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SUMMARY 

T his study analyzes the phy logenetic and phy logeographic re lationships of the 

rattlesnake, Crotalus durissus, throughout its geographical range using several mo lecular 

markers. The Cyt b and ND4 fragments of the mtDNA were sequenced and ana lyzed. 

The results support the monophy ly of all South American C. durissus popu lations, 

inc luding populations that had previous ly been considered as separate species. T he Cyt-b 

and ND4 analys is indicates that the Central American and Mexican C. durissus 

populations are paraphyletic. 

The nuc lear intron 7 of ~-fibrinogen was a lso studied. However, it did not a id in 

resolving the phylogenetic re lationships of the populations ana lyzed. Amplified fragment 

length polymorphism (AFLP) ana lysis suggested phylogenetic patterns similar to those 

indicated by mtDNA analysis, except for sma ll inconsistencies in the topo logies. Pa irwise 

and partial Mante l tests showed a sign ificant correlation between AFLP and mtDNA 

phylogenies, taking into consideration the geograph ic distance effect. 

This study reveals that C. durissus recently dispersed into South America. The timing of 

the dispersal event is consistent with the hypothesis that this spec ies invaded South 

American 1-3 Mya after the uplift of the Panama land bridge. T he Central American 

lineages are much o lder and divergent, the products of orogenic evolution in Mexico. The 

implications for systematics include a reconsideration of the status of some taxa (C. 

unicolor and C. vegrandis) that c learly appear conspecific of South American C. 

durissus. The Mexican lineages are regarded as fu ll evolutionary species. 

The phylogeography of C. durissus in South America shows a stepwise co lonisation 

progress ing from a northern centre of origin in Mexico to northern South America, and 

across the Amazon Basin. The pattern consists of a set of nested c lades, in which any 

southern c lade is nested within a paraphy letic group consisting of more no1t hernly 

haplotype c lades. Low sequence divergence between populations from north and south of 

the Amazon rainforest is consistent with mid-Pleistocene divergence, approximate ly 1.08 

million years ago. This suggests that the Amazonian rainforests must have become 

fragmented or cons iderably constricted during that period. 
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Chapter 1. Introduction to Phylogeography and the geographical 
variation in Crotalus durissus 

1.1. Phylogeography 

Phylogeography is a subdiscipline of biogeography that takes into account the geographic 

distribution of taxa (generally species and populations) in establishing their phylogeny. 

Phylogeograph y describes and seeks to understand the geographic patterns that resu lt 

from divergence, leading to speciation (Avise et al. 1987; Avise 2000). The main goal of 

phylogeography is to draw inferences about organisms based on gene phylogenies and 

their distributions (A vise 2000). 

Despite that phylogeography as a science is still quite young (less than 20 years, Avise et 

al. 1987), the explosive amount of empirical research devoted to understanding 

phylogeographic patterns does not have precedent in the history of the biology (A vise 

2000). Among the reasons of this success, is that fact that phylogeography offers a 

testable arena where species distribution patterns can be evaluated using evolutionary 

processes as competing hypothesis (e.g. dispersal versus vicariance) at any level of the 

phylogeny of the target taxon. On the other hand, phylogeography is a uni fy ing science, 

incorporating the views of other biological di sciplines, making it a mul tidi sciplinary 

approach in evolutionary research. Likewise, phylogeography has contributed to a better 

understanding of the systematic relationships in several taxa, and has made a landmark in 

the species concept issue, introducing alternative concepts based on the homology of 

gene lineages (A vise et al. 1987; A vise 2000; Moore 1995; Templeton 200 I). 
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In the present thesis, I explore the origin of the Neotropical rattlesnake, Crotalus 

durissus, and test the hypothesis that C. durissus orginated in Mexico and Central 

America, and then dispersed to South America. I approach this problem using several 

molecular markers and different phylogenetic algorithms. Finally, I explore the 

implications of this study for the systematics of the C. durissus complex. 

1.2. Introduction to methods in phylogenetic inference 

There are different approaches for using molecular sequence data in the reconstruction of 

the evo lutionary relationships among genes and organisms. The most useful is the 

reconstruction of such relationships in the form of a phylogram or phylogenetic tree 

(Swofford et al. 1996; Page and Holmes 1998; Holder and Lewis 2003; Ha ll 2004). The 

steps necessary to build a phylogenetic tree from molecular data are: 

a) Alignment of sequences. The nucleotide or protein sequences from different taxa can 

be aligned using determ ined criteria of homology. In some cases, the homology of 

different sequences can be visualized and then the alignment can be done by hand. In 

others, multiple sequences offer some difficulties. Fortunate ly, there are several programs 

capable of producing al ignments of many sequences simultaneously. The most popular is 

CLUSTAL which has been integrated as part of the phylogenetic package MEGA 

(Kumar et al. 2003). Previous to tree building, the fina l alignment should be carefull y 

scrutinized in order to find congruence with previous and independent phylogenetic 

evidence and other assumptions of structure and function. Once one proceeds to tree

bui lding, the computer generated alignment wi ll be blind to any errors in a lignment (Page 

and Holmes 1998; Holder and Lewis 2003; Hall 2004). 
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b) Phylogenetic s ignal. Some aligned sequences are a lmost identical and are not sui tab le 

for phy logeneti c comparisons. Others are so divergent that sequence comparisons show 

lack of homo logy. Useful a ligned sequences for phylogenetic reconstruction are those 

that fa ll in between. These sequence a lignments will have a mixture of conserved and 

random positions and will be the most useful in phylogenetic inference (Hillis 1993). 

c) Cho ice of the tree building method. Once the a lignment is complete, the next steps in 

phy logenetic inference are to dec ide the most appropriate tree bui I ding method for a set 

of sequences. 

In order to build a phy logram or a phy logeneti c tree, there are severa l classifications of 

phy logenetic methods based on different criteria. This section wi II describe briefly the 

methods available and comment on some of the ir advantages and . For more detailed 

information on these and other methods see Ho lder and Lewis (2003), perhaps the best 

review o n traditiona l and Bayesian methods. 

Commonly, the tree building methods are c lassified as d istance based and character based 

methods. Distance based methods compute pa irwise distances according to a set of 

characte rs (e.g. sequences o r morphological characters). In the process, the actua l data is 

transformed to fi xed d istances, which are used in the building of the tree. In contrast, 

cha racter based methods use the actua l data w ithout any transformation, using a l I the 

cha racter information, and assuming an evolutionary mode of character change to build 

the tree (Swofford et al. 1996; Page and Ho lmes I 998; Ho lder and Lewis 2003 ; Ha ll 

2004). 
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These methodologies are classified on the basis of the approach used to infer phylogeny. 

For example, some methods focus more on the algorithms and while others focus on the 

phylogenetic criterion used in the analysis (Swofford 1996). An algorithm-based method 

generates a phylogeny by fo llowing a series of steps, whereas criterion-based methods 

define an optimali ty criterion for comparing alternative phylogenies and deciding which 

one is better. In cri teria-based methods, every tree is scored and used to rank the resultant 

phylogenies to provide information about the strength of suppo11 for that tree. A 

limitation of the criteria-based methods is that these methods do not prod uce exact results 

because of the large number of alternative phylogenetic solutions. The algorithmic 

methods are computationally much faste r than the criteria-based methods because they do 

not evaluate the trees generated. 

In practice, for both the algorithm or the phylogenetic approaches, there are fo ur 

methodologies currently used for inference and phylogenetic reconstruction (Holder and 

Lewis 2003): a) distance methods, b) parsimony methods, c) li ke lihood based methods. 

and d) Bayesian methods. 

a) Distance methods. These are based on the estimation of a pairwise-genetic distance 

matrix from the sequences under study, so that original data is transformed into distance 

measurements. One of these methods, the Neighbour-join ing (NJ) performs a cluster 

a lgorithm allowing unequal rates of molecular evolution among branches. This is 

performed by adding at each step of the analysis, a transformed distance matrix, adj usting 

the branch lengths between each pair of nodes, which is based on the mean divergence 

compared to all the nodes. One obvious disadvantage of this methodology is that a 

considerable amount of phylogenetic information is lost in the process. However, the fast 
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calculation of the distances and trees made these methods very popular in the past, but 

they currently are regarded as preliminary methods of phylogenetic reconstruction (Page 

and Holmes 1998; Holder and Lewis 2003; Hall 2004). 

b) Parsimony methods. These are character-based and use information on changes in the 

nucleotides at every site. Maximum Parsimony (MP) searches for the phylogeny that 

minimises the number of evolutionary steps required to explain the original data (Page 

and Holmes 1998; Holder and Lewis 2003; Hall 2004). The basic principle is that shared 

common characters are a consequence of common ancestry, and the simplest pattern is 

two descendents from one ancestor. Homoplasy arises from any violation of this 

assumption (Swofford et al. 1996; Page and Holmes 1998; Hall 2004). In MP the 

minimum number of steps to explain the data is the criterion for choosing the best tree 

among many possible. An algorithm is used to determine the minimum number of steps 

necessary for any given tree to be consistent with the data. That number is the score for 

the tree, and the tree with the lowest score is the most parsimonious tree among the 

universe of possible trees (Hall 2004). The main disadvantage of MP is its simplic ity. In 

some cases, different molecular evolutionary modes can produce the same set of 

sequences. 

c) Maximum Likelihood (ML). In order to infer a phylogeny, ML evaluates the 

probability that a chosen evolutionary model will have generated the observed sequence 

data. Phylogenies are then inferred by finding those trees that show the highest 

likelihood. The supposition is that a phylogenetic tree with a higher probability of 

reaching the observed data is preferred to one with a lower probability. A basic difference 

between Parsimony and ML is that parsimony attempts to minimize the amount of 
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evolutionary change required to explain the sequence data, while ML estimates the actual 

amount of change in sequences according to an evolutionary model (e.g. a molecular 

model of sequence substitution). The advantage of ML over other methods is that it is 

statistically wel l founded, performing evaluations of different tree topologies and using 

a ll the sequence information. Two relative disadvantages of ML are the computational 

effort required for many sequences, and the high dependence on the model of evolution 

used. Of available programs, Model Test is currently the most popular because it 

provides the user 56 models from which to chose the best fit for the sequence data 

(Posada and Crandall 1998; Holder and Lewis 2003). 

d) Bayesian inference. The relatively new Bayesian methods are part of the Likelihood 

methods fam ily of phylogenetic analysis (Huelsenbeck et al. 200 I; Holder and Lewis 

2003; Hall 2004), and are becoming quite popular because the methods produce both 

tree estimates and measures of uncertainty for the clades on the tree. Bayesian inference 

is quite similar to ML in that it uses a likelihood function and an explicitly stated model 

of nucleotide substitution. The preferred phylogenetic hypothesis is the one that 

maximizes the posterior probability. The posteri or probability for a hypothesis is 

proportional to the likelihood multiplied by the prior probability of that hypothesis. For a 

better theoretical background see Huelsenbeck et al. (200 I), Holder and Lewis (2003) 

and Hall (2004). Prior probabili ties of different hypotheses are based on an expected 

distribution of data. The prior probability distribution describes the probabi lity of 

different trees given previous expectations of the data; the posterior probability 

d istribution describes the probability of trees considering the prior distribution, the 

evolutionary model, and the sequence data. In most cases, the distribution of prior 

probabilities are specified as uninformative (e.g. uniform or flat priors), therefore most of 
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the differences in the posterior probability of hypotheses can be attributable to different 

I ikel ihood values. Among the advantages of Bayesian inference compared to other 

methods, is the fact that it provides measures of clade support faster than ML 

bootstrapping. Like ML, Bayesian methods allow complex models of sequence evolution 

to be implemented using all the information of sequence data. The likelihood functions 

for phylogenetic models are too complex to integrate analyticall y, so Bayesian analysis is 

based on an algorithm, the Markov chain Monte Carlo (MCMC) (Metropolis et al. 1953; 

Hastings 1970;). Bayesian inference utilizes the MCMC simulation in combination with a 

chosen evolutionary model (e.g. mode of sequence evolution) and the sequence data to 

produce a posterior probability distribution of trees. The distribution of trees is the main 

product of Bayesian phylogenetic analyses. Thus the va lues seen in Bayesian phylograms 

are the posterior probabilities for a particular clade (some times along with MP and ML 

bootstrap values), the probability that such a clade is the most likely given the pri ors, 

model, and data (Huelsenbeck et al. 200 1; Holder and Lewis 2003; Hall 2004). 

Bootstrapping 

Once the phylogram has been built, we need to know the realiability of the obtained tree, 

in other words, the extent to wh ich the sequence data suppo1ts each of the relationships 

depicted in the phylogram. For many years, the statistical method known as bootstrapping 

was used for this problem (Efron 1979; Felsenstein 1985; Goldman et al. 2000, Swofford 

et al. 1996; Page and Holmes 1998; Holder and Lewis 2003). Bootstrapping attempts to 

estimate confidence levels of in ferred relationships. The method consists of resampling 

the original data matrix with replacement of the characters. An algorithm is performed on 

each of these replicate data sets. This process is repeated until a new pseudoreplicate is 

produced with the same size as the original. Some characters will be sampled more than 
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once. The process is repeated many times and trees are re-built each time. When the 

bootstrap procedure is finished, a majority rule consensus tree is obtained from the 

optimal tree from each bootstrap sample. The bootstrap support for any internal branch is 

the number of t imes it was recovered during the bootstrapping procedure and is usually 

depicted at the node of each clade. A general assumption in bootstrapping is that each of 

the sites in the original data is independent of the others. Some researches consider 

bootstrap values as conservative measures of support (Hillis and Bull 1993; Zharkikh and 

Li 1992). Bootstrapping is a measure of the effect of the perturbation in sequence data 

sampling, so bootstrap values predict whether the same result wou ld be seen if more data 

were collected, rather then if the bootstrap result is correct (Holder and Lewis 2003). 

1.3. Molecular Markers: mtDNA and AFLPs 

Mitochondrial DNA 

The use of mitochondrial DNA (mtDNA) in phylogenetic studies has clarified the 

relationship between gene genealogies and the phylogeny of organ isms. The usefulness 

of mtDNA analysis has forced the addition of a phylogenetic perspective to studies of 

intraspecific evolutionary process and as a result, has provided an empirica l and 

conceptual bridge between the traditionally separate disciplines of systematics and 

population genetics (Moritz et al. 1987; A vise et al. 1987). 

Mitochondrial DNA has become increasingly popular in phylogenetic and population 

genetic studies with the development of a methodology for mtDNA isolation, the use of 

restriction enzymes to detect nucleotide differences, the development of PCR 

methodology and universal primers for amplification of mtDNA (Lansman et al. 198 1; 

15 



Kocher et al. 1989). Since the development of PCR amplification (Sa iki et al. 1988) and 

direct sequencing techniques, the use of mtDNA to infer phylogenetic relationships has 

increased dramati cally (Moritz et al. 1987; Edwards and Wilson 1990; Meyer et al. 1990; 

Carr and Marshall 199 1; reviewed in A vise 2000). 

The mtDNA marker is currently used widely, even though the assumption of se lective 

neutrality of molecular evolution (Kimura 1983; Gillespie 199 1) has been questioned 

(Nigro and Prout 1990; Singh and Hale 1990; Malhotra and Thorpe 1997). Substitution 

rates vary within a codon of protein-coding regions of the mitochondria l genome, 

suggesting the operation of selective constraints (Pal um bi and Kessing 1991 ), although 

the extent to which selection influences substitutions at silent positions is not clear 

(Gillespie 199 1 ). 

Several characteristics of mtDNA make it highly useful for phylogenetic analysis: First, 

the rapid pace of mtDNA nucleotide substitution offers advantages for phylogenet ic 

analysis at the microevolutionary level that can not be matched by any other nuclear 

gene. The approximate mutation rate in mtDNA is I 08/site/year (Brown et al. 1979, 

Ferris et al. 1983, De Salle et al. 1987) compared to I 09/site/year in nuclear genes. Most 

differences between mtDNA sequences are point mutations, with a strong bias for 

transitions over transversions (Brown et al. 1982). 

Second, mitochondrial genes are inherited as one linkage group in the absence of 

recombination (Hayashi et al. 1985, Hoech et al. 199 1 ). mtDNA is hap loid and 

uniparentally inherited (with some exceptions, see below) and thus the variabili ty is 

introduced by mutations alone. Compared to diploid nuclear autosomal genes with 
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bi parental transmission, the effective population size of mtDNA is one quarter of that for 

nuclear autosomal genes (Moore 1995). Therefore, an mtDNA tree is more likely to be 

congruent with a species tree due to a high probability of coalescence even when 

speciation events have occurred within short time-periods. 

AFLPs 

The amplified fragment length polymorphism (AFLP) technique takes advantage of PCR 

to amplify a limited set of DNA fragments from a DNA sample (Vos et al. 1995; Blears 

et al. 1998). The technique consists of a series of steps to screen genetic variation as a 

pattern of polymorphic bands and to analyze the resulting information using multivariate 

and grouping algorithms or phylogenetic tools. The first step consists of digesting the 

whole genomic DNA using 6 cutter restriction enzymes fo llowed by a PCR

preamplification using preselective primers. Then a set of anonymous specific primers is 

added and a final PCR amplification is performed where the polymorphic bands are 

screened in a polyacrilamide gel or automatic sequencer (Vos el al. 1995; Kardolus et al. 

