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Abstract 26 

A main concern in marine ecology is understanding the mechanisms driving responses of 27 

biological systems to environmental fluctuations. A major issue is that each biological system 28 

(e.g. organism, ecosystem) experiences fluctuations according to its own intrinsic 29 

characteristics. For instance, how an organism experiences a thermal fluctuation, i.e as a long 30 

marine heatwave or as a mild pulse, depends on its thermal tolerance and developmental time, 31 

which can vary as the fluctuation is experienced. Here, I explore a geometric approach, 32 

considering the biological perspective. Environmental fluctuations are represented as points in 33 

a “space of fluctuations”. The biological perspective is then defined as a coordinate frame 34 

within that space. Coordinates are given by components (e.g. amplitude and time scale) 35 

characterising each environmental fluctuation, which are then transformed into biological 36 

scales, using biological traits (tolerance and biological time). Using simulations of organisms 37 

growing under thermal fluctuations with different characteristics, I show how this approach: 38 

(1) Enables to integrate physiology and phenology to better interpret biological responses to 39 

fluctuating environments. (2) Improves understanding of the role of adaptive plasticity as a 40 

rescue effect. (3) Facilitates understanding the effects of thermal fluctuations on additional 41 

organismal traits (e.g. body mass). I also discuss wider applications in the context of species 42 

persistence, coexistence, biodiversity, and ecosystem function in scenarios of extreme 43 

fluctuations.  44 

 45 

 46 

 47 

 48 

 49 

 50 

Keywords: acclimation, fluctuating environments, marine heatwaves, multiple stressors, 51 
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1. INTRODUCTION 55 

One of the biggest challenges in marine ecology is understanding mechanisms driving 56 

responses of biological systems to environmental fluctuations (Thompson et al. 2013, Kroeker 57 

et al. 2020, Gerhard et al. 2023). Environmental fluctuations occur at several time scales 58 

(Chave 2013) and extreme fluctuations have increased over the past decades. For instance, 59 

marine and atmospheric heatwaves of period ranging from days to months have become more 60 

frequent, more extreme, and less coherent in the past 30 years (Russo et al. 2015, Hobday et 61 

al. 2016, Benedetti-Cecchi 2021). Ecologists are aware that fluctuating environments can drive 62 

biological systems through mechanisms that differ from those present in constant environments 63 

(Levins 1968, Sæther, B.-E. & Engen 2015, Denny 2019, Bernhardt et al. 2020). However, our 64 

mechanistic understanding of responses to environmental fluctuations is limited because most 65 

experiments are using static designs, i.e. manipulating an environmental variable but keeping 66 

each treatment level constant over time. Results from experiments with static designs do not 67 

correctly predict responses to fluctuating conditions. For instance, adaptive plasticity evolves 68 

strictly in fluctuating environments (Scheiner 2016); at the organismal level, adaptive plasticity 69 

may be triggered by a fluctuation after some environmental threshold is surpassed, but not 70 

necessarily if the average condition of the fluctuation is experienced. Above a threshold, 71 

important (or irreversible) damage, may lead to carry-over effects (Minuti et al 2022). At the 72 

population and community level, responses to mean conditions differ to those from extremes 73 

(Lynch et al. 2014). At the community level, fluctuations drive historical/legacy effects 74 

associated to the time scale of recovery time between fluctuations (Williams et al. 2011, Dal 75 

Bello et al. 2017). Storage effects and relative non-linearity are mechanisms sustaining species 76 

coexistence that operate strictly in fluctuating environments (Chesson 2018). Hence, in many 77 

cases we cannot use the information provided by most static experiments even if they represent 78 

the average condition of the fluctuation.   79 

We need experiments manipulating the components characterising the fluctuations. Fluctuation 80 

components may be defined as the amplitude, average, maximum, minimum, time scale, and 81 

timing of a fluctuation (Jentsch et al. 2007, Gunderson et al. 2016, Donelson et al. 2018, 82 

Giménez et al. 2022). In the case of noise, such components may be defined as the intensity 83 

and the dominating frequency (Vasseur & Yodzis 2004), which have ecological and 84 

evolutionary consequences (Romero-Mujalli et al. 2021). Experiments provide mechanistic 85 

understanding (Benedetti-Cecchi 2003, 2006, Koussoropolis et a. 2017, Gunderson et al. 2016, 86 

Boyd et al, 2018, Gerhard et al. 2023) and are needed as a part of a wider set of methodologies 87 
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(Dawson et al. 2011, Thompson et al. 2013, Koussoropolis et al. 2017). The experimental study 88 

of effects of fluctuations on biological systems brings both logistical and conceptual challenges 89 

(Thompson et al. 2013, Giménez et al. 2021, 2022). Logistical challenges associated with the 90 

number of replications, have been addressed through specific experimental designs (Boyd et 91 

al. 2018, Kreyling et al. 2018). Issues associated with teasing apart the role of different 92 

components characterising a fluctuation have also been addressed in the case of disturbance 93 

events, with intensive effort into separating the effect of mean and temporal variance of a 94 

fluctuation (Benedetti-Cecchi 2003, 2006, Bertocci et al. 2005, 2007, Maggi et al. 2012).  95 

In recent years there has been an intensive effort to generate a general framework to incorporate 96 

fluctuations into studies of effects of climate change on organisms (Gunderson et al. 2016, 97 

Boyd et al. 2018, Gerhard et al. 2023). Within the framework, a major gap is the consideration 98 

of organismal perspective (Jackson et al. 2021), given by how biological systems experience a 99 

fluctuation in relation to their own biological traits. The importance of studying effects of 100 

environmental fluctuations on biological traits is obvious and has been widely recognised. We 101 

can therefore use current information on critical biological traits, to develop a mathematical 102 

foundation and provide metrics to quantify fluctuation components, from the organismal 103 

perspective. For instance, recent studies have quantified the time scales of thermal fluctuations 104 

using biological time as a trait (time to metamorphosis: Giménez et al. 2022; generation time: 105 

Munch et al 2023). Some important facts (Fig. 1) motivating this approach are: (1) Biological 106 

time scales, such as generation time (or time to reproduction) are central traits with direct 107 

impact on fitness (Stearns 1986, chap. 6, Angilleta 2009, chap. 6). (2) Adaptive responses, 108 

driving to evolutionary rescue (Chevin et al. 2010), can vary with time scales ranging from 109 

short term plasticity (hardening) through acclimation to trans-generational plasticity and 110 

genetic adaptation (Gerken et al. 2015, Donelson et al. 2018). (3) In ectotherms, within species, 111 

increased temperature results in (a) strong non-linear effect on biological time through changes 112 

in metabolic rates (Gillooly, et al. 2002, Rombough 2003, Giménez 2011), (b) increases in 113 

aging rate (Burraco et al. 2020, Cayuela et al. 2021), and (c) increases in the speed of 114 

behavioural responses (kinetic effects of temperature on behaviour: Abram et al. 2017). 115 

Because in ectotherms, the above changes are the result of increases in kinetic energy within 116 

cells and tissues, it is likely that changes in environmental temperature also affects the time 117 

scale of adaptive plastic responses. Studies of the effects of temperature on biological time 118 

have shown that: (1) Whether multiple-stressor responses are additive or interactive depends 119 

on whether time is measured in “clock” vs biological units (Giménez et al 2022); this also 120 
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extends to how sensitive organisms are to a given stressor. (2) Re-scaling the equations of 121 

population dynamics to biological time, lead to more robust predictions of dynamics of 122 

ectotherms in seasonal environments (Munch et al 2023).  123 

 124 

Figure 1. Simulated example of responses to thermal fluctuations in a marine ectotherm 125 
developing through 12 stages. (a) A seasonal thermal fluctuation and associated clock time 126 
where each of the clock 12 divisions represents a month and the colour gradient represents the 127 
temperature (for simplicity XII corresponds to the day of year of peak temperature). (b) 128 
Biological time: the cumulative proportion of development calculated as the proportion of 129 
development to each stage, using degree days (i.e. a stage is completed when the cumulative 130 
temperature reaches 280 °C days). Once a stage is reached, the cumulative proportion resets to 131 
zero and increases until a new stage is reached. In the associated biological clock, the position 132 
of the stages varies depending on temperature. Hence, the time marks in the biological and 133 
clock do not coincide. (c) Thermal fluctuation as experienced from the organism, calculated as 134 
the proportion of the upper thermal range (from the optimum to the upper thermal tolerance 135 
limit). The pattern of fluctuation is buffered with respect to the pattern in (a) because organisms 136 
acclimate to high temperature over the summer. (d) Illustration of an experiment where two 137 
sibling crab larvae are reared at different temperatures for a fixed amount to of clock time, after 138 
which the sibling exposed to higher temperature is developmentally older than the one reared 139 
at low temperature. In (d) photographs by the author. 140 
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Because system experience must be multifactorial (i.e. depending on biological time plus other 141 

traits), we need a framework that consider additional traits as metrics of other fluctuation 142 

components. Hence, in this paper, I expand a previous framework, explored in Giménez et al. 143 

