grobner Walk,

it only takes half a second to compute a Lex Grobner Basis for the basis F' defined above.

In this chapter, we will first recall the theory of the (commutative) Grébner Walk, based
on [18] and a paper [1] by Amrhein, Gloor and Kiichlin; the reader is encouraged to read
these papers in conjunction with this Chapter. We then describe two generalisations of
the theory to give (i) a commutative Involutive Walk (due to Golubitsky [30]); and (ii)
noncommutative Walks between harmonious monomial orderings.

165
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6.1 Commutative Walks

To convert a Grébner Basis with respect to one monomial ordering to a Grobner Basis
with respect to another monomial ordering, the Grobner Walk works with the matrices
associated to the orderings. Fortunately, [48] and [56] assert that any commutative mono-
mial ordering has an associated matrix, allowing the Grébner Walk to convert between

any two monomial orderings.

6.1.1 DMatrix Orderings

Definition 6.1.1 Let m be a monomial over a polynomial ring R|zy,...,,] with as-
sociated multidegree (e!,...,e"). If w = (w!,...,w") is an n-dimensional weight vector
(where w* € Q for all 1 < i < n), we define the w-degree of m, written deg,_(m), to be the
value

deg,(m) = (e! x w') + (€ x w?) + -+ + (e” x W").

Remark 6.1.2 The w-degree of any term is equal to the w-degree of the term’s associated

monomial.
Definition 6.1.3 Let m; and my be two monomials over a polynomial ring R[z1, ..., z,]
with associated multidegrees e; = (ef,...,e}) and es = (e}, ...,€3); and let Q be an N xn

matrix. If w; denotes the n-dimensional weight vector corresponding to the i-th row of ,
then 2 determines a monomial ordering as follows: my < my if deg,, (m1) < deg,, (my)
for some 1 <@ < N and deg,, (m1) = deg,, (m2) for all 1 < j <.

Definition 6.1.4 The corresponding matrices for the five monomial orderings defined in
Section 1.2.1 are

10 0 0 0
0 0 10
00 P :

Lex=1| . . | InvLex = ' ¢
ro8 F m, g 0 01 0
0 I @ 1
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111 11 111 11
100 00 000 0
010 00 000 ...10
Deglex = 00 1 0 0 ;. DeglnvLex = o :
: 001 0
000 10 010 0
1 . 1
0 0 . 0 -1
0 -1 0
DegRevLex =
0 0 -1
\0 -1 0

Example 6.1.5 Let m; := 2%y*2% and my := 2%y*z be two monomials over the polyno-
mial ring R := Q[z,y, z]. According to the matrix

1
0
1

i
o O

representing the DegLex monomial ordering with respect to R, we can deduce that m; <
my because deg,, (m:) = deg,, (ms) = 6; deg,,,(m1) = deg,, (ms) = 2; and deg,, (my) =
2 < deg,,(mg) = 3.

Definition 6.1.6 Given a polynomial p and a weight vector w, the initial of p with
respect to w, written in,(p), is the sum of those terms in p that have maximal w-degree.

For example, if w = (0,1,1) and p = z* + ay?2 + y* + x2?%, then in,(p) = zy?z + ¢°.

Definition 6.1.7 A weight vector w is compatible with a monomial ordering O if, given
any polynomial p = t;+- - -+t,, ordered in descending order with respect to O, deg,(t;) =
deg, (t;) holds for all 1 < i < m.

6.1.2 The Commutative Grobner Walk Algorithm

We present in Algorithm 17 an algorithm to perform the Grobner Walk, modified from
an algorithm given in [1].
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Algorithm 17 The Commutative Grébner Walk Algorithm

Input: A Grébner Basis G = {¢1,92, ..., gm} With respect to an admissible monomial or-
dering O with an associated matrix A, where G generates an ideal J over a commutative
polynomial ring R = R[zy,...,Z,).

Output: A Grobner Basis H = {hy, hy,...,h,} for J with respect to an admissible
monomial ordering O’ with an associated matrix B.

Let w and 7 be the weight vectors corresponding to the first rows of A and B;
Let C be the matrix whose first row is equal to w and whose remainder is equal to the
whole of the matrix B;
t = 0; found = false;
repeat
Let G’ = {in,(g;)} for all g; € G;
Compute a reduced Grébner Basis H' for G’ with respect to the monomial ordering
defined by the matrix C' (use Algorithms 3 and 4);
H =
for each #' € H' do
Let Z"g:l pig; be the logged representation of h’ with respect to G’ (where g, € G’
and p; € R), obtained either through computing a Logged Grébner Basis above or
by dividing A’ with respect to G;
H=HU{Y. pig:}, where in,(g;) = g};
end for
Reduce H with respect to C (use Algorithm 4);
if (t ==1) then
found = true;
else
t = min({s | deg,,)(p1) = deg,s)(pi), degu oy (P1) # deg, o) (1),
h=pi+- - +p. € H} N (0,1]), where w(s) :=w+s(t —w) for 0 < s < 1;
end if
if (¢ is undefined) then
found = true;
else
G=H,w=1-t)w+tr
end if
until (found = true)

return H;
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Some Remarks:

o In the first iteration of the repeat ... until loop, G’ is a Grobner Basis for the ideal®
in,(J) with respect to the monomial ordering defined by C, as w is compatible with
C. During subsequent iterations of the same loop, G’ is a Grobner Basis for the
ideal in,,(J) with respect to the monomial ordering used to compute H during the
previous iteration of the repeat ... until loop, as w is compatible with this previous

ordering.

e The fact that any set H constructed by the for loop is a Grobner Basis for J with
respect to the monomial ordering defined by C' is proved in both [1] and [18] (where
vou will also find proofs for the assertions made in the previous paragraph).

e The section of code where we determine the value of ¢ is where we determine the
next step of the walk. We choose ¢ to be the minimum value of s in the interval
(0, 1] such that, for some polynomial h € H, the w-degrees of LT(h) and some other
term in h differ, but the w(s)-degrees of the same two terms are identical. We say
that this is the first point on the line segment between the two weight vectors w and
7 where the initial of one of the polynomials in H degenerates.

e The success of the Grobner Walk comes from the fact that it breaks down a Grobner
Basis computation into a series of smaller pieces, each of which computes a Grobner
Basis for a set of initials, a task that is usually quite simple. There are still cases
however where this task is complicated and time-consuming, and this has led to the
development of so-called path perturbation techniques that choose ‘easier’ paths on

which to walk (see for example [1] and [53]).

