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Chaotic time series prediction has been paid intense attention 
in recent years due to its important applications. Herein, we 
present a single-node photonic reservoir computing approach 
to forecast the chaotic behavior of external cavity 
semiconductor lasers using only observed data. In the 
reservoir, we employ a semiconductor laser with delay as the 
sole nonlinear physical node. Through investigating the effect 
of the reservoir meta-parameters on the prediction 
performance, we numerically demonstrate that there exists 
an optimal meta-parameter space for forecasting optical-
feedback-induced chaos. Simulation results demonstrate that 
using our method, the upcoming chaotic time series can be 
continuously predicted for a time period in excess of 2 ns with 
a normalized mean squared error lower than 0.1. This 
proposed method only utilizes simple nonlinear 
semiconductor lasers and thus offers a hardware-friendly 
approach for complex chaos prediction. In addition, this work 
may provide a roadmap for the meta-parameter selection of a 
delay-based photonic reservoir to obtain optimal prediction 
performance. 

Forecasting the dynamics of chaotic systems has important applications 
such as security analysis for random number generators (RNG) [1,2] 
and chaos synchronization in private communications [3,4]. The most 
common forecasting approach is based on regression models [5]. 
Unfortunately, these model-driven methods require strong empirical 
regularities of chaotic systems that are usually difficult or even 
impossible to be obtained in practice [6]. 

In recent years, artificial neural networks (ANNs) based methods 
have attracted increasing attention to perform chaos prediction, 
because they only use observed data to execute the prediction [6,7]. 
Generally, ANNs based methods can be divided into two types 
depending on their different topologies. One is based on feedforward 
networks (FFNs), which are mostly applied to static tasks such as 
recognition and detection but not for prediction due to their 
feedforward structure [8]. The other is based on recurrent neural 

networks (RNNs). This kind of ANNs is more suitable for forecasting 
tasks because their neurons have self-loops and backward connections. 
For example, Logar et al. utilized a RNN employing three fully connected 
layers and forty self-loops to estimate the chaotic output of Mackey-
Glass equation [9]. Zhang et al. realized multi-step prediction of Lorenz 
and Mackey-Glass equations by employing RNNs changing 5000 
weights in each training epoch [10]. Nevertheless, these traditional 
RNNs have to train each weight in a fully connected topology with at 
least three layers, so that their training processes have the problems of 
exploding or vanishing gradients and demand extensive computational 
power [7, 8]. That is also the main reason why most of these traditional 
RNNs can only be applied to predict low-dimensional chaos from simple 
mathematical models or electronic circuits [8, 11, 12]. 

In fact, there is a kind of ANN - reservoir computing (RC)-which can 
remove the aforementioned challenges, because RCs only need to train 
the output layer and thus requires minimal computational resources 
[7,8]. Until now, there have been few of reports using RC to predict high-
dimensional chaotic behaviors such as spatio-temporal chaos and 
optical chaos [7, 11-13]. Typically, Pathak et al. utilized parallel RC with 
10000 nodes to forecast the behavior of a large spatio-temporally 
chaotic system [12]. Ailm et al. predicted the peak amplitudes of chaotic 
laser pulses from semiconductor lasers with optical injection using RC 
with 6000 hidden nodes [13]. Li et al. employed RC with 5000 nodes to 
forecast the intensity time series of an optically injected semiconductor 
laser over a time duration of 0.6 ns [11]. Although using RC has led to 
some remarkable achievements, one must notice that the conventional 
RC used in the above reports still have thousands of physical nodes and 
need the help of a high-powered computer. Thus, they suffer from 
having inefficient implementations on electronic hardware [14]. 

