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Abstract 

Coastal saltmarshes are found globally, yet are 25–50% reduced compared to their 

historical cover. Restoration is incentivised by the promise that marshes are efficient 
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storers of ‘blue’ carbon, although the claim lacks substantiation across global 

contexts. We synthesised data from 435 studies to quantify the benefits of saltmarsh 

restoration to carbon accumulation and greenhouse gas uptake. The results showed 

global marshes store approximately 1.41 Pg – 2.44 Pg carbon. Restored marshes 

had very low greenhouse gas (GHG) fluxes and rapid carbon accumulation, resulting 

in a mean net accumulation rate of 64.70 t CO2e ha-1 y-1. Using this estimate and 

potential restoration rates, we find saltmarsh regeneration could result in 12.93 - 

207.03 Mt CO2e accumulation per year, offsetting the equivalent of up to 0.51% 

global energy related CO2 emissions – a substantial amount, considering marshes 

represent <1% of Earth’s surface. Carbon accumulation rates and GHG fluxes varied 

contextually with temperature, rainfall and dominant vegetation, with the eastern 

costs of the USA and Australia particular hotspots for carbon storage. Whilst the 

study reveals paucity of data for some variables and continents, suggesting need for 

further research, the potential for saltmarsh restoration to offset carbon emissions is 

clear. The ability to facilitate natural carbon accumulation by saltmarshes now rests 

principally on the action of the management-policy community and on financial 

opportunities for supporting restoration. 

 

Key Words 

Coastal wetland; marsh creation; climate change; sequestration; greenhouse gas; 

organic matter 

1.0 Introduction 

Coastal ecosystems account for 50% of marine sediment carbon burial (Duarte et al. 

2005) and offer a promising means for mitigating some of the effects of global 

carbon emissions. Tidal wetlands, such as mangrove forests and saltmarshes, are 
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particular hotspots for ‘blue’ carbon sequestration. This is due to high carbon 

accumulation rates (CAR), coupled to slow degradation of organic matter in water-

saturated, low-oxygen sediments (Neubauer and Megonigal 2021). Saline 

environments also have much lower emissions of potent greenhouse gases (GHG) 

such as methane, when compared to freshwater wetlands (Poffenbarger et al. 2011). 

Overall, carbon sequestration rates per unit area in saltmarshes exceed those of 

seagrass meadows, terrestrial forests and the open ocean (Temmink et al. 2022), 

with tidal marshes globally accumulating 12.63 Tg C y-1 (Wang et al. 2021). The 

processes involved in saltmarsh carbon sequestration are outlined in Figure 1.  

Recent estimates also show saltmarsh soils are a major carbon store, with an 

average standing stock of 400 Mg C ha-1 (Temmink et al. 2022).  

 

 

Figure 1: Saltmarsh carbon can be generated by the system itself (autochthonous 

C) or can originate from outside the system (allochthonous C), entering the marsh 

through passing water and settling out as particulate matter when the vegetation 

slows down the currents and waves. Carbon sequestration arises from 

autochthonous processes, such as plant production, and represents the direct 

removal of CO2 from the atmosphere, with fixed carbon ultimately stored in the 



 4 

sediment as belowground biomass and dead plant matter. Carbon burial refers to the 

removal of organic carbon from the active carbon cycle, by accumulating it in the soil 

at depths below the degradation-active surface layer (Middelburg et al. 1997).  

 

Saltmarshes provide an array of other ecosystem services besides climate 

regulation, including delivering natural flood defence and water quality enhancement, 

and supplying habitat for biodiversity, commercial fish species and migratory birds 

(Sharps et al. 2017, Adams et al. 2021, Fairchild et al. 2021, de la Barra et al. 2022). 

In the United States, coastal wetlands were valued at US$23.2 billion y-1 for storm 

protection services alone (Costanza et al. 2008), and saltmarsh services globally are 

worth Int$1.07 trillion y-1 (Davidson et al. 2019, using 2007 ‘International’ $). 

Historically, saltmarshes were primarily viewed as valuable for land reclamation to 

accommodate agriculture and urban sprawl (Gedan et al. 2009, Bu et al. 2015). As a 

result, global marsh areas decreased by 25–50% (Duarte et al. 2008, Crooks et al. 

2011), although regional losses were often much higher, such as San Francisco Bay, 

which lost 79% of the historical marsh cover (Valiela et al. 2009). Further marsh 

losses are anticipated from climate-change processes, including coastal squeeze by 

sea-level rise (SLR) and increased storminess (Saintilan et al. 2022). Reduction in 

saltmarsh cover and substantial habitat disturbance undoubtedly have caused, and 

continue to cause, significant emissions of carbon stored in sediment and plant 

biomass (Macreadie et al. 2013, Lovelock et al. 2017, Campbell et al. 2022).  

 

Saltmarsh restoration provides an opportunity to replenish the carbon stores which 

have been lost from marsh degradation. Recent estimates suggest that the 

equivalent of 2.3 – 2.5% of annual global greenhouse gas emissions could be offset 
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through mangrove, seagrass and saltmarsh restoration, collectively (Macreadie et al. 

2021). Various methods exist for saltmarsh restoration, here defined as any positive 

action or active intervention that aims to restore the habitat (Möller et al. 2021). 

Managed realignment is predominantly used in northern Europe and involves the 

breaching of existing flood defences to allow the shoreline to migrate landwards 

(Garbutt et al. 2006). Regulation of tidal exchange is another approach, which 

reintroduces flow through structures such as sluices or tide gates (Möller et al. 

2021). Other methods of marsh restoration include sediment recharge and 

vegetation transplantation (e.g. Soileau et al. 2018; Shiau et al. 2019).  

 

The timescale over which a restored marsh will attain functional equivalence to a 

comparative natural site is largely unknown (Burden et al. 2019). Faunal 

assemblages have been found to be structurally similar to those on natural sites as 

quickly as 4 years after saltmarsh creation (Rezek et al. 2017), although a much 

longer time is required for restored sites to function similarly to natural systems 

(Callaway 2005). Carbon storage appears to reach equivalence over longer 

timescales (Garbutt and Wolters 2008, Burden et al. 2021). CARs are normally high 

in the early years after restoration (Mason et al. 2022), due to rapid initial sediment 

accretion, but accretion then slows over time as bed levels rise (ABPmer 2021). This 

was the case at managed realignment sites in the UK: carbon accumulation, which 

was 1.04 t C ha-1 y-1 in the first 20 years, slowed to 0.65 t C ha-1 y-1 in later years 

(Burden et al. 2019). Models resulting from these values suggested ~100 years were 

required for a restored marsh to reach equivalent carbon stock to natural sites 

(Burden et al. 2019). Early investment in saltmarsh restoration is therefore 
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paramount if the climate change mitigation potential of marshes is to be reached 

within the coming decades. 

 

Wetland restoration, alongside effective protection and management, has gained 

increasing policy focus in recent years, particularly as a contribution to global 

strategies, such as the Sustainable Development Goals (Macreadie et al. 2021) and 

the UN’s Decade on Ecosystem Restoration (2021–2030). Wetland restoration was 

highlighted in the IPCC Sixth Assessment Report as having the potential to enhance 

resilience, productivity and sustainability of ecosystems to climate change (IPCC 

2021) and many nations cite blue carbon strategies in their nationally determined 

contributions to meeting the Paris Agreement (Duarte et al. 2020, Macreadie et al. 

2021). However, the definition of restoration success is variable. While some 

projects incorporate distinct success criteria from early development, many lack 

clearly defined targets (Wolters et al. 2005). Often natural marshes are used as a 

reference for the performance of a restored site, for instance contrasting the carbon 

store of a restored marsh against that of natural sites. Since greenhouse gas fluxes 

are critical components of calculating the net carbon benefit of saltmarsh habitats, it 

is imperative to consider fluxes alongside carbon sequestration when quantifying the 

blue carbon benefit of marsh restoration. Incorporating flux observations is especially 

important as greenhouse gas flux can be higher at restored than natural sites (e.g., 

nitrous oxide, Adams et al. 2012). On a global scale, the incorporation of greenhouse 

gas fluxes into saltmarsh carbon budgets is generally lacking; here we aim to 

address this knowledge gap. 
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While several studies of restored marshes have quantified greenhouse gas flux (e.g. 