6.1.3 A Worked Example

Example 6.1.8 Let F':= {zy — z, yz + 2z + 2} be a basis generating an ideal J over
the polynomial ring Q[z,y, z]. Consider that we want to obtain the Lex Grébner Basis
H = {2z +yz+ 2z, y?z+ yz + 2z} for J from the DegLex Grobner Basis G := {zy —
2, yz + 2z + 2, 22° + vz + 2} for J using the Grobner Walk. Utilising Algorithm 17 to
do this, we initialise the variables as follows.

1The ideal in,(J) is defined as follows: p € J if and only if in,(p) € iny (J).
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111

111 100 Lo

A=[100 [;B=|010 |;w=(111);7=(10,0;C= 010 ]
010 00 1

00 1

t = 0; found = false.

Let us now describe what happens during each pass of the repeat...until loop of Al-
gorithm 17, noting that as A is equivalent to C' to begin with, nothing substantial will
happen during the first pass through the loop.

Pass 1

e Construct the set of initials: G' := {gi, g5, 95} = {wy, yz, 22% + 2z + 2*} (these
are the terms in G that have maximal (1, 1, 1)-degree).

e Compute the Grobner Basis H' of G’ with respect to C.

TYZ Yz
S-pol(gh,gh) = gy -T2
pol(gl, 93) = (zy) 7 V)
= 0
o Izy Izy 2 2
S-pol(gy,93) = E(ﬂ?’y)—@(% + zz + 2°%)
_ 1 1
= 5Y% — 5%
1
et T Y%
—;gfz O;
S-pol(gs,g5) = 0 (by Buchberger’s First Criterion).

It follows that H' = G'.

e As H' = G', H will also be equal to G, so that H := {hy, hg, h3} = {zy — 2, yz +
2z + z, 22° + zz + 2%}

e Let

w(s) = w+s(t—w)

(1,1,1) +s((1,0,0) — (1,1,1))
= (1,1,1) + s(0,—1,—1)

= (1,1-s,1-235).
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To find the next value of £, we must find the minimum value of s such that the
w(s)-degrees of the leading term of a polynomial in H and some other term in the

same polynomial agree where their w-degrees currently differ.

The w-degrees of the two terms in h; differ, so we can seek a value of s such that

degw(s)(xy) = degw(s)(z)
1+(1—-5) = (1-35)

1 = 0 (inconsistent).

For hy, we have two choices: either

deg,s(y2) = deg,(z)

(1-s)+(1—-5) =1

2-2s =1
P 1.
§ = 5,

or
deg, s (yz) = deg,(2)
(l—s)+(1—s) = (1—3s)
(1-s) =0
3 = 1,

The w-degrees of all the terms in hy are the same, so we can ignore it.

It follows that the minimum value of s (and hence the new value of ¢) is 3. As

this value appears in the interval (0,1], we set G = H; set the new value of w
to be (1 - 3)(1,1,1) + £(1,0,0) = (1,3, 3) (and hence change C to be the matrix

EE
1 00 .
5 10 ); and embark upon a second pass of the repeat. .. until loop.
001

Pass 2

e Construct the set of initials: G’ := {g}, g5, g5} = {zy, 2z + yz, 22?} (these are the
2: 93
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terms in G that have maximal (1, 3, 1)-degree).

e Compute the Grobner Basis of G’ with respect to C.

_nol(d. . g — S _%2
S-pol(g1, 92) 2 V)~ 5,28+ 2)
1
= —5yr=gi
Spol(ghgf) = Lloy) - Zh(a?)
polig1, g3 I Ty 572 Z
= 0
o e 22,
Spol(ge,5) = 5-(2z+yz) — 55(2)
1
= —TYyz
5 Y
=g 0
2 2 1
St gy = gy WA [ L
pol(g}, 94) = (zy) I, \ T2V
S-pol(gh,g5) = 0 (by Buchberger’s First Criterion);
S-pol(gs, g4) = 0 (by Buchberger’s First Criterion).

It follows that G’ = {g, 95, ¢4, g4} = {zy, 2z+yz, 22®, —1y?z} is a Grobner Basis
for in,(J) with respect to C.

Applying Algorithm 4 to G', we can remove g| and g3 from G’ (because LM(g}) =
y x LM(g5) and LM(g3) = 2 x LM(g5)); we must also multiply g5 and gj by  and —2
respectively to obtain unit lead coefficients. This leaves us with the unique reduced
Grébner Basis H' := {h}, hy} = {z + 3yz, y*z} for in,(J) with respect to C.

e We must now express the two elements of H' in terms of members of G'.

1 1
hy =%tgyr = 59’2;

W=tz = -2 ((a:y) - %y(?x + yz}) (from the S-polynomial)

1
= =2 (9’1 = 5:99’2) ;

Lifting to the full polynomials, k] lifts to give the polynomial hy := z + %yz + %z;
hy lifts to give the polynomial hy := —2((zy — 2) — y(2z + yz + 2)) = —2zy +
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2z + 2oy + y%z + yz = y?z + yz + 2z; and we are left with the Grobner Basis
H = {hy, ho} = {z + Jyz + 32, y>2 + yz + 22} for J with respect to C.

o Let

wls) = wts(r—w)
_ (1,%,%)4-5((1,0,0)_(1,%,%))
- () ee(at
- (L30-930-9).

Finding the minimum value of s, for h; we can have

degw(s)(""’r‘) = degw(s)(z)
1 = 2(1-3)

s = —1 (undefined: we must have s € (0, 1]).

