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A Monolithically Integrated Two-Section Laser for 
Wideband and Frequency-Tunable Photonic 

Microwave Generation

Qiang Cai, Yunshan Zhang, Jilin Zheng, Yamei Zhang, Member, IEEE, Pu Li, K. Alan Shore, Senior 
Member, IEEE, and Yuncai Wang

Abstract—A monolithically integrated two-section laser is 
presented for wideband and frequency-tunable photonic 
microwave generation. The laser consists of two back-to-back DFB 
sections forming a mutually coupled structure. By properly 
adjusting the bias currents of two sections, the laser can stably 
work at the state of period-one oscillation over a wide range of 
frequency detuning. Based on this, continuous and linear tuning of 
photonic microwave signals can be achieved. Experimental results 
confirm that a large tunable range from 12.45 to 80.30 GHz can be 
realized using this laser.

Index Terms—Photonic microwave generation, monolithic 
integrated circuits, mutually coupled laser, period-one oscillation.

I. INTRODUCTION

icrowave oscillators are crucial components for 
wireless and mobile communication systems. With 
the increasing capacity demand of high-speed 

interactive multimedia services, there is a pressing need for 
microwave signal generation systems that can operate at high 
frequencies and with an ultrawide bandwidth [1], [2]. 
Conventional electronic microwave oscillators usually have a 
low frequency at the level of GHz. For higher frequencies, they 
experience rapid performance degradation due to the 
introduction of multiple stages of frequency doubling [3].

To overcome this issue, microwave signal generation using 
photonic approaches has attracted much research interest due to 
its advantages such as high bandwidth, low power consumption 
and high reliability [4]. Various photonic schemes for 
microwave generation have been studied, but they are mainly 
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based on six different mechanisms or devices: direct 
modulation [5], [6], external modulation [7], [8], optoelectronic 
oscillators (OEOs) [9], [10], optical heterodyne [11]-[13], dual-
mode lasers [14]-[17], and period-one (P1) nonlinear dynamics 
in semiconductor lasers [18]-[30]. For the schemes based on 
direct and external modulation, their generated microwave 
signals usually have a limited frequency by the relaxation 
oscillation of the used semiconductor laser or the modulator 
bandwidth [5]. OEO-based schemes can improve this problem, 
but they usually are at the cost of increasing the system 
complexity [9]. The optical-heterodyne-based approaches 
detecting two independent lasers with different wavelengths 
can easily produce high-frequency microwave signals, but their 
phase noise is very high because the two lasers commonly are 
not phase correlated [12]. Using a dual-mode laser can emit 
simultaneously two lasing modes with locked phase so that their 
generated microwave signals process a high spectral purity. 
However, this approach using the dual-mode lasers has a poor 
tuning ability due to the fixed frequency spacing between the 
two lasing modes [14].

Compared with these techniques mentioned above, the P1-
based method offers some unique advantages for photonic 
microwave generation: (i) this method is an all optical scheme 
with a simple configuration and thus not suffering from limited 
electronic bandwidths [22]. (ii) The microwave frequency 
generated by P1 oscillation can be broadly tuned from a few to 
tens of GHz by simply adjusting the strength and detuning-
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Fig. 1. (a) Schematic diagram of the MITL, (b) Photograph of the MITL, and (c) Experimental setup for generating and measuring the photonic microwave 
signals. MITL: monolithically integrated two-section laser; IOS: isolator; OC: 90:10 optical coupler; PD: photodetector; ESA: electric spectrum analyzer: OSA: 
optical spectrum analyzer.

frequency of the optical injection [23]-[26]. (iii) this technique 
has a single sideband (SSB) optical spectra structure and thus 
the associated microwave signals have the merit of low phase 
noise [27]. Although outstanding progresses the photonic 
microwave generation utilizing P1 nonlinear dynamics have 
been made, most of reported P1-based schemes are constructed 
using discrete optical devices and thus their whole systems are
bulky and unstable.

