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Simple Summary: Endometrial cancer is the commonest cancer of the female genital tract and obesity
is its main modifiable risk factor. Over 80% of endometrial cancers develop in the context of obesity-
induced metabolic changes. This study focuses on the potential of plasma-based metabolites to enable
the early detection of endometrial cancer in a cohort of women with body mass index (BMI) ≥ 30 kg/m2.
Specific lipid metabolites including phospholipids and sphingolipids (sphingomyelins) demonstrated
good accuracy for the detection of endometrial cancer, especially when combined in a diagnostic model.
This study advances our knowledge of the role of metabolomics in endometrial cancer and provides a
basis for the minimally invasive screening of women with elevated BMI.

Abstract: Endometrial cancer is the most common malignancy of the female genital tract and a
major cause of morbidity and mortality in women. Early detection is key to ensuring good outcomes
but a lack of minimally invasive screening tools is a significant barrier. Most endometrial cancers
are obesity-driven and develop in the context of severe metabolomic dysfunction. Blood-derived
metabolites may therefore provide clinically relevant biomarkers for endometrial cancer detection. In
this study, we analysed plasma samples of women with body mass index (BMI) ≥ 30 kg/m2 and
endometrioid endometrial cancer (cases, n = 67) or histologically normal endometrium (controls,
n = 69), using a mass spectrometry-based metabolomics approach. Eighty percent of the samples
were randomly selected to serve as a training set and the remaining 20% were used to qualify test
performance. Robust predictive models (AUC > 0.9) for endometrial cancer detection based on
artificial intelligence algorithms were developed and validated. Phospholipids were of significance
as biomarkers of endometrial cancer, with sphingolipids (sphingomyelins) discriminatory in post-
menopausal women. An algorithm combining the top ten performing metabolites showed 92.6%
prediction accuracy (AUC of 0.95) for endometrial cancer detection. These results suggest that a
simple blood test could enable the early detection of endometrial cancer and provide the basis for a
minimally invasive screening tool for women with a BMI ≥ 30 kg/m2.

Keywords: endometrial cancer; obesity; metabolomics; liquid biopsy; mass spectrometry; plasma
biomarkers; artificial intelligence
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1. Introduction

Endometrial cancer is the most common gynaecological malignancy in the United
Kingdom, where its incidence is rising in parallel with the obesity epidemic [1]. Obesity is
the major risk factor for type I cancers of low-grade endometrioid morphology, with every
5 kg/m2 increase in body mass index (BMI) linked to a 60% increased cancer risk [2]. Almost
half of all endometrial cancers are attributed to overweight (BMI ≥ 25 kg/m2) and obesity
(BMI ≥ 30 kg/m2) [3]. The strong dose–response relationship portends a 10–15% lifetime
risk of endometrial cancer in women with class III obesity (BMI ≥ 40 kg/m2) compared
with a population average of 2% [4]. Whilst its aetiological importance is clear, the biology
underpinning obesity-driven endometrial carcinogenesis is incompletely understood [5].
Adipose tissue is a rich source of oestrogens that stimulate endometrial proliferation, par-
ticularly when unopposed by progesterone in postmenopausal and anovulatory states [6].
Metabolically unhealthy obesity, rather than excess bodyweight per se, is of particular
aetiological significance, with impaired glucose tolerance and chronic insulin resistance
acting synergistically to increase endometrial cancer risk [7]. Type 2 diabetes mellitus is
associated with a 62% upsurge [8], and uncontrolled diabetes mellitus a nearly five-fold
greater susceptibility to endometrial cancer [9].

A recent study found occult endometrial abnormalities in 14% of women with class III
obesity referred for weight loss management [10]. All but one had low-grade early-stage
endometrial cancer or its precursor lesion, atypical hyperplasia. The early identification
of these abnormalities in asymptomatic women could enable conservative management
strategies that preserve fertility and/or reduce the morbidity of surgery [11,12]. Yet, no
current screening programme exists for these high-risk women, partly because current di-
agnostics are invasive with low acceptability profiles and/or poor diagnostic accuracy [13].
A simple, minimally invasive endometrial cancer screening tool that can triage high-risk
women for diagnostic workup, whilst safely reassuring those at low risk, would represent
a major advance in the field [14,15].

High-throughput technologies and machine learning techniques have emerged as
powerful tools for biomarker discovery and validation [15–19]. Metabolomics studies
the downstream products of genomic, transcriptomic, and proteomic processes and best
mirrors the human phenotype [20,21]. Thus, metabolomics has great potential to deliver
clinically relevant biomarkers for endometrial cancer detection [22]. A blood-based test
for cancer has broad appeal, being rated the second most important research priority for
detecting cancer early in our recent James Lind Alliance Priority Setting Partnership [23]. A
significant challenge is identifying cancer-relevant biomarkers within the context of severe
metabolic dysfunction that characterises endometrial cancer risk. Here, we investigate the
potential of plasma-based metabolites to detect endometrial cancer in a cohort of women
with class III obesity, using a mass spectrometry-based metabolomics approach.

