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Abstract:  8 

Tides are a key driver of a range of Earth system processes, and we now have the capacity to 9 

simulate tidal dynamics on a range of temporal and spatial scales. Deep-time tidal model 10 

simulations have been used to provide insight into past ocean circulation patterns, evolution 11 

of life, and the developments of the Earth-Moon system’s orbital configuration. However, 12 

these tidal model simulations are relatively poorly constrained and validated because of a lack 13 

of readily available proxies. Here, we explore the feasibility of using two types of proxy; (1) 14 

sedimentary deposits which can directly estimate palaeotidal ranges, and (2) black shale, to 15 

constrain three palaeotidal model simulations for different time slices. Specifically, we use 16 

three palaeotidal range proxies for the early Devonian (400 Ma), three palaeotidal range 17 

proxies and five black shales for the lower Jurassic (185 Ma), and eight black shales for the 18 

early Cretaceous (95 Ma). Both tidal proxies confirm the tidal model results in most locations. 19 

The model results for 400 Ma and 185 Ma matched 2/3 of the palaeotidal range proxies for 20 

each of these periods. The locations of black shale were compared with tidal front locations 21 

predicted by the model outputs based on the Simson-Hunter parameter and the model results 22 

from 95 Ma and 185 Ma agree with the black shale proxies in 10/13 of the locations. In the 23 

cases where there is a disagreement, the model most likely has a resolution that is too low to 24 

fully resolve the details of the coastal topography, or – in one case – the palaeobathymetry is 25 

incorrect. Consequently, we argue that it is worth expanding this type of work, and that we 26 

can use the data to validate both models and reconstructions.  27 

 28 
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1. Introduction  31 

Ocean tides impact a range of Earth system processes. They control the locations of 32 

productive shelf sea fronts (Simpson & Hunter, 1974), sustain the climate-regulating global 33 

overturning circulation (Wilmes et al., 2021; Wunsch & Ferrari, 2004), drive ocean primary 34 

production (Sharples et al., 2007; Tuerena et al., 2019), and set the environment for key 35 

evolutionary events (Balbus, 2014; Byrne et al., 2020). The dissipation of tidal energy also 36 

slows down Earth’s spin and forces the moon to recede to conserve angular momentum (Bills 37 

& Ray, 1999; Daher et al., 2021), meaning the tides are a first-order controller of daylength. 38 

Recent tidal model results (Green et al., 2017, 2018) show significantly less energetic tides in 39 

the past. This has far-reaching consequences for the Earth system, e.g. its biogeochemical 40 

cycles, and may have been a driving force in the oxygenation of the atmosphere (Klatt et al., 41 

2021).  42 

 43 

Numerical modelling of palaeotides relies on tectonic reconstructions for boundary 44 

conditions (see, e.g., Green et al., 2022, and references above). However, despite numerous 45 

publications outlining characteristics of palaeotides from the palaeobiological and geological 46 

records, numerical simulations are poorly constrained as the proxy information is not readily 47 

accessible to the modelling community. Here, we will take a step towards rectifying this by 48 

collating information on deep-time tides from different sources and using these data to 49 

constrain numerical tidal model simulations for three time slices: 400, 185, and 95 Ma. These 50 

were chosen for their representative nature and the availability of suitable proxy data in the 51 

literature. The results can also benefit the regional palaeogeographic reconstructions: if the 52 

tidal conditions are verified at a location, the regional topography is likely accurate as well. 53 

 54 

We obtained palaeotidal range estimations from results presented in the literature; 55 

palaeotidal range is determined through palaeoenvironmental interpretation, and may be 56 

estimated by analogy to modern tidal environments (Klein, 1971; Wells et al., 2005). For 57 

instance, small-scale sedimentary structures are usually distributed in mesotidal 58 

environments (Reineck, 1975), while large-scale structures or plane beds are in macrotidal 59 

settings (Dalrymple et al., 1990). However, these interpretations may only provide a rough 60 

estimation of the tidal range, rather than an accurate definition (Collins et al., 2021). 61 
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Furthermore, well-preserved tidalites display ebb-flood, and spring-neap or spring-neap-like 62 

cycles, alongside signals of the diurnal inequality, and can be used to constrain days per 63 

month and days per year counts in the geological past (Archer, 1996; Coughenour et al., 64 