1998; Seehausen et al. 2003; Ogden and Thorpe 2002; Creer el al. 2004; Sul livan et al. 

2004). 

AFLPs are quickly becoming popular for the study of genetic variation. Since the AFLP 

technique can be applied to a wide variety of organisms with no prior sequence 

information, the technique has the potential to become a universal DNA fingerprinting 

tool. AFLP can be used to distinguish even very closely related organisms, including 

near isogenic lines (Ogden and Thorpe 2002; Creer et al. 2004; Sullivan et al. 2004). 

The differences in fragment lengths generated by this technique can be traced to base 

changes in the restriction-adapter site, or to insertions or deletions in the body of the 
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DNA fragment (Vos et al. 1995; Kardolus et al. 1998). Most importantly, AFLPs have 

been shown to be reproducible and reliable (Vos et al. 1995; Bakkeren et al. 2000; 

Hodkinson et al. 2000; Kanzaki et al. 2000; Giannas i et al. 200 I; Parsons and Shaw 

200 I; Buntjer et al. 2002; Allender et al. 2003; Seehausen et al. 2003; Ogden and Thorpe 

2002; Creer et al. 2004; Sullivan et al. 2004). This is because limited sets of generic 

primers are used and these are annealed to the target under stringent hybridization 

conditions. AFLP data must be treated as dominant markers, since homo and 

heterozygotes cannot be distinguished unless pedigree studies are undertaken to 

determine the inheritance patterns of each band. However, the large number of bands 

gives a good estimate of variation across the entire genome (Giannasi et al. 200 I; Parsons 

and Shaw 200 I; Buntjer et al. 2002; Allender et al. 2003; Seehausen et al. 2003; Ogden 

and Thorpe 2002; Creer et al. 2004; Sullivan el al. 2004). 

1.4. The Crota/us durissus complex: Biogeography 

Any attempt to understand the phylogeographic processes that govern the amount of 

current variation in selected taxa must take into account the hi storical biogeography of 

the taxa in question. The genus Crotalus originated somewhere in Mexico and Central 

America (Armstrong and Murphy 1979; Kl auber 1972; Greene, 1997; Place and 

Abramson 2004); some authors propose the highlands of Mexico as the centre of 

rattlesnake di versification (Place and Abramson 2004). Probably the ancestor of the C. 

durissus complex was part of the vicariance events that occurred as consequence of the 

orogenes is of central Mexico and the Isthmus of Tehuantepec (Flores 1993; Graham 

1993). The event that favoured the dispersal of C. durissus in South America occurred 

over the past 3-3.5 Mya and is known as the Great American Interchange (Marshall et al. 
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1979; Stehli and Webb 1985; Bermingham and Martin 1998). This process started with 

the formation of the isthmian land bridge of Panama and occasioned an extensive 

intercontinental exchange of flora and fauna between North and South America. This 

event has been widely studied in geologic and biogeographic contexts and offers the 

opportunity to analyze the times of diversification and differentiation of the different 

lineages throughout the range of C. durissus. 

Based on its present time distribution, C. durissus cou ld have evolved in North America 

and subsequently dispersed into Central and South America after the formation of the 

lower Central American land bridge (Duellman 1978; Campbell and Lamar 1989; 

Bermingham and Martin 1998). The morphological differentiation in the South American 

rattlesnakes could be the consequence of forest contraction and isolation during the 

cycles of wet and dry periods of the Tertiary and Quaternary (Haffer 1997). Because the 

great forests of South America may not have existed until the late Pliocene-Pleistocene 

(Haffer and Prance 200 I; but see Colinvaux et al. 2000), it is possible that C. durissus 

was present in the region prior to this time and that most of the vicariance events of C. 

durissus resulted from the emerging Amazonian forests. 

Among rattlesnakes, the members of the Neotropica l group, the C. durissus complex, are 

the most widely distributed rattlesnakes and exhibit a considerable amount of geographic 

variation (Campbell and Lamar 1989, 2004), leading some authors to claim fu ll species 

recognition for some C. durissus populations in South America (Klauber 1972; Campbell 

and Lamar 1989). Add itionally, some authors inc lude C. molossus, C. basiliscus, C. 

horridus, as part of the complex, and C. enyo as a sister species (reviewed in Murphy et 

al. 2002). The thirteen subspecies of C. durissus recognized by Campbell and Lamar 
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(1989) have a discontinuous and scattered range distribution throughout Mexico, Central 

and South America, although most of subspecies are in South America (Fig I). The fact 

that C. durissus is the only rattlesnake in Central and South America, strongly suggests a 

recent dispersal event fro m the northern region of its distribution (Duell man 1978; 

Campbell and Lamar 1989). The Amazon basin disrupts the South American Crotalus 

distribution; there are rattlesnakes north and south of the basin, but no rattlesnakes in the 

forests of the Amazon basin. They are found in the Amazon drainage in savannah 

enclaves, e.g., Humaita, Amapa, Marajo, Serra do Cachimbo (Campbell and Lamar 1989; 

2004). 

The traditionally recognized subspecies (Campbell and Lamar 1989, Fig I. I) are as 

follows: C.d. tectonics, C.d. culminates, C.d. tracing, C.d. durissus in Mexico and 

Central America; C.d. humanness in Venezuela and Colombia; C. d. unicolor, Cd. 

vegrandis, C. d. curium, C.d. dryings, C.d. marajoensis, Cd. cascavella, C.d. 

collilineatus, and C.d. terrificus in the rest of South America. Recently (Campbell and 

Lamar 2004) modified the taxonomy of the group. In this thesis, I evaluate the 

modifications suggested by Campbell and Lamar (2004). 

The South American C. d. unicolor and C. d. vegrandis have been accorded full species 

status by other authors (Klauber 1972; Murphy et al. 2002). Both of these forms appear 

to be recently derived from an ancestor shared with the northern South American 

populations of C. durissus. Thus recognizing C. d. unicolor and C. d. vegrandis as fu ll 

species would make C. durissus a paraphyletic spec ies group. In order to maintian C. 

durissus as a monophyletic group, Campbell and Lamar ( 1989) consider C. d. unicolor 

and C. d. vegrandis to be subspec ies of C. durissus. 
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Central America 
D C.d. totonacus 
D C.d.durissus 
• C.d. cumanensis 
D C.d. tzacban 

South America 
• C.d. cumanensis 
• C. vegrandis * C. unicolor 
• C.d. ruruima 
D C.d. dryinas 
D C.d. marahoensis 
• C.d.cascavella 
D C.d. collilineatus 
• C.d. terrificus 

';, _,.. 

~, ..... : 
( .. 
\.._,__, 

Fig.1.1. Geographic distribution of C. durissus in Central and South America. 

Approximate ranges of the recognized subspecies are shown (Campbell and Lamar 

1989). 
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1.5. The C. durissus complex: Habitat 

C. durissus is usua lly found in semi-arid regions, including dry to very dry tropical forest 

and thorn woodlands, but also in relatively dry open areas within mesic forests (Campbell 

and Lamar 1989; 2004). Other habitats include tropical deciduous forests, pine-oak 

forest, arid tropical scrub, grass pine or palm savannas, and less frequently natural breaks 

in cloud forests. C. durissus is encountered infrequently in tropical dense forest, and it is 

largely absent from rainforest. 

Activity patterns vary according to latitude and habitat. In North and Central America, 

activity depends largely on season, due to hibernation in winter (Klauber 1972; Saloma.a 

el al. 1997). The rattlesnakes' prey consists mainly of rodents and birds. Some degree of 

ontogenetic change in diet has been observed in the North and Central America 

populations, but in South America this pattern is absent (Salomao et al. 1997). 

1.6. The C. durissus complex: Morphological and colour pattern variation 

For the most part, the various subspecies of C. durissus have been distinguished on the 

basis of size, colour, and to a lesser extent, scale pattern (reviewed in Klauber 1972, and 

Campbell and Lamar I 989). Body s ize varies geographically. The rattlesnake commonly 

reaches about I 000 mm (and much more) in length in most of the known distribution. but 

some South American populations apparently are dwarfed, including those in the inland 

savannas and highlands of Venezuela and Guyana and on the island of Aruba, where the 
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largest specimens do not exceed I m in length. C. durissus exhibits a considerable 

amount of ground colour variation, which hinders the taxonomy of this species. 

As a broad generality, the ground colour of snakes from densely forested regions, such as 

the Pacific lowlands of Guatemala or parts of northern South America, tends to be 

considerably darker than in snakes from more arid regions, such as the Rio de las Balsas 

or Rio Motagua valleys in Mexico and Guatemala, respecti vely (Klauber 1972; Campbell 

and Lamar 1989). Other characters like body blotches, head pattern, parave11ebral stripes, 

and head scutellation exhibit variation, but the extent and amount by which these 

characters help to distinguish the different populations of C. durissus must be explored. 

The morphological differentiation of the populations in South America could be a 

consequence of the contraction and isolation of forest blocks near areas of surface relief 

in the periphery of early Amazonia during the cycles of wet-dry climatic periods of the 

Tertiary and Quaternary (Haffer 1997). Because the great forests of South America did 

not exist until the late Pliocene-Pleistocene, it is possible that C. durissus was present in 

the region prior to this time and that most of the vicariance events of C. durissus resulted 

from the emerging Amazon forests. 

1.7. The C. durissus complex: Venom variation 

In general, snake venom varies at the species and subspecies leve l and several studies 

have shown intraspecific variation in New World Crotalines (for rev iews see: Daltry et 

al. 1997; Chippaux et al. 199 1; Warrell 2004). This is of considerable im portance to 

snake bite treatment because venom therapy depends greatly on the antivenom, so the 
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antivenom prepared for one variant might not provide adequate protection against a bite 

by another (Daltry et al. 1997; Theakston 1997; Warrell 2004). 

Several types of venom variation in the Neotropical rattlesnakes have been reported, 

including geographic variation (Schenberg 1959; Jimenes-Porras 1964; Warrell et al. 

1997; Daltry el al. 1996; Francischetti et al. 2000; Saravia et al. 2002), ontogenetic 

variation (Theakston and Reid 1979; Gutierrez et al. 1990; 199 1; Minton and Weinstein 

1986; Saravia el al. 2002), and sexual variation (Gutierrez et al. 1990; 1991 ). 

The venom of the rattlesnake C. durissus has been reported to have a myotoxic and 

neurotoxic action characterized by the release of myoglobin from damaged skeleta l 

muscle into serum and urine accompanied by intravascular haemolysis (Cupo et al. 

1988). In South American, variation is ev ident in the symptoms caused by C. durissus 

bites (Barrio and Brazil I 95 1; Saravia et al. 2002). Two of the components of C. 

durissus venom, Crotamine and Crotoxin, have been studied extensively. Crotarn ine is a 

phospholipase myotoxin that induces paralysis and myonecrosis in skeletal muscle cells 

(Oguiur et al. 2000; Warrell 2004). Crotoxin is a neurotoxin consisting of a 

phospholi pase and an acidic A component (crotapotin), which has a triphasic action, 

initia lly inhibiting, then fac ilitating, and fina lly blocking the release of acetylcholine in 

the cell membrane (Marlas and Bon 1982; Warrell 2004). 

Several studies have demonstrated that there is geographica l variation in the presence of 

Crotamine and Crotoxin C. durissus venoms (Schenberg 1959; Jimenes-Porras 1964; 

Warrell et al. I 997; Daltry et al. 1996; Francischetti et al. 2000; Saravia et al. 2002). 

Schenberg ( 1955) analyzed the distribution of the Crotamine in South America. 
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Crotamine is absent from populations in north and eastern Brazil, present in northwestern 

Sao Paulo State, and adjacent areas of Parana, and also present in Argentina. Some 

rattlesnake populations in south-eastern Sao Paulo State and Minas Gerais exhi bit 

Crotamine while some do not, indicating a great degree of variati on (Schenberg 1955; 

Warre ll 1997). 

Saravia et al. (2002) performed a comparative study of the electrophoretic profi les of the 

venoms of adult specimens and newborns of C. durissus, from Guatemala, Costa Rica, 

Venezuela and Brazil, and found variation in the presence of Crotamine. Using 

experimental mice, they found that venoms of C. d. /err{ficus, C. d. cumanensis (Brazi I 

and Venezuela) and newborn C. durissus (Costa Rica) induced higher lethal and 

myotoxic effects than those of adult C. durissus (Guatemala and Costa Rica). In contrast, 

adult C. d. durissus and C. d. cumanensis venoms induced haemorrhage, whereas venoms 

of C. d. terrijicus and newborn C. durissus lacked this effect. All venoms showed a 

coagulant effect in plasma, the highest activity caused by the venom of newborn C. d. 

durissus. 

The high toxicity of South American and newborn C. durissus venoms is related to the 

presence of high concentrations ofCrotoxin (Saravia et al. 2002; Warrell 2004). Crotaxin 

is less variable than Crotamine (Rangel-Santos et al. 2004). The main toxic 

characteristics of Crotoxin (CTX) and CB fraction were evaluated for three subspec ies, 

C. d. cascavella, C. d. collilineatus, C. d. terrificus. The venoms presented similar 

chromatographic profil es, indicating no intraspec ific vari ation in Crotoxin (Rangel

Santos et al. 2004). 
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Ontogenetic changes in venom have been detected in the e lectrophoretic patterns of C. 

durissus (Gutierrez et al. 1991 ; Saravia el al. 2002). Costa Rican populations of C. 

durissus show ontogenetic changes from neurotoxic venom in juveniles to hemotoxic 

venom in adults. In contrast, both juveniles and adults in the southern Brazil have 

neurotoxic venom (Gutierrez et al. 1990; Minton and Weinstein, 1986). Toxic ity 

commonly decreases with increasing size, leve ling off around maturation, and coagulant 

activity generall y decreases with size (Gutierrez et al. 1990, 199 1; Saravia et al. 2002; 

Warre ll 2004). Finally, proteolytic activity has been observed to increase with snake body 

size (Gutierrez et al. 1991 ). 

1.8. Research goals 

The goals of this research are: 1) To provide a phylogeographic explanation fo r the 

geographic distribution of the C. durissus complex, using several molecular markers and 

analytical tools. 2) To determine the biogeographic events that produced the present time 

geographic distribution of C. durissus. 3) To compare the phylogenetic information 

provided by different molecular markers. 
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Fig 1.2. Sampling localities for the C. durissus complex (See the published paper in 

Appendix I for further details). 
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Chapter 2. Molecular phylogeography using mitochondrial 
Cytb and ND4 sequences 

2.1. Introduction 

The use of mitochondrial DNA (mtDNA) genes to infer phylogenies and resolve 

systematic problems in the sub family Crotaline has recently been a subject of intense 

research interest (e.g., Kraus et al. 1996; Parkinson 1999; Vidal et al. 1997, 1999; WUster 

et al. 2002). Many studies have focused on the analysis of restricted groups and at the 

intraspecitic level (Salomao et al. 1997, 1999; WUster et al. 1997, 1999, 2002; Zamudio 

and Greene 1997; Pook et al. 2000; Creer et al. 200 I; Puorto et al. 200 I). Using the 

cytochrome-b (Cyt-b) mitochondrial gene, a recent study of South American pitvipers 

suggested that the continent was invaded by at least 4 independent lineages: Bothriechis 

schlegelii, Porthidium, Crotalus durissus, and the ancestor of Bothrops (WUster et al. 

2002). The genus Bothrops diversified in South America, while the remaining genera 

were the consequence of more recent colonisations. The low levels of sequence 

divergence in the South American Crotalus populations led the authors to hypothesize 

that the species had recently invaded South American (WUster et al. 2002). This had to 

have happened after the uplift of the Panama land bridge, estimated to have occurred 

approximately 3.5 Mya (Coates and Obando 1996). 

In this chapter, the phylogenetics and phylogeography of C. durissus is investigated using 

two mitochondrial genes, Cyt-b and ND4, and by sampling numerous C. durissus 

populations throughout its geographic range. The benefit of analyzing two or more genes 
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is the greater number of informative characters, which increases the accuracy of the 

algorithms and the resolution of the phylogenetic reconstruction. The fo llowing questions 

are answered: 

• Are the South American C durissus populations monophyletic? 

• Did C. durissus recently disperse in a southern direction from Mexico and Centra l 

America into South America? 

• Are Cd. unicolor and C d. vegrandis, often regarded as separate species, distinct 

historical lineages? How they are re lated to other members of the C durissus complex? 

• How does the phylogeographic structure of C durissus in South America com pare to 

the phylogeographic structure within Central America? 

• Is there genetic differentiation between the populations north and south of the Amazon 

basin? 

2.2. Materials and Methods 

Fieldwork 

A set of 120 C durissus blood a liquot samples were assembled. T he samples came from 

several sources, including samples I personally collected in the field, and samples 

obtained from zoos and private collections (Fig 1.2). In add it io n, C molossus and C. 
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basiliscus samples were collected in the field and obtained from zoos and other sources. 