2. Materials and Methods
2.1. Study Population

This study included women with BMI ≥ 30 kg/m2 participating in clinical research, who
donated blood samples and gave written, informed consent for their pseudo-anonymised data
to be used for future research. The primary research studies received approval from the
North West and Cambridge East Research Ethics Committees and were conducted accord-
ing to the principles of the Declaration of Helsinki. Cases and controls were recruited at
Manchester University and Salford Royal NHS Foundation Trusts, United Kingdom. Cases
were confirmed to have endometrioid endometrial cancer based on specialist histopatholog-
ical assessment of biopsy and/or hysterectomy specimens [24,25]. Controls were women
referred for weight loss management and confirmed to have normal histology on endome-
trial biopsy [10]. Clinicopathological data included age, BMI, smoking status, menopausal
status, parity, type 2 diabetes mellitus status and medications used. All tissue specimens
were assessed by at least two specialist gynaecological pathologists reporting according
to UK Royal College of Pathology standards. Blood samples were collected following an
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overnight fast. Study investigators were blinded to the clinical information and biopsy
results of subjects during acquisition of metabolomics data.

2.2. Metabolomic Profiling

Blood samples were collected in standard EDTA tubes, centrifuged at 2000 rpm for
10 min and the supernatant (plasma) was collected and stored at −80 ◦C. The samples were
subsequently shipped to Metabolon Inc®, Durham, NC, USA, on dry ice and maintained
at −80 ◦C until processed. Non-targeted MS metabolomic analysis was performed by
Metabolon Inc®, according to company protocols and is summarised below.

2.2.1. Sample Preparation

Sample preparation was carried out using the automated MicroLab STAR® liquid
handling system (Hamilton Company, Reno, NV, USA). Recovery standards were added
to the samples prior to extraction for quality control purposes. To optimise the recovery
of chemically diverse metabolites, proteins were removed by precipitation with methanol
under vigorous shaking GenoGrinder 2000 by Glen Mills Inc., Clifton, NJ, USA) followed
by centrifugation. The resulting extract was split into four aliquots and prepared for
subsequent analysis using solvents compatible with the various separation and detection
methods. Zymark TurboVap concentration evaporator (SOTAX AG, Aesch, Switzerland)
was used to remove organic solvents.

2.2.2. Metabolite Separation and Detection

Multiple methods were used for metabolite separation and identification to maximise
the number of metabolites detected. All methods were performed using a Waters AC-
QUITY ultra-performance liquid chromatography (UPLC) system (Waters Corporation,
Milford, MA, USA) and a Thermo Scientific Q-Exactive high resolution/accurate mass
spectrometer (ThermoFisher Scientific, Waltham, MA, USA). This was interfaced with
a heated electrospray ionisation (HESI-II) source and Orbitrap mass analyzer operating
at 35,000 mass resolution. Three sample extract aliquots were analysed using reversed
phase UPLC with tandem mass spectrometry (RP UHPLCMS/MS). A positive ion mode
electrospray ionisation (ESI) was used for two aliquots chromatographically optimised
for more hydrophilic and more hydrophobic compounds, respectively, and a negative
ion mode ESI for the third aliquot. The fourth aliquot was analysed using negative ion
mode ESI following elution from a hydrophilic interaction liquid chromatography col-
umn (HILIC UPLCMS/MS). The chromatographic conditions used and optimised for the
various metabolite species are summarised in Table S1.

2.2.3. Metabolite Identification

Raw data including molecular and fragment ions were searched against a reference
library of over 14,000 metabolites based on authenticated standards. Metabolites were
identified based on their chromatographic features (including MS/MS spectra), retention
time/index (RI) and mass-to-charge ratio (m/z). The specific criteria used for biochemical
identification included a retention index within a narrow window of the proposed identifi-
cation and an accurate mass match to the library ± 10 ppm. MS/MS forward and reverse
scores were used to control for false discovery rates. Ions that lacked a definite biochemical
identity were given a numerical designation. Data curation was carried out by Metabolon,
Inc, Durham, NC, USA data analysts to ensure accurate and consistent identification of
metabolites as well as removal of artefacts, misassignments and background noise. Peak
quantification was carried out using area under the curve analysis. Comparison of the
peak area of a given metabolite in the sample to the peak area of a standard of known
concentration was used to determine the metabolite concentration.
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2.2.4. Data Pre-Processing

Metabolite concentrations were reported in the form of standardised intensities. Each
metabolite concentration was rescaled to set the median equal to 1 (by dividing the concen-
tration of each metabolite by the median). Thus, the concentration of a given metabolite in
a given sample was made relative to the median concentration of all the samples processed
as part of the study. The presence of missing values in this study was indicated by the con-
centration of a given metabolite falling below an assay’s limit of detection (LOD). Missing
metabolite concentrations were imputed with a standardised intensity set at the minimum
detected value for that compound.

