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Abstract: This work investigates the application of Computer Vision to the problem of the automated
counting and measuring of crabs and lobsters onboard fishing boats. The aim is to provide catch count
and measurement data for these key commercial crustacean species. This can provide vital input data
for stock assessment models, to enable the sustainable management of these species. The hardware
system is required to be low-cost, have low-power usage, be waterproof, available (given current
chip shortages), and able to avoid over-heating. The selected hardware is based on a Raspberry Pi
3A+ contained in a custom waterproof housing. This hardware places challenging limitations on
the options for processing the incoming video, with many popular deep learning frameworks (even
light-weight versions) unable to load or run given the limited computational resources. The problem
can be broken into several steps: (1) Identifying the portions of the video that contain each individual
animal; (2) Selecting a set of representative frames for each animal, e.g, lobsters must be viewed from
the top and underside; (3) Detecting the animal within the frame so that the image can be cropped to
the region of interest; (4) Detecting keypoints on each animal; and (5) Inferring measurements from
the keypoint data. In this work, we develop a pipeline that addresses these steps, including a key
novel solution to frame selection in video streams that uses classification, temporal segmentation,
smoothing techniques and frame quality estimation. The developed pipeline is able to operate on the
target low-power hardware and the experiments show that, given sufficient training data, reasonable
performance is achieved.

Keywords: computer vision; frame selection; keypoint detection

1. Introduction
1.1. Background and Motivation

There is a moral and legal obligation for countries to manage their fish stocks sustain-
ably. For example, the European Union’s Common Fisheries Policy legislates for all fish
stocks to be managed at an exploitation level consistent with the Maximum Sustainable
Yield (MSY) [1]. The UK Fisheries Act 2020 requires stocks to be harvested to a level where
biomass is above those capable of producing the MSY. In the USA, the Magnuson-Stevens
Fishery Conservation and Management Reauthorization Act of 2006 requires annual catch
limits and measures to end overfishing. The UN Sustainability Goals constitute 14 aims
to conserve and sustainably use the oceans, sea and marine resources for sustainable
development.

There has been progress in the sustainable management of fisheries, but this is mostly
confined to the places where there have been the resources to undertake quantitative
stock assessments and management programs, with many of these data-rich stocks fished
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sustainably [2,3]. However, in fish stocks that are data poor or not intensively managed,
many are still considered unsustainable [4,5] and it is estimated that over 80% of global
stocks are not formally assessed [4]. This, therefore, drives the desire to maximise data
collection to support quantitative stock assessment that can support management. There
are a wide range of fisheries stock assessment methods, each of which can have varying
data input needs.

Crustacean fisheries are important globally, accounting for over 5.5 million tonnes of
capture fisheries annually [4] and landings of crustaceans have been increasing globally at
a greater rate than any other capture fisheries group [6]. Whilst this is still modest in terms
of overall global landings, ∼7.1%, ref. [4] crustaceans are often valuable and represent
a disproportionate proportion of the value of global capture fisheries (21%) [6]. Within
the UK, crab and lobster fisheries are some of the most fished and valuable species. In
2021, across the UK as a whole, crabs were the third most valuable fishery and lobsters
the fifth most valuable, even though by tonnage they were less important. At a regional
level they can be of even greater importance. For example, in England, crabs are the third
largest fishery in terms of tonnage and the second most valuable, and lobster, whilst small
in terms of tonnage was the third most valuable. In Wales, there is a similar situation, with
lobster being the second most valuable and crab the fourth most valuable fishery [7]. The
importance of these fisheries has been highlighted with their inclusion as “front runner”
species for the development of Fisheries Management Plans (FMPs) following the new
Fisheries Act 2020 and the development of the Joint Fisheries Statement.

Currently, crab and lobster fisheries in the UK are considered data poor and have lim-
ited management, mainly consisting of a minimum legal landing size. Improving the data
collection for these species will be a key step in improving their management. Due to the
difficulty in ageing crustaceans, many assessments focus on length-based approaches [8,9],
therefore the collection of length data is often of high priority for crustacean fisheries
management. For this to be representative of the whole stock, good spatial coverage is
necessary and, due to changes in catchability due to biological processes such as molting,
time series data across the year is also important [10,11]. However, the collection of these
data often require scientific observers to be onboard fishing vessels, which is resource and
time expensive, as well as having poor coverage both spatially and temporally. An alter-
native is the regular sampling of the landed catch at port; again, this is resource intensive,
with poor spatial and temporal coverage. In addition, it only gathers information on the
landings not the whole catch. Electronic monitoring has been gaining traction over the
last two decades with the potential to provide cost-efficient data to supplement existing,
traditional data collection programs for effort monitoring, catch composition, bycatch and
gear modification [12]. The benefits of these programs are the high level of spatial and
temporal coverage that can be achieved, cost efficiency and the high level of representation
across the fleet [12,13]. This can be particularly useful in data-poor fisheries where there
are limited resources for widespread observer programs or fishery-independent surveys.

The potential for a sentinel fleet to gather this data through the use of video data
methods has previously been investigated [13], but for the cost efficiency to be maximized,
the automation of the extraction of the catch composition data is required.