(2022), which did not consider a biological metric for the magnitude (e.g. intensity, amplitude, 144 

average) of an environmental fluctuation. A biological metric for fluctuation magnitude is 145 

critical for example to categorise a given fluctuation as an “extreme event”. This is relevant for 146 

instance in the context of the study of heatwaves, where definitions may be based on 147 

climatology or biology (Bailey & van de Pol 2015) and on different references or baselines 148 

against which fluctuations are compared (e.g. Hobday et al. 2016, Jacox 2019). We also need 149 

to account for intra and interspecific effects of environmental fluctuations and the associated 150 

mechanisms. Within species, tolerance is shaped by both adaptive (i.e. adaptive plasticity and 151 

genetic evolution: Donelson et al. 2018) and non-adaptive responses (e.g. carry-over effects 152 

and “silver spoon” maternal effects: Pechenik 2006, Uller et al. 2013, Ruiz-Herrera 2017). 153 

Mechanisms underpinning tolerance also occur at other levels of organization: populations may 154 

differ in their gene frequencies which drive portfolio effects (Schindler et al. 2015, Šargač et 155 

al. 2022) and communities differ in the species composition driving species complementarity 156 

(Cadotte et al. 2013), all acting as compensatory mechanisms. In those situations, tolerance 157 

should vary over time as a fluctuation is experienced. In synthesis, organismal experience (or 158 

that existing at other levels of organization) can be quantified as tolerance and biological time 159 

and is characterised by complex dynamics, which shape other biological responses.  160 

The approach proposed here (thereafter called “space of fluctuations approach”, abbreviated as 161 

“SOFiA”), incorporates the perspective of the biological system in understanding biological 162 

responses to fluctuations. This is based on the idea (borrowed from differential geometry and 163 

physics: see e.g. Needham 2021) that there is no “absolute” perspective to characterise a 164 

fluctuation and its components; instead, there are different perspectives, from different systems 165 

(e.g. the human observer and an organism experiencing the fluctuation). This paper is 166 

structured as follows: First, I present SOFiA in a wider context aimed at making predictions of 167 

responses, given field-observed environmental fluctuations. Second, I present the core ideas 168 

(space of fluctuations and coordinate frames to quantify the organismal perspective). Third, I 169 

explore SOFiA using three cases at the organismal level. Fourth, I use a worked example of a 170 

simulated factorial experiment, manipulating fluctuation components to clarify the design and 171 

data needed to quantify the organismal perspective. My emphasis is on effects of thermal 172 
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fluctuations at the organismal level, but wider applications, on populations and ecosystems, are 173 

presented in the Discussion.  174 

2. METHOD CONTEXT  175 

The approach proposed here must be viewed as integrated into a wider framework (Fig. 2) 176 

combining field observations, experiments, and models predicting responses of biological 177 

systems to multiple fluctuating environmental drivers (Denny et al. 2009, Dawson et al. 2011, 178 

Koussoroplis et al. 2017, Gerhard et al. 2023). Thermal fluctuations (e.g. a heatwave) are 179 

characterised by a set of components, e.g. time scale, amplitude, cumulative intensity, rates of 180 

increase and decrease in temperature (see e.g. Hobday et al. 2016 for marine heatwaves). Field 181 

observations provide information on the range of fluctuation types (characterised by their 182 

components) that are then used to define the range of values considered in an experiment. The 183 

effects of thermal fluctuations are quantified using factorial-orthogonal experiments, teasing 184 

apart the effect of each component.  The output of the experiment can then be used for 185 

predictions in the field or for parameterization of models (Fig. 2). Predictions in the field may 186 

be based, for instance, on scale transition theory, a method providing estimations of average 187 

responses from mean, variances and covariances of environmental variables (see worked 188 

example, Chesson 2012, Denny & Benedetti-Cecchi 2012, Dowd et al. 2015, Koussoroplis et 189 

al. 2017). 190 

2.1 Experimental designs 191 

The central point in SOFiA concerns the experimental phase: Orthogonal experiments are 192 

necessary to derive quantitative relationships between predictors and responses and are 193 

essential for the development of mechanistic models (Benedetti-Cecchi 2003). This argument 194 

is valid also when different environmental variables (or fluctuation components) co-vary in the 195 

field. In such a case, the experiment will provide information that is relevant to current 196 

environmental context, enable predictions of future scenarios where the covariation is broken 197 

(Benedetti-Cecchi 2003, Boyd et al. 2018) and cover for responses to rare events (Kreyling et 198 

al. 2014) such as extreme heatwaves. One may envisage an orthogonal experiment, considering 199 

fluctuations components as “fixed” predictors (then analysed with e.g. ANOVA) or as 200 

continuous predictors. The latter method is more appropriate for the approach presented here; 201 

it can be based on surface response designs (Box & Wilson 1951, Cottingham et al. 2005, 202 

Thompson et al. 2013, Kreyling et al. 2014, 2018, Schweiger et al. 2016).  203 
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Surface response designs will capture non-linear and non-additive responses to the fluctuation 204 

components present in the data. Because those responses are common in ecology and evolution 205 

(Levin 1998, Ruel & Ayres 1999, Schaffer 2009, Gunderson et al. 2016, Kroeker et al. 2020) 206 

surface response designs are better suited to improve ecological models than the ANOVA type 207 

design (except when the predictor in question is categorical). Surface response designs also 208 

provide the appropriate response function needed in scale transition theory, developed to 209 

incorporate interactive and non-linear responses to environmental fluctuations (Koussoroplis 210 

et al. 2017).  211 

The main issue with surface response designs is the large number of experimental units needed 212 

to cover the predictor space defined by the fluctuation components. For example, consider an 213 

experiment with two components and a maximum of 90 replicate units; 10 replicate units per 214 

treatment combination would constraint the experiments to 9 locations (i.e. 3x3 combinations 215 

of component values) in the predictor space. A potential solution is to use sequential 216 

experiments covering different regions of the predictor space at each stage (Box & Wilson 217 

1951); this may be problematic if replicates are likely to vary in time for some reason other 218 

than the experimental random variation. An alternative solution is to either optimise the number 219 

of replicates or to use un-replicated designs, a technique known as “gradient analysis” 220 

(Kreyling et al. 2018); for instance, at 90 replicate units, one may define 90 locations (as a 9x10 221 

grid), allocating one unit each. Modelling exercises show that designs with low or no 222 

replication, but many locations, outperform replicated designs with fewer locations in detecting 223 

non-linear responses (Schweiger et al. 2016, Kreyling et al. 2018). 224 

 225 
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 226 

Figure 2. SOFiA in the wider context of scaling experiments to predictions under field 227 
conditions. (a) Thermal fluctuations (e.g. heatwaves) vary considerably in amplitude (m) and 228 
time scale (t). (b) In SOFiA, an orthogonal experiment is carried out simulating fluctuations of 229 
different combinations of m and t; a response (e.g., body size as a heat map, with values 230 
decreased from red to blue) is quantified, at fixed locations (some represented as yellow 231 
points). In addition, organismal traits are used as metric to define coordinate frames where the 232 
additional biological responses are quantified. (c) Experimental results are used together with 233 
field data for models, projections (i.e. scenario analysis) or predictions. The references cited 234 
show the literature providing ideas concerning one or more steps. 235 
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2.2 Fluctuation components 236 

We need an approach accounting for historical effects found at different levels of organization. 237 

For instance, at the organismal level, acclimation, and carry-over stress effects, are pervasive 238 

(Giménez 2006, 2020, Pechenik 2006, Marshall et al. 2016), and can drive recruitment in 239 

marine populations (Torres et al. 2016). Historical effects are also important at the community 240 

level and their evaluation requires the consideration of time scales explicitly in the design (e.g. 241 

see Dal Bello et al. 2017).  242 

In the approach proposed here (Fig. 2b) fluctuations are characterised by an explicit time 243 

variable in addition to a magnitude variable (if only two components are considered). The use 244 

of the time variable enables to capture any historical effect in addition to rescale responses in 245 

biological time (see section of worked example, Giménez et al. 2022). The use of a time 246 

variable helps to move away from estimations of tolerance based keeping organisms at constant 247 

conditions or using ramp experiments that do not necessarily match the time scale of natural 248 

environmental fluctuations (Terblanche et al. 2011, Rezende & Santos 2012, Gunderson et al. 249 