2.3. Data Analysis

All statistical analyses were performed using R version 3.2.5 (R Development Core
Team, Vienna, Austria), STATA version 16, and MetaboAnalyst 4.0. The Shapiro–Wilk test
was used to assess normality of continuous variables. Descriptive analyses of the study
demographic data (continuous and categorical) were performed using means (±standard
deviations) and counts (%), respectively, with differences between groups assessed using
Student’s t-test for continuous variables and the chi-square test for categorical variables.
The majority of the metabolite concentrations (median scaled standardised intensity) were
not normally distributed. As such, non-parametric tests were used in subsequent analysis.
Specifically, the Mann–Whitney U test was used to compare metabolite concentrations in
the cancer group versus control group and for other group comparisons made. We applied
a false discovery rate adjustment for multiple testing using the Benjamini–Hochberg
correction method (q = 0.05). A computation of the ratio of metabolite concentrations in
cases and controls was used to identify the direction and degree of fold change and allowed
for the identification of the groups of metabolites with unidirectional alterations. Principal
component analysis (PCA) and t-distributed stochastic neighbour embedding (t-SNE) plots
were used to assess degree of separation between groups. Random forest modelling was
used to identify the best-performing biomarkers and to develop predictive models for the
detection of endometrial cancer. Eighty per cent of the samples were randomly selected
to serve as a “training set” and the remaining 20% were used to test the model. Heat
maps were generated based on hierarchical clustering of the top discriminatory metabolites
using the Euclidean distance measure and the Ward algorithm. Row scaling (heat maps)
was performed for each metabolite by the subtraction of the mean from each feature and
then dividing by the standard deviation. Area under the receiver-operator characteristic
curves (AUC) and the 95% confidence intervals were computed for both metabolites and
metabolomics signatures. The selection of cut-off points was based on the Youden Index
(J = max {Sensitivity + Specificity − 1}).

An overview of the study workflow is summarised in Figure S1.

3. Results
3.1. Participant Demographics

The study comprised 136 women with BMI ≥ 30kg/m2 of whom 67 had endometrioid
endometrial cancer (cases) and 69 had histologically normal endometrium (controls). The
median age and BMI for the cohort was 54 years (IQR 43, 65) and 46 kg/m2 (IQR 39, 52)
respectively. Cases were older and more likely to be post-menopausal and nulliparous
while controls were more obese. The majority of the endometrial cancers were low-grade
(91.0% grades I/II), early-stage (88.0% stage I) cancers with lymphovascular space invasion
occurring in only 12 women (18.0% of cases) (Table 1). Participant demographics and
clinicopathological characteristics are summarised in Table 1.
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Table 1. Clinicopathological characteristics of the cohort.

Participant Characteristics Total Cohort (n = 136) Cases (n = 67) Controls (n = 69) p-Value

Age (years) median(IQR) 54 (43,65) 63 (54,69) 46 (39,53) <0.001
BMI (kg/m2) median (IQR) 46 (39,52) 40 (34,46) 50 (46,55) <0.001

White ethnicity 121 (89.0%) 59 (88.1%) 62 (89.9%) 0.888
Ever smokers 50 (36.8%) 23 (34.3%) 27 (39.1%) 0.833

Nulliparity 48 (35.3%) 37 (55.2%) 11 (15.9%) <0.001
Post-menopausal 77 (56.6%) 56 (83.6%) 21 (30.4%) <0.001

