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Abstract 

This thesis is primarily concerned with the description and develop­

ment of the Quantum Classical Moment ( QCM) approach introduced 

by Burghardt and Parlant. This scheme combines the quantum hy­

drodynamic and classical Liouvillian representations by generating 

partial hydrodynamic moments. The time evolution of the partial 

moments are governed by a hierarchy of coupled equations. For 

pure quantum states, the hierarchy terminates at the first order. 

The application of the QCM approach for pure states subject to an­

harmonic potentials ( double well and Eckart barrier) coupled to a 

classical harmonic mode is demonstrated in Chapter 4. However, in 

the hydrodynamic formulation of mixed quantum states, no simple 

closure to the hierarchy exists. 

Chapter 5 develops a closure scheme that uses information embedded 

in the known lower order moments to expand the underlying Wigner 

phase space distribution function in a Gauss-Hermite orthonormal 

basis. The application of the closure scheme is demonstrated for 

both dissipative and nondissipative dynamics of various potentials. 

The thesis concludes with a presentation of the extended molecu­

lar hydrodynamic approach to describe non-adiabatic salvation phe­

nomena. A mixed quantum-classical description of the system is 

derived where a classical solvent interacts with a quantum two level 

solute. A comparison of the dynamics of the hydrodynamic fields 

obtained from the extended molecular hydrodynamic approach is 

made with the phase space approach. The differences observed are 



attributable to the moment hierarchy approximation made in the 

molecular hydrodynamic scheme. 
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Chapter 1 

Introduction 

Quantum dynamics is recognised as a key area of science that is in­

dispensable in developing our understanding of a wide range of pro­

cesses and phenomena. In chemistry, it has been applied to diverse 

areas such as reactive collisions, photochemistry, and simulations of 

gas surface encounters and has generally resulted in our development 

of a deeper understanding of matter and physical phenomena. It has 

been widely used to rationalise experimental results from ultrafast 

spectroscopy [1, 2]. Predictions of quant um mechanics have been 

verified experimentally to a very high degree of accuracy. Indeed, 

t here are no known instances where the predictions given by quan­

tum mechanics are in conflict with experimental data. 

The dynamics of such processes can be understood by solving the 

time-dependent Schrodinger equation (for wavefunctions) or the Liouville­

von Neumann equation (for density operators). Molecular systems 

which are of part icular interest to chemists, may compose of many 

atoms, clusters, polymers etc. These systems are rarely isolated from 

t he surrounding environment, an interaction with the environment is 
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always present. As a result, these systems have an enormous number 

of degrees of freedom. Although a fully quantum dynamical treat­

ment is essential to capture non-classical effect such as quantisation, 

it is unfeasible due to the large number of degrees of freedom in­

volved. While an exact quantum dynamical description is currently 

computationally prohibit ive for such systems, there are a variety 

of innovative approximate schemes that have been proposed which 

show considerable promise in their applicability. 

The usual approach is to try to partit ion the global system to a 

relevant part that can be treated by quantum mechanics and an ir­

relevant part that can either be treated approximately or, as is often 

done, ignored. This is limited to situations where the quantum sub­

system interacts weakly with the remaining degrees of freedom. In 

most cases the interaction with the remaining degrees of freedom 

cannot be ignored. Typical examples include electron transfer in 

solvated molecules and intramolecular proton transfer. A number 

of approaches exist for the treatment of such complicated molec­

ular systems. Among these are multiconfigurational methods [3], 

semi-classical approaches [4, 5], reduced density matrix approaches 

and mixed quantum-classical approaches [6, 7]. The latter mixed 

quantum-classical description is particularly appropriate if the sys­

tem can be described in terms of light "quantum" particles that cou­

ple to external heavy particles. The dynamics of the heavy degrees 

of freedom may then justifiably be treated explicitly in a classical 

mechanics framework. Theoretical and computational advances in 

mixed quantum-classical methods are growing at a rapid pace. The 

subject is an intense area of research [8], providing insights into a 

6 



wide range of systems [9, 10, 11] - from molecular electronics [12] to 

underst anding the structure and dynamics of proteins [13]. 

The aim of mixed quantum-classical dynamics is to treat only a few 

degrees of freedom quantum mechanically and the remaining degrees 

of freedom are t reated classically, usually in a trajectory approach. 

The key strength of a mixed quantum-classical approach is its ap­

plicability to a wide range of very large systems t hat are far beyond 

the capabilities of pure quantum dynamical or even semi-classical 

methods. The idea of t reating a large number of degrees of freedom 

classically in a molecular dynamics type approach is an attractive 

one; however, it is not straightforward as to how a mixture of classical 

and quantum subsystems can be combined in a single scheme. The 

two approaches are fundamentally different. Quantum mechanics is 

statistical/probabilistic and non-local in nature, and is deterministic 

only insofar that the wavefunction, 'If;, or the density operator, p, can 

be determined for all time, provided the init ial conditions and the 

Hamiltonian are known. Classical mechanics on the other hand, is 

a local approach and, provided the init ial condit ions and the forces 

acting on the system are known, is completely deterministic. Sev­

eral approaches have been developed to address this self-consistency 

issue; mainly, the Ehrenfest mean field approach [14], surface hop­

ping methods developed by Tully et al. [15, 16], and more recently, 

mixed quantum-classical Liouville methods [17, 18] and the mixed 

quantum-classical Bohmian (MQCB) method [19, 20]. 

The central focus of this thesis is the approach that was recently 

introduced by Burghardt and Parlant [21, 22, 23]. In this scheme, 
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Figure 1.1: Quantum subsystem coupled to a classical subsystem. 

which is referred to as the quantum-classical moment (QCM) ap­

proach, the quantum sub-system is treated hydrodynamically and 

the classical sub-system is described in a Liouville phase-space set­

ting (see Fig. (1.1)). This allows the simulation of larger systems 

with many degrees of freedom. The QCM approach is ideally suited 

to develop a mixed quantum-classical analogy of the immensely suc­

cessful classical MD approach. The key concept of the methodology 

is the combination of quantum hydrodynamic trajectories wit h clas­

sical Liouvillian trajectories. The approach fully accounts for corre­

lations between the quantum and classical subsystems as they couple 

the same type of objects i.e. trajectories. The definition of quantum 

trajectories comes from Bohmian ( or hydrodynamic) representation 

of quantum mechanics [24]. In this interpretation, the wavefunction 

takes on the role of guiding t he motion of particles. The evolution 

of quantum trajectories are governed by a quantum force as well as 
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the classical force seen for Hamiltonian, classical trajectories. 

The combination of the two distinct pictures (i.e. quantum hydrody­

namic and classical Liouvillian) is achieved by constructing partial 

moments, (Pnp)q- These are obtained by integrating the Wigner 

function Pw over only one of the phase space momentum variables 

p. This yields an infinite hierarchy of moments, (Pnp)q- For pure 

states, only the first two partial moments are required to fully char­

acterise t he system. In the case of Gaussian mixed density, the 

first three moments are required [22, 23] . For a ge eral mixed state 

quantum density, the infinite hierarchy is required to describe the 

system. For the QCM approach to be applicable in mixed quantum 

states, a method of terminating the hierarchy must be developed. 

This is a major drawback of the QCM approach. Different methods, 

based on the maximum entropy method, are investigated in this the­

sis [25, 26, 27, 28], in order to terminate the moment hierarchy. 

There are many physical situations where the QCM description is 

appropriate. In chemistry many isomerisations are governed by dou­

ble well potentials, where each potential well corresponds to a stable 

conformation of the molecule. A typical example is intramolecular 

proton transfer. Proton transfer plays a fundamental role in many 

molecular processes and is crucial for understanding the properties 

of many liquids such as water and alcohols. Furthermore, it plays 

an integral role in the structure of proteins and DNA. The transfer 

of a proton between the heavy atoms such as nitrogen and oxygen 

is a process that involves tunnelling and so a quantum mechanical 

description of the process is essential. However, t he proton transfer 
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Figure 1.2: Structure of salicylideneaniline and salicylidene-1-

naphthylamine of Ref. [29]. 

is influenced by the motion of the other atoms in the molecule, par­

ticularly the vibrational motion of the heavy atoms. This provides a 

natural setting for a QCM description. A pertinent example of this is 

seen in Schiff bases, where an ultra fast proton transfer occurs when 

the molecule is excited to a higher electronic state [29]. Examples 

of Schiff bases studied in the literature are illustrated in Fig. (1.2). 

There is much interest in pursuing dynamical modelling of proton 

transfers [30] as it has many potential interesting applications [31] 

in laser dyes, molecular storage devices and optical switches. 

In nanotechnology, the fact that certain molecules have the ability to 

isomerise from one characteristic form to another suggest that they 

are capable of acting as molecular switches. The two different physi­

cal forms of the compound acts as 'on' and 'off' states of the switch. 

It is apparent that azo compounds fit the above criteria [32, 33]. 

This class of compounds are of the form R-N=N-R (see Fig. (1.3)) 

and can isomerise with the two R groups cis or trans to each other. 

The mechanism of this photoisomerisation has been extensively stud­

ied in the literature in recent years to discover whether the torsion 

or the inversion process is favoured. In most of these studies, the 

R groups are large and cannot be described purely quantum me-



Figure 1.3: Mechanisms of the inversion (top) and torsion (bottom) of 

the photoisomerisation of azobenzene. 

chanically. The mixed quant um-classical moments approach may be 

feasible here, describing t he isomerisation mode quantum mechani­

cally and the remaining modes of the molecule classically. 

A further example in nanotechnology is the conduction of an electron 

along a molecular wire. The conduction is dependent on electron­

phonon coupling and t he QCM description is ideally suited for such 

processes. 

It is clear that there is huge potential for the application of the 

QCM approach. It is crucial that a robust method is developed 

to terminate t he moment hierarchy. This would allow t he QCM ap­

proach to be further developed for even larger systems, beyond what 

is achievable with other mixed quantum-classical methods. 
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Structure of Thesis 

Chapter 2 presents the general background theory that underpins 

the concepts developed in the thesis. In part icular pure and mixed 

quant um st ates are defined. Furthermore, the Bohmian ( or hydrody­

namic) interpretation of pure state quantum mechanics is developed 

with t he intention of introducing quantum trajectories. In Chapter 3 

the hydrodynamic picture for mixed states derived by Burghardt et 

al. is presented. The connection between pure (Bohmian) and mixed 

state hydrodynamics is also shown. Emphasis is placed upon clas­

sical limit considerations in hydrodynamic phase space. This along 

with a comparison of the hydrodynamic space versus Liouville space 

motivates t he construction of a hybrid quant um-classical scheme fun­

damentally based on the hydrodynamic picture. Chapter 3 finishes 

by presenting the t ime evolution of key concepts presented in the 

thesis i.e. Wigner function, hydrodynamic moments and quantum 

trajectories subject to differing potential functions. 

In Chapter 4, the mixed quantum-classical dynamical scheme of 

Burghardt and Parlant is described that couples quant um hydro­

dynamic trajectories wit h classical Hamiltonian trajectories. This is 

achieved by generating part ial moments i.e. taking a hydrodynamic 

projection for selected degrees of freedom. This quant um-classical 

moment ( QCM) approach has the potent ial of simulating large dy­

namical systems containing many degrees of freedom. The applica­

tion of the QCM is shown for a double well coupled to a harmonic 

mode and an Eckart barrier coupled to a harmonic mode. The hydro­

dynamic quantit ies for t hese examples were extracted from the un-
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derlying wavefunction, 'ljJ (i.e. pure states) . The extension to mixed 

states would require the propagation of an infinite hierarchy of mo­

ment equations. To this end, Chapter 5 investigat es methodologies 

to close the hydrodynamic hierarchy which is the major drawback of 

the QCM approach. Very simple schemes such as t he dampening of 

the effect of higher order moments offer very little or no improvement 

over a cold cut-off. Numerical methods based on maximum entropy 

estimates are presented including t he Grad Hermite approach and 

result s are shown for the Hermite closure scheme. Application to 

both dissipative and non-dissipat ive systems are presented. 

Finally, Chapter 6 describes salvation phenomena, i.e. t he response 

of a solvent environment to a change in the charge distribution of 

a solute . The extended molecular hydrodynamic approach is pre­

sented for a two state quant um solute. Preliminary results of the 

solvent response to a change in the charge distribution of a solute is 

presented. 
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Chapter 2 

Background Theory 

2.1 Schrodinger equation 

In quantum mechanics, the t ime-dependent Schrodinger Equation 

describes how t he states of a physical system varies with time, 

in
8
8 

'f(r, t) = H'f(r , t) 
t 

(2.1) 

where i = .J=I, H is the Hamiltonian operator, 'f(r, t) is the time 

dependent wavefunction and n is the reduced Planck's constant. 

This wavefunction is inherently statistical and has the probabilit ies 

of the outcomes of all possible measurements that can be made on 

the system [l]. Assuming normalisation, 

1_: ['f(r, t)l2dr = 1 (2.2) 

the conventional interpretation of quantum mechanics defines [ '1/J ( r, t) [2 

as the time dependent probability density of finding the particle at 

position r . Given t he initial wavefunction 'f(r, 0) is known, the wave­

function is determined for all time. This yields a complete descrip­

tion of the state of an individual system. 
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The Hamiltonian is an operator given by the sum of the kinetic and 

potential energy such that, 

(/,2 
H = T + V = - - v72 + V (r) 

2m 
(2.3) 

With a time independent Hamiltonian, the wavefunction can be ex­

panded in t he eigen basis, { <Pn ( r)}, of H , 

00 . 

'i/J(l) = L Cn</Jn(r)e-kEnt (2.4) 
n=O 

where En are t he eigenvalues of the system. The complex valued 

coefficients en, 

(2.5) 

are such that len l2 represent the probability that measurement of 

the energy of the system yields En- The time dependent probability 

density is then given by, 

00 00 

l'lji(r, t)l2 = L L c:iG,ne- w(m- n)t</J:i</Jm (2.6) 
n=Om=O 

where w(m - n) = (Em - En)/n. 

Average or expectation values of any experimental observable can 

be obtained by taking each possible outcome weighted by the prob­

ability of obtaining that outcome. For a normalised wavefunction, 

the average value of an observable is given by [2], 

(A)= 1-: 'lj;*(r, t)A'lj;(r, t)dr = (1/; (t) IAl'ljl(t)) (2.7) 

Furthermore, the expectation value of the total energy of the wave­

function is given by, 

(E) = (1/J(t)lil l'ljl(t)) (2.8) 
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The Dirac Bra-Ket notation [3] has been introduced in Eq. (2.7). 

The wavefunction is represented by the ket vector l'l/;) and its com­

plex conjugate is denoted ('l/;I. Combining t he Bra and Ket gives 

('ljJl'ljJ) = J 'ljJ*'ljJdT. 

The solut ion of the Schrodinger equation and its probabilistic inter­

pretation has been the cornerstone of quantum dynamics. However, 

an alternative formulation of the equation leads to different inter­

pretations of the wavefunction and indeed yields different methods 

to solve quantum dynamical problems. 

2.2 Bohmian Mechanics 

The Bohmian (or hydrodynamic) approach is an alternative interpre­

tation of quantum mechanics and in particular of the measurement 

process. In the early days of quantum mechanics, de Broglie [4, 5, 

6, 7, 8] suggested that the wavefunction does not only predict the 

likely outcome of every experiment, but also guides the motion of 

an ensemble of identical particles according to l'ljJ(r, t)l2. This con­

cept was developed by Bohm in 1952 [9, 10]. This is known as the 

de Broglie-Bohm pilot wave theory or the causal interpretation of 

quantum mechanics. Within this formalism, the wave-particle du­

ality of conventional quantum mechanics is divorced so the system 

has both waves and particles. These particles are understood to 

have precise trajectories. This trajectory picture directly emerges 

from a reinterpretation of the quant um state, 'ljJ . The key difference 

between quantum trajectories and their classical versions is the pres­

ence of the quantum potential Q(r, t) in the quantum formulation . 
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The quantum potential is a dynamical quantity which depends on 

the curvature of the wavefunction. A brief derivation of the equa­

tions of Bohmian mechanics is presented here. 

The one dimensional r wavefunction may be written in the polar 

form of Madelung [11], 

(2.9) 

where R(r, t) is the amplitude of the wavefunction and S(r, t) is the 

action, both of which are real-valued. The action function is related 

to the wavefunction by 

(2.10) 

Inserting t he polar form of the wavefunction Eq. (2.9) into the Schrodinger 

equation, 
. 8'1j; -,,,2 32 
in-= ----'I/J + V(r t) 'lj; at 2m 8r2 ) 

(2.11) 

and separating t he real and imaginary parts (see Appendix A) , two 

real coupled equations are obtained, 

8R
2 

= _ 2_ _.Q_ (R2 8S) 
at mor 8r 

which is derived from the imaginary part, and , 

as 1 (as)2 

-at = 2m or + Q(r, t) + V(r, t) 

derived from t he real part. 

(2.12) 

(2.13) 

Eq. (2.13) is the quantum Hamilton-Jacobi equation, and differs 

from its classical form by the presence of the quant um potential 
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Q(r, t). This quantum potential is dependent on the quantum state 

via the curvature of the amplit ude R(r, l), 

ri2 a2R 
Q(r, t) = --

2 
R~ (2.14) 

m,, ur 

Taking the gradient of the quantum Hamilton-Jacobi equation Eq. (2.13) 

yields (see Appendix B), 

m dv = _ [oV + oQ] (2.15) 
dt or or 

which has the form of Newton's second law of motion. Because of 

the presence of the quantum potential term Q(r, l), t he classical tra­

jectory becomes a quantum trajectory. 

Recognising that p(r, t) = R(r, t)2 = lv,,(r, t)12, Eq. (2.12) can be 

written , 

~~ = -!.!. (p~:) (2.16) 

The velocity field [1], v, is defined as, 

1 as 
v=--mor (2.17) 

Eq. (2.16) may t hen be written as 

[) [) 
!:lp + ~(pv) = 0 
ut ur 

(2.18) 

This is the continuity equation for t he quantum density which is 

now treated as a fluid. The total time derivative of the continuity 

equation Eq. (2.18) results in the second equation of motion, 

dp ov 
- = -p­
dt or (2.19) 

This shows that the evolution of the quantum fluid probability den­

sity is determined by the gradient of the velocity field, 

dlnp 

dt 

21 
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2.3 Density Operator 

The discussion so far has focussed on wavefunctions or state vectors. 

These are used for systems where a complete description is avail­

able. This is only possible if a set of observables exists from which 

all physical quantit ies can be measured simultaneously [3]. Such a 

system is known as a pure st ate. An example of a pure state is one 

with a perfectly known preparation history such as the polarisation 

stat e of photons that have passed through a polariser. 

In many cases the state of a system cannot be perfectly known. 

This could be if the system has too many degrees of freedom. A per­

tinent example is an atom undergoing spontaneous emission when it 

is coupled to an environment . A state vector description is impossi­

ble, a more general methodology is required. The system must now 

be described by a statistical mixture of possible state vectors for t he 

system - this is described as a mixed state. Instead of t reating a 

statistical mixture of wavefunctions, it is more convenient to use t he 

density operator p(t ) [12, 13]. This formalism maximises the partial 

information we have of the system in question. 

In the general case, the density operator is given by, 

(2.21) 
°' 

where w°' is are weights of each pure state, i.e. the probability t hat 

a particular state is incorporated to t he complete mixture of states. 

Given that the states l'lf'(t)) are normalised, t he weights w°' must 

satisfy Law°' = l. The density operator p( t) can be used to describe 

both pure and mixed states. For a pure state, as there is only one 
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state present, the weight for that state equals unity such that, 

p(t) = lit,(t)) (it,(t)I (2.22) 

A measure of t he purity of the system can be determined by taking 

the trace of t he square of t he density matrix, where Tr(p2) = 1 for 

pure states and Tr(p2) < 1 for mixed states [2]. As t he wavefunction 

l7J,(t)) in the basis 1¢(t)) can be written, 

(2.23) 

the matrix elements of the density operator p(t) is given by, 

Pmm(t) 
a 

(2.24) 

for the diagonal elements and 

Pmn(l) (<PmlP(l)lc;bn) = I:(<Pmlwal 'i/Ja)('f/;al<Pn) 
a 

I: Wa(<Pml7Pa) (7Pal<Pn) 
a 

(2.25) 
a 

for off-diagonal elements. The diagonal elements correspond to the 

probability t hat the outcome of measurement places the system in 

a particular state of the defined basis. They are often called pop­

ulations. T he off-diagonal elements of the density matrix however 

are the so-called coherences. These elements are associated wit h the 

interference effects of the states. 

J ust as t he Schrodinger equation describes how pure states evolve in 
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t ime) t he quant um Liouville equation describes how a density ma­

t rix evolves in t ime. As the time dependence of the density operator 

depends on the evolut ion of the individual state vectors, the quan­

t um Liouville equation can in fact be derived from the Schodinger 

equation [12L 

: - -¾ ~ Wa [iIJvJa)(VJa l - l'l/Ja)('l/JaliI] 
i . i 

- ,=; [H) p] = -r/,P (2.26) 

where [ H ) p] denotes the commutator and L is t he Liouvillian super­

operator. 

2.4 Phase Space and the Wigner Func­

tion 

It can be concluded from previous discussions that a system of inter­

est can be described quant um mechanically by a wavefunction 'ljJ for 

pure states and by a density operator p for mixed states. The state 

of a classical system can be defined by a point in phase space that 

defines the coordinate) Q(t), and moment um) P(t) simultaneously. 

In a dynamical scheme, this point in phase space evolves along a tra­

jectory. Instead of launching a range of trajectories from different 

init ial points in phase space) it is more convenient to propagate a 

continuous time dependent probability density. This density Pel has 

the probability of finding trajectories in a small phase space cell [14]. 

This density is nonnegative, Pel 2'.'. 0, and satisfies the normalisation 

condit ion, 

I I Pel(q,p, t)dqdp = l (2.27) 
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This stage forms an essential part of classical statistical mechanics, 

as one can easily obtain average values of observables from the phase 

space probability density. The problem with extending this repre­

sentation to quantum mechanics is that the uncertainty principle 

imposes a constraint on the correlation between q and p. However , 

if the product of the root-mean-square half widths of the marginal 

distributions [15] , 

p(q, t) = = 1
00

00 

p(q, p, t)dp 

p(p, t) = = 1
00

00 

p(q, p, t)dq 

are not less than ~ then the uncertainty principle is satisfied. 

(2.28) 

There are several quantum phase space distribution functions avail­

able that satisfy the above conditions [16]. The choice of which 

function is used depends entirely on the physical system in question. 

For example, due to its smooth, coarse grained structure, the posi­

tive definite Husimi distribution function is popular for the quantum 

dynamical study of classically chaotic systems [17, 18]. In quantum 

optics, the Glauber-Sudarshan distribution function is widely used 

due to its suitability for evaluating expectation values of normally 

ordered operators. 

For application in a mixed quantum-classical molecular dynamics 

scheme, the distribution function of choice is t he Wigner function. 

This was developed by Wigner to study quantum corrections for 

thermodynamic equilibrium [19]. It is formulated in terms of the 

Fourier transform of an overlap function, 

O(q, r) = 'l/J(q - r/2, t) 'ljJ*(q + r/2, t) 
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where r is the separation. The Fourier transform of the overlap 

function yields an expression for the Wigner function for pure states, 

Pw = 
2
~ri .I eiprfli?j;(q - r/2, t)?j;*(q + r/2, t)dr (2 .30) 

The Wigner density function can also be defined by its relation to 

the positional-dependent density operator where ?j;(x) = (xl?j;) 

Pw 1 / i:E( rl )( I r) 21rri e ,.,_ q - 2 'l/J 'tp q + 2 dr 

1 / i:E( rl I r) - e r. q - - p q + - dr 
21rii 2 2 

(2.31) 

Unfortunately, the Wigner function is not without its drawbacks. 