In recent years, photonic integrated chips (PICs) show the 
potential for greatly reducing the system complexity and size of 
the P1-bassed microwave generation schemes [31]. Typically, 
there are two kind of integration schemes for P1 oscillation. 
One scheme is the optically feedback laser [32]. However, this 
scheme has a very low tuning ranges of only a few GHz being 
limited by the insufficient parameter space. The other scheme 
is the optically injected laser [33]. Compared with the optical 
feedback scheme, this optical injection scheme enables broadly
tunable microwave generation. However, the PICs based on 
optical injection usually consist of three sections (two laser 
sections and one phase section) up to now. The efficient length 
of the phase section is very sensitive to temperature variations 
[34], [35]. This will significantly affect the stability of the 
associated time delay between the two DFB sections, so that the 
continuous tuning range is very difficult to be enhanced further.

To solve the problem of insufficient tuning-range confronted 
by the P1-based technique, we propose a monolithic integrated 
two-section laser (MITL) in this paper for photonic microwave 
generation [36]-[39]. In contrast with the aforementioned PICs 
with optical injection, our MITL is constructed of two back-to-
back DFB sections with a mutually coupled geometry and its 
structure is largely simplified. Experimental results show that 
this MITL can output wideband and frequency-tunable 
microwave signals by adjusting the bias current of these two 
DFBs. Quantitatively, its operation frequency can be 
continuously tuned from 12.45 to 80.30 GHz, which 
corresponds to a tuning range of about 68 GHz. Moreover, it 
should be emphasized that the frequency of photonic 
microwave increases linearly (not nonlinearly like in Ref. [33]), 
when we enhance the bias current of the associated DFB 

section. This is another merit of our two-section laser over the 
existing PICs for photonic microwave generation.

II. EXPERIMENTAL SETUP AND RESULTS

Figs. 1(a) and 1(b) show the schematic diagram and 
photograph of the MITL, respectively. The laser consists of a 
rear DFB (R-DFB) section of length 450 μm and a front DFB 
(F-DFB) section of length 350 μm, which are electrically 
isolated from each other. Both DFBs are monolithically 
integrated on an InGaAlAs multiple quantum well (MQW) 
material and grown on an indium-phosphide (InP) substrate in 
the epitaxial structure by a conventional two-stage metal 
organic chemical vapor deposition (MOCVD). The grating of 
R-DFB and F-DFB is made using the reconstruction-
equivalent-chirp (REC) technique [40] and has an equivalent π
phase shift to obtain a single longitudinal mode yield. 
Antireflection (AR) coatings with reflectivity of less than 1% 
are deposited on both facets. The two DFB sections are 
fabricated back-to-back with a mutually coupled structure, and 
they are driven by two independent currents labelled as IR-DFB

and IF-DFB in Fig. 1(a). Finally, the generated photonic 
microwave signal comes out from the right side of the F-DFB 
section. 

Fig. 1(c) illustrates the experimental setup for measuring the 
photonic microwave signal. The MITL is powered by two high 
accuracy current sources (ILX Lightwave LDX-3412), while its 
temperature is stabilized at 24.5°C with a thermoelectric 
controller (ILX Lightwave LDT-5412B). The photonic 
microwave output of the MITL passes through an isolator to 
prevent unwanted feedback disturbance and then is split into 
two parts by a 90:10 fiber coupler. One part (10%) is recorded 
by an optical spectrum analyzer (OSA, Yokogawa, AQ6370C), 
and the other part (90%) is detected by an electric spectrum 
analyzer (ESA, Rohde & Schwarz, FSW-50, 50 GHz 
bandwidth) after a high-speed photodetector (PD, Finisar, 
XPDV2120RA, 50 GHz bandwidth).

Before generating the microwave signal, we measure the optical 
spectra of the F-DFB section in the MITL. An ideal single mode 
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operation is required for P1-based photonic microwave generation. 
Fig. 2 shows the measured optical spectra of F-DFB under different 
bias currents IF-DFB when the current of R-DFB is unbiased (i.e., IR-

DFB = 0 mA). From it, we can confirm that the F-DFB always has 
a very high side-mode-suppression-ratios (SMSRs) about 60 dB.
This means that this F-DFB does not generate redundant frequency 
components induced by the possible interactions between the main 
mode and other side modes. At the same time, it also can be 
observed that the lasing wavelength moves to the longer side with
a tuning efficiency of 0.0093 nm/mA, when the bias current 
increases. The origin of the red-shift for free-running F-DFB in 
Fig. 2 is from the refractive-index change of the active region 
induced by the increased bias current [41]. In a free-running 
laser, the refractive index n(I) of the active region is linear with 
the bias current I and can be expressed as n(I)= n0+Kr (I- I0). 
Note, n0 is the refractive index when the injection current is I0, 
while Kr is a scale coefficient. Then, the associated wavelength 
shift Δλ can be calculated as follows:

0
0

= n
n

λ λ∆
∆                                   (1)

Note, Δn is the effective refractive index change, and λ0 is the 
lasering wavelength corresponding the bias current I0. 