History of diabetes mellitus 46 (33.8%) 17 (25.4%) 29 (42.0%) 0.04

Tumour Characteristics

FIGO (2009)
Grade 1 - 47 (70.2%) -
Grade 2 - 14 (20.9%) -
Grade 3 - 6 (9.0%) -

FIGO (2009)
Stage 1 - 59 (88.0%) -
Stage 2 - 2 (3.0%) -
Stage 3 - 6 (9.0%) -

Myometrial invasion ≥50% - 12 (18.0%) -
Presence of LVSI - 12 (18.0%) -

3.2. Metabolomic Analysis of Plasma Samples

A total of 1137 metabolites were quantified in the study plasma samples of which
733 (64.5%) were biochemically defined. These included amino acids, fatty acids, biogenic
amines, sphingolipids, steroids, hexoses, nucleotides, phospholipids, vitamins and xenobi-
otics. The remaining 35.5% were unnamed biochemical entities, the pathways of which are
unknown. We performed classical univariate ROC curve analyses of individual biomarkers
to identify putative biomarkers for the discrimination of endometrial cancer from controls
(Figure 1). In this analysis, 1-Lignoceroyl GPC (24:0), 1-(1-enyl-stearoyl)-2-linoleoyl-GPE
(P-18:0/18:2) and 1-linolenoyl-GPC (18:3) were the most discriminatory biomarkers with
AUCs of 0.91 (95%CI 0.86–0.95), 0.85 (95%CI 0.78–0.91) and 0.84 (95% CI 0.78–0.91), respec-
tively. Phosphatidylcholines (PCs) thus feature as potentially important biomarkers. Other
discriminatory biomarkers included 3-hydroxylbyryl carnitine and 3-hydroxybutyrate with
AUCs of 0.83 and 0.82, respectively (see Figures 1 and 2). Principal component analysis
(PCA) and t-distributed stochastic neighbour embedding (t-SNE) were employed and
showed some discrimination between cancers and controls (Figure 3a,b). Random forest
machine learning was then applied and identified the top 20 discriminatory biomarkers.
These were ranked by their contributions to the classification accuracy based on the mean
decrease accuracy metric and the mean decrease gini index (Figure 4). A PCA and t-SNE
plot based on the top ten discriminatory biomarkers showed a strong degree of separa-
tion between cancers and controls (Figure 3c,d). Hierarchical clustering was subsequently
performed based on the top 10 discriminatory biomarkers and a heat map was generated
(Figure 5). The random forest algorithm was used to split the samples 80:20, 80% for the
training set and 20% for testing. The algorithm demonstrated an accuracy of 86.2% (OOB
error rate of 13.76%) in the training set, 92.6% prediction accuracy in the testing set and
an AUC of 0.95 for endometrial cancer detection (Tables 2 and 3). Biochemical identities,
super-pathways and sub-pathways of discriminatory metabolites for EC detection are
summarized in Table S2. ROC curves based on the Random Forest diagnostic algorithms
are shown in Figure S2.
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Figure 2. Box plot distribution of promising endometrial cancer diagnostic metabolites based on analyses of n = 67 cancers
and n = 69 controls. The black dots along the Y axis in the box plots represent the concentrations of each metabolite while
the yellow diamond represents the mean concentration for the group. The notch represents the 95% confidence interval
around the median of each group. The horizontal red lines represent the optimal cut-off. Metabolites starting with X are
unnamed; the pathways of these are unknown.
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t-SNE (perplexity: 5, iteration: 10,000).
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Figure 4. Top 20 discriminatory metabolites identified by random forest machine learning technique and ranked by their
contribution to classification accuracy using mean decrease accuracy and mean decrease gini index (node impurity) based
on the training set (n = 109, cancers = 54, controls = 55). Metabolites starting with X are unnamed; the pathways of these
are unknown.
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Table 2. Random forest diagnostic accuracy based on the training set made from 80% cases and
controls (n = 109, cancers = 54, controls = 55).

Actual Group Predicted Group

Cancer Control Class Error

Cancer 48 6 0.11111
Control 9 46 0.16363

OOB Error rate: 13.76%. Number of Trees: 1000. Number of variables tried at each split: 33. Sensitivity: 88.9%,
specificity: 83.6%.

Table 3. Random forest prediction accuracy applied on the testing set made from 20% of cases and
controls (n = 27, cancers = 13, controls = 14).

Actual Group Predicted Group

Cancer Control Class Error

Cancer 12 1 0.0769
Control 1 13 0.0714

OOB Error rate: 7.41%. Prediction accuracy: 92.6%. AUC: 0.95.

3.3. Metabolomic Analysis for the Detection of Early-Stage Endometrial Cancer

It is important that plasma metabolites used for the identification of endometrial can-
cer can detect early-stage, not just advanced-stage, disease. We therefore sought to identify
metabolites able to distinguish stage 1 endometrial cancer (n = 59) from controls (n = 69).
PCA and t-SNE analyses showed good discrimination between stage 1 disease and controls
on all study metabolites (Figure 6a,b) and based on the top 10 metabolites identified using
random forest modelling (Figure 6c,d). The top 20 metabolites that distinguished stage 1
endometrial cancer from controls based on random forest algorithm are summarised in
Figure 7 and their contribution to the classification accuracy ranked by the mean decrease
accuracy and mean decrease gini index. Glycerophospholipids remained important predic-
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tors of stage 1 disease, however, the top discriminatory metabolites were uncharacterised
chemical entities. Hierarchical clustering using the top 10 metabolites was performed and
the generated heat map presented in Figure 8. This showed good discrimination between
stage 1 endometrial cancer and controls based on selected metabolites. The study samples
were subsequently split 80:20 (80% training set and 20% testing set) using random forest
algorithm. The diagnostic algorithm demonstrated an OOB error rate of 14.7% in the
training set, a prediction accuracy of 84.6% in the testing set and an AUC of 0.98 for stage 1
endometrial cancer detection (Tables 4 and 5).
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Figure 6. Analysis of sample separation (comparing early-stage (stage 1) endometrial cancer versus controls (n = 102,
cancers = 47, controls = 55) based on PCA (a,c) and t-distributed stochastic neighbour embedding (t-SNE) (b,d) analyses
using all identified metabolites (a,b) and the top 10 discriminatory metabolites (c,d) identified by random forest machine
learning technique. t-SNE (perplexity: 5, iteration: 10,000).
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Figure 7. Top 20 discriminatory metabolites for the detection of early-stage endometrial cancer based on the training
set (n = 102, cancers = 47, controls = 55) identified by random forest machine learning technique and ranked by their
contribution to classification accuracy using mean decrease accuracy and mean decrease gini index. Metabolites starting
with X are unnamed; the pathways of these are unknown.
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Figure 8. Hierarchical clustering using the top 10 discriminatory metabolites for the detection of early-stage endometrial
cancer in the training set (n = 102, cancers = 47, controls = 55) based on mean decreasing accuracy using random forest
classification algorithm. The difference in intensities of the top 10 metabolites by cancer-control status is shown. Each
coloured cell in the map represents scaled/relative concentration of indicated metabolite. Metabolites are clustered along the
vertical axis while subjects are clustered along the horizontal axis. Metabolites starting with X are unnamed; the pathways
of these are unknown.