See Appendix 2 for a complete list of samples, locations, and sources. 

For field sampling, the snakes were collected using a herpetological hook and then 

transported to the field camp in cloth bags. The blood was obtained by a tail puncture 

using a syringe. Approximately 0.1-0.2 ml of blood was extracted and then flushed into a 

cell-lysis so lution ( I 00 µI of blood in 2-3 mis 2 % SDS, 100 mM Tris, I 00mM EDTA). 

After the blood samples were extracted, the snakes were released at the point of capture. 

DNA isolation 

Whole genom ic DNA was extracted using a standard proteinase K protocol (Sambrook et 

al. 1989). The proteinase K samples were incubated at 60 °C overnight and then 

transferred to ice. The samples were then incubated with RNase for 30 min. at 37 °C, and 

then transferred to ice. Ice-cold 5M ammonium acetate and centrifugation were used to 

precipitate, and then pellet the proteins. DNA was then precipitated from the resul ting 

supernatant with ice-cold isopropanol, and centrifuged to form a pe llet, which was 

washed with 70% ethanol, air-dried and then dehydrated with TE (Buffone 1985). 

Extracts were visualised by UV radiation on circu lar 25ml, 1.4% agarose plates 

incorporating 3µ1 ethidium bromide. 

PCR 

The Cyt-b and ND4 fragments of the mitochondrial DNA were amplified from 1-2 ml 

DNA extracts using modified primers. For the Cyt-b fragment (ca 600 bp), the primers 

correspond to positions 14977 and 15735 of the total mtDNA sequence of Dinodon 
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semicarinatus (Kumazawa et al. 1998). The primer sequences were 5 ' -TCA AAC ATC 

TCA ACC TGA TGA AA-3' (L-strand modified from Kocher et al. 1989), and 5'-GGC 

AAA TAG GAA GTA TCA TTC TG-3' (H-strand, a modified version of primer MYZ 

16 of Moritz et al. ( 1992) . For the ND4 fragment ( ca 500bp ), the following primers were 

used: ND4 (5' -CAC CTA TGA CTA CCA AAA GCT CAT GTA GAA-3'), and Leu (5 ' 

ACC ACG TTT AGG ITC A TT ITC A TT AC-3 ') of Arevalo et al. ( 1994). 

The 50 ml PC R reactions were performed using a 50 ng template, 0.52 mM primers, 20 

mM tris-HC I, 0.5 mM MgCI, 0.4 mM dNTP, 2 units of Taq DNA po lymerase, and 0.5% 

DMSO. Amplification conditions involved an initial denaturation step of 4 minutes at 94 

°C, 35 cycles of denaturati on for 1 minute at 94 °C, primer annealing for I minute at 50 

°C, extension for 2 minutes at 72 °C, and finally, an extra extension step for 3 minutes at 

72 °C, cooling to 4 °C. The PC R products were concentrated by pooling 2-3 products per 

sample, and purified using the GenElute TM (Supelco) nuc le ic acid purification kit. 

Sequencing 

A single stranded automated sequencing method was carried out for both fragments using 

IO µI reactions containing a 50 ng PCR template, 0.16 pmol of 5' primer, and the Big 

Dye Terminator Ready Reaction Mix (AB!). The reaction mix was cycled in a PE-AB I 

9700 Thermal Cycler for 30 seconds at 94 °C, 50 cycles of IO seconds at 96 °C, 5 

seconds at 50 °C, 4 minutes at 60 °C, and then cooled to 4 °C. The samples were 

precipitated using 2M sodium acetate and I 00% ethano l, and the resulting pellet was 

washed in 70% ethanol and air dried. The samples were suspended in 4 µI of a dextran 

blue EDTA/formamide loading buffer, and I µI of th is mixture was loaded into a 5% 

long ranger gel in Ix TBE running buffer. The samples were ana lysed on an AB I 377 
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DNA Sequencer, generating a chromatogram and a text sequence. The sequences were 

read and aligned by eye to one another using the Chromas 1.5 1 package (Technelsyum 

Pty Ltd, 1988). 

Preliminmy sequencing analysis 

Pairwise sequence comparisons to determine the distribution and amount of variation in 

the sequences of a distance based phylogeny were made for the Cyt-b and ND4 data sets 

separately using the Molecular Evolutionary Genetics Program (MEGA, Kumar et al. 

1993). Levels of saturation at the first, second, and third codon pos itions were assessed 

from plots of uncorrected pairwise sequence divergences against Tamura- Nei (Tamura 

and Nei 1993). Pairwise divergences for transitions and transversions, in which 

deviations from the isometric lines represent a qualitative measure of degree of saturation 

were obtained (Zamudio and Greene 1997). 

Skewness (gl ) statistics were calculated for both the Cyt-b and ND4 sequences from 

randomly generated trees in PAUP 4.0 (Swofford, 1998) to di stinguish phylogenetic 

signals from random noise in the sequences. This was based on the assumption that the 

distribution of tree lengths of all tree topologies provides a sensitive measure of the 

phylogenetic signal. Data matrices with phylogenetic signals produce tree-length 

distributions that are strongly statistically skewed to the left, whereas those composed of 

random noise are more symmetrical (Hil lis and Huelsenbeck 1992). 

Aligned sequences for both Cyt-b and ND4 were subjected separately to parsimony 

analyses and then combined in an analysis usi ng PAUP 4.0. Bootstrap analysis was 

carried out for all the parsimony analyses (Felsenstein 1985). An assessment of the 
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branch support and tree stability of the generated topologies was performed using the 

Bremer ( 1994) method, basically a count of the number of steps necessary to disassemble 

a c lade, creating a polytomy. Bremer values were calculated using the Autodecay 

program (Eriksson 200 I). 

ln order to calculate the best model of DNA substitution for the different mtDNA 

regions, and to test whether the combined Cyt-b/ND4 modes of substitution were 

congruent, an analysis with MODEL TEST was performed (Posada and Crandall 1998). 

This program compares the different nested models of DNA substitution in a hi erarchical 

hypothesis-testing framework. Due to computational limitations, small sets of sequences 

were chosen for both the Cyt-b and ND4 regions separately. Matrices of like lihood 

scores were obtained using PAUP 4.0b2 and then analyzed with MODEL TEST. 

Once the substitution model was found, Maximum Likelihood analysis (ML) was carried 

out in PAUP 4.0 for the combined Cyt-b/ND4 sequences. Addition of sequences was 

random with three replicates for ML. Because of the amount of time it required to 

perform bootstraps on the trees using ML analysis, confidence values to suppo1t the 

different branches were calculated by the MrBayes program (Huelsenbeck and Ronquist 

200 1 ). MrBayes performs Bayesian estimations of phylogenies, based on the posterior 

probability distribution of trees. MrBayes program uses simulation Markov chain Monte 

Carlo (MCMC) to approximate the posterior probabi lities (Huelsenbeck and Ronquist 

200 1). The MrBayes gives posterior probability values that are comparable to bootstrap 

values for every consensus tree that is obtained by the program (Hall 200 I). The trees 

obtained by the PAUP 4.0's maximum likelihood search for each tree data set were 

specified in the execution file and constraints were assigned to the different groups. By 
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specifying the tree and constraints, MrBayes executed the search together with the best 

tree obtained with PAUP. A tree with the same topology but with now w ith posterior 

probability values was obtained at the end of the search. 

Wilcoxon s igned-ranks tests (Templeton 1983) were used to test whether the c ladograms 

predicted by alternative phylogenetic hypotheses were signifi cantly different from the 

most-parsimonious tree, or whether differences in topology were a result of chance. 

Heuri stic searches were performed on the un-weighted, combined Cyt-b and ND4 

dataset, constraining the analysis to retain only the most parsimonious trees compatible 

with the alternative phylogenetic hypothesis to be tested. Differences in tree length 

between each of the constrained trees and the most-pars imonious trees obta ined from the 

unconstrained analysis were tested for s ignificance using Wilcoxon s igned-ranks test. 

The following hypotheses were tested (table 2.2): 

a) The South American populations of C. durissus are monophyletic. 

b) The conventional subspecies of C. durissus are monophyletic 

c) There is genetic differentiat ion between the populations north and south of the 

Amazon basin. 

2.3. Results 

A total of 120 clear sequences of the Cyt-b (62 sequences) and ND4 (58 seq uences) 

regions were a ligned. No stop codons were found in either region, and the levels of 

saturat ion at the first, second and third codons for transversions and transitions were 
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similar (Fig 2. 1). Tree length distribution, determined from a random sampling of un

weighted trees, was significantly skewed to the left in both regions (Cyt-b, g I = -0.6492, 

p < 0.0 1; ND4, g I = -0.6262, p < 0.0 1 ), indicating phylogenetic signal in the data (Hillis 

and Huelsenbeck 1992). The analysis inc luded 36 C. durissus populations that 

represented the species' geographic range and eleven recognised subspecies. Sequences 

from C. molossus, C. basiliscus, C. cerastes, C. scutulatus, and C. viridis were also 

included. 

For the analysis of the sequences, 6 14 bp were al igned, including the out-groups C. 

cerastes and C. v. cerberus, of which 2 13 bp (30.9%) were variable among the laxa, and 

172 sites (28.0 I%) were parsimony informative. Sequence divergences based on the 

Kim ura 2-parameter ranged between 1.03% -I 0.63% among in-group taxa, 5.8% between 

C. molossus populations, 6.69-5.66% between C. molossus and C. basiliscus, and 1.03 % 

- 9.78% between the C. durissus populations (Table 2.3). 

For the ND4 sequences, 501 bp were aligned, includi ng the out-groups C. scutulatus and 

C. viridis, of which 184 sites (36.72%) were variable among the taxa, and 142 (28.38%) 

were parsimony informative. Sequence divergence ranged between 1.05% - 9.84% 

among in-group taxa, 5.6% between C. molossus populations, 5.7-5.8% between C. 

molossus and C. basiliscus; and 1.02 % and 9.50% between the C. durissus populations. 

I was unable to obtain both Cyt-b and ND4 sequences from all the sampled populations. 

For the distance and parsimony analysis where I analyzed Cyt-b and ND4 combined, I 

was only able to include the 36 populations where I had been able to obtain both 
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sequences. Sequence divergence ranged between 0.0% and 0.04% in the Cyt-b region 

and 0.0% and 0.08% in the ND4 region among individuals of the same location. 

The analysis of the combined sequences aligned 1 I 15 bp including the out-groups C. 

scutulatus and C. viridis, of which 375 sites (33.63%) were variable among the taxa, and 

322 (28.87%) were parsimony informative. The combined sequences showed that 

sequence divergence ranged between 1.6%-11.09% among in-group taxa, 6.86% between 

C. molossus populations, 5.69-5.8% between C. molossus and C. basiliscus, and 1.02 %-

11.27% within the C. durissus populations (Table 2.3). In the South American taxa, the 

sequence divergence of Cyt-b and ND4, both individually and combined, was 

consistently low, with a maximum pairwise divergence of 1.4%. On the other hand, 

divergence among the Centra l American lineages ranged up to 8.0%. 

The distance based tree using the neighbour-joining method and Tamura-Nei analysis 

grouped all the South American populations and most of Mexican C. durissus 

populations into two clades. The C. totonacus sequences were grouped with C. molossus 

and C. basiliscus. This was true for the Cyt-b and ND4 sequences both individuall y and 

combined (Figs. 2.2-2. 7). The bootstrap analysis for the separate regions strongly 

supports the existence of a single South American C. durissus clade. From the bootstrap, 

it is quite clear that the Central American and Mexican Crotulas taxa are paraphyletic 

(Figs. 2.2-2. 7). 

The branch and bound analysis using maximum parsimony as criterion generated a total 

of 12 equally parsimonious trees for Cyt-b (tree length = 380; Cl =0.6658; HI= 0.3342; 

RI =0. 7617; RC = 0.5071 ). The analysis of ND4 produced 20 equally pars imonious trees 
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(tree length =434; Cl =0.5115; HI= 0.4885; RI =0.8203; RC= 0.4196). The bootstrap of 

the combined consensus tree (the tree with both Cyt-b and ND4) is shown in Fig. 2.6. 

The existence of a single South American clade is strongly suppo1ted by this analysis. 

Less supported were the C. durissus- C. culminatus, the C. totonacus- C. molossus, and 

the C. tzabcan South American clades, suggesting that the South American Crotalus are 

indeed monophyletic. 

The Bremer method in the maximum parsimony analysis also suppo1ts the monophyly of 

South American Crotalus. The relationships among the South American rattlesnake 

populations were weak, strongly supporting a single South American clade (Fig 2.6). In 

Central America and Mexico, the Bremer method supports the idea of C. culminatus-C. 

durissus and C. totonacus- C. molossus clades, but the relationships inside these clades 

are still relatively unclear. 

The MODELTEST program identified as optimal the HKY85 model with gamma 

distribution for the ML analysis. The HKY85 model does not assume equal base 

frequencies and accounts for the difference between transitions and transversions with 

one parameter (Hasegawa-Kish ino-Yano 1985). Bootstrap values for the tree obtained by 

this analysis are consistent with the genera l pattern of monophyly in South America and 

paraphyly in Central America (Fig 2. 7). Again, a single South America clade 1s 

supported, but in this case, the Central America clades had weak bootstrap va lues. 

The Wilcoxon signed-ranks tests supported the idea of a monophyletic the South 

American clade as compared to the paraphyletic populations of Central America (Z= -

0.06, P>0.05). The tests do not support the conventional species and subspecies 
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categorization of the South American rattlesnakes (Z= -5.2, P<0.003), indicating that 

there is only one South American species. Furthermore, the tests indicate that the 

rattlesnake populations north and south of the Amazon Basin are genetica lly similar, or 

monophyletic (Z= - 4.8, P<0.005). 
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Table 2.1. Parsimony informative positions of the Cyt-b and ND4 combined regions of the mtDNA or C. 

durissus, C. molossus, C. basi/iscus and the outgroups C. scutu/atus and C. viridis. 

CscutulNM 

CvdsCO 

CvdsAZ 

CDtotoTamp 

CDtotoQuet 

CDculPuebl 

unicolor 

vegrandis 

CDDcateMX 

CBBguadal 

111 222 223 344 44 4 455 555 555 555 666 666 666 666 666 666 
145 2 49 012 250 803 335 834 456 678 889 000 222 233 444 555 577 
008 469 820 467 201 377 434 705 670 696 127 036 925 14 7 036 914 

CAA CTC ACA CTT CCC ACC TTA CAA TTA TTA AAT AAA CTT CAA GCT CTC 

T . G .. T 

T . G . . T 

. c . 

.c . 

.c . 

.c . 

c .. cc . 
c .. cc . 

C .. 

C . . 

C . . C . . G . . . G . . C . A . . . T . AC . 

C . . C . . G . . . G . . C . A . . . T . AC . 

T . G . CT . T .. C . T .. T .. CC . . T . CC . CA . G .. GGG . CC AGG AT . GC . 

T . G ACT 

T . G ACT 

TCC T . . C . . CCG .. G C . G C . . G. . GGG 

TCC T . . C . . CCG .. G C. G C . . G . . G .. 

TGG AT . AC . 

TGG AT . ACT 

T . G ACT . T .. C. TT . 

. TG .. T .. G TC . 

CC . AC . CC . CA . G .. G .. T ... GG AT . AC . 

C? . CC . A .• . CG . A . T .. AT .. C. 

CDcolBABoaBZ T . G ACT TCC T . . C . . C . G .. G C . G C . . G . . G .. TGG AT . AC . 

CDTGuarBZ 

CDTSLParBZ 

CDTRosBZ 

CDTPindBZ 

CMMaricpAZ 

CMSnBe rnAZ 

CMLUvasNM 

CMQue r t MX 

CDculixtMX 

CDDChisMX 

CDtzBez 

CMOOaxMX 

CDl?LaBZ 

CDRCasBZ 

CDBelmBZ 

CDGuanBZ 

CDcu l MorMX 

T . G ACT G .. TCC T .. CT . C . G T . G C . G C .. G .. G .. . C? TGG AT . AC . 

T . G ACT G .. TCC T .. C .. CCG .. G C . G C .. G .. G .. . C . TGG AT . AC . 

T.G ACT 

T . G ACT 

TCC T . . C . . CCG .. G C . G C . . G . . G . . 

TCC T . . C . . CCG .. G C . G C . . G . . G .. 

T . G .. T .. G . CC T . . C . T . CG .. G C . T G. C .. G 

C . T G. C . GG 

C .. GGC . GG 

TGG AT . AC . 

TGG AT . AC . 

T .. ATC AC . 

T .. ATC AC . 

T .. ATC AC . 

T . .. T .. C . 

T . G .. T 

T . G .. T 

T . G 

TCC 

TCC 

TC . T .. 

CTT . CG .. G 

CTT . CG .. G 

. C . ? .. C .. C . . GGC GGT 

T . G . CT . T . . C . T . T 

T . G ACT . T .. C . TT . 

CC . AC . CC . CA . G .. GG .. ? . TGG AT . AC . 

CC . AC . CC . CA . G .. G .. T ... GG AT . AC . 

