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Under-Resourced or Overloaded? Rethinking Working Memory
Deficits in Developmental Language Disorder

Samuel David Jones and Gert Westermann
Department of Psychology, Fylde College, Lancaster University

Dominant theoretical accounts of developmental language disorder (DLD) commonly invoke workingmemory
capacity limitations. In the current report, we present an alternative view: That working memory in DLD is not
under-resourced but overloaded due to operating on speech representations with low discriminability. This
account is developed through computational simulations involving deep convolutional neural networks trained
on spokenword spectrograms inwhich information is either retained tomimic typical development or degraded
tomimic the auditory processing deficits identified among some childrenwith DLD.We assess not only spoken
word recognition accuracy and predictive probability and entropy (i.e., predictive distribution spread), but also
use mean-field-theory based manifold analysis to assess; (a) internal speech representation dimensionality and
(b) classification capacity, a measure of the networks’ ability to isolate any given internal speech representation
that is used as a proxy for attentional control. We show that instantiating a low-level auditory processing deficit
results in the formation of internal speech representations with atypically high dimensionality, and that
classification capacity is exhausted due to low representation separability. These representation and control
deficits underpin not only lower performance accuracy but also greater uncertainty even when making accurate
predictions in a simulated spoken word recognition task (i.e., predictive distributions with low maximum
probability and high entropy), which replicates the response delays and word finding difficulties often seen in
DLD. Overall, these simulations demonstrate a theoretical account of speech representation and processing
deficits in DLD in which working memory capacity limitations play no causal role.

Keywords: developmental language disorder, spokenword recognition, word learning, convolutional neural
network, manifold geometry

Learning language is a central aspect of child development and is
often mastered with astonishing ease despite the complexity of
language and a lack of direct instruction. Nevertheless, not all
children succeed equally in acquiring language. In developmental
language disorder (DLD), deficits in spoken language comprehen-
sion and production severe enough to affect the child’s wellbeing are
observed despite no obvious biomedical cause (Bishop et al., 2016).
Although DLD is widespread, affecting approximately 7.5% of
English-speaking children (Norbury et al., 2016), much remains
unknown about the causal mechanisms underlying this condition.

A dominant feature of existing causal accounts of DLD is an
emphasis on the role of working memory. Apparently uniformly,
research in this area has taken lead from Baddeley and Hitch’s
(1974) multicomponent model, which comprises a central executive
that attends to and manipulates information stored temporarily in
one of three modality-specific buffer systems; the visuospatial
sketchpad, the episodic buffer, and the phonological loop. Research
into the causal origins of DLD has focused principally on the role of
the phonological loop in the temporary retention of speech signals,
and the role of the central executive in retrieving and manipulating
speech signals.1

Performance deficits in tasks thought to test the integrity of the
working memory system are perhaps the most consistent finding in
DLD research. Children with DLD commonly score poorly, for
instance, in the nonword repetition task, in which participants are
required to repeat recently heard auditory stimuli such as doppelate,
hampent, or glistering, a task commonly held to tap phonological
loop capacity (see Vance, 2008, for review). Performance deficits in
the nonword repetition task and related paradigms among children
with DLD underpin the consensus view that capacity limitations in
both the central executive and phonological loop subsystems of
working memory play a causal role in these children’s language
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difficulties, directly obstructing the temporary retention, retrieval, and
manipulation of speech signals, and resulting in degraded long-term
speech representations during learning (Archibald & Gathercole,
2006a; Archibald & Harder Griebeling, 2016; Delage & Durrleman,
2018; Delage & Frauenfelder, 2020; Durrleman & Delage, 2016; Ellis
Weismer et al., 2017; Jakubowicz, 2011; Montgomery, 1995, 2003;
Montgomery et al., 2019; Zebib et al., 2020; cf. Howard & van der
Lely, 1995; van der Lely & Howard, 1993; see also Kail, 1994, for an
account citing generalized slowing rather than specific working mem-
ory capacity deficits).
Yet, despite the dominance of the causal view of working

memory capacity limitations in DLD, much of the evidence cited
in support of this position is correlational. A child might show a
nonword repetition task performance deficit alongside a deficit in
vocabulary size or sentence comprehension, for instance, and a
causal association between a hypothesized underlying working
memory capacity limitation and relatively poor language skills is
inferred on this basis (e.g., Montgomery, 1995; note that more
recent studies assess such correlations using more advanced meth-
ods, including mediation and cross-lagged designs, e.g., Boerma &
Blom, 2020). Alternatively, some studies have sought to identify
domain general working memory capacity deficits in children with
DLD, for instance deficits implicating both verbal and visual
working memory subsystems; the former measured using tasks
such as nonword repetition and the latter measured using visual
pattern recognition and spatial span tasks (Archibald & Gathercole,
2006b; Bavin et al., 2005; Henry & Botting, 2017). Here, the
identification of domain general deficits is argued to bolster the
view that working memory capacity limitations play a primary role
in language impairment, ensuring that performance deficits are not
simply an epiphenomenon of shortfalls in long-term language
knowledge. However, this position remains contentious, with
some studies reporting no evidence of visual working memory
task performance deficits among children affected byDLD, a finding
lending apparent support to the claim that the underlying problem is
specific to the verbal working memory system (Archibald &
Gathercole, 2006b).
Seemingly stronger evidence for a causal association between

working memory capacity limitations and language impairment
comes from studies reporting nonword repetition task performance
deficits in individuals whose language problems have been resolved
through intervention (Bishop et al., 1996). This pattern would
apparently not be expected if working memory task performance
deficits purely reflected insufficient long-term language knowledge.
Yet, as these authors acknowledge, alongside others (e.g., Coady &
Evans, 2008; Melby-Lervåg et al., 2012), the once common inter-
pretation of nonword repetition task performance as a relatively pure
measure of working memory capacity, specifically phonological
loop capacity, is misplaced, as nonword repetition implicates a wide
range of skills including auditory perception, speech planning, and
articulation. While this more nuanced interpretation of what is
measured in the nonword repetition task and closely related para-
digms in no way challenges the validity of using such measures to
identify individuals with existing language impairment, or poten-
tially with a history of language impairment, it does undermine the
view that what we are detecting in administering such tasks is a pure
working memory capacity limitation. The picture is complex, and
deficits in, for instance, nonword repetition task performance despite

largely resolved language difficulties may reflect residual deficits in
any number of skills.