Table 4. Random forest diagnostic accuracy developed based on the training set made from 80% of
stage 1 endometrial cancer cases and controls (n = 102, cancers = 47, controls = 55).

Actual Group Predicted Group

Cancer Control Class Error

Cancer 41 6 0.1276
Control 9 46 0.16363

OOB Error rate: 14.71%. Number of Trees: 1000. Number of variables tried at each split: 22. Sensitivity: 87.2%,
specificity: 83.6%.

Table 5. Random forest prediction accuracy applied on the testing set made from 20% of stage 1
endometrial cancer cases and controls (n = 26, cancers = 12, controls = 14).

Actual Group Predicted Group

Cancer Control Class Error

Cancer 8 4 0.3333
Control 0 14 0.0000

OOB Error rate: 15.4%. Prediction accuracy: 84.6%.

3.4. Metabolomic Biomarkers for Predicting Deep Myometrial Invasion and LVSI

Lymphovascular space invasion (LVSI) and deep myometrial invasion are important
endometrial cancer prognostic biomarkers. However, their characterisation in clinical
practice is performed by histopathologists with moderate interobserver reproducibility.
Metabolites with the potential to predict deep myometrial invasion and LVSI will signif-
icantly improve endometrial cancer prognostic characterisation. We therefore sought to
identify metabolites that can predict LVSI (n = 12) and deep myometrial invasion (n = 12)
in women with endometrioid endometrial cancer. We limited our analysis to univariate
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ROC curve analysis and identified specific glycerophosphoethanolamines, glycerophospho-
cholines, heme and hydroxybutyrate as important predictors of LVSI with AUCs ranging
from 0.75–0.83 (Figure 9). A number of unnamed metabolites were noted to predict deep
myometrial invasion in addition to Homovanillate, 3-OH-isobutyrate and Tigloylglycine
with AUCs ranging between 0.73 and 0.82 (Figure 10).
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3.5. Consideration of Potential Confounding Factors

In order to confirm that the discriminatory power of the metabolite signature was
due to the presence and absence of endometrial cancer and not confounding variables, we
carried out further analyses, taking into consideration the effects of age, BMI, menopausal
and diabetic status. First, we performed unsupervised exploratory analyses using score
plots generated from PCAs to identify differences between groups (Figure 11). The PCA
score plots showed a mild segregation pattern in the confounding factor comparisons
suggesting that age, menopausal and diabetic status could potentially have influenced the
diagnostic performance within groups of samples (Figure 11). However, these analyses
were limited by small numbers within groups. Next, we performed pairwise Spearman’s
correlation analysis with Bonferroni correction looking at the correlation between age,
BMI and selected metabolites (Table 6). There was no evidence of a strong correlation
between the metabolite concentrations and age, BMI or parity. Correlation coefficients
ranged between 0.25–0.45 for age-based comparisons, 0.33–0.58 for BMI-based comparisons
and 0.21–0.32 for parity-based comparisons, suggesting weak correlations between age,
BMI, parity and selected metabolite concentrations. While the glycerophospholipids (GPC,
GPE) had a positive correlation with age and a negative correlation with BMI/parity, the
reverse was the case for the hydroxybutyrates.
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Figure 11. Score plots generated after unsupervised PCA to visualise differences and similarities according to confounding
factors. (a,b) Score plots according to age (<60 years; ≥60 years) for cancers (a) and controls (b). (c,d) Score plots according
to menopausal status for cancers (c) and controls (d). (e,f) Score plots according to diabetes (present; not present) for cancers
(e) and controls (f).
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Table 6. Pairwise correlation analysis for selected metabolites with age and BMI.

Correlation
p−Value Age BMI Parity

1-
Lignoceroyl

GPC

1-1
nyl-Steroyl-
2-Linoleoyl-

GPE

1-
Linolenoyl

GPC

1-1 Enyl-
Steroyl

GPE

3-OH-
Butyryl

Carnitine

1-1 Enyl
Steroyl-2-

Oleoyl
GPE

3-OH
Butyrate X-24449 Eicosanodiote

1-2-
Dilinoleoyl

GPC

Age 1.0000
BMI 1.0000

Parity 1.0000

1-Lignoceroyl GPC 0.4427 * −0.5860 * −0.2802 * 1.0000
0.0000 0.0000 0.0010

1-1 Enyl-Steroyl-2-
Linoleoyl-GPE

0.3953 * −0.4879 * −0.3287 * 0.7334 * 1.0000
0.0001 0.0000 0.0001 0.0000

1-Linolenoyl GPC 0.3881 * −0.4824 * −0.2581 * 0.7474 * 0.6760 * 1.0000
0.0002 0.0000 0.0024 0.0000 0.0000

1-1Enyl-Steroyl
GPE

0.4518 * −0.4846 * −0.3270 * 0.6833 * 0.7022 * 0.6925 * 1.0000
0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