T . G . CT 

T . G 

T . G ACT 

T. G ACT 

T . G ACT 

T . G ACT 

TC . T .. C .. CC . C .. C . G G .. GGG TGG . T . AC . 

TC . T .. cc . C . . GGC .. T .. C T . . . T . . C . 

TCC T . . C . . CCG . . G C . G C . . G .. 

TCC T . . C . . CCG .. G C . G C . . G . . G .. 

TGG AT . AC . 

TGG AT . AC . 

TCC T .. C .. CCG .. G C . G C .. G .. G . .. C. TGG AT . AC . 

TCC T . . C . . CCG . . G C . G C . . G . . G . . . C . TGG AT . AC . 

T . G . CT . T . . C . T . T T .. CC .. T . C. G C . . G .. GGG . CC AGG AT . GC . 

CDcasGrajBZ T . G ACT 

CDcolABoaBZ T . G ACT 

TCC T .. C .. CCG .. G C?G C .. G? . G .. . C . TGG AT . AC . 

T . C T . . C . . C . G .. G C . G C . . G. . G? . . ? ? TGG AT . AC . 

TCC T . . C . . CCG .. G C . G C . . G . . G .. TGG AT . ACT CDcuman 

CBBNa ytMX 

CDTrArapBZ 

CMEdomexMX 

El Salvador 

T . G A. T 

. TG .. T 

T . G ACT 

T . G 

TC ... T C .. CC . A •• . CG . A. T .. AT .. C. 

TCC T . . C . . CCG .. G C . G C . . G . . G .. 

TC . T . T . TT . CG .. G C .. GGC GGT 

T .. ACT . T .. C. TT . CC . AC . CC . CA . G .. G .. 

CDdryGuyana T . G A. T TCC T . . C . . CCG .. G C . G C . . G . . G .. 

TGG AT . AC . 

T .. .c . 

TGG AT . AC . 

TGG AT . ACT 
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Table 2.1 (Cont.) 

666 666 777 777 777 777 777 777 777 777 788 888 888 888 889 999 
789 999 000 111 112 223 445 567 778 889 900 113 334 666 780 00 1 
732 458 147 035 692 584 392 540 692 581 709 250 398 036 242 581 

CscutulNM GTC TCA CCA GAT TAC CCC GCG ACC TTC TAC AAC CCA CGC ACC CCA TCG 

CvdsCO . . G 

CvdsAZ .. G 

CDtotoTamp C . T . T . TT . A .. CGT . A. A. A . TT .c . . G. . TC . . T T .. CTA 

CDtotoQuet C . T GG . TT . A .. C. T . G. A. A . TT .c . . G. . TC . . G T .. CTA 

CDculPuebl A . T ?G . . T . C . T TG . ATA GT . . G. . TC A. T . TT . A. CTA 

unicolor A .. . TG . TG . GC C . . . G. A. A G .. C. T .. T TTC AA . GT . . AG CTA 

vegrandis A . T . T . . T . . GC C .. . G. A. A cc . CG . TTC A .. CTA 

CDDcateMX A . T .T. . TG C . . TG . A. A G . . . G. . TC A . . G . . . A. CTA 

CBBguadal ACT . T . . TG CG . .. T A. A . . T cc . . G. . G. TTC A .. CTA 

CDcolBABoaBZ . T . . TG C .. TG . A. A .. T . TC AA . GT . . A. CTA 

CDTGuarBZ A .. . T . . TG C .. TG . A. A . . ? . TC AA . GT? . A. CTA 

CDTSLParBZ A .. . T . . TG C .. TG . A. A .. T . TC AA . GT . . A. CTA 

CDTRosBZ A . . . T . . TG c .. TG . A. A .. T . TC AA . GT . .A . CTA 

CDTPindBZ A . . . T . . TG c .. TG . A. A .. T . TC AA . GT . . A . CTA 

CMMaricpAZ A . T . T . CG . . A. A. A G .. .c . . TC CTA 

CMSnBernAZ A . T . T . CG . . A. A. A G . . .c . . TC CTA 

CMLUvasNM A . T . T . A . . CG . . A. A. A G .. .c . . TC CTA 

CMQuertMX ACT . T . . T . CG . . A. AT . G. T .c . C. G G .. . TC T . G . A. CTA 

CDculixtMX ACT GT . . T . C . T TG . ATA GT . . G. . TC A. T . TT . A . CTA 

CDDChisMX A. T . T . . TG c .. TG . A. A G . . . G. . TC A .. G .. . A. CTA 

CDtzBez . . T CT . . T . C .. TA . A. A . . T .c . . G. . TC .. ? . A. CTA 

CMOOaxMX A. T . T . . T . . G. . A. A. A .c . C .. . TC AA . CTA 

CDPLaBZ A .. . T . . TG C .. TG . A. A . . T . . T . TC AA . GTT . A. CTA 

CDRCasBZ . T . . TG C .. TG . A. A .. T . TC AA . GT . . A. CTA 

CDBelmBZ A .. . T . . TG C .. TG . A. A . . T . TC AA . GT . . A . CT . 

CDGuanBZ A .. . T . .TG CG . TG . A. A . . T ?TC AA . GT . . A . CTA 

CDculMorMX A . T GG . . T . C . T TG . ATA GT . . G. . TC A. T . TT . A . CTA 

CDcasGrajBZ A .. . T . . T . CG . TG . A. A .. T . TC AA . GT . . A. CTA 

CDcolABoaBZ . T . . TG C .. TG . A. A . . T . TC AA . GT . . A. CTA 

CDcuman A . ? . TG . T . . GC c .. . G. A. A G .. C. T .. T TTC A .. GT . . AG CTA 

CBBNaytMX ACT . T . . TG CG . . . T A. A . . T cc . . G. . G . TTC A .. CTA 

CDTrArapBZ A .. . T . . TG c . . TG . A. A . . T . TC AA . GT . . A. CTA 

CMEdomexMX ACT . T . TT . CG . . A. AT . G. T .c . C . T G .. . TC T . G . A. CTA 

ElSalvador A . . . T . . TG C .. TG . A. A G .. .c . . G. . TC A .. GT . . A. CTA 

CDdryGuyana A. ? . TG . T . . GC c .. . G. A. A G .. C . T .. T TTC A .. GT . . AG CTA 
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Table 2. I (Cont.) 

111 111 111 111 111 111 111 111 111 1 
999 999 999 999 999 999 000 000 000 000 000 000 000 000 000 1 
122 333 445 566 688 889 011 122 233 344 445 667 777 888 999 0 
706 258 470 325 806 898 736 915 814 736 892 140 368 258 147 0 

Cscut ulNM ATA ACC AAC CAC GAA TAT CCA CCA CCT CCA TTA ACA CAC GTT ACA A 

CvdsCO G .. 

CvdsAZ G . . 

CDtot oTamp . c . . T . G . . C . A . . c . T . T . A . . G . G . . c . . T . 

CDtotoQuet . c . . T . G . . c .c . . c . T . TTA .. G . G. . c . . T . 

CDculPuebl GC . . TA G .. A .. C . . . . c A . . . TA GT . T . T AC? G 

unicolor .c . . TA . . T A .. c .c .. c .. T . TA .. G GT . . . T AC . . G. 

vegrandis . c . . TA . . T A . . c .c . . c . TT . TA . . G GT . .. T .c . . T . 

CDDcateMX GC . . TA . GT A . . c .c . . c . . T . TA GT . . . T .c . . T . 

CBBguadal . CG . T . T .. A .. c .c .. c . TA . T . .c . . T . . cc GT . 

CDcolBABoaBZ GC . . TA . . T A . . c .c . TC . . T . TA . A. GT . . . T .c . 
CDTGuarBZ GC . . TA .. T A . . C . ? . . c . . T . TA GA . . . G GT . .. T .c . 
CDTSLParBZ GC . . TA . . T AG . c .c . . c . TT . TA . A . . . G GT . .. T .c . 
CDTRosBZ GC . . TA . . T A . . c .c . . c .. T . TA . A . GT . . . T .c . 
CDTPindBZ GC . . TA . . T A .. c .c .. c . . T . TA . A. GT . . . T .c . 
CMMaricpAZ .c . . T . . . A . GC . . T T .. . TA . AG .cc GT? 

CMSnBernAZ . c . GT . . . A . GC . . T T . . . TA . AG .cc GTT 

CMLUvasNM . c . GT . . . A . .c . . T T . . . TA . AG .c . .cc . TT 

CMQuertMX .c . . T . A. G c .c T . C . TT TTA . AG G .. ACC 

CDcul i xtMX GC . . TA G .. A . . C .. . . c A .. . TA GT . T . T ACC G 

CDDChi sMX GC . . TA . GT A . . c .c .. c . . T . TA GT . .. T .c . . T . 

CDtzBez . c . . TA . G . A .. C .. . . c T .. . TA A .. GTG . . T ACC 

CMOOaxMX .c . GTA GG . c .c . . c T .. . TA A. G . T . AAC . G. 

CDPLaBZ GC . . TA . . T A .. c .c . . c . TT . TA . A . . T . . . T .c . 
CDRCasBZ GC . . TA . . T A .. c .c ?TC .. T . TA . A. GTG . . T .c . 
CDBelmBZ GC . . TA . . T A .. c .c .. c .. T . TA . A . . . G GT . . . T .c . 
CDGuanBZ GC . . TA .. T A . . C . ? . TC . . T . TA . A . . . G GT . . . T AC . 

CDculMorMX GC . . TA G .. A . . c . . . . c A . . . TA GT . T . T AC? 

CDcasGrajBZ GC . . TA . . T A .. c .c .. c .. T . TA . A. . . G GT . .. T AC . 

CDcolABoaBZ GC . . TA . . T A .. c .c .. c .. T . TA . A. GT . . . T .c . 
CDcuman GC . . TA . . T A .. c .c . . c T . T . TA ? . . A. G GT . . . T .c . . TG 

CBBNaytMX . CG . T . T .. A . . c .c .. c . TA . T . .c . . T . . cc GT . 

CDTrArapBZ GC . . TA . . T A .. c .c .. c . . T . TA . A . GT . . . T .c . 
CMEdomexMX . c . . T . AGG c .c T . C T . T TTA . AG T .. ACC 

ElSalvador GC . . TA . GT A .. c .c .. c .. T . TA GT . . . T .c . 
CddryGuyana GC . . TA . . T A .. c .c . . c T . T . TA A. G GT . . . T . C .. TG ... 
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Table 2.2. Constraints of the hypothesis implemented in PAUP 4.0 for the Wilcoxon test. 

i) Monophyly of the South American populations of C. d11riss11s . 

(CscutulNM, CvdsCO, CvdsAZ ((CMO_OaxMX) 

(CBBguadal,CBB_NaytMX)((CM_MaricpAZ, CM_SnBernAZ, CM_LUvasNM) 

(CM_QuertMX,CM_EdomexMX))((CDtoto_Tamp, CDtoto_Quet)( CDtz_Bez )( 

CDcul_Puebl, CDcul_MorMX, 

CDcul_ lxtMX)(EISalvador,CDD _ cateMX,CDD _ ChisMX)( Unicolor, 

vegrandis,CDcolB _A BoaBZ,CDT _ GuarBZ,CDT _ SLParBZ,CDT_ RosBZ, 

CDT_PindBZ,CD _PLaBZ,CD _RCasBZ,CD _ BelmBZ,CD _ GuanBZ,CDcas_ Gra_jBZ 

, CDcol_ABoaBZ,CDcuman,CDTr_ArapBZ.CDdry _ Guyana))) 

ii) Conventional subspecies of C. durissus are monophylctic 

(CscutulNM, CvdsCO, CvdsAZ ((CBBguadal,CBB_NaytMX)) ((CMO_OaxMX) 

(CM_MaricpAZ, CM_SnBernAZ, CM_LUvasNM) 

(CM_ Que11MX,CM_EdomexMX))((CDtoto_ Tamp, CDtoto_ Quet)( CDtz_Bcz 

)(CDcul_Puebl,CDcul_ MorM X,CDcul_IxtMX)(EISalvador,CDD _ cateMX.CDD _ C 

hisMX)(Unicolor)(vegrandis) (CDcolB_ABoaZ, 

CDcol_ A BoaBZ)(CDT _ GuarBZ,CDT_ SLParBZ,CDT_ RosBZ, 

CDT _PindBZ,CD _PLaBZ,CD _RCasBZ,CD _ BelmBZ,CD _ GuanBZ,CDTr_ArapBZ 

)(CDcas_ Graj BZ)(CDcuman)(CDdry _ Guyana))) 

iii) Genetic differentiation between the North and South populations in the border or 

the Amazon basin 

(CscutulNM , CvdsCO, CvdsAZ ((CBBguadal,CBB_NaytMX)) ((CMO_OaxMX) 

(CM_MaricpAZ, CM_SnBernAZ, CM_LUvasNM) 

(CM_ QuertMX,CM_EdomexMX))((CDtoto_ Tamp, CDtoto_ Quet)( CDtz_Bez 

)(CDcul_Puebl,CDcul_ MorM X,CDcul_lxtMX)(EISalvador,CDD _ cateMX,CDD _ C 

hisMX)(Unicolor, vegrandis,CDcuman,CDdry _ Guyana) (CDcolB _ A Boaz , 

CDcol_ A BoaBZ,CDT _ GuarBZ,CDT _ SLParBZ,CDT _ RosBZ.CDT_PindBZ.CD _P 

LaBZ,CD _ RCasBZ,CD _BelmBZ,CD _ GuanBZ,CDTr_ ArapBZ,CDcas_ Graj BZ))) 
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Table 2.3. Pairwise sequence divergence data (average%+ SE) between Central America 

and South America populations of C. durissus. The distance measure used is the Kimura 

2-parameter distance. Sequence divergence in the C. molossus-C. basiliscus group was 

included for comparison purposes. 

Group ND4 Cyt-b ND4-Cyt-b 

Central America 7.96 + 0.82 7.49 -la0.79 7.4 I-la 0.52 

South America 2.32 -1a 0.36 1.1 9 ,.. 0.24 1.85-1- 0.23 

C. molossus - C. basiliscus 7.43-1- 0.81 7. I 8-1- 0.59 7.20-.. 0.51 

Total 7.86 -i- 0.75 7.73+ 0.5 1 7.73-1- 0.52 
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Fig. 2.1. Plots of the levels of saturation at 3rd codon position transitions in the mtDNA 

sequences of C. durissus for both Cyt-b and ND4 regions. The plots were quite similar 

for the I st and 2nd codon position. 
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Fig 2.2. Neighbour joining tree using maximum parsimony for the Cyt-b sequences of C. 

durissus. SA South America (blue), CA Central America (grey), Molossus group 

(yellow), Outgroup (dotted). 
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Fig 2.3. Bootstrap 50% majority-rule NJ consensus tree of the Cyt-b sequences of C. 

durissus. SA South America (blue), CA Central America (grey), Molossus group 

(yellow), Outgroup ( dotted). 
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Fig 2.4. Neighbour joining tree for the ND4 sequences of C. durissus. SA South 

America (blue), CA Central America (grey), Molossus group (yellow), Outgroup 

(dotted). 
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Fig 2.5. Bootstrap 50% majority-rule NJ consensus tree of the ND4 sequences of C. 

durissus. SA South America (blue), CA Central America (grey), Molossus group 

(yellow), Outgroup (dotted). 
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Fig 2.6. Bootstrap 50% majority-rule NJ consensus tree of the Cytb-ND4 sequences of C. 
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(dotted). 
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Fig 2.7. Maximum-likelihood tree with bootstrap values and Bayesian posterior 

probability (ML/B) for the combined Cyt-ND4 sequences of C. durissus obtained using 

MrBayes approach (Huelsenbeck and Ronquist, 2001). SA South America (blue), CA 

Central America (grey), Molossus group (yellow), Outgroup (dotted). 
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2.4. Discussion 

T he results of this study strongly support the hypothesis that C. durissus dispersed into 

South America from Central America. Furthermore, the results indicate that whi le the 

South American populations are one species, the Central American rattlesnake populations 

should be considered as belonging to several different species. Thus a systematic revision 

of several Central American Crotalus forms is needed. The data suggest that C. totonacus 

and C. d tzabcan be recognized as separate species, and that the status of C. durissus (sensu 

Campbell and Lamar I 989) be revised. Several different analytica l methods to analyze the 

combined ND4 and Cyt-b sequences were used. All methods produced similar topologies, 

indicating that the results and derived conclusions are robust. 

Both bootstrap methods and the Bremer branch support index show strong support for the 

monophyly of South American forms, separating them from the Central American forms. 

The topology of the trees generated by the combined sequences suggests that at least fou r 

I ineages evolved in Central America. These correspond to the subspecies categories 

currently recognised as C. durissus, C. d. culminalus, C. d. lzabcan and C. totonacus. The 

separation of C. totonacus from both the South American and Central American clades, and 

its position re lative to C. basiliscus and C. molossus, strongly suggests that it belongs to a 

very different evolutionary lineage and that it is not conspecifi c with C. durissus. The 

distance and parsimony methods grouped C. totonacus with C. basiliscus and C. molos.rns. 

suggesting a shared lineage. This is consistent with the objections that some authors have 

raised to placing C. totonacus in C. basiliscus or C. durissus (Taylor 195 1; Golay el al. 