Continuing with hs, we can either have

degw(s)(yzz) = dng(s)(yz)

3 (%(1 - 5)) = 3 (%(1 - s))

%(l—s) = 0

g = 1
or

degw(s)(yzz) = degu(s)(z)
1 1

3(5(1%)) = 51—
l—-s5s =0

5 = L

It follows that the minimum value of s (and hence the new value of t) is 1. As
this value appears in the interval (0,1], we set G = H; set the new value of w
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to be (1 —1)(1,3,3) + 1(1,0,0) = (1,0,0) (and hence change C to be the matrix
100
100 100
& 1 i = | 0 1 0 |); and embark upon a third (and final) pass of the
0 01
0 01

repeat. .. until loop.
Pass 3

o Construct the set of initials: G’ := {g}, g5} = {z, ¥*2 + yz + 22} (these are the
terms in G that have maximal (1,0, 0)-degree).

e Compute the Grobner Basis H' of G’ with respect to C.
S-pol(g}, g5) = 0 (by Buchberger’s First Criterion).

It follows that H' = G”.

e As H' = (', H will also be equal to G, so that H := {hy, hy} = {$+%yz+%z, i+
yz + 2z}. Further, as ¢ is now equal to 1, we have arrived at our target ordering
(Lex) and can return H as the output Grobner Basis, a basis that is equivalent to
the Lex Grobner Basis given for J at the beginning of this example.

We can summarise the path taken during the walk in the following diagram.
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Algorithm 18 The Commutative Involutive Walk Algorithm

Input: An Involutive Basis G = {g1, ¢o, . .., gm} With respect to an involutive division I
and an admissible monomial ordering O with an associated matrix A, where G generates
an ideal J over a commutative polynomial ring R = R[z1, ..., Z4].

Output: An Involutive Basis H = {hy, hy, ..., hy} for J with respect to I and an admis-
sible monomial ordering O" with an associated matrix B.

Let w and 7 be the weight vectors corresponding to the first rows of A and B;
Let C' be the matrix whose first row is equal to w and whose remainder is equal to the
whole of the matrix B;
t = 0; found = false;
repeat
Let G' = {in,(g;)} for all g; € G;
Compute an Involutive Basis H' for G' with respect to the monomial ordering defined
by the matrix C' (use Algorithm 9);
H=0
for each h' € H' do
Let 327_, pig, be the logged representation of ' with respect to G’ (where ¢, € G’
and p; € R), obtained either through computing a Logged Involutive Basis above
or by involutively dividing h’ with respect to G;
H = HU{XL, pigi}, where in,(g:) = g};
end for
if (t == 1) then
found = true;
else
¢t = min({s | deg,,s)(P1) = deg,(s)(Pi), deg. o) (1) # degy o) (pi),
h=pi+-+px € H} N(0,1]), where w(s) :=w+s(r —w) for 0 € s € 1;
end if
if (¢ is undefined) then
found = true;
else
G=H;w=(1-tw+tr;
end if
until (found = true)

return H;
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6.1.4 The Commutative Involutive Walk Algorithm

In [30], Golubitsky generalised the Grobner Walk technique to give a method for convert-
ing an Involutive Basis with respect to one monomial ordering to an Involutive Basis with
respect to another monomial ordering. Algorithmically, the way in which we perform this
Involutive Walk is virtually identical to the way we perform the Grobner Walk, as can be
seen by comparing Algorithms 17 and 18. The change however comes when proving the
correctness of the algorithm, as we have to show that each G’ is an Involutive Basis for
in,(J) and that each H is an Involutive Basis for J (see [30] for these proofs).

6.2 Noncommutative Walks

In the commutative case, any monomial ordering can be represented by a matrix that
provides a decomposition of the ordering in terms of the rows of the matrix. This decom-
position is then utilised in the Grébner Walk algorithm when (for example) we use the
first row of the matrix to provide a set of initials for a particular basis G (cf. Definition
6.1.6).

In the noncommutative case, because monomials cannot be represented by multidegrees,
monomial orderings cannot be represented by matrices. This seems to shut the door on
any generalisation of the Grébner Walk to the noncommutative case, as not only is there
no first row of a matrix to provide a set of initials, but no notion of a walk between two

matrices can be formulated either.

Despite this, we note that in the commutative case, if the first rows of the source and
target matrices are the same, then the Grébner Walk will complete in one pass of the
algorithm, and all that is needed is the first row of the source matrix to provide a set of

initials to work with.

Generalising to the noncommutative case, it is possible that if we can find a way to
decompose a noncommutative monomial ordering to provide a set of initials to work
with, then a noncommutative Grobner Walk algorithm could complete in one pass if the

source and target monomial orderings used the same method to compute sets of initials.
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6.2.1 Functional Decompositions

Considering the monomial orderings defined in Section 1.2.2, we note that all the orderings
are defined step-by-step. For example, the Deglex monomial ordering compares two
monomials by degree first, then by the first letter of each monomial, then by the second
letter, and so on. This provides us with an opportunity to decompose each monomial
ordering into a series of steps or functions, a decomposition we shall term a functional

decomposition.

Definition 6.2.1 An ordering function is a function
0: M — 7

that assigns an integer to any monomial m € M, where M denotes the set of all monomials
over a polynomial ring R(z1,...,z,). We call the integer assigned by # to m the f-value

of m.

Remark 6.2.2 The f-value of any term will be equal to the #-value of the term’s asso-

ciated monomial.

Definition 6.2.3 A functional decomposition © is a (possibly infinite) sequence of order-
ing functions, written © = {6y, 0,,...}.

Definition 6.2.4 Let O be a monomial ordering; let m, and ms be two arbitrary mono-
mials such that m; < my with respect to O; and let © = {6y,6,,...} be a functional
decomposition. We say that © defines O if and only if 6;(my) < 6;(ms) for some i > 1
and 6;(m,) = 0;(mg) forall 1 < j < ¢,

To describe the functional decompositions corresponding to the monomial orderings de-

fined in Section 1.2.2, we first need the following definition.

Definition 6.2.5 Let m be an arbitrary monomial over a polynomial ring R{zy, ..., z,).
The i-th valuing function of m, written val;(m), is an ordering function that assigns an

integer to m as follows.

J if Subword(m, ¢,1) = z; (where 1 < j < n).
val;(m) =
n+1 if Subword(m,,4) is undefined.
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Let us now describe the functional decompositions corresponding to those monomial or-

derings defined in Section 1.2.2 that are admissible.

Definition 6.2.6 The functional decomposition © = {61, 0,,...} corresponding to the

DegLex monomial ordering is defined (for an arbitrary monomial m) as follows.