2016). The choice of the magnitude variable depends on the situation; I focus on the amplitude, 250 

to account for cases where historical responses are associated to threshold phenomena (e.g. 251 

acclimation being triggered after some temperature level is experienced). In the field, time 252 

scales and amplitudes of fluctuations can be estimated through direct observations or from 253 

statistical models such as Fourier analysis or polynomial fitting. In this set up, projections or 254 

predictions (see worked example) would be based on a response function matching the time 255 

scale of field-observed fluctuations.  256 

 257 

3. THE SPACE OF FLUCTUATIONS  258 

3.1 Coordinate frames 259 

The central concept of SOFiA is that environmental fluctuations are characterised by a set of 260 

components and represented as points in a space. This multidimensional space resembles the 261 

one defined in multivariate analysis such as principal component analysis (or any other 262 

extension), where the principal components constitute a coordinate frame (Legendre & 263 

Legendre 1998). The space of fluctuations has also similarities with the concept space state 264 

disturbance representation (Turner et al. 1993, Fraterrigo & Rusak 2008) but mostly with the 265 

tolerance landscape (Rezende et al. 2014), defined by the intensity and duration of a thermal 266 
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stress. This concept may be expanded to a higher number of environmental variables (i.e. not 267 

only temperature), with the concomitant increase in the number of dimensions.  268 

The second important point is that the metrics used to characterise thermal fluctuation 269 

components (e.g. for a heatwave: intensity measured in ºC and time in days) is not unique nor 270 

absolute. Instead, each point in the space of fluctuations can be located using different 271 

coordinate frames. I define the “extrinsic frame” as the one defined by the “observer”, e.g. in 272 

clock time and °C. I also define the “intrinsic frame”, as representing how the biological system 273 

under study experiences the fluctuations, according to its own traits. For that purpose, I classify 274 

biological variables in three types: Type-1: Variables with units of magnitude (e.g. thermal 275 

tolerance range) or time (e.g. days to maturation) or driving tolerance and biological time; they 276 

give rise to the intrinsic frame. Type-2: Invariant responses: a biological response that occurs 277 

within the tolerance range, does not drive tolerance nor biological time and does not have units 278 

of time or magnitude. Type-3: Biological rates or sensitivities, i.e. those expressed as per unit 279 

of time or tolerance. The role of each variable will be introduced below.   280 

As example, I focus on a study of the effect of thermal fluctuations on the body size (the 281 

invariant response) of a marine organism (e.g., invertebrate, fish), growing eventually to 282 

maturation. For the sake of the example, I assume that body size (the invariant response) does 283 

not drive tolerance or biological time. Biological time is the time to maturation; tolerance may 284 

be defined in a wide sense, i.e. as the range of preferred temperatures (Gvozdik 2018), based 285 

on the aerobic scope (Pörtner 2002), or a range defined from survival or knock-down 286 

temperatures (Tang et al. 2000). The same concepts can be applied to other levels of 287 

organization:  for example, biological time can be quantified for populations (generation time), 288 

communities (time scale of change in richness: Ontiveros et al. 2021), and ecosystems (inverse 289 

of ratio of production/biomass). Tolerance can also be defined for populations (Gvozdik 2018) 290 

and communities (Vinebrooke et al. 2014).  291 

In the extrinsic frame (Fig 2), the amplitude (= m) is measured in ºC and the time scale (= t) in 292 

clock time, in e.g. days (see Supplement, Section 1, Table S1 for variables and constants). The 293 

biological time scale of a fluctuation (= τ) is a unitless quantity, corresponding to the proportion 294 

of time from birth to a relevant life history event (e.g., from birth to maturation). The 295 

biologically scaled amplitude of the fluctuation (= µ) is defined as a proportion of the thermal 296 

tolerance range of the organism, i.e., the capacity of the organism to withstand environmental 297 

fluctuations. 298 
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The next element of the space of fluctuations is the time at which observations are made. In the 299 

idealised experiment (Fig. 3a), organisms (originated in the same population) are exposed to 300 

fluctuations of different amplitude and time scales. All organisms are kept at the same initial 301 

temperature, exposed to the fluctuations, and then returned to the initial temperature before a 302 

measurement of body size is taken. The time at which body size is measured is expressed in 303 

clock (t*) and biological scales (τ*). The observation times considered here (there may be 304 

several) occur after the fluctuation is experienced (Fig. 3a), i.e. t*>t and τ*> τ). Observations 305 

must be done as the fluctuation occurs (see section of worked example), but organisms must 306 

experience the full fluctuation before one can causally relate the response to the fluctuation 307 

time scale. The time course of the invariant response will occupy the full space of fluctuations, 308 

defined by the three axes: amplitude, time scale and observation time (Fig. 3b). Because we 309 

assume that temperature drives developmental rates, the time points of observation, at fixed 310 

clock time, will not coincide with those at fixed biological times (e.g. at maturation). Therefore, 311 

observations at fixed clock vs biological times will lie on different types of surfaces slicing the 312 

3D space defined by the fluctuation components and the observation time. The invariant 313 

response, observed at fixed clock time lies on flat 2D time slices (Fig. 3b) of the space of 314 

fluctuations. By contrast, the response observed at a fixed biological time (e.g. at maturation) 315 

will lie on a curved surface (Fig. 3c), with its shape driven by the effect of temperature on the 316 

developmental rate (see next paragraph). Consequently, the pattern shown by the biological 317 

response will differ between the coordinate frames (Fig. 3c, d). 318 
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 319 

 320 

Figure 3. Idealised time course of an experiment quantifying the effect of thermal fluctuations 321 
on the body size (in arbitrary units) of an ectothermic organism at different times, including at 322 
size maturity, with the time of maturation driven by temperature. (a) Diagram of experimental 323 
design depicting a subset of the studied thermal fluctuations as rectangles of different 324 
magnitudes (m1, m2) and time scale (t1, t2, t3); clock observation time are given as t*

1,…,t*
6. (b) 325 

At fixed clock time, body size varied through time, occupying the volume defined by m, t and 326 
t*. Body size, in response to m and t, lies on flat 2D slices (heat map) if observed at fixed clock 327 
times. (c) Body size at maturity however, lies on a curved surface defined by the effect of 328 
temperature on biological time. Panels (d) and (e) illustrate how such an idealised experiment 329 
would show that the effect of thermal fluctuations on body size would depend on the time 330 
coordinate t* or τ*. 331 
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The next step is to define mathematical functions relating the components of the extrinsic frame 332 

(m, t and t*) with those of the intrinsic one (µ, τ, and τ*). The functions linking clock with the 333 

biological time scales are given: τ(t,m) = t·L  and τ*(t*,m) = t*·L  where L(t,m) is the 334 

developmental rate, i.e. the inverse of the clock time (=D) required to reach a particular 335 

biological event (e.g. days to maturation). Importantly, L(t,m) is a function of the 336 

environmental fluctuation, not of the observation time (in line with above defined assumptions) 337 

and will be the inverse of the pattern shown by developmental time (Fig. 4a).  338 

The biological scaled amplitude of the fluctuation, µ(t,m),  is defined from thermal tolerance 339 

as µ = mS.  The function μ (unitless) varies between 0 and any positive value and quantifies 340 

the magnitude of the environmental fluctuation relative to the organismal tolerance range. The 341 

function S is the inverse of the tolerance range (=E, Fig. 1d) which represents how sensitive is 342 

the biological system to the magnitude of the fluctuation. The case μ = 1 corresponds to a 343 

fluctuation that encompasses the full tolerance range, while μ → 0 corresponds to situations 344 

where the organism is extremely eurytopic with respect to m (S → 0 when m is very small with 345 

respect to the tolerance range). I define E with respect to some threshold, for instance the so-346 

called “knock out temperature” (= Mout, i.e., the temperature at which the organism dies or 347 

cease any activity, or it does not respond to stimuli). In synthesis, E is the mathematical 348 

expression of the capacity of the organism to tolerate a fluctuation.  349 

 350 

Figure 4. (a) The curve of developmental time, showing an non-linear decrease with 351 
temperature; this curve is modelled subsequently in Eqs. (4) & (5) in Results. Developmental 352 
time depends only on the amplitude of the thermal fluctuation D = D(m) as in the case of 353 
phenology models based on degree days, but such assumption does not restrict the analysis. 354 
(b)The tolerance range is defined for different fluctuations time scales (t1,t2,t3), used to obtain 355 
the term S, included subsequently in Eqs. (3) & (6) in Results.  356 
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3.2 Invariant responses 357 

The invariant biological response (body size, Fig. 3b) is a type of response that does not drive 358 

tolerance and it is not a rate of change with respect to any of the coordinate frames. The 359 

invariant response exists within the limits stated by the biological time and tolerance, i.e. there 360 

is a “region of existence”, within the space of fluctuations. This response is represented by a 361 

continuous and differentiable function and the invariance property results in that:  362 

𝑅𝑅(𝑡𝑡, 𝑡𝑡∗,𝑚𝑚) = 𝑟𝑟(𝜏𝜏, 𝜏𝜏∗, µ) (1) 363 

The invariance property is the reason why rates are not considered at this stage. Rates are partial 364 

derivatives of the invariant response (see below) and their magnitude depend on the coordinate 365 

frame. The differentiability assumption enables to represent the effect of the thermal fluctuation 366 

on the response through partial derivatives with respect to the amplitude and period; the same 367 

idea applies to a general environmental fluctuation characterised by two or more quantitative 368 

descriptors.  Hence, I define the effect of each variable of the invariant response as system of 369 

partial differential equations (PDE, Giménez et al. 2022), which in matrix formulation gives:  370 