1993). 
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Previous studies have claimed full species status for some South American subspecies of C. 

durissus (e.g. Klauber 1972). However, thi s study of the Cyt-b and ND4 phylogenies 

reveals that C. durissus has a unique evolutionary lineage with relative ly little genetic 

differentiation among the recognised South American forms, inc luding little genetic 

variation between C. d. unicolor and C. d. vegrandis. The fact that some forms are 

morphologically different from others, suggests that ecogenetic adaptation to recent 

ecological conditions, and phylogenetic evolution have operated in different ways to 

produce sharp differences in colour and pattern (Thorpe et al. 1996; Malhotra and Thorpe 

1997). The genetic consequences of past and present relative isolation have influenced the 

morpho logical variation in these populations without driving them towards lineage 

differentiation. In striking contrast, there is very little morphological variation in the Central 

American populations, but as mentioned above, sufficient genetic variation to warrant 

species-level categorization for many groups previously considered as sub-species. 

Comparative phylogeography with other crotalines 

The Neotropical rattlesnake, which dispersed through the Panama Isthmus to South 

America, was onl y one species of a dynamic guild of vertebrates crossing from North 

America to South during the Great American Interchange. This species interchange had an 

enormous influence on the biogeography of the Mid and South American biota about 3-3.5 

Mya (Marshall et al. 1979; Stehli and Webb 1985; Bermingham and Martin 1998; Wiister et 

al. 2002). 

An outstanding question regarding the vicariance or dispersal events of the Crotalines is the 

timing of the events. Inferring the timing of events from comparative ana lysis of sequence 

divergence in the taxa provides an opportunity for a proximate calibration of the molecular 
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c lock (Parkinson et al. 2002). Wi.ister et al. (2002) presented an alternative calendar for the 

arrival of Crotaline lineages into South America and for their evolution. In this paper, we 

suggested that molecular c lock calcu lations could be interpreted as upper and lower 

boundaries of the timeframe (Wi.ister et al. 2002). Here, I synthesize the patterns and 

conclusions of this analysis, and discuss how the results reported in thi s chapter, further 

elucidate the dispersal of C. durissus in South America. 

Central America was the centre of multiple vicariance events during the Terti ary period 

(Savage 1982; Parkinson et al. 2002), which had an enormous impact on the distribution 

and cladogenesis of many vertebrate taxas. Among the New Worl d pitvipers, Parkinson et 

al. (2002) suggest a basal dichotomy between a Nearctic c lade, inc lud ing rattlesnakes and 

Agkistrodon, and a Neotropical pitviper clade, including the remaining New World pitviper 

genera. Th is corresponds to the dispersal of no11hern taxa into Central America, fo llowed 

by vicariance between central and northern clades (Savage 1982). At some point during the 

Tertiary, in Central America, the ancestral clade of all the Neotrop ical pitv iper genera 

ori ginated. At least four separate colonisations of the South American mainland must have 

taken place from within the Neotropical clade: an early colonisation by the ancestor of 

Bothrops, and much later, colon isations by Porthidium, Bothriechis, and C. durissus (see 

Park inson 1999; Vidal et al. 1999; Parkinson et al. 2002; Wi.ister et al. 2002). 

Explanations for the origin of Lachesis, the largest crotaline species, are still to be resolved 

(Werman 1992; Zamudio and Greene 1997; Vidal et al. 1999; Wi.ister et al. 2002). Most 

studies of Lachesis indicate it to be the sister taxon of Bothrops (Gutberlet 1998; Werman 

1992; Vidal et al. 1999). But even if Lachesis is the sister taxon of all Bothrops, it does not 
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preclude a Central American origin, as Lachesis may be the sister to the ancestor of the first 

pitviper to colonize South America. 

Although the levels of sequence divergence found within the major clades are simi lar, the 

genus Bothrops contains considerably more sequence divergence than the South American 

representatives of other clades. The South American Bothrops are paraphyletic with respect 

to species found in Central America, and divers ification of the genus appears to have taken 

place in South America. This suggests that the common ancestor of Bothrops was the first 

viper to colonize South America, sometime during the Miocene, I 0-23 Mya. A single 

species, Bothrops asper, reinvaded Central America much later, and remains the only 

widespread species of Bothrops there (WUster et al. 2002). 

The ancestor of Bothrops clearly occupied South America long before the emergence of the 

Isthmus of Panama, and the available data for Lachesis and Bothrops schlegelii are 

consistent with pre Isthmian divergence between Centra l and South American populations. 

Some biogeographic patterns suggest that there was a land connection between Central and 

South America in the late Middle Miocene, 12.9-11.8 Mya (lturra lde-Yinent and MacPhee, 

1999), producing a fauna! exchange between Central and South America prior to fi nal 

emergence of the Isthmus of Panama. Depending on rates of sequence divergence, the time 

of this land connection would correspond either to the first cladogenesis of Bothrops in 

South America, or the split between the Central and South American Lachesis and B. 

schlegelii (Wlister et al. 2002). 

Present data suggest that South American populations of Porthidium /ansbergii and 

Porthidium nasutum form a monophyletic group representing a single invas ion from Centra l 
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America to South America. The Lachesis-clock places this event in the late Miocene, 7.7-

6.6 Mya, whereas the Porthidium-clock places the invasion immediately after the 

emergence of the Isthmus of Panama (3.5 Mya) as its calibration point (WUster et al. 2002). 

C. durissus is clearly a recent occupant of the South American continent, as noted by 

Vanzolini and Heyer ( 1985). The low levels of sequence divergence among South 

American populations of C. durissus are consistent with the hypothesis that this species 

invaded South America during the Pleistocene, 1-2 Mya, after the uplift of the Panama land 

bridge. On the other hand, the Central American lineages (C. totonacus, C. d. culminatus 

and C. d. tzabcan) are clearly much older. In summary, my sequence data suggests that the 

colonisation of South America by C. durissus can be unambiguously attributed to overland 

dispersal after final emergence of the Isthmus of Panama. Details about the colonisation 

process of the South American continent may require more definition and resolution in the 

most external branches, especially for those populations on both sides of the Amazon fo rest. 

A different methodological approach is need in order to paint a better picture of the 

vicariance and dispersal events that produced a divergence between the Centra l and South 

American C. durissus. Some mtDNA genes are promising; among them ND2 and the D

loop show good reso lution in studies of other rattlesnakes (Ashton and de Queiroz 200 I). It 

will be necessary to thoroughly sample the main lineages identified in this study. Sample 

s ize is critical for most of the analytical tools available to detect historical processes among 

populations (A vi se 2000; Templeton et al. 1995; Templeton 1998; Posada el al. 2000). One 

of the most promising approaches to elucidate the phylogeographic history of the different 

major lineages of C. durissus is the nested c lade analysis deve loped by Templeton and co

workers (Templeton et al. 1995; Templeton 1998; Posada et al. 2000). Nested clade 
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analysis is used to screen the evolution of populations by combining a phylogram of the 

relationships among hap lotypes and their geographic distribution (Templeton et al. 1987). 

Using nested clade analysis, population structure can be separated from population history, 

so we can differentiate restricted gene flow from past fragmentation, colonisation, or range 

expansion (Templeton 1998). Haplotypes are first linked in a cladogram, wh ich normally is 

a spanning network that describes the mutational steps connecting all the population or taxa 

under study. This has stimulated phylogeographic investigations of mitochondrial DNA in 

Crotalines (e.g., Creer et al. 200 I) and could be the next step in phylogeographic studies of 

the Crotalus durissus complex. 

56 



Chapter 3. Testing variation and phylogenetic information in the 

fibrinogen intron using C.durissus populations 

3.1. Introduction 

Estimation of phylogenies from DNA sequence data has been the main methodology of 

molecular phylogenetics. Most studies have focused on the mitochondrial DNA genome 

(Avise 1994). Relying solely on mtDNA analysis may be problematic because 

mitochondria do not undergo recombination, meaning that animal mitochondrial genes are 

inherited as single units. Therefore the phylogenies derived from mtDNA genes are not 

necessarily independent estimates of the phylogeny of the organ ism (A vise 1987; Pal um bi 

and Baker 1994; Thorpe et al. 1994; Moore 1995; Page 2000). An alternative method 

without theses drawbacks is to sequence additional non-mitochondrial genes, representing 

di stinct linkage groups. The resultant gene trees therefore provide independent estimates of 

the species' phylogenetic tree (Wu 199 1; Giannasi el al. 200 I). It is necessary to use gene 

sequences which contain enough phylogenetic information to resolve relationships between 

c losely re lated species or populations. Nuclear-encoded introns are idea l because they 

evolve more rapidly than exons (Prychitko and Moore 1997; Weibel and Moore 2002). 

In some taxa, nuclear intron sequences are useful markers to screen phylogenetic 

relationships (Weibel and Moore 2002 and references therein). lntrons evolve rapidly and 

substitution rates are relatively uniform over the length of the sequence because they do not 

typically undergo natural selection. A difficulty of using introns or other nuclear markers is 

identify ing orthologous sequences for phylogenetic analysis (Giannasi et al. 200 I). Nuclear 
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introns should come from a single copy gene in which the intron arrangement is conserved 

across a wide range of organisms. The introns should be long enough to reduce the 

probability of random error (Weibel and Moore 2002). 

Recently, intron 7 of the ~-fibrinogen gene has been used to determine phylogenetic 

relationships. The utility of this gene segment has been successfull y explored at different 

taxonomic levels in studies of birds (Johnson and Clayton, 2000; Moyle, 2004; Prychitko 

and Moore, 1997, 2000, 2003; Weibel and Moore, 2002) and repti les (Creer et al., 2003; 

Giannasi et al., 200 I) The nucleotide substitutions are randomly distributed along the length 

of the ~-fibrinogen intron, suggesting selective neutrality. Additionally, in the taxa studied, 

the intron phylogenetic signal is as strong as the mitrochondrial Cyt-b signal, and the 

topology of the ~-fibrinogen tree is quite similar to that of the Cyt-b tree (Prychitko and 

Moore 1997; Weibel and Moore 2002). 

3.2. Materials and methods 

Nineteen samples, a subset of the samples from the C. durissus populations in the 

mitochondrial study, were used in the ~-fibrinogen study. The samples represented the 

spec ies' geographical range. 

DNA isolation 

Whole genomic DNA was extracted using a standard proteinase K protocol (Sambrook et 

al. 1989). The samples with the proteinase K were incubated overnight at 60 °C and then 

transferred to ice. They were then incubated with RNase for 30 min. at 37 °C and then 

transferred to ice. Ice-cold 5M ammonium acetate and centrifugation was used to 

58 



precipitate, and then pellet the proteins. DNA was then precipitated from the resulting 

supernatant with ice-cold isopropanol, and centrifuged to fo rm a pellet wh ich was washed 

with 70% ethanol, air-dried, and then dehydrated with TE (Buffone 1985). Extracts were 

visualised by UV radiation on circular 25ml, 1.4% agarose plates with 3µ1 ethidium 

bromide. 

PCR 

The 525 bp fragment of intron 7 of the P-fibrinogen region was amplified from 1-2 µI DNA 

extracts using modified primers (Prychitko and Moore I 997): Fib-8 I 7U, 5' - GGA GAA 

AAC AGG ACA ATG ACA-3' and Fib-8 l 7L, 5'-TCC CCA GTA GTA TCT GCC A TT-

3'. The 50 µI PCR reactions were performed with a 50 ng template, 0.52 µM primers, 20 

mM tri s-I-ICI, 0.5 mM MgCI, 0.4 µM dNTP, 2 units Taq DNA polymerase, and 0.5% 

DMSO. Amplification conditions involved an initial denaturation step of 4 minutes at 94 

°C, 35 cycles of denaturation of I minute at 94 °C, primer annealing of I minute at 50 °C, 

extension of 2 minutes at 72 °C, and at the end, an extra extension step for 3 minutes at 72 

°C, cooling to 4 °C. The PCR products were concentrated by pooling 2-3 products per 

sample, and purified using the GenElute TM (Supelco) nucleic acid purification kit. 

Sequencing and data analysis 

A single stranded automated sequencing method was carried out using IO ~ti reactions 

containing 50 ng PCR template, 0.16 pmol 5' primer, and BigDye Terminator Ready 

Reaction Mix (ABI). The reaction mix was cycled in a PE-ABI 9700 Thermal Cycler for 

30 seconds at 94 °C, 50 cycles of IO seconds at 96 °C, 5 seconds at 50 °C, 4 minutes at 60 

°C, and then cooled to 4 °C. The samples were precipitated using 2M sodium acetate and 
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I 00% ethanol, and the resulting pellet was washed in 70% ethano l and air dried. The 

samples were suspended in 4 µI of a dextran blue EDTA/formamide load ing buffer, and I 

µI of this mixture was loaded onto a 5% longranger gel in Ix TBE runn ing buffer. The 

samples were analysed on an AB! 377 DNA Sequencer, generating a chromatogram and a 

text sequence. The sequences were read and aligned by eye to each other using the Chromas 

1.51 package (Technelsyum Pty Ltd, 1988). 

The uncorrected p-distance was used to obtain pairwise sequence comparisons from the 

neighbour joining approach (Saitou and Nei 1987). This was performed using the Molecular 

Evolutionary Genetics Program (MEGA, Kumar el al. 1993). Aligned sequences were 

subjected to parsimony analyses using PAUP 4.0. Branch and bound searches and 

bootstrap (Felsenstein 1985) were carried out for all the parsimony analyses. Assessments 

of the branch support and tree stability of the generated topologies were performed using 

the Bremer (l 994) method. To do this, branch searches were repeated, retaining 

success ively longer trees until all nodes were collapsed. In order to distinguish phylogenetic 

s ignal from random noise in the sequences, skewness (g I) statistics were calculated from 

randomly generated trees in PAUP 4.0 (Hillis and Huelsenbeck 1992; Swofford 1998). 

3.3. Results 

A very low degree of differentiation was observed among the sequences of the ~-ft bri no gen 

intron. Pairwise distances ranged from O -1 .2% in the in-groups and 1.64% in the out

groups, indicating a very conserved fragment with very low resolution of the inner nodes. 
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Tree length distribution, determined from random sampling of unweighted trees, was 

slightly skewed to the left (g 1 = -0.492, p < 0.02), indicating poor phylogenetic signal in the 

data (Hillis and Huelsenbeck 1992). Bootstrap values are shown in Fig 3. 1. There was very 

poor resolution in the relationships of the sequences analyzed. However, there was a small 

difference between interspecific samples. For example, the species categorization of C. 

molossus and C. basiliscus was better supported than the species categorization of C. 

durissus. In this analysis, C.d. totonacus, C.d. tzabcan and the C. durissus from El Salvador 

were grouped. Finally, the monophyly of South America C. durissus populations was well 

supported. 
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Fig 3.1. Bootstrap 50% majority-rule consensus tree of the sequences of the intron 7 of 

the P-fibrinogen gene in selected samples of C. durissus. Internal labels: CA, Central 

America clade; SA, South America clade. 

62 



3.4. Discussion 

Despite the low resolution of the sequences analyzed, there are some aspects to be 

considered before judging the appropriateness of intron 7 of the P-fibrinogen region to 

resolve snake phylogenies. The fact that only a 525 bp fragment was sequenced suggests 

that much of the information available in this region could have been missed. Several 

studies report that the size of the P-fibrinogen region is approximately 1100 bp, 

considerably longer than the fragment amplified here (Prychitko and Moore 1997; 

Weibel and Moore 2002). Is quite likely that the primers used did not flank the complete 

region and that a conserved region was amplified. On the other hand, some studies 

indicate that certain introns are particularly useful for resolving phylogenies at higher 

levels, such as species and genera, but difficult for lower taxonomic levels (Moore 1995). 

Several papers have successfull y used intron sequences in phylogenetic studies. In 

particular, studies of actin in cetaceans (Palumbi and Baker 1994), and fibrinogen 

(Prychitko and Moore 1997), aldolase, glycera ldehyde-3 phosphate dehydrogenase, alpha 

enolase, and lamin in birds (Friesen et al. 1997). However, the slow rate of intron 

sequence evolution observed (Moore 1995) has limited the usefulness of these markers to 

deep taxonomic splits (i.e. between relatively divergent species and genera). Intron 

sequences are probably not suitable for population and species level studies. 
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Chapter 4. Phylogenetic relationships among C. durissus populations 

based on amplified fragment length polymorphism (AFLP) analysis. 

4.1. Introduction 

The most commonly used molecular markers for phylogenetic differentiation are mtDNA 

markers followed by nuclear markers (Avise 2000; Mueller and Wolfenbarger 1999). 

These methods have some drawbacks. In mtDNA analyses, the lack of mitochondrial 

recombination means that genes are inherited as single units, and that therefore the 

phylogenies derived mtDNA genes are not necessarily independent estimates of the 

phylogeny of the organism (A vise 1987; Palumbi and Baker 1994; Thorpe et al. 1994; 

Moore 1995; Page 2000; A vise 2000). Few nuclear genes have demonstrated sufficient 

variation to make them useful for phylogenetic analysis (Mueller and Wolfenbarger 

1999). Amplified Fragment Length Polymorphism (AFLP) analysis samples the enti re 

genome, therefore screening for more genetic variation (Vos et al. 1995; Kardolus et al. 