2009). Under ideal conditions, tidal range in a specific location can be directly estimated from 65 

tidalites where complete, fining-upward sequences of sediment are preserved (Devries Klein, 66 

1971; Slingerland, 1986; Tanavsuu-Milkeviciene & Plink-Bjorklund, 2009; Williams, 2000). For 67 

example, the sharp contrast of thin neap couplets and thick spring couplets in tidal bundles 68 

suggested macrotidal range or higher (Tessier & Gigot, 1989). In other cases, the palaeotidal 69 

range could be estimated from the stratigraphic thickness of intertidal deposits in tidal flat 70 

units (Klein, 1970, 1971). Sediment can sometimes also be translated into a tidal current range 71 

based on bedload transport rates for non-cohesive sediments (Ward et al., 2020), where fine-72 

grained sediments (silt and clay) are more common at low tidal ranges. However, exploring 73 

this aspect falls outside the scope of our study, and thus, we will not delve further into it here. 74 

 75 

Furthermore, tidal mixing fronts separate a vertically mixed water column from a stratified 76 

one (Simpson & Bowers, 1981; Simpson & Hunter, 1974). Their positions are determined by 77 

the tidal current magnitude and the water depth, and they are found near contours of  78 

 = H/u3 = 200      (1) 79 

where H is water depth (m), and u is the tidal current magnitude (m2/s);  is commonly 80 

referred to as the Simpson-Hunter parameter (m-2 s3). Consequently, mapping the fronts 81 

provides a proxy for palaeotidal current magnitudes. Black shale deposition occurs in poorly 82 

ventilated anoxic conditions incompatible with strong tidal currents (Abdi et al., 2021; He et 83 

al., 2022; Stow et al., 2001; Wignall & Newton, 2001). We therefore expect that the presence 84 

of a black shale in the geological record will indicate a strongly stratified water column, which 85 

can be tracked through the locations of the tidal mixing fronts (Simpson and Hunter, 1974). 86 

Note that the specific driver leading to the anoxic event is not important, rather the fact that 87 

a well-mixed water column is also well-ventilated and if the water column is mixed, all 88 

properties are mixed too. The tides provide a continuous supply of mechanical energy for 89 

mixing and we argue that a black shale must sit in a stratified regime.  A similar method, 90 

tracking microfossil assemblages, has also been suggested but will not be pursued here 91 

(Scourse et al., 2002). 92 

 93 
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To date, a few proof-of-concept studies used tidal deposits to constrain numerical tidal model 94 

simulations (e.g., Byrne et al., 2020; Green et al., 2020; Wells et al., 2010; Zuchuat et al., 2022), 95 

but the information used was limited to a few data points for specific regions and time slices. 96 

Consequently, this paper presents a systematic comparison between environmental proxies 97 

and numerical tidal model results. 98 

 99 

2. Tidal modelling 100 

The simulations of past tides were made using OTIS – the Oregon State University Tidal 101 

Inversion Software – a dedicated tidal model which has been used extensively to simulate 102 

deep-time and present day (PD) tides (e.g., Byrne et al., 2020; Egbert et al., 2004; Green et 103 

al., 2022). OTIS was benchmarked against other forward tidal models and was shown to 104 

perform well (Stammer et al., 2014) which provides a numerical solution to the linearised 105 

shallow-water equations forced by the tide only, as presented by the following equation (2) 106 

and (3):  107 

  
𝜕𝐔

𝜕𝑡
 + 𝑓 × 𝐔 = 𝑔𝐻∇ (𝜂 − 𝜂𝑆𝐴𝐿 − 𝜂𝐸𝑄)  − 𝐅  (2) 108 

𝜕𝜂

𝜕t
 − ∇ · 𝐔 = 0        (3) 109 

Here, U=u H is the tidal volume transport (u is the horizontal velocity vector and H is the water 110 