⎣
⎢
⎢
⎢
⎡
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡∗⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝜏𝜏∗

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝒅𝒅𝝉𝝉∗

𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅
𝒅𝒅𝒕𝒕∗

𝒅𝒅𝒅𝒅
𝒅𝒅𝒕𝒕∗

𝑑𝑑𝜏𝜏∗

𝑑𝑑𝑡𝑡∗⎦
⎥
⎥
⎥
⎤
∙

⎣
⎢
⎢
⎢
⎡
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝜏𝜏∗⎦
⎥
⎥
⎥
⎤
 (2) 371 

 372 

In a more compact notation, equation (2) may be written as R = Mr where R and r are vectors 373 

of derivatives of R and r respectively; both R and r contain biological rates and sensitivities 374 

with respect to magnitudes and time scales. The matrix M transforms the rates of the intrinsic 375 

to the extrinsic frame; the inverse of M will do the reverse transformation. In equation 2, the 376 

third entry of the second row of M (in bold) is set to zero, when the observation time varies 377 

independently of the time scale of the fluctuation (fixed clock observation time). In practice, 378 

t* is constrained to be longer than the longest fluctuation time scale used in an experiment; 379 

however, within such limits, one can observe the response at any desired time. In addition, the 380 

first two entries of the last row of M (in bold) are set to zero because the observation time, (t*, 381 

τ*) does not affect the biological tolerance (µ) nor the biological time scale of the fluctuation 382 

(τ). This follows from the fact that we ignore (for simplicity) the timing of the fluctuation as a 383 

component. In a more general case, such timing would be an additional component giving an 384 

extra dimension to the space of fluctuations.  385 



16 
 

Working with the response and the mapping functions is facilitated by two properties: (1) They 386 

should approximate to continuous and differentiable functions, so that the terms in M and the 387 

derivatives of R exist. Modelling of tolerance is sometimes carried out through conditional 388 

functions but the alternative is to fit appropriate smooth functions to overcome the problem. 389 

(2) Mapping functions should be bijective (i.e. always increasing or decreasing), so as to 390 

provide a one-to-one, mapping. Such functions ensure the existence of direct and inverse maps, 391 

from each point of the extrinsic to each point of the intrinsic frame. Not all functions of 392 

developmental time are like this; instead, some show a minimum at an extreme high 393 

temperature threshold, followed by a maximum (Shi et al. 2016). Issues associated to (1) and 394 

(2) can be solved in practice by modelling different parts of the space of fluctuations as separate 395 

regions. 396 

3.3 Scenarios of analysis  397 

There are several scenarios for how the tolerance range and biological time drive the effect of 398 

the fluctuation on the invariant response. (1) The trivial scenario where neither E nor L are 399 

affected by the fluctuation traits. Both the extrinsic and intrinsic frames coincide and the effect 400 

of the fluctuation on the body mass does not change with the coordinate frame. (2) Where E is 401 

not affected by the fluctuation traits: in such a case (discussed in Giménez et al. 2022), μ is 402 

proportional to m. (3) The scenario explored here, where both E and L depend on some property 403 

of the fluctuation being experienced.  404 

The nature of the intrinsic frame depends on how biological time and tolerance are shaped by 405 

the fluctuations. I consider three cases: in Cases 1 and 2 increased temperatures would result 406 

in a deleterious effect on performance (Niehaus et al. 2012). Case 1 is based on simple functions 407 

that help to visualise and obtain qualitative understanding of the differences between the 408 

extrinsic and intrinsic frames. Case 1 is related to Case 2, which introduces empirical functions 409 

and enables a realistic view of chronic negative effects of fluctuations. Case 3 introduces 410 

adaptive plasticity by which the fluctuation has positive effects on the tolerance range. While 411 

in cases 1 and 2, I simulate the response observed at a fixed clock time, in case 3, I simulated 412 

the time course of the response. 413 

  414 

 415 

 416 
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4. RESULTS 417 

The central point in SOFiA is that the space of fluctuations is represented using different 418 

coordinate frames, related through non-linear functions. It is important to clarify the two 419 

different types of representations: First, one can represent a time slice defined either at a fixed 420 

clock time or at a fixed biological time (see Fig. 3b, c). Second, for each time slice one can 421 

represent two projections, based respectively on the extrinsic (mt-projection) or intrinsic 422 

coordinates (μτ-projection). For cases 1-3, I focus on time slices at fixed clock time (fixed t*): 423 

this represents the simplest possible experiment and enables better understanding of the 424 

different projections; the slice at a fixed biological time is explored in the worked example. 425 

Given a (fixed) time slice, fluctuations are plotted in the upper half of a plane (Fig. 5a, details 426 

in Supplement Section 2), where t > 0 (fluctuations of negative time scale do not exist). In 427 

addition, none of the fluctuations will occur at m = 0 or t = 0 because such fluctuations do not 428 

exist either. For simplicity, I will assume that m > 0 because experiments usually focus on 429 

either high or low temperature with respect to a thermal optimum, for which m can be 430 

conveniently rescaled to be positive. Hence, the fluctuations of interests are plotted in the first 431 

quadrant (Fig. 5a) and the properties mentioned below do no change if m is negative. 432 

 433 

Figure 5. A time slice of the space of fluctuations at fixed clock time, showing a biological 434 
response R = 100-t-m as a heat map. (a) mt-projection with mt-isolines given by straight lines 435 
(i.e. as a cartesian frame). In the heatmap of R, isolines (lines of indicating equal R-values) are 436 
given by diagonals (note colour gradient) and one such diagonal is shown as a continuous line. 437 
The horizonal top line represents the line at infinity corresponding to constant conditions. 438 
Dashed lines at m = 0 and t = 0 are open boundaries. (b) mt-projection with µτ-isolines given 439 
by curves, (here taken from Case 1), with all parameters of Eq. (3) & (4) set to = 1, except 440 
kµ=0.1. (c) μτ-projection. The space occupied by the fluctuations is constrained to the coloured 441 
area by the maximum values of m and t; these represent the maxima used in a realistic 442 
experiment. The thick black curve is the upper limit set by the maximum value of t and the 443 
straight line is the theoretical maximum. Isolines of equal body size (diagonals in a-b) form 444 
petal-like curves in (c) and the parabolas of (b) would give straight lines in (c). 445 
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4.1 Case 1: hyperbolic model 446 

For tolerance, I use an inverse function E = E(t) = 1/(S0+kµt), with S(t) = (S0 + kµt). Here, S 447 

increases linearly with the time scale of the fluctuation, from a minimum S0 defined as 1/Tmax; 448 

the constant kµ is a rate of increase. In such a case we obtain: 449 

µ = 𝑚𝑚(𝑆𝑆0 + 𝑘𝑘𝜇𝜇𝑡𝑡) (3) 450 

In addition, I will assume that developmental time follows an inverse function of temperature, 451 

such that:  452 

𝜏𝜏 = 𝑡𝑡(𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑘𝑘𝜏𝜏/𝑚𝑚)−1 (4) 453 

where Dmin is the asymptotic minimum developmental time achieved, as m → ∞, in the absence 454 

of developmental impairments.  455 

The values of the intrinsic frame define a non-linear and non-orthogonal coordinate frame (Fig. 456 

5b). Equations 3 and 4 define hyperbolic curves, as lines of equal τ (or μ) in a similar way as 457 

the straight lines in define lines of constant m or t (Fig. 5a). Consecutive lines define areas of 458 

different size with the shape of such area depending on the constants (S0, Dmin, kμ, kτ) driving 459 

the tolerance and developmental time. Such lines do not meet at straight angles reflecting the 460 

fact that μ and τ are not mutually independent variables. 461 

An alternative view of the response, highlighting the organismal perspective, is given by the 462 

“μτ-projection” (Fig. 5c). This is analogous to the projection obtained from principal 463 

component analysis, where communities are represented as points in a space. Before the PCA 464 

is carried out, the original projection (analogue to the mt-projection here) would have species 465 

abundances as axes. The difference is that the PCA-axes are linear and orthogonal, while μτ-466 

axes, are curvilinear and non-orthogonal. Consequently, in the μτ-projection, the fluctuations 467 

are constrained to a triangular region characterised by open boundaries (coloured area in Fig 468 

5c) and with the region being set by logistical and theoretical limits (see Supplement: Section 469 

2).  470 

Provided with the projections defined above, and focusing on the perspective of the organism, 471 