The system we have developed provides a reliable, low-cost solution that is able to
operate in challenging conditions. It provides a template that could be adapted for similar
problems in fields such as biology, ecology and marine research. A key novel contribution
of the developed pipeline is a method to extract a single frame, or a small set of frames
offering different key views, of each animal. Without this component, the system would
“over count” each animal, providing multiple measurements of the same animal. Even
in high-powered systems using state-of-the-art (SOTA) object detectors, object detections
(locating an object within a scene) over time are noisy, and distinguishing genuine breaks
between different instances of the same object vs temporary detection loss is challenging.
The problem is even more challenging in a setting with limited computational resources.
Following frame selection, greater computational resources can be expended on the small
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number of frames selected for the proceeding steps, including object localisation and point
detection, needed to provide information on the size of the animals. The remainder of this
paper first discusses the relevant prior research and preliminary work that informed the
design of the system, then we present the system description (including the hardware and
each step of the pipeline), followed by the results and discussion.

1.2. Related Work
1.2.1. Computer Vision for Crabs and Lobsters

This work automates the video-based approach described in reference [13]. There has
been considerable prior work on the detection and analysis of marine animals, particularly
for fish detection, and some work investigating the detection of crabs and lobsters. Most
recent systems use standard object detectors as a backbone, with some bespoke adaptations
and fine tuning. For example, Cao et al. [14] use MobileNetV2 [15] as a backbone for
an optimized Single Shot Detector (SSD) for underwater crab detection. Their system
focused on detection (in every frame) and did not extend to temporal segmentation (for
counting and avoiding repeated measurements of the same animal) or measurement.
Similarly, Ji et al. [16] developed a system for detecting underwater river crabs using the
MobileCenterNet model, again based on MobileNetV2, they also focused on detecting
within static images, and did not address temporal segmentation issues. Chen et al. [17]
developed a detector and gender classifier for Chinese Mitten Crabs based on an optimized
Yolo-v4 architecture, but also did not address temporal segmentation issues. Tang et al. [18]
and Hu et al. [19] have developed Yolo (v3 and v4, respectively)-based systems for detecting
molting events in commercial crab breeding. Again, there was no requirement for temporal
segmentation to detect individual animals. Wu et al. [20] developed a part-based model for
identifying individual crabs but, in our work, there is no requirement to identify specific
individual animals. Recognising individual animals is a potential way to try to avoid
repeated counting/measuring of the same animal, but is an expensive approach, requiring
checking of the identity in each frame, and not well suited to our low computational
power scenario.

Mahmood et al. [21] used synthetic data to train a Yolo-v3 detector for the underwater
detection of rock lobsters. As we have the capability to capture a sufficient volume of data,
we have not found it necessary to use synthetic training data in this work. Chelouati et al.
have used Yolo-v4 [22], and more recently Yolo-v7 [23], to successfully detect lobsters in
a robotic application scenario. Again, this scenario has no requirement for the temporal
segmentation for animal counting/measuring addressed here.

For the sub-problem of measurement, Wang et al. have developed deep learning
methods for segmenting crabs [24] and detecting specific features (knuckles) [25]. The
segmentation algorithm uses a shallow U-Net style architecture. The knuckle detection
used a combination of traditional approaches (e.g., background subtraction and watershed
algorithm) and a deep learning point detection algorithm based on the VGG architecture.
As their system is intended for processing-plant-based application, it is not subject to the
same low computational processing power constraints as the work described here, but
does provide a useful starting point for our work.

1.2.2. Lightweight Computer Vision

Whilst many lightweight models are proposed in the literature for low-power com-
puter vision applications and edge computing, it was found that many of these still bene-
fited from relatively powerful hardware. Most commonly, an Nvidia Jetson Nano 4GB Kit
was chosen for real-time detection applications [26–28]. In the few studies in which a Rasp-
berry Pi was used, it would typically be a Raspberry Pi 4 4GB model [28,29]. The effects of
the semiconductor shortage at the time of writing have contributed to the increased cost of
these devices, as well as the lack of availability for the more powerful and, therefore, more
popular Single Board Computers (SBCs). Given that real-time processing is not essential
for this work and this project has a constraint on power-usage, the less powerful Raspberry
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Pi 3A+ was chosen for its lower cost and better availability. One other consideration was
that the device must be contained within a waterproof enclosure where active cooling
using fans would not be effective. Choosing more powerful hardware such as the Nvidia
Jetson devices may have led to overheating issues. Whilst processing power and, thus,
inference time, would be an obvious issue for the Raspberry Pi, the main obstacle was,
in fact, that many supposedly lightweight computer vision models would not fit into the
512MB memory of the Raspberry Pi 3A+ (alongside the OS, input data and pipeline-specific
structures) and failed to execute at all.