In this letter, we propose and demonstrate a simple method utilizing 
a single-node-based RC to implement high-dimensional optical chaos 
prediction. Such a simple reservoir structure constructed with a single 
nonlinear physical node enable our method to reduce the complexity of 
the whole forecasting system and thus incurs little computational cost. 
Specifically, we employ a photonic RC (PRC) based on a single node to 
forecast the chaotic dynamics of external cavity semiconductor lasers 
(ECSL). In this method, the photonic reservoir is constructed with a 
single nonlinear physical node (viz., an optically injected semiconductor 



laser with a time delay loop). Through optimizing the effect of the 
reservoir meta-parameters such as injection strength, frequency 
detuning and feedback strength on the prediction performance, we 
successfully forecast a continuous chaotic time series over 2 ns by using 
only the observed data. Comparing with previous reports, the merits of 
our work lie in: (i) This work extends the applications of the single-node 
PRC, whose early focus was on speech recognition [15-17], nonlinear 
channel equalization [15,18,19] and radar signal forecasting [18,19]. It 
is the first time to our knowledge that a single-node PRC has been 
utilized to forecast a high-dimensional chaos laser. (ii) In contrast to 
previous reports on laser chaos forecasting, the chaotic behaviors 
predicted here are generated by an ECSL, rather than an optically 
injected laser. Usually, optically injected lasers only have six variables 
and thus a relatively low dimensionality of chaos [20]. In comparison, 
the ECSL is infinite dimensional in its state space [20,21], and thus is 
difficult to be tackled from the mathematical side. Moreover, it is also of 
significance to forecast the chaotic dynamics of the ECSL from a practical 
perspective, because it is the most widely used optical chaos source [22-
25].  

Figure 1 sketches the operating principle of our single-node PRC for 
chaos prediction. The single-node PRC includes three layers: the input 
layer, the reservoir layer, and the output layer. In the input layer, chaotic 
time series Iin(t) generated from an ECSL is multiplied by a mask vector 
M(t) and an input gain Gin to obtain the input vector S(t): 

 in( ) ,inI t G× ×=( ) ( )S t M t                   (1) 
Note, M(t) is a six-level random vector {±0.5, ±1, ±1.5} with a length of 
T, which is equivalent to the input connection weights of traditional 
reservoirs. Gin is a factor that achieves the linear scaling of the input 
vector S(t). 

In the reservoir layer, the drive laser (D-L) is modulated by the input 
vector S(t) via a phase modulator (Mod) and then injected into the 
response laser (R-L) with a time delay loop. This delay loop contains N 
equidistant points separated in time by θ = τ/N, where τ is the loop 
length. These N equidistant points are so-called “virtual nodes” since 
their roles are similar to that of the nodes in traditional reservoirs. 
Therefore, the state Xi(t) of each virtual node corresponds to a transient 
response of R-L within an interval θ. Within the whole feedback delay 
time τ, these N states of virtual nodes make up a vector Xi(t), (i = 1, 2, …, 
N). In this way, the input data S(t) is nonlinearly mapped into N-
dimensional space. The operation process in the reservoir can be 
modelled as follows: 
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where E(t) and N(t) are the complex electric field amplitude and carrier 
density of the R-L, respectively. Einj(t) is the complex electric field 
amplitude of the modulated D-L. kinj and kf represent the injection 
strength from D-L to R-L and the feedback strength of the R-L, 
respectively. ν is the frequency of the free-running R-L, while ∆ν denotes 
the frequency detuning between the D-L and the R-L. Id is the optical 
intensity of the D-L. The other parameters and their values in our 
simulation are as follows: linewidth enhancement factor α = 5.0, carrier 
density at transparency N0 = 1.4×1024 m-3, differential gain coefficient g 
= 1.414×10-12 m3·s-1, gain saturation coefficient ε = 5.0×10-23, internal 

 
Fig. 1. Schematic of single-node PRC for chaos prediction. D-L is the drive 
laser. R-L is the response laser. Mod is the phase modulator. 

cavity round trip time τin = 7.38 ps, photon lifetime τp = 1.92 ps, carrier 
lifetime τs = 2.04 ns, R-L injection current J = 18 mA and its feedback 
delay time τ = 10 ns. In addition, χ(t) is the Gaussian noise with zero 
mean and unity variance and β is the noise strength set as its typical value 
of 4.5×10-4 [26]. 