In our view, the causal account of working memory capacity
limitations in DLD remains dominant because the field lacks a
cohesive alternative. This has important practical implications. An
alternative theoretical framework in which working memory capac-
ity limitations do not feature may not only provide a more compel-
ling explanation of the behavioral data at hand, but it may also entail
different approaches to language support. Evidence interpreted as
signaling a causal association between limited working memory
capacity and language deficits has motivated the development of
commercial packages claiming to improve working memory capac-
ity and in doing so boost language and educational outcomes
(e.g., Jungle Memory; Alloway et al., 2013). However, if working
memory capacity limitations are not a major underlying cause of
language deficits then interventions may need to focus on a different
aspect of cognition or language processing in order to achieve
substantial and lasting effects. It is important to reiterate that
working memory task performance remains one of the best pre-
dictors of language impairment (Bishop et al., 1996; Girbau, 2016;
Kalnak et al., 2014), and that the validity of using such paradigms to
statistically identify individuals at risk of language problems is not
in question. What is in question, is whether apparent working
memory capacity limitations are the cause, rather than consequence,
of the language learning and processing difficulties seen among
children with DLD.

Rethinking Working Memory Capacity Deficits in DLD

The view developed in this report is that working memory
capacity limitations are the consequence rather than cause of
children’s language difficulties. Crucial to this account is the notion
of a capacity and performance trade-off. It is uncontroversial that
long-term knowledge affects working memory task performance
(Vance, 2008). In both typically and atypically developing popula-
tions, performance is seen to decline (e.g., in terms of the length of
speech segments that can be accurately recalled) when individuals
are presented with unfamiliar stimuli, as seen in word-likeness
effects (i.e., phonologically anomalous nonwords are harder to
repeat; Gathercole, 1995; Van Bon & Van Der Pijl, 1997) and in
responses to noisy stimuli (Marrone et al., 2015). The idea of a
capacity and performance trade-off suggests that this drop in
performance emerges due to working memory being overloaded
as a result of heightened processing demands. In contrast, faced with
broadly familiar, nonnoisy stimuli, processing resources are not
under pressure and so more information can be retained.

One possibility, then, is that performance deficits widely attrib-
uted to working memory capacity limitations among children with
DLD instead reflect heightened processing demands resulting from
deficits in long-term language knowledge, including poorly config-
ured long-term speech representations (Kan &Windsor, 2010). This
issue may be masked by the fact that the stimuli presented to
children with and without DLD in working memory tasks are
usually matched; for example, stimuli are either all clean or all
noisy across groups. Yet, if a child with DLD has deficient speech
encoding ability then their experience of any given stimulus will be
very different to that of a same-age child without language
impairment, increasing processing demands for this child and
exhausting cognitive resources that could be allocated to storage
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capacity. Rather than fixed, group-level disparities in working
memory capacity, then, the difference between children with and
without DLD may resemble the ostensible capacity discrepancies
that can be seen in a single typically developing child who is
presented with noisy and then clean stimuli, and who retains
more information in the second instance. Children with DLD
may not be under-resourced in terms of their working memory
capacity as the consensus holds but may instead be overloaded by
heightened processing demands given poorly configured long-term
speech representations. Though relatively unexplored, limited evi-
dence in support of this position includes an apparent absence of
working memory task performance deficits between children with
DLD and control children matched on long-term language knowl-
edge (van der Lely & Howard, 1993).
This view of working memory capacity limitations as the conse-

quence rather than cause of language difficulties aligns well with
contemporary workingmemory frameworks that seek to de-emphasize
the role of functionally discrete, modality-specific buffers, such
as the phonological loop, in favor of a relatively parsimonious
characterization of working memory in terms of activated long-
term memory plus attention (Adams et al., 2018; Chai et al.,
2018; Cowan, 1995; D’Esposito & Postle, 2015; McElree, 2006;
Oberauer, 2013, 2019; Wilhelm et al., 2013). The so-called state-
based framework of working memory, popularized through Cow-
an’s embedded-processes model (Cowan, 1995, 1999) and later
notably developed by McElree (2006) and Oberauer (2013), is
outlined by Adams et al. (2018) as follows:

Information comes in from the environment through a very brief
sensory store, activating features in long-term memory corresponding
to the sensory properties of the incoming information and its coding:
phonological, orthographic, visual, and other simple features from the
senses. ... The activated features from long-termmemory, including any
newly formed memories, along with the current focus of attention,
together comprise the working memory system. (p. 345)

For some, the state-based working memory framework represents
simply a difference in terminology and research focus (e.g., a
heightened interest in the role of attention versus modality-specific
processing), rather than a clear theoretical break with the earlier
multicomponent model that continues to dominate DLD research
(Baddeley, 2012). Yet, in our view, the implications of the state-
based framework for theory building in DLD are significant.
Crucially, the framework encourages a theoretical shift in the locus
of impairment from a shortfall in a functionally discrete buffer
system (i.e., the phonological loop), to deficits in the quality of long-
term speech representations, and the associated efficacy with which
such representations become activated in response to features of the
speech environment and are therefore amenable to forming the focus
of attention. As Oberauer (2019) has argued, it is essential that long-
term representations are encoded in a manner supporting efficient
activation and the effective deployment of attention. In this report,
we argue that atypical long-term speech representation encoding and
activation in DLD result in attention being overloaded in the absence
of any fundamental capacity limitation.
The challenge for mechanistic accounts arguing that apparent

working memory capacity limitations are the consequence of
shortfalls in long-term language knowledge is, of course, to
explain how and why speech encoding is deficient without appeal-
ing to a primary working memory capacity bottleneck. Along these

lines, computational modeling of variance in nonword repetition
and span task performance among typically developing indivi-
duals has appealed to the notions of input frequency and regularity
(Jones, 2016; Jones et al., 2007, 2008, 2020; MacDonald &
Christiansen, 2002). Here, the idea is that the ability of an artificial
neural network to accurately process any given speech sequence
relates directly to the quality of the network’s established, analo-
gous representations, which is higher when the relevant input
previously received is frequent and structurally consistent. In one
landmark study, for instance, MacDonald and Christiansen (2002)
showed, in neural networks without functionally discrete working
memory systems, that performance deficits analogous to those
attributed to verbal working memory capacity limitations by Just
and Carpenter (1992) diminished with each cycle of training. This
indicates that a separate buffer system which hypothetically varies
in capacity between individuals (e.g., a phonological loop) is not
required to explain variance in task performance; variance in the
frequency of stimulus exposure and therefore the quality of long-
term encodings (i.e., more frequently encountered, regular stimuli
are better encoded) can parsimoniously account for the data
at hand.