depth (m)), f is the Coriolis parameter (rad/s), g is the acceleration due to gravity (m/s²), η is 111 

the sea-surface elevation (m), ηSAL is the self-attraction and loading elevation (m), ηEQ is the 112 

elevation of the equilibrium tide (m), and F the tidal energy dissipation term (W/s2). The 113 

dissipation is parameterised through two components, denoted FB and FW respectively, 114 

representing bed friction and energy losses due to tidal conversion, i.e., the energy 115 

transferred into a baroclinic tide, respectively. Friction is parameterised using the standard 116 

quadratic law, FB=CDu|u|, where CD =0.003 is a dimensionless drag coefficient (Taylor, 1920), 117 

whereas the tidal conversion term may be written as F W = C U, with a conversion coefficient, 118 

C, expressed by following equation (4): (Green & Nycander, 2013; Zaron & Egbert, 2006) 119 

𝐶(𝑥, 𝑦) = 𝛾
𝑁𝐻𝑁

8𝜋𝜔
(∇𝐻)2    (4) 120 

Here, γ = 50 represents a dimensionless scaling factor representing unresolved bathymetric 121 

roughness, NH is the buoyancy frequency at the seabed (unit of s-1), 𝑁 represents the vertical 122 

average of the buoyancy frequency (rad/s), and ω is the frequency of the tide. The buoyancy 123 
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frequency, N (rad/s), is given by N 2 = - g/ρ∂ρ/∂z, where ρ is the density (kg/m3). The details 124 

of the density field are not known for the period we will discuss here, so we used the values 125 

of N based on a statistical fit to observed PD values presented by Zaron and Egbert (2006). 126 

Consequently, N(x,y) = 0.00524exp(-z/1300), where z is the vertical coordinate (m), and the 127 

constants 0.00524 and 1300 have units of s-1 and m, respectively. The model results are 128 

relatively insensitive to changes in stratification and we will not explore this parameter space 129 

further (Egbert et al., 2004; Byrne et al., 2020; Green et al., 2020).  130 

 131 

2.1 Reconstructions and simulations 132 

The palaeo-bathymetry data came from Scotese & Wright (2018) and was supplied at 1/10o 133 

horizontal resolution in both latitude and longitude. All bathymetries effectively ran from 89°S 134 

to 89°N in latitude due to the introduction of land at the poles to handle the convergence of 135 

the model grid cells at high latitudes. Note that outside of near-resonant states, tidal 136 

simulations are relatively insensitive to small-scale topographic changes and the blocking of 137 

the poles (Egbert et al., 2004; Wilmes & Green, 2014). The details for each era are summarised 138 

below and described in more detail in each section.  139 

 140 

All time slices were simulated for the M2, S2, and K1 constituents. All time slices were 141 

simulated using PD tidal forcing as well as changed forcing to parameters relevant for each 142 

time slice (Daher et al., 2021) – see  143 

  144 
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Table 1 for details. The model outputs the amplitudes and phases of the surface elevations, 145 

, and transports, U, for each of the constituents.  146 

 147 

 148 

3. Proxies  149 

Two types of tidal proxies are explored here: (1) sedimentary deposits that can be used to 150 

directly estimate palaeotidal range and (2) black shale (BS), which can indirectly estimate tidal 151 

conditions. 152 

 153 

3.1 Direct proxies: palaeotidal range 154 

 Here, we regard palaeotidal ranges interpreted from tidal deposits in the literature as ‘direct 155 

proxies’ (DP); these have been used previously to constrain palaeotidal modelling (e.g. Byrne 156 

et al., 2020; Green et al., 2020; Zuchuat et al., 2022). We categorised tidal ranges from the 157 

literature into the four standard categories: microtidal (0-2 m), mesotidal (2-4 m), macrotidal 158 