Adams et al. 2012, Li and Mitsch 2016, Li et al. 2021, Wang et al. 2021) or CAR (e.g. 

Calvo-Cubero et al. 2014, Burden et al. 2019, Yang et al. 2020), few have 

considered these attributes together. Additionally, there has been no quantitative 

review reporting both greenhouse gas fluxes and the carbon storage benefit for 

restored saltmarsh across regional or global scales. CAR can vary substantially 

between global regions, with temperate (30 - 40) northern hemisphere marshes 

having an average CAR of 144 ± 6 g C m-2 y-1 compared to 88.7 ± 3.5 g C m-2 y-1 in 

the southern hemisphere (Wang et al. 2021). Site dependent factors, such as 

vegetation composition, are known to influence carbon accumulation, with species 

such as Spartina alterniflora particularly effective at carbon storing (Unger et al. 

2016), and larger scale processes, such as sea level rise, also accelerating carbon 

storage (Rogers et al. 2019). However, a global synthesis of how these contextual 

drivers influence carbon and greenhouse gas flux is currently lacking. A global 

prioritisation of saltmarsh restoration is hindered by a limited understanding of where 

the global hotspots for carbon accumulation are. As such, the regions where 

saltmarsh restoration would have the greatest benefit for climate regulation remain 

unknown. 

 

Here we evaluate how carbon stock, carbon accumulation and greenhouse gas 

fluxes vary between natural and restored saltmarshes, and contrast these across 

global geographical regions. Using a systematic review and meta-analysis of data 

from 435 published studies, we test the expectations that newly restored sites will 

exhibit high CARs and that older restored sites will have fluxes (overall greenhouse-

gas exchange, including uptake and emissions) comparable to those of natural 
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marshes. We hypothesize that variation in greenhouse-gas responses will depend 

on restoration approach, with tidal re-introduction, for example, resulting in lower 

emissions than freshwater re-introduction, given lower methane emissions of saline 

wetlands (Poffenbarger et al. 2011). Finally, we expected greenhouse gas fluxes to 

be influenced by environmental context, including geomorphology, vegetation type, 

climate (temperature and rainfall) and salinity. Our analyses allow us to determine 

the average annual contribution of restored marshes to global carbon accumulation, 

and to provide the most up to date estimate of global carbon stock buried below 

coastal salt marshes. 

2.0 Methodology 

2.1 Literature search and data extraction 

 

A systematic literature search for data was done on the 21st January 2022, using 

standard approaches (Pullin & Stewart 2006, O’Dea et al. 2021) and the search 

engines Web of Science and Scopus. No geographical or temporal constraints were 

applied. The search string was designed to yield studies with data on organic matter 

content, carbon stock, carbon accumulation and/or greenhouse gas flux (CO2, CH4 

or N2O) in natural and/or restored saltmarsh ecosystems. As such, the search terms 

consisted of three strings connected with the Boolean operator “AND”, as below: 

 

factor* OR variable* OR condition* OR characteristic* OR driver* OR natural OR 

restored OR restoration OR creat* OR “managed realignment” OR reintrod* OR re-

introd* OR reestab* OR re-estab* OR “managed retreat” OR “regulated tidal 

exchange” OR RTE*   
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AND 

  

carbon OR CO2 OR nitrous* OR N2O OR methane OR CH4 OR “greenhouse gas” 

OR green*house gas OR GHG* OR “greenhouse gases” OR gas* OR flux* OR 

storage OR sequestration* OR budget* OR sink* OR removal OR accret* OR 

exchange* OR accumulation OR erosion OR stock* OR burial OR re-created OR 

“organic matter” OR “organic content” 

  

AND 

  

saltmarsh* OR "salt marsh*" 

 

The search returned 3,874 results from Web of Science and 29,253 from Scopus. 

Duplicate results were removed and 2 additional studies were added (ABPmer 2021, 

Mossman et al. 2022. These were not available on online search engines at the time 

of the literature search) following consultation with the Saltmarsh Code Consortium 

(https://www.ceh.ac.uk/our-science/projects/uk-saltmarsh-code), yielding a final list 

of 29,182 published studies prior to screening. Publications were screened first by 

title (3443 retained), then by abstract (930 retained) and finally by full text (435 

retained: listed in Supplementary Materials, Table S1). Studies that were irrelevant to 

the research questions and which did not include quantitative data were excluded. 

Review studies and data derived from modelling were also excluded. Data from 

brackish (salinity = 0.5 – 18 ppt) and saline marshes (salinity > 18 ppt) were 

included, while studies on terrestrial wetlands, peatland, freshwater marshes, fens, 

bogs and permafrost marshes were excluded. Studies pertaining to smaller scale 

https://www.ceh.ac.uk/our-science/projects/uk-saltmarsh-code
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biotic processes (e.g. root respiration within salt marsh vegetation) were not 

included, unless observations were scaled up to the level of whole-marsh areas. 

Nutrient fluxes were excluded, except when as a gaseous component of greenhouse 

gasses (e.g. N2O emissions). Carbon stores in vegetation biomass were not 

incorporated, apart from as a component of saltmarsh sediment. Data were 

extracted from text, tables or graphs in the 435 passed papers, using Automeris 

WebPlotDigitizer Version 4.4 (Rohatgi 2020). Data were extracted on any organic 

matter content, carbon stock, carbon sequestration or GHG flux, along with 

contextual data, such as the average annual air temperature, dominant vegetation, 

sediment salinity and site geomorphology. In total, 2055 ‘samples’ were extracted 

from the 435 papers. A ‘sample’ was defined as a distinct condition (e.g. natural vs 

restored) or contextual setting investigated within a study (e.g. different sampling 

locations) which were reported as separate values. GHG flux was included from 

studies using a range of methodologies including static (opaque or transparent) 

chambers and eddy covariance, on a short-term or seasonal basis. Data gaps in the 

annual rainfall and average annual air temperature data reported by studies were 

filled in using the geographical co-ordinates of the study site and the WorldClim 

climate dataset (Fick & Hijmans 2017). Geomorphology was initially determined for 

each site using satellite imagery and classifying locations into four types: estuary, 

coastal marsh, estuarine lagoon and lagoon (Pye and Blott 2014). Since for some 

studies this was not possible (e.g. where specific sampling coordinates were not 

provided), this classification was further simplified into fluvial, coastal, loch-head and 

unknown marsh type, for further analysis. 

2.2 Data standardisation 
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Standardisation of data was required due to considerable variation in approaches 

and units used by the 435 studies. Meta-data and data concerning environmental 

context were standardised into common units (e.g., electrical conductivity and 

salinity into PSU). Marshes were classified into ‘natural’ or ‘restored’ based on their 

description in the original study, with restored marshes defined as those which had 

experienced active intervention to alter or restore the state of the marsh. 