The long-term encoding benefits of high frequency and regularity
of exposure clearly boost performance for certain stimuli in working
memory tasks, and maymore broadly explain why working memory
capacity appears to increase during infancy and childhood (Jones
et al., 2020). Simply, as implicit in the state-based framework of
working memory, task performance may improve as children
become increasingly adept at deploying their mounting long-term
language knowledge in the moment, not, as is commonly argued,
because of developmental capacity increases that are independent of
the quality of long-term representations (Gathercole et al., 2004).
Yet, a notion of language familiarity grounded in the degree and
quality of language exposure alone is unsatisfactory as an explana-
tion of the language profiles seen in DLD. Evidence for this comes
not least from twin studies, which show that dizygotic twins, who
are no more genetically similar than regular siblings but largely
share a language environment, can be differentially affected by
DLD; an observation indicating a genetic component to this disorder
(Bishop, 2006). Clearly, then, if we are to better understand how a
working memory capacity overload might emerge as a consequence
of atypical speech representation, it is necessary to go beyond the
notions of input frequency and regularity alone to consider shortfalls
in the child’s ability to encode speech information from their
environment.

Auditory processing deficits commonly reported among children
with DLD provide a credible starting point for this form of inquiry.
While initially cast as a temporal processing issue, that is, that some
children affected by DLD have difficulty discriminating rapidly
occurring changes in pure tone—a view developed through the work
of Paula Tallal and colleagues (e.g., Merzenich et al., 1996; Tallal
et al., 1996)—subsequent studies suggest that the problem may
instead lie in frequency discrimination, aside from the speed of
stimulus presentation (Bishop et al., 1999; Bishop & McArthur,
2005; McArthur & Bishop, 2005). For instance, in an electroen-
cephalography (EEG) study incorporating an oddball paradigm,
Bishop and McArthur (2005) found group deficits among children
with DLD in the ability to identify, through button pressing,
differences in frequency between 600 Hz and 700 Hz that were
independent of the rate of stimulus presentation. Importantly, not
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only did children with DLD in this study score poorly on behavioral
measures (i.e., in their rate of accurate button presses in response to
tone sequences), but EEG analysis also highlighted atypical wave-
forms even when these children made accurate responses. This
result suggests that atypical frequency processing may be at play
even when performance in a frequency discrimination task, such as
those widely used in the initial screening phase of behavioral
assessments involving children with DLD, is apparently standard.
Frequency discrimination deficits may, therefore, be more wide-
spread than thought in this population.
It may appear reasonable to assume a causal association between

low-level frequency discrimination deficits and the deficits in
higher-order speech representation and retrieval that characterize
DLD. Children affected by DLD commonly require more exposures
to a spoken word than control children in order to encode similar
levels of phonological detail (Gray, 2003), for instance, and are
often slower and less accurate than age-matched peers when retriev-
ing words and naming known objects (Kambanaros et al., 2015;
Messer & Dockrell, 2006), when determining whether an auditory
stimulus is a known word or nonword (Jones & Brandt, 2018), when
fixing their gaze to a named visual stimulus (McMurray et al.,
2019), when identifying words from clipped auditory segments
(Montgomery, 1999), when identifying mispronunciations (Alt &
Suddarth, 2012), and, as previously discussed, when repeating
nonwords (Bishop et al., 1996). These performance deficits between
children with and without DLD may be explained in terms of lower
familiarity with the target stimuli among children with DLD, which
is itself a function of the quality of the speech representations that
these children have formed. Evans et al. (2018), for instance, found
no spoken word recognition accuracy discrepancies between chil-
dren with and without DLD in a gating paradigm in which target
word knowledge was controlled. Nevertheless, whether and how
such higher-order speech representation deficits relate to underlying
abnormalities in frequency discrimination remains unclear, and
assuming a casual association here remains controversial in lieu
of a satisfactory linking hypothesis (Bishop & McArthur, 2005;
McArthur & Bishop, 2005).
Furthermore, despite a wealth of behavioral evidence pointing to

speech representation deficits in children with DLD (e.g., the
aforementioned evidence from the naming, mispronunciation, iden-
tification, and nonword repetition tasks), a precise account of the
form that such deficits take remains elusive, with existing research
restricted to verbal descriptions of task performance being impeded
due to the fuzziness, imprecision, or indistinctiveness of underlying
long-term speech representations (Alt & Suddarth, 2012; Claessen
et al., 2009; Claessen & Leitão, 2012; Maillart et al., 2004). In the
present study, we aim to address each of these gaps in current
understanding: First, by demonstrating a causal association between
auditory processing deficits and deficits in higher-order speech
representation and retrieval, and second by providing a precise,
computational account of the nature of speech representation and
retrieval deficits in DLD that we believe provides an essential
counterpart to existing verbal theories. Our aim is to demonstrate
how auditory–perceptual deficits can explain deficits in long-term
speech representation, which in turn explain communication deficits
by way of attention being overloaded, rather than by way of working
memory capacity limitations that are independent of the quality of
long-term speech encodings.

Speech Processing From Cochlea to Cortex

The theoretical account presented in this report is informed by the
manifold untangling framework developed in visual neuroscience
(DiCarlo & Cox, 2007) and recently applied in studies of speech
processing and representation (Kell et al., 2018; Stephenson et al.,
2020). Manifold untangling describes an integrated theoretical and
computational approach to studying neurobiological processes. In
this section, our focus is on theory, specifically how manifold
untangling shapes the view of speech perception and processing
in DLD that we have outlined. Details of the computational imple-
mentation of this framework are discussed in the Method section.

The manifold untangling framework has at its heart the notion that
acoustic speech signals stimulate patterns of firing in populations of
neurons that may be understood as a response vector in high
dimensional space; a principle illustrated in Figure 1A (Chung
et al., 2018; Cohen et al., 2020; DiCarlo & Cox, 2007; DiCarlo
et al., 2012; Stephenson et al., 2020; Yamins & DiCarlo, 2016).
Due to speaker variability, co-articulation effects, and background
noise, no two instances of any given spoken word are acoustically
identical, and so each spoken instance of a given word stimulates a

Figure 1
Illustration of Manifold Untangling Across the Auditory and
Language Pathways in Typical Development and Developmental
Language Disorder (DLD)

(A) (B)

(C) (D)