The function can take both positive and negative values and there­

fore, strictly it is not a true probability function. Instead, the Wigner 

distribution should be considered a quasi-probability distribution 

function. The origin of these negative basins is known to be diffrac­

tion fringes that occur when interference effects are dominant, for 

example during barrier scattering. A clear advantage of t he Wigner 

function is that it provides an useful tool to compare classical and 

quantum dynamics in phase space. Furthermore, the equation of mo­

tion for the Wigner function has a simpler form than that of other 

distribution functions. 

Dynamics of the Wigner Function 

The equation of motion for pw is obtained by taking the Wigner 

transform (prescription in Eq. (2.30)) of the quantum Liouville equa­

tion Eq. (2.26) (see Appendix C) . The resulting Wigner Moyal equa­

tion is given by, 

fJpw 

at 
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= _ p 8pw + 8V 8pw _ 1i
2 

8
3
V EJ3pw + O(n,4),(2_32) 

m 8q 8q 8p 24 8q3 8p3 

where the first term arises from the kinetic part of the Hamiltonian 

and the remaining terms accounts from the potential part. In partic­

ular,{,} represents the Poisson bracket, {H, Pw }qp = l/2(H Aqppw­

Pw Aqp TI), with 
ff a ff a 

A ------•-
qp - 8q 8p 8p 8q (2.33) 

If the quantum terms i.e. terms that contain 1i are set to zero, the 

classical Liouville equation of motion is recovered, 

8pc1 P 8pc1 av opc1 -=---+--
at m 8q oq op 

(2.34) 
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Chapter 3 

Quantum Hydrodynamics 

for Mixed States 

3.1 Introduction 

The Schrodinger equation can be solved directly using many meth­

ods such as basis set expansions or grid based approaches and these 

have been widely investigated and documented in the literature [1] . 

In principle, it is also possible to solve the Schrodinger equation by 

propagating quantum trajectories. It has been recognised that there 

is a close analogy between the Schrodinger equation and t he equa­

tions of motion for fluid dynamics. Hence the dynamical theory t hat 

governs quantum trajectories is known as the hydrodynamic formu­

lation of quant um mechanics. This representation was developed 

init ially by Madelung [2] and de Broglie [3], following a development 

into a theory by Bohm [4] and de-Broglie [5] again in later work. 

Methodologies t hat use quantum trajectories can be split into two 

distinct categories depending on how they are calculated . In the first 
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type, the de Broglie analytical approach [4, 5, 6, 7], the t ime depen­

dent Schrdinger equation is first solved (using traditional approaches 

such as basis set expansions) . The 'part icles' are t hen propagated 

along trajectories, guided by the wavefunction, such that 

dr (1i) dt = ; Im['vlrnµ] (3.1) 

Subsequent quantum trajectory analysis of the wavefunction involves 

the spatial evolution of the discrete particles. The intention of the 

analytical approach is to provide further insight and an alternative 

interpretation of quantum mechanics. 

The second type of quant um trajectory method is the synt hetic ap­

proach [8, 9, 10]. Here rather than compute quantum trajectories 

from the wavefunction, the trajectories become the computational 

tool for solving t he quantum hydrodynamic equations of motion. 

This type of methodology is more than an interpretation, it is a novel 

computational technique for solving quantum dynamical problems. 

The quantum trajectory synthetic approach offers many advantages 

over convent ional wavefunction propagation, including [11] 

i) a relatively small number of grid point is required 

ii) the equations of motion have intuit ive dynamical quantit ies such 

as forces 

iii) potential of new insight as trajectories shows how process evolves 

iv) computational effort varies linearly with number of trajectories 

v) potential mitigation of exponential scaling of computational effort 

with degrees of freedom 

vi) no large basis sets or large fixed grids required. 
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The number of t rajectories required for a quantum trajectory simu­

lation depends strongly on t he system in question. For example, for 

a scattering type problem that invokes an unbound potential, a large 

number of grid points is required to fully characterise the dynamics 

of the density. It is also important to emphasise that a quantum 

trajectory approach is formally equivalent and will give the same 

empirical predictions as conventional quantum dynamics (i.e. direct 

solution of the Schrodinger equation). Although a trajectory picture 

is normally associated within the classical framework, it is shown in 

this Chapter that a quant um mechanical equivalent may be derived. 

A great deal of research has focussed on the hydrodynamic formu­

lation for pure states [2, 4, 6, 7, 12]. This Chapter will show t hat 

mixed quantum states ( defined by the density operator) can also 

be represented in the hydrodynamic framework. This dates back 

to the work done by Moyal [13] , Zwanzig [14] , Takabayasi [12] and 

Frolich [15]. The following sections derives the hydrodynamic mo­

ments from the density operator (or equivalent Wigner function). 

This lead to obtaining quantum t rajectory equation by evaluating 

the quantum force from the hierarchy of hydrodynamic moments. 

3.2 Hydrodynamic moments and their 

dynamical equations 

The hydrodynamic equations that are solved to obtain trajectories 

are reduced, local descriptions which are obtained from the time 

evolut ion of the nonlocal density governed by the Liouville-von Neu­

mann equation [16]. The derivation here focuses on a single degree 
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of freedom but can be readily extended to any number of degrees 

of freedom. The Liouville-von Neumann equation in the coordinate 

representation, with Hamiltonian H = T +Vis given by 

r? [ a2 a2 
] , 

2m 8x2 - 8x'2 p(x, x) 

+ [V(x) - V(x
1

)]p(x, x
1

) (3.2) 

Eq. (3.2) is now decomposed into coupled equations for a hierarchy 

of local fields which are coordinate dependent quantities such as local 

probability density P(x) , current density (flux) j(x), kinetic energy 

density T( x) et c. These fields are closely related to moments defined 

from the coordinate representation of the nonlocal density as 

where P is defined as a superoperator acting on the density 

(3.4) 

The coordinate density p(x, x') is redefined in terms of sum q = 

1/2(x + x') and difference r = x - x' coordinates. These hydrody­

namic moments correspond to the Taylor expansion of coordinate 

space density with respect to coordinate r, such that, 

(3.5) 

The 0th moment corresponds to the probability density, P(x) = (p)q, 

t he 1st moment is related to the current density, j(x) = (Pp)q/m 

and the 2nd moment is related to the kinetic energy density, T(x) = 

(P2p)q/2m. 

The moments can be equivalent ly obtained from the Wigner func­

tion [17, 18, 19], which is related to the coordinate density p(x, x') 
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by Wigner transform, 

Pw(q,p) = - dr p(q-r/2,q+r/2)e(ipr/h) 1 100 
21rn -oo 

(3.6) 

The moments from t his definition can be expressed as [16, 20, 21, 22], 

(3.7) 

This integration over phase space momentum only was described by 

Takabayasi as projection ... onto coordinate space [12]. 

By applying the procedure of Eq. (3.3) to the Liouville-von Neumann 

equation Eq. (3.2) , a series of coupled equation is obtained [16] (see 

Appendix D), 

(3.8) 

The hierarchy can be summarised, 

(3.9) 

with classical terms 

J,nn{H } ) 1 a 1p n+l ) av I n - 1 ) \ r ) PW <JP q = - - -a\ p q - n-a \ p p q m q q 
(3.10) 

and a quantum part 

(3.11) 

The first term in Eq. ( 3.10) is the kinetic energy part of the equation 

of motion. Note that this part couples the nth order moment (Pnp)q 
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to the (n + l)th moment (Pn+lp)q- The coupling to higher (and 

lower) order moments suggests that an infinite hierarchy is generated 

and this becomes a major drawback and a central theme of the 

hybrid quantum-classical approach that is pursued in Chapter 4. 

In t he case of a pure state however, the hierarchy can be closed 

at the first moment. Also, for Gaussian mixed state densities, the 

hierarchy closes at the second moment . Unfort unately, there is no 

simple closure relation for general mixed quantum states. 

3.3 Pure State and link to Bohmian Me­

chanics 

For pure states described by a wavefunction where p( x , x') = 'lj;( x )'lj;* ( x), 

the hierarchy of equations of motion for the moments close with the 

first two equations. Indeed all higher order moments can be ex­

pressed in terms of the zeroth and first moments. As an example 

the second moment can be expressed as [16] 

( 2 ) I -2 ( ) r,,2 ( 32 p p q = Pq p q - 4 p)q a 2ln(p)q 
pure q 

(3.12) 

where pq is defined as the momentum field related to the moments 

by (Pp)q = pq(p)q- This closure at t he second order yields equations 

of motion for pure state hydrodynamics, or Bohmian mechanics [16]. 

It is not surprising that only the first two moments are required for 

a pure state description, as the wavefunction may be fully charac­

terised by the local density (p)q and the cw-rent density (Pp)q- From 

the polar representation of the wavefunction, 

'lj;(x) = R(x)e(i S(x)/Ti) (3 .13) 
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the local density and current density (momentum field) is given by 

Rz(q) 

as 
pq(p)q = aq (p)q (3.14) 

In the hydrodynamic picture, the equations of motion for the first 

two moments are, 

a(p)q 
at 

a 
at (Pp)q 

1 a 
- --(Pp) maq q 

1 a 2 I av ---(P p) - -(p) maq q aq q 
pure 

(3.15) 

The second moment here is that of the pure state limit, so it is de­

coupled from the rest of the hierarchy. 

These equation are in the Eulerian frame of hydrodynamics. In 

this picture, the evolution of the function ( e.g. density) is observed 

from a fixed point in space. The equations of motion in the Eulerian 

framework always contain partial time derivatives. In trajectory 

equations of motion, a different framework must be used, the La­

grangian pict ure. Here, the observer is following t he trajectory x( t) 

at a velocity of, 
P 1 as 

v= -=--
m max 

(3.16) 

For a short time step, the change in the function J, as seen from the 

observer in the interval x(t) to x(t + dt), is given by 

df = a f dl + a f dx 
at ax 

(3.17) 

On division by dt, the following expression defines t he Lagrangian 

framework from the Eulerian picture. 

df a J dx a f a J a J 
dt = at + dt ax = at + Vax 
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The second term in Eq. (3.18) is the convective term that translates 

from one picture to t he other. To t his end the Lagrangian equations 

of Bohmian mechanics may be written, [24], 

d(p)q 
dt 

dp(q, t) 
dt 

m 8q 

av I - 8 + Fhyd 
q pure 

where Fi,yd is the hydrodynamic force [16, 25, 26], 

I 
1 ( )_10(Jq l F11 d = -- p -

y m q a 
pure q pure 

(3.19) 

(3.20) 

The variance, (Jq is a measure of the 'broadness' of the distribution 

and of fluctuations about the mean value of the momentum, 

(Jq l = (P2p)ql - p~(p)q 
pure pure 

(3.21) 

For the case of pure states, the variance is given by, 

(3.22) 

Note that there is no dependence on higher order moments. This 

hydrodynamic force for pure states is entirely equivalent to the quan­

tum force t hat appears in Bohmian mechanics, 

Fi,yd I 
pure 

8Q 
8q 

(3.23) 

which is the gradient of the Bohmian quantum potential as defined 

previously [16], 
,,,2 1 a2(p)~;2 

Q = - 2m (p)~/2 8q2 (3.24) 

This term introduces all the quantum effects into the hydrodynamic 

equations. It can also be regarded as a measure of the shape induced 

internal stress and hence is closely related to the stress tensor for the 
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probability fluid. Another important property of the quantum po­

tential is that it retains information on the initial condit ions of the 

wavefunction at t = 0. Quantum mechanics is known as a non-local 

theory i.e. every part of the quantum system depends on all other 

parts. In the conventional interpretation of quantum theory, it is 

not immediately obvious of the root of this non-locality. However, 

in this hydrodynamic derivation of quantum theory t his non-locality 

is attributable to the quantum potent ial. 

If the quantum potential is neglected then classical equations are 

yielded that are local in nature. This fundamental difference is illus­

trated further in the results section. 

3.4 Hydrodynamic Force for Mixed States 

and Classical Distributions: Defin­

ing a classical limit 

The discussion above for pure states can be expanded to include 

mixes states [28]. The same general form of the equations of motion, 

d(p)q 
dt 

dp(q , t) 
dt 

(p)q op 
---

m 8q 

av I - 8 + Ji11yd 
q mixed 

where F;1yd is the now mixed state hydrodynamic force , 

Fhydl = _ _!_ (p) -1 8aq I 
mixed m q oq mixed 

with variance 

aql = (P2p)ql - p;(p)q 
mixed mixed 

(3.25) 

(3.26) 

(3.27) 

Although the equations are general for both mixed and pure states, 

the notation is added for clarity. However, t he moment hierarchy 

38 



does not close for a mixed stat e and Eq. (3.22) does not apply. To 

accurately capt ure the form of aq, the infinite hierarchy of moments 

is required. 

These same equations derived for mixed and pure quant um states 

are also valid for the equivalent classical phase space distribution, Pel · 

The same procedure for the classical distribution yields a classical 

hydrodynamic force defined analogous to Eq. (3.26) as, 

cl 1 / )-1 aazl 
Fi1yd = - ffi \Pel q aq (3.28) 

A classical limit of the hydrodynamic description will therefore yield 

t he classical hydrodynamic force as defined in Eq. (3.28). Note t hat 

this is very different to the classical limit as defined in pure state hy­

drodynamics (i.e. Bohmian dynamics) . In the Bohmian derivation, 

t he quant um force simply vanishes, within limit n -, 0. 

3 .5 Hydrody namic Phase Space and com­

parison with Liouville space 

Liouville phase space t rajectories are very different to trajectories 

from a hydrodynamic representation. This is because the hydrody­

namic moment um is an average of t he Liou ville phase space momen­

t um, given by, 

(3.29) 

The hydrodynamic phase space [12, 16, 25] is therefore defined with 

the moment um variable given as p = p. Distribution functions 

within this representation is expressed as 

(3.30) 
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Figure 3.1: Gaussian Wigner function in full phase space along with the 

hydrodynamic phase space distribution with p = p. 

This is depicted in Fig. (3.1). Note that Phyd has a Gaussian form 

in q but a delta 'spike' in moment um coordinate p. The Lagrangian 

trajectory equations in hydrodynamic space are given as, 

q p 

p (3.31) 

For t he Liou ville phase representation however, the momentum p 

is an actual momentum variable, and hence the distribution func­

tion is a full 2D phase space density, also shown in Fig. (3.1) . The 

difference between t rajectories as derived from the hydrodynamic 

and Liouville pictures for a harmonic oscillator is illustrated here. 

This along with the previous classical limit considerations will form 

a basis for t he combination of the Liouville trajectories with hydro­

dynamic trajectories in the hybrid approach illustrated in Chapter 4. 

Both the Wigner phase space picture and t he hydrodynamic picture 

allow for convenient connection to a classical-like trajectory evolu­

t ion [27]. The Wigner phase space picture yields Hamilton type 

Liouville dynamics while the hydrodynamic picture is associated 
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with fluid dynamical, Lagrangian type dynamics. The Lagrangian, 

hydrodynamic trajectory equations have already been presented in 

Eq. (3.31), so the trajectory equations for the Liouville/Wigner space 

are also shown here. 

Given the equation of motion for the Wigner function Eq. (2.32) 

and a phase space cont inuity equation by analogy to the classical 

Liouville equation [19] expressed as 

(3.32) 

with the phase space current jqp = ( q Pw, PPw), the trajectory equa­

tions are given by [29] 

dq 

dt 
dp 

dt 

p 

(3.33) 

The quantum correction term here is to be interpreted as a different 

type of quantum force compared to the hydrodynamic force written 

in Eq. (3.31). An important feature of Eq. (3.33) is that it reduces 

to classical Hamilton 's equations for harmonic potentials since the 

quantum correction terms involve third order derivatives and higher 

of the potential. The quantum trajectories from the Wigner function 

do not fulfil Liouville's theorem. This means that the density is not 

conserved along a given trajectory. This along with t he fact that the 

quantum correction terms in Eq. (3.33) are difficult to treat compu­

tationally, strongly suggest that other quantum trajectory pictures 

are preferred. 

Fig. (3.2) depicts the two different phase space trajectory approaches 
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Liouville space hydrodynamic space 

p p 

' Q q 

/i\ ~ 1h 

Figure 3.2: Time evolution of a Gaussian wavepacket on a harmonic 

potential. The left hand side shows the Liouville phase space represen­

tation while the right hand side panel shows the hydrodynamic space 

representation. Figure taken from Ref. [27] 
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for a harmonic oscillator. The hydrodynamic representation contains 

an addit ional 'quantum force' even for t his harmonic case. Under the 

phase space plots are the corresponding coordinate space q densities. 

The initial Gaussian form of the density is retained throughout the 

propagation. The usual elliptic orbits are observed in Liouville phase 

space, with maximum momenta at q = 0 and a maximum amplitude 

at p = O; this is characteristic of a harmonic potential. The density 

in the Wigner picture is shown as an elliptic distribution in phase 

space. However, the hydrodynamic distribut ion is represented as a 

line because of an average momentum. The edge of the distribution 

functions in both the Wigner and hydrodynamic pictures are indi­

cated with green and red points. By following the evolution of these 

particles (i.e. the trajectory) , very different behaviour is observed for 

the hydrodynamic case as compared to the Wigner representation. 

For the Wigner picture, the trajectories never cross in phase space 

as they evolve around the elliptic paths. However, in the coordinate 

representation, it is evident that the trajectories cross each other at 

q = 0. For a hydrodynamical description, the complete opposite is 

true. Here t he trajectories never cross in positional space owing to 

the presence of the hydrodynamic force. 

The overall conclusion upon comparing the two different representa­

tion here, and t he classical limits considerations, is that in a mixed 

quantum-classical scheme, it is preferred that the quantum sector 

is described hydrodynamically, while the classical sector ret ains a 

Hamiltonian/ Liouville picture. The classical limit in the hydrody­

namical picture yields a classical hydrodynamic force, and so the 

result ing trajectories are non-Hamiltonian type. The simplicity of 
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Hamiltonian trajectories is preferred for t he classical sector, so a 

Liouville space representation is used. Furthermore, the Liouville 

phase space representation is the most natural picture for t he classi­

cal sector, as it directly relates to conventional molecular dynamics 

schemes. Of course one may obtain 'quantum' trajectories from a 

Liouville space representation. Unfortunately, this formulation has 

its own disadvantages including violating Liouville's theorem. To 

this end, the mixed quantum-classical approach developed in Chap­

ter 4 is hydrodynamic with respect to the quantum subspace and 

classical-Liouvillian with respect to the classical subspace. 

The following section presents the Wigner function, lowest three hy­

drodynamic moments and quantum trajectories for the harmonic 

oscillator, double well potential and Eckart barrier. All the hydro­

dynamic quantities were derived from the underlying wavefunction 

for that particular potential. The intention is to illustrate the use 

of the Wigner function, moments and quantum trajectories as an 

alternative to propagating wavefunctions for the various systems. 

Because the hydrodynamic quantities are extracted from the un­

derlying wavefunction, the results presented are for pure quantum 

states. 

3.6 Results 

3.6 .1 Harmonic Oscillator 

T he dynamics of a Wigner function, pw ( q, p), in a harmonic oscilla­

tor potential, 

V(q) = Viq2 (3.34) 
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0.015 

0.005 

o_z -1 0 
q (a.u.) 

Figure 3.3: Harmonic oscillator potential with ½ = 0.005 

with Vi = 0.005 and mass of 10, 000 a.u. is illustrated in Fig. (3.4) . 

The potential is shown in Fig. (3.3). The initial Gaussian form of 

pw(q,p) is given by, 

pw(q, P, to) = 7r1.,i e2f3(q-qo)2- /J~2 (3.35) 

with Gaussian width (3 = 10 and init ial displacement from equi­

librium q0 = 0.75. The oscillations wit hin the harmonic potentials 

occur with a regular period. At t = 0, the Wigner function is evenly 

distributed around t he displacement q0 = 0. 75 with an overall mo­

ment um of p = 0. Here it is narrowest in q and widest in p. As the 

Wigner function moves away from this initial posit ion towards the 

centre of the well, the distribution spreads in t he position q space 

whilst it narrows and becomes negative in the momentum p space. 

A maximum negative value in momentum space is reached when the 

density passes through the cent re of the well. At t his t ime, t = 38. 7 

fs, the Wigner function is at its widest in q space and its narrowest 

in p space. After the density passes through equilibrium position, 

q = 0, the influence of the potential reduces t he magnitude of p 
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gradually until the centre of pw(q, p) reaches the t urning point of 

q = - 0.75. Once the Wigner function reaches the left hand side 

t urning point, the width is once more narrowest in position space 

and widest in momentum space (net p = 0). On the return oscilla­

tion, the phase of the momentum is opposite, as seen in the positiv­

ity in momentum space at t = 92 fs. It is evident t hat during the 

propagation that correlations exist between the width of t he Wigner 

function in q and p space: a large uncertainty in position space co­

incides with little uncertainty in momentum space. The dynamics 

of the Wigner function is therefore consistent with the Heisenberg 

uncertainty principle. 

The hydrodynamic moments for the harmonic potential described 

in this section are easily evaluated by a numerical integration of the 

Wigner function over the momentum space, 

(3.36) 

The moments can be equivalently extracted from the underlying 

wavefunction, 'lj;, as follows, 

The first three hydrodynamic moments are illustrated in Fig. (3.5). 

Because the 0t h moment corresponds to the density, p = 'ljJ*'ljJ , its 

dynamics is characteristic of a wavefunction in a harmonic potential. 

The initial density, placed at q = 0. 75 moved towards the potential 
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Figure 3.4: Snapshots of the Wigner function evolving in the harmonic 

potential. The highest density is denoted by the yellow colour (p = 0.4) , 

followed by red (p = 0.3), purple (p = 0.1) and black (p ::; 0). 
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minimum at q = 0. This is accompanied by a broadening of t he den­

sity. As the density passes the equilibrium point and approaches the 

opposite t urning point q = - 0.75, it narrows to its original widt h 

/3 = 10. The 0th moment simply broadens and narrows as it oscil­

lates within t he well with turning point qm with frequency defined 

by the potential. 

The 1st moment, init ially zero develops a negative Gaussian form 

t hat increases in height and width until it peaks at q = 0. This 

suggests that the quantum flux is at maximum when the density 

is centred at q = 0. As the density continues to move towards 

q = -0.75, the Gaussian form of (Pp)q reduces in magnitude until 

it becomes zero at the t urning point. The density then returns from 

q = -0.75 towards the equilibrium position. The first moment now 

acquires an increasing Gaussian profile as before, but in the positive 

region. This change of polarity is due to the opposite direction in 

which t he density is now moving. This periodic motion of (Pp)q 

between the turning point of the density is seen to cont inue during 

the propagation with the frequency of t he harmonic oscillator. 

Finally, the init ial Gaussian form of (P2p)q cent red at q = 0.75 again 

broadens and increases in height as it moves towards the potential 

minimum, q = 0. This can be rationalised in classical terms, as the 

second moment corresponds to the kinetic energy density. As the 

density moves towards the centre of the well, the potent ial energy 

decreases to a minimum so for a constant total energy, the kinetic 

energy must increase. The Gaussian profile of (P2 p)q then shrinks 

as the density moves to the opposite turning point q = -0.75. This 

implies the decrease in kinetic energy that occurs is as a result of the 

potential energy increasing. This oscillatory motion again continues 
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periodically throughout the propagation. 

Trajectories are obtained from Eq. (3.31) with hydrodynamic force 

computed from the moments as defined in Eq. (3.21) . In this exam­

ple, 10 discrete point, equally spaced between q = 0.6 and q = 0.8 

are chosen as init ial launch point for subsequent trajectory analysis. 