3-OH-butyryl
carnitine

−0.2566 0.4438 * 0.2164 * −0.6610 * −0.7025 * −0.6535 * −0.4620 * 1.0000
0.1411 0.0000 0.0114 0.0000 0.0000 0.0000 0.0000

1-1EnylSteroyl-2-
Oleoyl GPE

0.4278 * −0.4523 * −0.2680 * 0.6379 * 0.8935 * 0.6511 * 0.7199 * −0.5945 * 1.0000
0.0000 0.0000 0.0016 0.0000 0.0000 0.0000 0.0000 0.0000

3-OH butyrate −0.3204 * 0.3673 * 0.2196 −0.5891 * −0.6927 * −0.6334 * −0.5204 * 0.8741 * −0.6605 * 1.0000
0.0079 0.0000 0.0102 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

X-24449
0.4580 * −0.4386 * −0.2566 * 0.6211 * 0.5864 * 0.4975 * 0.5026 * −0.4870 * 0.4886 * −0.4400 * 1.0000
0.0000 0.0000 0.0026 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Eicosanodiote
0.3294 * −0.3388 * −0.2135 * 0.5632 * 0.6889 * 0.5576 * 0.5017 * −0.5435 * 0.6143 * −0.5169 * 0.4147 * 1.0000
0.0050 0.0000 0.0126 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1-2-Dilinoleoyl
GPC

0.3001 * −0.5158* −0.3056 * 0.7042 * 0.7675 * 0.6640 * 0.5470 * −0.6416 * 0.6019 * −0.5968 * 0.5395 * 0.5786 * 1.0000
0.0212 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

* p-value < 0.05. This was performed with pairwise correlation analysis with Bonferroni correction. There was no evidence of a strong correlation between age/BMI and selected metabolites.
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We then applied an exclusion principle by eliminating women with type 2 diabetes
mellitus, leaving 50 cancers and 40 controls. There was still a difference between cases
and controls by menopausal status. The list of the top-performing metabolites remained
largely similar (Figure 12) based on our machine learning (ML) approaches, suggesting that
diabetic status did not significantly affect the diagnostic performance of the metabolites.
A receiver characteristics curve analysis of these metabolites gave an AUC of 0.94, 0.90
and 0.89 for 1-Lignoceroyl GPC, 1-Steroyl GPC and 1-1 Enyl-Steroyl-2-Linoleoyl-GPE,
respectively (Figure 13). The PCA analyses and heat maps also showed good discrimination
between cancer cases and controls (Figures 14 and 15), confirming that diabetes status was
not a significant confounder in the study analyses, especially with respect to the diagnostic
performance of the glycerophospholipids. However, we noted that the hydroxybutyrates
and their derivatives were no longer important discriminators of cancers from controls
following exclusion of women with type 2 diabetes mellitus (Figure 12), suggesting that
their diagnostic ability may be related to their association with diabetes mellitus. The
samples of women with no clinical or biochemical evidence of diabetes mellitus were split
80:20 (80% training set and 20% testing set) with the training data used to build a model to
separate cancers from controls. The random forest model had an OOB error rate of 11.1%
and when tested using the remaining 20% data, it gave a prediction accuracy of 88.9%
(Tables 7 and 8).
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Figure 12. Top 20 discriminatory metabolites for the detection of endometrial cancer following exclusion of women with
type 2 diabetes mellitus (training set: n = 72, cancers = 40, controls = 32) Metabolites were identified by random forest
machine learning technique and ranked by their contribution to classification accuracy using mean decrease accuracy and
mean decrease gini index. Metabolites starting with X are unnamed; the pathways of these are unknown.
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Figure 14. Analysis of sample separation after exclusion of women with type 2 diabetes mellitus (training set: n = 72,
cancers = 40, controls = 32) based on PCA (a,c) and t-distributed stochastic neighbour embedding (t-SNE) (b,d) analyses
using all identified metabolites (a,b) and the top 10 discriminatory metabolites (c,d) identified by random forest machine
learning. t-SNE (perplexity: 5, iteration: 10,000).
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Figure 15. Hierarchical clustering using the top 10 discriminatory metabolites for the detection of endometrial cancer
after exclusion of women with type 2 diabetes mellitus (training set: n = 72, cancers = 40, controls = 32). Discriminatory
metabolites were based on mean decreasing accuracy metric from random forest analysis. The difference in intensities
of the top 10 metabolites by cancer-control status is shown. Each coloured cell in the map represents the scaled/relative
concentration of indicated metabolite. Metabolites are clustered along the vertical axis and subjects along the horizontal
axis. Metabolites starting with X are unnamed with unknown pathways.

Table 7. Random forest diagnostic accuracy developed based on the training set made from 80% of
endometrial cancer cases and controls after exclusion of those with type 2 diabetes mellitus (n = 72,
cancers = 40, controls = 32).

Actual Group Predicted Group

Cancer Control Class Error

Cancer 38 2 0.0500
Control 6 26 0.1875

OOB Error rate: 11.11%. Number of Trees: 1000. Number of variables tried at each split: 73. Sensitivity = 95%,
Specificity = 81%.