(4-6 m), and hypertidal (> 6 m) (Archer, 2013). In this investigation, if the results from the tidal 159 

model for a proxy location fall within the category provided by the proxy, the simulation is 160 

considered accurate. Palaeotidal range proxies will be used to validate the simulations for 400 161 

Ma and 185 Ma. Details of the direct tidal proxies are summarised below and in 162 

Supplementary Material tables A and B and the locations are presented in Figure 1(a)-(b).  163 

 164 

Three palaeotidal range proxies for 400 Ma were found in the literature, all also used by Byrne 165 

et al. (2020); note that the simulations here use a different reconstruction and higher 166 

resolution than Byrne et al. (2020) did. A meso–macrotidal regime was discovered in the fine 167 

to coarse-grained, tide-dominated deltaic deposits of the Rezekne and Pärnu formations in 168 

the Devonian Baltic Basin; these make up (Direct proxy 1) DP1 (our Figure 1(a) and Tanavsuu-169 

Milkeviciene & Plink-Bjorklund, 2009; Tovmasjana, 2013). Another meso–macrotidal 170 

environment was found in the rippled and cross-bedded silicilastic and dolomitic tidal flat 171 

facies of the Padeha Formation in the Tabas Block of the Central-East Iranian Microcontinent 172 

(DP2; Wendt et al., 2004; Zand-Moghadam et al., 2014). Griffing et al. (2000) and Rust et al. 173 

(1989) inferred a mesotidal regime from the tidally-deposited sandstone and mudstone 174 
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bodies in the Cap-aux-Os Member of the Battery Point Formation in the Catskill Clatic Wedge, 175 

Canada (DP3 in Figure 1(a)). 176 

 177 

For the 185 Ma time slice, three direct proxies were found in the literature (see Figure 1(b)). 178 

Sellwood (1972) determined the minimum tidal range as 1 m from the thickness of sandstone 179 

channel-fill sequences in Gry’s Lower Coal Series in Bornhom, Denmark (DP4). A macrotidal 180 

regime was concluded based on the dimensions of estuarine bedforms in the incised valleys 181 

of the Ostreaelv Formation (DP5) in the Niell Klinter Group in Jameson Land, Greenland 182 

(Ahokas et al., 2014). Lastly, the Helsingborg Member of the Gassum Formation in southern 183 

Sweden and the Galgeløkke Member of the Rønne Formation on Bornholm (both combined 184 

as DP6) consisting of tidal flat and channel facies, were deposited in a micro- to mesotidal 185 

environment (Nielsen et al., 1989). 186 

 187 

3.2 Indirect proxies: black shale 188 

It has been suggested that tidal rhythmites, which can indicate palaeotidal range, are 189 

predominantly formed within middle to inner estuaries (Tessier, 2023). This can introduce 190 

uncertainties when validating tidal model results because the reconstruction is unlikely to 191 

cover small scale estuaries. Furthermore, the tidal regimes we have found direct proxies for 192 

are almost all meso-macrotidal, leaving us without proxies (at this stage) for low tidal ranges. 193 

To address this, it is proposed that locations of black shale constitute an additional tidal proxy 194 

for tides in a shelf sea setting. 195 

 196 

Black shale is an indirect proxy which can ultimately constrain tidal current velocities.  Tide-197 

driven mixing controls stratification in shelf seas, with a tidal mixing front marking the point 198 

between vertically mixed and stratified areas as discussed in the introduction. Mapping front 199 

positions from the model output and comparing them to locations with black shale therefore 200 

constitutes a validation metric: the shale must sit on the stratified side of the front and if they 201 

do not, the model simulation is most likely incorrect. The identified palaeo-locations of the 202 

black shale formations used here are shown as ‘BS’ in Figure 1(b)-(c). A total of 13 locations 203 

were identified: 5 for the 185 Ma timeslice and a further 8 for 95 Ma. Note that black shale 204 

deposits in deep water will not be considered here, as anoxia in the deep ocean is not 205 

controlled by tides. Furthermore, black shale deposited between the Precambrian (400 Ga) 206 
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to the Devonian (419-358 Ma) was deposited at a time when ocean chemistry was 207 

significantly different and there is evidence to suggest that there was not enough oxygen in 208 

the marine environment to form oxic waters (Aharon, 2005; Kimura & Watanabe, 2001). 209 