This can be considered as discrete sampling of the wavepacket of the 

system. The evolution of the part icles are shown in the trajectories 

of Fig. (3.6). At t = 0, t he trajectories are closely spaced, which 

corresponds to the narrow structure of the initial Wigner function in 

q space. Both quantum and classical forces ("v'Q and 'vV) then act 

on the particles. The effect of the classical force, 'vV on the particles 

is linear function in space. This suggests that particles located at qm 

feels only a classical force. Particles that are further away from qm 

are increasingly influenced by the quantum force, 'vQ. Furthermore, 

the larger the Gaussian width ( corresponds to small (3 parameter) 

the less particles far from qm are influenced by the quantum poten­

tial. Hence, the initial closely spaced particles at t = 0 are pushed 

away from t he Gaussian maximum, causing a greater spreading of 

the particles. This increase in widt h eventually decreases the influ­

ence of t he quant um potential so that the dominant force acting on 

the particles is 'vV. This classical force brings the trajectories closer 

together so t he narrow width Wigner density in q space is recovered. 

This spreading and contracting motion is then repeated with the 

frequency of the harmonic oscillator. 

A further insight is obtained by comparison of the quantum tra­

jectories wit h their classical counterparts. The classical trajectories 
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Figure 3.5: The dynamics of the first three hydrodynamic moments of 

the harmonic oscillator 
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Figure 3. 7: Corresponding classical trajectories for the harmonic oscil­

lator. 

51 



0.002 

0.001 

-0.001 

-0,002 

-0.00~0.5 -0.25 0 0.25 0.5 
q (a.u.) 

Figure 3.8: Double well potential with V2 = - 0.044 and Vi = 0.229. 

are obtained by the integration of Newton's equations of motion 

(or Hamilton's equat ions). Fig. (3.7) captures the dynamics of the 

classical trajectories that are launched from exactly the same initial 

conditions. The most noticeable difference between the two different 

types of trajectories is that classical t rajectories cross in coordinate 

space ( e.g. at t = 46 fs) . Quantum trajectories, however do not 

cross. The quantum force prevents the quantum trajectories from 

crossing each other. This can be traced back to the definition of Q 

as defined in Eq. (3.24). As the quantum trajectories gets closer, the 

amplitude R, increases. The quantum potential has the amplit ude 

in the denominator , so Q increases dramatically. This has the effect 

of pushing the trajectories apart. 

3 .6.2 Double Well Potential 

P hase space analysis can equally be applied to more complex systems 

such as those governed by double well potentials. The double well 
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Figure 3.9: Snapshots of the Wigner density evolving in the double well 

potential. The highest density is denoted by red (p = 0.4) , followed by 
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Figure 3 .11: The second moment showing negative regions. 

used in this example is given by, 

(3.38) 

with parameters V2 = - 0.044, Vi = 0.229 and mass of m = 20341 

a.u, and is illustrated in Fig. (3.8) . The initial Gaussian form of 

Pw(q,p) as given in Eq. (3.35) has width /3 = 32 and init ial dis­

placement from equilibrium q0 = 0.313, shown in Fig. (3.9). As the 

Wigner function moves from its initial position, it is seen to broaden 

in q space as it narrows in p space. This initial trend is similar to 

that observed for the harmonic potential. However , t he Wigner den­

sity exhibits t iny ripples (starting at t = 74 fs) . As t ime progresses, 

a significant portion of the Wigner density appears in t he left hand 

side well (at t = 188 fs) . This illustrates the quant um mechanical 

phenomenon of tunnelling. By t = 375 fs , t he bulk of the density is 

in the left hand side well. At t = 500 fs, the tunnelling is repeated 

in t he opposite direction , so that the Wigner density transfers back 

to t he initial right hand side well, at t = 600 fs. 
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A particular feature seen in the propagation of the Wigner density 

that is characteristic for anharmonic potentials such as the double 

well is the development of 'black' areas, seen particularly at t = 74 

fs in Fig. (3.9). These represent regions of negative probability den­

sity. These negative probability density regions develop as result of 

the 'quantum' summation t hat appears in the Wigner Moyal equa­

tion. This accentuates the fact that the Wigner function is a pseudo 

probability density function in that it does not satisfy 

PQ(q, P, t) 2': 0 (3.39) 

As already demonstrated, the negative regions do not appear for 

Gaussian states in harmonic oscillators since the Wigner Moyal equa­

tion Eq. (2.32) is truncated at the n = 1 level. In this case, the 

Wigner Moyal reduces to the classical Liouville equation, 

opw p opw av opw 
-=---+--ot m oq oq 8P 

(3.40) 

The first three hydrodynamic moments for the double well potential 

were evaluated as defined Eq. (3.36) and are depicted in Fig. (3.10). 

The 0th moment which represents the density is seen to become de­

localised in both minima of the potential at approximately t = 15000 

a.u. Although the energy of the underlying wavefunction has insuf­

ficient energy to surmount the barrier, the transfer of probability 

density is achieved by quantum t unnelling. Furthermore, by close 

inspection , it is apparent that at much shorter t imescales ( e.g. be­

tween 1 - 5000 a.u. and between 25000 - 30000 a.u. in Fig. (3.10)), 

(p)q exhibits intra-well oscillatory behaviour around the initial dis­

placement q0 = 0.313. Because this initial displacement is very close 
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to the minimum of the double well potential, the intra-well oscilla­

tion is extremely small and difficult to observe. A larger displace­

ment from the minimum would ensure more pronounced intra-well 

dynamics. Note also that the init ial Gaussian form of (p)q is not 

retained throughout the propagation, as is the case for the harmonic 

potential. The complicated profile t hat develops is characteristic of 

anharmonic potentials. 

The first moment , (P p)q, initially zero, acquires a positive profile 

as the density starts to move within t he well. As the density tunnels 

to the left hand side well at l = 15000 a.u., the first moment appears 

in the well also. The first moment becomes negative as the density, 

(p)q, moves in t he negative direction within the well. In general, the 

motion of t he first moment captures the quantum flux of the density 

as it evolves along the double well potential. 

The second moment, (P2p)q, is also illustrated in Fig. (3.10). The 

dynamics follows closely that of the 0th moment. The init ial Gaus­

sian profile quickly spreads into a complex function that spans into 

the second minimum of t he double well potential. Note also t hat 

(P2 p)q contains negative regions during the propagation, as is de­

picted in Fig. (3.11). The negative region develops due to the nega­

tive basins that were seen in the Wigner density for t he double well. 

As described previously, this is due to quantum interference effects. 

Quantum trajectories for a double well are shown in Fig. (3.12). 

The initial equally spaced particles between q = 0.6 a.u. to q = 1.7 

a . u. move away from each other as they evolve within the right hand 
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Figure 3.12: Quantum trajectories for the double well potential 

side well. Note that at t = 500 a.u. , 4 of the t rajectories tunnel to 

the left hand side of t he well, which corresponds to 30% of the total 

density. The remaining trajectories remain in the right hand side 

well, but shows some oscillatory motion within the well. Again, this 

is a characteristic feature of a non-minimum density evolving in a 

double well potential. As seen for the quantum trajectories in the 

harmonic oscillator case, the quant um trajectories keep well apart 

due to the influence of the quantum potential. 

3.6.3 Eckart Barrier 

The Eckart barrier used in this example Fig. (3.13) is given by 

(3.41) 

where the barrier of height V0 = 0.024 is placed at q = 0 and width 

parameter a = 2.5. The initial Gaussian Wigner function, depicted 

in Fig. ( 3 .14) is launched towards the barrier with average transla­

t ional energy Etrans = 0.018 au and mass m = 2000 au. The Wigner 

58 



0.03 ,-----,---,-1----,--1,----..----,-1---,----,I---, 

0.025 -

0.02 -

~ 0.015 '-

0.01 '-

0.005 -

Reactants 

0>----- ---_..,, 
I 

- 10 -5 

-
Produc1s 

-

-

I ' I 

0 
q (au) 

Figure 3.13: Eckart barrier with parameters Vo = 0.024 au and a = 2.5 

function centred at q = - 2 is narrower in coordinat e q space and 

wider in moment um p space, as governed by t he Heisenberg uncer­

t ainty principle. At a later time oft = 24.2 fs , the Wigner density 

can be seen to split after collision with the barrier. The part of the 

Wigner density that has been reflected now is centred at momentum 

p = - 7 a. u. as the direction of motion of t he density is reversed. 

The region t hat has tunnelled through the barrier is cent red at coor­

dinate q = 3 retains the initial positive value for momentum as the 

density still moves in the same direction. Note that the t ransmitted 

density is narrower in q space and broader in p space. 

The 0th, 1st and 2nd moments as derived from the Wigner func­

tion are illustrated in Fig. (3.15) . The 0th moment traces exactly 

the dynamics of the probability density. The init ial Gaussian located 

at q = -2 moves towards the barrier. At t = 12.1 fs, just as the 

density collides with t he barrier, (p)q is seen to split into two parts. 
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Some of the density reflects against the barrier and return towards 

the initial posit ion of the density. The remainder of the density 

tunnels through the barrier, and continues to move in the same di­

rection. This is further described by looking at the 1st moment. At 

time 24.2 fs and later, two distinct regions of (Pp)q develop. The 

reflected region acquires a negative value whilst the transmitted part 

remains positive. The polarity of (Pp) is a direct consequence of the 

direction of motion of t he 0th moment. The description is elabo­

rated by considering the dynamics of the 2nd moment. Again, the 

dynamics is similar to that of t he 0th moment, but related to the 

kinetic energy density. 

Trajectories that are obtained from Eq. (3.31) for the Eckart barrier 

are illustrated in Fig. (3.16). 26 discrete 'part icles', equally spaced 

between q = - 1.35 and q = -2.65 are defined as init ial points for 

the quantum trajectories. As shown for the Wigner density and 0th 

moment for this Eckart barrier , the density moves towards the right 

hand side and spreads in q space. This is further illustrated by the 

trajectories moving away from each other. This displays very simi­

lar dynamics to that of a free wavepacket (i.e. V = 0). However, at 

t = 400 au, which corresponds to the centre of the density colliding 

with the barrier, 16 of the trajectories (labelled black) seem to sep­

arate from the remaining 10 (labelled red). The black trajectories 

correspond to the part of the density that is reflected and the red 

trajectories correspond to t he part of the density that tunnel through 

the barrier. It is again clear that t he trajectories do not cross as they 

are kept apart under the influence of the quantum potential. 
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Figure 3.14: Two snapshots of the Wigner density scattering on the 

Eckart barrier. The highest density is denoted by red (p = 0.4) , followed 

by yellow (p = 0.3), green (p = 0.2), purple (p = 0.1) and black (p < 0). 
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Figure 3.16: Quantum trajectories associated with the Eckart barrier. 

3.7 Summaries 

This Chapter has shown the derivation of quantum hydrodynamics 

for mixed quantum states. The derivation can be made from either 

the density operator or its phase space equivalent, the Wigner func­

tion. Moments were derived for mixed states, and it was seen that an 

infinite hierarchy of hydrodynamic moments were required to fully 

characterise the quantum density. This was shown to be quite dif­

ferent to the moments of a pure quantum state, where the hierarchy 

naturally breaks at n = 1. The link between the pure state case and 

Bohmian mechanics was also established. 

The mixed state hydrodynamic force was derived from the moments, 

and was shown to be an integral part of the derived Lagrangian tra­

jectory equations. Classical limit considerations concluded that a 

classical limit taken in the quantum hydrodynamic picture yields 

a 'classical' hydrodynamic force. This results in non-Hamiltonian 

type 'classical' trajectories. A direct comparison was also made of 

63 



trajectories as obtained for Liouville space and hydrodynamic space. 

These discussions will ease the justification of combining a hydrody­

namic, quantum representation with a classical Liouville picture in 

the Mixed Quant um-Classical Moment approach of Chapter 4. 

The Chapter closed with illustrations of the Wigner function, hy­

drodynamic moments and quant um trajectories for the harmonic 

oscillator, double well and Eckart barrier potential functions. This 

aids in developing an understanding and intuit ion of the use of hy­

drodynamics for quantum dynamical problems. 
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Chapter 4 

Mixed Quantum-Classical 

Dynamics: The QCM 

Approach 

4.1 Introduction 

The main aim of mixed quant um-classical dynamics is to treat the 

'light' particles quantum mechanically and use a classical picture 

(usually a trajectory approach) for the remaining degrees of freedom. 

As stated in the main Introduction, it is not clear how to combine 

the quantum and classical subsystems in a single framework [l]. The 

two approaches arc fundamentally different; quantum mechanics is 

statistical and nonlocal in nature while classical mechanics is local 

and provided the initial conditions are known, is fully deterministic. 

Quantum mechanics is only deterministic in that t he wavefunction 

may be calculated for all time given the init ial condit ions and the 

Hamiltonian. The major conceptual problem arises at the interface 

between the two sectors, particularly with regard to how both sectors 
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influence each other. The motion of the classical particles induces 

transit ions in t he quantum part of t he system. Hence, t he potential 

energy surface is modified. This in turn changes the force that act 

on the classical particles. There is a definite dynamical interaction 

between the two subsystems. This issue of 'self-consistency' is cru­

cial in all hybrid approaches that are developed. 

Examples of how the combination of the quantum and classical 

sectors can be achieved are the Ehrenfest mean-field approach [2], 

surface hopping methods [3, 4] , mixed quantum-classical Liou ville 

approach [6, 7, 8, 9, 10, 11 , 12, 13, 14, 5] and the mixed quantum­

classical Bohmian (MQCB) method [15, 16]. 

The earliest attempt at a mixed quantum-classical approach was the 

mean-field approximation developed by Ehrenfest. When a quantum 

coordinate q interacts with a classical coordinate Q with momentum 

P , the total potential energy of the system can be written as a sum 

of the quant um, classical and interaction contribut ions, 

V(q , Q) = Vqu + ½1 + Vint (4. 1) 

This interaction potential, Vint, is calculated along a particular clas­

sical trajectory which yields a t ime dependent interaction term, 

Vint(q, Q(t)). The dynamics for t he quantum part is given by the 

solution of Schrodinger equation using this time dependent poten­

t ial, Vint ( q, Q( t)) . From the solution, a mean interaction potential 

½nt(Q; t ) is evaluated by averaging over the wavefunction, 

(4.2) 
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The dynamics of t he classical subsystem is finally obtained by solving 

Hamilton's equations with t his mean potential ½nt(Q, t) . Because 

the classical part only experiences a mean-field from the quantum 

part and never truly responds to the instantaneous quantum coor­

dinate, the approach is deemed to be too approximate and is inad­

equate in particular where nonadiabatic effects play an important 

role in the dynamics [18, 17]. For the case when these nonadiabatic 

effects are important, a Surface hopping approach [3 , 4] was devel­

oped where the probability of hopping from one adiabatic potential 

to anot her is incorporated into the classical trajectories. 

More recently, better approaches that have been developed include 

the mixed quantum-classical Bohmian method and the mixed quantum­

classical Liouville method. In the MQCB met hod [15, 16, 19], the 

dynamics of the whole system is defined in a Langrangian trajec­

tory framework. Central to t he Bohmian interpretation of quan­

tum mechanics is the quantum potential [20, 21, 22, 24, 25] Q = 

-ri2/(2m)(p);1
/

2f:P/oq2 (p)!12 . This is a non-local potential that de­

pends on the curvature of the wavefunction and has associated with 

it all the quantum effects within the system. In the MQCB method, 

the quantum potential is simply neglected in the classical sector, 

resulting in Newtonian ( totally classical) equations of motion. The 

quantum subspace, however, has a Bohmian hydrodynamic descrip­

tion where the classical coordinates appear as a parameter. 

Finally, in the mixed quantum-classical Liouville approach [6, 7, 8, 9, 
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10, 11 , 12, 13, 14, 5], a partial Wigner t ransform of the density oper­

ator, p, is performed on the classical subspace, which maintains the 

operator form of the quantum part, and the classical part is defined 

by functions of the classical phase-space variables posit ion , Q and 

momentum, P. The equations of motion involve a linearized approx­

imation to the exponential t ime evolution operator in the classical 

subspace. This keeps terms to lowest order in 1i. 

The approach presented and developed in t his thesis focuses on the 

novel quantum-classical moment (QCM) approach [26, 27, 28] intro­

duced by Burghardt and Parlant. Here, the quantum subsystem is 

treated hydrodynamically and the classical subsystem is kept in a 

Liouville phase-space setting. The method starts with a Wigner 

function for the total system, pw(q,p, Q, P; t), where the hybrid 

quant um-classical equations are defined in terms of particular type 

of moments which are obtained by integrating over the quantum mo­

mentum only, (Pnp)qQP = I dpnpw(q, p; Q, P). These key quantities 

that are central to this approach are referred to as partial moments. 

These are responsible for combining the hydrodynamic representa­

t ion in the quantum subspace with a Liouvillian phase space picture 

in the classical subspace. Exact equations of motion can be derived 

for these partial moments followed by invoking a classical approxima­

tion in the classical ( Q P) subspace. To obtain trajectory equations 

for this approach , the moment equations must be transformed from 

a static Eulerian grid to the Lagrangian framework. These trajec­

tory equations involve a quantum force that is dependent on both 

quantum and classical positions (q, Q) and the classical momentum 

(P) . 
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This methodology has been applied previously to coupled harmonic 

oscillators, but the hybrid approach is extended in this Chapter to 

more complicated systems. The present application focuses on tra­

jectories for a double-well potent ial coupled to a harmonic coordinate 

and an Eckart barrier coupled to a harmonic coordinate. Alt hough 

the illustration here is for pure states, the method naturally extends 

to mixed states. 

4. 2 General Formulation 

4.2 .1 Partial Hydrodynamic Moments 

The part ial moments are constructed by introducing a hydrodynamic 

projection for selected degrees of freedom. Star ting from the Wigner 

function for two coordinate degrees of freedom (four-dimensional 

phase space pw(q, p, Q, P)), one integrates over the quantum phase 

space momentum only [27], 

(4.3) 

These are hydrodynamic moments in quantum coordinate q, param­

eterised in the classical phase-space variables ( Q P). The moments 

can be also obtained from a mixed coordinate space/phase-space 

representation, given by, 

(4.4) 

The moments can otherwise be considered as t he Wigner transform 

of a set of ( q, Q, P) dependent coordinate space partial moments 

(Pnp)qQR, 

(Pnp)qQP = 
2
~1i J dR exp(- iPR/1i)(Pnp)qQR (4.5) 
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with 

(4.6) 

These coordinate space partial moments, (Pnp)qQR are in fact coef­

ficients in a Taylor expansion of the mixed coordinate-space-phase­

space density, p(q, r; Q, R) , given by, 

(4.7) 

Here, the distribution p(q, r; Q, P) plays the role of a moment gen­

erating function [29]. 

As is the case for a purely hydrodynamic description developed in 

Chapter 3, the moments can carry redundant information. If the 

quantum density is of a pure state, all t he dynamical information 

that is required is embedded within the first two moments and these 

decouple from the remaining of the hierarchy. Another special case 

is a Gaussian mixed state density. Here the density is determined 

by the first three moments [27, 28]. For the general case of a mixed 

state, an infinite number of moments are required to fully charac­

terise t he quantum density. In this case, a numerical truncation 

scheme is required to approximately terminate the moment hierar­

chy at a certain order. 

4.2.2 Partial Moment Equations 

Equations of motion for the partial moments can be derived system­

atically from the quantum Liou ville equation 8p/ 8t = -i/1i[H, p], 

in a coordinate-space representation or else from the phase-space 

Wigner representation [27] . Because of the Taylor series expansion 
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of Eq. (4.7), it is more convenient to carry out part of t he deriva­

tion in coordinate space before using a Fourier transform relation 

to obtain the moments in terms of phase-space variables. For this 

derivation, which follows Ref. [27], consider the following Hamilto­

nian, 
p2 p2 

H = 2m + 2.M + V(q, Q) (4.8) 

The (x, x') coordinate space representation of the Liouville-von Neu­

mann equation for this Hamiltonian is given by, 

0 ( / ') al x,x ;x,x [ 
in, ( 8

2 
8

2 
) iii ( 8

2 
8

2 
) ] I I 

2m 8x2 - 8x'2 + 2M EJX2 - ax12 p(x, x; X, X) 

-i[V(x, X) - V(x' , X')]p(x, x'; X, X') (4.9) 

A simple transformation to the sum x and difference r coordinates 

with q = (x + x' )/2 and r = x - x' yields the following form, 

0 Ok Ov 
al(q,r;Q,R) = al(q,r;Q,R) + al(q,r;Q,R) (4.10) 

wit h both kinetic ( k) and potential (v) parts. The kinetic part is 

given by, 

8 ( 1 8
2 

1 8
2 

) 

0~p(q, r; Q, R) = iii m EJroq + M EJREJQ p(q, r; Q, R) (4. 11) 

and the potential part , 

:~p(q, r; Q, R) = 

To ease the derivation, the kinetic and potential energy terms are 

discussed separately. 
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Kinetic Part 

By taking successive moments of p(q, r; Q, R) as defined in Eq. (4.6) 

and inserting them into Eq. ( 4. 11) , it is evident that the first term 

on the right hand side is a moment of one order greater than that 

on the left hand side i.e. 

1 82 

i n-~
0 

p(q, r ; Q, R ) 
m ur q 

giving the general form, 

i2 'Ii 32 
m i oroqp(q, r; Q, R) 

I 8 
- ---(Pp) QR m8q q 

Ok ('Pn ) _ 1 0 ( n+ l ) in 0
2 

( n ) 
ol P qQR - - m 8q 'P P qQR + M 8R8Q p P qQR 

(4.13) 

(4.14) 

On Fourier t ransform R --t P , i.e. ('Pp)qQP = J~00 (P np)qQR exp(-iP R/'/i)dR, 

in a phase-space setting, t he kinetic part is written, 

I a (pn+l ) 
moq p qQP 

i n J oo 8
2 

( iPR) + M -oo 8R8Q (P np)qQRexp --'Ii- dR 

( 4.15) 

Recognising that 

Joo 8 (P n ) ( i P R) d i ( n ) 
- oo 8R p qQRexp - ----,;:- R = ri p 'P p qQP ( 4.16) 

the kinetic part reads, 

Ok ( n ) _ 1 8 ( n+l ) P 8 ( n ) 
8t 'P P qQP - - m oq 'P P qQP - M 8Q 'P P qQP (4.17) 

The up-coupling to a higher order moment (n + 1) in the kinetic 

part of the moment equation is the origin of the infinit e hierarchy of 

momentum moments for mixed state densities. 
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Potential Part 

To obtain t he potential part of the moment equations, a Taylor ex­

pansion of both sides of Eq. ( 4.12) with respect tor is taken. Because 

the time derivatives of the coordinate space moments (Pnp)qQR are 

given by, 

Bv ( R) °"' 1 Bv (Pn ) ( ir ) n alq,r; Q, =~n!Bt PqQR 1i (4.18) 

coefficients can be matched to obtain equations of motion for the 

coordinate moments (Pnp)qQR· A Wigner transform R -, P then 

yields the corresponding equations of motion for the (Pnp)qQP· From 

Eq. (4.12) and Eq. (4.18) , both V and p(q,r;Q, R) are written as a 

Taylor expansion in r , 

1 8 ( ir)n ~ n ! a~ (Pn p)qQR y; _i L ~ [v(t) (q Q + R) 
1i I l! ' 2 

-(-1)1v(1J (q , Q - ~)](~Y 
x ~ :, (P"p)qQR (~)" (4.19) 

where V(l )(q, Q) = (81V(q, Q) /Bql). By matching coefficients on 

both sides i.e. n = l + K-, the potential part of the equation of 

motion for t he partial moments in coordinate-space { (Pnp)qQR} can 

be written 

Ov (Pn ) ot p qQR = n ( n ) ( 1i ) l-l 1 [ ( R) ~ z 2i 2 v(t) q, Q + 2 

(- 1)1v(l) ( q,Q-;) J(Pn-lp)qQR (4.20) 

Upon a transformation R -, P , the corresponding Wigner space 

moments { (Pnp)qQP} are given by 
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X (pn-l p) qQ(P+P') (4.21) 

where (Pnp)qQ(P+P') = (Pnp)(q, Q, P + P'). The quantity j(l) is the 

probability of a momentum jump [30] in P, associated with the lth 

potential derivative in q, v(t) 

J(l)(q,Q,P') = _l_ j dR[v(l)(q,Q+ R) 
4~n 2 

- (-llV(l) ( q, Q - ~ )] exp(-iP' R/n) (4.22) 

The potent ial part of the equation of motion for the Wigner space 

moments can be more conveniently expressed as having separate 

classical and quantum parts, 

av (Pn ) _ aV(q, Q) (pn- i ) 
at p qQP - -n aq p qQP 

+ a~ V(q, Q) a~ (Pnp)qQP + Cqu (4.23) 

The term Cqu brings in all the quantum effects into the dynamics. 