6,(m) deg(m) if 4= 1,
i\m) =
n+1-— Valiﬁl(m) if 4 = 1,

Similarly, we can define DeglnvLex by

6(m) = deg(m) ifi=1.

val;_1(m) ifi> 1.

and DegRevLex by
de it § =1.
0,(m) = g(m)

valdeg(m)_,_g_i(m) if 7 > 1.

Example 6.2.7 Let my := zyxz® and my = z2yz® be two monomials over the poly-
nomial ring Q(xz,y, z). With respect to DegLex, we can work out that xyzz? > zzyz?,
because 81 (my) = 61(mq) (or deg(my) = deg(mas)); b2(mq) = 2(m2) (or n+1—val;(my) =
n+1—vali(mg), 3+1—1=3+1-1); and 83(my) > 03(msa) (or n+ 1 — valy(m;) >
n+1—valy(mg), 34+1—2>3+1—3). Similarly, with respect to DeglnvLex, we can
work out that zyzz? < zzyz® (because 83(my) < 03(my), or 2 < 3); and with respect to

DegRevLex, we can work out that zyzz? < z2yz? (because 84(m1) < 04(my), or 1 < 2).

Definition 6.2.8 Given a polynomial p and an ordering function 6, the initial of p with
respect to #, written ing(p), is made up of those terms in p that have maximal #-value. For

example, if 6 is the degree function and if p = 2+ zay? +y3+ 2%z, then ing(p) = x4 221>
Definition 6.2.9 Given an ordering function 8, a polynomial p is said to be 8-homogeneous
if p = ing(p).

Definition 6.2.10 An ordering function 6 is compatible with a monomial ordering O if,
given any polynomial p = ¢; + .- + t,, ordered in descending order with respect to O,
6(t1) = 6(t;) holds for all 1 < 7 < m.
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Definition 6.2.11 An ordering function 6 is extendible if, given any #-homogeneous poly-

nomial p, any multiple upv of p by terms u and v is also #-homogeneous.

Remark 6.2.12 Of the ordering functions encountered so far, only the degree function,

val; and? Valgeg(m) (for any given monomial m) are extendible.

Definition 6.2.13 Two noncommutative monomial orderings O; and O are said to be
harmonious if (i) there exist functional decompositions ©; = {6y,,01,,...} and ©, =
{6s,,6s,,...} defining O; and O, respectively; and (ii) the ordering functions 6y, and 65,
are identical and extendible.

Remark 6.2.14 The noncommutative monomial orderings DegLex, DeglnvLex and De-

gRevLex are all (pairwise) harmonious.

6.2.2 The Noncommutative Grobner Walk Algorithm for Har-

monious Monomial Orderings

We present in Algorithm 19 an algorithm to perform a Grébner Walk between two har-

monious noncommutative monomial orderings.

Termination of Algorithm 19 depends on the termination of Algorithm 5 as used (in Al-
gorithm 19) to compute a noncommutative Grébner Basis for the set G'. The correctness
of Algorithm 19 is provided by the following two propositions.

Proposition 6.2.15 G’ is always a Grébner Basis for the ideal ing(J) with respect to
the monomaial ordering O.

Proof: Because 8 is compatible with O (by definition), the S-polynomials involving
members of G will be in one-to-one correspondence with the S-polynomials involving
members of G', with the same monomial being ‘cancelled’ in each pair of corresponding
S-polynomials.

Let p be an arbitrary S-polynomial involving members of G (with corresponding S-
polynomial g involving members of G'). Because G is a Grobner Basis for J with respect

2Think of valjeg(m) as finding the value of the final variable in m (as opposed to val; finding the value
of the first variable in m).
3The ideal ing(J) is defined as follows: p € J if and only if ing(p) € ing(J).
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Algorithm 19 The Noncommutative Grobner Walk Algorithm for Harmonious Monomial
Orderings

Input: A Grobner Basis G = {g1,92,...,9m} With respect to an admissible monomial
ordering O with an associated functional decomposition A, where G generates an ideal
J over a noncommutative polynomial ring R = R{z1,...,Zy).

Output: A Grobner Basis H = {hq,hs,..., hy} for J with respect to an admissible
monomial ordering O’ with an associated functional decomposition B, where O and O’
are harmonious.

Let # be the ordering function corresponding to the first ordering function of A;

Let G’ = {ing(g;)} for all g; € G;

Compute a reduced Grébner Basis H' for G' with respect to the monomial ordering O

(use Algorithms 5 and 6);

H={

for each h' € H' do
Let S°7_, £igir; be the logged representation of h' with respect to G’ (where g, € G’
and the ¢; and the r; are terms), obtained either through computing a Logged Grobner
Basis above or by dividing k' with respect to G’;
H =HU{YJ_, tigir;}, where ing(g;) = gi;

end for

Reduce H with respect to O’ (use Algorithm 6);

return H;
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to O, p will reduce to zero using G by the series of reductions

P =g, D1 —gy, P2 g, i, 0,
where gi; € Gforalll<j<a

Claim: ¢ will reduce to zero using G’ (and hence G’ is a Grobner Basis for ing(J) with

respect to O by Definition 3.1.8) by the series of reductions

7 —ing(gi) 91 inglgig) 92 ing(gig) *** inglgig) O
where 0 < 8 < .

Proof of Claim: Let w be the overlap word associated to the S-polynomial p. If
O(LM(p)) < B(w), then because 6 is extendible it is clear that ¢ = 0, and so the proof is
complete. Otherwise, we must have ¢ = ing(p), and so by the compatibility of § with O,
we can use the polynomial iny(g;,) € G' to reduce ¢ to give the polynomial ¢;. We now
proceed by induction (if #(LM(p;)) < §(LM(p)) then ¢; = 0, ... ), noting that the process
will terminate because ing(p, = 0) = 0. O

Proposition 6.2.16 The set H constructed by the for loop of Algorithm 19 is a Grobner
Basis for J with respect to the monomial ordering O'.

Proof: By Definition 3.1.8, we can show that H is a Grobner Basis for J by showing
that all S-polynomials involving members of H reduce to zero using H. Assume for a
contradiction that an S-polynomial p involving members of H does not reduce to zero

using H, and instead only reduces to a polynomial ¢ # 0.