Several older, heuristic-based methods were included in the preliminary investiga-
tion [30–32] for the possibility of cheaper solutions given the limited computational re-
sources. Wolf [30] describes a method of frame selection that analyses sequences of frames
for relative motion. The heuristic is that stillness within the video implies the contents
or subject are to be focused on. Given the use case of this system and how animals will
be presented to the camera, this appears to be a perfect fit. However, the environment in
which this system will be used is highly dynamic. Events such as water splashing, shadows
moving, lighting conditions changing as clouds move, the boat rocking, ropes and pots
being moved within the scene, etc., caused frequent false negatives for detecting stillness in
our preliminary investigations. Elgammal et al. [31] propose a similar solution for back-
ground subtraction. Each frame is compared with a model of the scene background that is
updated frequently and regions of the frame that do not match this model can be classed
as foreground. Their solution is somewhat robust to acutely dynamic environments (tree
branches swaying), by actively suppressing false detections, but relies on a static camera
position. Background subtraction (and contour extraction) have been used for automated
counting [33–35] and are shown to work reliably in highly controlled environments with
specific conditions. Preliminary investigations indicated that our intended environment
would exceed the ability of this suppression technique as it is highly dynamic and a suffi-
ciently static camera cannot be guaranteed due to high-winds, the frame containing the sea
over the edge of the boat and the parallax effect of the boat rocking. Finally, the well-known
Viola–Jones method [32] was initially investigated as a cheap and efficient object detector.
However, it is known that this method is rotationally variant (fails to detect objects when
rotated) and must be ruled out because no guarantee can be made for the orientation of the
presented subjects.

As none of these classical image processing methods were found to be suitable, investi-
gation was aimed again towards learned methods that could run at a reasonable frame rate
on the target hardware. Many of the recent computer vision architectures intended for edge
devices leverage Depthwise Separable Convolutions [36,37] as a computationally cheaper
alternative to traditional convolutional layers. Simply put, the input data are analysed
‘depthwise’ for features using 2D convolutions (width and height), one colour channel
at a time. This stage is followed by ‘pointwise’ convolutions (1 × 1 pixels) that combine
the feature information from each channel in the previous step. Whilst, theoretically, the
number of operations overall is similar to that of traditional convolutions, breaking the
problem into a greater number of smaller computations is advantageous when using edge
devices. In MobileNetV2 [15] , this technique is also used as a part of a ‘Linear Bottleneck’
where 1 × 1 and 3 × 3 convolutions are used to reduce the number of channels until an
intermediate point, where it is then expanded, creating a bottleneck. This bottleneck is
known to improve information flow through the network which aids the training process,
as well as improving computational efficiency. The term ‘linear’ refers to the gradual
change in dimensionality between each layer rather than an extreme difference. Another
contribution presented in MobileNetV2 [15] is the ‘Inverted Residual’ block, which uses
a large feature space and compresses it, contrary to traditional residual blocks found in
ResNets [38]. By design, this reduction in dimensionality preserves the features of impor-
tance whilst discarding others. Each of these innovations improves efficiency for edge
devices by simplifying the computation performed at each step. Another important alter-
ation presented in MobileNetV3 [39] is the use of ‘Neural Architecture Search’ (NAS) to
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discover optimal hyperparameters and configurations of the previously mentioned blocks
(depthwise separable convolution, linear bottleneck, inverted residual).

Additionally, an implementation of YoloV5 was found that could run on the device
(when converted to tflite) for object detection but was exceedingly slow. To compromise
between performance and speed, it was decided that a cheap binary classifier would be
used against every input frame (taking advantage of the speed), whilst YoloV5 would only
be invoked on relevant, high-quality frames that are predicted to contain an animal (taking
advantage of the precision). This setup is described in further detail in Sections 2 and 2.2.

2. Materials and Methods
2.1. Hardware Setup

The solution is aimed to be as non-intrusive as possible so that it does not impede the
fishers during their work. For this reason, a camera system was chosen because this does
not require any interfacing with the user and only needs them to present the animal to the
camera for a brief period of time. Given that the camera will capture high-resolution video,
it was deemed unfeasible to transmit these data over a cellular connection (Global System
for Mobile communication—GSM) for processing on the mainland. Instead, the camera
system is powered by a Single Board Computer (SBC) that processes the video on the
fishing boat. After the Computer Vision system has finished processing, the resultant data
values can then be transmitted to a central system more efficiently. The SBC component is
based around a Raspberry Pi 3A+ which offers a low-cost and rapid route to producing a
flexible prototype. Given the limited computational resources of the device, it was decided
that the Computer Vision system would not run in real time. Instead, a scheduling system
has been implemented that detects how fast the boat is moving from GPS data. If the boat
is moving <4 knots, it is considered to be in the ‘fishing’ state and the device simply records
and stores the video data. If the boat is moving ≥4 knots or the GPS coordinates are within
a given radius of the port, then the boat is considered to be travelling or docked. In this
case, the device can switch to processing the stored video data.