The n dependent term may expanded as 

Cqu = - L n ( n) 
l=O l 

( ;: y-i j dP' j(l)(q, Q, P') 

X (pn- l p)qQ(P+P') (4.24) 

with J now redefined as, 

and 

j(O)(q,Q,P') = (~) a~ V(q,Q) a~,8(P') 

_1 /dR[v(o) ( Q R) + 4~n q, + 2 

- (-1)1V(o) ( q, Q - ~)] exp(-iP' R/n) 

(4.25) 
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+4~n f dR[v(l) ( q,Q+ ~) 

-(-1)1
V(l) ( q, Q - ~) ] exp(-iP' R/n) 

(4.26) 

For l > l , J(t) = J(l) . 

The exact moment equations for the more specific potential V(q, Q) = 

Vq(q) + ½nt(q,Q) + VQ(Q) can be summarised as 

:t (Pnp)qQP = (Pn{J-J, Pw }qp)qQP+ {H, (Pnp)qQP }qQP+Cqu (4.27) 

From this moment approach, the structure of the equation has i) a 

'classical' hydrodynamic part in the quantum ( q, p) subspace 

( Pn { J-J } ) 2._ ~ (pn+ 1 ) p , PW qp qQ P = - m oq p qQ 

8[Vq(q) + ½nt(q, Q)] (p n-1 ) 
- n Oq p qQP 

(ii) a classical Liouvillian part in the (Q, P) subspace, 

{H, (Pn p)qQP }QP = - p 8( P n p)qQP 
M 8Q 

( 4.28) 

+ 8[VQ(Q) + ½nt(q, Q)] 8( p n p)qQP 
8Q 8P 

(4.29) 

and (iii) a mixed hydrodynamic-Liouvillian "quantum correct ion" 

part that originates from the potential contribution, 

c,. ~ t, ( ~) GJ-l / dP'Jl'l(q,Q, P')(P"- 1p)qQ(P+P')(4.30) 

or more explicitly, 
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!:ll2 
u 1p n - l1 ) 

E)pl2 \ p qQP 

(4.31) 

where the summation runs over odd values of the sum of indices 

The hydrodynamic part couples the nth order moment (Pnp) to or­

ders (pn±l p)qQP while the quantum correction part couples t he nth 

order to (p n- li p)qQP· Furthermore, the Liouvillian part acts only 

on a given order (Pnp)qQP· T he quantum correction part is closely 

related to the Wigner-Wey! series in that it contains all n terms and 

involves odd-order derivatives of potential from third order upwards. 

An important feature to notice is that even the zeroth and first or­

der moment equations carry explicit n terms which is absent in t he 

purely quantum case. This emphasises the hybrid hydrodynamic­

Liouvillian nature of the partial moments generated. 

4.2.3 Quantum-Classical Approximation 

Since t he aim of this approach is to combine both classical and 

quantum dynamics in a hybrid quantum-classical scheme, a clas­

sical approximation must be invoked in the ( Q, P) subspace. This 

is achieved by retaining terms in Eq. ( 4.31) t hat involve derivatives 

of order l2 = 0, 1,. This neglects all terms involving multiple or­

der derivat ives with respect to the classical coordinate Q wit hin the 

equations of motion for the partial moments. The quantum-classical 

equations of motion thus read [27], 

:t (Pnp)~QP = (Pn{Hq + ½nt, Pw }qp)~QP 

{HQ+ ½nt, (Pnp)c}QP + c~u 
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with now an approximate quant um correction part given by 

The superscript c here denotes the classical limit and approximate 

nature of the quant um correction term. This restriction of retaining 

only l2 = 0, 1 terms corresponds to linearizing Eq. ( 4.22) so that 

[v <t> (q ,Q+ ;)- (- l)1v<l) (q, Q- ;)] 

~ [1 - (- li]v (l)(q, Q) + t [ 1 - (-li+l] a~ v (l) R ( 4.34) 

with 

j (l=odd>(q, Q, P' ) 4~Ji 2vU> (q, Q) ./ dR exp(- iP' R/ Ji) 

- v (l>(q, Q)o(P' ) 

J (l=evcn>(q, Q, P' ) 
4
~Ji a~ v<l) .I dRR exp(-iP' R/ Ji) 

- (!!:_) ~ v <z>_§_o(P') (4.35) 
2'i 8Q 8P' 

Substituting these expressions into Eq. ( 4.21) gives t he results of 

Eq. ( 4.33) A key point here is that within this approximation, the 

quantum correction terms does not appear in the dynamical equa­

tions for the zeroth and first moment . This feature has very impor­

tant consequences for the Lagrangian trajectory dynamics. The first 

two partial moments are t hus written , 
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Figure 4.1: Mixed quantum-classical trajectory according to the La­

grangian picture for the three independent variables (qQP). The hydro­

dynamic fields (Pn p)qQP are constructed along the fluid-dynamical path. 

and 

where H Q is the Hamiltonian for the classical subspace and Hq is 

the Hamiltonian pertaining to the quantum sector. If the potentials 

in the classical subspace are harmonic and the coupling between 

the classical and quantum sectors is at most linear, then the above 

equations for the partial moments are exact. 
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4.2.4 Lagrangian Trajectory Dynamics 

In order to obtain trajectory equations for the mixed quantum­

classical scheme, the Eulerian equations of motion for the partial 

moments must be translated to the Lagrangian framework. To 

achieve this, the zeroth order moment (p)~QP is interpreted as a 

hybrid hydrodynarnic-Liouvillian continuity equation and the fluid­

particle dynamics follows from the definition of the three-component 

current jqQP 

-~ aa (Pp)~QP +{HQ+ ½nt, (p)~Qp}QP 
m q 

- 'iJ qQP · jqQP 

with 'VqQP = (8/8q,8/8Q,8/8P) and the current 

j qQP 

(p)~QP 

q 

Q 

p 

PqQP/m 

(8H/8P) 

-(8H/8Q) 

with the momentum field PqQP defined via, 

( 4.38) 

( 4.39) 

( 4.40) 

This field is the average momentum given by the Wigner function 

for particular values of (q, Q, P) variables. In the Lagrangian frame­

work, the hydrodynamic fields are calculated along t he fluid-part icle 

trajectories as defined by Eq. (4.39). A Lagrangian trajectory evolv­

ing in (q, Q, P) space is illustrated in Fig. 4.1. The time evolut ion in 

the Lagrangian framework is denoted by the total derivative with re­

spect to time, d/dt = 8/8t +vqQP · 'VqQP· The translated continuity 

equation is therefore given by, 

(4.41) 
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The derivation is completed by combining Eq. (4.39) with the equa­

tion for a fluid-particle acceleration dpqQP / dl as obtained from Eq. ( 4.37) 

for the first moment (Pp)~QP = PqQP(P)~QP· This yields a general­

ized hydrodynamic force. The resulting trajectory equations [27] 

correlate the quantum/hydrodynamic variables ( q, p = PqQP) with 

the classical variables ( Q, P). 

q 
p 

m 

P - -:q ( Yc,(q) + \l;nt(q, Q)) + Fhyd(q , Q, P) 

p 
Q -

M 

p - a~ (vQ(Q) + ½nt(q,Q)) (4.42) 

with p = PqQP and the hydrodynamic force 

l 00-qQP 
F'i1yd(q, Q, P) = - ( )c --,;i 

m p qQP uq 
(4.43) 

obtained as the spatial derivative with respect to q of the generalized 

variance 

(4.44) 

The term O-qQP describes the width in quantum momentum p for 

given values of (q , Q, P) of the phase-space distribution function 

PW ( q, p; Q, P). Indeed, it is the spatial variation of a-qQP with re­

spect to the quantum coordinate q that defines the hydrodynamic 

force Fhyd· This hybrid hydrodynamic force is equivalent to the 

hydrodynamic force for the purely quantum case apart from its ad­

ditional dependence on the classical degrees of freedom ( Q, P). Fur­

thermore, if t he isolated quantum system is a pure state, then the 

hydrodynamic force is equivalent to the Bohmian quantum force 

Fhyd = - 8Vqu/8q [24, 31 , 32] with the quantum potential defined as 

83 



The trajectories of Eq. ( 4.42) are associated with a phase space dis­

ribution function given by, 

( 4.45) 

This distribution function has characteristics of the underlying Li­

ouville phase space distribution within the classical space. However, 

it is single valued in quantum momentum p in the quantum space. 

This is similar to the purely quantum description of Chapter 3, i.e. 

a delta spike for quantum moment um p. 

4.2.5 Pure State Formulation 

As shown in Chapter 3 when discussing quantum hydrodynamics, for 

pure states i.e. p = I~) (~I, certain relations exist between t he hydro­

dynamic moments of p~i;i·e ( q, p; Q, P), that terminates the hierarchy. 

Particularly, the second order moment (P2 p)qQP can be expressed in 

terms of lower order moment so that these decouple from the rest of 

the hierarchy [27]. All the required information concerning the state 

of the system is embedded within the first two moments. The explicit 

form of the partial moments for a pure state is illustrated here in or­

der to aid the application to t he examples presented in this Chapter. 

Consider the Wigner function, 

1 Joo ( r r) ( ipr ) Pw(q, p) = 
2

7r1i _
00 

drppure q + 2, q - 2 exp --y;- ( 4.46) 

where 

Ppure ( q + ; , q - ; ) = ~ ( q + ; ) ~* ( q - ; ) ( 4.47) 
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Taking the partial moments for this dist ribution by applying a dif­

ferentiation with respect to the difference coordinate r gives, 

( 4.48) 

Given that the wavefunct ion is known, the variance a-~01
~ can be 

constructed from the pure state moments of Eq. ( 4.48). The hydro­

dynamic force can then be evaluated, 

( Q ) _ 1 8 pure 
Fi,yd q, ,P - - ( ) 8 a-qQP 

m p qQP Q 
(4.49) 

This is the strategy used for the application of the next section. 

4.3 Illustrations in Anharmonic Poten­

tials 

This section demonstrates the QCM approach for the dynamics of 

a quantum double well coupled to a classical harmonic coordinate 

and an Eckart barrier coupled to a harmonic oscillator. Although 

the QCM approach has been shown to be able to deal with mixed 

quantum states, this application is for pure states. 

The application of the QCM approach to a coupled harmonic os­

cillator system is shown in detail in Ref. [l]. Although a pair of 

light (quantum) and heavy (classical) oscillators is considered a rel­

atively 'simple' syst em to deal with, it poses a significant challenge 
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for Ehrenfest and surface hopping methods. However, as t he calcula­

t ions involves analytical expressions for the hydrodynamic quantit ies 

in the QCM approach, they are not dealt with in this Chapter. The 

focus of this Chapter is the application of QCM approach to more 

demanding systems where an analytical solut ion is not available. 

4.3.1 Double Well Coupled to a Harmonic Os­

cillator 

The dynamics of a quantum system subject to a double well potent ial 

coupled bilinearly to a classical harmonic oscillator is presented here. 

The potential function for this system is given by 

( 4.50) 

where t he first two terms arc the quantum double well, the third 

term is the classical harmonic mode and the last terms is the bi­

linear coupling. This potential surface is illustrated in Fig. ( 4.2) 

and the parameters are given in Table 1. Because t he classical sec­

tor is harmonic and the coupling between the sectors is bilinear, the 

hybrid-hydrodynamic representation of the mixed quantum-classical 

scheme is exact. Furthermore, the initial pure state of the system is 

retained throughout the propagation. Because of this, the system is 

completely defined by the first two moments (p)qQP and (Pp)qQP· 

For the coupled harmonic oscillators, one quant um and one classi­

cal [1], an analytical form exists for all the hydrodynamic quantites 

of the system. However, as the quantum sector in t his example is 

anharmonic, t here is no analytical form for the hydrodynamic force. 

A numeric approach must be adopted here. To this end , the La-
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Figure 4.2: The double well potential function defined in Eq. (4.50). 
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grangian trajectory equations of Eq. (4.42) are propagated where 

the hydrodynamic force Fhyd is extracted from the t ime dependent 

wavefunction. 

In general, numerical approaches to solve dynamical equations in 

quant um mechanics fall into two main categories; grid based ap­

proaches and basis set expansion. In a grid based approach , the 

Schrodinger equation is solved on discrete points that constitutes an 

Eulerian grid. Unfortunately, calculating t he hydrodynamic force 

that is required in t he trajectory equations would involve interpolat­

ing the quantities of interest from the Eulerian grid to a particular 

point on a Lagrangian grid. This is highly undesirable as is needed 

a t every t ime step in the propagation scheme. Not only is this com­

putationally expensive, it is a major source of error that is magnified 

furthermore by derivative calculations required to obtain the hydro­

dynamic force from the variance ClqQP, 

F(q ,Q, P) = 1 8 
-aQP 

m(p)qQP 8q q 
(4.51) 

In a long propagation scheme, the errors are propagated with the t ra­

jectories, potentially giving poor results. An alternative method is 

to utilise a basis set expansion. This is a global method t hat does not 

require any interpolation. For non-periodic, bound potent ials such as 

the system studied here, the t ime-dependent wavefunction 'lj; (q, Q, t) 

and therefore the part ial moments ('Pnp)qQP can be expanded in 

terms of t he eigenstates of the system q;(q, Q) (see Eq. (4.48)), 

88 



0.8 

0.6 

0.4 

0.2 

0 

Figure 4 .3: The dynamics of the first three moments, calculated in an 

Eulerian frame for a range of points in the quantum q coordinate and 

a single point in the classical phase-space ( Q = -0.2, P = 0.0), for the 

double well bilinearly coupled to a classical harmonic oscillator. 
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node 

-1 -0.5 0 0.5 
q (a.u.) 

Figure 4.4: Hydrodynamic force Ayct and the 0th moment, (p)qQP, com­

puted at fixed Q = - 0.2, P = 0.0 and t = 4410 a.u. for the double well 

bilinearly coupled to a classical harmonic oscillator. 

( 4.52) 

where Ej are the eigenvalues with coefficients Cj = (¢3"1/J). The 

eigenstates themselves are expressed in terms of a product harmonic 

oscillator basis 

</Jj(q, Q) = L, a!n,kXm(q)~k(Q). ( 4.53) 
m,k 

so a general equation can be written for the moments in terms of 

associated Laguerre polynomials for the classical Q, P phase space 

and derivatives of the Hermite polynomial in the quantum q coordi­

nate (see Appendix E). Apart from the finite representation of the 

basis in Eq. (4.52) and Eq. (4.53) , the moments and A yct , 

F11yd = - ( ( ~ ) ~ [ (P2 
p)~QP - P~Qp(p)~QP] 

mp qQP uq 
(4.54) 

are evaluated exactly for any point in the entire (qQP) space. This 

eliminates t he need for an interpolation routine. Furthermore, as 
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Figure 4.5: Lagrangian trajectories for 2 points in 3D (qQP) space with 

initial conditions that differ only in the quantum q coordinate. 

the hydrodynamic force is completely defined, there is no need to 

propagate the continuity equation Eq. ( 4.41) directly. Instead, the 

trajectories arc propagated by numerically integrating Eq. ( 4.42) us­

ing the explicit Euler solver with time step of 6.t = 0.1 au. 

The initial density is taken as a Gaussian in (qQP) given as 

J21r(Jq 2 2 p2 
(p)qQP = 7f2 exp(-2(Jq(q - qe) - 2(3Q(Q- Qe) -

2
(JQ)l4.55) 

with parameters given in Table 4.1 and the initial hydrodynamic 

momentum is set to zero, PqQP(t0) = 0. The dynamics of the first 

three hydrodynamic moments is illustrated in Fig. ( 4.3) for fixed 

values of QP = Q0 P0 . It is evident that the partial moments exhibit 

complicated dynamics with high-frequency intra-well oscillations oc­

curring on a fast t ime scale of t = 2000 au. On a longer t imescale 
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-0.033 0.030 0.010 0.002 2000 

/3q qe /3Q Qe M 

28 0.8 14 -0.2 20000 

Table 4.1: Parameters in atomic units associated with the potential func­

tion described in Eq. ( 4 .50) , the initial conditions specified in Eq. ( 4.55) 

and the masses m and Jvl. 

of t = 7000 au there is tranfer of density along the quantum coordi­

nate q from the right-hand well to the left-hand well via a t unnelling 

mechanism. An important feature to note also is the widespread 

formation of nodes within the partial moments. 

The formation of nodes in a wavefunction is a well-known problem in 

Bohmian mechanics. It almost always leads to severe computational 

problems in calculating the quantum force. Very similar problems 

arise in the calculation of the hydrodynamic force Fhyd here. The 

presence of nodes in t he lowest order moment (p)qQP leads to sin­

gularities in Fi1Yd· Fig. (4.4) shows Fhyd along with (p)qQP· The 

format ion of a node in (p)qQP at q = - 0.6 au causes Ayd to become 

singular. 

Fig. (4.3) also shows clear variation in the magnitude/norm of 

the hydrodynamic moments. The density not only fiows in a double 

well potential along the quant um coordinate q but also in elliptic 

orbits in t he classical subspace ( Q, P) . This is characteristic of a 

harmonic oscillator. As the density flows around this ellipt ic orbit, 

the amount of density flowing through Q0P0 varies periodically with 
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Figure 4.6: Fhyd evaluated along Lagrangian trajectories for 2 points in 

3D (qQP) space with initial conditions that differ only in the quantum q 

coordinate. 

the frequency of the harmonic oscillator. Between t = 4000 au and 

t = 6000 au, the amount of density at Q0P0 is at its minimum. The 

elliptic orbits can be seen in Fig. ( 4.5) that shows two trajectories in 

3D (qQP) space calculated from Eq. (4.42). The trajectories differ 

in their initial position in quantum coordinate q, the red init ially at 

qo = 0.88 au and the blue is init ially at q0 = 0.21 au. Note t hat 

the blue trajectory remains in the right-hand side well of the double 

minimum potential while the red trajectory t unnels to the adjacent 

well. The t ime dependency of the hydrodynamic force that govern 

the dynamics of the two trajectories is depicted in Fig. ( 4.6). 

The temporal evolution of an array of trajectories is shown in Fig. ( 4. 7). 

A sample of eight Lagrangian trajectories is illustrated along t he 

quantum coordinate between 0.2 ~ q0 ~ 1.1 au for given classical 

coordinates Qo = -0.2 au and P0 = 0.0 au. As expected, the tra-
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4000 6000 8000 
t (a.u.) 

Figure 4. 7: Lagrangian trajectories with initial conditions Qo = 

- 0.2, Po = 0.0 au and 0.2 ::; qo ::; 1.1 au for the double well bilinearly 

coupled to a classical harmonic oscillator. 

jectories follow a complicated path along t he quantum coordinate 

q as the trajectories perform high-frequency intra well oscillations. 

Furthermore, the three trajectories closest to the barrier tunnel to 

the other potential well with the first high frequency oscillation. The 

remaining trajectories stay in the initial potential well. 

4.3.2 Eckart Barrier Coupled to a Harmonic Os­

cillator 

To conclude, a second example, the dynamics of a system subject 

to an Eckart barrier coupled to a harmonic oscillator is briefly sum­

marised. The underlying wavefunction for the composite system 

is obtained by solving the Schrodinger equation on a fixed Eule­

rian grid. The hydrodynamic quantities are then extracted from the 

wavefunction and transtaled to the Lagrangian frame in order to ob-
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Vo a Vi Vi m 

0.03 0.5 0.075 0.005 2000 

M 

6 -2 7 -0.2 20000 

Table 4.2: Parameters in atomic units associated with the potential func­

t ion described in Eq. (4.56), the initial conditions specified in Eq. (4.57) 

and the masses m and M. 

tain the hydrodynamic force Fhyd · The trajectories from Eq. ( 4.42) 

can be subsequently computed. Although a scheme based on apply­

ing an interpolation at every t ime step has potential stability issues, 

it was found that a Lagrangian interpolation routine [23] yielded sta­

ble and smooth trajectory dynamics. 

The potent ial of the Eckart barrier coupled to the harmonic oscillator 

is given by, 

(4.56) 

where the first term is associated with the 'quantum' Eckart barrier , 

the second term is the classical harmonic oscillator and the final term 

represents the bilinear coupling. 

The init ial 3D Gaussian density was taken similar to Eq. (4.55), 

j 21r{3q 2 2 p2 
(p)qQP = 7f2 exp(-2{3q(q - qe) - 2{3Q(Q - Qe) -

2
/3Q )(4.57) 

with a translational energy of E trans = 0.01 au. The parameters of 

Eq. ( 4.56) and Eq. ( 4.57) are given in Table 4.2. 

95 



10 
8 
6 
4 
2 
0 

-2 
-4 
-6 
-8 

-10 

p 

;:m" 
·-•:::;;_·t:•:.· 

.8 

.4 

Q 
.4 

Figure 4.8: Lagrangian trajectories for a range of points in 3D ( qQP) 

space with initial conditions that differ only in the quantum q coordinate. 

The red coloured trajectories are reflected by the Eckart barrier while the 

blue trajectories tunnels through the barrier. 
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The resulting trajectory dynamics as obtained from Eq. ( 4.42) is 

presented in Fig. (4.8) and Fig. (4.9). A range of 14 trajectories 

wit h differing initial condit ions in quantum q coordinate (between 

-2.5 and -1.5 au) are shown for (qQP) in Fig. (4.8). The flow of 

density around elliptic orbits is clearly seen in t he classical (QP) 

coordinates. Furthermore, the trajectories coloured blue are seen to 

tunnel through the barrier while the red trajectories are reflected 

back towards their initial positions. Fig. ( 4.9) shows the same La­

grangian trajectories as in Fig. (4.8), but in (q, Q, t) . The periodic 

oscillatory motion characteristic of a harmonic mode is seen in clas­

sical Q coordinate. Once more, t he trajectories coloured blue tunnel 

through the barrier towards t he right hand side (i.e. posit ive values 

of q) while t he red trajectories are reflected from the Eckart barrier. 
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Figure 4.9: Lagrangian trajectories for the same points as in Fig. ( 4.8) de­

picted in (q, Q, t) space. The blue trajectories are seen to tunnel through 

the barrier (in q space) as time progresses while the red trajectories are 

reflected. 

4.4 Conclusions 

This Chapter illustrated t he application of the QCM approach [27] 

to anharmonic ( double-well and Eckart barrier) oscillator systems 

coupled to a classical harmonic mode. The dynamical schemes pre­

sented for the examples are exact. The key concept of the QCM as 

a hybrid approach is the combination of the quantum hydrodynamic 

and classical Hamiltonian trajectory pictures in a mixed Lagrangian 

scheme. This approach is unique for several reasons, 

i) It captures the details of instantaneous phase-space correlations 

between the quantum and classical parts of the system. This goes far 
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beyond alternative methods such as mean-field and surface-hopping 

approach. 

ii) The hydrodynamic force within the quantum sector depends on 

the classical variables ( Q, P), but is absent in the classical (Liouvil­

lian) sector. 

iii) The equations of motion for the trajectories do not have an ex­

plicit dependence on n. The equations are in fact formally identical 

to purely classical mixed hydrodynamic-Liovillian equations. 

iv) The coupled trajectory equat ions Eq. ( 4.42) are deterministic. 