1998; Labra et al. 1999; Baayen et al. 2000; Bakkeren et al. 2000; Hodkinson et al. 2000; 

Kanzaki el al. 2000; Giannasi et al. 200 I; Parsons and Shaw 200 I; Bun~jer et al. 2002; 

Allender et al. 2003; Seehausen et al. 2003 Ogden and Thorpe 2002; Creer et al. 2004; 

Sullivan et al. 2004). 

The AFLP technique uses multiple restriction fragments screened on a single 

polyacrylamide gel (Vos et al. 1995). The technique involves restriction digestion of 

genomic DNA with rare and frequent enzyme cutters. Following adapter ligations, 

restriction fragments from a total digest of genomic DNA are selectively amplified and 

separated by gel electrophoresis. 
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AFLPs may be the ideal marker system for resolving genetic relatedness among 

individuals, populations, and species (Mueller and Wolfenbarger 1999; Buntjer el al. 

2002; Allender el al. 2003; Seehausen et al. 2003 Ogden and Thorpe 2002; Creer el al. 

2004; Sullivan et al. 2004). The incorporation of PCR allows for rapid and efficient 

marker generation. Furthermore, the cost and development time are low compared to 

other markers (reviews summarized by Mueller and Wolfenbarger 1999). AFLP is less 

problematic than other techniques where in order to avoid spurious polymorphisms, the 

laboratory conditions for PCR amplification must be highly controlled (Mueller and 

Wolfenbarger 1999; Buntjer el al. 2002; Allender et al. 2003; Seehausen et al. 2003; 

Ogden and Thorpe 2002; Creer el al. 2004; Sulli van et al. 2004). In add ition, extensive 

screening to identify useful primers is not required, the levels of polymorphisms are 

generally higher, and the number of markers generated is virtually unlimited (e.g. Barker 

et al. I 999). A limitation of AFLPs is that heterozygous alleles are difficu lt to detect 

because the marker is co-dominant (Vos et al. 1995; Buntjer et al. 2002; Allender el al. 

2003; Seehausen et al. 2003 Ogden and Thorpe 2002; Creer et al. 2004; Su ll ivan el al. 

2004). 

The purpose of this chapter is to analyse the phylogenetics of C. durissus using AFLPs as 

a molecular marker. A further goal is to compare the phylogenetic history suggested by 

the AFLP analysis with the history suggested by the mtDNA ana lysis (Chapter 2) . 

4.2. Materia ls and Methods 
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ln order to compare the mitochondrial and AFLP techniques, the same blood aliquot 

samples were used for both analyses (see Chapter 2). Whole genomic DNA was 

extracted using a standard proteinase K protocol (Sambrook et al. 1989). The samples 

with the proteinase K were incubated at 60 °C overnight and then transferred to ice. Then 

the samples were incubated with RNase for 30 minutes at 37 °C and transferred to ice. 

Ice-cold SM ammonium acetate and centrifugation was used to precipitate, and then 

pe llet the proteins. DNA was then precipitated from the resulting supernatant with ice

cold isopropanol, and centrifuged to form a pellet, which was washed with 70% ethanol, 

air-dried and then dehydrated with TE (Buffone 1985). 

Extracts were visualised by UV radiation on circular 25ml, 1.4% agarose plates with 3ml 

ethidium bromide. AFLP analysis was performed using the AFLP Analysis System I' ki t 

(GIBCO BRL, cat. no. I 0544-013, http://www.invitrogen.com), developed by Vos et al. 

( 1995). The protocol followed the manufacturer's instructions that three S3-nucleotide 

selective primer extension combinations be used for the forward and reverse primers. 

Each primer combination was comprised of an EcoR- 1 radio labelled (33P) primer, E

AGG, with one of three Mse-1 primers (M-CTT, M-CAT, M-CTA). These will 

subsequently be referred to as follows: Primer Pair A (E-AGG + M-CTT), Primer Pair B 

(E-AGG + M-CA T), and Primer Pair C (E-AGG + M-CTA). 

AFLP markers were scored using automated sequencing, which produced a matrix of 

presence-absence bands per size category as assigned by the sequencing software. Data 

from the three primer pairs was analysed collectively by combining matrices. Usi ng 

Principal Components Analysis (PCA), eigenvectors can be obtained from correlation 

and dissimilarity matrices. A dissimilarity matrix was generated by Gower's general 
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similarity coefficient using the program MVSP Version 3. 11 c (Kovach 1999). As only 

binary data were being used in this analys is, Gower's genera l similari ty coefficient 

(GGSc ij) was equivalent to Jaccard ' s coeffic ient (Jcij): 

GGScij = Jcij = a/(a+b+c) 

where a is the number of bands shared by individuals j, and I b is the number of bands 

present in i, but not in j and c, the number in j but not in i (Sneath and Sokal 1963). A Q

mode Princ ipa l Coordinate Analysis (PCOA) was then performed on the dissimilarity 

matrix. The resulting PCA scores were plotted to discriminate between species and 

populations. 

A goal of this chapter was to test the congruence between the AFLP and mtDNA 

topologies. Because genetic distance can easily be confou nded by geographic distance, it 

was necessary to control for genetic distance (Mantel 1967; Thorpe 199 1 ). To do so, 

three congruent matrices were constructed, one of geographic distances, one of genetic 

distances according to AFLP analys is, and the third of distances based on mtDNA 

analyses. The matrices were constructed as follows: 

For the AFLP matrix, the presence/absence data for the band patterns was converted to a 

similarity matrix based on the mean character differences using PAUP 4.0 (Swofford 

1998). Then an mtDNA matrix was constructed from the Tamura-Nei 2 distances 

(Chapter 2). Finally a geographic matrix was generated from the latitude and longitude 

coordinates of the locations sampled. Great C ircle Distances (GCD) were calcu lated 

using the fo llowing Microsoft Excel algorithm: 

67 



GCD=RadiusEarth* ACOS(COS(RADIANS(90-(Lat I *24)))*COS(RADIANS(90-

(Lat2 *24)))+SrN(RADIANS(90-(Latl *24)))*SIN(RADIANS(90-(Lat2*24)))* 

COS(RADIANS(24*(Long l-Long2)))) 

Where, Latl is the latitude of point I, entered as DD: MM: SS, Long I is the longitude of 

point I, entered as DD: MM: SS, Lat2 is the latitude of point 2, entered as DD:MM:SS, 

Long2 is the longitude of point 2, entered as DD: MM: SS, and RadiusEarth is the radius 

of the ea1th (3,963 miles or 6,377 kilometres). 

The effect of geographic distance in the phylogenetic relationsh ips for both AFLP and 

mtDNA data sets was controlled using partial Mantel tests. Mantel tests eva luate the 

association between the observed phylogeographic structure and patterns predicted by 

different hypotheses, whi le simultaneously controlling for the confound ing effect of 

geographic distance (Thorpe et al. 1994). Associations between the AFLP, mtDNA and 

geographic distance matrices were examined with pairwise and partial Mantel tests using 

I 0,000 permutations with programs deve loped by Liedloff ( 1999) and Goudet (2002). 

4.3. Results 

The PCOA plot using the Gower general similarity index screened the different C. 

durissus populations and the resulting pattern was consistent with the geographic origin 

of the populations (Fig 4.1 ). The South American rattlesnakes were grouped separately 

from the Central America populations. In the PCOA plot, the Central American 

populations appeared as independent clusters, wh ich were consistent with different 
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Crotalus lineages identified by the mtDNA study (Chapter 2). The cumulative 

eigenvalue percentage for the first three PCOA axes was higher for the Central American 

populations than the South American group, indicating more genetic differentiation in 

Central America (Table 4.1 ). 

A total of 248 characters (polymorphic bands) were obtained from the AFLP ana lysis, of 

which 229 were parsimony informative. A significant phylogenetic signal in the data set 

was indicated by the skewness parameter (g l = 0.68, P < 0.001) for the number of 

characters and taxa involved (Hillis and Huelsenbeck 1992). The branch and bound 

analysis using maximum parsimony as criterion generated a total of 20 equally most 

parsimonious trees (tree length = 380; Cl =0. 174 1; HI=0.8259; RI =0.7263; RC 

=0.1264). 

Five clades were recognized from the bootstrap analysis including the molossus

basiliscus clade. Bootstrap support throughout the tree was generally high for the 

internal branches but particularly low in the South America clade (Fig.4.2). In the 

combined mtDNA and AFLP analysis, there was a c loser relationship between the Belize 

C. d. tzabcan populations and the South American clade than was indicated so lely by the 

mtDNA analysis (Chapter 2). The relationship of the Belize clade to the South 

American group was highly supported by both the bootstrap values and the Bremer decay 

index. 

Pairwise correlation coefficients showed a clear correlation between the mtDNA and 

AFLP patterns (Fig 4.4). The Mantel tests controlling for geographic distance showed 

that distance had little effect on the correlation of the mtDNA and AFLP patterns, while 
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there was a strong corre lation between the mtDNA and AFLP data sets. With both the 

mtDNA and AFLP data sets, the geographic distance effect was weak, but it was s lightly 

stronger in the AFLP data (Table 4 .2). 
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Table 4.1 Cumulative eigenvalue percentage on the first three principal coordinate axes 

using principal coord inate analysis for the C durissus populations and related species 

based on the polymorphic AFLP bands obtained. 

principal cord inate porcentage of porcentage of porcentage of 

analysis variation on axis) variation on axis 2 variation on axis 3 

Central America 44.96 47.23 64.34 

South America 38.5 47.52 66. 1 

C. molossus 13.39 3 1.07 35.74 
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Table 4.2. Pairwise and partial Mantel test results of the variab les Geographical 

distances, mtDNA p-distances, and AFLP mean character distance for both all the taxa 

(C. durissus, C. scutulatus, C. molossus, and C. basiliscus) and the C. durissus 

populations analyzed. 

Painvise Mantel test g z r p 

All taxa analyzed 

mtDNA, AFLP 18.603 15.892 0.9 11 6 <0.005 

mtDNA, GeoDis 3. 1328 102398.99 0. 1839 <0.050 

AFLP, GeoDis 3.0908 398994.4 0. 1787 <0.050 

Only C. durissus 

mtDNA, AFLP 6.414 I 1.0 144 0.668 <0.005 

mtDNA, GeoDis 3.5507 8025 1.1 48 0.3727 <0.050 

/\FLP, GeoDis 6.3 102 5444 1.828 0.503 1 <0.005 

Partial Mantel test Partial r p Sum. Squares 

Geographic distance 0.3030 0.002 1 0.5228 <0.050 

mtDN A p-distances 0.5660 1.675716 0.9 15 1 <0.00 1 
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4.4. Discussion 

This chapter uses the AFLP technique to infer the phylogenetic relationships among the 

C. durissus populations in Central and South America. The parsimony based 

phylogenetic analysis and other molecular stati stics (e.g. skewness g 1 statistics) 

demonstrate that AFLP data are suitable fo r phylogenetic reconstruction. Additionally, 

similar results are obtained when the data set is subjected to ordination analysis like 

PCOA. This analysis showed that the AFLP C. durissus phylogenies were consistent with 

those obtained by mtDNA analysis with biogeographic and systematic conclusions a like. 

The AFLP and mtDNA phylogenies showed similar topologies and patterns. This study 

supports the use of the AFLP marker for phylogenetic inference (e.g. Giannasi et al. 

200 I; Ogden and Thorpe 2002; Creer et al. 2004; Sullivan et al. 2004) . 

AFLP requires no prior knowledge of sequence information, does not depend on the 

specific fl anking of molecular regions, and can be applied in any genome. Not only do 

these markers aid the reconstruction of gene evolution, but they are also very usefu l for 

reconstructing the evolutionary hi story of species and populations. However, because the 

AFLP technique surveys the whole genome by digesting with restriction enzymes, each 

AFLP fragment is anonymous, its position on a functional region and the nature of its 

coding propert ies are not identifiable (Mueller and Wolfenbarger 1999; Buntjer et al. 

2002; Allender et al. 2003; Seehausen et al. 2003 Ogden and Thorpe 2002; Creer et al. 

2004; Sullivan et al. 2004). 

The AFLP analysis supports the previous chapters' conclusions that the South America 

C. durissus populations are monophyletic, with a weak differentiation in those 
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populations currently considered as separate species. The bootstrap values and decay 

indexes of the internal nodes in the South America clade do not support the species status 

given by some authors to C.d. unicolor and C.d. vegrandis, (Campbell and Lamar 1989). 

These populations should be considered as conspecific of C. durissus. The AFLP 

supports the paraphyly of Mexican and Central America based on mtDNA. 

The AF LP-generated phylogeny revealed two details about the evolutionary history of C. 

durissus that were not immediately evident from the mtDNA phylogenies. First, the 

AFLP analysis grouped the Bel ize populations with the South American ones, suggesting 

a genetic connection between the Central and South American populations. The Belize 

and Yucatan rattlesnakes may belong to the same lineage from which the South 

American clade originated. Second, the AFLP analysis grouped C. totonacus closer to 

the C. durissus complex than to the C. molossus group as was suggested by the mtDNA 

analysis. The reasons for this discrepancy are unclear, although it could be due to 

introgression between both complexes. What is clear is that C. totonacus belong to a very 

deep lineage. The present data supports the consideration of C. d. tzabcan as separate 

species. 

This study is an example of how the same phylogenetic or biogeographic question may 

be approached using different molecular markers. There are a number of different 

approaches available to construct phylogenetic trees when using more than one data 

source. These approaches can be placed into two categories, first, those that combine the 

data, and second, those that keep the data separate and combine the infe rence of the 

resulting trees. Combining sequence data of a known genomic location (e.g. mtDNA) 

with molecular data of an unknown location presents an analytical challenge. In this 
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study, we followed the second approach, using Mantel tests to compare the phylogenetic 

trees of two different markers. 

Conclusion: the utility of AFLP to infer phylogenetic relationships 

Compared to other techniques, AFLP have some advantages and some disadvantages as a 

source of characters for phylogenetic analysis. For instance, AFLP shows higher 

reproducibility and a lower incidence of non independence than random amplified 

polymorphic DNA (RAPD) and restriction fragment length polymorphisms (RFLP). On 

the other hand, AFLP share some characteristics of these other markers that are 

problematic like the high probability of parallel losses of characters relative to gains 

(Backeljau et al. 1995; Swofford et al. 1996; Mueller and Wolfenbarger 1999). However, 

phenomena like homoplasy, nonindependence, and asymmetry in character state change, 

are potential sources of error for molecular and morphological characters (Malhotra and 

Thorpe 2004). The best evaluation of AFLP as phylogenetic markers will continue to be 

congruence studies between AFLP derived topologies and other from molecular and 

morphological characters. 

The present study on the phylogenetic relationships in the C. durissus complex, joins a 

growing consensus of others that indicate that these multi-locus markers can reso lve 

relationships among closely related species and populations, groups for which sequence 

data have often been inconclusive or problematic, or to incorporate nuclear data parallel 

to mtDNA. 
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Chapter 5. General Discussion 

5.1. Outcomes 

In this study, I present several well-supported phylogenies of the Neotropical rattlesnake, 

C. durissus, using different molecular markers and methods. Using these phylogenies, I 

investigate hypotheses about the dispersal of C. durissus into South America, and test the 

systematic status of the Central American forms. 

The topologies of the phylogenetic trees obtained by different methods were significantly 

s imilar. The differences in the phylogenetic trees were mostly due to the nature of the 

molecular markers used and their modes of inheritance, and perhaps to the experimental 

limitations of using the fibrinogen region and AFLPs. Bootstrap methods and the Bremer 

branch support index show strong support for several phylogenetically important nodes, 

especia lly for those clades that demonstrate the monophyly of South American forms and 

separate them from the Central American forms. Using these results, I interpret the 

biogeographic events which occasioned dispersal of C. durissus into South America, 

suggest a reclassification of some Crotalus species, di scuss the implications of this 

research for conservation, and suggest future research. 

5.2. The origin of the C. durissus complex in Mexico and north Central America 

The rattlesnakes (Crotalus and Sistrurus) are part of the pitv iper monophyletic group in 

the New World (Parkinson 1999; Parkinson et al. 2002; Murphy et al. , 2002; Wiister et 

al. 2002). Approximately 30 species of rattlesnakes are currently recognized (Mc Diarmid 
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et al. 1999; Campbell and Lamar 2004). Brattstrom ( 1964) suggests that rattlesnakes 

originated in the central plains of North America. He argues that the Lachesis-Crotalus

Sistrurus "stock" diverged soon after the arrival of an Agkistrodon contortrix-li ke 

ancestor in the New World via the Bering Land Bridge. The demonstrated monophyly of 

the New World temperate group (Agkistrodon, Crotalus, and Sistrurus) and the tropical 

group of the bothropoid genera and Lachesis is inconsistent with Brattstrom's hypothesis 

(Parkinson et al. 2002; WUster et al. 2002). Brattstrom ( 1964) proposed that Agkistrodon 

contortrix was an Old World migrant and that Crotalus and Sistrurus were c losely related 

to Lachesis. Recent molecular data indicate that Agkistrodon is of New World origin, and 

Lachesis is more closely related to a bothropoid genus than to rattlesnakes (Zamudio and 

Greene 1997; Parkinson et al., 2002; WUster el al. 2002). 