Table 8. Random forest prediction accuracy applied on the testing set made from 20% of endometrial
cancer cases and controls after exclusion of women with type 2 diabetes mellitus (n = 18, cancers = 10,
controls = 8).

Actual Group Predicted Group

Cancer Control Class Error

Cancer 8 2 0.200
Control 0 8 0.0000

OOB Error rate 11.11%. Prediction accuracy 88.9%.

Finally, we restricted the analysis to post-menopausal women (n = 77, cases = 56,
controls = 21). There was still a difference according to diabetes status between cancers and
controls in this cohort (p = 0.001). The PCA and t-SNE plots showed good discrimination
between cancers and controls based on all study metabolites and on the top 10 discrimina-
tory metabolites (Figure 16). The glycerophospholipids remained important predictors of
endometrial cancer. The 3-hydroxybutyrate derivatives were also important predictors of
endometrial cancer (ranked in the top 10 based on random forest mean decrease accuracy
and mean decrease gini index) (Figure 17), confirming their likely association with type 2
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diabetes mellitus. Importantly, we noticed the sphingolipids, specifically sphingomyelins,
to be well represented in the top 10 discriminatory biomarkers in post-menopausal women
(Figure 17). Tricosanoyl and Behenoyl sphingomyelins, in particular, demonstrated AUCs
of 0.83 and 0.78, respectively (Figure 18). Hierarchical clustering also showed good dis-
crimination based on the top 10 metabolites in this cohort (Figure 19).
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post-menopausal women (n = 77, cases = 56, controls = 21). Discriminatory metabolites were based on mean decrease
accuracy metric using random forest analysis. The difference in intensities of the top 10 metabolites by cancer-control
status is shown. Each coloured cell in the map represents the scaled concentration of indicated metabolite. Metabolites
are clustered along the vertical axis while subjects are clustered along the horizontal axis. Metabolites starting with X are
unnamed; the pathways of these are unknown.

4. Discussion

In this study, we evaluated the potential of plasma-based metabolomic biomarkers
to detect endometrial cancer in women with class III obesity. Top-performing metabo-
lites, particularly glycerophospholipids and hydroxybutyrates, showed good accuracy for
endometrial cancer detection, with AUCs > 0.80. An algorithm combining the ten most
discriminatory metabolites was even more successful, with AUCs > 0.90. Potential sources
of confounding, particularly age, BMI and diabetes status, did not demonstrate strong
correlations with individual metabolites, with the exception of hydroxybutyrates and type
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2 diabetes mellitus. These data suggest that a simple blood test could offer a minimally
invasive endometrial cancer detection tool for women with class III obesity.

The rising prevalence of endometrial cancer has stimulated an interest in biomarker
discovery alongside minimally invasive sampling technologies for its early detection [11].
Many studies have explored the possibility of detecting endometrial cancer in blood
using genetic biomarkers (including tumour DNA [26], epigenetic modifications [27] and
transcripts [28,29]), proteins [18,30] and metabolites [19,22] through genomic, epigenomic,
transcriptomic, proteomic, spectroscopic and metabolomic approaches. The metabolome
reflects the functional human phenotype and as such, has enormous potential to deliver
clinically relevant biomarkers for endometrial cancer detection [20,31]. Indeed, metabolic
reprogramming is a defining hallmark of carcinogenesis [32]. Pertubations in critical
pathways involving fatty acid metabolism, choline metabolism, tricarboxylic acid cycle and
glycolysis have all been described in the pathogenesis of cancer [21,33,34]. Metabolomic
biomarkers have shown promise for the early detection of several cancers, including
those of the breast [35], colon [36] and prostate [37], and may be particularly relevant in
endometrial cancer, given its strong association with obesity, insulin resistance and type 2
diabetes mellitus [38].