Greenhouse gas fluxes were converted into t CO2e ha-1 y-1 using a 100-year 

timeframe in accordance with IPCC standard approaches (IPCC 2014). For studies 

which gave a carbon (C) stock estimate to <1m, carbon stock observations were 

extrapolated to 1m for IPCC comparability (IPCC 2014), assuming a linear 

distribution of carbon in the top 1m sediment. We expressed the mitigative potential 

of saltmarshes in units of carbon accumulation (t C ha-1 y-1) and in that term 

amalgamated data on carbon burial, carbon accumulation and carbon sequestration 

(CO2 uptake by vegetation). The difference between burial and accumulation is that 

the former infers the carbon is located below the depth of degradation activity, 

whereas the latter does not (Middelburg et al. 1997). As the depth of degradation 

activity was rarely reported, we here use the more conservative ‘C accumulation’ 

term.  Soil organic matter observations (OM) derived from loss on ignition (LOI) were 

converted to organic carbon content (OC) using the equation:  

Organic C = OM * 0.52 

where the 0.52 value was based on the OM/OC conversion factor (1.92) of Ouyang 

and Lee (2020) for LOI observations. Where bulk density data were also reported, 

percentage organic carbon content was converted into carbon stock using the 

following equation:  
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C stock (t C ha-1) = depth * bulk density * % OC * 10000 

where ‘depth’ was the core sampling depth and 10000 was the conversion factor 

from m to ha. The resulting carbon stock values were then extrapolated to 1m depth 

as described above. 

2.3 Data analysis 

We contrasted natural and restored saltmarshes for variation in 8 response 

variables: % OC, bulk density, carbon stock, carbon accumulation rate, net CO2 flux, 

CO2 respiration, CH4 flux and N2O flux. Pixel maps were produced from natural 

marsh data for each response variable to identify ‘hotspots’ including areas with 

combined high carbon stock and high CARs. Significant differences between natural 

and restored sites were assessed using non-parametric Mann Whitney-U tests. A 

generalised linear mixed model (GLMM) tested for differences between natural and 

restored marshes (included as a binary factor) for each response variable. To 

account for variation due to the contextual or environmental setting, the GLMM 

model also incorporated six environmental and geographical predictor variables. 

These were: continent (categorical; 5 levels), annual rainfall (continuous), salinity 

type (categorical; 6 levels), average annual temperature (continuous), simplified 

marsh geomorphology (categorical; 4 levels) and vegetation type (categorical; 6 

levels). We included Study ID as a random effect to account for non-independence 

of multiple values extracted from the same study. The performance package was 

used to visually inspect global model residuals, test for collinearity among the six 

predictor variables, and ensure that model assumptions were met (Lüdecke et al. 

2020). To meet model assumptions, data for carbon stock and net CO2 flux were 

rescaled between 0 and 1, with the lowest and highest values in the dataset 
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becoming 0 and 1, then square root transformed (untransformed values are stated in 

the results of this study). For all other variables, raw data were used. In the GLMM, 

we identified the predictor variables that best explained variation in each response 

variable, using a theoretic-based model selection process (Burnham et al. 2011) and 

only considering models which included ‘natural vs restored’ as a predictor. 

Statistical significance of model fit was assessed using a Chi-squared test between 

the optimal model and a null model that contained only the random factor (Study ID). 

The emmeans package (Lenth 2022) was used to (a) extract the estimated 

difference in marginal means (EMMs) between natural and restored marshes for 

each response variable and (b) to test for significance.  

GLMMs were also used to test for the influence of environmental context, restoration 

approach (defined in Table S3) and marsh age on the response variables of restored 

marshes. The same methods and environmental predictors were used as for the first 

GLMM analysis, except natural vs restored was replaced by restoration approach 

and site age (time since restoration). Approach to restoration was grouped into the 

following six categories: artificial structure implementation, freshwater reintroduction, 

marsh creation (usually sediment addition and vegetation planting, and often 

fertilisation), sediment alteration, tidal re-introduction (included managed realignment 

and regulated tidal exchange) and unknown (Table S3). One extremely high and 

outlying observation (10.4 g cm-3) was removed from the bulk density dataset, as its 

inclusion caused the assumptions of the global GLMM model to be violated. This 

observation was likely an error value, given it was an order of magnitude larger than 

the next highest value (1.58 g cm-3). Insufficient data were available to use GLMMs 

for CO2 respiration, CH4 flux and N2O flux, but their averages are nevertheless 

reported, and available data shown in figures. All analyses were run using R Version 
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3.6.3 (R Core Team 2020). Statistically significant relationships were inferred where 

p < 0.05. 

Finally, we used recent estimates of saltmarsh cover continentally (Mcowen et al. 

2017) and globally (Mcowen et al. 2017, Murray et al. 2022, Worthington et al. 2023) 

to derive, from our data, an up-to-date estimate of blue carbon stock held by 

saltmarsh habitats globally, in which we accounted for differences in carbon stocks 

between geographical regions. We estimated the net carbon accumulation of 

marshes per continent using CO2 equivalent values for CARs and accounting for 

greenhouse gases emissions and uptake. From the net values, we determined the 

potential global and regional carbon-benefit (t CO2e ha-1 y-1) from marsh restoration. 

Net values were also used to quantify the missed opportunity for carbon 

accumulation arising each year from reported net saltmarsh losses of 

1,452.84 (733.1–2,172.07) km2 between 2000 and 2019 (Campbell et al. 2022).  

3.0 Results 

3.1 Literature search and data extraction 

The past decade saw a rapid increase in the number of relevant studies published, 

with an average of 29.27 new studies per year in 2012–2022, compared to 3.42 

studies per year over 1977–2011 (Figure 2). North American and Asian studies 

made up 37.5% and 31.0% of the 435 papers included, respectively. There were 

very few studies from South America and Africa (8 and 1 studies, respectively) 

(Figure S1). A number of the studies included observations from different conditions 

and/or contextual settings (e.g. natural vs restored sites, brackish vs saline sites), 

leading to a total of 2055 samples. Far more data were available for natural than 
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restored marshes: out of 2055 samples, 1757 were from natural and 298 were from 

restored marshes. Out of the 298 samples for restored marshes, most originated 

from North America (57%) and Europe (35%), with only 18 samples from Asia, 5 

from Oceania and 1 from South America. Across the 8 response variables that were 

derived from the extracted data, 3623 individual data points were taken for further 

analysis.  

 

Figure 2. Number of relevant studies included in meta-analysis (n = 435) published 

per year.  Text in boxes describes criteria a paper needed to fulfil to be included in 

the analysis. 
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Based on these studies, three areas of particularly high carbon stock were identified 

in natural saltmarshes (Figure 3a): one in the North America, one in north-eastern 

Europe and one on the eastern coast of Australia. Although data on carbon 

accumulation were more sparsely distributed, reported accumulation rates were 

highest on the east coasts of Australia, China, the UK and the USA (Figure 3b). 
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Figure 3. Pixel maps of A) saltmarsh carbon stock to 1m sediment depth (t C ha-1) 

and B) saltmarsh carbon accumulation rate (t C ha-1 y-1) for global regions. Map lines 

delineate study areas and do not necessarily depict accepted national boundaries. 

3.2 Natural vs restored saltmarshes 

Globally, natural and restored marshes varied significantly in %OC, carbon 

accumulation rate, net CO2 flux and CO2 respiration (Table 1, Figure 4). Restored 

marshes had greater carbon accumulation and net CO2 uptake (lower net CO2 flux 

value), and lower %OC and CO2 respiration, than natural marshes (Table 1, Figure 

4). When separated by continent, significant differences in response variables 

between natural and restored marshes were predominantly restricted to Europe and 

b) 

a) 
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North America, likely due to paucity of data for other continents. Carbon stock varied 

significantly between natural and restored marshes in both Europe and North 

America, although effects were opposite (Table 1): restored marshes had greater 

carbon stock in Europe, but lower stock in North America. Differences between 

continents were evident even when considering only natural marshes. Organic 

carbon content was particularly high in the North America (Table 1). Methane 

emissions of natural and restored marshes in Europe were 25 and 332 times lower 

than the global average, respectively (Table 1, Figure S2).  
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Table 1. Continental and global mean values (± SD) of organic carbon (%OC), bulk 

density, carbon stock (to 1m depth), carbon accumulation rate, net CO2 flux, CO2 

respiration, CH4 flux and N2O flux. Brackets show numbers of samples (n) per mean. 