As all members of H are members of the ideal J (by the way H was constructed as
combinations of elements of G), it is clear that ¢ is also a member of the ideal J, as all we
have done in constructing ¢ is to reduce a combination of two members of H with respect
to H. It follows that the polynomial ing(g) is a member of the ideal ing(J).

Because H' is a Grobner Basis for the ideal ing(J) with respect to O', there must be a
polynomial k' € H' such that h' | ing(q). Let Z‘Ll £;gir; be the logged representation of
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h' with respect to G'. Then it is clear that

J
> bigiri | ing(g).
i=1

However 6 is compatible with O, so that

J
Z&'Qm‘ \ q.
i=1

It follows that there exists a polynomial A € H dividing our polynomial g, contradicting

our initial assumption. O

6.2.3 A Worked Example

Example 6.2.17 Let F := {2? 4+ 4?4+ 8, 22y + y*> + 5} be a basis generating an ideal J
over the polynomial ring Q(z,y). Consider that we want to obtain the DegLex Grébner
Basis H := {2zy + y? + 5, 2% +3* + 8, 5¢y> — 10z + 37y, 2yz + y* + 5} for J from the
DegRevLex Grobner Basis G := {2zy — 2 — 3, y* + 22+ 8, 5z* + 6y + 35z, 2yz — 2* — 3}
for J using the Grobner Walk. Utilising Algorithm 19 to do this, we initialise § to be the

degree function and we proceed as follows.
o Construct the set of initials: G’ := {g}, g5, 95, 91} = {—2*+2zy, z*+4?, 523, —a?+
2yz} (these are the terms in G that have maximal degree).

e Compute the Grébner Basis of G’ with respect to the DegLex monomial ordering

(for simplicity, we will not provide details of those S-polynomials that reduce to zero
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or can be ignored due to Buchberger’s Second Criterion).

S-pol(1,47,1,95) =

S_pOI(IJng?g;) =

S'pOl(y:giw 17953) =

(—2* + 2zy) — (-1)(2* +7°)

2zy +o° = gk:

(—1)(—2? + 2ay) — (—-1)(—2* + 2yz)
—2zy + 2yx

—2zy + 2yz + (2zy + v?)

2yz +y* =: gs;

2y(—2® + 2zy) — (—1)(2yz + %)z
dyzy + vl

dyay + v’z — 2y(2xy + )

2z — 2

v'e—2° - %y@y:ﬂ +

—gys =1 gr.

After ¢4 is added to the current basis, all S-polynomials now reduce to zero, leaving

the Grobner Basis G' = {g1, 93, 93, 94, 95, 96» 97} = {—2?+2zy, 2°+y?, 52%, —2’+
2yz, 2zy +y°%, 2yz + 2, —3y°®} for ing(J) with respect to O,

Applying Algorithm 6 to G', we can remove g}, g5 and g from G’ (because their
3

lead monomials are all multiplies of LM(gj})); we must multiply g}, ¢, g and g, by

1 1
-1, %3

and —% respectively (to obtain unit lead coefficients); and the polynomial

g4y can (then) be further reduced as follows.

g =

©? — yx

1
_>5'é $2 — Q,y.'L +2 (y.’ﬂ + 5’9’2)

z? + yz.

This leaves us with the unique reduced Grébner Basis H' := {h{, h}, hj, hi} =
{22 + %, zy + 397, yo+ 347, v} for ing(J) with respect to O'.
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e We must now express the four elements of H' in terms of members of G'.

=24y = g

1 .
Ry =ay+=y* = 5(9’1 + ¢5) (from the S-polynomial);

2
1 1
hy = yz + §y2 = (=01 +di+ (g1 + )
1
= 5(9& + 94);
2 1
b= = —g (231(93) + (g5 +g9)z — 2y(gy +63) — 5@:(9’2 + g&))
9

= —2(gho—2ygy+ dhw — =v,
5 2 2 2 4 2 4 &

Lifting to the full polynomials, we obtain the Grobner Basis H := {hy, hs, hs, hs}
as follows.

hi = g
= 22+ y2 + 8;
1
hy = 5(91 + g2)

1
= 5(—nc2+2:c;¢,r—3+a:2+y2+8)
=z ~|~l 2+5'

1
hs = 5(92+94)

1
= (®+y*+8—12"+2yz —3)

2
= :c-l-l 2+§‘
B 2 5 + 1
= —z & — =1 L— =
4 5 g2 2J92 g4 2(9‘94

2 5 5
= —3 (:.-:3 +y*z + 8z — iy:t:z = §y3 — 2005

1 3
—2° + 2y2® — 3z + iyxz — vz + iy)

= y3—2$+-35—7y.

The set H does not reduce any further, so we return the output DegLex Grébner
Basis {2 +y* + 8, 2y + 30> + 3, vz + 307 + 2, v* — 2z + ¥y} for J, a basis
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that is equivalent to the DegLex Grébner Basis given for J at the beginning of this

example.

6.2.4 The Noncommutative Involutive Walk Algorithm for Har-

monious Monomial Orderings

We present in Algorithm 20 an algorithm to perform an Involutive Walk between two

harmonious noncommutative monomial orderings.

Algorithm 20 The Noncommutative Involutive Walk Algorithm for Harmonious Mono-
mial Orderings

Input: An Involutive Basis G = {g1,92,...,9m} with respect to an involutive divi-
sion / and an admissible monomial ordering O with an associated functional decom-
position A, where G generates an ideal J over a noncommutative polynomial ring
Ro= Rz, 8

Output: An Involutive Basis H = {hy, hs, ..., h,} for J with respect to I and an admis-
sible monomial ordering O with an associated functional decomposition B, where O

and O’ are harmonious.

Let € be the ordering function corresponding to the first ordering function of A;

Let G' = {ing(g;)} for all g; € G;

Compute an Involutive Basis H' for G’ with respect to I and the monomial ordering

O’ (use Algorithm 12);

H =

for each b’ € H' do
Let YJ_, ligir; be the logged representation of k/ with respect to G' (where g, €
G’ and the ¢; and the r; are terms), obtained either through computing a Logged
Involutive Basis above or by involutively dividing A’ with respect to G";
H=Hy {Z“fizl l;giri}, where ing(g;) = gi;

end for

return H;

Termination of Algorithm 20 depends on the termination of Algorithm 12 as used (in Al-
gorithm 20) to compute a noncommutative Involutive Basis for the set G’. The correctness

of Algorithm 20 is provided by the following two propositions.
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Proposition 6.2.18 G’ is always an Involutive Basis for the ideal ing(.J) with respect to

I and the monomial ordering O.