 210 

 211 

4. Results 212 

4.1 Present day model validation  213 

The performance of the present day set-up of the tidal model was evaluated compared to the 214 

TPXO9 satellite altimetry constrained product (Egbert & Erofeeva, 2002). The predicted M2 215 

and S2 tidal amplitudes for PD are presented in Figure 2, with the globally spatial-averaged 216 

root-mean-square (RMS) errors for M2 and S2 amplitudes calculated to be 9.8 cm and 4.4 cm, 217 

respectively.   218 

  219 

4.2 400 Ma 220 

The predicted M2 and S2 amplitudes and the mean spring tidal range at 400 Ma are presented 221 

in Figure 3 (a) and (b). A region with high amplitudes of M2 and S2 is situated in the western 222 

and northern parts of Laurussia, southern Siberia, and the northeast of Gondwana, where the 223 

M2 amplitude exceeds 1.5 m, while S2 amplitude exceeds 1 m. Less energetic waters are found 224 

in east Laurussia and northern Siberia as M2 or S2 microtidal regimes dominate these areas. 225 

The model prediction here is generally consistent with the lower-resolution simulations for 226 

400 Ma from Byrne et al. (2020), but variations in tidal predictions occur in specific areas due 227 

to differences in the utilised palaeobathymetry data. For instance, this study reveals 228 

significantly higher M2 amplitudes in southern Siberia (up to 2.5 m) and lower S2 amplitudes 229 

in northeast Laurussia (lower than 0.5 m) compared to the prediction from Byrne et al. (2020). 230 

 231 

The mean spring tide range is computed as 2(ηM2+ηS2), as shown in Figure 3(c) and (d), where 232 

ηM2 and ηS2 are the corresponding tidal amplitudes for principal lunar semidiurnal (M2) and 233 

principal solar semidiurnal (S2). Macrotidal areas (4-6 m) are located along the west and north 234 

coastline of Laurussia, southern Siberia, and northeast region of Gondwana. In contrast, 235 

mesotidal regions (2-4 m range) were found on the southeast coast of Laurussia. Compared 236 

with direct tidal proxies collected for 400 Ma and plotted in Figure 4, the model prediction 237 
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matches reasonably well with the proxies at DP3 and DP2 (see Table A for details). However, 238 

the simulation does not agree with the tidal proxy of the DP1. DP1 was located in a meso-239 

macrotidal delta, whereas the simulation indicates a microtidal environment in that region. 240 

This discrepancy may be an effect of model resolution: the Pärnu and Rēzekne Formations 241 

were deposited in transitional fluvial-tide-dominated flats, tidal channels or in a deltaic 242 

distributary channel that, at the current model resolution, is not resolved.  243 

 244 

4.3 185 Ma 245 

The 185 Ma model results are validated using both tidal range proxies and black shale (see 246 

Supplementary Material Table B for a summary of proxy information). It should be noted that 247 

DP4 (Gry’s Lower Coal Series) will not work as a tidal proxy because it is too far inland. This is 248 

of course still useful information because it tells us that the reconstruction needs to be 249 

modified to encompass the proxy location. These simulations host a relatively weak global 250 

tide, except for a macrotidal regime in the western Tethys Sea (see Figure 5). It can be argued 251 

that if DP4 is moved to the nearest coastal grid cell, it fits well with the tidal model result of 252 

1.4 m M2 tidal range (Figure 6). The predicted tidal range at DP6 (Helsingborg Member of the 253 