Blue values were significantly different between natural and restored sites (Mann-

Whitney U test. Significant if p < 0.05). 

 % OC Bulk 
density 
(g cm-3) 

C stock 
(t C ha-

1) 

C acc. 
rate (t C 
ha-1 y-1) 

Net CO2 
flux (t 
CO2 ha-1 
y-1) 

CO2 
respirat
ion 
(t CO2 
ha-1 y-1) 

CH4 flux 
(t CO2e 
ha-1 y-1) 

N2O flux 
(t CO2e 
ha-1 y-1) 

Europe 
Natural 
 
 
Restored 

 
North 
America 
Natural 
 
 
Restored 

 
South 
America 
Natural 
 
 
Restored 

Asia 
Natural 
 
 
Restored 

 
Africa 
Natural 
 
 
Restored 

Oceania 
Natural 
 
 
 
Restored 

 
7.00 ± 
7.13 (211) 
 
4.37 ± 
4.60 (88) 

 
 
11.39 ± 
8.80 (464) 
 
8.52 ± 
10.41 (99) 

 
 
2.37 ± 
1.73 (15) 
 
2.39 (1) 

 
5.14 ± 
8.55 (132) 
 
1.58 ± 
0.60 (4) 

 
5.38 ± 
2.64 (6) 
 
NA 
 
6.72 ± 
6.82 (78) 
 
 
10.42 ± 
9.25 (3) 

 
0.65 ± 
0.32 (122) 
 
0.88 ± 
0.33 (24) 

 
 
0.39 ± 
0.29 (273) 
 
0.60 ± 
1.14 (87) 

 
 
1.14 ± 
0.18 (4) 
 
NA 

 
1.30 ± 
0.35 (106) 
 
1.39 ± 
0.14 (4) 

 
NA 
 
 
NA 
 
0.82 ±  
0.39 (76) 
 
 
1.57 (1) 

 
342.10 ± 
223.45 
(154) 
438.83 ± 
191.97 
(22) 

 
360.00 ± 
214.16 
(295) 
247.23 ± 
169.56 
(79) 

 
156.29 ± 
142.83 (4) 
 
NA 

 
90.52 ± 
101.97 
(161) 
59.45 ± 
49.3 (5) 

 
NA 
 
 
NA 
 
309.94 ± 
304.25 
(106) 
 
84.54 ± 
71.15 (3) 

 
1.87 ± 
1.77 (30) 
 
5.70 ± 
8.81 (15) 
 

 
1.69 ± 
2.25 (236) 
 
3.77 ± 
4.53 (63) 
 
 
 
NA 
 
 
NA 

 
3.82 ± 
6.48 (29) 
 
18.38 ± 
1.56 (2) 

 
NA 
 
 
NA 
 
5.81 ± 
14.70 (17) 
 
 
0.74 ± 
0.28 (2) 

 
NA 
 
 
NA 
 
 

 
-57.73 ± 
84.26 (47) 
 
-80.10 ± 
48.13 (19) 

 
 
-10.5 (1) 
 
 
NA 

 
-14.25 ± 
19.11 (26) 
 
-19.04 ± 
22.11 (3) 

 
NA 
 
 
NA 
 
3.44 ± 
11.23 (2) 
 
 
NA 

 
20.42 ± 
50.88 (11) 
 
29.08 ± 
35.11 (2) 

 
 
30.32 ± 
23.90 (57) 
 
5.33 ± 
1.46 (6) 

 
 
NA 
 
 
NA 

 
22.26 ± 
26.77 (70) 
 
20.09 ± 
22.10 (8) 

 
NA 
 
 
NA 
 
10.31 ± 
19.00 (2) 
 
 
NA 

 
0.20 ± 
0.30 (20) 
 
0.05 ± 
0.08 (4) 
 

 
6.67 ± 
25.99 (69) 
 
23.17 ± 
54.47 (16) 

 
 
NA 
 
 
NA 

 
4.70 ± 
15.14 
(106) 
15.76 ± 
27.13 (8) 

 
NA 
 
 
NA 
 
8.26 ± 
14.30 (3) 
 
 
0.19 ± 
0.53 (2) 

 
0.06 ± 
1.00 (14) 
 
0.58 ± 
0.67 (4) 
 

 
-0.03 ± 
0.77 (24) 
 
0.19 ± 
0.75 (16) 

 
 
NA 
 
 
NA 

 
0.44 ± 
0.83 (53) 
 
0.77 ± 
1.75 (7) 

 
NA 
 
 
NA 
 
0.78 ± 
1.03 (2) 
 
 
NA 

         
Global 
Natural 
 
 
 
Restored 

 
8.86 ± 
8.56 (906) 
 
 
6.50 ± 
8.37 (195) 
 

 
0.67 ± 
0.46 (581) 
 
 
0.69 ± 
1.01 (116) 

 
287.39 ± 
238.64 
(720) 
 
272.81 ± 
193.13 
(109) 

 
2.13 ± 
4.49 (312) 
 
 
4.41 ± 
5.91 (82) 

 
-41.82 ± 
71.03 (74) 
 
 
-65.51 ± 
52.27 (24) 

 
25.23 ± 
28.19 
(140) 
 
15.68 ± 
19.70 (16) 

 
4.99 ± 
19.00 
(198) 
 
16.58 ± 
42.34 (30) 

 
0.27 ± 
0.86 (93) 
 
 
0.39 ± 
1.08 (27) 
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Figure 4. A) Distribution of samples across natural and restored saltmarshes (total n 

= 2055). Global mean values (± SD) of B) carbon stock, C) organic carbon (%OC), 

D) carbon accumulation rate, E) net CO2 flux, F) CH4 flux and G) N2O flux. Numbers 

above bars indicate numbers of samples per mean. * denotes p<0.05 and *** 

denotes p<0.001 (Mann-Whitney U test).  

Variation in carbon and greenhouse gas variables was explained by a number of bio-

environmental contextual variables, besides whether or not the marsh was natural or 

restored. For all variables other than CH4 flux and CO2 respiration, significant optimal 

models including natural vs restored included at least one other additional contextual 

variable (Table 2). For example, continent, annual rainfall, sediment salinity, average 

annual temperature and vegetation type were all significant predictors of organic 

carbon stock on a global scale, in addition to whether the marsh was natural or 

restored (χ2
18

 = 104.22, p < 0.001). When accounting for these contextual variations 

between saltmarshes, %OC was an average of 3.25 ± 0.65% higher in natural 

marshes compared to restored (pairwise EMM: p<0.001), with carbon stock following 

a similar pattern (Table 2). Despite statistically significant optimal models, carbon 

accumulation, net CO2 flux and N2O flux did not significantly differ between natural 

and restored marshes, suggesting more complex interactions between 

environmental predictor variables. In short, the statistically optimal models showed 

that the values of direct parameters of carbon stock (%OC, bulk density and carbon 

stock) differed between natural and restored marshes, and variation in these three 

parameters depended on the environmental context. 
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Table 2. Contextual drivers of spatial variation in soil physical and chemical variables across all saltmarsh sites, as indicated by 1 

GLMM models. Differences (±SE) in pairwise estimated marginalised means (EMMs) are given between natural and restored 2 

saltmarshes. C = continent, R = annual rainfall (mm), Re = natural or restored, S = salinity (categorical), T = average annual 3 

temperature (C), V = vegetation type, SI = study ID. Carbon stock was to 1m soil depth. 4 

 5 

6 

        Natural vs restored pairwise EMM 

Variable Best supported model AICc  R2c R2m χ2 df P-value Difference SE df T ratio P-value 

% OC  1 + C + R + Re + S + T + V + (1 | 

SI) 

7154.94 0.742 0.145 104.22 18 <0.001 3.25 0.653 1035 4.978 <0.001 

Bulk Density  

(g cm-3) 

1 + C + Re + (1 | SI) 871.77 0.586 0.258 105.63 6 <0.001 -0.346 0.059 688 -5.896 <0.001 