Proof: Let p:= ugv be an arbitrary multiple of a polynomial ¢ € G by terms u and v.
Because G is an Involutive Basis for J with respect to I and O, p will involutively reduce

to zero using G by the series of involutive reductions

P—7%, Pt T, P2 77w, T T Qiuo’
where g;; € G forall 1 < j < a.

Claim: The polynomial g := uing(g)v will involutively reduce to zero using G' (and hence
G’ is an Involutive Basis for ing(.J) with respect to I and O by Definition 5.2.7) by the

series of involutive reductions

q 2

T imgler) T T T inales) P T T malery) I_inag(giﬁ)o’
where 1 < 0 € a.

Proof of Claim: Because 0 is extendible, it is clear that ¢ = ing(p). Further, because
is compatible with O (by definition), the multiplicative variables of G and G’ with respect
to I will be identical, and so it follows that because the polynomial g;, € G was used to
involutively reduce p to give the polynomial p;, then the polynomial iny(g;,) € G' can be
used to involutively reduce g to give the polynomial g;.

If 6(LM(p1)) < 6(LM(p)), then because @ is extendible it is clear that ¢; = 0, and so
the proof is complete. Otherwise, we must have ¢ = ing(p;), and so (again) by the
compatibility of @ with O, we can use the polynomial ing(g;,) € G’ to involutively reduce
¢ to give the polynomial g;. We now proceed by induction (if 8(LM(p2)) < 8(LM(p))
then go =0, ...), noting that the process will terminate because ing(p, = 0) = 0. O

Proposition 6.2.19 The set H constructed by the for loop of Algorithm 20 is an Invo-

lutive Basis for J with respect to I and the monomial ordering O'.

Proof: By Definition 5.2.7, we can show that H is an Involutive Basis for J by showing
that any multiple upv of any polynomial p € H by any terms u and v involutively reduces
to zero using H. Assume for a contradiction that such a multiple does not involutively

reduce to zero using H, and instead only involutively reduces to a polynomial g # 0.
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As all members of H are members of the ideal J (by the way H was constructed as
combinations of elements of G), it is clear that ¢ is also a member of the ideal J, as all
we have done in constructing ¢ is to reduce a multiple of a polynomial in H with respect

to H. It follows that the polynomial ing(q) is a member of the ideal ing(J).

Because H’ is an Involutive Basis for the ideal ing(.J) with respect to / and O’, there must
be a polynomial b’ € H' such that A’ |; ing(q). Let Zle ¢;gir; be the logged representation
of b/ with respect to G’. Then it is clear that

J
> igiri |1 ing(q).
i=1

However # is compatible with O’ (in particular the multiplicative variables for H' and H
with respect to I and O’ will be identical), so that

3
Z Ligirs II q.
i=1

It follows that there exists a polynomial h € H involutively dividing our polynomial g,

contradicting our initial assumption. i

6.2.5 A Worked Example

Example 6.2.20 Let F := {2®+y%+8, 22y+y*+5} be a basis generating an ideal J over
the polynomial ring Q(xz,y). Consider that we want to obtain the DegRevLex Involutive
Basis H := {2zy — 2® — 3, y* + 2% + 8, 52° + 6y + 35z, 5yz® + 3y + 10z, 2yz — 2* — 3}
for J from the Deglex Involutive Basis G := {2zy +y* + 5, 22 +y? + 8, 533 — 10z +
37y, 5xy® + 5z — 6y, 2yx + y? + 5} for J using the Involutive Walk, where H and G are
both Involutive Bases with respect to the left division <. Utilising Algorithm 20 to do
this, we initialise # to be the degree function and we proceed as follows.

e Construct the set of initials:
G = {9\, Gh 9% 91> 95} = {¥* + 23y, ¥* + 27, 5P, Bzy?, y* + 2yx}

(these are the terms in G that have maximal degree).

e Compute the Involutive Basis of G’ with respect to < and the DegRevLex monomial
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ordering. Step 1: autoreduce the set G'.

g = y+2ay
2 g .8
g Y +2zy — (y* +2%)
= 2ay—a® =g
G = (@\{an})U{sh
g% = Y+
2 | .2 2
=y Y + 2 — (y° + 2yx)
= —2yz + 2% =: gh;
¢ = (G'\{ghu{ah
s = 5
3 2
5y W S+ 2yz)
=  —10yz
= —10y%z — 5y(—2yz + 2?)
7
= —bya’ =gy
G = (G"\{gs})U{gsh
g = Say’
2 2
T S5zy® — Sx(y® + 2yz)
= —10zyz
s 2
= —10zyz — 5z(—2yz + z°)
- g
G = (G'\{a})U{g)
9% = Y+
— Y 42z + (22 +2?)
97
= y® 4+ =: gi;
G = (G'\{g}) U{g}

Step 2: process the prolongations of the set G' = {g§, g%, 95, Jo, g0} Because all ten
of these prolongations involutively reduce to zero using G’, we are left with the Invo-
lutive Basis H' := {h, hh, hf, kY, hi} = {2oy — 22, —2yz + 2%, —5yz?, —523, 2+
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22} for ing(J) with respect to <1 and O'.
e We must now express the five elements of H’ in terms of members of G’.
R =2zy —2* = g} — g, (from autoreduction);
b = —2uz +1° = gy — gs;
hy = —bya® = g5 — 5ygs — 5y(ga — g5)

= —5yg; + ga;
hy = —5a° = gj — 5ugy — 5¢(g; — g5)
= —b5zgs + gu;
hs=y"+2" = g5+ (95— g5)
= g

Lifting to the full polynomials, we obtain the Involutive Basis H := {hy, ha, hs, h4, hs}

as follows.

hi = g1—go
= (P +22y+5)— (W2 +22+8)
= 2zy—z°-3;

he = g2—9s
= (¥ 422 +8)— (4 +2yz +5)
= —2uz+a’+3;

hs = —5yg2+gs

= —5y(y* + 2%+ 8) + (5y” + 37y — 10z)
= —byz? — 3y — 10z;

hy = —52g2+ ga
= —b5z(y® + 2° + 8) + (5xy® — 6y + 5z)
= —Bu¥ — By — 35z

hs = g2
= y*+2°+8.