There is general consensus that rattlesnakes originated 111 Mexico (Armstrong and 

Murphy 1979; Klauber 1972; Greene 1997; Place and Abramson 2004), primarily 

because several morphologically primitive species of rattlesnakes occur in Mexico. Some 

authors specify the Mexican Plateau as the ancestral area of the rattlesnakes. Only 

recently, Place and Abramson (2004), using a cladistic method of inferring the ancestral 

area of a taxon (Bremer 1992), established the Sierra Madre Occidental of Mexico as the 

most probable ancestral area of all the rattlesnakes (Crotalus and Sistrurus). Furthermore, 

they inferred that the vegetation of the ancestral area was pine-oak forest. They provide 

the first quantitative assessment of the ancestral area of rattlesnakes and assessments of 

the ancestral habitats of rattlesnakes, supporting the hypothesis that the ancestral area of 

rattlesnakes is in North-Central Mexico (Place and Abramson 2004). 
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The historical factors providing the conditions for the evolution of the older lineages of 

C. durissus in Mexico and north Central America can be explained by the geological 

history of the region (Graham 1993; Flores 1993; Ferrari el al. 1999). In eastern and 

southeastern Mexico, the Sierra Madre Oriental has provided upland habitats for the 

diversification of the biota since the last Cretaceous-Palaeocene (Graham 1993; Flores 

1993; Ferrari et al. 1999). The Trans-Mexican Volcanic Belt began to develop during the 

early Tertiary but underwent its principal uplift and deformation during Miocene and 

Quaternary periods (Ferrari el al. 1999). 

The Cenozoic era was also a time of significant climatic change, with documented effects 

on the biota of southern Mexico. There was a decline in global temperatures beginning 

during the mid-Miocene. Such physiographic and climatic fiuctuations not only affected 

speciation rates through vicariance but also provided a diversity of habitats for the 

perpetuation of new forms of repti les (Flores 1993). These conditions probably produced 

speciation events that produced the molossus-basiliscus-totonacus clades. The isolation 

of the Yucatan peninsula, due to the Tehuantepec-Gulf of Mexico channel, produced the 

vicariance event for the origin of the C. d. tzabcan clade. Further stud ies could attempt to 

calibrate the molecular clock with the geological events described above. 

In add ition, southern Mexico, located at the confluence of the two migration routes 

through Central America and the Antilles, has been important throughout the Tertiary for 

the diversification of rattlesnakes. An extensive new habitat area to the south became 

increasingly available as South America moved closer to North America and the Panama 

land bridge became established. By the end of the Tertiary, southern Mexico was 

accessible to temperate biota from the north, with introductions fac ilitated by the cooling 
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climates of the late Eocene through the Pleistocene, and to tropical biota from the south, 

with introductions progressively increasing during the warm climates of the Paleocene, 

early and middle Eocene, Oligocene, and early Miocene (Flores 1993). These 

biogeographic conditions probably produced the C. durissus lineages of Pacific Mexico 

and Central America. Further studies are required of the biogeography of the Mexican 

I ineages of the C. durissus complex and other rattlesnake species are necessary in order 

to chronologically map the evolution of the rattlesnake fauna at its centre of 

diversification. Special emphasis should be focus on the "germinal" taxa of Central 

Mexico in a comparative phylogeographic context. 

5.3. The Great American Interchange and the dispersal of C. durissus into South 

A merica 

The rise of the Isthmus of Panama was the most important event to structure the 

biogeography of the fo rmer islands of North America and South America. This event 

produced the "Great American Interchange," the migration and intermingling of 

terrestrial lineages that had been separated since the Cretaceous (Sim pson 1980; Marshall 

et al. 1979; Stehli and Webb 1985; Pindell and Barrett 1990). The dating and calibration 

of the moment when the rise of the Isthmus occurred, inferred from rates of molecular 

evolution, has been the subject of much research interest. Most of the focus has been on 

germinate species or trans-isthmus sister-species pai rs of taxa in di fferent organisms 

(Knowlton et al. 1993; Knowlton & Weigt 1998; Lessios 1998; Bermingham et al. 1997). 

These studies provide evidence that gene flow in some taxa was a gradual process over 

millions years instead of a simultaneous event for different organisms. This is consistent 

with geological data indicating a gradual transformation of the early Isthmus from an 
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archipelago system, in the middle to late Miocene, to its completion as a terrestrial 

corridor about 3 Mya (Bermingham and Lessios 1993; Knowlton et al. 1993; Coates and 

Obando 1996; Coates et al. 2003). These findings imply that the dispersal of some taxa 

during the trans-isthmus interchange may have happened in either a gradual fashion, 

producing different lineages crossing the Isthmus (i.e. the island-hopping hypothesis; 

Simpson 1950), or may have occurred in one event, which would be refl ected by one or a 

very few lineages crossing the Panama land-bridge. 

The data presented here suggest that C. durissus dispersed towards South America 

shortly after the final uplift of the Panama land bridge. In accordance with WLister et al. 

(2002) and the data presented here, the very low levels of sequence divergence among the 

South American populations are consistent with the hypothesis that this species invaded 

the South American continent 2.3 - 2.0 Mya after the upli ft of the Panama land bridge, 

estimated to have occurred approximately 3.5 Mya (Marshall et al. 1979; Bermingham 

and Martin 1998; Coates and Obando, 1996; WLister et al. 2002). The rapid spread of 

rattlesnakes into South America in a relatively short time makes it dif ficul t to accept the 

island-hopping hypothesis for the di spersa l of C. durissus into South America as is 

suggested for other pitvipers (WLister et al. 2002). 

Prior to the di spersal event, the Central American lineages of C. durissus (including C. 

totonacus) could have evolved, and the lineage that dispersed into South America could 

have been present near the primitive Panamanian land bridge (probably in the Yucatan 

Peninsula), and crossed during the Pliocene-Pleistocene period, when presumably a 

savannah corridor was established throughout the isthmus (Duellman 1978; Yanzolini 

and Heyer 1985). 
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Among the vipers, C. durissus was the last migrant cross ing the Isthmus towards South 

America. There are few candidates of pitvipers with which to compare phylogeographic 

patterns of C. durissus and to test the dispersal mechanisms involved. Among the genus 

Bothrops, the species B. asper apparently re invaded Central America and Mexico 

(WUster et al. 2002). Further studies on the phylogeography of B. asper may find para llel 

phylogenetic patterns with C. durissus. 

5.4. The South American Invasion 

Short after the post-I sthmian dispersal of C. durissus into South America, the species 

rapidly invaded dry savannah habitats throughout the continent in a relatively short 

period of time, and established both north and south of the Amazon forest. This 

discontinuity and the low genetic differentiation of the South Ameri can rattlesnake 

populations provide an opportunity to di scuss the role of the Amazon forest in the 

di spersal of C. durissus. 

During the late Pliocene and Pleistocene, a series of global climatic fl uctuations affected 

patterns of Neotropical di versity (Potts and Behrensmeyer 1992). The Pleistocene 

refugia hypothesis argues that drier climatic phases caused a fragmentation of the 

Amazonian rainforest into forest refugia isolated by savannahs, leading to increased 

a llopatric speciation among forest species (Haffer 1969; Prance 1973). However, the 

notion of Ple istocene rainforest fragmentation remains highly controversial (Colinvaux et 

al. 2000, 200 I; Haff er and Prance 200 I; Hoogh iemstra 200 I). The available 

palynological evidence provides little support for the hypothesis of savannah vegetation 
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in Amazonia (e.g. Colinvaux et al. 1996, 200 I; Kastner and Gofii 2003). On the other 

hand, speciation in many widespread Neotropical species complexes predates the 

Pleistocene climatic fluctuations, often by a considerable margin, and the expected 

genetic pattern of post-refugia Quaternary range expansion has not been demonstrated for 

Neotropical forest mammals (Hewitt 2004; Moritz et al. 2000; Lessa et al. 2003). 

Based on the cytochrome-b, ND4 and AFLP' s phylogenies, the pattern of evolution of 

the South American populations of C. durissus suggests that wet and dry cycles and 

Amazon forest contraction probably did occur. The lack of genetic differentiation 

between rattlesnake populations from north and south of the Amazon ( currently separated 

by unsuitable rainforest habitat) supports the hypothesis that the Amazon forests have 

gone through at least one cycle of fragmentation during the Pleistocene since the 

colonisation of South America by C. durissus. Furthermore, alternative molecular 

divergence times indicates that the Trans-Amazon Vicariance occurred 1.08 - 1.2 Mya, 

thus the dispersa l across the Amazon Basin can be dated to the early to mid-Pleistocene 

(Wi.ister et al. 2005, see Appendix I). 

Kastner and Goni (2003) analyzed sediment samples from the Amazon deep sea fan, and 

reported a remarkable constancy in different parameters and similitude to modern 

Amazon River suspended sediments. They concluded that the vegetation of the Amazon 

Basin did not change signi ficantly during the last 70,000 years (Last Glacial Maximum, 

late Pleistocene) and found no evidence for the development of large savannas, which are 

indicators of increased glacial aridi ty in Amazon ia (Haffer 1997; Haffer and Prance 

200 I). However, these findings are limited the time since the Last Glacial Maximum and 

do not take into account that extensive global climatic cycles with glaciations in the 
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higher latitudes occurred earlier (ca 2.4 May, Hooghiemstra and Cleef 1995). T he 

dispersal dates of C. durissus as a consequence of the uplift of Panama Isthmus (about 1-

1.2 Mya) match with these events of globa l c limate cycles and may indicate that the 

A mazon barrier has limited the genetic fl ow of the Neotropical rattlesnake for the last 

70,000 years. 

5.5 Implication for Crotalus systematics 

Understanding phylogenetic patterns is necessary to better unde rstand the Evolut ionary 

Species Concept (ESC). The ESC is often preferred over other species concepts because 

it represents the most genera l and universa l notion of a species matchi ng a more objective 

set of crite ria ( de Queiroz, 1998). The criteria used in the ESC are ( I) exclusivity, i.e. the 

monophyly of the collection of DNA sequences representing the group, (2) geographic 

iso lation, (3) differentiation of characters other than the mtDNA sequences, and ( 4) 

degree of sequence differentiation. The Mexican and Centra l America rattlesnake lineage, 

as indicated by the mtDNA and AFLP evidence, is in accordance with these cri teria. The 

South America taxa are not monophyletic even though there is a considerable amo unt of 

morpho logica l variation. This indicates the South America forms, traditionally 

conside red separate species (C. vegrandis and C. unicolor; Klauber 1972; Murphy et al. 

2002), fa il on the cri teria above described and therefore are not species under the ESC. 

Contrary to previous opinions about the systematics of the South American forms, (some 

authors c la imed full species status recognit ion for some subspecies of C. durissus, e.g. 

Klauber 1972), the combined Cyt-b, N D4 and AFLP phylogenies analyzed in this study 
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reveal a unique evolutionary lineage with poor differentiation among the recognised 

forms, including C. d. unicolor and C. d. vegrandis. 

The topology of the trees generated by the different methods suggest that at least four 

rattlesnake lineages evolved in Central America, and these correspond to the subspecies 

categories recognised, C. totonacus, C. d. culminatus, C. d. tzabcan and C. simus. 

However, the remarkable separation of C. totonacus and C. d. tzabcan from both the 

South American and Central American clades, and their position relative to C. basiliscus 

and C. molossus, strongly suggest that they belong to very different evolutionary 

lineages. 

The re lationship between the C. durissus complex, and C. basiliscus and C. molossus 

remains poorly resolved based on these phylogenies, indicating the need for further 

analysis with more samples from C. 1110/ossus and C. basiliscus and possibly other 

markers from nuclear regions. The distance, maximum likelihood, and parsimony 

methods grouped C. totonacus as a sister taxon of C. basiliscus and C. molossus, as 

indicated their shared lineage. This pattern is less clear in the AFLPs but could explain 

the previous difficulties of placing C. lotonacus in C. basi/iscus or C. durissus (Taylor 

195 1; Go lay et al. 1993). A noteworthy finding in all the phylogenies is the relatively 

strong differentiation between the C. mo/ossus populations, which all supposedly 

belonged to the same subspecies, C. m. molossus. 

Recently Campbell & Lamar (2004) separated Crotalus durissus into three species based 

only on taxonomic rearrangements and hi storical evidence. They recogn ised the 

populations from Tamaulipas and adjoining parts of NE Mexico (formally C.d. 
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totonacus) as a full species, a finding also supported by the results of this study. The 

same authors divided the Central American and South American members of the complex 

into separate species as they considered the likely type locality of C. durissus to have 

been the Guyana region of South America, not Mexico, and they reject Smith and 

Taylor's (1966) restriction of the type locality to Jalapa, Veracruz, Mexico. As a 

consequence, all the South American forms of the complex are treated as subspecies of C. 

durissus, and the populations from coastal Guyana, Suriname and French Guyana, 

formerly known as C. durissus dryinas, become C. durissus durissus. The oldest 

available name for the Central American populations is Crotalus simus (Latreille 180 I), 

so that all Central American populations are treated as subspecies of C. simus. For 

example, those forme rly treated as C. durissus durissus are now treated as C. simus 

simus. 

In the present study, the taxonomic validity of C. simus as a monophyletic group is 

newly questioned, because the mtDNA and AFLP phylogenies suggest that the Yucatan 

populations of the former C. d. tzabcan deserve full species. According to Campbell and 

Lamar ( 1989), the taxa C. vegrandis and C. unicolor should be treated as subspecies of C. 

durissus; this is consistent with their phylogenetic position within C. durissus as 

demonstrated by Wtister et al. (2002) and this study (Fig 5. I). 
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□ □ 
■ ■ 
■ ■ Crotab4S cf simus 

■ Crotab4!1 t<llbaur 

■ Crotab4!1 duriuus 

Fig 5.1. Proposed changes in the systematics of the C. durissus complex. Left, taxonomic 

changes proposed by Campbell and Lamar (2004). Right, proposed arrangements according 

to the results of this study. 
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5.6. The status of the C. durissus complex as a species group 

Taxonomically, the genus Crotalus has been classified into several species groups 

according to morphological and molecular characters (reviewed by Murphy et al. 2002). 

Several authors have proposed four to eight species groups, and consistently the C. 

durissus group appears in these classifications (Gloyd 1940; Brattstrom 1964; Klauber 

1972; Foote and MacMahon 1977; Murphy et. al 2002). Despite the recognition of the C. 

durissus group in the early stages of the rattlesnake classification (Gloyd 1940), the 

suggested group has varied substantially in terms of composition and number of species 

included. For instance Klauber ( 1972), using morphological, behavioural, and habitat 

classification approaches, included C. basiliscus, C. cerates, C. durissus, C. enyo, C. 

horridus, C. molossus, C. unicolor and C. vegrandis. Other authors inc luded and 

excluded other species; however Klauber' s opinion has been consistent with all 

morphological c lassifications. 

Recently the use of molecular markers has challenged the classification of spec ies groups 

and changed their composition. In the case of the C. durissus group, the most recent 

classification, based on sequences of five mtDNA genes (Murphy et al. 2002), 

recognized seven species: C. durissus, C. vegrandis, C. unicolor, C. enyo, C. basiliscus, 

C. estebanensis, and C. molossus. The phylogenetic analyses presented here indicate that 

the C. durissus group is more complex in composition than was previously supposed. The 

increased sampling effort, which considered most of the rattlesnake' s geographic 

distribution, and improved molecular resolution, has improved the topology of phylogeny 

of the C. durissus complex. 
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The C. durissus group is integrated by at least 12 evolutionary lineages that deserve 

species status recognition (according to the ESC) and further studies may increase the 

number of species in the membership of the group. This study proposes a new 

arrangement and composition of the C. durissus group, consisting of the following 

evolutionary species: C. durissus, C. totonacus, C. culminatus, C. tzabcan, C. molossus, 

C. basiliscus, C. estebanensis and C. enyo. The Baja California rattlesnake C. enyo is 

included on the basis of morphological s imilarity to the C. durissus group (Klauber 1972; 

Brattstrom 1964) and molecular data that indicates that C. enyo is the s ister taxon of the 

C. durissus clade (Murphy et al. 2002). On the other hand, this study suggests that C. 

molossus is composed of at least four evolutionary lineages, which is likely to increase 

the membership of the C. durissus group in future studies. 

5. 7. Remarks on venom variation 

The finding that all C. durissus populations in South America are monophyletic and that 

the populations in Mexico and Central America have multiple, deep lineages, raises new 

questions regarding the evolution and variation in some venom protein compounds. It is 

very well known that some components of venom in C. durissus vary at the intraspecific 

level while others do not (Schenberg 1959; Jimenes-Porras 1964; Warrell et al. 1997; 

Daltry et al. 1997; Francischetti et al. 2000; Saravia et al. 2002; Rangel-Santos et al. 