Note. (A) the spoken words cat, catch, and cot in high dimensional space,
with each axis (N1–Nn) illustrating the response of a single neuron in a
population, in spikes per second. Two spoken instances of the sameword, for
example, cat, will reside in a different neural response vector. (B) collec-
tively, response vectors associated with any given word form a manifold.
Manifolds of different words are tangled early in the auditory–linguistic
pathway due to cellular responsiveness to low-level acoustic features. (C; a
high-capacity system) manifolds are incrementally untangled throughout the
auditory pathway, eventually supporting efficient discrimination and reduc-
ing attentional demand. (D; a low-capacity system) in developmental
language disorder (DLD), a low-level auditory–perceptual deficit may
mean that manifold untangling is protracted, leading to abnormally high-
dimensional, high-order speech representations that are more difficult to
discriminate and which therefore overwhelm attentional capacity. See the
online article for the color version of this figure.
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different neural response vector. The collection of neural response
vectors associated with any specific word defines that word’s neural
manifold.
The manifold untangling framework quantifies changes in the

dimensionality and separability of manifolds across a processing
hierarchy; in our case the auditory–linguistic pathway (Stephenson
et al., 2020). Crucial here is the idea that the manifolds underpinning
different spoken words are significantly tangled (i.e., intersecting or
overlapping) and thus difficult to separate early in the processing
stream (Figure 1B). In the cochlea, for instance, this overlap is due
to the responsivity of spiral ganglion cells to low-level acoustic
features. Neural representations at this level capture variance in the
multiple acoustic signals corresponding to any given spoken word,
and are, therefore, described as form dependent or noise sensitive.
Transformations instantiated across the typical auditory processing
hierarchy result, however, in input-invariant neural responses that
are reduced in dimensionality, that is, which are substantiated in
patterns of activation across relatively small subspaces of a given
neural population, and which are therefore more easily separated
from the neural response patterns underpinning competitor classes
(Figure 1C). In typically developing individuals, this is demon-
strated in increasingly form independent or speech selective neural
responses across the auditory pathway. Acoustic distortion is shown
to stimulate the auditory pathway up to and including at the primary
auditory cortex (i.e., the core) and the belt, for instance, with
increasing speech selectivity, or, by the same token, reduced
sensitivity to low-level acoustic features including noise, then
observed in the parabelt and more distal substrates (Davis &
Johnsrude, 2003; DeWitt & Rauschecker, 2012; Kaas et al.,
1999; Okada et al., 2010). This process of transformation defines
the central objective of the auditory–linguistic pathway: To establish
input-invariant neural speech representations.
The impact of low-level auditory–perceptual deficits on success-

ful manifold untangling (i.e., the shift from form-dependent to
form-independent neural responses) is, to our knowledge, as yet
unstudied. However, it might be assumed that such auditory–
perceptual deficits, which demonstrably characterize the profiles
of some children affected by DLD (Bishop & McArthur, 2005;
McArthur & Bishop, 2005), would prompt atypical trends in neural
response transformation throughout the auditory–linguistic path-
way. Specifically, we might expect that the degree of untangling
achieved on the basis of degraded speech signals would be lower
than the degree of untangling achieved on the basis of clean speech
signals. Faced with poor auditory processing ability, neural systems
may struggle to reduce manifold dimensionality and establish input-
invariance, with low-level noise contaminating high-level speech
representations and rendering them highly dispersed. The manifold
untangling framework therefore has the potential to shape a precise
linking hypothesis from low-level auditory–perceptual deficits to
higher-order deficits in speech representation in DLD, while pro-
viding a formal description of the latter in terms of neural response
manifolds characterized by abnormally high dimensionality.
Furthermore, and fundamental to the primary line of argument

pursued in this report, the manifold untangling framework demon-
strates how attentional capacity may be overloaded by the low
separability of atypically dispersed neural speech representations
(Cohen et al., 2020; Stephenson et al., 2020). Recall, for instance,
our earlier citation from Oberauer (2019) on the importance of high-
quality long-term encodings for the effective deployment of

attention. Efficient speech recognition and production depend on
rapidly and accurately isolating and retrieving required speech
representations from an activated long-term memory cohort, a
capacity to which attentional control is central. If we assume that
auditory–perceptual deficits do characterize the profiles of some
children affected by DLD, and if we can show that these low-level
deficits are linked to the formation of higher-order speech repre-
sentations characterized by amplified levels of dispersion and
overlap (i.e., residual manifold tangling), then we might further
conclude that the performance profiles commonly attributed to
working memory capacity limitations in DLD instead reflect atten-
tion being overloaded as a result of long-term speech representations
characterized by low discriminability. As we show in the Method
section (see Analysis section), recent computational realizations of
the manifold geometry view of neural responses provide the tools
required to formally quantify both speech representation dimension-
ality and associated demands on attentional capacity (Cohen et al.,
2020; Stephenson et al., 2020).

Biological and Artificial Neural Networks

The purpose of the present study is, then, to demonstrate through
computational simulations how working memory capacity deficits
may emerge as a consequence of atypical speech representation,
which itself results from a primary auditory–perceptual deficit. To
do this, we use a deep learning framework involving convolutional
neural networks, which we describe further in the Method section
(see Model section). State-of-the-art deep learning systems have
reached human-level accuracy in speech recognition tasks, and
work in computational auditory neuroscience has shown that
despite the many substantial differences between biological and
artificial neural networks, deep learning can provide valuable
insight into human auditory processing and speech representation
(e.g., Kell et al., 2018).

There are fundamental parallels between the biological auditory
pathway and convolutional network architectures, including the
projection of activation into overcomplete space (i.e., activation
spreads through layers of an increasing numbers of neurons) and
pooling functions (i.e., configurations in which neuron x fires if
either antecedent neuron a, b, or c fire). The untangling of neural
response manifolds is achieved in part as a result of these architec-
tural features, in conjunction with the constraint of response sparse-
ness, that is, top-down pressure on the system to align on a single
target representation. As a result of these constraints, the relative size
of the subspace in which manifolds reside decreases at each level of
transformation, facilitating manifold separability (DiCarlo & Cox,
2007; Kell et al., 2018).

Nevertheless, closer comparisons of the biological auditory path-
way and convolutional neural networks, for instance the position
that specific artificial layer activation can predict biological
auditory–cortical responses (e.g., Kell et al., 2018) remain contro-
versial (Thompson, 2020). One obvious discrepancy between real-
world language processing and the simulations presented in the
current report is that natural speech signals unfold in time, while
processing in a convolutional neural network does not (Stephenson
et al., 2020). For our purposes here, then, networks should be
understood as providing computational rather than neurobiological
insight, in the tradition of Marr (1982), addressing the following
questions: What transformation does speech input undergo in order
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to achieve spoken word recognition? How is this process of
transformation impeded due to a low-level auditory processing
deficit? And how does any resultant representational abnormality
affect demands on attentional control?
In the simulations that follow, we model typical and atypical

spoken word recognition by presenting deep convolutional neural
networks with spectrograms in which information is either retained
to mimic typical development or degraded to mimic the auditory
processing deficits identified among some children with DLD
(Bishop & McArthur, 2005; McArthur & Bishop, 2005). Computa-
tional simulation is essential in enabling us (a) to examine how
speech representation differs in artificial neural systems with and
without engineered auditory–perceptual deficits and (b) to under-
stand in each case how the form of internal speech representations
propagated influences the systems’ ability to retrieve any given
representation, a capacity understood as central to attentional con-
trol. Crucially, in an artificial system, we are able to ensure that any
disparities in network performance are not attributable to an input-
independent capacity limitation and are instead attributable exclu-
sively to engineered low-level auditory–perceptual deficits. Our
models are not intended to provide a complete picture of speech
representation and processing deficits in all children affected by
DLD. Instead, we aim to detail a specific causal link previously
undescribed in the literature, from auditory–perceptual deficits to
speech representation deficits to attentional capacity overload, in the
absence of any hard-wired capacity limitation.