We point that limited by the encapsulated package, the output of 
R-DFB cannot be directly measured, but it is expected that the R-
DFB should also exhibit a single-mode oscillation when it works 
independently because it has the same grating structure as that of 
the F-DFB. 

Fig. 2. Measured optical spectra of the free-running F-DFB. The bias current of
IR-DFB is unbiased, and the current of IF-DFB is biased at 45 mA, 50 mA, 55 mA, 
60 mA, 65 mA, and 70 mA, respectively.

Next, we consider photonic microwave generation. In the 
experiment, the bias current of the F-DFB is fixed at 60 mA, while 
the current injected into the R-DFB is adjusted in the range from 
40 to 100 mA. Due to the temperature and carrier density 
variations, different frequency detuning between these two DFBs 
appears. Fig. 3 shows the associated optical spectra [left column] 
and the radio frequency (RF) spectra [right column] at different 
detuning frequencies. Fig. 3(a-i) depicts the measured optical 
spectrum when IR-DFB =40 mA and IF-DFB =60 mA. From it, we can 
see that the detuning frequency Δf can be ignored, so the R-DFB 
are locked by F-DFB and thus the lasing wavelength of F-DFB can 
be observed. This does not mean that both the free-running F-DFB 
and R-DFB have the same lasing wavelength at different bias 
currents. In fact, there is a frequency detuning between the F-DFB 

biased at 60 mA and R-DFB at 40 mA. Due to its low bias current, 
the R-DFB with low power is injection-locked by the F-DFB with 
a large power. In consequence, only the lasing wavelength of F-
DFB is observed. Note, the lasing wavelength of F-DFB moves to 
the longer side compared with its free-running state at the same 
condition in Fig. 2. Different with the free-running F-DFB in Fig. 
2, the F-DFB in Fig. 3 is optically injected by another laser (i.e., 
the R-DFB). In this case of optical injection, the red-shift of the F-
DFB wavelength is induced by the cavity resonance shift [42]. 
Specifically, with the increase of the optical injection strength (the 
bias current of the R-DFB), the optical gain deficit of the F-DFB 
increases. Due to the anti-guidance effect, the refractive index 
increases and thus the cavity resonance shifts red. In addition, its 
flat RF spectrum without any prominent peaks [Fig. 3(a-ii)] further 
confirm that the MITL indeed operates at a stable continuous wave 
(CW) state.

Fig. 3. Measured optical spectra (left) and RF spectra (right). The bias current of IF-

DFB is fixed at 60 mA, and the current of IR-DFB is biased at (a) 40 mA, (b) 42.5 mA, 
(c) 55 mA, and (d) 71.6 mA, respectively.

When the bias current IR-DFB increases to 42.5 mA, the F-DFB is 
subjected to a relatively strong optical injection and a larger 
detuning frequency. Thus, the laser undergoes a Hopf-bifurcation 
to the state of P1 oscillation [43], as shown in Fig. 3(b). In this case, 
ones can find from Fig 3(b-i) that the optical spectrum is dominated 
by both the principal wavelength component of the F-DFB 
(labelled as λF-DFB) and the regenerated injection frequency of the 
R-DFB (labelled as λR-DFB). In consequence, the MITL operates at 
a single sideband (SSB) P1 oscillation, which is desirable for 
photonic microwave generation. Quantitatively, the P1 frequency 
fo is measured to be 12.45 GHz, which equals the after-injection 
detuning frequency Δf between R-DFB and F-DFB [Fig. b(a-ii)].