C stock (t ha-1) 1 + C + Re + (1 | SI) -1468.92 0.756 0.232 71.99 5 <0.001 9.56 7.82 765 2.821 0.005 

C accumulation 

(t ha-1 y-1)  

1 + C + Re + (1 | SI) 2219.66 0.719 0.110 37.70 9 <0.001 -1.21 0.855 370 -1.420 0.156 

Net CO2 flux  

(t CO2 ha-1 y-1) 

1 + Re + S + V + (1 | SI) -265.77 0.979 0.076 25.85 9 0.002 28.74 28.72 55 0.612 0.543 

CO2 respiration 

(t CO2 ha-1 y-1) 

1 + Re + (1 | SI) 1392.56 0.842 0.001 0.130 1 0.719 -2.75 7.46 140 -0.368 0.713 

CH4 flux  

(t CO2e ha-1 y-1) 

1 + R + Re + (1 | SI) 2057.14 0.479 0.029 4.26 2 0.119 -4.56 5.14 215 -0.887 0.376 

N2O flux  

(t CO2 e ha-1 y-1) 

1 + Re + T + V + (1 | SI) 308.88 0.599 0.215 17.61 6 0.007 -0.438 0.25 108 -1.752 0.08 
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3.3 Covariation between environmental setting and carbon flux in restored 7 

marshes 8 

GLMM models to identify covariations in fluxes between restored marshes could only 9 

be fitted to the response variables % OC, bulk density, carbon stock, carbon 10 

accumulation and net CO2 flux, due to a paucity of data for other response variables. 11 

Restoration approach explained 28.7% of the variation in %OC of restored marshes 12 

(Table 3). %OC was by far the highest in marshes restored via freshwater 13 

introduction and lowest where the approach was undefined by the authors of the 14 

study (Table S4). Bulk density reduced with marsh age, although the rate of change 15 

was very low (Table S4: slope). Bulk density was highest in Asia and Oceania, and 16 

low at sites restored by freshwater introduction (Table S4), which was a restoration 17 

approach used only in North America and reported by just 2 studies (Figure 5). 18 

Carbon stock decreased with marsh age and increase in temperature, and peaked in 19 

marshes dominated by Phragmites spp. plants, which had double the stock of 20 

Spartina spp. marshes and three times that of Suaeda spp. marshes (Table S4). The 21 

optimal model for net CO2 flux included continent and rainfall (R2c = 0.626, χ2 = 22 

11.54, p = 0.009), but neither restoration approach nor time since restoration. Net 23 

CO2 uptake by restored marshes, as indicated by negative net CO2 flux values 24 

(Table S4), was stimulated by increasing rainfall and was 8 and 19 times greater in 25 

North American than Asian and Oceanian restored marshes. CH4 flux for restored 26 

marshes could not be modelled due to paucity of data, although it tended to be 27 

greater in marshes restored via freshwater introduction compared to other 28 

approaches (Figure 5). 29 
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 25 

Figure 5. A) Distribution of marsh restoration approaches used by studies (total n = 31 

298). B)  means of soil and flux variables per restoration approach, t CO2e ha-1 y-1. 32 

Values above 0 represent emissions (red), values below 0 show uptake (green). 33 

Note a lack of carbon accumulation data for artificial structure sites. More detailed 34 

descriptions of restoration approach can be found in Table S3. 35 
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Table 3. Contextual drivers of spatial variation in the % organic carbon (%OC), bulk density, carbon stock (to 1m), carbon 36 

accumulation rate and net CO2 flux of restored marshes, as indicated by GLMM models. C = continent, R = annual rainfall (mm), 37 

RA = restoration approach, A = marsh age, S = salinity (categorical), T = average annual temperature (C), V = vegetation type, SI 38 

= study ID. Significant model fit was found for all response variables except for accumulation. 39 

        

Variable Best supported model AICc R2c R2m χ2 df P-value 

% OC 1 + RA + (1 | SI) 1155.57 0.901 0.287 11.69 5 0.039 

Bulk Density (g cm-3) 1 + RA + A + C + (1 | SI) -9.62 0.883 0.631 47.20 9 <0.001 

C stock (t C ha-1) 1 + A + T + V + (1 | SI) 1337.40 0.895 0.360 26.66 6 <0.001 

C accumulation (t C ha-1 y-1) 1 + (1 | SI) 480.08 0.866 0.000 NA NA NA 

Net CO2 flux (t CO2e ha-1 y-1) 1 + C + R + (1 | SI) 252.97 0.626 0.566 11.54 3 0.009 

  40 
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3.4 Global blue carbon potential 41 

Using our continental average carbon stock values and the saltmarsh cover values 42 

of Mcowen et al. (2017), Campbell et al. (2022) and Worthington et al. (2023), we 43 

estimate the current blue carbon stock of global saltmarshes is 1.41 Pg – 2.44 Pg 44 

(Figure 6). This is likely to be a conservative figure, since cover estimates tend to 45 

have limited inclusion of high latitude areas (Mcowen et al. 2017, Murray et al. 2022, 46 

Worthington et al. 2023). Assuming a saltmarsh net loss of 1,452 km2 (733–2,172 47 

km2) between 2000 and 2019 (Campbell et al. 2019) and using our estimates of net 48 

carbon accumulation per unit marsh area, the current annual net carbon 49 

accumulation is 0.06 Mt (0.03 – 1.00 Mt) lower than in 2000. Given many marshes 50 

were lost prior to 2000 (Mcowen et al. 2017), the total reduction in carbon 51 

accumulation due to marsh loss will be much higher. Our data show that when taking 52 

GHG fluxes into account, saltmarshes of all continents provide a net carbon removal 53 

benefit, with restored marshes consistently soliciting the greatest gain (Figure 6b). 54 

Accounting for greenhouse gas emissions, restored saltmarshes had a net carbon 55 

burial rate of -64.70 t CO2e ha-1 y-1, 45.8% higher than that of natural marshes. 56 

Griscom et al. (2017) estimated that 0.2–3.2 million ha saltmarsh could potentially be 57 

restored globally, based on data compiled from 76 sources. Using these values 58 

alongside our calculated CARs for restored marshes, we estimate that an additional 59 

12.93–207.03 Mt CO2e could be buried per year through marsh restoration, equating 60 

to 0.03–0.51% of global energy-related CO2 emissions in 2021 (IEA 2022).  61 
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 62 

Figure 6. Estimated total saltmarsh blue carbon stock per continent to 1m depth. Estimates were based on the marsh area 63 

coverage of Mcowen et al. (2017), Murray et al. (2022) and Worthington et al. (2023) listed in table a) (units: ha). Figure (b) shows 64 

the average net carbon accumulation rates (accounting for greenhouse gas emissions) for continents where sufficient data were 65 
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available. For the ‘Global saltmarsh blue carbon stock’ box, * refers to stock calculated with values from Worthington et al. (2023) 66 

and ** for stock calculated from Murray et al. (2022). The value calculated with continental saltmarsh areas from Mcowen at al. 67 

(2023) was 1.47 Pg, used to scale up/down to the global area values from Murray et al. (2022) and Worthington et al. (2023).68 
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4.0 Discussion 69 

4.1 Global and regional blue carbon benefits 70 

This study offers a firm endorsement of the benefit of saltmarsh restoration to 71 

mitigating global greenhouse gas emissions. Restored saltmarshes have very low 72 

GHG fluxes and rapid CARs, resulting in an overall net carbon accumulation rate of 73 

64.70 t CO2e ha-1 y-1. Incorporating greenhouse gas fluxes into global-scale 74 

estimates of net carbon accumulation, we show that saltmarsh restoration provides 75 

opportunity for offsetting up to 0.51% of global CO2 emissions, based on 2021 76 

emission values (IEA 2022) and considering that up to 3.2 million ha saltmarsh are 77 

potentially restorable (Griscom et al. 2017). Half a percent of global emissions is a 78 

substantial amount, considering marshes occupy much less than 1% Earth’s surface 79 