This differs from stochastic trajectory dynamics associated with sur­

face hopping type trajectories. 

v) The QCM method is exact if the classical sector is harmonic. 

Two distinct strategies of propagation were used in the illustrated 

examples. For the double well potential coupled to a classical har­

monic mode, a basis set expansion method was used. For the Eckart 

potential coupled to a harmonic mode, a grid based approach was 

used to propagate t he quantities. A Lagrangian interpolation rou­

tine was then used to interpolate the hydrodynamic quantities from 

the Eulerian grid to the Lagrangian frame in order to obtain t rajec­

tories. Unfortunately, neither of the methods used are fully general. 

They both rely on information extracted from the underlying wave­

function. 

Chapter 5 in t his thesis deal wit h a general propagation scheme that 

attempts to apply approximate t runcation schemes for the moment 

hierarchy of Eq. ( 4.32) and Eq. ( 4.33). This then allows the hydrody­

namic quantities to be calculated 'on the fly', in a 'synthetic' trajec-
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tory approach similar to the quantum trajectory method ( QTM) of 

Wyatt [25]. Another natural extension to this study is the inclusion 

of many classical modes constit ut ing a bath to which the quantum 

subsystem is coupled. This would allow the study of dissipation and 

decoherence in the hydrodynamic representation. 
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Chapter 5 

Closure of Quantum 

Hydrodynamic Moment 

Equations 

5.1 Introduction 

The quantum classical moment approach [1, 2, 3, 4, 5] (QCM) de­

rived in Chapter 4 is fundamentally based on the hydrodynamic pic­

ture of mixed quant um states. The hydrodynamic representation has 

various advantages including reducing the dynamics of a 2N dimen­

sional density operator to a series of coupled dynamical equations 

for the N dimensional hydrodynamic moments. The trajectories are 

also easily formulated in the Lagrangian framework. Unfortunately, 

there is also a major drawback in applying the moment method. 

The hydrodynamic formulation of mixed states is based on generat­

ing moment um moments by an integration over the momentum p of 

the Wigner function, Pw. A hierarchy of equations of motion for t he 

moments is obtained that display coupling to both higher and lower 
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moments. In general, this hierarchy is non-convergent with no sim­

ple closure for the hierarchy. However, for two limited cases (pure 

states [6] and Gaussian moments [7]), analytical closures have been 

established. For the QCM approach to be of any use in a numerical 

scheme, a methodology of closing the hierarchy is required. Simi­

lar problems arise in classical hydrodynamics as well as in plasma 

physics with respect to the Vlassov equation [8] . 

The maximum entropy approach has been applied to quantum and 

classical hydrodynamics [9, 15]. It has the ability to evaluate higher 

order moments by finding a phase space distribution function t hat 

maximises an entropy functional under the constraint that the lower 

order moments are known. In its convent ional form, the maxi­

mum entropy approach has the requirement that the density re­

mains posit ive. For quantum states, the Wigner density can develop 

negative regions so the maximum entropy approach is not always 

the best methodology. An alternative approach that is of inter­

est in this Chapter is based on the maximum entropy ansatz. It 

involves the linearization of the maximum entropy derived by ex­

panding the quantum state pw in an orthonormal Gauss-Hermite 

basis. This is similar to the Grad-Hermite approach used in hydro­

dynamics [10, 11 , 12, 13, 14] and differs only in the function that the 

expansion is based on. 

The following section gives a qualitative description of preliminary 

investigations carried out that employed rather simple truncat ion 

strategies for the moment hierarchy. 
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5.2 Preliminary Work 

To investigate the effect of incorporating high order moments on the 

stability of the propagation of the hydrodynamic fields, (Pn p)q (see 

Eq.(3.9)), a simple cold cut-off was applied to the hierarchy. A cut­

off at many orders, including n = 3, n = 10, n = 100 and n = 300 

was investigated and t his was applied to both harmonic potentials 

and double well potentials with differing potential parameters. It 

was found that a cut-off at any order gave very little encouraging 

results. Indeed, even for very high order truncation of n = 300, the 

propagation is stable for t < < 1 fs. In this very short t imescale, 

no deviations from the init ial (t = 0) moments are observed. Not 

only is it highly undesirable to go beyond n = 300 moments, the 

magnitude of the moments become very large ( ~ 10295) and solving 

the moment equation becomes computationally unfeasible. 

As a simple introductory investigation, we initially tried a gradual 

'dampening' of the moment cut-off. The cold cut-off takes the from 

of a step function, Fig. (5.1). This cold cut-off itself may cause in­

stabilit ies. The sigmoidal-type functions that were invoked to grad­

ually decrease the dependence on higher order moments are shown 

in Fig. (5.1). The dampening associated with the three differing 

curves was applied to both harmonic and double well potentials, 

again with differing potential parameters. Very little or no improve­

ment was seen in the t imescales of the propagations. Even for the 

most gradual curve, the dynamics is observed for less t han 1 fs. 

It is clear that smoothing the cut-off has no influence on the sta­

bility of the moment propagation. The hierarchy is non-convergent. 
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Figure 5 .1: Sigmoidal type curves used for dampening the effect of higher 

order moments. Also depicted is the cold cut-off approach that was in­

vestigated. 

The dependency of the (n + l)th moment cannot be ignored for any 

value of n, irrespective of how high the hierarchy is taken. For the 

quantum hydrodynamic equations to be of use in a numerical ap­

proach, a moment closure scheme is needed. The remainder of the 

Chapter presents a moment closure scheme that accurately recon­

structs the (n + l)th moment based on the information embedded 

within the known lower order moments. 

5.3 Numerical Closure Schemes 

In order to close the moment hierarchy, a method of approximating 

the (n+ l)th moment is required. Alternatively, the (n+l)th moment 

may be expressed in terms of lower order moments. If the Wigner 

density, pw(q,p, t) is known then all the hydrodynamic moments are 

107 



defined by t he following prescription, 

(5.1) 

However, when the hydrodynamic moments are propagated using 

t he moment equation, 

[) I n ) 1 [) I n+l ) ~ (n) ( n, ) k-1 [)k V I n-k ) 
ot \ p p q = - m oq \ p P q - f;:; k 2i [)qk \ p P q 

odd 

(5.2) 

the Wigner density, pw(q, p, t) is generally unknown. Even though 

the initial density Pw( q, p, t0 ) is exactly defined, its time dependency 

cannot be extracted from the finite number of moments used. Some 

information however can be gleaned about the underlying phase­

space distribut ion from the moments. The first moment gives in­

formation about the mean momentum, t he second moment provides 

information about the width of Pw ( q, p) in momentum space p, while 

the third moment gives information about the skewness of the distri­

bu tion. The first few moments are also related to the physical con­

served quantities of density (p)q = p(q), flux density (Pp)q = mj(q) 

and kinetic energy density (P2p)q = 2mT(q). 

If an infinite number of the moments are known, the Wigner den­

sity, pw(q,p) can be reconstructed exactly. Provided a sufficient 

number of moments are known, it should be possible to construct an 

approximate closure scheme for the hierarchy by finding an explicit 

expression for (pn+i p)q in terms of known lower order moments. 

Equivalently, it may be possible to reconstruct t he phase-space dis­

tribution itself from the known lower order moments. The (n + l )th 

moment is then evaluated using Eq. (5.1). 
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In t he following section, a moment closure scheme based on a Her­

mite expansion is described. The Hermite expansion method is 

closely related to t he linearisation of the maximum ent ropy ap­

proach [16] that has been widely used in a number of fields [17, 18], 

classical hydrodynamics in particular [19]. To this end, the maxi­

mum entropy approach is first introduced. 

5.3.1 Maximum Entropy Approach 

In a maximum entropy approach, an entropy funct ional S[pw] is 

defined as, 

S[pw] = - j (pwlnpw - Pw)dpdq (5.3) 

It is convenient to define the entropy relative to some reference dis­

tribution, p13 , such t hat, 

S[pw] = - j ( pwln: + P/3 - Pw ) dpdq (5.4) 

The principle of maximum ent ropy states that the distribution func­

t ion that maximises S provides the best unbiased distribution func­

t ion based on t he given information. In this case, the information 

is the limited number of moments known. The task of finding an 

approximate phase-space distribution, PwA (q, p, t), that most accu­

rately reproduces the true distribution, pw(q, p, t) then becomes a 

variational problem of maximising S subject to t he constraints that 

the lower order moments are satisfied. The Lagrangian functional to 

be maximised is given by 

J[pw , >.] = S[pw]- J"'f, >-n(q,t) (/ dppn pw- (Pnp)q) dq (5.5) 

where >-n(q, t) are the position and time dependent Lagrange multi­

pliers. The local extremum of J is sought by setting its variation 
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with respect to the density Pw t o zero such that, 

0 J = 0 = - In PW - L AnPn 
P/3 n 

(5 .6) 

The result ing distribution function that maximises the entropy is 

thus, 

(5.7) 
n 

It is clear from Eq. (5.7) that the term p13 is the reference distribution 

that pwA adopts in the absence of any constraints. In classical kinetic 

theory approaches, it is usual to define p13 as the local Maxwellian. In 

reality, it can be modelled on any physically justifiable distribution 

function. In this work, P/3 is defined as a momentum dependent 

Gaussian function, 
I 

P/3 = ( ~) 
2 

exp(- (Jp
2

) (5.8) 

Here, fJ is a freely determined width parameter. In Eq. (5.7), the 

determination of the Lagrange multipliers involves solving a set of n 

non-linear equations. In order to obtain the dynamics of a system of 

interest, this must be implemented in a t ime stepping propagation 

scheme. The Lagrange multipliers must be solved for all values of 

t and q sampled in the simulation; this is computationally intensive 

and therefore highly undesirable. In the case that the determination 

of PwA requires information only up to quadratic in the moments, the 

Lagrangian multipliers { A }n may be re-written explicit ly in terms of 

the conserved quant it ies p(q), j(q) and T(q) [15]. For the quant um 

hydrodynamic equations of motion, Eq. (5.2), a low level closure of 

n = 2 is insufficient at reconstructing Pw accurately. 

Another major drawback of the maximum entropy approach as de­

fined here is its inability to deal with distribution functions that have 
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both positive and negative regions. It is clear from Eq. (5.7) that 

there is a requirement for pw A 2=: 0 V q, p . As detailed previously, the 

Wigner function should be interpreted as a quasi probability distri­

bution function as it can develop negative basins in regions where 

t here is quantum interference e.g. during quantum tunnelling. A 

Wigner distribut ion function of this kind cannot be reconstructed 

using the maximum entropy as defined here. 

The maximum entropy approach has been adapted to deal with dis­

tribution functions that have both negative and posit ive parts [20, 

21]. This approach has been applied to a number of problems in 

image or data reconstruction within t he field of astronomy [22, 23], 

geophysics [24, 25] and spectroscopy [26, 27]. In this approach, the 

image or data that constitutes t he distribution function is parti­

tioned into two posit ive distribution functions labelled PW and Pw. 
The total distribution function is then defined as the difference be­

tween the two functions, Pw = PW - Pw· The total entropy to 

be maximised is then t he sum of the individual entropies associated 

with PW and Pw i.e., s = s++s- where s+(s-) are defined accord­

ing to Eq. (5.4) using PW(Pw)- This method is ideal for situations 

where part of the distribution function known, for example in image 

reconstruction studies. Unfortunately, this approach is less suitable 

in situations where only indirect information about the distribution 

function is known, as is the case for the hydrodynamic moment equa­

tions. It also has the same disadvantage as previous discussions in 

that it still requires a solution of a set of non-linear equations for 

determining the Lagrange multipliers. 
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There is an alternative method that is fundamentally based on the 

maximum entropy approach but with no requirement to solve a set 

of nonlinear equations. This method also has the advantage that it 

can cope with the presence of negat ive regions in the density. The 

approach involves linearization of the expansion of pw A . 

5.3.2 Moment Truncation by Hermite Expan-

SIOil 

Starting from the maximum entropy ansatz, a linearization of PwA 

leads to a polynomial expansion, 

PwA = (q,p,t) = Pf3(p)e- L-m>.M(q,t)pm ~ Pf3 (1 -:~;>>-m(q,t)pm) 
(5.9) 

The expansion as defined here may be reformulated with different 

types of polynomials. In this Chapter, the expansion is taken as an 

orthonormal Hermite basis of the form 

where Hm( ,Jljp) is t he mth Hermite polynomial. pwA is then given 

by 

1 

PwA (q, P, t) = ~ am(q, t)Nm ( ~ ) 
4 

Hm( V(Jp) exp(-/3p2 /2), (5.11) 

The moments are then evaluated by direct integration of the recon­

structed density, PwA, 

(5.12) 
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It is evident from Eq. (5 .12) t hat the t ime dependence only appears 

in the expansion coefficients am(q, l), t he integral itself is time inde­

pendent. In fact the integral has an analytical solution t hat contains 

t he hypergeometric series (see Appendix F). Unfortunately, the hy­

pergeometric series is divergent in this case. The integral is however 

trivial to solve using a numerical method. The coefficients am(q, t) 

are obtained by solving a set of linear equations, 

ho 
0 

Jil 
0 

hm 
0 ao(q, t) (p)q(t) 

ho 
1 

Jil 
l 

hm 
1 a1(q,t) (Pp)q(t) 

(5.13) 

h~ h; h";: am(q, t) (Pnp)q(t ) 

In conventional matrix notation, this is given as, 

ha = p (5.14) 

The matrix h is t ime independent and only needs to be inverted 

once prior to the t ime propagation of the moments. Subsequent 

evaluation of the coefficients {a(q, t)}m are obtained by multiplica­

t ion of h- 1p where p is contains the updated moments at t ime t. 

The (n + l) th moment can then be reconstructed from t he 'known' 

lower order moments via the calculated coefficients, {a(q, t)}. 

5.3 .3 Hermite Closure derived from p(q, r) 

Another route to generate a moment closure scheme can be est ab­

lished from the Taylor expansion of t he coordinate space density 

p(q, r) given by, 

(5.15) 
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The Wigner function is generated by taking the Fourier transform 

of Eq. (5.15), 

Pw(q,p) 
2

~;,, j drp(q, r) exp(ipr/n) 

= 2~h ~ ~! (Pmp)q / dr ( ~) m exp(ipr/n) 

1 1 am I - ~ I:: -, (Pmp)qa m drexp(ipr/n) 
27rlL mm. p 
1 1 am 
"i" I:: - , (Pmp)qa mc5(p). (5.16) 
IL m m. p 

Using the Gaussian approximation for the delta function, the Wigner 

function becomes, 

Pw(q, P) = 

The orthogonality of the Hermite polynomial then allows a closed 

form of the highest ( n + l ) th moment to be established 

j dppw ( q, P) f-1 n+l (v'f3p) = !f;f3 ~ .!._(P mp) (-1r{3T 
h 1r L m! q 

m=O 

.I dp.Hm( v'f3p)Hn+1( v'f3p) exp(-{3p2
) 

0 

Hn+i ( #(Pp)q) , (5.18) 

where 

n+l 
H n+1( #(Pp)q) = L ck(Pkp)q (5 .19) 

k=O 

implies taking the order of the moments in the Hermite polyno­

mial and not raise the moment to the power of the moment e.g. 
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H3( Jlj(Pp)q) = 8/3~ (P 3 p)q - 12(3½ (Pp)q, and ck are the Hermite co­

efficients of the polynomial. The implication of setting t he (n + l )th 

Hermite moment in Eq. (5.18) to zero is that a closure for the mo­

ment hierarchy may be established where (p n+lp)q is expressed in 

t erms of the lower moments contained in H n+1 (,,,f/J(Pp)q) 

(5.20) 

5.3.4 Grad-Hermite Moment Closure 

A final approach , used particularly in classical hydrodynamics and is 

closely related to the previously discussed methodologies is the Grad­

Hermite approach [28]. In t his instance, the expansion of p;112 pw 

is taken in an orthonormal Gauss-Hermite basis and not the direct 

expansion of Pw A 

This ensures that the q dependent coefficients am(q, t) may be explic­

it ly and conveniently expressed as Hermite functions of the moments, 

(5.22) 

Generally, in classical hydrodynamics only the three lowest terms of 

the expansion are needed. These are then equated with hydrody­

namic quantit ies such as the local density, velocity etc. In quantum 

hydrodynamics however, a significantly larger number of moments is 

required to establish a closure and hence the evaluation of {am(q)} 

becomes cumbersome and computationally inefficient. In such cases 

the hierarchy is best closed by following the approach of Eq. (5 .18) 

and setting the (n + l )th Hermite moments to zero in Eq. (5.21) to 
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recover Eq. (5.20). 

The clear advantage of using Eq. (5.20) for the moment closure is the 

compact and explicit representation of (pn+i p)q required to close the 

hierarchy. However, for examples illustrated in this Chapter, it was 

found that the closure scheme of Eq. (5.13) was more stable than 

Eq. (5.20) in a t ime propagation scheme. In terms of numerical effi­

ciency, t here was very little difference between the two approaches. 

The results presented in this Chapter is therefore based on the Her­

mite expansion approach. 

The following section demonstrates the accuracy of the Hermite ap­

proach of Eq. (5.13) for reproducing the (n+ l)th moment given that 

the lower order moments are known. It is demonstrated for both a 

Gaussian type Wigner function and for a Wigner function with a 

complicated profile. The method is then applied to the moment 

equations of mot ion as defined in Eq. (5.2) in a dynamical scheme. 

It is applied to non-dissipative harmonic, double-well and periodic 

potentials. The section finishes with an application to the dissipa­

t ive dynamics of a harmonic, double-well and periodic potentials. 

The moments as obtained from the Hermite approach of Eq. (5.9) 

to Eq. (5.14) are compared with 'exact' moments extracted from a 

Wigner function generated either from wavepacket or phase space 

quantum dynamical calculations. 
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10 

Figure 5.2: A simple 2D Gaussian Wigner Function. 

5.4 Moment Reproduction 

The accuracy of the reproduction of the ( n + I )th moment is demon­

strated for various values of n. It is assumed in all calculations that 

the matrix in Eq. (5.13) is a square mat rix, hence n = m. This 

is first of all illustrated for a simple Wigner function that has a 2D 

Gaussian form, as shown in Fig. (5.2). A Gaussian form for the 

Wigner function is often used as an init ial condition for quantum 

dynamical calculations. As shown previously, in the case of a har­

monic potential, this initial Gaussian profile is retained throughout 

the propagation. This will provide a good starting point in assessing 

the potential of the Hermite approach in reconstructing an approxi­

mate Wigner function from a limited number of known lower order 

moments. In F ig. (5.3) it is seen that the approximate moment 

matches the true moment very closely, they are t ruly superimpos­

able. Note also that this is the case for even a low order t runcation 

at n = 3. It seems that for a Gaussian density, a low order t run­

cation is sufficient to reconstruct higher order moments, and hence 

t he Wigner function. This is not surprising since as explained pre-
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Figure 5.3: Moment reconstruction for a Gaussian density. Truncation 

at various values of n shown. 

viously, for Gaussian densities, the third order moment and above 

may be represented in terms of lower order moments e.g. 

(5.23) 

wit h a= (P 2 p)q -p2 (p). In fact, Eq. (5 .23) suggest that a t runction 

at n = 2 should be sufficient. 

Another more challenging example explored here is a Wigner func­

tion with a complicated profile that contains both positive and neg­

ative regions. Such a distribution function as shown in Fig.( 5.4) is 

a snapshot obtained from the inversion dynamics of the ammonia 

molecule. The density is delocalised in both potent ial wells during 

quantum tunnelling. The moments are easily obtained up to any 

order by numerically integrating the density Pw ( q, p) as defined in 

Eq. (5.1). For a given n 'known' moments, the Hermite approach 
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Figure 5.4: Wigner phase-space distribution function frorn the inversion 

dynamics of arnrnonia 

and Eq. (5 .13) is used to determine the (n + l )th moment . 

The reproduction is depicted for various values of n in Fig. (5.5). 

It is evident that a very low order termination (n = 2), as is of­

t en used in classical kinetic theories gives a very poor reproduction. 

Increasing the number of moments to n = 10 improves things some­

what. It reproduces the moment relatively well but differences are 

st ill noticable. Truncating at n = 19, the reproduced 20th moment 

is visually indistinguishable from the true moment . It is possible 

t o further increase the number of moments used to reproduce the 

(n + l )th moment , but the benefit over using only 19 is negligi­

ble. In fact using much more than n = 29 is not only unfavourable 

computationally but gives a poorer moment reconstruction. These 
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Figure 5.5: Reproduction of moments of the Wigner function depicted 

in Fig. (5.4) using the Hermite approach. 

results illustrate the ability of the Hermite approach to accurately 

reproduce the ( n + I )th moment associated with particular examples 

of static Wigner density pw(q, p). However a true assessment of the 

effectiveness of the approach can only be demonstrated by its per­

formance in a dynamical t ime propagation scheme where t he closure 

scheme is applied at every t ime step. 

5 .5 D ynamical Calculations 

For the dynamical calculations, the moments of an initial Wigner 

function of the following Gaussian form, 

1 
Pw(q,p, to)= 1rn exp(-2a(q - 8)2 

- p2 /(2a'/i2
)) (5.24) 

are taken as an initial condit ion. The even order moments therefore 

have a Gaussian form in q and are zero for t he odd order moments, 
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(1:,n=od<lp)q = 0. For the following nondissipative examples, the ref­

erence distribution was defined as the Fourier transform of t he initial 

0th moment, 

(5.25) 

For the dissipative calculations, the reference distribution was taken 

as the Maxwell-Boltzmann distribution. The time integration of 

Eq. (5 .2) was performed using a fourth order Runge-Kutta propaga­

t or with time step ~t = 0.0004 a.u. 

5 .5.1 Non-Dissipative Dynamics 

Harmonic Oscillator 

A harmonic potential of the form V(q) = V2q2 with Vi = 0.0025 

and a mass of m = 1, with parameters a: = 10 and o = 0.25 were 

used in Eq. (5.24). The dynamics of (p)q is depicted in Fig. (5.6), 

(Pp)q in Fig. (5 .7) and (P2 p)q shown in Fig. (5.8) . The moments 

initially placed at q = 0.25 flow from right to left of the well in the 

negative directio11. The direction of the flow is manifested in the 

dynamics of (Pp)q which corresponds to the flux density. The initial 

flux, (Pp)q = 0 aquires a dominantly negative value, which reflects 

the direction of density flow. As (p)q returns towards the positive 

region from left to right , t he quantum flux (Pp)q becomes positive. 

In fact the dynamics of (P p)q as the density (p)q returns from left to 

right of the well is a mirror image with respect to the q coordinate 

axis of the motion of the density from right to left. Finally, the sec­

ond moment initially placed at q = 0.25 moves towards the centre of 

the well, spreading out over q space. Its dynamics in, this sense, is 

similar to that of (p). The above calculations were performed with 
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Figure 5.6: Dynamics of (p)q in a harmonic potential. The moment as 

obtained from the Hermite approach is plotted against the true moment. 
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Figure 5. 7: Dynamics of (P p)q in a harmonic potential. The moment as 

obtained from the Hermite approach is plotted against the true moment. 
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Figure 5.8: Dynamics of (P 2 p)q in a harmonic potential. The moment as 

obtained from the Hermite approach is plotted against the true moment. 

a cut-off at n = 19. The three moments are shown with t he true 

moments, as obtained from a propagation of the underlying wave­

function. There is excellent agreement between the two approaches, 

they are visually indistinguishable. 

A comparison of the accuracy of the closure scheme for differing 

termination values of the moment hierarchy is shown in Fig. (5 .9) 

for t = 2000 au. For termination at n = 3, the approximated mo­

ment has negative regions, which cannot occur for a t rue density. 