We can now return the output DegRevLex Involutive Basis H = {2zy — 22 —
3, —2yz + 22 + 3, —byx? — 3y — 10z, —5a° — 6y — 352, y? + z* + 8} for J with
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respect to <, a basis that is equivalent to the DegRevLex Involutive Basis given for
J at the beginning of this example.

6.2.6 Noncommutative Walks Between Any Two Monomial Or-

derings?

Thus far, we have only been able to define a noncommutative walk between two harmo-
nious monomial orderings, where we recall that the first ordering functions of the func-
tional decompositions of the two monomial orderings must be identical and extendible.
For walks between two arbitrary monomial orderings, the first ordering functions need
not be identical any more, but it is clear that they must still be extendible, so that (in an
algorithm to perform such a walk) each basis G’ is a Grébner Basis for each ideal ing(J)
(compare with the proofs of Propositions 6.2.15 and 6.2.18). This condition will also ap-
ply to any ‘intermediate’ monomial ordering we will encounter during the walk, but the
challenge will be in how to define these intermediate orderings, so that we generalise the
commutative concept of choosing a weight vector w;;1 on the line segment between two

weight vectors w; and 7.

Open Question 4 Is it possible to perform a noncommutative walk between two admis-

sible and extendible monomial orderings that are not harmonious?



Chapter 7

Conclusions

7.1 Current State of Play

The goal of this thesis was to combine the theories of noncommutative Grébner Bases
and commutative Involutive Bases to give a theory of noncommutative Involutive Bases.
To accomplish this, we started by surveying the background theory in Chapters 1 to 4,
focusing our account on the various algorithms associated with the theory. In particular,
we mentioned several improvements to the standard algorithms, including how to compute
commutative Involutive Bases by homogeneous methods, which required the introduction

of a new property (extendibility) of commutative involutive divisions.

The theory of noncommutative Involutive Bases was introduced in Chapter 5, where
we described how to perform noncommutative involutive reduction (Definition 5.1.1 and
Algorithm 10); introduced the notion of a noncommutative involutive division (Definition
5.1.6); described what is meant by a noncommutative Involutive Basis (Definition 5.2.7);
and gave an algorithm to compute noncommutative Involutive Bases (Algorithm 12).
Several noncommutative involutive divisions were also defined, each of which was shown
to satisfy certain properties (such as continuity) allowing the deductions that all Locally

Involutive Bases are Involutive Bases; and that all Involutive Bases are Grobner Bases.

To finish, we partially generalised the theory of the Grébner Walk to the noncommuta-
tive case in Chapter 6, yielding both Grébner and Involutive Walks between harmonious

noncommutative monomial orderings.

191
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7.2 Future Directions

As well as answering a few questions, the work in this thesis gives rise to a number of
new questions we would like the answers to. Some of these questions have already been
posed as ‘Open Questions’ in previous chapters; we summarise below the content of these

questions.

e Regarding the procedure outlined in Definition 4.5.1 for computing an Involutive
Basis for a non-homogeneous basis by homogeneous methods, if the set G returned
by the procedure is not autoreduced, under what circumstances does autoreducing
G result in obtaining a set that is an Involutive Basis for the ideal generated by the
input basis F'?

e Apart from the empty, left and right divisions, are there any other global noncom-
mutative involutive divisions of the following types:

(a) strong and continuous;

(b) weak, continuous and Grébner?

e Are there any conclusive noncommutative involutive divisions that are also contin-

uous and either strong or Grébner?

e Is it possible to perform a noncommutative walk between two admissible and ex-

tendible monomial orderings that are not harmonious?

In addition to seeking answers to the above questions, there are a number of other di-
rections we could take. One area to explore would be the development of the algorithms
introduced in this thesis. For example, can the improvements made to the involutive
algorithms in the commutative case, such as the a priori detection of prolongations that
involutively reduce to zero (see [23]), be applied to the noncommutative case? Also, can we
develop multiple-object versions of our algorithms, so that (for example) noncommutative

Involutive Bases for path algebras can be computed?

Implementations of any new or improved algorithms would clearly build upon the code
presented in Appendix B. We could also expand this code by implementing logged versions
of our algorithms; implementing efficient methods for performing involutive reduction (as

seen for example in Section 5.8.1); and implementing the algorithms from Chapter 6
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for performing noncommutative walks. These improved algorithms and implementations
could then be used (perhaps) to help judge the relative efficiency and complexity of the

involutive methods versus the Grobner methods.
Applications

As every noncommutative Involutive Basis is a noncommutative Grébner Basis (at least
for the involutive divisions defined in this thesis), applications for noncommutative Invo-
lutive Bases will mirror those for noncommutative Grobner Bases. Some areas in which
noncommutative Grobner Bases have already been used include operator theory; systems
engineering and linear control theory [32]. Other areas in noncommutative algebra which
could also benefit from the theory introduced in this thesis include term rewriting; Petri

nets; linear logic; quantum groups and coherence problems.

Further applications may come if we can extend our algorithms to the multiple-object
case. It would be interesting (for example) to compare a multiple-object algorithm to a
(standard) one-object algorithm in cases where an Involutive Basis for a multiple-object
example can be computed using the one-object algorithm by adding some extra relations.
This would tie in nicely with the existing comparison between the commutative and
noncommutative versions of the Grobner Basis algorithm, where it has been noticed that
although commutative examples can be computed using the noncommutative algorithm,
taking this route may in fact be less efficient than when using the commutative algorithm
to do the same computation.



Appendix A

Proof of Propositions 5.5.31 and
5.5.32

A.1 Proposition 5.5.31

(Proposition 5.5.31) The two-sided left overlap division W is continuous.