(Costanza et al. 2014). The climate mitigating benefit of marsh restoration will be 80 

coupled to other significant socio-ecological gains, including natural flood protection 81 

and the provisioning of habitat for threatened wildlife and fisheries species (Barbier 82 

et al. 2011), the value of which typically outweighs the cost of restoration 1.3 to 1.0 83 

(Alvis and Avison 2021). Our study provides an up-to-date blue carbon estimate of 84 

1.41 – 2.44 Pg stored in the top 1m of saltmarsh sediment globally, a higher quantity 85 

than recent estimates of 1.35 Pg (Macreadie et al. 2021) and 1.37 Pg (Temmink et 86 

al. 2022), but still lower than recent estimates of total carbon stock for mangroves 87 

(7.13 Pg) and seagrasses (3.58 Pg) (Lovelock and Reef 2020). For IPCC 88 

comparability (IPCC 2014), the present study extrapolated original observations of 89 

carbon stock to 1m when studies had not sampled carbon to this depth. This 90 

approach does incur uncertainties to our global stock estimate. A definitive estimate 91 

of global carbon stock in saltmarshes would require consistent measurements 92 
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across the complete soil profile in a greater number of studies. Our estimate is based 93 

on a substantially higher number of published studies compared to previous studies 94 

(e.g. Ouyang and Lee 2014, Temmink et al. 2022) and used the most recent 95 

saltmarsh coverage estimates (Mcowen et al. 2017, Murray et al. 2022). The 96 

substantial carbon store held by marshes highlights the importance not just of marsh 97 

restoration, but of effective policy to protect existing marshes. 98 

Global differences in carbon and GHG fluxes of natural and restored marshes were 99 

explained by variation in bio-physical context, with vegetation species composition 100 

and rainfall particularly strong drivers of variation in carbon stock and net CO2 flux.  101 

The effect of vegetation type was expected, since plant community shifts are known 102 

to alter GHG emissions of saltmarshes (Martin et al. 2018) and plant composition is 103 

a reliable predictor of carbon stock (Ford et al. 2019, Smeaton et al. 2022). The 104 

eastern coasts of the North America and Australia were particular hotspots for 105 

carbon storage, being areas with high carbon stocks and high CARs. Eastern 106 

Australia is recognised as an area with strong carbon benefits from saltmarsh 107 

restoration (Macreadie et al. 2017, Gulliver et al. 2020). Our study also confirms that 108 

the eastern coast of North America is a global hotspot for saltmarsh carbon 109 

sequestration. These high carbon stocks may result from previously high rates of 110 

relative sea level rise (RSLR) in the late Holocene, which may have led to surficial 111 

carbon densities 1.7 – 3.7 times higher than those in times, or regions, of stable sea 112 

level (Rogers et al. 2019). In addition, US Spartina alterniflora dominated 113 

saltmarshes are highly productive and have long been recognised as having higher 114 

carbon stocks than other marsh regions (Cebrian 2002). Belowground 115 

decomposition of S. alterniflora is slower compared to other species, with a lignin 116 

half-life twice as long (3.6 years) as that of other saltmarsh vegetation (Benner et al. 117 



 32 

1987, Unger et al. 2016). These species traits result in high densities of roots in 118 

surface sediments and the trapping of substantial quantities of carbon (Tripathee and 119 

Schäfer 2014, Redelstein et al. 2018), which causes North American marshes to 120 

have higher average organic carbon content and lower sediment bulk density than 121 

other continents, as observed here. Prioritising restoration efforts in areas with such 122 

naturally high carbon burial rates could offer early climate-mitigatory wins from 123 

saltmarsh restoration.  124 

Future climate change may cause losses to some marsh areas, with associated 125 

emissions and reduced carbon accumulation in eroded areas. Recent estimates 126 

show that 83% of existing coastal marshes across 6 mid-USA states could be lost 127 

with 1.2m RSLR before 2104 (Warnell et al. 2022). Based on our calculations of net 128 

carbon accumulation in North American marshes, this could equate to a loss of 129 

annual carbon accumulation up to 17.64 Mt CO2e y-1. Yet, that rate of sea-level rise 130 

may also convert 270,000 ha of forest and forested wetland areas into saltmarsh 131 

(Warnell et al. 2022). Areas with greater tidal range and higher suspended sediment 132 

supply will be less vulnerable to SLR (Saintilan et al. 2022) and actually experience 133 

an increase in carbon storage via greater accommodation space for sediment 134 

deposition (Gonneea et al. 2019). In the process of selecting which areas to restore 135 

it is evidently prudent to consult spatial projections of future gains and losses to 136 

marsh areas arising from SLR. 137 

We found greenhouse gas emissions were a very negligible portion of saltmarsh 138 

carbon fluxes, although climatic drivers such as temperature were found to drive 139 

small variations in N2O flux, for example. The CO2e radiative forcing of N2O and CH4 140 

emissions was dwarfed by the net CO2 uptake, in restored marshes by 4 and 168 141 
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times, respectively, and CH4 and N2O fluxes did not vary significantly between 142 

natural and restored marshes. Clearly, the potential carbon benefit of marsh 143 

restoration greatly exceeds any potential warming effect from greenhouse gas 144 

emissions. This is in contrast to peatland restoration, where rewetting to improve 145 

habitat condition can lead to increased CH4 emissions due to the anaerobic 146 

decomposition of organic material by methanogenic bacteria (Evans et al. 2021). 147 

Methane emissions are less substantial in saline environments because the 148 

presence of sulphates causes sulphate-reducing bacteria to outcompete 149 

methanogens (Bartlett et al 1987). European marshes had 25 times lower methane 150 

flux than the global average. The causes for this are unclear, but we expect 151 

differences to be largely attributable to differences in salinity between study sites 152 

(Figure S3), with a potential influence of annual temperature and tidal regime (see 153 

e.g. Li et al. 2021). Within the extracted data, fresher and brackish sites, without high 154 

presence of sulphates to inhibit methanogenesis (Bartlett et al. 1987), were more 155 

prevalent in Asia and North America, compared to Europe. Recent reviews of 156 

methane fluxes from aquatic ecosystems also show that higher organic matter 157 

content can boost methane emissions (Al-Haj and Fulweiler 2020, Rosentreter et al. 158 

2021), which may have contributed to the higher methane emissions found in the 159 

present study from US marshes, for example. 160 

4.2 Carbon storage via saltmarsh restoration 161 

The result that restored saltmarshes had higher CARs than comparative natural 162 

marshes was unsurprising, since many restored sites were sampled in the first 5 163 

years after restoration, when sediment accretion and associated carbon burial is 164 

rapid (ABPmer 2021, Mason et al. 2022). The maintenance of substantial CARs over 165 



 34 

time in restored marshes indicates the additionality from marsh restoration is 166 

enduring (even if all potential areas for restoration became restored), albeit carbon 167 

accumulation here does not equate directly to the atmospheric sequestration of CO2. 168 

Carbon accumulation here comprised observations of carbon burial, carbon 169 

accumulation and CO2 uptake by marsh vegetation. International standards for 170 

carbon offsetting from marsh restoration can use CARs and carbon stock changes 171 

rather than sequestration as the basis for calculating and issuing tradable carbon 172 

credits, as long as deductions for allochthonous carbon (Figure 1) are made when 173 

necessary (e.g. VERRA VM0033: VCS Methodology, 2021). To limit the risk of 174 

‘double accounting’ allochthonous carbon (Williamson and Gattuso 2022), projects 175 

aiming to offset emissions via wetland restoration should aim to distinguish between 176 

carbon sequestered by the system itself (autochthonous) and carbon trapped by the 177 

marsh from passing water, but originally fixed by another ecosystem (allochthonous, 178 