A termination at n = 9 improves the moment reconstruction but 

there remains deviations from the true moment. A termination at 

n = 19 shows good comparison with the true moment, even at t his 

relatively long time scale. Although the reproduction of Gaussian 

moments for the static case of Fig. (5.3) shows good results for even 
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Figure 5.9: (p)q depicted at t = 2000 au for propagation in a harmonic 

potential. It is shown for truncation at n = 3, n = 9 and n = 19 levels 

low order moments ( e.g. n = 3), in a dynamical scheme, a higher 

order truncation is required for longer timescales. 

Double Well Potent ial 

A double-well potent ial of the form, 

(5.26) 

where Vi = 0.1, Vi = -0.6 and mass of m = 1 with the parameters 

a = 2 and 8 = 2 as defined in Eq. (5.24) were used in this exam­

ple. The dynamics of the zeroth moment for this potential is sum­

marised in Fig. (5.10). The initial Gaussian profile of the moment 

rapidly disappears result ing in a moment displaying complicated dy­

namics. The complicat ed profile of the moments provides an ideal 

test case for t he robustness of the Hermite approach in reproducing 
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Figure 5.10: Dynamics of (p)q in the double-well potential. 

the (n + l )th moment. A direct comparison of the accuracy of the 

closure scheme for various termination values of the hierarchy is il­

lustrated in Fig. (5.11) for two different snapshots taken during the 

propagation. It is clear that a termination at n = 2 is unaccept­

able, t here is no similarity whatsoever between the approximated 

and true density. At a slightly higher value of n = 9, the dynamics 

of the reconstructed moment captures the general form of the true 

moment but there remains obvious disagreement . In fact , Fig. (5 .11) 

shows the approximate 0th moment (i.e. density) developing neg­

ative regions, which is of course impossible. A closure at n = 19 

is significantly better, with good agreement with the t rue dynamics 

even for relatively long time-scales (1500.6.t = 0.6). The moment 

cut-off was attempted at higher order than n = 19 but only very 

slight improvements were observed. The computational effort was 
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F igure 5.11: For the double-well potential a) and b) depict (p)q computed 

at two different time-steps (1500.6.t = 0.6 a.u. in a) and 2750.6.t = 1.1 

a.u. in b)) and using different termination values for the hierarchy. In 

a) the closure applied at n = 2, 9 and 29 is depicted. In b) the closure 

applied at n = 9, 19 and 29 is depicted. 

also significantly higher for larger values of n hence a maximum of 

n = 19 was chosen as being practicable. Furt hermore, over longer 

t ime-scales the propagation becomes unstable irrespective of how 

many moments are used to reconstruct t he density. 

Although higher order moments are required to capture the small­

scale p structure of the Wigner density, t he convergence of the ex­

pansion of p(q, r) is not guaranteed. It is not clear whether the 

instabilit ies is due to numerics or to the failure of t he truncated mo­

ment expansion to reproduce small-scale p structure of the W igner 

density. 
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Periodic Potential 

In the illustration of the double well potent ial in the previous section, 

the derivatives of the potential terminate at t he fourth order level. 

The summation in Eq. (5.2) thus terminates at k = 3. The moment 

equation contains only two terms involving the potential energy for 

moments n ~ 3.i.e. 

!}_(Pnp) = _ }:_ _!}_(p n+lp)-nav (p n- lp) +~ ( n) 83
V (p n-3p) 

8t m 8q 8q q 4 3 8q3 q 

(5.27) 

For a periodic potential, 

V3 
V(q) = 2 (1 - cos(3q)) (5.28) 

this is not the case. In the Wigner-Moyal equation , this peri­

odic potential would require the evaluation of high order momen­

tum derivatives of the Wigner function. This can be very difficult 

in a grid-based numerical scheme and is highly undesirable. In the 

moment description however, these high order moment um deriva­

tives of the Wigner function are translated to lower order moments 

(p n- k p)q that involve no derivative evaluation. The moment ap­

proach is therefore the preferred scheme here. 

The periodic potent ial defined in Eq. (5.28) contains t hree energet­

ically equivalent potential wells. Periodic potentials are associated 

wit h describing quantum dynamics for phenomena such as bond ro­

tation . A widely investigated example is the internal rotation of 

a methyl group about a single bond C - 0 bond in CH30H. The 

t hree symmetric wells correspond to the three equivalent rotamers 

for the 360° rotation. Using a model system with moment of inert ia 
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Figure 5 .12: The dynamics of the first three moments in the periodic 

potential. 
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of I = l, potential parameter V3 = 2 and initial condition param­

eters of a = 2.5 and 8 = 0.5, the torsional quantum dynamics of 

the three lowest order moments are shown in Fig. (5.12). Note that 

t he model potential and inertia parameters used in this calculation 

(i.e. a relatively small moment of inertia and large potential barrier) 

dramatically increases the influence of higher order derivatives of the 

potential on the dynamics. For 'real' cases such as the internal rota­

tion in methanol, the barrier would be much lower and the moment 

of inertia would be much higher. In this case the truncation of the 

expansion of the potential derivatives at k = 3 would be sufficient 

for computing accurate quantum dynamics. The model parameters 

are therefore chosen to magnify the effect of incorporating higher 

derivatives of potential on the stability of the closure scheme. 

The moments in Fig. (5.12) develop oscillations which are typical 

of interference effects observed in periodic quantum dynamical sys­

tems. During the propagation, the moments that are initially dis­

placed to the right move to the left towards the negative region. As 

time evolves, the density represented by the 0th moments delocalised 

from the centre well through to the other wells. Because of the flow 

of the density towards t he negative region , the quantum flux, repre­

sented by the 1st moment becomes negative. The second moments 

(kinetic energy density) behaves very similarly to the density, be­

coming delocalised in all three potential wells. 

As a further trial, the influence of incorporating higher terms in the 

expansion of potential derivatives on the stability of the approach 

was investigated. In theory, there is an infinite number of spatial 
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the periodic potential where n = 19, using terminations of the expansion 
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derivatives for periodic potentials, 

0 ( n ) 1 0 ( n+l ) ~ ( n ) ( n) k - l [)kV ( n-k ) ( ) ~ P p q = --~ P p q- ~ -2. ~ P p q 5.29 
uq m uq k=l,odd k i uq 

However, in quantum dynamical calculat ions, the order of deriva­

t ives is t runcated at a certain value. In Fig. (5.13) , a snapshot of 

moments are shown at t = 1750 au for a t runcation at the k = I , 

k = 3 and k = 15 level. Taking t he classical form (k = 1), the general 

form of the 0th moment in captured, but there is clear differences 

as compared to the numerically exact results. There is particularly 

poor reproduction at the peak, q = -0.15. Increasing to k = 3 

improves the reconstruction somewhat as compared to the classical 

case, in particular with respect to the region at q = - 1.5. Trunca­

t ion at k = 15 improves the reproduction even further, with little 

deviation from the numerically exact results. It is worth noting that 

t he truncation at k = 15 would involve evaluating the 15t h deriva­

t ive of the Wigner density pw(q, p) if t he alternative Wigner-Moya} 

approach was used. It is clear therefore that the moment approach 

offers the advantage of involving significantly less computational ef­

fort for quantum dynamical simulations. 

5 .5 .2 Dissipative Dynamics 

As the hydrodynamic equations can be derived from the density ma­

trix or the Wigner function for mixed states as well as pure states, 

the approach can be extended to be applied to the study of dissipa­

t ive quantum systems. A study of systems that are coupled to their 

environment is referred to as theory of open quant um systems. When 

131 



the system interacts with its environment , the energy of the system 

relaxes and quantum coherence is lost. This process is known as 

decoherence. The dynamics of an open quantum system is described 

by the reduced density operator ps(t), which governs the dynamics 

of the sub-system only, 

Ps = TrE[p(t)] (5.30) 

where the environment degrees of freedom have been traced out. 

The equation of motion for the reduced density matrix is called 

a quantum master equation (QME) . Many methods exist for the 

derivation of QME's and the literature is rich with examples of the 

various approaches [33]. This section focuses on t he Caldeira-Leggett 

model [29] which describes the Markovian dynamics of a system t hat 

is weakly, bilinearly coupled to a bath of harmonic oscillators. The 

key assumpt ions underpinning the derivation of the C-L equation are 

l. Factorised initial conditions so t hat the system and environment 

are uncorrelated at t = 0. 

2. Markovian approximation i.e. assume the system dynamics is 

much slower than t he environmental fluctuations. The reduced den­

sity matrix therefore loses all memory of past. 

3. The environment is characterised by a bath of harmonic oscil­

lators. 

4. The coupling between the system and environment is weak. 

5. High temperature limit, k8 T » nD, where ks, T and n are 
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the Boltzmann constant, temperature of bath and cut-off frequency 

of the bath respectively. 

The phase space representation of the Caldeira-Leggett equation is 

given by, 

(5.31) 

where , is the friction coefficient .and k8 T is the thermal energy. 

This has the same form as the Wigner-Moyal equation, but has two 

additional terms. The third term in Eq. (5.31) is the diffusive term 

t hat drives t he initial density distribution irreversibly to equilibrium. 

The second term is a friction term which slows down the rate drive 

to equilibrium. Bot h these terms are identical to the classical Klein­

Kramers equation (i.e. the Fokker-Planck equation). Translated to 

t he hydrodynamic form [7], the Caldeira-Leggett equation is given 

by, 

From the above it is evident that the equation of motion for the 

0th moment has no explicit dependence on the dissipative terms. 

Furthermore, t he temperature dependent term only appears from 

the 2nd moment and above. 

Harmonic Oscillator 

The irreversible drive of the system to t hermodynamic equilibrium is 

depicted for the average energy (E) in Fig. (5. 14) a) and b) for a har­

monic oscillator of frequency w = 7 .1 x 10- 4 . For these calculations 
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Figure 5.14: Average system energy, (E) , calculated from the Caldeira­

Leggett equation using the same initial conditions. In a) , = 7 x 10- 4 

was used with the bath temperatures T = 100 K, 200 K and 300 K. In 

b) the energy relaxation is depicted for a range of I values and fixed 

bath temperature of T=lOO K. The thermal energy is depicted by the 

horizontal broken line. 
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the init ial condition a = 10 and 8 = 0.25 was used in Eq. (5.24). 

As in previous results, a cut-off of n = 19 was used for the moment 

closure. Fig. (5.14) a) illustrates the approach to (E) = kBT for a 

range of temperatures but using the same I and initial conditions. 

Fig. (5.14) b) illustrates the approach to (E) = kBT for a range of 1 

but for a fixed temperature and initial condit ions. Note how the rate 

of energy relaxation to thermodynamic equilibrium increases as the 

friction coefficient I increases, as is usually the case for a Caldeira 

Leggett model. 

Double- Well Potential 

This section illustrates the dissipative dynamics of the double well 

potential that was defined for the non-dissipative case. To reiterate, 

the potential parameters were given as Vi = 0.1 and Vi= - 0.6 with 

mass of m = 1. The irreversible drive of the system to thermody­

namic equilibrium is shown for the average energy (E) in Fig. (5.15). 

Also illustrated is the dynamics of (p)q- The relaxation of the system 

is depicted for two differing initial conditions. In the first example 

the values 8 = 2 and a = 2 used in Eq. (5.24) centres the init ial 

moments in the right hand side potential well. The other example 

with parameters 8 = 0 and a = 2 centres the moments on top of 

the potential barrier. For both differing initial conditions, the av­

erage energy (E) relaxes to kBT = 0.59. When taken relative to 

the potential energy minimum of - 0.9 a.u. , kB = - 0.31, as illus­

trated in Fig. (5.15) . A comparison of the relaxation as calculated 

from the Caldeira-Leggett equation using the moment approach is 

made with a phase-space representation of Eq. (5.31). The two dif­

ferent approaches show excellent agreement. The time taken for 
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Figure 5.15: Dissipative dynamics of t he double-well system using the 

parameters 'Y = 5 and kBT = 0.59 (kBT = - 0.31 when taken relative to 

the potential energy minimum of -0.9 a.u .. a) Average system energy, (E), 

calculated from the Caldeira-Leggett equation using two different initial 

conditions. The terms in the brackets are the parameters that define 

initial Gaussian in Eq. (5.24). Also shown in this figure are the corre­

sponding results obtained from the phase-space propagation of Eq. (5.31). 

b) Snapshots of (p)q at various times. 
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F igure 5.16: System energy relaxation for the double-well system using 

moment closures at n = 5, 9 and 11. The same dissipative parameters of 

Fig. (5.15) a) were used with initial conditions J = 0 and o: = 2. 

the energy relaxation to occur is around t = 15 a.u .. However, it 

takes significantly longer for the moments to relax to a stationary 

distribution where both wells are equally populated. The dynam­

ics of (p) q is shown for the case the moments are centred in the 

right hand side well (t = 0). The stationary distribution is shown 

at t = 240 au. For the dissipative examples illustrated above, a 

moment truncation at n = 15 was used. It was found that a lower 

order truncation would accurately reproduce the dynamics for short 

t ime-scales, but would t hen become catastrophically unstable very 

rapidly. Fig. (5.16) shows the failure of the moments approach at 

the lower closure order of n = 5, 9, 11. 
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Periodic Potential 

This system discussed here is t he periodic potential with the same 

form as described for the non-dissipative example. The potential 

parameter Vi = 2 a. u. and mass m = 1 is used in the calculations. 

The relaxation of the average energy of the system is depicted in 

Fig. (5.17) for a range of friction coefficients, 1 . The initial condition 

of 8 = 0.5 and a = 2.5 was used for all three examples and in all 

cases t he average energy relaxes to k8 T = 1.58 over a t ime scale 

of approximately t = 7 a. u.. As time evolves, a steady transfer of 

moment density from t he central well to both left and right wells 

occurs. Fig (5.17) also depicts the stationary distribution that is 

yielded at t = 14 a.u. for 1 = 0.75. 

5. 6 Con cl us ions 

It is shown in t his Chapter that both a simple cut-off and dampening 

of the effect of higher order moments in the propagation of Eq. (3.9) 

is met with limited success. The moment hierarchy is non-convergent 

and a robust strategy is required to approximate the higher order 

moments. To this end, a variety of numerical methods, based on the 

maximum entropy approach are introduced. In particular, results 

are shown for the Hermite closure scheme as defined in Eq. (5.13) 

to produce accurate and stable dynamics. The approach was illus­

trated for the nondissipative and dissipative dynamics of a harmonic 

oscillator, double well and periodic potential. One of the main ad­

vantages of the approach is its ability to deal with both positive 

and negative regions of the Wigner function. This is in contrast to 

classical approaches to hydrodynamics where the development of a 
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F igure 5.17: Dissipative dynamics of the periodic system with ksT = 
1.58. a) Average system energy, (E), calculated from the Caldeira-Leggett 
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times. 
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negative region is a disadvantage. Another appealing feature of the 

approach is its linearity. Furthermore, the evaluation of the linear 

coefficient s involves only a single matrix multiplication at each time 

step. 

The Hermite approach shows a dramatic improvement as compared 

to a cold t runcation or other simple closure schemes. The moment 

closure issue is a notoriously difficult problem to solve [15, 30] and the 

stability offered by the Hermite approach is encouraging. However, 

furt her improvement of the methodology is required to propagate 

moments to even longer timescales. 

Another drawback of the Hermite approach in its present form is 

that it requires a relatively large number of moments to close the 

hierarchy. In this Chapter, the results presented is for a single de­

gree of freedom. If t he approach was extended to cope with multi­

dimensional quantum systems, the number of moments required to 

terminate the hierarchy would be unachievable. For instance, a three 

dimensional problem would require the evaluation of 1 743 392 200 

moments for a truncation at the n = 19 level. The purpose of the 

closure scheme for the present study is its application in the hybrid 

hydrodynamic-Liouvillian Quantum Classical Moment approach of 

Burghardt et al. [1, 2, 3, 4]. As discussed in detail in previous 

Chapters, the QCM approach the quantum subsystem is treated hy­

drodynamically and will usually consist of a single degree of freedom. 

The classical part on the other hand is treated in a phase-space rep­

resentation that does not involve any moments whatsoever. This 

therefore reduces t he number of moments for multidimensional sys-
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terns, so simplifying the applicat ion of the Hermite closure scheme. 

In the future, t he Hermite closure scheme will be applied to a La­

grangian trajectory representation of the hydrodynamic equations 

of mot ion. It is well known that simulating quantum dynamics in 

the Lagrangian frame is challenging [31, 32, 34], but t hese can only 

be investigated once a robust closure scheme for t he moment hier­

archy has been established. The Hermite approach illustrated in 

this Chapter shows promise as a closure scheme for the moments 

equations irrespective of the representation used. 
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Chapter 6 

Mixed Quantum-Classical 

Dynamics: Solvation 

Phenomena 

6 .1 Introduction 

The properties of a molecule in a vacuum is very different to the 

properties of the same molecule immersed in a solvent. As chemical 

reactions often occur in a solvent environment, the study of the effect 

of the solvent on the solute is crucial and many investigations have 

been recorded in the literature [1]. Init ially, these investigations were 

concerned with equilibrium solvent effects [2] . An example of this 

is the effect of solvent polarity on the reaction potential surface. It 

has been observed in more recent work t hat in fast reactions, solvent 

dynamics can affect both the rate and outcome of the reaction [3]. 

There is therefore a need to understand the time dependent response 

of solvent to a change in the charge distribution of a solute molecule. 

With developments made in ultrafast time-resolved spectroscopy, it 
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Figure 6.1: A schematic (revised from Ref. [5]) summarising the solvation 

process. This particular example is for biological water in the role of a 

solvent. The electric field from solute is denoted by Ea. The solvent 

molecules (labelled 1, 2 and 3) are shown to rotate or translate in response 

to the change in the charge distribution of the solute. 

is possible to investigate ultrafast events in excited electronic states, 

and the response of the solvent environment thereafter [3, 4]. This 

a ids in t he understanding of the role of solvents in many important 

chemical and biological processes. Biological macromolecules such 

as proteins and DNA are physiologically inactive in the absence of 

water [5] . An understanding of the water as a solvent here is there­

fore essent ial to comprehend the basis of many biological phenomena. 

In the t ime dependent picture of salvation, the solute particle is 

146 



init ially in its ground electronic state in equilibrium wit h the solvent 

environment. A sudden change in the solute is made by femtosec­

ond excitation (e.g. by a radiation field), which can lead to the 

creation (or change) of a dipole. This newly created dipole induces 

an electric field on the surrounding solvent molecules. The solute, 

in a sense undergoes a Franck-Condon transit ion while the solvent 

ret ain its previous spatial and orientational configuration. This cre­

ates a highly non-equilibrium situation. Subsequently, the solvent 

molecules move and rearrange themselves to stabilize the new charge 

distribution . The resultant energy is the solvation energy of the so­

lute, E sol· The motion of the solvent can be either rotational of 

t ranslational. This process is summarised in Fig. (6.1). 

The t ime dependent response of the solvent (i.e. t he progress of 

salvat ion) of a newly created charge distribution t hat often follows 

an electronic excitation is measured by the 'tim e dependent fluores­

cen ce Stokes shift ' (TDFSS) of the emission spectrum of the solute 

molecules [6, 7, 8, 9]. In these experiments, large dye molecules are 

used as solute probes. These are particularly useful as probes since 

their dipoles change dramatically in the event of excitation. They 

also exhibit fluorescence and stay in the excited st ate for 'longer ' 

periods. This allows the response of the solvent to be investigated. 

The t ime dependence of the rearrangement of the solvent environ­

ment is reflect ed in the continuous red shift of the emission and this 

can be represented by the spectral response function [1], 

S(t) = v (t ) - v(oo) 
v(O) - v(oo) (6.1) 

where v(t) is the emission frequency of the solute. This normalised 

funct ion, also labelled the salvat ion t ime correlation function, decays 
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from unity to zero as time progresses to t = oo. The salvation time 

correlation is equivalently written in terms of the salvation energy 

Esol, given by, 

S(t) = Esoi(t) - Eso1(00) 
B sol (0) - Esol ( 00) 

(6.2) 

An initial theoretical approach to calculate the Stokes shift corre­

lation function of Eq. (6.2) was offered by the continuum model [10, 

11]. This is the extension of the equilibrium salvation model invoked 

by Born [12] and Onsager [13] to the time domain. The general 

premise of this model is that the dipolar solvent is represented by 

a homogenous dielectric continuum medium with frequency depen­

dence given by the Debye equation. Furthermore, the polar solute 

is described as a point dipole at the centre of a spherical molecular 

cavity. The overall conclusions from application of this approach is 

that the correlation function should decay exponentially with life­

time TL [6]. Because the salvation of a solute is seen to proceed 

over a range of t imescales rat her that a single time constant, TL, the 

application of this approach is severely limited. The homogenous 

continuum models also neglect effects such as solvent-solute interac­

tions, which again limits its applicability. 

More recently, inhomogeneous dielectric continuum models were de­

veloped to address some of the disadvantages of the homogenous 

approach [14]. In particular, the differences in the response of sol­

vent molecules very close to the solute and those in the 'bulk' were 

explored. This was primarily achieved by extending the contin­

uum model to include the shape variation of the solute and include 
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space dependence in t he frequency dependent dielectric function. 

The drawback of these models is they are phenomenological, and al­

though they provide a simple and int uit ive description of solvation, 

they neglect any consideration of molecular level effects [l]. Many 

different theoretical approaches of varying improvement and success 

over t he continuum model have been developed, including, Brow­

nian oscillator models [15], surrogate Hamiltonian approaches [16], 

instantaneous normal mode descriptions [17] and mode coupling the­

ory [18]. The approach considered in t his Chapter is the molecular 

hydrodynamic approach [19]. This methodology takes into account 

the microscopic solute-solvent and solvent-solvent interact ions. The 

extended hydrodynamic approach presented in the following sections 

follows derivation in Ref. [19]. 

6.2 Extended Hydrodynamic Approach 

The extended hydrodynamic molecular theory was developed in the 

1970's and has been applied to many liquid state phenomena in 

chemistry. [19]. The formulation is based fundamentally on t he cou­

pled equat ions for the solvent local density and the moment um den­

sity [20, 21, 22, 23, 24]. The equations include a force term written 

in terms of the functional derivative of the solvent free energy. This 

includes both t he microscopic solvent-solut e and solvent-solvent in­

teractions. The extended hydrodynamic approach can be thought of 

as a classical time-dependent density functional t heory (TD-DFT) 

description [19]. Note that in this hydrodynamic approach, t he dy­

namics of the momentum field is included. This is not usually the 

case for TD-DFT approaches where the rapid relaxation of t he t ime 
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dependent momentum is assumed [25]. In TD-DFT, the momentum 

field is therefore neglected. 

6.2.1 Derivation of the dynamical equations 

The coupled equations of motion for the hydrodynamic fields are 

expressed as, 

1 
--'vr ·g(r,t) 

m 

( _ )" o.F[p(t)J 
-p r ,t vrx() up r , l 

(6.3) 

where p(r , t) = (f)q is the solvent local density, g (r, t) = (P f)q is 

the moment um density. These are the same as the hydrodynamic 

fields detailed in the preceeding chapters. These are functions of 

the solvent translational coordinate r. The solvent local density is 

governed by a continuity equation whilst the t he equation for g(r, l) 

is a generalized Navier-Stokes equation. 

The force term in the equations of motion is given as the functional 

derivative of the Helmholtz free energy o.F /op. Although t he free 

energy in question is that of the non equilibrium density, p(r , t) , the 

actual form can be taken to be t he equilibrium form from statistical 

mechanics. This approximation is a central theme in the molecular 

hydrodynamic approach derived in this Chapter. 