I highlight the following points: 472 

1. Space of existence: The region where µ ≤ 1 and τ ≤ 1 defines the “space of existence”, 473 

i.e. where the response R exist. This is because µ > 1 implies that the temperature is 474 

higher than the tolerance range (hence the organism collapses). In addition, τ > 1 475 
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implies that the time scale of the fluctuation is longer than the time to maturation; 476 

therefore, one cannot establish a causal relationship between biological time and the 477 

fluctuation time scale. In other examples, the space of existence will be set at τ ≠1 (see 478 

“Discussion”). 479 

2. Extreme event and biological definition of heatwave: extreme events (i.e. a fluctuation 480 

compromising organismal existence) are represented by the set of fluctuations defined 481 

by the curve µ=1. Notice that such curve defines fluctuations differing in amplitude 482 

and clock time scale. If extreme events are used as a biological definition of heatwave, 483 

then such definition would differ from that based on climatology. For instance, marine 484 

heatwaves are defined as those thermal fluctuations where the temperature exceeds a 485 

fixed threshold (the 90th percentile of a temperature distribution), for 5 or more days 486 

(Hobday et al. 2016). By contrast, the definition arising from the µ-curves does not use 487 

fixed temperature and time scales.  488 

3. From the standpoint of the organisms, differences among fluctuations are defined by 489 

the values of µ and τ (not m and t). From the extrinsic perspective, straight lines (i.e. 490 

the Euclidean distance) should define the difference (=shortest distance) between any 491 

two fluctuations (Fig. 5a; also recall the analogy to PCA for ecological communities).  492 

However, from the intrinsic perspective, the shortest distance between any two 493 

fluctuations is given by the hyperbolic curves (Fig. 5b). Hence, whether two 494 

fluctuations are experienced by the organism as very different or rather similar depends 495 

on the distance along the hyperbolic curves. In this case, the projection in the μτ-plane 496 

(Fig. 5c) might give a more intuitive view of the differences among fluctuations, from 497 

the organismal perspective.  498 

4. The invariant response (body size at maturation) is distorted as we compare the different 499 

projections (Fig. 6). The distortion reflects important biological effects of temperature 500 

on both tolerance and biological time. In the simulation (details in Supplement: Section 501 

3), the invariant response is more sensitive to m than to t (equation in Fig. 6) but it 502 

becomes more sensitive to τ than to μ (compare change in colour gradient in Fig. 6a vs 503 

Fig 6b). The distortion reflects the fact that the organism will experience the response 504 

as being different from what is shown by the extrinsic frame.  505 

Next, Case 2 uses realistic functions and highlights (by comparison to case 1) properties that 506 

are robust to changes in the mapping functions.  507 
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 508 

Figure 6. A time slice of the space of fluctuations at fixed clock time (a) mt-projection with 509 
intrinsic coordinate frame included: (b) µτ-projection. Different symbols in (a) represent 510 
fluctuations which are shown in (b) to highlight the deformation produced by the intrinsic 511 
frame. The diagrams were constructed within the range (0, 2) for both t and m. The mapping 512 
functions are as follows: Eq. (3): S0 = 1, kµ = 0.1, Eq. (4): Dmin = 1, kτ = 1. The response was 513 
modelled as R = 100·exp(-0.4m-0.8t). 514 

 515 

4.2 Case 2: Combining metabolic theory and thermal tolerance 516 

Here, I consider empirically obtained functions for developmental time and tolerance and use 517 

mt-projection to focus on the region of existence and on the definition of extreme events. 518 

Developmental time is defined in the metabolic theory of ecology of Brown (2004), such that: 519 

𝜏𝜏 = 𝑡𝑡𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝑒𝑒
−𝐴𝐴

(𝑚𝑚+273) (5), 520 

where m is the temperature (in °C), Lmax is the inverse of the asymptotic minimum of 521 

developmental time and A is the ratio of activation energy (0.64 eV) and the Boltzmann 522 

constant (8.617 10-5 eV Kelvin-1).  523 

The effect of the fluctuation is modelled following work on thermal death times (Bigelow 1921, 524 

Urban 1994, Tang et al. 2000, Rezende et al.2014, Jorgensen et al. 2019). Those studies show 525 

that responses to temperature can be modelled with two separate functions: (1) A thermal range 526 

characterised by moderately high (or low) temperatures, where survival is independent of the 527 

exposure time. Responses in this range are equivalent to those covered in Giménez et al. (2022) 528 

where μ is proportional to m, because E would not vary with time. (2) Beyond a thermal 529 

threshold, E decreases linearly with the logarithm of exposure time. I focus on this range, 530 

assuming that the tolerance range is proportional to the logarithm of the time scale of the 531 
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fluctuation. Here, E(t) depends on the knockout temperature (= Mout) according to the equation 532 

Mout = Mcrit - zε1 log(tε2). Here, Mcrit is the knockout temperature corresponding to a unit of 533 

clock time (t = 1), z is the sensitivity of Mout to change in log(t).  In addition, ε1 and ε2 are 534 

proportionality constants (= 1) and are no longer considered. By setting Emax = Mu-Mcrit 535 

(maximum tolerance range), we obtain: E(t) = Emax - zlog(t). In such a case the biological 536 

magnitude in the intrinsic frame (μ) is given by the equation. 537 

µ = 𝑚𝑚
[𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚−𝑧𝑧∙log(𝑡𝑡)]

 (6) 538 

As in Case 1, the lines at μ = 0 and τ = 0 are open boundaries, and the lines of constant μ or τ 539 

are curves, representing a non-orthogonal reference frame that will also deform any invariant 540 

response (further similarities discussed in Supplement: section 4). In the mt-projection, values 541 

of μ (heat maps in Fig. 7), capture the general pattern observed by studying thermal death times 542 

i.e., low amplitude but long period fluctuations can be as bad as high amplitude short period 543 

ones.  544 

Case 2, based on empirical models, gives again a definition of extreme event as in Case 1, 545 

where the critical temperature defining the heatwave (here represented as m) depends on the 546 

clock time scale of the thermal fluctuation (Fig. 7); here, the position of the curve μ =1 depends 547 

on log(t). In addition, the set of extreme fluctuations and the region of existence depends on 548 

the thermal sensitivity (z) and the maximum tolerance range (Emax). At high z and narrow Emax 549 

(Fig. 7a), the region of existence is constrained to fluctuations that are shorter than the time to 550 

maturation (τ = 1). In the simulation, there is only a narrow region (t > 30 in Fig. 7a) where 551 

the curve of the extreme fluctuations (μ = 1) is located to the right of the curve of τ = 1. This 552 

indicates that extreme fluctuations occur at time scales longer than the time to maturation.  At 553 

other combinations (Fig. 7b-d) such region expands; for instance, for z = 1 and Emax = 35, most 554 

of the extreme fluctuations occur at time scales that are longer than time to maturation (Fig. 555 

7d). 556 

It is important to note that the interpretation of the isolines μ = 1 and τ =1 depends on the 557 

specific case. For example, it may not be possible to quantify tolerance beyond maturation, i.e. 558 

in the region located to the right where τ > 1 (the maximum time scale covered in the 559 

experiment). Likewise, in the region where μ > 1, developmental time cannot be quantified.  560 

However, tolerance may be quantified in the region where τ > 1 in the case of e.g., a 561 

multigenerational study where the biological time is defined as generation time. In an example 562 

of organisms growing to metamorphosis (instead of maturation), scenarios where the curve μ 563 
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= 1 is located to the right of τ = 1 would indicate that reaching a critical life history stage (e.g. 564 

metamorphosis) has the potential to “rescue” the organism (or population) from the 565 

consequences of an extreme fluctuation. For species experiencing metamorphosis and habitat 566 

shifts, thermal conditions before the shift may not be the same as in the post-shift habitat. 567 

Alternatively, organisms may experience shifts in capacity to tolerate increased temperatures, 568 

for instance in association to a metamorphosis: larval stages are usually more sensitive than 569 

juveniles and adults (Pandori & Sorte 2019). In both cases, reaching metamorphosis would be 570 

analogous to reaching a thermal refuge. In semelparous species, reaching maturation and 571 

reproduction (τ = 1) is central, but post-reproductive life (τ > 1) is of no relevance for fitness. 572 

In any case, SOFiA captures important aspects of ontogeny, physiology, and phenology as 573 

drivers of responses to extreme events.  574 

 575 

 576 

Figure 7. Case 2: A time slice of the space of fluctuations at fixed clock time showing a heatmap 577 
of μ based on equation 6. Each panel has different values of z and Emax (i.e. tolerance range at 578 
t = 1). Dashed lines are selected lines of constant μ: note that at small z, μ becomes proportional 579 
to m and less dependent on t. Continuous lines are lines of constant τ (Eq. 6, Lmax =e22.47).   580 

 581 

 582 

 583 
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4.3 Case 3: Role of adaptive plasticity 584 