The Raspberry Pi 3A+ includes hardware for the provision of the WiFi access point
which will be used for configuration and management. In addition to the Raspberry Pi
3A+, we have designed a Pi ‘hat’ printed circuit board (PCB) which plugs directly into the
main header and includes the other components of the system (GSM modem and Global
Navigation Satellite System (GNSS) receiver) as well as a small uninterruptible power sup-
ply (UPS), fuse and power conditioning systems. The PCB uses a SIMCOM 7600E modem
that provides the GSM and GNSS requirements via appropriate level-shifting and power
provision. An integral UPS uses a bank of ‘super capacitors’ to provide approximately 60 s
of runtime after power disconnection to allow a clean shutdown of the system when it is
unplugged. This assists with long term reliability as it reduces the likelihood of filesystem
corruption and other operating-system-related problems. The UPS has a significant in-rush
current requirement (5 A @ 12 V for 500 ms) upon start-up due to the need to rapidly charge
the super capacitors; this current is limited using a series resistor and rapidly reduces after
the first second of connection. The continuous current requirement after initial power-up
will reduce to less than 1 A after 1 min. The SBC/PCB assembly is mounted in a 3D-printed
retainer to prevent movement inside the main housing tube and the antennae for the GSM
and WiFi are housed internally in the main housing to reduce the risk of damage. The
camera is mounted in the bottom of the case behind an acrylic window. The housing
measures approximately 170–200 mm high and 90 mm in diameter. A system diagram is
given in Figure 1 and a photo is provided in Figure 2.
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Figure 1. A 3D model of the device with semi-transparent housing to show internal components.

Figure 2. A photograph of the capture device with top part removed showing the camera window
and power supply and switch.

2.2. Overview of Proposed Computer Vision Pipeline

As described in Section 2.1, when a fishing boat is moving or is at the port, the
onboard SBC (Raspberry Pi 3A+) is set to processing mode. Below, Figure 3 presents the
pipeline through which the stored video data will be sent during this phase. The first
stage is temporal segmentation, where each segment of video containing a single animal
is identified—we call these contiguous segments ‘contigs’. To achieve this, a lightweight
binary classifier, trained to predict whether a frame contains an animal or not, is used
to filter out all of the empty frames. Each frame now has an associated prediction value,
producing a ‘signal’ that spans across time. This signal is analysed to reveal where a single
animal enters and leaves the scene (a contig), ensuring that the animal is counted only
once. Next, the highest quality frame is selected from each contig to be used for further
processing. An Object Detector is applied to each of the selected frames to find a bounding
box around the animal and identify the species (crab or lobster in this case). The bounding
box is used to crop the image to the region of interest (ROI) and, finally, a Keypoint Detector
is used to predict the x,y position of learned features on the animal (e.g., left_eye, right_eye,
tail_end, etc.). In future work, these keypoints will be used to infer the dimensions of each
animal using common photogrammetry techniques, though that will not be covered in
this paper.
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Figure 3. The proposed computer vision pipeline that converts a series of frames into numerical data
that describes the dimensions and sex of each detected animal.

As the keypoints will be used to derive measurements, it is important that the res-
olution of the input images is high to retain precision. It is also crucial that none of the
preprocessing techniques distort the shape of the images used as input to the Keypoint
Detector because any measurements derived from them will be equally distorted. Above
all, this means that the input images cannot be resized as this would alter the object pro-
portions. However, this level of detail is not required for the other processing stages,
such as temporal segmentation and frame selection. To reduce computational cost, the
high-resolution frames are resized appropriately for these specific models. Similarly, all
frames are converted to greyscale at the beginning of the pipeline as this reduces the input
size by a factor of 3.

The camera system records at 25 fps, meaning a huge volume of the input data consist
of frames where no animal is present. This is the motivation for employing a lightweight and
computationally inexpensive binary classification model, rather than processing all of these
frames using the Frame Selector or Object Detector (comparably expensive models). Due to
this, the Frame Selector can instead be focused on learning the concept of representativeness
(frame quality, defined in Section 2.5), which benefits from a more sensitive architecture, as
it does not need to learn detection.

2.3. Data Preprocessing and Augmentation

Camera Data: As described in Section 2.2, the camera system records relatively high-
resolution images, with more pixels than are required for many of these computer vision
tasks. The preliminary experiments of this work showed that a 1280 × 720 image could
be reduced to 320 × 180 before the performance of the animal-detecting Binary Classifier
(MobileNetV3-small) was affected. Of course, this aspect is determined by the camera setup
and how large the subject is relative to the frame, as down-scaling will eventually render
the subject unrecognisable.

Furthermore, converting the images to greyscale was found to improve inference time
(fewer data to process) whilst having no effect on performance.

Training Data and Augmentation: In addition to the down-scaling and grey-scaling
described previously, each image in the training data was augmented in the following way,
based on reference [40]:

1. Randomly flip the image horizontally with probability 0.5;
2. Randomly flip the image vertically with probability 0.5;
3. Randomly blur the image with probability 0.3;
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4. Randomly shift all pixel intensity values +/−20% with probability 0.3
(simulates varied lighting conditions).

Each augmentation is applied sequentially with the given probabilities (uniform distribu-
tion), so it is possible for an image to have all augmentations applied to it (2.25% chance).
Note that no augmentation techniques were applied to the test data.