Gassum Formation and the Galgeløkke Member of the Rønne Formation) is 1.25 m, which is 254 

in the range of the tidal proxy there (Figure 6). However, the tidal range prediction at the DP5 255 

site (Ostreaelv Formation) is 0.30 m, which is a considerable underestimate compared to the 256 

4-6 m macrotidal range that was identified in the proxy. We propose that this is another 257 

resolution issue with the model grid: a macrotidal range in a shallow seaway may not be fully 258 

resolved with a 1/10o model resolution, resulting in the oversight of a likely resonant feature 259 

in the inner part of the seaway.   260 

 261 

The calculated Simpson-Hunter criterion for 185 Ma in Figure 7 and Table 2 shows that the 262 

model result matches four out of five black shale tidal proxies (BS2-BS5). BS1 is located at a 263 

borderline mixed region with a value of log10 ~ 2 in the model simulations, whereas the proxy 264 

of course points to a stratified water column. This could be remedied by increasing the depth 265 

of the area to reduce current speeds and increase  as demonstrated by equation (1). Again, 266 

the tidal proxies give information about the quality of the tectonic reconstructions as well as 267 

acting as a validation tool for the tides.  268 

 269 
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4.4 95 Ma 270 

The predicted M2 amplitude and its corresponding velocity magnitude for the 95 Ma time 271 

slice are presented in Figure 8.  In general, this is a quiescent time slice, with weak tides in the 272 

vast epeiric seas covering PD Africa, Asia, and Europe. The exceptions are high-velocity zones 273 

northeast of PD Madagascar and north Australia (Figure 8(a)). 274 

 275 

There is a lack of direct tidal proxies for 95 Ma and instead we will use the Simpson-Hunter 276 

criterion and black shale formations as proxies. The results shown in Figure 9 indicate that 277 

much of the 95 Ma shelf seas were stratified and that the black shale records are matched by 278 

the modelled stratification in 6 out of 8 locations (see   279 
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Table 3). The two mismatched locations, BS10 and BS12, are again located at the boundary of 280 

mixed and stratified regions with values of log10 = 2.0 and 1.8, respectively. A small 281 

correction of the depth would also ensure a stratified water column at these two locations. 282 

The positive correlation between black shale palaeo-locations and tidal front locations 283 

suggests that black shale can serve as indirect proxies for palaeotides. 284 

 285 

 286 

5. Discussion and conclusions 287 

We present simulations of the tides for three deep-time time slices and validate the results 288 

with two types of geological tidal proxies: palaeotidal ranges deducted from tidal deposits (a 289 

direct proxy) and black shale (an indirect proxy). We collected direct proxies from published 290 

literature for 400 Ma and 185 Ma; for both time slices, the model performed reasonably well 291 

with proxies agreeing in 2/3 of the locations. However, in areas where it fell short, we argue 292 

that the bathymetry of the reconstruction could be modified to ensure a better fit. Using 293 

direct proxies is the preferred method for validating palaeotidal models (Byrne et al., 2020; 294 

Zuchuat et al., 2022) but they are rare in the literature. Therefore, we propose to use black 295 

shale as an indirect proxy, providing an upper limit of the tidal current speeds, and we present 296 

a proof-of-concept study for time slices at 185 Ma and 95 Ma. Because of the interconnections 297 

between tidal current speeds, stratification, and potential for anoxia, we argue that in cases 298 

where the Simpson-Hunter parameter denotes a stratified water column (i.e., log10𝜒 > 2-2.3), 299 

the presence of black shale in that region can be attributed to the water-mass stratification. 300 

The results and proxies agree in 10 out of 13 locations across both time slices. It would be 301 

easy to change the water depth until the model and proxies agree. This way, we obtain both 302 

verified tidal model simulations and improved reconstructions.  303 

 304 

The main uncertainty in this type of work is in the bathymetric reconstructions because the 305 

tidal dynamics is largely controlled by the bathymetry (Zuchuat et al., 2001; Green et al 2017; 306 