In the output layer, the output Iout(t) for the input data Iin(t) is 
calculated as a linear combination of the state vector of virtual nodes 
Xi(t) with the output connection weights vector WR for every temporal 
periodicity T, as shown in Eq. (5). We use the ridge regression algorithm 
to train the output connection weights vector WR, as shown in Eq. (6). In 
the training procedure, the ridge parameter λ is set to its typical value 
10-6 [27]. Through the training phase, Iout(t) approaches the target 
Itarget(t) as closely as possible. 
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After the training is completed, the trained vector WR remain 
constant. Then, we continuously use the output Iout(t) as the next input 
data I’in(t) in the input layer to forecast the future chaotic behaviors, as 
indicated by the orange dashed line in Fig. 1. The prediction 
performance is evaluated by calculating the normalized mean squared 
error (NMSE) between the prediction result and the target value [28]. 
Because we employ five sets of data for the prediction, their average of 
NMSEs in five sets is the final evaluation result. The NMSE of each data 
set is defined as below: 
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                (7) 

where Iout(t) stands for the predicted results of the single-node-based 
PRC. Itarget(t) denotes the target value. L is the total number of test data 
and var<·> presents the variance. 

In the following, we will validate the feasibility of our method. First, 
we produce chaotic intensity time series through numerical simulation 
for training and testing the PRC. Here, chaotic dynamics in the ECSL is 
described using the Lang-Kobayashi rate equations [29], which consists 
of Eqs. (2) and (3) modified as follows: (i) the injection term 
kinj/τinEinj(t)exp(i2π∆νt) in Eq. (2) is omitted; (ii) some critical 
parameters are reset. That is, feedback strength kf’ = 0.054, the feedback 
delay time τ’ = 1 μs, and the noise strength β = 1.5 × 10-6. In this 
simulation, 105 data points of chaotic intensity time series are finally 
recorded with a sampling period of 10 ps. Figure 2(a) shows the power 
spectrum of the chaotic time series with a relaxation oscillation 
frequency about 4 GHz, which is similar with that in an experimental 
ECSL. Further, we can confirm from its associated phase diagram [Fig. 
2(b)] that the trajectories of attractor are complicated and cover a wide 
area, which is more complex and unordered than the chaotic attractor 
of the optically injected laser as shown in Ref. [11]. 



 
Fig. 2. (a) Power spectrum and (b) Phase diagram of the ECSL with a 
feedback delay time of 1 μs. The orange and the violet attractors are plotted 
for the 500 ns and the 5 ns chaotic time series, respectively. 

Next, we determine the optimal number of training samples Ns, 
number of virtual nodes Nv, input gain Gin and leakage rate δ of the PRC 
one by one. To begin, we initialize these four parameters as follows: Ns = 
2500, Nv = 1000, Gin = 1 and δ = 0.15. After that, we first optimize the 
number of samples Ns while keeping the other three parameters fixed. 
From the associated result [Fig. 3(a)], we confirm that Ns = 15000 is the 
best compromise between the prediction performance and the training 
efficiency, where the corresponding NMSE is 1.47. Secondly, we 
optimize the number of virtual nodes Nv. In PRC, the number of virtual 
nodes determine whether the reservoir can fully learn the 
characteristics of the training samples. Figure 3(b) depicts the 
dependence of the prediction ability on the number of virtual nodes Nv, 
where Ns is fixed at its optimal value 15000 while Gin and δ are fixed at 
their own initial values. From Fig. 3(b), we find that the NMSE decreases 
with increase of Nv and tends to a stationary value. Thus, we choose Nv = 
800 where the NMSE corresponds to the lowest value 1.44. Thirdly, we 
determine the input gain Gin, which is used to adjust the amplitude of the 
input signal. As shown in Fig. 3 (c), when Ns = 15000, Nv = 800 and δ = 
0.15, a relatively small NMSE = 0.86 at the case of Gin = 1.5. Further, we 
optimize the last parameter (i.e., the leakage rate δ) by setting the other 
three parameters at their optimal values (Ns = 15000, Nv = 800 and Gin = 
1.5). δ contributes to the update speed of the reservoir by establishing a 
connection among every two virtual nodes. The smaller δ is, the faster 
the update speed. From Fig. 3(d), it can be clearly seen that the optimal 
leakage rate δ is 0.25 because the associated NMSE at this point reaches 
its lowest value 0.59. Considering the numerous training samples and 
relatively few virtual nodes in the training phase, an appropriately fast 
update speed is in line with practical needs. 