Method

This report is associated with a Jupyter notebook (Kluyver et al.,
2016) that can be used to replicate the simulations presented or to
experiment with alternative configurations of input, model, and
parameters (see https://osf.io/ng6dx/).

Model

Simulations involved the ResNet-18 convolutional neural
network (He et al., 2016), implemented in Python (Python
Software Foundation, 2008) using PyTorch (Paszke et al.,
2019). A detailed specification of model architecture can be
found in the Appendix. For an introduction to convolutional
neural networks we recommend Goodfellow et al. (2016; https://
www.deeplearningbook.org). In essence, in convolutional layers,
these networks pass learned filters over the input, here acoustic
spectrograms, in order to identify and summarize through pooling
functions invariant features that help solve the task at hand, or,
more precisely, that help to reduce output and target discrepancy.
For instance, the network might learn that identifying a specific
formant pattern captured in a certain distribution of pixels facil-
itates the discrimination of two phonological competitor words
(e.g., cat, catch), reducing classification error for these items. We
trained and tested two populations of networks (n = 3) on clean
and degraded speech data in a spoken word recognition task.
Training lasted for ten epochs (i.e., full cycles through the
training data), determined as the point at which networks exposed
to clean input approximated 100% accuracy in initial trial simu-
lations involving a restricted dataset.
Crucially, there was no difference in any architectural parameter

affecting processing capacity between network populations (e.g.,

number of layers, hidden layer size, or learning rate). As previously
described, the current prevailing view is that fundamental working
memory capacity limitations cause speech representation and pro-
cessing deficits among many children affected by DLD. To reflect
this position, a prominent approach in the computational modeling
of DLD to date has been to reduce network size, particularly the
number of nodes in a network’s hidden layer, explicitly to mimic
group differences in working memory capacity (e.g., Takac et al.,
2017; Vitevitch & Storkel, 2013). In contrast, in the current report,
network processing capacity is reconfigured as an emergent
rather than a hard-coded, static, and input-independent parame-
ter, with any performance discrepancies observed between net-
work populations attributable only to access to quality low-level
acoustic representations.

Data

Networks were trained and tested on a random sample of 5,000
instances of spoken words (4,000 training, 1,000 test) from the
Speech Commands dataset, which comprises .wav files of differ-
ent articulations of 35 spoken word types used in the development
of keyword recognition systems (e.g., backward, up, down,
digits 0–9, and a selection of nouns including bird, cat, and
dog: see Warden, 2018; see also the Jupyter notebook accompa-
nying the present study). Waveforms were converted to 64-band
Mel spectrograms (Stevens et al., 1937), and 0.1 standard devia-
tions of Gaussian noise was added to the training and test data
presented to one population of models to simulate the auditory
processing deficits observed among some children with DLD
(Bishop & McArthur, 2005). The results of this pre-processing
can be seen in Figure 2. Our independent variable is, therefore,
dichotomous; either a network has access to high quality auditory
information, or it does not. In reality, auditory processing ability
is likely to be continuous rather than dichotomous in nature, with
DLD describing children at the low end of the distribution (see,
for instance, Bishop & McArthur’s, 2005, study of individual
differences). Nevertheless, our treatment of auditory processing
ability as a dichotomous variable represents a welcome simpli-
fying assumption in this first pass analysis of the role of auditory–
perceptual deficits on speech representation and working memory
in DLD.

As we noted in our introduction, the existing evidence suggests
that the auditory–perceptual deficits seen among some children with
DLD are spectral (i.e., frequency based; e.g., Bishop et al., 1999;
Bishop & McArthur, 2005; McArthur & Bishop, 2005) rather than
temporal (e.g., Merzenich et al., 1996; Tallal et al., 1996) in nature.
Note, however, that the manner in which we add Gaussian noise to
spoken word spectrograms in the present study makes it impossible to
distinguish between these contrasting accounts. That is, the addition
of noise disrupts both frequency information across the vertical axis
and temporal information across the horizontal axis (see Figure 2).
This is justified because discriminating between the spectral and
temporal accounts of auditory processing deficits in DLD is
outside of our primary aim to provide an alternative to dominant
causal accounts of DLD centered on working memory capacity
limitations. With this in mind, we use the general term auditory–
perceptual deficit (i.e., instead of frequency processing deficit)
throughout the present study.
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Analysis

Networks were required to identify which word each spectrogram
corresponded to by outputting a probability distribution over the
35-word lexicon. The word with the highest assigned probability
was considered the network’s selection. As children with DLD often
show word finding deficits and response latencies even when
making accurate responses (e.g., Messer & Dockrell, 2006), we
were interested not only in the networks’ spectrogram classification
accuracy, but also in the degree of certainty in accurate classifica-
tions made. This required looking not only at the word with the
highest assigned probability, but also at the dispersion or entropy of
the predictive distribution output in response to any given spectro-
gram. High probability, low entropy predictive distributions reflect
greater certainty in a prediction and act as proxy for rapid retrieval,
while low probability, high entropy predictive distributions reflect
the heightened “consideration” of competitor classes in response to
features of the acoustic speech signal presented, and act as proxy for
delayed retrieval.
Word classification accuracy and accurate classification predic-

tive distribution probability and entropy are measures of a network’s
output. However, crucial to the present study was an assessment of
the internal speech representations that networks formed. Manifold
dimensionality and classification capacity are variables integral to
the computational implementation of the manifold untangling
framework, and were estimated following the mean-field-theory
based method described in Stephenson et al. (2020) across the
networks’ 20 convolutional layers (see Appendix). Readers inter-
ested in the mathematical principles via which dimensionality and
classification capacity are derived are directed to Cohen et al. (2020)
and references therein. In essence, dimensionality quantifies the
average degree of dispersion in speech representations across a
given neural population (i.e., a network layer), while classification
capacity quantifies the network’s average ability to separate any
given internal speech representation from competitor representa-
tions in a neural population, and therefore provides a measure of

demands on attentional control. Algorithmically, dimensionality
and classification capacity are determined by propagating activation
through the network in order to determine (a) the embedding
dimension of the manifold contributing to successful classification
(i.e., dimensionality) and (b) the number of word representations
that can be linearly separated from competitor representations at
each level of the network’s architecture (i.e., classification capac-
ity), standardizing in each case by layer size in order to account for
differences in the number of artificial neurons in each layer (Cohen
et al., 2020). High classification capacity indicates neural response
manifolds having been reduced in dimensionality to facilitate
hyperplane separation (i.e., attention is sufficient; Figure 1C), while
low classification capacity indicates high-dimensional manifolds
unamenable to efficient hyperplane separation (i.e., attention is
overloaded; Figure 1D).