Further increasing the bias current IR-DFB, we can obtain a higher 
frequency of photonic microwave. For instance, when the bias 
current IR-DFB is increased to be 55 mA, the measured optical 
spectrum and RF spectrum are shown in Fig. 3(c). After 
calculation, the detuning frequency ∆f between R-DFB and F-DFB 
is 29.32 GHz [Fig. 3(c-i)], and accordingly the MITL generates a 
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photonic microwave with a high frequency of 29.32 GHz [Fig. 3(c-
ii)]. Limited by the measuring range of the available PD and ESA, 
the highest frequency 49.05 GHz of the generated photonic 
microwave is observed when IR-DFB is biased at 71.6 mA, as shown 
in Fig. 3(d).

We emphasize that in our method the microwave signal is 
generated by the period-one (P1) oscillation in the optically 
injected laser system, not optical heterodyne. Hence, there is a 
typical feature for P1 oscillation that under different operating 
conditions there are some side-bands in the optical spectra 
except for the principal oscillation [44]. In our experiment, the
F-DFB and R-DFB are mutually injected each other and thus 
three different peaks in Figs. 3(b)-(d) appear as follows: (i) The 
two high peaks correspond to the principal oscillation λF-DFB and 
injection frequency λR-DFB, respectively; (ii) The third peak 
represents another sideband. The frequency separation between 
the second sideband and principal oscillation λF-DFB is the same 
as that between the principal oscillation λF-DFB and injection 
frequency λR-DFB, indicating that the sideband is a harmonic 
signal of of the first sideband (i.e., injection frequency λR-DFB) 
due to the inherent nonlinearity of the optically injected lasers.

Furthermore, we point that all the measured RF signals are 
single-mode, as shown in Figs. 3(b-ii) to 3(d-ii). The physical 
mechanism behind the P1 oscillation can be viewed as the 
beating of two dominating wavelengths: one is regenerated 
from the optical injection while the other is emitted near the 
cavity resonance wavelength [43]. From the optical spectra in 
Figs. 3(b-i) to 3(d-i), we can determine that the two dominating 
wavelengths in our experiment is just λF-DFB and λR-DFB. 
Therefore, only a single mode exists in the associated RF 
spectra in Figs. 3(b-ii) to 3(d-ii). In theory, the second harmonic 
induced by the second sideband and λR-DFB could produce 
another microwave tone. However, the high sideband 
suppression ratio R at least higher than 10 dB [Figs. 3(b-i) to 
3(d-i)]) make the possible second harmonic be so weak that it 
will be submerged in background noise in practice. Note, R is 
quantitatively defined by treating the laser as a two-wavelength 
light source: The weaker of the two dominating modes is firstly 
chosen and then compared with the strongest component among 
the rest sidebands. The obtained power difference in dB is R. 
This can be also be confirmed from Fig. 3(b-ii) where there is 
no observable peak corresponding to the second harmonic at the 
frequency of 24.9 GHz (=2×12.45 GHz).

As demonstrated in [45], the delay time plays a critical role 
on the stability of the RF signal formation in a mutually coupled 
semiconductor lasers system. We can find that for low values 
of delay time, undesired states for microwave signal generation 
such as period-two (P2), quasi-period (QP) and chaotic 
oscillation can be greatly suppressed in a large current-tuning 
range. In our scheme, the back-to-back mutually coupled 
structure can guarantee that there is no time delay between the 
F-DFB and B-DFB. Thus, our monolithically integrated laser 
can output P1 oscillation in a very large region. In our 
experiment, the F-DFB is biased at 60 mA, while the current of 
the R-DFB (IR-DFB) can be tuned from 40 to 100 mA. Our results 
show that once the bias-current of the R-DFB is above 42.5 mA, 

our laser always keeps in the P1 state.

III. DISCUSSIONS

Fig. 4. Blue line: measured optical spectrum of the MITL with the maximal 
detuning frequency, where the current of IF-DFB is biased at 60 mA and the 
current of IR-DFB is biased at its available maximum current of 100 mA. Gray 
line: measured optical spectrum of the free-running F-DFB, which is the same 
as that in Fig. 2 when IF-DFB = 60 mA and IR-DFB=0 mA, respectively.