Then, we consider the effect of critical meta-parameters of the 
reservoir, which are the injection strength kinj, frequency detuning ∆ν 
and the feedback strength kf, respectively. (i) Figures 4(a1) and (a2) 
show the effect of kinj on the dynamics and performance of the PRC, 
respectively. kinj mainly affects the consistency of transient response, 
which is a fundamental feature of RC and relates to the reproducibility 
of system responses under repetitive injection of similar inputs [14]. 
From the bifurcation diagram of the free running system [Fig. 4(a1)], we 
can find that when kinj is small, the dynamics of system is a single-cycle  

 
Fig. 3. NMSE versus the (a) number of training samples Ns for Nv = 1000, Gin 
= 1 and δ = 0.15. (b) number of virtual nodes Nv for Ns = 15000, Gin = 1 and δ 
= 0.15. (c) input gain Gin for Ns = 15000, Nv = 800 and δ = 0.15. (d) leakage rate 
δ for Ns = 15000, Nv = 800 and Gin = 1.5. 

 
Fig. 4. (a1) Bifurcation diagram of the R-L output and (a2) NMSE versus the 
injection strength kinj for kf = 0.01 and ∆ν = -5 GHz. (b1) Bifurcation diagram 
of the R-L output and (b2) NMSE versus the frequency detuning ∆ν for kf = 
0.01 and kinj = 0.05. (c1) Bifurcation diagram of the R-L output and (c2) NMSE 
versus the feedback strength kf for kinj = 0.05 and ∆ν = -5 GHz. 

state. With further increase of kinj, the dynamical state of the PRC 
becomes more complex. Combined with Fig. 4 (a2), we confirm that the 
NMSE is lower in the single-cycle dynamic state. Therefore, we choose 
kinj to be 0.05 where the PRC has optimal consistency. (ii) Figures 4(b1) 
and 4(b2) illustrate the influence of frequency detuning ∆ν on the 
reservoir of the PRC. From Fig. 4(b1), we observe that when ∆ν changes 
in the region from -20 GHz to 20 GHz, the system undergoes a transition 
from a single-cycle state to chaos and then returns to another single-
cycle state. Figure 4 (b2) is the corresponding NMSE with the changing 
of ∆ν. We find that a smaller NMSE can be obtained at the edge of chaos. 
Thus, -5 GHz frequency detuning is set in the PRC, where the input signal 
can be mapped to the high-dimensional space and thus achieves the 
great prediction performance. (iii) we discuss the effects of kf when kinj 
is 0.05 and ∆ν is -5 GHz. It can be seen from the bifurcation diagram in 
Fig. 4(c1) that the system quickly enters a chaotic state after a short 
single-cycle state with the increase of kf. The trend of NMSE in Fig. 4 (c2) 
is that the NMSE gradually decreases and then increases with increasing 
kf. The minimum NMSE can be obtained when kf is 0.04. This is because 
the feedback strength kf reflects the short-term memory ability of the 
reservoir [17]. Meanwhile, it also should be considered that an excessive 
feedback strength takes the system into an extremely complex dynamic 
state. At this point, the transient response will be disturbed easily and 
then the consistency of the system will be degraded [14, 17]. 
Considering the balance between the consistency and short-term 
memory, we thus choose a feedback strength kf of 0.04. 