Our finding that glycerophospholipids are important diagnostic biomarkers in en-
dometrial cancer is consistent with published data [39–42]. Glycerophospholipids are
the main components of biological membranes and, alongside fatty acids, glycerolipids,
sphingolipids and sterols, have been linked to cancer development [43]. The upregulation
of phospholipid biosynthetic pathways in cancer cells is a direct consequence of acceler-
ated growth and enhanced membrane biosynthesis that accompanies tumorigenesis [44].
A recent systematic review by our group identified choline derivatives, specifically glyc-
erophosphocholines and phosphocholines, as promising biomarkers for endometrial cancer
detection [22]. Altered choline metabolism is a hallmark of carcinogenesis and is linked to
mitogenic signal transduction, the regulatory mechanism that modulates cell proliferation,
differentiation, metabolism and death [34,45,46]. Up-regulation of choline-containing pre-
cursors, including phosphocholines and total choline-containing compounds, is caused by
the overexpression and activation of several key enzymes involved in choline metabolism
by cancer cells. These processes are mediated by oncogenic signalling pathways, including
RAS and PI3K-AKT [46,47]. Trousil and colleagues found that altered choline metabolism
in endometrial cancer is caused by an overexpression of choline kinase alpha and hyper-
activation of the deacylation pathway [48]. Choline derivatives are detectable in blood,
tumour and vaginal fluid in women with endometrial cancer [39–41]. They have also been
described in breast, prostate and other solid tumours [46]. 3-hydroxybutyrate and its
derivatives have also shown promise for endometrial cancer detection [49,50]. Bahado-
Singh found that 3-OH butyrate was an important endometrial cancer biomarker even
after adjusting for diabetes [49]. In the current study, 3-OH butyrate and its derivatives
did not significantly discriminate between cases and controls after excluding women with
type 2 diabetes mellitus. This may relate to the strong association between 3-OH butyrate
and diabetes, with multiple studies suggesting that 3-OH butyrate is an early marker of
insulin resistance, even in non-diabetic populations [51–53]. 3-OH butyrate has also been
identified as a potential biomarker of low-grade female papillary thyroid cancer [54] and
high-grade serous carcinoma of the ovary [55]. Knapp and colleagues found sphinganine,
sphingosine, dihydroceramide and ceramide levels to be significantly elevated in endome-
trial cancer tissue compared to healthy endometrium [56]. Audet-Delage and colleagues
reported sphingolipids to be significantly elevated in the serum of women with recurrent
non-endometrioid endometrial cancer [39]. Sphingolipids are involved in inflammation,
proliferation, cell migration and apoptosis [57]. Here, we found tricosanoyl and behenoyl
sphingomyelins to be upregulated in the plasma of post-menopausal women with en-
dometrial cancer. Further studies are needed to validate the utility of these biomarkers for
endometrial cancer detection.
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Metabolomic biomarkers that can identify aggressive endometrial cancer phenotypes
are important for directing therapy. Here, several metabolites were shown to have potential
for establishing tumour stage, the presence of LVSI and deep myometrial invasion (Figures
9 and 10, respectively). Glycerophosphocholines, glycerophosphoethanolamines, heme and
3-OH butyrate were important predictors of LVSI while X-12847, X-17337, Homovanillate
(HVA), X-23644, 3-OH butyrate and Tigloylglycine were important predictors of deep
myometrial invasion. These results must be interpreted with caution given the small sample
sizes. Heme, an iron-containing porphyrin, is an important source of electrons for electron
transfer and has been shown to be elevated in the clinically aggressive type II endometrial
cancer [39,58]. Homovanillate, a metabolite of dopamine, is a neurotransmitter originating
from tyrosine [59]. We did not find any prior studies identifying HVA as a marker of
deep myometrial invasion in endometrial cancer. These markers warrant validation in an
independent cohort and their mechanistic links to endometrial cancer should be elucidated
prior to clinical translation.

This study has several strengths. Our metabolomics methodology, using multiple
approaches for metabolite separation and identification (Reverse Phase Liquid Chromatog-
raphy and Hydrophilic Interaction Liquid Chromatography), helped maximise the number
of metabolites identified. The use of artificial intelligence to select the best-performing
metabolites and to qualify their performance in an independent sub-group of samples is a
further strength, as this minimises the unwanted inflation of performance that occurs in
the absence of independent testing. Identified metabolites showed sufficient accuracy for
endometrial cancer detection (including early-stage tumours), especially when combined
in a biomarker panel, and thus have good potential for clinical utility. Indeed, many of
these metabolites have mechanistic links with the malignant transformation process. The
use of obese controls maximises the chance that discriminatory metabolites are cancer-
specific rather than obesity-related and sets our study apart from previous studies where
apparently healthy controls (i.e., women with normal BMI) were used.

A limitation of our study design is that our metabolite panel may not identify non-
endometrioid-/non-obesity-related tumours. It is also unclear how well the biomarkers
will perform in other high-risk groups such as the elderly, those with postmenopausal
bleeding or Lynch syndrome. The relatively small sample size and the attendant difficulty
in controlling for potential confounding factors is another limitation. Several discriminatory
metabolites could not be biochemically identified, which limits their clinical implementation.

5. Conclusions

We found specific plasma metabolites to have potential for the detection of endometrial
cancer in a cohort of women with class III obesity. A metabolomic signature based on the
top ten performing metabolites showed good promise. Glycerophospholipids, specifically
glycerophosphocholines and glycerophosphoethanolamines, were particularly important
in differentiating endometrioid endometrial cancer from controls. These findings suggest
that a simple blood-based test has the potential to enable the early detection of endometrial
cancer and provides a basis for a minimally invasive screening tool for women with class
III obesity. Further studies are needed to validate the biomarker candidates and elucidate
their role in endometrial carcinogenesis.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-669
4/13/4/718/s1, Figure S1: Overview of study workflow, Figure S2: ROC curves based on Random
Forest algorithms for the detection of endometrial cancer of all stages (a) and stage 1 endometrial
cancer (b) using 80% of study samples and based on the top 10 discriminatory biomarkers, Table
S1: Description of liquid chromatographic columns and mode of ionisation used in metabolite
extraction based on protocols by Metabolon Inc, Table S2: Biochemical identities, super-pathways
and sub-pathways of discriminatory metabolites for EC detection.
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