In the above cases, the tolerance depended only on the time scale of the fluctuation. However, 585 

the presence of adaptive plasticity should (within limits: DeWitt et al. 1998) either shift or 586 

expand the tolerance range (Angiletta 2009, chap. 5; Seebacher et al. 2014, Salachan et al. 587 

2022) in response to the (thermal) fluctuation. We can visualize the rescue effect of adaptive 588 

plasticity as an expansion of the space of existence in the mt-representation (see below). 589 

Plasticity involves three main steps (Windig et al. 2004); i.e. where (1) a cue is converted to a 590 

signal (e.g. hormones: Duffy et al. 2002) that (2) triggers a change in the phenotype which 591 

results in (3) a change in its performance (= tolerance). Those steps lead to a latency period 592 

(Laubach et al. 2022) between the moment when an environmental cue is detected and when 593 

the phenotype is functional. The latency period varies according to the type of plasticity: from 594 

short (hardening: Hoffmann et al. 2003), through developmental (Salachan and Sorensen 2017) 595 

to transgenerational plasticity (Donelson et al. 2012). The relationship between the latency 596 

period and the time scale of the fluctuation may range between two extremes. On one extreme, 597 

the fluctuation may be perceived as a short-term pulse with respect to such period (Manenti et 598 

al. 2018) while on the opposite extreme the fluctuation is perceived as a long period wave. In 599 

the first case, the tolerance range depends on whether the organisms (or the parents) 600 

experienced a previous fluctuation. In such a case, we may define the acclimation state of an 601 

organisms as Ei(t) which will shift from E1(t) to E2(t) after a fluctuation is experienced. One 602 

may model such change of state as a change in the parameters defining the equations of case 2 603 

(previous section).  604 

I focus on the case (Fig. 8) where the latency period can be much shorter than t so that (1) the 605 

acclimation state changes as the fluctuation is experienced and (2) the fluctuation can be 606 

sufficiently long to alter developmental time. An example is the acclimation to seasonal 607 

fluctuations in temperature where organisms acclimate to summer (or winter) conditions well 608 

in advance of the time of maximum (or minimum) temperatures. I model those steps through 609 

functional responses, with the overall result that changes in the cue (temperature) are mapped 610 

into changes in the thermal tolerance and μ (Fig 8). This simulation differs from cases 1 and 2 611 

in that here I modelled the time course of the response (details in Supplement: section 5). I do 612 

not intend to develop a mechanistic model (see e.g. Hazel et al. 1990, Buoro et al 2012) and I 613 

must emphasise that the model is intended as illustration of how plasticity can be incorporated 614 

to SOFiA.  615 
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 616 

Figure 8. Case 3, Adaptive plasticity: A time slice of the space of fluctuations at fixed clock 617 
time showing a heatmap of μ. Different panels (a-d) show μ for different values of maximum 618 
tolerance range (E2 = 25 and E2 = 40) expanded from a value of E2 = 20 before the fluctuation 619 
is experienced. The inset values correspond to the maximum rate of phenotypic change (=frm) 620 
as driven by temperature (equations in Supplement, Section 5). In all panels, the signal 621 
activation threshold was at 5°C: this is best noted at E2 = 40 and rmax = 0.05.  Continuous lines: 622 
constant τ-values; dashed lines:  constant μ-values. 623 

 624 

The rescue effect of adaptive plasticity is shown as the expansion of the region of existence: 625 

the curve μ = 1 is shifted to the right (as compared to Cases 1 and 2). Hence, the rescue effect 626 

is manifested in the set of fluctuations defining extreme events. As compared to the previous 627 

cases, extreme events occur at high values of m. The region where the plastic response operates 628 

depends on the three main steps: (1) The threshold response to the cue: below some thermal 629 

threshold (fixed to 5 ºC in Fig. 8 and 10 ºC in the supplement, Fig. S4) the plastic response is 630 

not triggered (m < 5 ºC in Fig. 8). The tolerance range is still wide (giving low μ values). In the 631 

model, the threshold response is driven by the thermal threshold yu of the first functional 632 

response: 633 

Fc→s = 1
1+𝑒𝑒𝑘𝑘𝑠𝑠[𝑦𝑦𝑢𝑢−𝑦𝑦(𝑥𝑥)] (7) 634 
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where FC→S is the function converting a cue to a signal, y(x) is the temperature fluctuating 635 

through clock time (=x) and kS is a rate constant indicating how sharp is the triggering of the 636 

response. 637 

(2) The rate of phenotypic change in response to temperature fr : 638 

𝑓𝑓𝑟𝑟 = 𝑓𝑓𝑟𝑟𝑟𝑟∙𝑦𝑦
𝑘𝑘𝑟𝑟+𝑦𝑦

 (8), 639 

where frm is the maximum rate of phenotypic change and kr is the half saturation constant in 640 

the model; the inverse of frm is time scale, defined here as the minimum latency period. 641 

 This rate is the component of the second functional response: 642 

𝐹𝐹𝑆𝑆→𝑃𝑃 = 𝑓𝑓𝑠𝑠𝑠𝑠1 + ∑ 𝑓𝑓𝑟𝑟(𝑥𝑥)𝑥𝑥 (9) 643 

FS→P maps the signal to the phenotypic state (as a continuous variable) from an initial state, fsp1 644 

(before the signal activates the response) up to an upper threshold = fsp2, remaining constant 645 

thereafter. Because Eq. (9) has an asymptotic maximum (frm), the rate of phenotypic change is 646 

constrained; in consequence, if the time scale of the fluctuation is sufficiently short, there is no 647 

sufficient time for the plastic response to reach its maximum value. Hence, plasticity operates 648 

on the μ values at intermediate values or m an t (at moderately high m).  649 

 (3) The maximum thermal tolerance range, defined in the third functional response of the 650 

model, FC→S, which maps the phenotype to the thermal tolerance. This function is linear 651 

between the lower (= E1) and the upper tolerance range (= E2) and defines the region of 652 

existence in Figure 8.   653 

4.4 Worked example 654 

The worked example (Fig. 9, details in Supplement: Section 6, and data files) represents an 655 

experiment aimed at (1) quantifying the effect of the magnitude and time scale of thermal 656 

fluctuations on the body size of a marine ectotherm and (2) estimating the average body mass, 657 

given a set of fluctuations of varying magnitude and time scale. The example represents 658 

experiments taking place over several weeks to few months, which corresponds to those carried 659 

out with short lived organisms (e.g. copepods) or a specific life phase of a long lived species 660 

(e.g. larvae).  Biological time is referred up to maturation (copepods) or metamorphosis (fish 661 

or invertebrate larvae). In both cases, temperature has a strong effect of developmental time 662 

(copepods: Guerrero et al. 1994, McLaren 1995; marine larvae: O’Connor et al. 2007); hence, 663 

the functions mapping the time coordinates are important. For example, within species 664 
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increased temperature can reduce larval developmental time by 50% over the tolerance range, 665 

which can span 10-15°C (but varies among species: O’Connor et al. 2007). Increases of only 666 

3°C can have important reductions in developmental time towards the lower sector of the 667 

thermal tolerance range: for example, in one of the best studied crustaceans, the shore crab 668 

Carcinus maenas an increase in temperature of 3°C reduces the larval developmental time (to 669 

megalopa or first crab stage) by a 25 to 35% within the range 12-18°C, corresponding to 670 

summer temperatures in the distribution range (Dawirs 1985, DeRivera 2007, Šargač et al. 671 

2022). The functions mapping time coordinates become more important at that sector, 672 

especially under long fluctuation time scales. At the upper sector of the thermal tolerance range, 673 

biological time is little affected by temperature; however, at that sector, the functions mapping 674 

from the extrinsic to intrinsic magnitude coordinates should become important if tolerance 675 

depends on the time scale of the fluctuation.  676 

The experiment follows a gradient design (Kreyling et al. 2018) with 10 levels of thermal 677 

magnitude crossed with 9 levels of time scales, giving 90 locations (i.e. combinations of time 678 

scales and magnitudes) in the space of fluctuations. Organisms are observed every day in order 679 

to record the time at maturation and the time at which they reach the thermal limit (i.e. they die 680 

or exhibit a predefined behavioral response). In the first step, non-linear regression models are 681 

used to obtain the equations giving the τ, μ, size after 70 days of experiment, R1(m, t, t*= 70 682 

days), and size at maturation R2(m, t, τ*= 1). For the second objective, the functions R1 and R2 683 

are used to estimate the average response through scale transition theory, model simulations 684 

and the so-called mean field approach. 685 

 The constraint on the number of times at which size can be observed reproduces a realistic 686 

experiment where animals die beyond the region of existence and where measurements of body 687 

size is too invasive to be performed more than twice or where there are logistical constraints. 688 

With some caveats (see next paragraph) the example may also be taken as a case study of a 689 

species monoculture (e.g. macroalgal or mussel bed) or natural community, recovering after a 690 

disturbance event, where the biological variables are generation time (or the inverse of species 691 

replacement rate), tolerance (or species richness) and biomass (or some ecosystem service).  692 