After the above training processes, the meta-parameters of PRC have 
been adjusted to their optimum values, respectively. Under these 
conditions, we utilize the trained single-node RPC to forecast the future 
chaotic behaviors of the ECSL. Figure 5(a) shows the numerically 
produced chaotic time series from the ECSL, while Figure 5(b) is the 
forecasting chaotic time series by our PRC. Comparing them, we can 
confirm that the upcoming chaotic time series can be continuously 
predicted by the single-node PRC in a time duration over 2 ns. The 
associated NMSE is calculated to be less than 0.1. 

Furthermore, we numerically produce new chaotic time series from 
another ECSL with different internal parameters from those used in the 
R-L to investigate the flexibility of our PRC. Note that, the feedback delay  

 



Fig. 5. (a) 
Simulated chaotic intensity time series of the ECSL with a 1 μs feedback 
delay time. (b) Predicted time series of the PRC. 

 
Fig. 6. (a) Power spectrum, (b) Phase diagram and (c1) Simulated chaotic 
intensity time series of the ECSL with different parameters from those 
used in the R-L for PRC. (c2) Forecasted time series of the PRC. The orange 
and the violet attractors are plotted for the 500 ns and the 5 ns chaotic time 
series, respectively. 

time in this ECSL here is set to be a more commonly used value of a few 
nanoseconds. Quantitatively, these associated parameters and their 
values are as follows [29]: photon lifetime τp = 2 ps, carrier lifetime τs = 
2 ns, carrier density at transparency N0 = 3×1024 m-3, gain saturation 
coefficient ε = 2.5×10-23 and feedback delay time τ = 5 ns. Figures 6(a) 
and (b) show a typical power spectrum of the simulated chaotic time 
series and its associated chaotic attractor. After re-training the PRC with 
these chaotic time series, we find that the future chaotic behaviors of this 
new ECSL can be forecasted well, as shown in Fig. 6(c). Comparing the 
numerical simulated chaotic time series [Fig. 6(c1)] with that forecasted 
by our PRC, we confirm that the prediction time is about 2.3 ns with a 
NMSE lower than 0.1. In contrast with Fig. 5, it can be determined that 
the prediction performance of the PRC is not greatly affected, although 
chaos comes from two different ECSLs. 

We point out that such good prediction results benefit from the 
unique short-term memory processed by the PRC. As known, whether 
a network has a memory property is critical for processing time-
dependent signals. Due to the delay loop, the past information of the 
input signal can mix with the current input in the reservoir layer so that 
our PRC has an inherent memory property. As the input of the reservoir 
in our prediction task, optical chaos is a kind of signal with a short-time 
relevance. Therefore, the memory in our PRC needs to clear after some 
time to allow responses to be influenced only by the recent past. As 
demonstrated by us in [30], this requirement can be satisfied when the 
reservoir operates (in the absence of input) at the edge of the unstable 
region by optimizing its meta-parameters such as injection strength, 
feedback strength, and frequency detuning. 

In conclusion, we have numerically demonstrated a method based on 
single-node PRC to continuously forecast the chaotic behaviors of 
ECSLs. Moreover, we have investigated the effect of some critical 
hyperparameters (i.e., virtual node number, the training data size, input 
gain, leakage rate, injection strength, frequency detuning, feedback 
strength) on prediction performance. Final results demonstrate that 
using our method, the upcoming chaotic time series can be continuously 

predicted in a time duration over 2 ns with a normalized mean squared 
error lower than 0.1. The forecasting performance may be further 
improved by introducing parallelizing techniques. Considering the good 
performance and simple optical devices, we believe that the single-node 
PRC offers a hardware-friendly approach for complex chaos prediction. 
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