Figure 1) and already accounted for there. Ultimately, the calculations of carbon 179 

benefits from blue carbon ecosystems should incorporate all lateral carbon fluxes, 180 

including imports of allochthonous material, as well as the export of autochthonous 181 

marsh-carbon to other systems, such as the seabed (Sulpis and Middleburg 2023). 182 

Marshes are highly dynamic and have spatial and temporal patterns of expansion 183 

and erosion (Ladd et al. 2019, 2021). There has been little research into the carbon 184 

implications from such dynamics, although the presence of marsh material in other 185 

systems further illustrates the offsetting potential of saltmarshes (Zhu et al. 2022).  186 

Restoration approach explained significant amounts of variation in soil organic 187 

carbon content (%OC) and bulk density. Soil organic carbon content was highest in 188 

marshes restored via freshwater introduction, as were methane emissions, although 189 

not statistically testable due to insufficient data. The potential of saltmarshes as blue 190 
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carbon ecosystems relates not only to carbon accumulation, but also to their low 191 

methane emissions, as methanogenesis is inhibited at high salinities and methane 192 

flux is widely regarded to be negligible above 18 ppt (Poffenbarger et al. 2011, 193 

Needelman et al. 2018) – patterns corroborated here through evidence of low mean 194 

global methane emissions by natural and restored saltmarsh sites. Salinity will be 195 

reduced when freshwater introduction is the mode of restoration, resulting in higher 196 

methane fluxes than, for example, when marshes are restored through the 197 

reintroduction of tidal flooding. Carbon stock appeared higher in marshes restored 198 

via sediment alteration and tidal reintroduction than through methods based on 199 

planting, sediment addition and fertilisation (e.g., Li and Mitsch 2016). In practice, the 200 

choice of restoration approach will be constrained by environmental context and may 201 

be directed by objectives other than carbon benefits, such as enhancing biodiversity 202 

and/or providing natural flood defence (Barbier et al. 2011, Adams et al. 2021).  203 

Bundled socio-ecological gains through ecosystem-service provisioning are 204 

generally ensured by marsh restoration (Barbier et al. 2011, Stewart-Sinclair et al. 205 

2020, Sánchez-Arcilla et al. 2022), although the choice of restoration can drive trade-206 

offs between benefits. For instance, whilst this study showed Phragmites reed beds 207 

had the highest carbon accumulation of all vegetation communities, the removal of 208 

Phragmites australis in regions where this is invasive would increase plant and 209 

faunal diversity (Findlay et al. 2003, Gratton and Denno 2005, 2006). Natural flood 210 

protection is an important driver of marsh restoration in many global regions and has 211 

great potential for co-benefits to carbon and biodiversity (e.g., Mossman et al. 2022, 212 

Barbier et al. 2011), but it can also result in trade-offs of other ecosystem services, 213 

depending on design (Loon-Steensma and Vellinga 2013, Auerswald et al. 2019). 214 

While trade-offs from flood protection projects are relatively well-studied (see e.g. 215 
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van Loon-Steensma and Vellinga 2013), insight into trade-offs resulting from projects 216 

targeting saltmarsh carbon sequestration is comparatively lacking. The goal and 217 

approach of restoration should always be clearly thought through to manage benefit 218 

trade-offs. Empirical observations of some marsh ecosystem services are patchily 219 

distributed, making it a challenge to deliver holistic trade-off evaluations across all 220 

global contexts.  221 

4.3 Data gaps and areas for further research 222 

While we have confidence in our global estimates and the deduced contribution of 223 

marshes to climate regulation, the study did face data scarcity for some geographical 224 

regions, environmental contexts and carbon response variables. Our overall 225 

estimates of saltmarsh carbon stock, CARs and restoration potentials were based on 226 

continental averages, as the spatial cover was insufficiently consistent to go to 227 

regional or national levels. In particular, there was spatial paucity in empirical 228 

observations of CARs and greenhouse gas fluxes, especially for restored marshes 229 

and including otherwise well-studied continents such as Europe. Undoubtedly, 230 

boosting the spatial cover of empirical flux observations would give greater 231 

confidence in net greenhouse gas budgets and a finer resolution for examining how 232 

marsh restoration benefits vary with environmental context. Our statistical models 233 

were additive and based on generalised linear distributions. These relatively simple 234 

model constructs allowed us to explore the contextual drivers of a wide variety of 235 

carbon flux components across natural and restored marsh settings. A more 236 

complex modelling approach that considers non-uniform distributions and potential 237 

multi-way interactions between different drivers could provide a more detailed 238 

understanding into the effects of environmental drivers on carbon flux. Additionally, 239 
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predictive spatial models might be explored, for example, through machine learning 240 

techniques, to move from global/continental mean estimates to point level 241 

predictions at small spatial scales.  242 

4.4 Implications for policy and management 243 

Overall, our findings support the assertion of the IPCC Sixth Assessment Report that 244 

habitat restoration offers a significant route to mitigating climate change (IPCC 2021) 245 

and meeting Nationally Determined Contributions (NDCs). Many nations already 246 

have statutory obligations or stated commitments to restore marshes and the carbon 247 

gains from such restoration can be calculated from the data synthesized here. 248 

Evidently, the more marsh areas are restored, the less will be the unexplored 249 

potential of marshes to contribute further reductions to atmospheric carbon. Marsh 250 

restoration is only one of many actionable climate solutions. However, nature-based 251 

solutions do offer an effective, short-term opportunity to mitigate global emissions 252 

and are, arguably, a critical route for meeting the shorter-term ambitions of the Paris 253 

Agreement (Seddon et al. 2020). For example, if the recommended 22,000 ha 254 

(Dickie et al. 2015) saltmarsh area in the UK were successfully restored, an 255 

additional 0.14 Mt C y-1 would be sequestered, equating to 0.05% of the UK’s 2020 256 

CO2 emissions (IEA 2022). While the investment in wetland restoration typically has 257 

very positive cost-benefit ratios (Alvis and Avison 2021), projects do need to have 258 

the buy-in from multiple stakeholders, including local communities, the finance sector 259 

and environmental managers, before restorable areas can be successfully converted 260 

into functional saltmarshes (Figure 7). Much of the policy and science exists, but the 261 

roll-out of marsh restoration can stumble on processes associated with practical 262 

limitations, such as land availability and the cost of upscaling. Agricultural need for 263 
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land was a key driver for historical marsh losses (Mcowen et al. 2017) and may still 264 

restrict available areas for restoration, given that there is increasing demand for land 265 

for food and housing to meet the needs of a continually growing coastal population 266 

(Nicholls et al. 2007). Practical recognition of the bundled benefits associated with 267 

marsh restoration (see e.g. Stewart-Sinclair et al. 2020, Sánchez-Arcilla et al. 2022) 268 

(Figure 7) may become an important factor in overcoming such restoration 269 

‘stumbling blocks’. Linking targets for saltmarsh carbon to planning for nature-based 270 

flood solutions may provide such an opportunity.  271 

The expense of saltmarsh restoration can be substantial, depending on geographical 272 

region and method of restoration, with replanting most expensive ($89-140,000 ha-1) 273 

and hydrological or sediment restoration the cheapest ($24-65,000 ha-1) (Wang et al. 274 

2022). In countries like the United Kingdom, costs may be covered through 275 

governmental commitment to flood protection (Carvalho and Spataru 2023), 276 

particularly incorporating nature-based solutions. While high up-front costs and long-277 

term investment can put off private investors in ecological restoration (Wainaina et 278 

al. 2020), co-investment to explore a rapidly expanding carbon market offers a 279 

promising way to accelerate marsh restoration (Macreadie et al. 2021). Cost-benefit 280 

analysis accounting for ecosystem-service gains show the cost of restoration is 281 

recovered within 5 to 30 years, for 20% to 40% of projects, respectively, with small-282 

scale projects taking longer to recover expenses and increase in carbon value 283 

substantially reducing the timescale (Wang et al. 2022). Currently, only carbon has a 284 

significant market to help offset restoration costs and attract investors, but other 285 

saltmarsh ecosystem-services, such as nutrient-remediation and recreational space, 286 

have strong market potentials and unquestionable societal cost-benefits (Lillebø et 287 

al. 2010, Adams et al. 2021, Wang et al. 2022).  288 
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 289 