The Helmholtz free energy is written as a summation of three dis­

t inct parts, 

F[p(t)] = Fo[p(t)] + -Gnt[p(t)] + j drp(r , t)Ucx(r ) (6.4) 

The first term is the 'ideal' part which comes from a non-interacting 

Boltzmann gas. This is the entropic contribution to the free energy, 
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given by, 

F o[p(t)] = kBT .I drp(r , t)(ln[p(r , t)A3
] - 1) (6.5) 

where A is the thermal wavelength , 

(6.6) 

The second term is the interaction part written in terms of a binary 

correlation term, 

These first two terms in Eq. (6.4) include the Boltzmann constant, 

kB and the temperature, T. The t erm 8p(r , t) = p(r , t)-Pcq(r) is the 

deviation from the equilibrium density in the presence of a solute. 

Eq. (6.4) also contains the direct correlation function, C2 (r - r'), 

which pertains to the reference equilibrium density, Peq(r ). The in­

teraction part, .1";0 t[p( t)] is the first term in a density expansion of 

the free energy t hat is expressed in terms of n-particle correlation 

functions [20, 23]. The direct correlation term, C2 (r - r'), can include 

both solvent-solvent and solvent-solute interactions if for instance, 

the solute's internal structure was also of interest. The final term in 

Eq. (6.4) pertains to an external potential, Uex· This corresponds to 

solute-solvent interactions. 

The functional derivative of the free energy with respect to the den­

sity is given as [20, 21, 22, 23, 24], 

:g~~~] = kBT { lnA3 p(r , t) - / dr'C2(r - r')8p(r ,' t) } + Uex(r ) 

(6.8) 

The force term t hat appears in the equation of motion for the mo­

mentum density, g (r , t) is the gradient Eq. (6.8). 
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6.2.2 Hydrodynamic quantities from the phase 

space density 

The equations of motion for the hydrodynamic fields, Eq. (6.3) can 

be extracted from the equation of motion for the single particle phase 

space density [26], 

a 
a/(r ,p , t) { ;~ + ¼rr(r, t) + Ucx(r ), J(r, p , t)} 

p 
-- · '1rf(r , P, t) + v'r[¼ff (r , t) + Uex(r )] 

m 

·'1pf(r , p ,t) (6.9) 

In the Enskog-Vlassov approximation, the effective single particle 

potential Verr is given by [27], 

Vcrr(r , t) = - kBT j dr1dp'C2(r - r')8J(r ' , p' , t) (6.10) 

where 8f = (J - feq) is the deviation from equilibrium. ½rr contains 

the two particle correlation, C2 ( r - r'). 

The first two moments of the single particle distribution are given 

by, 

p(r, t) 

g(r , t) 

(.f)q = j dpf(r , p , t) 

(P J)q = j dp pf(r ,p , t) (6.11) 

where p(r , t) corresponds to the local density and g (r, t) is t he mo­

mentum density. The dynamical equations for the hydrodynamic 

quantities can be written, 

1 
--v'r · g(r, l) 

m 

_ _!_ n [ ( ) g (r , t) · g (r , t)] 
v r C5 r , t + ( ) m p r , t 

-p(r , t)v'r[Vcff(r , t) + Ucx(r )] 
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where o-(r, t) is the pressure tensor, 

() )
. ( ) g(r.t)-g(r.t) 

a- r t = dp p · p f r p t - ' ' 
' ' ' p(r, t) 

(6.13) 

This term o-(r , l) , is the equivalent to the variance seen in the hydro-

dynamic equations from Chapter 3 and 4. It arises from the kinetic 

part of the Hamiltonian and includes the second momentum moment 

of the non-equilibrium density. As seen previously, the variance can­

not be written as a functional of p and g , so Eq. (6.12) do not form 

an independent closed set [27]. These equations depend on an in­

finite hierarchy of coupled equation for higher order hydrodynamic 

fields [29]. 

The approximation to yield the hydrodynamic equations Eq. (6.3) 

was taken as replacing the kinetic energy contribution with an ideal 

non-interacting free energy term [19], 

(6.14) 

This is the same as t runcating the moment hierarchy i.e. a moment 

closure scheme. The convective term, g(r, t) • g(r, t)/ p(r, t) is also 

neglected within the approximation. To this end, only the linear 

terms in g(r, t) are retained. 

The considerations so far have been limited to hydrodynamic quan­

tities that depend on the solvent t ranslational coordinate (and of 

course t ime t) only. This is only valid in some limited cases. In re­

ality, for molecular liquids, this extended hydrodynamic formulation 

needs to include orientational relaxation effects as well as the trans­

lational response [19, 20]. In fact, for polar solvation phenomena, 

the orientational effects dominate the translational effects. 
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The orientational component is formally included in the molecular 

hydrodynamic approach by expressing t he relevant hydrodynamic 

fields as functions of the orientation w as well as t he translation 

r. To this end, the dynamical equations for the local density and 

the moment um density (which now has separate orientational and 

translational parts) are defined [19], 

a al(r, w, L) 

a 
OtgT(r , w, t) -

a 
ot ~ (r, w, t) 

The t erm I is the moment of inertia and v' w is the angular momen­

tum operator. 

Although consideration of both t ranslational and orientational ef­

fects is required for many chemical systems, the remainder of t he 

Chapter focuses only on the translational component . 

6.2.3 Extended hydrodynamic equations coupled 

to a quantum system 

In this section, t he extended hydrodynamic formulation incorporates 

the coupling to a quant um solute. In particular, the quantum solute 

is taken as a two level system, although it can also deal with more 

complex systems such as a quantum subsystem including internal 

nuclear modes. The derivation follows Ref [19] . 

The underlying single-part icle function for this mixed quantum-classical 

description is a hybrid quant um-classical density, J(r , p , t). This 
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function is therefore a quant um density operator for the two-level 

system subspace while retaining a classical phase space description 

of the solvent part [28]. }(r, p , t) is constructed by taking the clas­

sical phase space limit of a partially Wigner t ransformed density 

operator. For a two level quantum system, a discretised basis is 

taken for the quantum part and the mixed density is given by, 

}(r,p) = Lfnm(r ,p)ln)(ml (6.16) 
nm 

The diagonal elements ( n = m) correspond to the electronic popu­

lations while t he off-diagonals ( n =f m) are the coherences. In this 

hybrid approach , these are parameterised by the classical phase space 

variables (r, p). The dynamical equation for the quantum-classical 

single particle density is given by the quantum-classical Liouville 

equation [28], 

a , i A A 1 A A A A aJ = -h[H,J] + 2({H, f} - {J,H}) (6.17) 

where [, ] is the quantum commutator and {, } is t he classical Poisson 

bracket. The Hamiltonian operator of this mixed quantum-classical 

system is written in terms of the same discretised basis of the quan­

tum part [19], such that, 

2 

iI = fm + I:Wn~s + v:!(r, t) + u~~(r )ln)(ml 
nm 

(6.18) 

The first term in the summation corresponds to the quantum two 

level system (TLS) potential while the second term is the effective 

mean field potential. In this hybrid quantum-classical framework, 

the effective mean field is state ( n , m) specific, 

v,:!(r, t) = -ksTbnm j dr' j dp'C~n\r - r' )6fnn(r' , p' , t) (6.19) 

where the term ofnn = fnn - JJ;) is the deviation from the reference 

equilibrium state. The t hird term in the summation is the external 
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potential it can have both diagonal and off-diagonal components. 

The hydrodynamic fi elds of local density and momentum density are 

derived from the hybrid single particle density in the usual way [29, 

30], 

Pnm(r , t) 

gnm(r, t) 

.I dpfnm(r, P , t) 

.I dp Pfnm(r , p , t) (6.20) 

The dynamical equations for Pnm (now a 2 x 2 matrix of scalar quan­

tities) and gnm ( a 2 x 2 of vectors) are obtained by applying prescrip­

tion of Eq. (6.20) to the quantum-classical single particle density of 

Eq. (6.17). The same approximation of Eq. (6.14) is also invoked 

such that the following matrix equations can be written for the local 

density, 

8 l i [( TLS o:F) ( TLS o:F)] ( ) -p = --v\ · g- - V + - -p- p · V + - 6.21 at m n op op 
and similarly for the momentum density, 

:tg= - }[v,.(%)-p+p·V,. (%)] 
i [(vTLS 8:F) (vTLS oF) ] - ~ +---g-;; -g-g- +---g-;; (6.22) 

The associated free energy is a functional of the matrix density p, 

F [p(t)] = Fo[p(t)] + Fint[p(t)] + / drp(r , t)Ucx(r ) (6.23) 

with a non-interacting, entropic term, 

Fo[p(t)] = kBTLOnm .I drpnm(r, t)(lnA3Pnm(r , t) - 1) (6.24) 
nm 

The interaction term, Fint, from the state-specific effective potential 

is given by, 

.rint[p(t)] = -}kBTL .f dr .f dr'8Pnn(r, t)ct\r - r')oPnn(r' , t) 
n 

(6.25) 
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where 6Pnn = Pnn - Pi~). The final term in Eq. (6.23), t he external 

potential may have both diagonal and off-diagonal terms. 

The free energy functional derivative is now of a matrix from, given 

by, 

(
8.F[p(t)]) = 
8p(r , t) nm 

kBT{ 8nmlnA3 Pnm(r , t) 

-8nm l dr 'C~n\r - r')8nmPnm(r' , t)} + u~~(r ) 

(6.26) 

As the classical solvent is now interacting with a two level quantum 

subsystem, there is coupling between t he diagonal (n = m) and 

off-diagonal (n -j m) fields component in addition to the coupling 

between the hydrodynamic fields. This multiple coupling results 

in complex dynamical behaviour [29, 30]. The details and effect 

of the differing coupling can be better understood by looking at 

individual components of the matrices for the hydrodynamic fields. 

For example, the density field ground state population, p11 is given 

by, 

(6.27) 

while the equivalent momentum field, 

(6.28) 

It is clear that the dynamics of the populations of both the local den­

sity and momentum density depend on the coherence (off-diagonal) 

terms. The effect of population transfer mediated by the coherence 
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t erms for the local density can be written as a transition flux density 

given by [30], 

i [ TLS (O:J") ] ) -h V12 + Op 12 (P21 - P12 

2[ T LS (o:F) ]~ h Vi2 + 8p 12 :;.s P12 (6.29) 

Furthermore, the electronic coherence terms for both t he local den­

sity and momentum density are seen to be dependent on the popu­

lation terms. The off-diagonal components can be expressed, 

a 
-P12 = -
8t 

1 i 
m v',. · g12 - r;_V t.p12 

i [ TLS ( o:F) ] ( h V12 + 8p 12 P22 - Pu) (6.30) 

and 

(6.31) 

where 

TLS (o:F) ( TLS (o:F) ) V E/t. (r ) = Vu + 8p 11 V22 + 8p 22 
(6.32) 

These equations for the populations and coherences explicit ly shows 

the interplay between the diagonal and off-diagonal terms. This 

complex coupling will be shown in detail in the results section. 

6.3 Results 

This section present preliminary work done on propagating the hy­

drodynamic quantit ies of p(r, t) and g(r , t) for a single degree of 

freedom. The derivation performed in this Chapter focussed on the 
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Figure 6.2: Dynamics of the solvent local density p(r , t) as extracted 

from the phase space single particle density f(r , p ). 

translational solvent response r only, and to this end, only t he trans­

lational component is shown. Furthermore, calculations were limited 

to single state dynamics. Since investigations in this field are at a 

very early stage, it is crucial that the dynamics are well understood 

at this simple level. In particular, the validity of the hierarchy ter­

mination of Eq. (6.14) is investigated. 

6.3.1 Hydrodynamic Fields for a single state 

To assess the validity of the closure of the hierarchy Eq. (6.14) in 

the hydrodynamic equations, along with the neglect of the convec­

t ive term g(r) · g(r)/ p(r ), the dynamics of the hydrodynamic quanti­

ties are compared to those obtained directly from the single particle 

phase space density. In the phase space approach, the local density 

and momentum field were extracted from t ime evolution of f(r , p , l), 

by integrating over momentum space. Because these moments are 

obtained from the evolving phase space density, there is no moment 
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Figure 6.3: The momentum density obtained from the underlying phase 

space single particle density 

hierarchy to consider. Any difference in the result ing dynamics of the 

t wo approaches is attributable to the approximation of Eq. (6.14). 

The quality of the local equilibrium assumption, i.e. the non-equilibrium 

free energy corresponding to a particular density taken as the equi­

librium free energy, has already been investigated. This was achieved 

by comparing the approximate TD-DFT approach with the 'known' 

non-equilibrium dynamics of hard rods [31]. The conclusions from 

t hat study is that the assumption is valid for states that are not too 

far from equilibrium. This is therefore not investigated any further 

here. 

The evolution of p(r , t) and g (r , t) as extracted from J(r , p ) is 

depicted in Fig. (6.2) and Fig. (6.3) respectively. The one dimen­

sional electric field was taken as, 

E(r) = 2~ 3 
(r-1cqm) 

(6.33) 
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with dipole µ = 0.01 au and rcqm = 12.5 au. This places the solute 

at r = 12.5 au. The two particle correlation function of the reference 

equilibrium density (Pcqm = 0.1 au) was modelled as, 

C2(r - r' ) = cos(r - r' )exp(-(r - r') ) (6.34) 

which has a form very similar to C2 obtained from experiments and 

molecular dynamic (MD) simulations [33]. From the init ial uniform 

density, p(r , t0 ) = 0.1, Fig. (6.2) shows a solvent 'dip' develops as the 

electric field generated by the solute placed at q = 12.5 au forces the 

solvent particles away. There is initially an increase in density at the 

edges of the solvent 'dip', as the solvent molecules rush away from 

the solute at t = 1200 au. As time progresses, this 'build up' of den­

sity at the edge of the 'dip' spreads out and decreases in magnitude 

as the solvent rearranges to stabilise the new charge distribution of 

the solute. 

This is further illustrated by looking at t he momentum density in 

Fig. (6.3) . The solvent moving from the solute at r = 12.5 au in 

opposite direction is manifested as an increase in the magnit ude of 

the momentum field. Note t hat the density moving towards the left 

is seen to increase the magnitude of the momentum field in the neg­

ative direction while t he solvent density moving to the right hand 

side from the solute causes an increase in the positive direction of 

the momentum density. Fig. (6.4) shows the underlying phase space 

distribution J(r,p) for the system. The origin of the 'build up' of 

density is easier to rationalise here. The phase space density is seen 

to move away from the solute with opposite momenta . 

The local density and momentum field obtained from the hydro-
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F igure 6.5: Evolution of the solvent local density for a single state solute 

obtained from the hydrodynamic approach. 
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Figure 6.6: Dynamics of the momentum density for a single state solute 

obtained from the hydrodynamic approach. 

dynamic approach of Eq. (6.3) are depicted in Figs. (6.5-6.6) for the 

same parameters as the phase space calculation. The form of the 

electric field is shown in Fig. (6.7) . Again, a solvent 'dip' forms 

as the solvent density responds to the electric field. However, a 

noticeable difference between the dynamics illustrated here as com­

pared to that obtained from the phase space propagation is that the 

build-up of density around the solvent dip never decreases for the 

hydrodynamic case. This suggests that the approximations given in 

Eq. (6.14) is not fully valid for this situation. It appears t hat t he 

immediate presence of the electric field is more t han a perturbation 

to the homogenous p(r, to) = 0.1. 

To further test the validity of the molecular hydrodynamic approach 

it would t herefore be ant icipated that an initial p(r , lo) chosen not far 

from Pcqm (in the presence of the electric field) would reproduce the 

correct dynamics consistent with the phase space propagation. The 
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Figure 6.7: The electric field of Eq. (6 .33) generated by the solute, with 

µ = O.Ol au 

initial density was therefore chosen as p(r , t 0 ) = 0.l exp(-0.5E(r) ), 

which has the inverted Gaussian form. The evolution of p(r , t) from 

both the hydrodynamic approach and the phase space approach is 

given in Fig. (6.8). Init ially, for both the hydrodynamic and phase 

space approaches, a build up of density is seen at the edges of the dip. 

Once more, in the case of the hydrodynamic approach, the build-up 

of solvent density simply moves away from the solute and does not 

change in widt h or height . It seems therefore that even for initial 

conditions close to equilibrium, the results from the two approaches 

are notably different. This raises some questions over the approxi­

mation of Eq. (6.14) and further studies are required to understand 

and comment on the validity of the hydrodynamic approach in its 

current form. 
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Figure 6.8: Dynamics of the local density p(r , t) with an initial field 

closer to final equilibrium density. The figure on t he top is from the 

hydrodynamic approach of Eq. (6.3) while t he figure on the bottom is 

from a phase space propagation 
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Figure 6.9: Ground state solvent local density pn as obtained from the 

phase space single particle density. 

6.3.2 Hydrodynamic fields of a solvent coupled 

to a 2-state quantum solute 

Following on from t he conclusions from the single state calcula­

tions, it seems there are some issues regarding the closure approx­

imation of Eq. (6.14). These issues need to be resolved before ex­

tending the molecular hydrodynamic approach to a 2-state quan­

tum solute. However, to illustrate t he coupling between the hy­

drodynamic moments as well as the interplay between diagonal and 

off-diagonal clements of the hydrodynamic fields, the dynamics of 

p(r , t)nm and g(r, t)nm are shown here. Figs (6.9-6.12) depicts the 

hydrodynamic fields (populations only) as obtained from the 2-state 

mixed quantum-classical single particle phase space density, ](r ,p). 

The same electric field of Eq. (6.33) with a dipole µ = 0.1 au was 

used for the ground state and µ = 0 au used for t he excited elec­

tronic state. The same correlation function as in Eq. (6.34) was also 

employed. 
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Figure 6.10: Ground state momentum density gu as obtained from the 

phase space single particle density. 

The dynamics of p11 (r , t) is shown in Fig. (6.9). The evolution is 

very similar to that obtained for the single state calculation. A 'dip' 

forms in the solvent density as the solvent moves away from the so­

lute. Again, a build up of density is seen around the edges of t he 

dip. These broaden and decrease in height as the solvent reorien­

tate to stabilise the new charge distribution. A closer inspection of 

p11 shows some variation in the conservation of the density. This is 

attributable to t he t ransfer of density associated with a two state 

description of the solute. Furthermore, the same behaviour is seen 

for g11 in Fig. (6.10) as is seen for the single state case. The mo­

mentum field increases in positive and negative direction, indicating 

the movement of solvent particles in opposite directions away from 

the solute particle. 

The dynamics of the hydrodynamics fields associated with the 
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Figure 6.11: The excited state solvent local density p22 obtained from 

the single particle phase space density 

excited electronic states of the solute are shown in Figs. (6.11-6.12). 

In particular, for p(r , l), the varying magnitude of density can again 

be traced back to the population transfer that occurs between the 

two electronic states of the quantum solute. 

6.4 Conclusions and Further Work 

In this Chapter, the molecular hydrodynamic approach [19] has been 

developed to describe the dynamical evolution of a solvent coupled 

to a quantum solute. The solvent was treated classically whilst the 

solute was taken as a two level quantum system. In principle, this is 

therefore a hybrid quantum-classical description [32]. This molecular 

hydrodynamic approach goes beyond methodologies such as contin­

uum models [10, 11] in t hat it takes into account molecular level 

effects ( e.g. microscopic solute-solvent interactions). 
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Figure 6.12: The excited state momentum field g22 obtained from the 

single particle phase space density. 

The hydrodynamic moments, local density Pnm(r ) and moment um 

density gnm(r ) are obtained from the hybrid quant um-classical single­

particle density [29], }(r , p) = I:nm fnm(r , p )Im) (n l. The dynamical 

equations for t he hydrodynamic moments exhibit populations/coherence 

coupling t hat emerges directly from the two level description of 

the quantum solute [30]. Furthermore, the equations of mot ion for 

Pnm(r) and gnm(r ) contains t he Helmholtz free energy, F[p] acting 

as the potential term. The solvent-solute interactions and an en­

tropic term is embedded within t he Helmholtz free energy. The free 

energy also identifies t he connection of the molecular hydrodynamic 

approach with dynamical DFT. 

Preliminary results are shown for the dynamics of the hydrodynami­

cal quantities. It is seen t hat differing results obtained from a phase 

space propagation versus the hydrodynamical approach raises ques­

t ions on t he validity of the hierarchy termination. Certain test cases 
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were explored in t his work in an attempt to identify the source of 

the discrepancies. This needs to be fully resolved before extending 

the application to more demanding systems. 

In future studies, it is anticipated that the incorporation of the an­

gular component (see Eq. (6.15)) to the molecular hydrodynamic ap­

proach is investigated. Furthermore, a full three dimensional (x, y, z) 

component description will need to be investigated. This will nat­

urally extend to a two state quantum solute, as described in this 

Chapter. As t he description of a two level quantum solute accounts 

for coherences n =I- rn as well as populations n = m, dissipative 

effects also can be studied. Further work to develop the molecular 

hydrodynamic approach will also incorporate electronic structure of 

t he solvent, which now requires a quant um description. 

170 



Bibliography 

[1] B. Bagchi and R. Biswas, Adv. Chem. Phys. 109, 207 (1999). 

[2] B. Bagchi, Annu. Rev. Phys. Chem. 40, 115 (1989). 

[3] M. Chergui, Femtochemistry, World Scientific, Singapore, 1995. 

[4] M. M. Martin and J. T. Hynes, Femtochemistry and 

Fem to biology-Ultrafast Events in Molecular Science, Elsevier, Am­

sterdam, 2004. 

[5] S. K. P al, J. Peon, B. Bagchi and A. H. Zewail, J. Phys. Chem. 

B. 106, 12376 (2002) 

[6] M. Maroncelli, E. W. Castner, B. Bagchi and G. R. Fleming, 

Faraday Discuss. Chem. Soc. 85, 199 (1988). 

[7] S. J. Rosenthal, X. Xie, M. Du and G. R. F leming, J. Chem. 

Phys. 94, 4715 (1991) . 

[8] M. Maroncelli, J. Mclnnis and G. R. Fleming, Science 243, 1674 

(1989). 

[9] G. R. Fleming and M. Cho, Annu. Rev. Phys. Chem. 47, 109 

(1996) 

[10] G. van der Zwan and J. T. Hynes, J. Phys. Chem. 89, 4181 

(1985) . 

171 



[11] B. Bagchi, D. W. Oxtoby and G. R. Fleming, Chem. Phys. 86, 

257 (1984). 

[12] M. Born, Z. Phys. 1, 45 (1920). 

[13] L. Onsager, J. Am. Chem. Soc. 58, 1485 (1935). 

[14] B. Bagchi, E. W. Castner and G. R. Fleming, J. Mol. Struc. 

Theor. Chem. 194, 171 (1989). 

[15] S. Mukamel, Principles of Nonlinear Optical Spectroscopy, Ox­

ford University Press Inc, 1999. 

[16] B. C. Perng, M. D. Newton, F. 0. Raineri and H. L. Friedman, 

J. Chem. Phys. 104, 7153 (1996). 

[17] R. M. Stratt, Acc. Chem. Res. 28, 201 (1995). 

[18] S. A. Egorov, R. A. Denny and D.R. Reichman, J. Chem. Phys. 

116, 5080 (2002). 

[19] I. Burghardt and B. Bagchi, Chem. Phys. 329, 343 (2006). 

[20] B. Bagchi and A. Chandra, Adv. Chem. Phys. 80, 1 (1991). 

[21] T. V. Ramakrishnan and M. Yussouff, Phys. Rev. B 19, 2775 

(1979). 

[22] T. R. Kirkpatrick and J. C. Nieuwoudt, Phys. Rev. A 33, 2651 

(1986). 

[23] D. F. Calef and P. G. Wolynes, J. Chem. Phys. 78, 4145 (1983). 

[24] A. Chandra and B. Bagchi, J. Chem. Phys. 91, 1829 (1989). 

[25] P. C. Hohenberg and D. I. Halperin, Rev. Mod. Phys. 49, 435 

(1977). 