2.4. Animal Segment Detection

In this processing stage, temporal segments of the incoming video containing a single
animal are identified. Each animal should only be counted and measured once, but is
present in multiple neighbouring frames. The fishers are asked to present each animal to
the camera as they are removed from the pots or lines. We assume that each animal comes
into the frame and leaves again, just once. The computational cost of individual animal
re-identification would be too high for the intended application, and some small errors in
the counting and measurement are acceptable, provided the overall statistics are reliable.
Instead, a combination of binary classification and temporal filtering is used.

Of the binary classification models trialled (see Table 1), MobileNetV3-small [39]
was found to have the best inference time by far. MobileNet-V1 [36] simply used too
much memory for the target device and crashed on initialisation. TripleNet-S [29] was
able to load without issue and could perform a small number of inferences (6 samples
on average) before crashing due to lack of memory. EfficientNetB0 [41] was able to run
without issue and had the best memory footprint of any model, though was not fast enough
to be considered for this application. Note that EfficientNetB0 makes use of ‘inverted
bottleneck’ blocks, a variation of the inverted residual layers and linear bottlenecks shown
in MobileNetV3. Both models also make use of ‘squeeze-and-excitation’ [42], a method
of enhancing accuracy in CNNs with little computational cost. One possible reason that
MobileNetV3-Small is performing significantly faster than EfficientNetB0 is the replacement
of swish activation with h-swish, a cheaper approximation of swish (sigmoid) that uses only
simple operations such as multiplication and addition. Given that the TripleNet variants
all use standard ReLU activations, the model is even more expensive to run. In a scenario
where sufficient computational resources were available, TripleNet-S was found to run
faster than MobileNetV3-Small, however, in such a constrained setting (Raspberry Pi 3A+),
the model is rendered unusable.

Table 1. Candidate Binary Classification models compared by memory usage and speed. OOM
denotes that the model crashed during inference due to lack of memory in the target hardware.

Model Memory Usage (GB) Inference Time (s) FPS OOM

MobileNet-V1 5.5 n/a n/a Yes

TripleNet-S 1.5 20.132 0.050 Yes

EfficientNetB0 0.24 2.182 0.458 No

MobileNetV3-small 0.43 0.102 9.804 No

Given these results, an implementation of MobileNetV3-small [39] was chosen for
the lightweight Binary Classifier seen at the start of the pipeline in Figure 3. The model
was trained on a dataset of 7k images for 200 epochs with a learning rate of 0.001. The
frames were taken from sample videos recorded by the camera system aboard a variety
of fishing boats and augmented according to Section 2.3. The camera system was set up
to simulate the real use-case as closely as possible. In the training set, half of the images
are positive samples (animal present) and half are negative (no animal present). Examples
of positive and negative frames are shown in Figure 4. The testing data also comprise 7k
images, however, the true class proportions are preserved (6.5% positive samples). Note
that the input images are rescaled to 320 × 180 before passing into the classifier and, in
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order for the model to run effectively on the Raspberry Pi 3A+, it must be converted to
TensorFlow Lite format for inference.

Figure 4. Examples of positive frames (A,C) and negative frames (B,D) used to train the classifier.
The images are taken from above the processing area from a top down view. The appearance of the
processing area will be different on each boat. In these examples, the animals are moved from the
bucket on the left onto the horizontal plank for imaging. The boat’s railings and some tackle can be
seen across the top of the image. Animals in the bucket and in the tray below the processing area
cause additional difficulties for the computer vision system.

The drawback of using a lightweight model is, of course, the trade-off of accuracy. For
single images, the classifier was found to perform well, although for continuous videos the
model produced a very volatile stream of outputs, as shown in Figure 5. The animal was
in the frame continuously for the majority of the video, yet the graph shows many peaks
and dips. Since the limited memory of the Raspberry Pi 3A+ makes using a larger model
infeasible, methods of stabilising the output were investigated.

The architecture is identical to that described for ‘MobileNetV3-Small’ in reference [39],
except for the output layer. Initially, the model had one output neuron for each class (posi-
tive and negative) from which the argmax was taken, as is typical for Binary Classification.
As this produced a noisy and volatile output, it was decided that a single output neuron
would be used instead, leaving the value as a float between 0 and 1. This way, the stream
of outputs retain the ‘confidence’ information that would otherwise be lost. Simply round-
ing this value would only accentuate the intermittence of the signal within a contiguous
sequences of frames belonging to a single animal (‘contig’). Instead, it was found that
applying a smoothing function to the entire sequence of outputs followed by the use of a
step function would accurately reveal the contigs.

The signal in Figure 6 shows three distinct events. Taking the raw classifier output, it
would be unclear if these were three portions of video where many animals are presented
in quick succession or if there are truly three animals present and that the intermittent
troughs are simply noise. By applying the smoothing function and rounding the smoothed
values, a box is fitted around the three events confirming them as individual contigs, which
matches the ground truth data. A rectangular smoothing function was chosen for its sim-
plicity and low computational cost. The function was applied to the sequence twice to
cheaply approximate triangular smoothing but was found to yield better results than a
true triangular smoothing function because the different rectangular passes could be given
varying parameters, allowing finer control.
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Figure 5. Key frames from an example video alongside the classifier response.
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Figure 6. The noisy output of the classifier subject to two passes through a rectangular smoothing
function and step function.