Prior research illustrates that dimensionality and classification
capacity are not fixed properties (Stephenson et al., 2020). In
untrained deep neural networks, little change in manifold
dimensionality or classification capacity is seen across layers,
from the input layer to the feature layer immediately prior to
stimulus classification. In this case, manifolds remain highly dis-
persed across each layer of the hierarchy, limiting network classifi-
cation capacity and undermining task performance. However,
through training on a specific task, manifold dimensionality de-
creases across the network hierarchy while classification capacity
concurrently increases as a result of improved separability (Chung
et al., 2018; Cohen et al., 2020; DiCarlo & Cox, 2007; DiCarlo
et al., 2012; Stephenson et al., 2020; Yamins & DiCarlo, 2016).
These changes in manifold dimensionality and classification capac-
ity are driven by training and underpin improvements in task
performance such as better spoken word classification accuracy.

Through modeling this combination of response variables (i.e.,
prediction accuracy, probability, and entropy, and manifold
dimensionality and classification capacity) as a function input
type (i.e., clean versus noisy Mel spectrograms) we were able to
analyze both potential variance in performance in a simulated

Figure 2
Mel Spectrograms of the Word “Backward,” Clean and With Gaussian Noise (SD = 0.1)

Note. See the online article for the color version of this figure.
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spoken word recognition task and the representation and attentional
control factors that underpin that variance. All statistical analyses
were conducted in R (R Core Team, 2016; see data repository for
analysis script).

Results

Figure 3A shows training error rates by epoch for each network
and input type. Networks exposed to clean input showed a spoken
word recognition advantage throughout training, with a mean
classification accuracy disparity of 79.9% (SD = 2.21) in the clean
spectrogram condition, compared to 55.2% (SD = 1.59) in the
degraded spectrogram condition. Networks exposed to spectro-
grams that had been degraded by the addition of Gaussian noise
not only made fewer accurate predictions, but also showed substan-
tially greater uncertainty in the accurate predictions they made
(Figure 3B and 3C). The entropy of accurate predictive distributions
generated by networks exposed to clean input was .18 bits
(SD = .34), with a mean, maximum predictive probability of .94
(SD = .13). In contrast, networks exposed to degraded input gen-
erated accurate predictive distributions with entropy of .53 bits
(SD = .59), with a mean maximum predictive probability of
.84 (SD = .20).
These training and test-phase performance profiles relate directly

to the networks’ ability to represent and efficiently retrieve speech
information. In Figure 4, we show the average manifold dimension-
ality and classification capacity during training at the final convolu-
tional layer of each network, immediately prior to the classification
layer (see Appendix for network specification). Notably, the diver-
gence in manifold dimensionality between networks presented with
clean and degraded input was smaller in relatively early training
epochs. Through training, each population of networks reduced the
average dimensionality of the internal speech representations it
formed in this final convolutional layer. Yet, at asymptote, the

divergence between network populations was clear: Reducing the
dimensionality of degraded input was an obvious challenge for
networks simulating speech representation in DLD. These manifold
dimensionality reduction deficits are reflected in the complementary
analysis of network classification capacity (Figure 4). Classification
capacity increased during training across network populations but
was substantially higher in networks modeling typical development.
This means that the speech representations formed by the networks
modeling typical development were discriminated more easily by a
simulated attentional control mechanism than the speech represen-
tations formed by the networks modeling DLD, in which attentional
control was more rapidly exhausted due to excessive processing
demands. In essence, the instantiated auditory–perceptual deficit
constituted a significant obstacle to learning, resulting in the forma-
tion of spoken word representations that were abnormally dispersed
and overlapping (i.e., underpinned by common patterns of neural
response), and which therefore could not be easily recognized or
retrieved.

In Figure 5, a similar trend is shown post training across the
networks’ 20 convolutional layers. Neural networks exposed to
degraded input never reached levels of manifold dimensionality or
classification capacity as low as those seen in the layers of the
networks exposed to clean input, and these disparities widened
substantially towards the final convolutional layer. Again, networks
with engineered auditory–perceptual deficits face a greater chal-
lenge in reducing speech representation dimensionality, and this
directly impedes the ability of these networks to attend to (i.e.,
isolate and retrieve) specific internal speech representations. Ulti-
mately, as detailed above, these atypicalities in internal speech
representation and simulated attentional control are reflected in
disparities in task performance, including reduced speech recogni-
tion accuracy and greater uncertainty (i.e., lower probability, higher
entropy predictive distributions) even when accurate classifications
are made.

Figure 3
Network Performance During Training and Testing
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Discussion

In this article, our aim has been to provide an alternative to
dominant causal accounts of DLD centered on working memory
capacity limitations.We developed an account of speech perception,
representation, and processing in DLD closely aligned with con-
temporary working memory frameworks that de-emphasize the role
of functionally discrete buffer systems such as the phonological loop
in exchange for a more parsimonious characterization of working
memory in terms of activated long-term memory plus attention
(Adams et al., 2018; Chai et al., 2018; Cowan, 1995; D’Esposito &
Postle, 2015; McElree, 2006; Oberauer, 2013, 2019; Wilhelm et al.,
2013). We instantiated this theoretical account in a computational
model. Simulation demonstrated that protracted manifold untan-
gling provides a plausible link between low-level auditory–
perceptual deficits and deficits in higher-order speech representa-
tion, as well as a formal description of those speech representation
deficits in terms of atypically dispersed patterns of neural response

within structures of the auditory–linguistic pathway. This neuro-
computational view of speech representation deficits in DLD is
broadly consistent with existing verbal descriptions noting the
fuzziness, imprecision, or indistinctiveness of these children’s
speech representations, and provides a vital counterpart to such
accounts (Alt & Suddarth, 2012; Claessen et al., 2009; Claessen &
Leitão, 2012; Maillart et al., 2004).