Firstly, we discuss the physical limit of the obtainable photonic 
microwave signal using our laser. As the current IR-DFB increases in 
the experiment, the lasing wavelength of the R-DFB moves toward 
the longer wavelength obviously, while the wavelength of F-DFB 
changes slightly. From this point of view, the maximal detuning 
frequency can be expected when IR-DFB is set to be its available 
maximum current of 100 mA. Fig. 4 shows the associated optical 
spectrum. The optical spectrum of the laser in P1 oscillation has 
two significant characteristics different with that of a normal DFB 
laser: (i) the wavelength of the DFB laser in P1 oscillation has a 
red shift than that of the free-running normal DFB laser [45]; (ii) 
The linewidth of the DFB laser in P1 oscillation is wider than that 
of the free-running normal DFB laser [21]. To make this point 
clear, we insert the measured optical spectrum of the free-running 
F-DFB (grey line) in Fig. 4 in contrast with the optical spectrum of 
the MITL with the maximal detuning frequency (blue line). As can 
be seen, the wavelength of the F-DFB under injection indeed red-
shifts from the free-running wavelength of 1551.179 nm to 
1551.490 nm. Moreover, the linewidth of the F-DFB under 
injection is slightly broaden compared with that in free-running. 
This means that our MITL works at P1 state and thus can be viewed 
as the evidence of the microwave generation. From Fig. 4 (blue 
line), we can confirm the detuning frequency comes up to a high 
value of 80.30 GHz. That means that using the present MITL can 
output photonic microwave signal with the maximum frequency of 
about 80 GHz in principle.

Furthermore, the relationship between the after-injection 
detuning frequency Δf with the bias current of R-DFB is 
investigated. Here, we point that the result above 50 GHz is 
calculated according to the measured detuning frequency 
between the two dominant modes, rather than the actual RF 
measurement. As illustrated in Fig. 5, solid dots are experimental 
data and the red dashed line is a fitted line. After calculation, the 
linearity r2 between the detuning frequency Δf and the bias current 
IR-DFB is as high as 0.99 [Note, r2=1 for perfect linearity]. In other 
words, the MITL can generate continuously and linearly tuning 
microwave signals over a very large range. Such a high linearity 
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can be explained as follows. The dynamical behaviors in 
mutually coupled lasers (MCLs) are mainly dependent on the 
detuning frequency, coupling strength and coupling delay [41], 
[42], [45]. Because of the back-to-back structure, there is no 
coupling delay in our MITL. So, the associated influence 
caused by coupling delay variation can be discounted. On the 
other hand, MCLs without coupling delay usually can realize 
the P1 oscillation in a large parameter region [45]. When MCLs 
operate at a significant detuning frequency (corresponding to a 
relatively strong injection), the system will be dominated by the 
detuning frequency and always exhibits P1 oscillation [46]. 
Considering that the bias current of the F-DFB is fixed, the 
detuning frequency is mainly determined by the red-shift 
induced by the cavity resonance shift due to the optical injection 
from the R-DFB [41], [42]. This cavity resonance shift 
increases almost linearly with the increase of the coupling 
strength [42]. The coupling strength is linear with the bias 
current of the R-DFB in our experiment, so the generated 
microwave signals can be linearly tuned in a very large range.

Fig. 5. The relationship between the optical detuning frequency Δf with the current 
of R-DFB. The current of IF-DFB is fixed at 60 mA, and the current of IR-DFB is adjusted 
from 44 to 100 mA with a 4-mA step.

Fig. 6. (a) Measured optical spectrum and (b) RF spectrum when generated 
microwave frequency f0 is about 29.32 GHz.

Figure 6 shows the measured optical spectrum and the 
associated RF spectrum when the generated microwave signal 
is about 29.32 GHz. Note, the optical spectrum in Fig. 6(a) is 
measured using an advanced optical spectrum analyzer (APEX 
AP2041B) with an ultrahigh resolution of 0.04 pm. After 
calculation, it can be determined that the linewidth ΔvF and ΔvR
are 18.32 MHz and 12.23 MHz, respectively. From Fig. 6(b), it 
can be observed that the generated microwave signal has a 
much narrower linewidth of 4.5 MHz, which is less than the 
sum of the optical linewidths. This indicates that our horizontal 
integration of the DFB lasers with two optical modes sharing 
the same optical cavity can make their phase be partially 

correlated, and thus can increase the purity of the generated 
microwave signal.

Figure 7 shows the measured frequency variation of the 
generated microwave signal within 100 minutes. In the 
measurement, we recorded the center frequency of generated 
microwave signal every 5 minutes. It can be seen clearly from 
Fig. 7 that the frequency varies within a range of ±2.15 MHz, 
which is a relatively normal level for P1-based microwave 
generator. This long-term stability is expected to be 
significantly reduced from several MHz to KHz by further 
introducing external optical feedback [21, 23, 24, 28, 29, 31], 
optical injection [33], filtered feedback [34], or phase-locked 
loop [47]. This is the aim of our next work.