Figure 7 Key processes underpinning the transformation of restorable areas into 290 

saltmarshes, with multiple societal co-benefits, including carbon storage. Major 291 

current challenges which may limit the upscaling of marsh restoration are highlighted 292 

in yellow. 293 

4.5 Conclusions 294 

Additional data on saltmarsh greenhouse gas fluxes and CARs are required on a 295 

global scale for constructing net carbon budgets. While the priority must remain to 296 

reduce global greenhouse gas emissions, the potential of saltmarsh restoration to 297 

contribute to climate regulation is clear. Our ability to facilitate that natural carbon 298 

burial now rests principally on the availability of land to restore, the management of 299 

larger-scale processes that threaten marsh area, such as accelerating sea level rise, 300 

and the willingness and action of the management-policy community to connect to 301 

multi-sectoral financial opportunities for supporting restoration.  302 
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formation and resetting by tides and wind Catena 10.1016/j.catena.2021.105275 

1619 
Valentine et 
al. 2021 

Brackish marshes erode twice as fast as saline marshes in the 
Mississippi Delta region 

Earth Surface 
Processes and 
Landforms 10.1002/esp.5108 



 60 

1654 Xuehui et al. 2021 
Impacts of Spartina alterniflora invasion on soil carbon contents and 
stability in the Yellow River Delta, China 

Science of the 
Total 
Environment 10.1016/j.scitotenv.2021.145188 

1711 Gret et al, 2021 
Geochemical mapping of a blue carbon zone: Investigation of the 
influence of riverine input on tidal affected zones in Bull Island 

Regional Studies 
in Marine 
Science 10.1016/j.rsma.2021.101834 

1730 
Gallagher et 
al. 2021 

Inorganic and Black Carbon Hotspots Constrain Blue Carbon 
Mitigation Services Across Tropical Seagrass and Temperate Tidal 
Marshes Wetlands 10.1007/s13157-021-01460-3 

1745 Cacho et al. 2021 

Local geomorphological gradients affect sedimentary organic 
carbon storage: A Blue Carbon case study from sub-tropical 
Australia 

Regional Studies 
in Marine 
Science 10.1016/j.rsma.2021.101840 

1901 Gispert et al. 2021 
Appraising soil carbon storage potential under perennial and annual 
Chenopodiaceae in salt marsh of NE Spain 

Estuarine, 
Coastal and Shelf 
Science 10.1016/j.ecss.2021.107240 

1904 Yang et al. 2021 
Invasive Spartina alterniflora changes the Yangtze Estuary salt 
marsh from CH4 sink to source 

Estuarine, 
Coastal and Shelf 
Science 10.1016/j.ecss.2021.107258 

1921 Hikouei et al. 2021 

Use of random forest model to identify the relationships among 
vegetative species, salt marsh soil properties, and interstitial water 
along the atlantic coast of georgia Infrastructures 10.3390/infrastructures6050070 

2075 
Noyce and 
Megonigal 2021 

Biogeochemical and plant trait mechanisms drive enhanced 
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Table S3 – Description of different approaches currently used to restore degraded or 0 

previously reclaimed saltmarshes, as categorised for our analysis. Based on 1 

information from Hudson et al. (2021) 2 

Restoration 
Approach 

Description 

Artificial 
structures 

 
 
 

Freshwater 
reintroduction 

 
Marsh creation 

 
 
 
 

Sediment 
alteration 

 
Tidal 

reintroduction 
 

May include use of structures such as sluices or tide gates, to alter tidal 
flow onto the marsh or to affect sedimentary processes, e.g. enhancing 
sediment deposition. 
 
 
Diversion of river flow to reintroduce freshwater to a marsh from which 
freshwater input was previously restricted. 
 
Creation of saltmarsh habitat, usually on previously reclaimed marsh 
area, often using multiple techniques such as vegetation planting, 
addition of dredged sediment and fertilisation. 
 
 
Altering sediment properties of the saltmarsh, such as adding sediment 
or levelling marsh surface to achieve a desirable elevation. 
 
Reintroduction of tidal flow to a saltmarsh on which this was previously 
restricted. Often done by managed realignment, involving a breaching of 
an existing sea defense or regulated tidal exchange, where tidal flow is 
reintroduced to the marsh under a controlled mechanism. 

 3 

Table S4. Fixed factors included in optimal (best supported) models for % organic 4 

carbon (%OC), bulk density, carbon stock (to 1m), carbon accumulation rate and net 5 

CO2 flux for restored marshes. Estimated marginalised means (EMMs) are shown for 6 

categorical fixed effects and slope estimates are given for continuous fixed effects, 7 

each with standard error (SE). Age of marsh refers to years since restoration. Net 8 

CO2 uptake by restored marshes is indicated by negative net CO2 flux values. 9 

Variable Fixed factors Level EMM Slope SE        

% OC Restoration approach 

(RA) 

Artificial structures 

Freshwater introduction 

Marsh creation 

Sediment alteration 

Tidal reintroduction 

Unknown 

4.37 

33.54 

7.90 

5.48 

7.90 

1.24 

 3.31 

8.65 

2.35 

1.89 

1.85 

8.73  

Bulk density (g cm-3) Age of marsh (A) 

Restoration approach 

(RA) 

 

 

 

 

 

Continent (C) 

 

Artificial structures 

Freshwater introduction 

Marsh creation 

Sediment alteration 

Tidal reintroduction 

Unknown 

Asia 

Europe 

North America 

 

1.02 

0.49 

1.22 

1.15 

1.09 

1.44 

1.31 

0.89 

0.64 

-

0.00016 

 

0.00094 

0.18 

0.18 

0.11 

0.12 

0.11 

0.21 

0.17 

0.11 

0.07  
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Oceania 1.43 0.30 

C Stock (t C ha-1) Vegetation (V) Phragmites 398  92.3  
  Spartina 187  38.1  

  Suaeda 119  89.8  

  Other 175  44.0  

  Unknown 379  62.0  

 Age of marsh (A)   -0.75 0.43  

 Air temp (T)   -18.73 6.59  

C accumulation (t C 

ha-1 y-1) 
None 

NA 

NA NA NA  

Net CO2 flux (t CO2e 

ha-1 y-1) 

Annual rainfall (R) 

Continent (C) 

 

Asia 

North America 

Oceania 

-9.54 

-

77.47 

-4.11 

-0.08 0.03 

25.30 

13.30 

32.00  

 10 
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 11 

Figure S1 – The number of studies and individual samples extracted from the 12 

systematic review indicated by the country of origin. (a) The number of samples 13 

collated from each country (n = 2055). A “sample” refers to a distinct condition or 14 

contextual settings investigated within a study. (b) The number of relevant studies in 15 

each country (n = 435). 16 

  17 
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 18 

 19 

 20 

21 

 22 

 23 
Figure S2 – Pixel maps showing saltmarsh greenhouse gas fluxes of a) carbon 24 

dioxide (t CO2 ha-1 y-1) b) methane (t CO2e ha-1 y-1) and c) nitrous oxide (t CO2e ha-1 25 

a) 

b) 

c) 
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y-1). Map lines delineate study areas and do not necessarily depict accepted 26 

national boundaries. 27 

 28 

 29 

Figure S3 – Distribution of methane flux (t CO2e ha-1 y-1) data by salinity category 30 

across 4 different continents (Asia, Europe, North America and Oceania). Central 31 

line shows median values, box limits are lower and upper quartile ranges.  32 
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