Simulation further illustrated our theoretical view that ostensible
shortfalls in working memory capacity may emerge as a conse-
quence of low-level auditory–perceptual deficits propagating neural
response manifolds characterized by atypically high dimensionality
and residual tangling. Returning to the trade-off described earlier,
this suggests that the challenge facing children with DLD may be
one of heightened processing demands rather than one of fixed
capacity limitations. Children with DLD may be less able to
accurately and rapidly process speech sequences and deploy their
long-term language knowledge, whether during listening or

Figure 4
Feature Layer Dimensionality and Classification Capacity by Input Type and Training Epoch

Note. See the online article for the color version of this figure.

Figure 5
Post-Training Dimensionality and Classification Capacity by Convolutional Layer and Input Type

Note. See the online article for the color version of this figure.
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production, because that long-term knowledge is poorly configured
and not amenable to efficiently forming the focus of attention. We
showed that representational atypicality (i.e., the heightened disper-
sion of artificial neural responses) directly undermined the net-
works’ ability to discriminate any given speech representation
within an activated cohort, which is a central function of attentional
control. This illustrates how irregularities in long-term speech
representation may be the cause of apparent, rather than the
consequence of real, working memory capacity shortfalls. Note
that this position differs from the claim that atypical auditory
processing restricts the maturation of a working memory buffer
system that is functionally discrete from long-term language knowl-
edge (e.g., the phonological loop). We posit no such functionally
discrete system, and instead attribute a substantial proportion of the
variance in working memory task performance to the quality of
activated long-term speech encodings. Like prior computational
work in this general area (e.g., Jones et al., 2020), the simulations
presented here do not provide explicit evidence against a working
memory capacity limitation in children with DLD. Rather, they
demonstrate a coherent theoretical account of speech perception,
representation, and processing deficits in which capacity limitations
that are independent of the quality of long-term encodings play no
part, and in doing so challenge the status of such limitations as a
feature of dominant causal theories of DLD.
Simulation also showed how atypical speech representation and

control deficits relate not only to reduced performance accuracy in a
spoken word recognition task, but also to substantially greater
uncertainty even when making correct responses in that task. Net-
works with auditory–perceptual deficits made accurate responses
characterized by lower maximum probability assignment and higher
entropy predictive distributions. This feature of network perfor-
mance is consistent with behavioral evidence from children with
DLD of delays when making accurate responses and associated
word finding difficulties, as well as the greater consideration of
competitor stimuli in eye-tracking paradigms even when accurate
responses are initially made, that is, a child with DLD first orientates
accurately to a visual image corresponding to a presented acoustic
label (e.g., net) but subsequently gazes more regularly at competitor
images (e.g., a neck) than age-matched, typically developing
control children (Kan & Windsor, 2010; McMurray et al., 2019;
Messer &Dockrell, 2006). Regularly, such patterns of performance
have been explained by positing auxiliary, encoding-independent
processing constraints, for instance generalized slowing (Kail, 1994)
or more specific deficits in a hypothesized lateral inhibition
mechanism responsible for the successful dampening of activated
long-term competitor representations among typically developing
children (McMurray et al., 2019). The modeling work presented in
the present study suggests, however, that positing constraints that
are independent of the quality of long-term speech representations
in order to explain such patterns of performance may be unwar-
ranted. Instead, children’s spoken responses may be delayed, or
competitor stimuli may be given greater consideration in an eye-
tracking paradigm as a result of attention being overloaded by the
increased search demands that result from lowmanifold separability.
Above, we commented against drawing close parallels between

the convolutional neural networks used in this study and the
biological auditory pathway. However, it is notable that the typically
developing brain approximates invariant speech-sound representa-
tions by the peripheral auditory cortex (Davis & Johnsrude, 2003),

prior to the auditory system splitting into a ventral pathway com-
mitted to semantic representation and processing, and a dorsal
pathway committed to speech-segment representation and proces-
sing, and articulation; each innervated by frontal neural substrates
supporting attention (Hickok & Poeppel, 2000). This indicates that
approximating invariant speech-sound representations at this junc-
ture is essential to the typical function of the language system as a
whole, including to ensuring that attentional resources are not
exhausted by uneconomical speech encodings. By the same token,
this prior work (e.g., Hickok & Poeppel, 2000) suggests that the
protracted manifold untangling simulated in the current report will
have wide-reaching implications for the language system as a whole,
potentially disrupting the mapping between speech representations
and distributed semantics in the ventral stream and speech-segment
processing and speech planning in the dorsal stream, as well as
disrupting mechanisms of attentional control substantiated in the
frontal lobe.

Relatedly, it is valuable to note that prior computational work
attests to the generalizability of the principles described in this
report. While our own focus has been on auditory perception and the
encoding of and attention to spoken word representations, previous
research strongly suggests that the auditory–perceptual deficits
simulated here would prompt protracted manifold untangling
regardless of the level of linguistic representation,that is, whether
phoneme, word, or phrase (Stephenson et al., 2020). Indeed, the
principles described here are expected to hold regardless of the
modality of the stimuli being classified (e.g., whether auditory or
visual). There is, therefore, nothing special about words as a unit of
representation. Across levels of linguistic representation (i.e., pho-
neme, word, and phrase), speech recognition and comprehension,
retrieval, planning, and production would all be expected to be
slower and less accurate as a result of attentional capacity being
overloaded by high dimensionality impeding the efficient separation
of neural response manifolds. Ultimately, determining the coverage
of the theory developed here in explaining the broad constellation of
deficits seen in DLD is a matter for future research. There is, of
course, no requirement to settle on a single cause of DLD, and
indeed such attempts are likely to be fruitless given a complex
genetic etiology and the linguistic diversity seen across children
with a diagnosis of DLD. Not all children affected by DLD show
behavioral deficits or neurophysiological abnormalities in auditory
processing (McArthur & Bishop, 2005), and language impairment is
not an inevitable consequence of mild to moderate hearing loss (see
Halliday et al., 2017, and references therein). Relatedly, there are
features of DLD that are not easily reconciled with the notion of a
basis in auditory processing deficits. Hsu and Bishop (2014), for
instance, report reliable deficits in the ability of children with DLD
to identify regular (though difficult to discern) patterns of change in
the position of a character on a computer screen (i.e., in a visual
serial reaction time task; though, relatedly, seeMarshall et al., 2015,
for evidence that nonverbal working memory capacity is impacted
by language experience). Thus, the manifold untangling deficit
hypothesis described in the current manuscript should be considered
a complementary explanatory framework, rather than a unifying or
absolute theory of DLD.