In the worked example, the curves μ = 1 and τ = 1 cross each other as expected if some of the 693 

fluctuations enable maturation, but others kill organisms before reaching maturity. In other 694 

situations, such curves may not cross, but the experiment will still provide valuable 695 

information. If all animals reach maturity, the experiment will quantify the dependence on body 696 
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size on the time coordinate frame. If by contrast, thermal thresholds are reached before 697 

maturation, the experiment would provide information about the region of existence and 698 

identify the set of fluctuations defined as extreme (i.e. the set defined by the curve μ = 1). 699 

The importance of the mapping function is given by the following points. First, the function 700 

τ*(m, t, t*), mapping coordinates of observation time, shows that responses differ considerably 701 

depending on whether we quantify size at maturation or at a given clock time. The difference 702 

is shown in maps of figure 9 (contrast Figs. 9a-b vs 9c) and in the estimated body size given 703 

an average heatwave (Table 1: compare R1 vs R2). Second, the function μ(m, t), quantifies the 704 

effect of the time scale of the fluctuation on thermal tolerance; it predicts which heatwaves 705 

would result in system collapse: this is illustrated in Figure 9b as the white area, which 706 

corresponds to heatwaves with combinations of magnitudes and time scales (m and t 707 

coordinates) leading μ(m, t). Third, the combination of the above-mentioned functions predicts 708 

the set of heatwaves still enabling animals to be “rescued” by achieving maturity (or 709 

metamorphosis): this is illustrated in Figure 9b as the portion of the curve τ*= 1 lying at the left 710 

of the curve μ = 1 (i.e. not in the white area). Fourth, the combination of μ(m, t) and τ(m, t) 711 

predicts the set of fluctuations of a time scale equal than the time to maturation (or to 712 

metamorphosis) are not tolerated. This is illustrated in Figure 9b the curve τ =1 (dashed line) 713 

lying at the right of the curve μ = 1, if m > 5; the portion lying at the left of the curve μ = 1 is 714 

predicted to occur if larvae experience fluctuations of time scales larger than 50 days. 715 

In interpreting R1 and R2 (Figs 9b, c) one must recall that such functions are on different 716 

surfaces that cut the volume representing the time course of the invariant response (Fig 3). The 717 

difference between R1 and R2 (Fig. 9b, c) is carried out by the modelling of the average response 718 

(Table 1) to a set of fluctuations (Fig. 9c), but in both R1 and R2, the mean field approach 719 

underestimates the average response as compared to simulating from the model or applying 720 

scale transition theory. 721 

 722 

 723 

 724 

 725 

 726 

 727 

 728 
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Figure 9. Worked example. Simulation of 729 
an experiment quantifying the role of 730 
magnitude and time scale of thermal 731 
fluctuations on body size (color heatmap) 732 
of a marine organism at maturation. (a) mt-733 
projection of the observed response at a 734 
fixed clock time (t* = 70 days). (b) Fitted 735 
curves and body size at the same fixed 736 
clock time as in (a). (c) mt-projection of the 737 
fitted response at maturation. The 738 
projections in (a) and (b), correspond to a 739 
flat time slice (see Fig 3): the μ = 1 curve 740 
is the black line delimiting the white area 741 
(i.e. no data at μ > 1). The curve of the time 742 
at maturation, τ* = 1, is given as a 743 
continuous blue line; the dashed blue line 744 
corresponds to the curve of τ = 1 745 
(fluctuation with time scales of the 746 
maturation time). The curves of τ* and τ 747 
differ because they are scaled to different 748 
time variables. The vertical dashed line 749 
delimits the region (to the left) where 750 
maturation is reached irrespective of the 751 
time scale of the fluctuation. The horizonal 752 
dashed line delimits an upper region where 753 
maturation can be reached. The heatmap in 754 
(c) lies on a curved surface (see Fig. 3) and 755 
it is restricted to the region of the space of 756 
fluctuations enabling maturation (note axis 757 
ranges). The data (csv file) and procedures 758 
are given in Supplement, Section 6. 759 

 760 

Table 1. 761 Estimated body size (in arbitrary units) at t*= 70 days 

(R1) and at maturation (R2) based on mean field approach, scale transition theory and model 762 

simulation. 763 

 R1 R2 

Mean field 11.95 14.12 

Scale transition 11.92 14.03 

Simulation 11.92 14.03 

  764 

 765 

 766 
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5. DISCUSSION 767 

Here, I presented a geometric approach (SOFiA) to understand biological responses to 768 

temperature (or other environmental fluctuations), from the perspective of organisms. This 769 

approach expresses the organismal perspective as a coordinate frame within a space defined by 770 

fluctuation components and the times at which observations are made in an experiment. Using 771 

temperature as example, I showed how this approach ingrates our current knowledge about 772 

effects of environmental variables on organisms. We know that temperature has strong non-773 

linear effect on biological time (McLaren 1995, Gillooly et al. 2001); that thermal tolerance 774 

decreases non-linearly with the exposure time (Rezende et al. 2014), and that adaptive plasticity 775 

has a characteristic time course (Windig et al. 2004). The organismal perspective is obtained 776 

from the relationship between different types of biological traits: (1) traits driving tolerance 777 

and biological time provide the metric for the biological scaled magnitude and time of a 778 

fluctuation. (2) There are traits, called invariant responses, responding to tolerance and 779 

biological time. (3) Traits defined by rates are identified as those with magnitude depending 780 

on the reference frame. In addition, the geometric approach presented here highlights the 781 

importance of considering the frame used to scale the time at which observation are made 782 

because of its consequences in the observed invariant response. The result is the capacity to 783 

quantify biological responses in different frames which should lead to better mechanistic 784 

understanding; in addition, the approach presented here is able to provide predictions for field 785 

conditions (through e.g. scale transition theory: as shown in the worked example). 786 

A main feature of SOFiA is the mathematical formalism, represented by a set of functions and 787 

partial differential equations. One may argue that this is merely a formalizing exercise only 788 

providing more precision. However, the mathematical formalism is central to identify counter-789 

intuitive results arising from interactive effects and non-linearities. A similar approach has 790 

helped to identify the conditions where interactive effects, occurring at a level of organization 791 

(e.g. individuals), are not mapped into a higher level of organization (population: DeLaender 792 

2018). Likewise, the mathematics of scale transition theory (Denny & Benedetti-Cecchi 2012) 793 

is needed to determine when (and in what extent) the average of the biological response does 794 

not match the response to the average temperature. In all those cases quantitative predictions 795 

are not those expected from intuition. The approach presented here deals with non-linearities 796 

and interactive responses to the predictors (as above), and non-linear transformations between 797 

different frames. For example, the solutions of partial differential equations can help us to 798 

identify scenarios when the type of multiple driver response depends on the metrics of time 799 
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(worked example, Fig. 9 and Giménez et al. 2022). Given only two components of a single 800 

fluctuation (magnitude and time scale) we can still rely on 2D graphical representations for a 801 

better understanding of a response depends on the coordinate frames, as illustrated Figure 3 802 

(i.e. the response on different surfaces). However, in cases of two or more fluctuations (e.g. 803 

temperature plus a second environmental variable) the responses will lie on higher dimensional 804 

surfaces and intuition will be of limited help. It seems to me that, as the field progresses, the 805 

stronger mathematical emphasis will constitute an important guide to navigate through the 806 

complexity of high dimensional phenomena, interactive effects and non-linearities. Hence, the 807 

mathematical analysis used here, may be considered an additional step in the processes 808 

summarised in Figure 2, helping with the design and interpretation of experiments as well as 809 

the application scale transition.  810 

SOFiA incorporates the biological perspective, defined by the time scale and the capacity of 811 

organisms and other biological systems to cope with environmental fluctuations. The first 812 

important concept is the “region of existence”, defined from fixed values of μ and τ (both set 813 

to 1 in the example). This is an important point in the light of discussions concerning the 814 

definition of heatwaves (Baley and Van de Pol 2015, Hobday et al, 2016, Jacox 2019). From 815 

the biological standpoint, heatwaves would be defined as the set of extreme fluctuations 816 

(characterised by μ = 1), which depend on the time scale of the fluctuation. Many studies show 817 

that tolerance to a given stressor scale with the inverse of the logarithm of the time of exposure 818 

(revision in Rezende et al. 2014). Such biological definition would incorporate the rescue effect 819 

produced by adaptive plasticity. Simulations in Case 3 highlight the importance of time delays 820 

in the expression of the plastic response in determining the set of extreme fluctuations.  821 

The starting point in SOFiA was to consider fluctuations as a collection of components (as in 822 

Hobday et al. 2016) and defining fluctuations as objects existing in an hypervolume, in the 823 

same way that ecologists define elements in the ecological niche (Blonder 2018) or characterise 824 

communities (e.g. Legendre & Legendre 2008). At the organismal level, the space of 825 

fluctuations has connections with the concept of tolerance landscape (Rezende et al. 2014) 826 

where the response is tolerance, as existing within a space defined by the magnitude and time 827 

scale of exposure to a particular stressor.  At the species level, there are connections with the 828 