Equation (1) calculates the mean of a single window and is repeated for each value in
the signal, effectively sliding the window across the signal:

f (n) =
∑

n+ 1
2 m

i=n− 1
2 m

Si

m
(1)

where m is the window size, n is the output index and S is the array of input signal data.
Indices that fall outside of S are taken as zero values. For a full pass over the signal, the
function f (n) is repeated for all indices in S.

On some videos, the second smoothing and step function were found to be redundant,
however, in cases where the positive samples lay particularly close to the start or end of
the video, a second pass would often help to identify the contig boundaries more precisely.
Choice of parameters for the smoothing function (window size) and step function (thresh-
old) are highly dependent on the dataset and intended use-case. During development,
factors such as video length, amplitude of classifier output, noisiness and distance between
contigs were found to have an influence on the optimal parameters. The particular setup
for our data was a smoothing pass with window size 20, followed by a threshold pass
with threshold parameter 0.01, followed by a second smoothing pass with window size
10, followed by a final thresholding of 0.5. These values were chosen by trial and error
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whilst viewing visualisations of the signals and observing their effect. We do not claim
that these values are optimal for the data but the results were found to be suitable for the
use-case. In future, it may be more appropriate to have a subsystem learn the ideal values.
However, given the low number of parameters in this case, manual experimentation was
more time-efficient.

2.5. Frame Selection

In the previous section, ‘contig’ boundaries were derived where all of the frames in a
single contig are associated with a particular animal. Here, the Frame Selector evaluates all
frames that are within a contig, estimating the quality of the frame based on a number of
factors (discussed later in this section). All frames that fall outside of the contig boundaries
are discarded. After the Frame Selector model has made predictions for all of the relevant
frames, the highest scoring frame for each contig (where frames are only compared against
frames in their contig), is collected and sent to the next processing phase.

Given that some of the animals must be viewed from multiple angles (e.g., lobsters),
the Frame Selector system is comprised of multiple Convolutional Neural Networks (CNN)
that each handle a different angle. The models take a single frame as input (rescaled to
320 × 180) and assign it a ‘representativeness’ score using a single output neuron. The
architecture of each CNN is identical, however, they are trained on different datasets that
label different views of the animals accordingly. Note that the images included in these
various datasets are also identical and it is only the associated targets that vary. The target
values ranged between 0 and 1, with a higher value corresponding to a more representative
frame. The data was labelled by hand (by the researchers) with consideration made for
the subject being relatively central in the frame, the subject’s distance from the camera, the
orientation of the subject, the occlusion of the subject, motion blur, and overall image clarity.
Cases where the subject is partially outside of the frame are labelled with an appropriately
low score. Figure 7 shows a number of example frames and their corresponding scores given
the previously mentioned criteria. Given the frames shown in Figure 7, the bottom-left
frame would naturally be selected and used in the following stages. Whilst the bottom-right
frame in Figure 7 is clear and the subject is central, the orientation (out-of-plane rotation) of
the subject is not suitable for the following processing stages.

Figure 7. Example frames and their associated ‘representativeness’ scores.
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Much of the literature on Frame Selection recommends training a relative quality
predictor [43–45] that compares two similar images and tasks the network with selecting
the preferred image. This improves sample efficiency significantly because images can be
used multiple times in different pairings to provide unique training inputs. However, this
method of training only appears to perform well with sufficiently deep architectures and
was found to be ineffective in an architecture appropriately lightweight for the low-power
hardware. Instead, the much shallower architecture shown in Figure 8 is proposed to
achieve reasonable inference time on the Raspberry Pi 3A+, trained with the traditional
image X to target y mapping. Another factor that may be causing relative quality estimation
to be ineffective is the low variance within a relatively small dataset, making differentiation
between two samples a difficult task. The models (top and bottom) were each trained for
200 epochs using 950 images of animals presented at the corresponding angle. A learning
rate of 1 × 10−5 was found to be optimal (for this volume of data).

Figure 8. Architecture for a single CNN of the Frame Selector.

For clarity, at inference time, the model will take each frame within a single contig
(one at a time) and assign each one a score. The highest scoring frame in the contig will
be taken as the ‘most representative’ frame of the animal (for that particular angle). This
process is repeated for each contig where frames are only scored against frames in the same
contig. At the end of this phase, one frame from each contig will have been collected for
each angle (e.g., 5 contigs, 2 angles = 5 × 2 = 10 shortlisted frames). These frames will be
used as input for the next phase.