Fig. 7. Frequency stability of the microwave signal from MITL when the f0 is 
29.32 GHz. (Spectrum analyzer Setup: center frequency is set at 29.32 GHz, 
span is set at 100 MHz, RBW is set at 100 kHz).

We list some typical photonic integrated chips for photonic 
microwave generation in Table 1. In general, there are mainly 
two kinds of techniques that has been photonic integrated in a 
chip: optical heterodyne and P1 oscillation. From this table, one 
can see clearly that the generated microwave signal by optical 
heterodyne technique can reach up to the THz range by 
detecting two optical beams with different wavelengths.
Typically, Dijk et al. realized millimeter-wave generation at up 
to 105 GHz based on heterodyning the optical tones from two 
integrated lasers [48]. Lo et al. proposed a monolithically 
integrated microwave frequency synthesizer where two tunable
monochromatic lasers spectrally separated by 0-10.7 nm were
realized [12]. Wei et al. demonstrated a widely tuning range of
1 GHz to 2.275 THz using feedback-cavities integrated two
DBR lasers [13]. Kim et al. designed two monolithic dual-
wavelength lasers with tuning ranges of 0.17- 0.79 THz [49]
and 0.48 - 0.15 THz [50], respectively. However, it also must
be pointed that the linewidths of the optical heterodyne 
microwave generator are very large (tens of MHz) 
corresponding to high phase noise levels. By contrast, the P1-
based technique can greatly induce the phase noise of the
generated microwave signal. Quantitatively, it can be 
confirmed from Table 1 that no matter the optical feedback laser 
[51] or optical injection laser [33], the linewidths of their 
generated microwave signals is at the level of few MHz. In 
particularly, we must emphasize that, different with the 
structure with three sections in [33], the elimination of phase 
section enables that our scheme not only has a simple structure 
and achieves a broad tuning range of tens or even hundreds of 
GHz. In sum, our scheme processes both two merits of the 
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TABLE 1. COMPARISON OF PHOTONIC INTEGRATED LASER CHIPS FOR MICROWAVE GENERATION.

Realization 
principle Chip structure Tuning 

range
Optical 

linewidth
RF Linewidth

(before narrowing) Ref.

Optical 
heterodyne

Two DFBs, an MMI 
coupler, eight SOAs, an 

electro-optical modulator 
and a UTC PD.

5 to 110 
GHz / / [48]

Two wavelength tunable 
DFB lasers, an MMI 

coupler and a PIN-PD.
0-10.7 nm 20 to 40 

MHz 90 MHz [12]

Two DBR-LDs, a 
feedback cavity, and two 

MMIs.
1 GHz-2.275 

THz / 11 MHz [13]

Two DFB sections, a 
phase section.

0.17 to 0.49 
THz / / [49]

A phase-shifted DFB 
section, a phase section, a 

DBR section.
0.48 to 1.5 

THz 5.6 MHz / [50]

P1 
oscillation

A DFB section, a phase 
section and an amplifier 

section.
30 to 38 

GHz / 3.7 MHz [51]

Two DFB sections and a 
phase section

15 to 30 
GHz / 1.9 to 3.2 MHz [33]

Two DFB sections 12 to 80 
GHz

Below
20 MHz 

4.5 MHz Our 
scheme

broad tuning range and low phase noise at the same time and 
thus has the potential to be widely used for microwave 
generation in practice.

IV. CONCLUSION

In summary, we have proposed and demonstrated 
experimentally a MITL for photonic microwave generation. 
Based on P1 oscillation in the back-to-back coupled structure, 
this MITL can output wideband and frequency-tunable 
photonic microwave signals with a large operation frequency 
range from 12 to 80 GHz. Moreover, the frequency of generated 
microwave signals can be tuned by simply adjusting the bias 
current with a high linearity of 0.99. Considering its chip-scale 
size, simple structure and good performance, we believe that 
this MITL can be a promising candidate as a photonic 
microwave generator for many applications such as wireless 
communications and microwave photonic radars.
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