2020; Byrne et al., 2021). The uncertainty or error of the model simulations is given by the 307 

RMS value we provide; this also highlights that the main uncertainty is the bathymetry. It is 308 

very difficult to quantify the uncertainty or accuracy of the proxies, because they are proxies 309 

and we are largely missing modern analogues. However, we feel that this is largely mitigated 310 
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here by the range of the tidal characteristics from the proxies and we argue that if the model 311 

simulation falls within that range, we can be confident in the results for both the model and 312 

the proxy. The problem is when the two don’t agree and at least one of the two – the model 313 

or the proxy – is incorrect. We have no idea of knowing which one at this stage, and more 314 

work is needed to improve the model set up, e.g., by using higher resolution in the model 315 

simulations and constraining the reconstructions better. This work is underway and left for a 316 

future publication. 317 

 318 

Whilst we can argue that the results make sense from a dynamical perspective, the 319 

encouraging correlations between the model results and proxies show that the model is 320 

reasonably correct, and that the methodology works. It also demonstrates that there could 321 

be a wealth of viable tidal proxies available in the literature, and that collecting and collating 322 

them is a worthy effort to constrain deep-time tidal model simulations. Two kinds of proxies 323 

were explored here, and we argue that it is worth investigating further potential proxies 324 

found in the literature. For example, grain size distributions could be used alongside 325 

bedforms, such as ripples, to provide direct constraints on the current speed (Baas, 1999; 326 

Davis & Dalrymple, 2011; Oost & Baas, 1994). Other proxies can come from palaeobiology, 327 

where species distributions can tell us about the size of intertidal zones (and hence tidal 328 

range) and, again, help constrain the bathymetry. Matching information of geological 329 

formations and basins can also contain estimates of shelf width and specific topography which 330 

can be used to further reconstruct bathymetries. The same is true for palaeocurrent 331 

directions which could potentially be used to verify shoreline trends. These investigations are 332 

left for future publications.   333 

 334 

Data availability 335 

The model bathymetries and associated model outputs, along with Matlab scripts to read the 336 

files, are available from 10.5281/zenodo.7684234.  337 
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Figure captions 668 

 669 

Figure 1:The palaeogeographic reconstructions and the location of tidal proxies for (a) 400 670 

Ma; (b) 185 Ma; (c) 95 Ma, with the specifics of direct proxies (DP) and black shales (BS)  671 

 672 

Figure 2: (a) The simulated M2 tidal amplitudes in metres for the PD control simulations; 673 

(b)The simulated S2 tidal amplitudes. 674 

 675 

Figure 3: (a) Simulated M2 tidal amplitudes; (b) Simulated S2 tidal amplitudes; (c) Simulated 676 

mean spring tidal range for 400 Ma, calculated by 2(ηM2 + ηS2), and the marked palaeotidal 677 

range proxies; (d) close-up of ocean  region surrounding Laurussia. 678 

 679 

Figure 4: The tidal range indicated by direct proxies and the corresponding model prediction 680 

for 400 Ma.  The modelled tidal range is the range in the gridcell nearest to the proxy location, 681 

where the error bar shows the largest and smallest values in a 3x3 grid box centered on the 682 

proxy location.  683 

 684 

Figure 5: a) Simulated mean spring tidal amplitudes for the 185 Ma time slice; (b) close-up of 685 

the Laurasian Sea Way where the proxies are located. 686 

 687 

Figure 6: The M2 tidal range indicated by direct proxies and the corresponding model 688 

prediction for 185 Ma. Note that in this figure, DP4 has been moved from the original location 689 

on land to the nearest coastal ocean grid cell. 690 

 691 

Figure 7: Predicted Simpson-Hunter criterion for 185Ma, and the palaeo-location of black 692 

shale proxies. 693 

 694 

Figure 8: a) Simulated M2 tidal amplitudes; (b) Simulated M2 tidal current magnitude for the 695 