172 



[26] B. Bagchi, J. Chem. Phys. 82, 5677 (1985). 

[27] R. Balescu, Equilibrium and Nonequilibrium Statistical Mechan­

ics, Krieger, Malabar, FL, 1991. 

[28] I. V. Aleksandrov, Z. Naturforsch. 36, 902 (1981). 

[29] I. Burghardt and L. S. Cederbaum, J. Chem. Phys. 115, 10312 

(2001). 

[30] I. Burghardt, K. B. M¢ller, G. Parlant, L. S. Cederbaum and 

E. R. Bittner, Int. J. Quant. Chem. 100, 1153 (2004). 

[31] U. M. B. Marconi and P. Tarazona, J. Chem. Phys. 100, 8032 

(1999). 

[32] K. H. Hughes, S. M. Parry, G. Parlant and I. Burghardt, J. 

Chem. Phys. A 111, 10269 (2007). 

[33] N. Phuong, G. Germano and F. Schmid, Comp. Phys. Comm. 

147, 350 (2002). 

173 



Appendix A 

Separating the real and 

imaginary parts of the 

Schrodinger Equation 

The Schrodinger equation is given by, 

. 87/J -ri2 a2 

in- = ----'lj; + V (r, t)v; at 2m8r2 
(A.l) 

where m is the mass and V (r, t) is the potential energy. If the 

wavefunction, 7/J, is represented in t he polar form of Madelung, 

7/J(r, t) = R(r, t)e fS(r,t) (A.2) 

the Schrodinger equation Eq. (A.1 ) can be rewritten, 

Expansion of the derivatives and multiplying by e-fS(r,t} yields 

as aR 
-R-+in- = 

8l 8l 
n2 82 R . n 8R8S 

- ---i---
2m 8r2 m 8r 8r 

n a2s 1 (as )
2 

- i - R-+-R - +VR(A.4) 
2m 8r2 2m 8r 
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The real and imaginary parts of Eq. (A.4) may be separated. Collect­

ing the real terms and dividing by R gives the quantum Hamilton­

Jacobi equation, 

(A.5) 

Collecting the imaginary terms and multiplying by 2Rn-1 yields, 

2R8R = _'},__R8R8S - R
2 

8
2
S 

Bt m Br Br m 8r2 
(A.6) 

Recognising that, 

2RBR = 8R
2 

at at 
(A.7) 

and 

1 8R
2 

88 + R
2 

8
2S = 1 a (R2BS) (A.8) 

m Br Br m Br2 m Br Br 

Eq. (A.6) may be written as 

(A.9) 

175 



Appendix B 

Taking the gradient of the 

quantum Hamilton-Jacobi 

equation 

The quantum Hamilton-Jacobi equation is given by, 

as 1 (as)2 

--=- - + Q(r,t) +V(r,t) 
at 2m or 

The gradient of Eq. (B.1) can be written as, 

Since, 

and 

a (as ) 1 a (as)2 aQ av 
- or at = 2m or or + 8r + 8r 

-:r (~!) = -:t (!~) 
a (as)2 a2s as 
or 8r = 2 

8r2 or 

Eq. (B.2) may be re-expressed , 

176 

(B.1) 

(B.2) 

(B.3) 

(B.4) 

(B.5) 



Since v = l.. as therefore as = mv and a
2
s = m av. This means t hat 

m ar ' ar ar2 ar 

Eq. (B.5) may be rewritten 

Now, 

-m ( av ) = ovmv+ 8Q + av 
at or or or 

dv ov dr ov dt 
dt = or dt + ot dt 

Since, dr/dt = v, Eq. (B.7) may be written as, 

dv 8v 8v 
-=v-+-
dt or ot 

The total t ime derivative of Eq. (B.6) is thus given as 

(B.6) 

(B.7) 

(B.8) 

- m, (dv _ v av ) = 8v m.v + 8Q + av (B.9) 
dt or or or or 

which reduces to 
dv 8Q av 

-m-=-+-
dt or or 

(B.10) 
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Appendix C 

Derivation of the 

Wigner-Moyal equation 

from the quantum Liouville 

equation 

The positional coordinates x and x' are defined as the difference 

coordinates which are related to the diagonal coordinate q and t he 

off-diagonal part of the coordinate r by x = q+ r /2 and x' = q- r /2. 
Consequently, q = 0.5(x + x') and r = x - x'. With these definitions 

the Wigner function Pw ( q, p) is related to the density matrix by 

Pw(q,p) 1 ; ·00 / ·!J?. - - < xlplx > e- 1 ndr 
2nn - oo 

1 Joo r r i!l! - < q + - lplq - - > e- n dr 
2nn - oo 2 2 

(C.1) 

and 

I I J OO ·!J?. < x i pi x >= p(x, x) = _00 pw(q, p)e1 
n dr. (C.2) 
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For a single electronic state system the quantum Liouville equat ion 

for the density matrix is given by 

a · ri 2 a2 a2 

-p(x,x') = - ~{ - _i (- - -) + V (x) - V (x' )}p(x,x') 
at n 2m 8x2 8x'2 

(C.3) 

The equation of motion for pw(q,p) is obtained by taking the Wigner 

transform of Eq. (C.3). Taking the Wigner transform of the LHS of 

Eq. (C.3) yields 

1 ; ·00 8 I - i 2 a l Joo I -i2 a -
2 

1: -
0 

p(x,x )e n dr = -
0 2 

1: p(x,x )e Ii dr = -
0 

pw(q,p) 
1r,1,. -oo t t 1rri -oo t 

Wigner transform of the kinetic energy part of the QLE 

For the kinetic energy part in the RHS of Eq. (C.3) the following 

relations between the derivatives are used 

a dq 8 dr 8 l 8 8 
(C.5) 

ax 
- -+ --=-- +-
dx 8q dx Br 2 8q Br 

32 8 (dq 8 dr 8) 
8x2 - --+--

Bx dx 8q dx Br 

ca a)Ca a ) 2 8q + Br 2 8q + Br 
1 82 a2 a2 

(C.6) - --+--+-
4 8q2 8r8q 8r2 

a dq 8 dr 8 1 8 8 
(C.7) 

8x' 
- --+-- =-- - -

dx' 8q dx' Br 2 8q or 
32 8 ( dq 8 dr a) 

8x'2 8x' dx' 8q + dx' Br 

c a a) Ca a) -
2 8q Br 2 fJq Br 

1 82 32 32 
(C.8) - - - --+-

4 8q2 8r8q 8r2 

Consequently 

a2 a2 a2 
(C.9) - - -=2--

8x2 8x12 8r8q · 
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Substituting this expression for the derivatives into the kinetic part 

of Eq. (C.3) yields 

n EJ2 r r 
i--- < q+-lplq- - > . 
m araq 2 2 

(C.10) 

Taking the Wigner transform of Eq. (C.10) gives 

1 Joo n a2 r r . r - i---( < q + -lplq- - > )e- 1T.dr 
21rn -oo m araq 2 2 

in a Joo a r r · !]! = --- - < q + -lplq - - > e -
1

11 dr 
m21rn 8q - oo ar 2 2 

(C.11) 

Integrating by parts gives 

in, a [ T T · !J!. ] 00 --- < q+- lplq- - > e - 111 
m21rn 8q 2 2 -oo 

in f) Joo r r [) j!J!. ---- < q+ -JpJq- - > -e- n dr 
rn21rn fJq -oo 2 2 or 

in a ;·00 r r - i j!J!. 0 - --- < q + -JpJq - - > -pe- n dr 
m21rn, oq . - oo 2 2 ii 

p a 1 l oo r r · !J.!. ----- < q+ -lplq- - > e-1
11 dr 

m fJq 21rn. -oo 2 2 

- _E_ 
8
8 

pw(q, p). (C.12) 
m q 

In the first line of the above expression the term in square brackets 

is zero because of the boundary conditions that the density matrix 

tends to zero as r ---, ±oo. 

Wigner transform of the potential part of the QLE 

For the potential energy part of the QLE it is assumed that V can 

be expanded in a Taylor series about q, 

V(x) = 
00 rn fJnv 

V(q+r/2) ~ I:-­
n=o n!2n aqn 

r av r 2 a2v r3 83V 
V ( q) + 2 8q + 8 8q2 + 48 oq3 + ... 
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V(x') 

(C.14) 

Taking V(x)- V(x') removes the even powered terms1 . To 3rd order 

av r3 83V 
V(x ) - V(x') ~ r Bq + 

24 
Bq3 + ... (C.15) 

Substituting this representation of V into t he Liouville equation and 

taking the Wigner transform gives 

i 1 Joo { 1 } , • !:I?. --- V(x) - V( x ) p(x, x )e- • n dr 
n 21rn -oo 

i 1 Joo { av r3 83V } r r - i!E ~ - -- r-+-- <q+-lplq - ->e ndr 
n 21rn -oo aq 24 Bq3 2 2 

(C.16) 

for the potential part . Inserting the relation 

(-1i)n an - i!E n - -e n =r 
i Bpn 

(C.17) 

into Eq. (C.16) gives 

i 1 Joo 8V r 3 83 V r r . 1:e --- {r-+-- } <q + - lplq-->e- 1 ndr 
n 21rn -oo aq 24 8q3 2 2 

i 1 Joo { 8V - n 8 1 83V -n3 
83 

} r r - i1:e 
=--- ---+--- - <q+ -lplq-- >e ndr 

n 21rn -oo aq i ap 24 8q3 - i 8p3 2 2 

8V 8 1 Joo r r - i1:e 
= ---- < q + - lplq-->e ndr 

Bq Bp 21rn -oo 2 2 

n2 83 V 83 1 ;·00 r r ·!:£ ----- < q+- lplq - - > e- •r. dr 
24 8q3 8p3 21rn . - oo 2 2 

av a n2 a3v 83 

= 8q 8ppw(q,p) - 24 8q3 8p3pw(q,p). (C. l S) 

Finally, the EO M for pw ( q, p) for a single state system is given 

by 

8pw p 8pw av 8pw ri.2 83V 83pw 
- = ---+-------at m 8q 8q 8p 24 8q3 8p3 ... 

(C.19) 

1 For the off-diagonal terms of a multi-state system the even powered terms 

do not cancel. 
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Appendix D 

Derivation of dynamical 

equations for hydrody namic 

moments 

The equations of motion for hydrodynamic moments can be derived 

either from t he quant um Liouville equation for t he density operator 

in the coordinate representation or else from its equivalent Wigner 

phase space representation. In phase space, the moments are mo­

mentum moments of the Wigner function, pw(q,p) and in Liouville 

space they are momentum superoperators of the difference coor­

dinate, r. The required moment equations are derived from both 

spaces in this Appendix. 

Liouville coordinate space 

In coordinate space the Liouville-von-Neumann equation for the den­

sity operator p(x, x') is given by 

i1i :l(x, x') [H(t), p(x, x')] = L(t)p(x, x') 
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-n,2 32 32 
= 2m (8x2 - 8x'2)p(x,x') + [V(x) - V(x')]p(x ,x') 

(D.1) 

By defining the following superoperators in the x, x' coordinates, 

I r = .'E - X 

V_ V(.r,) - V(x') 

(D.2) 

(D.3) 

(D.4) 

(D.5) 

V(q + r/2) - V(q - r/2) , (D.6) 

Remark 1 [V(q + r/2) - V(q - r/2)] is an odd function. Conse­

quently, 8q [V (q + r/2) - V(q - r/2)] is even and a;[V(q + r/2) -

V(q - r/2)] is odd. However, 8r[V(q + r/2) - V(q - r/2)] is odd. 

Remark 2 W e will often define P = 'P+· 

where q represents the sum coordinate and r the difference coordi­

nates, Eq. (D. l ) is given by 

in, ~ p(x,x') = .!_p_'P+p(x,:r/) + V_p(x,x') (D.7) 
ut m 

Eqs. (D.2-D.3) can be expressed in terms of q and r. We first express 

t he partial derivatives with respect to x , x' in terms of q, r 

8 
aq 
8 
or 

dx ~ + dx' _£_ = ~ + _£_ = }:__ p 
dq ax dq ax' ax ax' n -
dx 8 dx' 8 1 8 1 8 i --+-- = -- - -- = -'P+ 
dr ax dr ax' 2 ax 2 ax' 1i 
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The moments of P + are defined as 

(D.10) 

where the delta function 8(r) implies evaluating the operation of P~ 

on p and t hen letting r - 0 so that the diagonal x = x' = q result 

is evaluated. 

By applying Eq. (D.10) to both sides of t he Liouville-von-Neumann 

equation (D.7) coupled equations of motion for the moments are ob-

tained. For the zeroth moment we make use of Eq. (D.8) to get, 

in~ <p>q in ~ J
00 

8(r)P+p(q+r/2,q-r/2)dr 
ut ut -oo 

n O Joo -. ~ 8(r)P+p(q + r/2, q - r/2)dr 
Im uq -oo 

o 
~ <p>q 
ut 

+ 1-: 8(r)V_p(q + r/2, q - r/2)dr 

1 o 
--- < P+p> moq q 

(D.11) 

In the second integral on line 2 of the above equation V_ = V(q + 
r/2) - V(q - r/2) = 0 for 8(r) . For the first moment, < 'P+P >q, we 

have 

o 
ot < 'P+P >q ~ ; ·oo 8(r)P+p(q+r/2,q-r/2)dr 

ut -oo 

-~ ~ J
00 

8(r)Pip(q + r/2, q - r/2)dr 
muq -oo 

-{ 1-: 8(r)P+ V_p(q + r/2, q - r/2)dr 

- -~~ < P;p>q - J
00 

8(r)~ V_p(q+r/2,q - r/2)dr 
m uq -oo ur 

(D.12) 

Expanding t he partial derivative in the integral on the final line, 

Joo 0 
_

00 

8(r) or V_p(q + r/2, q - r/2) = J
oo 0 

- oo 8(r) [p(q + r/2, q - r/2) or v_ 
o 

+V_ orp(q + r/2, q - r/2)]dr 

(D.13) 
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As in Eq. (D.11) the second part of the above integral is zero ( 

V_ = V(q + r/2) - V (q- r/2) = 0 for 8(r)). For the first part of the 

integral we note that 

giving 

8 8 
Br V (q + r/2) - Br V(q - r/2) 

The equation of motion for < 'P+P >q is then 

8 1 8 2 8V(q) 
-;::;-- < 'P+P >q= ---

8 
< P+P >q ---!;\ < p >q (D.17) 

ut m q uq 

For the second moment , < P!p >q, we have 

8 2 1 8 3 
-8 <P+p>q - - -8 < 'P+P>q t m q 

-{ 1-: 8(r)P!V_p(q + r/2, q - r/2)dr 

(D.18) 

For the potential energy part, 

i Joo 
h - oo 

8(r)P!V_p(q + r/2, q - r/2)dr = 

h Joo [)2 --:- 8(r)-V_p(q + r/2, q - r/2)dr 
l - oo 8r2 

h 1·00 

8
2 

= - i. _
00 

8(r) [v- Br2 p(q + r/2, q - r/2) 

8 8 
+2~p(q + r/2, q - r/2)~ v_ 

ur ur 
32 

+p(q + r/2, q - r/2) Br2 V_ ]dr 

= -~ 1-: 8(r)[a) + b) + c)]dr (D.19) 
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As in the equations for the zero and first moments expression a) is 

zero. Expression b) is evaluated using t he same approach for the 

first moment calculation, giving 

av 
2~<P+p>q 

uq 
(D.20) 

Expression c) evaluates to zero as shown in the following. First 

we express both the partial derivative and V(q ± r/2) in the x , x' 

representation 

32 
8

,,.2 [V(q + r/2) - V(q - r/2)] = ( ~ - 82
,) ( ~ - 82

,) [V ( x) - V ( x')] 
Bx Bx ox Bx 
a2 a2 a2 

= (8x2 - 2 Bxx' + Bx'J [V(x) - V(x')] 

(D.21) 

Operation of the cross term derivat ive on eit her V(x) or V(x') gives 

zero, 

82V (x) 82V (x') 
8x2 8x'2 

a2v(q) _ a2v(q) = 
0 

8q2 8q2 , 
r -. 0 

(D.22) 

The equation of motion for < P't,p >q is then 

a 2 1 a 3 av(q) 
-a< P+P >q= ---a< P+P >q -2-a- < P+P >q (D.23) t m q q 

Wigner phase space 

The moment um moments in the Wigner phase space representation 

are given by, 

(D.24) 
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The equation of motion for the Wigner function is given by 

aw = _ P aw + av aw _ ri2 a3v a3w + O(n4), (D.25) 
at m aq aq ap 24 aq3 ap3 

Equations of motion for the momentum moments are obtained by 

multiplying each side of the above equation by pn and integrating 

over p between ±oo. Before proceeding it is assumed that the bound­

ary conditions for the Wigner function and its momentum derivatives 

tend to zero as p ---+ ±oo and so 

J
oo anw an-lw oo 

< pnW >= -dp = [--] = 0 
-DO apn apn-1 -oo 

(D.26) 

For the zero order moment, i.e. < W >=< p >q t he equation of 

motion is 

P aw av aw n2 a3v a3w 
- <-- >+- <- > - --- <-- > 

m oq aq ap 24 aq3 ap3 

1 a 1 a 
--- < pW >= --- < P+P > (D.27) maq maq q 

In the first part of the right hand side, 

p aw 1 Joo aw 1 a Joo 1 a < -- >= - p- dp= -- pWdp= -- < pW > 
m oq m -oo oq m oq -oo m oq 

(D.28) 

For the first moment 

a 
Dt < p1iV > 

1 a ') av aw n2 83V a3w 
--- <p-W >+- <p- >---- <p-- > 

m aq aq op 24 aq3 op3 

For the second integral on the right, < pop W > we integrate by 

parts, 

Joo aw Joo p-
0 

dp = [pW]~00 - W dp = - < W > 
- oo p -oo 

(D.30) 

For the third integral, < po:w >, 

Joo 83W a2w oo ;·oo a2w p-a 3 dp = [PnT ]_ - -a 2 dp = 0 
-DO ]) U}J DO -00 J) 

(D.31) 
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The equation of motion for < pW >= < P +P >q is then given by, 

a 
-8 <pW > 

l 

1 a 2 av 
--- < p W > -- < W > (D.32) 

m8q 8q 
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Appendix E 

Hydrodynamic Force for the 

Double Well Potential 

The hydrodynamic force is given by 

1 a 
- -O" QP 

m(p)qQP 8q q 

1 [a 2 ( a - ( ) -
8 

(P p)qQP - 2(p)qQP(Pp)qQP-
8 

(Pp)qQP 
mp qQP q q 

2 a ) ) -2 ] -(Pp)qQP 8q (p qQP (P)qQP (E.l) 

For bound potentials such as a double well bilinearly coupled to a 

harmonic oscillator t he wavefunction '1/J(q, Q, t) and hence the pure 

state partial moments (Pnp)qQP may be expanded in terms of the 

eigenstates ¢(q, Q) of the system, 

(P np)qQP = ~ CjCj' exp (-~[Ej - Ej'Jt) 
2

~1i j dRexp (-i~R) 
J,J 

X i Brn [<1>;,(q - r/2,Q - R/2) (
1i)n an 

xcpj(q + r/2, Q + R/2) L=o (E.2) 

where Ej are the eigenvalues of the composite system and Cj = 

(</>j l'l/J) . The eigenstates can be expressed in terms of a product 
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harmonic oscillator basis 

m,k 

(E.3) 

where 

(E.4) 

and H k ( v) is the kth order Hermite polynomial. (Note that the 

integer m is to be distinguished from the symbol used for t he mass 

in t he preceding sections.) Continuing, 

(P np)qQP = 
2
~1i ~ CjCj' exp (-{[Ej - Ej'Jt) 

J,J 

x L a~,kai'm,,,k,NkNk, 
m,k 

(
ii )n an 

X ~ a n [xm(q + r / 2)xm' (q - r /2)] 
2 r r=O 

/

. 8 
x . dR exp(-2(Q + R/2)2)Hk(.J8[Q + R/2]) 

8 2 17- iP R 
x exp(-2(Q- R/2) )Hk'(v 8[Q - R/2])exp(-T) 

(E .5) 

Setting 

u = ,,/8 R iP 
2 + v'8fi (E.6) 

and using t he relation Hk(- v) = - l kJ-h(v) gives 

1 i · •/ 

2
1r1a L CjCj' exp(-fi[Ej - Ej']t) L L a~,ka~,,k,NkNk' 

,i j,j' '!, m,k m' ,k' 

( 1i) n an [ ] 2 P
2 

k' 2 
X i orn Xm(q + r /2)xm1 (q - r/2) r=O exp(-8Q - 1i26 )(- l ) ,J{J 

x j duexp(-u2)Hk(u + z)Hk,(u + y) (E.7) 
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where 

iP 
y=-v18Q- -v!Jr,, 

iP 
z= -/8Q- -J8r,, 

The integral in Eq. (E.7) has the solution 

I du exp(-u2 )Hk(u+z) Hk'(u+y) = yfii2kk1!zk-k'1z- k'(-2yz) k' ~ k 

(E.8) 

where L Z-k' (-2yz) is the associated Laguerre polynomial. For ease 

of notation the terms with no q dependency are collected into n in 

the following 

1 i · ·/ 
(Pnp)qQP = 1l L CjCj' exp(--;[Ej - Ej']t) LL a~,ka~,,k,NkNk, 

7f 1, j,j' n m,k m' ,k' 

X If exp( - 8Q2 - ;: )2k ( - 1 t k'! zk- k' LZ- k' (-2yz ) 

x (~r :rnn [xm(q + r/2)xm1 (q - r/2)L=O 

= n(~r ::,, [xm(q + r/2)xm1 (q - r/2)L=O (E.9) 

For the first two moment we have 

ONmNm, exp(-1 q2)Hm( y0q)Hm,( y0q) (E.10) 

~n [xm1 (q) :qxm(q) - Xm(q) :qXm1 (q) ] 

;:nNmNm1y0exp(-,q2){Hm1 [2mHm-1 -y0qHm] 

-Hm[2m'Hm'-l -y0qHm,]} 

(E.11) 

For the moment derivatives 

a 
8q (p)qQP ONmNm, y0 exp(--yq2

){ Hm' (2mHm-l - y0qHm) 

+Hm(2m'Hm'-l - y0qHm,)} 
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21i 2){ ) -. DNmNm't exp(-1q m(m - 1 Hm-2Hm1 - y',qmHm-1Hm1 

i 

-m'(m' - l )Hm1 -2Hm + y',qm' Hm1 -1Hm} (E.13) 

-1i2DNmNm,,312 exp(-,q2){2m(m - l)(m - 2)Hm-3Hm1 

-2-y',qm(m - l )Hm-2H:n 

-mHm-1Hm, - m' HmHm'-1 + y',qHmHm1 

-2mm'(m' - l)Hm-1Hm1-2 - 2mm'(m - l )Hm-2Hm1-1 

+4y',mm'qHm-1Hm'-l + 2m'(m' - l )(m' - 2)HmHm'-3 

(E.14) 
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Appendix F 

Evaluation of hV; 

h"; has the solution 

.I dp pn Hm( Vf3p) exp(-(3p2 /2) 

(-1r 12 2(m- 1/2- n/2} r (~ ) r ( ~) 
13n- 1/2 y0r(l /4)0.5(n+l) 

F (- m n + 1 ! 2) n and m even 
2 ' 2 ' 2' 

(-1r - 112 2(m-n;2/ ( ~ + 1) r ( ~ + 1) 
13n-1/2 y0r(l /4)0.5(n+l) 

F ( - m ; 
1 

, % + 1, ~ , 2) n and m odd = 0 otherwise 

(F.l) 

where r is the gamma function and F(a, b, c, z) is a hypergeometric 

series. Unfortunately the series is divergent for z = 2. However, the 

integral is easily solved numerically. 
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