Hutchinson view of the niche (i.e. where resources or environmental variables define the axes), 829 

but adding time variables, and meeting the needs of incorporating phenology into the concept 830 

of the niche (see Ponti & Sanolo 2022). In addition, for both cases, the main contribution of 831 
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SOFiA is the quantification of the perspective of organisms through additional reference 832 

frames.  833 

Different perspectives, including that of the observer, are related through mapping functions 834 

(from t to τ and m to μ). We can also consider a case with two different frames representing 835 

two different species; in such a case, we can remove the reference frame of the human observer 836 

from the equations (see Supplement: Section 7) and project the response of the first species 837 

from the perspective of second one. The framework can also be used to visualise biological 838 

responses underpinned by different mechanisms (or based on empirical fits) of how tolerance 839 

and biological time respond to a given fluctuation. For example, the comparison among cases 840 

1- 3 helps to identify properties that are contingent on the presence of plasticity or the adoption 841 

of a specific type of trade-off between critical temperature of tolerance period. In addition to 842 

the metabolic theory of ecology, the response of developmental time has been predicted from 843 

theory or other equations (Ahlgren 1987, Guerrero et al. 1994, McLaren 1995, Shi et al. 2016, 844 

Quinn 2021).  845 

In SOFiA, the rescue effect of adaptive plasticity (Windig et al. 2004, Chevin et al. 2010) is 846 

expressed as the expansion the region of existence (where effects of fluctuations on invariants 847 

are buffered). In the simulation, the expansion occurred at intermediate time scales because 848 

short term thermal fluctuations were not enough to sustain rapid phenotypic change. 849 

Expansions of the space of existence at shorter (or longer) time scales should be based on the 850 

concerted action of plastic responses operating at different time scales, i.e. from hardening to 851 

long term acclimation (Donelson et al. 2011). Hence, the simulation shows that better 852 

understanding of the responses to fluctuations requires models of the “dynamics” of the 853 

formation of the phenotype, which instead will depend on the scale-dependent plastic response. 854 

Such models require experiments quantifying how the rate of phenotypic change experienced 855 

by an organism is driven by temperature; central to such research are time keeping mechanisms 856 

(Giménez et al. 2022) and metabolic rates (Jackson et al. 2021).  857 

An important point in SOFiA is to differentiate between invariants (e.g. body mass) and rates 858 

(e.g. growth or sensitivity). Rates capture the relative aspect of the “effect” of a fluctuation on 859 

the invariant because they depend on the reference frame.  Hence, SOFiA introduces a level of 860 

“relativism” in the nature of the responses to stressors. This is particularly important when 861 

more than one stressor is considered. In such a case, the type of frame (intrinsic or extrinsic) 862 

determines the nature of the interactive effect of two stressors on an invariant response 863 
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(Giménez et al. 2022). An important example concerns the combined effect of increased 864 

temperature and a second environmental variable. For instance, because temperature increases 865 

metabolic demands, increased temperature can exacerbate the negative effect of food limitation 866 

on body reserves to metamorphosis (Torres & Giménez 2020). In addition, increased 867 

temperature can either mitigate or exacerbate the effect of reduced salinity on survival to 868 

metamorphosis (Torres et al. 2021). Importantly, because thermal fluctuations drive 869 

developmental rates, the magnitude of body size responses can be only expressed as relative to 870 

the reference frame used to measure time. The relativism introduced here has implications for 871 

multiple stressor research; for instance, additive effects relative to the clock time will become 872 

interactive in biological time (Giménez et al. 2022). Multiple stressor research has been 873 

motivated by the recognition that climate change affects several environmental variables at a 874 

time (Gunderson et al. 2016, Boyd et al. 2018). An important objective of this field involves   875 

the quantification of the frequency of occurrence of the different types of interactive effects 876 

and in which context a stressor mitigates or enhances the effect of another stressor.  The fact 877 

that the nature of the multiple stressor effect can depend on the reference frame highlights the 878 

need to be clear about what is the relevant frame to address a given question. 879 

5.1 Wider applications 880 

I argue that SOFiA is a general approach in the following sense. First, it can be applied in 881 

situations where biological time and tolerance do not depend on the fluctuations or to more 882 

complex experimental designs. If biological time and tolerance do not depend on the 883 

fluctuation, the partial differential equation 2 simplifies such that the matrix M contains zero’s 884 

in the off-diagonal entries (μ and τ become linearly related to m and t respectively) and the 885 

response is projected on 2D flat time slices (Fig 3) at both clock and biological time. Second, 886 

given a single variable (e.g. temperature), one can apply this approach to experiments exploring 887 

the effect of consecutive waves on biological variables responses, by adding a component (to 888 

the space of fluctuations) quantifying the time lag between waves (called respectively l and λ 889 

in the extrinsic and intrinsic frames). Third, one can accommodate additional variables (e.g. 890 

food availability, salinity, pCO2) and the time lag among them, in order to explore the effect of 891 

simultaneous vs sequential stressor effects (Gunderson et al. 2016). As the level of complexity 892 

increases, the limitations are logistical; however, in such a case, one could use information 893 

from previous experiments and the mathematical formalism to determine which region of the 894 

space of fluctuations should be further explored through a new experiment. Fourth, SOFiA can 895 
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be applied beyond the organismal level, if one can define metrics for biological times and 896 

tolerance (discussion below). 897 

A potential application concerns the species level, where tolerance may be defined as the 898 

thermal range enabling positive population growth rate (Gvozdik 2018) and biological time is 899 

defined as the generation time. Given two species, we have species-specific biological time 900 

scales (τ1, τ2) and amplitudes (µ 1, µ 2).  In the mt-projection, the area where both µ 1 and µ 2 >1 901 

are regions of extinction for both species. The regions where only one of them is >1, shows 902 

extinction of only one such species; interactions such as symbiosis would be reflected as µ 1 = 903 

µ 2. Areas where any µi>1 indicate conditions leading to environmental filtering (Kraft et al. 904 

2014) where temperature selects for species assemblages characterised by specific traits 905 

combinations.  How µi =1 curves are positioned with respect to τi=1 curves will define regions 906 

where extreme fluctuations are longer/shorter than the generation times.  Theory (Romero-907 

Mujalli et al. 2021) predicts that the threshold of τ =1 is important for how adaptive plasticity 908 

responds to fluctuations over long time scales.  909 

Portfolio effects (Schindler et al. 2015), driven by phenotypic plasticity and genetic diversity, 910 

buffer populations from environmental fluctuations. Portfolio effects should result in patterns 911 

analogous to those of Figure 8, which contrast to those shown in Figure 7. There are also 912 

outcomes that depend on the type of interaction. In case of competition, relative nonlinearity 913 

and storage effects maintain coexistence under environmental fluctuations (Descamp-Julien & 914 

Gonzalez 2005, Chesson 2018); fluctuations of sufficiently low amplitude should result in 915 

competitive exclusion, unless fluctuation independent mechanisms operate. Fluctuation-916 

dependent mechanisms may be reflected in µ-values if “tolerance” is quantified considering 917 

the outcome of species interactions.  918 

The second case concerns biodiversity and ecosystem function (Garcia et al. 2018), where the 919 

invariant function would be biomass or the amount of habitat produced by a foundation species. 920 

Examples are macroalgal or mussel beds and coral reefs sustaining function in association to 921 

its biomass or canopy. Increases in temperature lead to e.g. coral bleaching (Pratchett et al. 922 

2008).  Here, the curve τ =1 would represent fluctuations occurring at the time scale of the 923 

species replacement (i.e. a metric of biological time unit at the level of community: Ontiveros 924 

et al. 2021). Community tolerance is defined from the sensitivity of species richness to changes 925 

in the time scale of the fluctuation. By moving along the line of µ=1, we can identify the set 926 

of environmental fluctuations driving extinction and collapsing the function. The absence of 927 
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buffering mechanisms should result in patterns like Figure 7.  Buffer effects (as plasticity in 928 

Fig. 8) will reflect phenotypic plasticity, portfolio, or storage effects. In addition, at this level, 929 

species complementarity should also operate as a buffer; species complementarity can sustain 930 

function in scenarios of increased temperature (Garcia et al. 2018).  931 

In synthesis, SOFiA could help to advance our understanding and to predict effects of 932 

environmental fluctuations on biological systems. This is achieved through the synthesis, 933 

organisation, and re-interpretation of current information about effects of environmental 934 

fluctuations on tolerance, biological time and chosen “invariant” responses. As a perspective, 935 

SOFiA offers a route for future research, combining a mathematical analysis, simulations and 936 

experiments (manipulating fluctuation components) which are then integrated in a wider 937 

research programme.  938 
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