95 Ma time slice. For clarity, the proxy locations are marked in Figure 9.  696 

 697 

Figure 9: Predicted Simpson-Hunter criterion for 95 Ma, and the palaeo-location of black shale 698 

proxies. 699 
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Table 1: Forcing parameters used in the model simulations, with data from Daher et al. (2021). 702 

The M2 forcing factor is based on the change in lunar distance associated with the change in 703 

orbital periods. The K1 forcing factor is made up of 2/3 from the Moon and 1/3 from the Sun.   704 

Time slice 

(Ma) 

Sidereal 

day 

M2 period 

[hrs] 

S2 period 

[hrs] 

K1 period 

(hrs) 

M2 forcing 

factor 

K1 forcing 

factor 

400 21.95 11.01 10.58 21.95 1.11 1.07 

185 23.19 11.77 11.35 23.19 1.05 1.03 

95 23.49 12.18 11.78 23.49 1.01 1.01 

PD 23.93 12.42 12.00 23.93 1.00 1.00 

 705 

  706 



28 
 

 707 

Table 2: The model prediction of Simpson-Hunter criterion (X) and associated stratification 708 

state for the 185 Ma time slice 709 

 BS1 BS2 BS3 BS4 BS5 

log10 𝜒  2.0 3.8 7.9 4.1 8.0 

 Water column structure mixed stratified stratified stratified  stratified 

 710 

 711 

  712 
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Table 3: The model prediction of Simpson-Hunter criterion (logarithms to 10) and the 713 

associated tidal stratification for 95 Ma. Note that we expect the locations of black shales to 714 

sit in a stratified water column.  715 

716 

 BS6 BS7 BS8 BS9 BS10 BS11 BS12 BS13 

log10 𝜒  3.2 3.6 5.1 6.0 2.0 3.3 1.8 2.5 

Water column 

structure 
Stratified stratified stratified stratified mixed stratified mixed stratified 
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 718 

Figure 1: The palaeogeographic reconstructions and the location of tidal proxies for (a) 400 719 

Ma; (b) 185 Ma; (c) 95 Ma, with the specifics of direct proxies (DP) and black shales (BS) 720 
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 722 

Figure 2: (a) The simulated M2 tidal amplitudes in metres for the PD control simulations; 723 

(b)The simulated S2 tidal amplitudes. 724 
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  726 
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 727 

 728 

Figure 3: (a) Simulated M2 tidal amplitudes; (b) Simulated S2 tidal amplitudes; (c) Simulated 729 

mean spring tidal range for 400 Ma, calculated by 2(ηM2 + ηS2), and the marked palaeotidal 730 

range proxies; (d) close-up of ocean region surrounding Laurussia. 731 
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 733 

  734 

Figure 4: The tidal range indicated by direct proxies and the corresponding model prediction 735 

for 400 Ma.  The modelled tidal range is the range in the gridcell nearest to the proxy 736 

location, where the error bar shows the largest and smallest values in a 3x3 grid box 737 

centered on the proxy location. 738 

  739 
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 740 

Figure 5: a) Simulated mean spring tidal amplitudes for the 185 Ma time slice; (b) close-up of 741 

the Laurasian Sea Way where the proxies are located. 742 

  743 
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 744 

Figure 6: The M¬2 tidal range indicated by direct proxies and the corresponding model 745 

prediction for 185 Ma. Note that in this figure, DP4 has been moved from the original 746 

location on land to the nearest coastal ocean grid cell. 747 

 748 
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 750 

 751 

Figure 7: Predicted Simpson-Hunter criterion for 185Ma, and the palaeo-location of black 752 

shale proxies. 753 
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 755 

 756 

Figure 8: a) Simulated M2 tidal amplitudes; (b) Simulated M2 tidal current magnitude for the 757 

95 Ma time slice. For clarity, the proxy locations are marked in Figure 9. 758 
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 760 

 761 

Figure 9: Predicted Simpson-Hunter criterion for 95 Ma, and the palaeo-location of black 762 

shale proxies. 763 

 764 