2.6. Image Cropping and Keypoint Detection

As displayed in Figure 3, full-resolution versions (no downscaling) of each selected
carapace frame (top view) are passed to an Object Detector. The role of this model is to fit a
bounding box on the animal and crop the image to that size, removing excess background.
As briefly discussed in Section 2.2, Keypoint Detection should be performed on true-scale
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images to maintain precision, because scaling or transforming the image in any way will
introduce error into the inferred measurements. Whilst this means that downscaling is
not possible, the image can still be cropped to greatly reduce the computational overhead
without warping the image. YoloV5-small [46] was chosen as an implementation for Object
Detection and has not been modified. This model achieves an inference speed of 0.85 fps
on the Raspberry Pi 3A+, which is reasonable for this use-case considering that it will only
need to process one image per animal. Note, also, that the images are cropped to a fixed
size because the Keypoint Detector must have a consistent input shape. The crop size was
determined by taking the average dimensions of the bounding boxes selected by the Object
Detector when used on the dataset described in Section 2.4 without a fixed size. In the
case of this work, the crop size was 560 × 540 but this depends entirely on the dataset
used. The Object Detector also reports the class of object detected. Up to this stage in the
pipeline, the models (Binary Classifier and Frame Selector) simply generalise across all
animals as they are trained on mixed datasets. At this stage, however, it is important to
know the class because different keypoints will be used to measure the different animals in
the following phase.

The cropped frames can then be passed to the Keypoint Detector, for which the
architecture is shown in Figure 9. The model has 6 alternating convolutional and max
pooling layers before flattening to 1 dense layer and finally the output layer that contains
14 neurons, mapping to x and y values of the 7 named keypoints: ‘crab_left’, ‘crab_right’,
‘left_eye’, ‘right_eye’, ‘carapace_end’, ‘tail_end’ and ‘last_segment’. These keypoints were
selected by experts in the field of marine science with the intention of estimating the age
(correlated with the size) of each animal. The model used in this iteration of the pipeline
was trained for 4k epochs using a learning rate of 1e-3, the Adam optimiser (keras) and
Root Mean Squared Error (RMSE) as a loss function. The 1k samples were hand-labelled by
the researchers using VIA [47].

Figure 9. Architecture for the Keypoint Detector where the input size should correspond to the mean
crop size found during the object detector stage.

3. Results
3.1. Model Performance
3.1.1. Animal Segment Detection

The goal of this stage is to identify the start and end of a region that features a particular
animal based on the noisy and volatile prediction signal of the lightweight classification
model defined in Section 2.4. Figure 10 shows the smoothing technique applied to a test
video, previously unseen by the classifier. Note that the approximated contig is typically
larger than the ground truth region. This behaviour is caused by the choice of window
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size, a parameter of the smoothing function. Setting a smaller window size would cause
the smoothed curve to react to sharp changes more quickly. However, it was found that
oversized contig boundaries were beneficial as it ensured that all animal frames would
be collected.

Whilst it is difficult to evaluate this processing phase quantitatively, the goal of approx-
imating contig boundaries on test data was achieved with a 90% success rate on average,
where ‘success’ is when a contig encompasses exactly one animal. On the test videos used,
1/10 animals were not detected at all, though this may be due to them appearing in the
scene for a shorter period of time than average, causing the signal to be rounded down.
Whilst moving the subject too quickly or presenting the subject for too short a time can
result in animals being missed, the tests performed suggested that the method is robust
against false positives and very rarely over-counted. This implies that there is an upper
bound to the sorting speed (of the fishers) that the system can handle, but there is no
lower bound. One other failure case observed during testing was when two animals were
presented in quick succession, without a sufficient gap in between, causing a single contig
to span over both. This meant that only one of them would be counted and there is no
guarantee that the selected frames of different angles will correspond to the same animal.

Figure 10. Smoothing function and step function applied to Binary Classifier predictions to approx-
imate contigs. Diamond and square stem markers indicate the ground-truth timesteps at which
subjects enter and leave the scene.

3.1.2. Frame Selection

As discussed in Section 2.5, relative quality estimation was not found to be effective for
training the Frame Selectors in this scenario. For testing, however, presenting two frames
to the model and recording whether it predicted a higher score on the better frame was
found to be a good analogue for the use-case. This is because, at runtime, predicting the
precise quality of a frame is not important, so long as it awards a higher score to the better
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frame. Evaluating the models in this way does not penalise them for distance from the
ground truth quality as many metrics would. Using this method, the ‘top’ and ‘bottom’
Frame Selectors achieved 76% and 78% accuracy (selected the better image), respectively,
on the test data.

3.1.3. Object Detection

The training metrics of the Object Detector are shown in Figure 11. After training was
complete (50 epochs), the mAP@[0.5] and mAP@[0.5:0.95] (step size 0.01) [46,48] were 0.995
and 0.873, respectively. Despite the data having a severe animal–class imbalance, class
overfitting was not observed. The model was then tested on 50 unseen samples (Figure 12
shows an example batch) and achieved a mAP@[0.5:0.95] of 0.859. The very minor shortfall
between training and testing mAP confirms that the model is not overfitting the training
data. Note that the training and test datasets were comprised solely of frames that contain
animals, however, the datasets were a mixture of high and low quality frames. The results
shown here demonstrate the performance in the worst case (using low quality frames)
when, in practice, the pipeline will pass only the highest quality frames available. This
implies that the model may perform better than these results on average when used as part
of the pipeline.