Proof: Let w be an arbitrary fixed monomial; let U be any set of monomials; and
consider any sequence (u1, Uy, ..., ) of monomials from U (u; € U for all 1 <4 < k),
each of which is a conventional divisor of w (so that w = f;u;r; for all 1 < ¢ < k, where the
{; and the r; are monomials). For all 1 < ¢ < k, suppose that the monomial u;, satisfies
exactly one of the conditions (a) and (b) from Definition 5.4.2 (where multiplicative
variables are taken with respect to W over the set U). To show that W is continuous, we

must show that no two pairs ({;,7;) and (¢;,7;) are the same, where i # j.

Assume to the contrary that there are at least two identical pairs in the sequence

((6177"1)1 (fg,?‘g), vy (Ek'n'rk)))

so that we can choose two separate pairs (€,,7,) and (£, 73) from this sequence such that
(layra) = (€, 7y) and all the pairs (4, 1) (for a < ¢ < b) are different. We will now show
that such a sequence ((£g,74), ..., (p, 7)) cannot exist.

To begin with, notice that for each monomial ;41 in the sequence (uy, ... , k) of mono-

194
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mials (1 < ¢ < k), if uyyq involutively divides a left prolongation of the monomial u; (so
that w1y |w (Suffix(4;, 1))u;), then w;41 must be a prefix of this prolongation; if 4., invo-
lutively divides a right prolongation of the monomial u; (so that w41 |w ui(Prefix(r;, 1)),
then ;41 must be a suffix of this prolongation. This is because in all other cases, ;1
is either equal to u;, in which case u;y; cannot involutively divide the (left or right) pro-
longation of u; trivially; or 441 is a subword of w;, in which case u;,; cannot involutively

divide the (left or right) prolongation of u; by definition of W.

Following on from the above, we can deduce that wu; is either a suffix or a prefix of a
prolongation of w1, leaving the following four cases, where z}_; = Suffix(¢4,_;,1) and

zp_y = Prefix(ry—1; 1)-

Case A (deg(up—1) = deg(us)) Case B (deg(up—1) + 1 = deg(up))
$£~1 Up—1 mg-1 Up—1
Up Up
Case C (deg(up-1) = deg(up)) Case D (deg(up—1) + 1 = deg(uy))
Up—1 Th_y Up—1 Th1
Up Up

These four cases can all originate from one of the following two cases (starting with a left

prolongation or a right prolongation), where z = Suffix(£,, 1) and a7, = Prefix(r,, 1).

Case 1 Case 2

g Ug, Uq Ty

So there are eight cases to deal with in total, namely cases 1-A, 1-B, 1-C, 1-D, 2-A, 2-B,
2-C and 2-D.

We can immediately rule out cases 1-C and 2-A because we can show that a particular
variable is both multiplicative and nonmultiplicative for monomial u, = w;, with respect
to U, a contradiction. In case 1-C, the variable is xf: it has to be left nonmultiplicative
to provide a left prolongation for u,, and left multiplicative so that ws is an involutive
divisor of the right prolongation of w;_;; in case 2-A, the variable is #7: it has to be
right nonmultiplicative to provide a right prolongation for u,, and right multiplicative
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so that u, is an involutive divisor of the left prolongation of w,_;. We illustrate this in
the following diagrams by using a tick to denote a multiplicative variable and a cross to
denote a nonmultiplicative variable.

Case 1-C Case 2-A
£ "
a’ﬂ, uCL uﬂ. ;Eﬂ
X X

T 4

Up—1 Ty Lp—1 Up—1
I T
Ty Uy = Uq Up = Uq Lq
v v

For all the remaining cases, let us now consider how we may construct a sequence
((lasTa)s -+ (€6,78) = (€a,7a)). Because we know that each u.; is a prefix (or suf-
fix) of a left (or right) prolongation of u, (where a < ¢ < b), it is clear that at some stage
during the sequence, some u..; must be a proper suffix (or prefix) of a prolongation, or
else the degrees of the monomials in the sequence (u,, ...) will strictly increase, meaning
that we can never encounter the same (¢,7) pair twice. Further, the direction in which
prolongations are taken must change some time during the sequence, or else the degrees
of the monomials in one of the sequences (£, ...) and (r,, ...) will strictly decrease, again

meaning that we can never encounter the same (¢,r) pair twice.

A change in direction can only occur if u.y is equal to a prolongation of u,, as illustrated

below.
Left Prolongation Turn Right Prolongation Turn
333 u i "
{i C C &
Uet1 Tet1 Tet1 Uet1
¥ 3

However, if no proper prefixes or suffixes are taken during the sequence, it is clear that
making left or right prolongation turns will not affect the fact that the degrees of the
monomials in the sequence (u,, ...) will strictly increase, once again meaning that we can

never encounter the same (¢, r) pair twice. It follows that our only course of action is to
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make a (left or right) prolongation turn after a proper prefix or a suffix of a prolongation

has been taken. We shall call such prolongation turns prefiz or suffiz turns.

Prefix Turn Suffix Turn
e r
J"C uc uC mc
X X
¢ r ¢ r
wc+1 Uet1 $c+2 $c+2 Uet1 mc-}-l
X v v X
r V4
Uet2 Loto Loto U2
x X

Claim: It is impossible to perform a prefix turn when W has been used to assign multi-
plicative variables.

Proof of Claim: It is sufficient to show that W cannot assign multiplicative variables
to U as follows:

at & My (ue, U); 2l y € My (tey1, U); 0,0 & Miy(teys, U). (A.1)

Consider how Algorithm 16 can assign the variable z7, to be right nonmultiplicative for
monomial u.yo. As things are set up in the digram for the prefix turn, the only possibility
is that it is assigned due to the shown overlap between u, and u..s. But this assumes
that these two monomials actually overlap (which won’t be the case if deg(uct1) = 1);
that u. is greater than or equal to u. 2 with respect to the DegRevLex monomial ordering
(so any overlap assigns a nonmultiplicative variable to w2, not to u.); and that, by the
time we come to consider the prefix overlap between u, and w..o in Algorithm 16, the
variable a:ﬁ must be left multiplicative for monomial u.. But this final condition ensures
that Algorithm 16 will terminate with z! being left multiplicative for u., contradicting
Equation (A.1). We therefore conclude that the variable a},, must be assigned right

nonmultiplicative for monomial u.4o via some other overlap.

There are three possibilities for this overlap: (i) there exists a monomial ug € U such that
Ueyo 15 a prefix of ug; (ii) there exists a monomial uy € U such that ..o is<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>