Attempting to map deficits in manifold untangling to underlying
neuronal abnormalities is an important part of the future research
agenda. In this report, we situated the locus of deficit at the most
fundamental level, the input to the hierarchical processing system.
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However, given that untangling low-level neural manifolds rests on
a protracted and complex hierarchical configuration, including the
projection of activation into overcomplete space and pooling func-
tions, it is possible that the problem resides later or more broadly
distributed across the auditory pathway, from the basilar membrane
to the peripheral auditory cortex, and beyond. Theoretically, unsuc-
cessful manifold untangling may be caused by microneuropathol-
ogy, in the form of genetic irregularities prompting neuronal mis-
migration or inhibiting synaptic pruning, resulting in suboptimal
organization within the auditory–linguistic pathway (Bishop, 2014).
Future physiological research in this direction might take lead from
work assessing neural responses to distorted speech signals in the
auditory cortices of typically developing adults (Davis & Johnsrude,
2003; DeWitt & Rauschecker, 2012; Okada et al., 2010). As
previously described, this work has identified form-dependent
responses to spoken language in the primary auditory cortex and
belt, and increasingly form-independent responses in the peripheral
auditory cortex and subsequent auditory–linguistic pathways. To
our knowledge, it remains unclear whether similar patterns of neural
activation across the auditory–linguistic pathway occur in response
to different intensities of speech distortion in children with and
without DLD.
Given the dominant view that working memory capacity limita-

tions play a causal role in DLD, one line of argument is that
interventions specifically targeting working memory can help miti-
gate these children’s language problems (Delage & Frauenfelder,
2020; Montgomery et al., 2010). As described in our introduction, a
number of commercially available programs make this claim (e.g.,
Alloway et al., 2013). There is, however, little empirical evidence
supporting the efficacy of working memory training. For instance, in
a comprehensive meta-analysis, Melby-Lervåg and Hulme (2013)
found no evidence that apparent gains in working memory function
either generalized or remained after a delay period. This outcome is
fully continuous with the current report, in which one cause of
language impairment is considered to be low-level speech percep-
tion and encoding deficits, rather than a functionally discrete
working memory capacity bottleneck (see also Jones et al.,
2020). Collectively, this work casts doubt on the validity of using
working memory training as a method of boosting language skills.
As an alternative, simulation showed (across training epochs) that
increasing the frequency of exposure to specific structures might go
some way to improving long-term encoding and, therefore, to
improving the accuracy, speed, and confidence with which long-
term speech representations are deployed in the moment. Simulation
also suggests, however, that increasing frequency of exposure alone
is not enough to effectively close the gap in representation quality
and levels of performance between children with and without DLD.
In Figure 4, we illustrated clear divergence in dimensionality and
classification capacity between network populations at asymptote
across ten training epochs (a pattern which may differ under longer
training regimes). This suggests that more nuanced strategies than
simply boosting frequency of exposure are required in order to
mitigate the perceptual and representational challenges faced by
children affected by DLD. One such approach, already well-known
to clinical practitioners including speech and language therapists, is
to control the order of stimulus presentation, for instance by teaching
minimal pairs (e.g., cat, catch) in which the discrepant phoneme is a
sound that the child has particular difficulties with (Dean et al.,
1995). As high-order neural response manifolds adapt to task and

communicative demands through time (Stephenson et al., 2020),
this approach is expected to improve the discriminability of the
representation of the different constituent and therefore the word-
level representation. This view redescribes the computational pro-
cess highlighted in the Method section in which neural networks
attune to the specific subpatterns within speech signals that most
effectively reduce performance error.

The prior example alludes to the importance of working across
levels of linguistic representation during language intervention, here
improving spoken word representation (and indeed phrase-level
speech representation) by improving sublexical speech segment
representation. Ultimately, given the complex causal basis of
DLD emphasized earlier, comprehensive programs of intervention
that target multiple aspects of the language system appear essential
(i.e., because highly specific programs of intervention only focus on
remediating a subset of the underlying issues). This factor may
explain the limited success of targeted commercial packages of
auditory processing intervention such as Fast ForWord (Tallal,
2013) in randomized controlled trials (Strong et al., 2011). Relat-
edly, it would, as one anonymous reviewer pointed out, be wrong to
assume that programs of intervention only work if they address an
identified area of deficit, as working with an area of relative strength
may also help overall language functionality. Along these lines, it is
reported that individuals with strong semantic (and syntactic)
awareness of the language they are perceiving are better able to
decode vocoded elements within a sentence by exploiting top-down
predictive processing, in the same manner that the occluded ortho-
graphic representation g##d#n might be rapidly decoded by ex-
ploiting antecdent information in the phrase “it was a sunny day and
the children were playing in the g##d#n” (i.e., garden; Davis et al.,
2005; Sohoglu et al., 2012; see Jones & Westermann, 2021, for an
application of the predictive processing framework to the study of
DLD). While it may be challenging to translate this specific research
finding directly into a task to use during language intervention, it is
nevertheless valuable to note that strengthening semantic and
syntactic awareness may help children with DLD navigate the
perceptual and representational deficits that constitute a major
obstacle to effective communication.

Conclusion

In this report we have presented an alternative to dominant
theoretical accounts of DLD centered on deficits in working mem-
ory capacity. Our account aims to reposition the proximal origin of
many of the behavioral deficits seen in DLD from a shortfall in
working memory capacity, to working memory being itself func-
tionally unimpaired but overloaded due to operating on speech
representations characterized by atypically high dimensionality and
low separability.
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Appendix

ResNet-18 Specification

Layer index Layer Output size Kernel size Stride

1 2D convolution 1, 64 7, 7 2, 2
2 2D convolution 64, 64 3, 3 1, 1
3 2D convolution 64, 64 3, 3 1, 1
4 2D convolution 64, 64 3, 3 1, 1
5 2D convolution 64, 64 3, 3 1, 1
6 2D convolution 64, 128 3, 3 2, 2
7 2D convolution 128, 128 3, 3 1, 1
8 2D convolution 64, 128 1, 1 2, 2
9 2D convolution 128, 128 3, 3 1, 1
10 2D convolution 128, 128 3, 3 1, 1
11 2D convolution 128, 256 3, 3 2, 2
12 2D convolution 256, 256 3, 3 1, 1
13 2D convolution 128, 256 1, 1 2, 2
14 2D convolution 256, 256 3, 3 1, 1
15 2D convolution 256, 256 3, 3 1, 1
16 2D convolution 256, 512 3, 3 2, 2
17 2D convolution 512, 512 3, 3 1, 1
18 2D convolution 256, 512 1, 1 2, 2
19 2D convolution 512, 512 3, 3 1, 1
20 2D convolution 512, 512 3, 3 1, 1
21 Linear transformation 35 n/a n/a

Hyperparameters

Optimizer: Stochastic gradient descent
Learning rate: .001
Momentum: .9
Loss function: Cross-entropy loss

Note. See Jupyter Notebook for activation functions and pooling, normalization, and dropout layers.
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