Figure 11. Object Detector training metrics over 50 epochs.

3.1.4. Keypoint Detection

Figure 13 shows that the keypoint detector is correctly approximating the locations of
the keypoints. The model achieved a Mean Euclidean Error of 28.09 pixels, corresponding
to a 5.76% error given the size of the animals within the image on average. These results
are taken from 32 test samples. Considering that only a small portion of data has been
labelled for keypoints at this stage, and that the annotated data are heavily imbalanced in
terms of animal class and are primarily from a single location, the results are promising.
The low variance in this data has been somewhat mitigated by applying the augmentation
techniques described in Section 2.3, although the generalisation ability of the model was
still found to be lacking for certain test samples. It is believed that additional data being
collected in future will improve this model significantly.

3.2. Overall Pipeline

Considering that computational efficiency was paramount in this work given the
hardware limitations, a runtime analysis of the system was conducted. Figure 14 shows the
portion of runtime each model used when processing a single video from start to finish.
Note that the Binary Classifier and Frame Selector are not slower than the Object Detector
and Keypoint Detector because the latter two are only invoked for one frame per animal,
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whereas the Binary Classifier and Frame Selector are invoked on all frames or all in-contig
frames, respectively. Whilst the Frame Selector is not processing every single frame, as
with the Binary Classifier, quality estimation is a more nuanced and complex task than
classification. Given that the Frame Selector still processes a significant number of frames
(∼40% in our experiments), it is natural that it requires the most processing time. Table 2
shows a more detailed breakdown of the processing time for each stage and the number
of frames being processed in that time. These results further support the argument for
combining a weak yet lightweight classification model and a more complex object detection
model that is only invoked when necessary, as using the Object Detector alone would be
unfeasibly slow in the target hardware.

Figure 12. Object Detector inference on a batch of test samples.

Figure 13. Keypoint Detector inference on test data. Red markers show keypoints predicted by the
model and Green markers show ground-truth keypoints.
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Figure 14. Computation time breakdown for each model in the pipeline.

Table 2. Each component of the pipeline compared by processing time used and the number of
frames processed in that time.

Component Seconds of Processing Frames Processed FPS

Binary Classifier 300.02 3600 11.998

Frame Selector 410.54 1486 3.619

Object Detector 109.48 15 0.137

Keypoint Detector 5.71 15 2.626

4. Discussion

Section 3 has presented an evaluation of each component in the proposed pipeline
and demonstrates the performance of the system as a whole. These findings show that the
system is already performing well and highlights that the most important aspect moving
forward is data acquisition. Additional data are likely to improve the accuracy and, more
importantly, the generalisation (different lighting conditions, backgrounds, camera setups,
etc.) ability of each model. The Keypoint Detector has been the most difficult to train
and the dataset used for this model exhibited severe class (animal) imbalance that was
unavoidable at this stage. This will be addressed in future iterations of the work and
is expected to have a positive impact on performance. With regards to efficiency, the
pipeline is still being developed and it is likely that further optimisations can be made to
improve the overall runtime. The Frame Selector will be the most heavily scrutinised as
∼50% of the pipeline runtime is spent on this phase (see Figure 14). Model distillation and
quantization [49,50] will also be investigated as methods of improving inference time.

Taking a broad view of the pipeline as a whole, it may appear that the Binary Classifier
and Frame Selector at the beginning of the pipeline are functionally redundant and can
be subsumed by the Object Detector. This is theoretically true, however, using the Object
Detector on every single frame would be extremely inefficient as it is a much more complex
and computationally expensive model. On the target hardware, MobileNetV3-small runs
between 9.43 fps and 11.99 fps, whereas YoloV5 was found to run at ∼0.85 fps. From
this, it becomes obvious that running every frame through the Object Detector would take
significantly longer. The Binary Classifier, smoothing techniques and Frame Selector fulfill
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the task well for a fraction of the cost and, in this proposed system, the Object Detector
only needs to infer one frame per animal.

The application of this automated data collection could revolutionise the ability to
gather catch composition data that have sufficient spatial and temporal coverage to inform
stock assessment in these important fisheries. With a sentinel fleet, there is the opportunity
for monthly or more frequent data that represent the full spatial extent of the fishery and
the full diversity of the fleet, providing high-quality, rich data to inform a range of potential
stock assessment methodologies. Whilst this piece of work has focused on two species of
commercial importance in European waters, the concept and pipeline could be applied
to other fisheries globally where catch is handled in such a way that the animals can be
captured on the video.

5. Conclusions

This work has investigated the feasibility of a Computer-Vision-based animal counting
and measurement system on low-powered hardware such as a Raspberry Pi 3A+. The
prototype pipeline described in this work acts as a proof of concept and is a promising
foundation that will be built upon, as described in Section 4. The work will also be extended
to address the photogrammetry problem by inferring measurements based on the predicted
keypoints. Another aspect left to future work is the problem of automatically sexing the
animals. This will use the underside frames gathered at the Frame Selector phase of the
pipeline and will be fed into a simple binary classifier trained on images labelled by sex.
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