2004). 

The causes of intraspecific variation are complex due the multi-loci nature of venom 

expression in snakes and its response to several factors (Fry and Wi.ister 2004; Warrell 

2004). Among these factors are phylogenetic constraints, natural selection by prey type, 

92 



and geographic distance (Daltry et al. 1997; Creer et al. 2003; Fry et al. 2003; Warrell 

2004). 

At the present, there is a need for systematic studies on venom variation in C. durissus. 

Many studies of other vipers have analyzed geographical variation in detail and 

e lucidated some of the causal factors of the variation ( e.g. Dal try et al. I 996; Creer et al. 

2003). These studies provide clues about the factors that may affect C. durissus venom 

variation. However there is not a single study that explores the evolutionary factors 

producing strong geographic differentiation in the chemical composition of C. durissus 

venom. 

Many papers suggest that venom variation in the Neotropical rattlesnakes may be 

influenced by several causal factors, including geographic locat ion (Schenberg 1959; 

Jimenes-Porras 1964; Warrell et al. 1997; Daltry et al. 1996; Francischetti et al. 1997; 

Francischetti et al. 2000; Saravia et al. 2002), ontogenetic variation (Theakston and Reid 

1979; Gutierrez et al. I 990; 1991; Min ton and Weinstein 1986; Saravia et al. 2002), and 

sexual variation (Gutierrez et al. 1990; 1991 ). We now have a phylogenetic background 

that allows for testing evolutionary hypotheses that may explain the patterns of venom 

variation. However, more data on venom variation is still needed. 

In the past, standard electrophoresis and characterization of the venom protein by cDNA 

cloning made it difficult to analyze a large number of samples (Creer et al. 2003). The 

development of techniques such as matrix-assisted laser de-sorption ionization time-of

flight mass spectrometry offer an accurate and efficient alternative to past methods. This 

technique directly measures the molecular weight of proteins from complex mixtures, 
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allowing for the analysis of large numbers of samples (Mirgorodskaya et al. 2000). This 

technique has already been used to identify the masses of key components in spider 

venom and in the viper Trimeresurus stejnegeri (Escoubas et al. 1999; Mirgorodskaya et 

al. 2000; Creer et al. 2003). 

5.8. Implications for Conservation 

Rattlesnakes in general, and the C. durissus complex in particular, are threatened 

throughout their range distribution. These snakes have faced a long-term conflict with 

human activities and settlements (reviewed in Campbell and Lamar 2004). Despite 

protection efforts, many people are still prejudiced against rattlesnakes. Rattlesnakes are 

still subject to constant persecution and killing. Fortunately in Mexico, the centre of 

rattlesnake diversification, most conventional rattlesnake taxa are protected under 

government law (SEMARNAP ECO-089 200 I), but they still suffer from habitat 

destruction and illegal pet trade (Flores et al. 1998; CONABIO 2002). 

There do exist international efforts to protect rattlesnakes, but some of the most common 

lists of endangered species do not include many rare species of pitvipers (e.g. IUCN 

2003; CITES 200 I). This suggests that compared to other reptiles, conservation efforts 

are biased against rattlesnakes. 

Some populations of the C. durissus complex have been the object of conservation 

interest based on their rareness and the human impact on their populations. The only 

rattlesnakes that appear on lists of endangered species are C. d. unicolor, C. d. vegrandis, 

and the populations of C. durissus in Honduras (I UCN 2002; C ITES 200 I). In Mexico, 
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the members of the species group C. durissus, C. molossus, C. basiliscus, and C. enyo are 

protected (SEMARNAP ECO-089 200 I). Due the taxonomic changes that have been 

proposed by Campbell and Lamar (2004) and this study, these lists should be up-dated. 

The systematics and recognition of old and de limited lineages of the C. durissus complex 

offer the opportunity to discuss the importance of the Evolutionary Significant Units 

(ESU) in the conservation (Ryder 1986; Waples 1991; Moritz 1994; Dimmick et al. 

1999). The ESU relies on the Evolutionary Species Concept, and has profound 

implications in the selection of priority taxa for conservation. ES Us have been defined as 

I ineages that are " reciprocally monophyletic for mtDNA genes and show significant 

divergence of allele frequencies at nuclear loci" (Moritz 1994). This concept has 

implications in conservation decis ions that give protection priority to those lineages that 

show clear delimitation and are unique or rare (Ryder 1986; Waples 1991 ; Moritz 1994; 

Dimmick et al. 1999; A vise 2002). 

The Mexican and Central America rattlesnake lineages are examples of ESU, as their 

monophyly is evident in both mtDNA and AFLP analyses (which includes several 

anonymous nuclear loci). C. totonacus and C. tzabcan should be a conservation priority 

because their habitats are suffering fast degradation (Campbell and Lamar 2004). 

Conservation programs for South American populations, such as C. d. unicolor, sho uld 

be undertaken carefully. Currently, an effort is be ing made in order to protect C. d. 

unicolor (e.g. Reinert et al. 2005). Given that the results of this study suggest the 

population currently known as C. d. unicolor is not a separate species, it is important that 

conservationists be clear that they are protecting a unique population, but not an 
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endangered species. In contrast to C. d. unicolor, which is just one population, very little 

is being done to conserve the entire species of the ancient, endemic, and rare C. 

totonacus. Future conservation programs must consider the phylogeography of the C. 

durissus complex, when seeking to protect the rare lineages of Neotropical rattlesnakes. 
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Appendix 2 List of samples used in the present study 

Label Taxon Locality Geographical 

cordinates 

Cd00I C. d11riss11s d11riss11s Caternaco. Veracruz 241600N, 984100W 

Cd002 C. durissus cu/minatus El aguacate, Puebla 18 45 00 N, 98 11 00 W 

Cd003 C. d urissus culminatus El aguacate, Puebla 18 45 00 N, 98 11 00 W 

Cd004 C. d11riss11s c11/111i11at11s El aguacatc, Puebla 18 45 00 N, 98 11 00 W 

Cd005 C. d11riss11s c11l111i11a111s El aguacate, Puebla 1845 00 N, 98 11 00W 

CdSA C.d11riss11s toto11ac11s 30Km SW Cd. Victoria. 

Tamaulipas 23 44 00 N, 98 48 00 W 

CdSA2 C.duriss 11s 101011ac11s 30Km SW Cd. Victoria, 

Tamaulipas 23 44 00 N, 98 48 00 W 

CdSD C.durissus totonacus Tamaulipas 23 36 00 N, 98 38 00 W 

RA C. d11riss11s c11l111i11at11s Sierra de Puebla. Puebla 1816 00 N, 97 5800W 

RA3 C. d11riss11s c11l111i11at11s Sierra de Puebla, 18 16 00 N, 97 58 00 W 

Ctx l C. atrox Hermosil lo, Sonora 29 06 00 N, 11 0 56 00 W 

Csct C. sc11r11/ar11s Hermosillo. Sonora 29 06 00 N, 110 56 00 W 

CM! C. 1110/ossus 1110/ossus Sonoyta, Sonora 31 58 00 N, 113 18 00 W 

CM2 C. 1110/ossus 1110/oss 11s Sonoyta, Sonora 31 5800 N, 11 3 1800W 

I1-IFC C. molossus nigrescens El Pedregal, Valle de Mexico 19 21 00 N, 99 09 00 W 

2I-IFC C. molossus nigrescens El Pedregal, Valle de Mexico 1921 00N,990900W 

4HFC C. molossus nigrescens El Pedregal, Valle de Mexico 19 21 00 N, 99 09 00 W 

5HFC C. durissus culminatus Sierra de Puebla, Puebla 18 45 00 N, 98 11 00 W 

ZG ICdd C. d11riss11s d11riss11s Los Tuxtlas, Veracruz 18 35 00 N, 95 19 00 W 

ZG2Cdd C. d11riss11s d11riss11s Selva Lacandona, Chiapas 17 31 00 N, 914600 W 

ZG3Cdd C. duris.rns d11riss11s Paso de! Toro, Veracmz 185900N,963300W 

ZGCBI C. basi/isc11s Guadalajara, Jalisco 20 3700 N, 103 24 DOW 

ZGCB2 C. basiliscus Guadalajara, .lalisco 20 37 00 N, 103 24 00 W 

ZGCB3 C. basilisc11s Guadalajara . .I al isco 20 37 00 N, 103 2400W 

ZGCCI C. d11riss11s c11l111i11at11s Oaxaca 17 44 00 N, 97 44 00 W 

ZGCC2 C. d11riss11s c11/111i11at11s Oaxaca 17 44 00 N, 97 44 00 W 

ZGCC3 C. d11riss11s c11/111i11at11s Oaxaca 17 44 00 N, 97 44 00 W 

CTSON C. tigris Hermosillo. Sonora 29 06 00 N, 11 0 56 00 W 

CTSON2 C. tigris Hermosillo, Sonora 29 06 00 N, 110 56 00 W 

C.mofossus 

1567 nigrescens Queretaro, El lnternado 204500N,1001900W 

1576 C.durissus culminatus Edo. Mexico, lxtapan 18 40 00 N, 99 31 00 W 

2063 c. durissus durissus Chiapas, La Lacandona 17 31 00 N, 9146 DOW 

2065 C. durissus durissus Chiapas, La Lacandona 17 31 00 N, 91 46 00W 

2067 C. durissus durissus Chiapas, La Lacandona 17 31 00 N, 914600 W 

2072 C. durissus durissus Chiapas, La Lacandona 17 31 00 N, 91 46 00 W 

3102 C. durissus totonacus Queretaro, Tomajo 21 17 00 N, 99 51 00 W 

cdculB C.durissus culminatus El aguacate, Puebla 18 45 00 N, 98 11 00 W 

Cdg1a C.durissus durissus Los Tuxtlas, Veracruz 18 35 00 N, 95 19 00 W 

C.molossus 

1566 nigrescens Queretaro, Cadereita 20 27 00 N, 100 19 00 W 
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822 C. basiliscus Nayarit, San Blas 21 36 00 N, 105 12 00 W 

C128 Cmolossus mo/ossus San Bernandino, California 340700N, 1163400W 

C135 Cmolossus molossus Las Uvas, New Mexico 33 04 00 N, 107 43 00 W 

C136 C.mo/ossus molossus Las Uvas, New Mexico 33 04 00 N. 107 43 00W 

C137 C molossus mo/ossus Maricopa. AZ 33 14 00 N. 112 06 00 W 

C.molossus 

CMN3 nigrescens El Pedregal, Valle de Mexico 1921 00N. 990900W 

C.molossus 

CMN4 nigrescens El Pedregal . Valle de Mexico 19 21 00 N. 99 09 00 W 

C.molossus 

CMN6 nigrescens El Pedregal, Valle de Mexico 19 21 00 N. 99 09 00 W 

3014 C molossus oaxacus Zapotitlan Salinas. Puebla 18 24 00 N. 97 27 DOW 

Crotafus durissus 

108 terrificus Jacarei SP 23 18 00 s. 46 03 00 W 

Crotalus durisuis 

109 terrificus Guaratinguel< 22 48 00 s. 45 12 00 W 

Crotalus durissus 

110 terrificus Roseira SP 22 54 00 s. 45 21 00 W 

Crotalus durissus 

120 terrificus TaubatS SP 23 01 00 s. 45 33 00 W 

Crotafus durissus 

121 terrificus Svo Lu iz do Parailinga 23 15 00 s. 45 27 00 W 

Crotalus durissus 

122 terrificus Colombia SP 20 05 00 s. 48 58 00 W 

Crota/us durissus 

123 terrificus ltupeva SP 23 06 00 s. 47 02 00 W 

Crotalus durissus 

135 terrificus Pindamonhangaba 22 55 oos. 45 29 00 W 

Crota/us durissus 

136 terrificus Pindamonhangaba 22 55 ODS. 45 29 00 W 

Crotafus durissus 

137 terrificus Roseira SP 22 54 00 s. 45 21 00 W 

Aruba Island - London Zoo 

211 Crotalus unico/or C1695 12 32 00 N. 69 56 00 W 

Aruba Island - London Zoo 

212 Crotalus unico/or C1693 12 32 00 N, 69 56 00 W 

213 Crota/us d. cu/minatus London Zoo C229 

Crotalus durissus 

254-262 tzabcan Xaibe, Corozal, Belize 18 27 00 N. 88 25 00 W 

303 Crotalus durissus ssp. Alto Paraiso GO - 1517 00 N. 47 38 DOW 

316 Crotalus durissus ssp. Pontes e Lacerda MT 15 44 00 s. 59 50 00 W 

317 Crotalus durissus ssp. Ribeirvo Cascalheira MT 14 35 00 s. 5123 00 W 

318 Crota/us durissus ssp. BrasP!ia DF 15 46 00 s. 4747 oow 

319 Crotalus durissus ssp. Svo DesidSrio BA 12 11 00 s. 44 54 00 W 

320 Crotalus durissus ssp. BelSm do Svo Francisco 08 41 00 s. 38 57 00 W 

321 Crotalus durissus ssp. Guanambi BA 14 08 00 s. 42 42 00 W 

346-353 Crotalus d. cascaveffa Grajau, MA 05 44 00 s. 46 07 00 W 

626-635 Crotalus d. cascavef/a Grajau. MA, 05 44 00 s. 46 07 00 W 

664-667 Crotalus d. collilineatus Alto da Boa Vista. MT 22 13 00 s. 43 32 00 W 

775 Crota/us d. La Guaira, D.F .. Venezuela 10 34 00 N, 67 02 00 W 
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cumanensis 

Crotatus d. 

780 cumanensis Distrito Colina, Falc:. n. Venezuela 111900N, 693700W 

Crotatus d. 

781 cumanensis Distrito Colina, Falc:.n, Venezuela 11 19 00 N, 69 37 00 W 

Crotafus d. 

782 cumanensis Paraguan<. Falc:.n. Venezuela 11 54 00 N, 69 59 00 W 

Crotafus d. 

788 cumanensis Curimagua, Falc:. n. Venezuela 111200N, 694500W 

Crotatus d. 

789 cumanensis Las Ventosas, Falc :. n, Venezuela 11 27 00 N, 69 33 00 W 

Crotafus d. 

790 cumanensis Las Venlosas, Falc :.n. Venezuela 11 27 00 N, 69 33 00 W 

Crotatus d. 

791 cumanensis Las Ventosas. Falc:.n, Venezuela 11 27 00 N, 69 33 00 W 

833 Crotafus vegrandis London Zoo female 

906 Crotafus d. terrificus Arapoti ,PR 24 08 00 S, 49 04 00 W 

907 Crotatus d. terrificus Arapoti, PR 24 08 00 s, 49 04 00 W 

908 Crotatus d. terrificus Arapoti, PR 24 08 00 s, 49 04 00 W 

SAL01 C. durissus durissus San Salvador, El Salvador 13 48 00 N, 89 10 00 W 

SAL02 C. durissus durissus San Salvador, El Salvador 13 48 00 N. 89 10 00 W 

SAL03 C. durissus durissus San Salvador, El Salvador 13 48 00 N, 89 10 00 W 

SAL04 C. durissus durissus San Salvador, El Salvador 13 48 00 N. 89 10 00 W 
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APPENDIX 3. Matrix of pairwise differences (average -1- SE) using Kimura 2-
parameter for the combined Cytb-ND4 sequences. 

2 3 4 5 6 7 8 9 10 

C scutulatus 
C. viridisCO 0,0108-

C. viridisAZ 0,0117 0,0027 -

CDtoto_ Tamp 0,1130 0,1121 0,1112-

CDtoto_Quet 0, 1176 0,1167 0, 1158 0,0206-

CDcul_Puebl 0,1333 0, 1324 0, 1315 0,1062 0,1117-

C. unicolor 0, 1429 0,1438 0, 1429 0,1141 0,1214 0,0812 

C. vegrandis 0,1341 0,1349 0, 1341 0,0998 0,1089 0,0795 0,0306 0,0000 

CDD_cateMX 0,1283 0,1274 0, 1265 0,1040 0,1104 0,0666 0,0629 0,0620 0,0000 

CBBguadal 0, 1117 0, 1117 0,1108 0,0703 0,0794 0,1040 0,1056 0,0939 0,1027 0,0000 

CDcolB_ABoaBZ 0, 1332 0, 1341 0, 1332 0,1062 0,1126 0,0740 0,0279 0,0316 0,0540 0,0994 

CDT_GuarBZ 0,1447 0,1456 0, 1447 0,1127 0,1201 0,0828 0,0365 0,0420 0,0655 0, 1106 

CDT _SLParBZ 0,1399 0,1390 0,1381 0,1085 0, 1158 0,0801 0,0315 0,0333 0,0610 0, 1054 

CDT_RosBZ 0, 1320 0,131 1 0, 1302 0, 1041 0,1096 0,0802 0,0315 0,0360 0,0593 0,0992 

CDT_PindBZ 0,1318 0,1309 0, 1300 0,1049 0, 1113 0,0720 0,0252 0,0306 0,0511 0,0991 

CM_MaricpAZ 0,1106 0,1097 0,1106 0,0737 0,0846 0,1083 0, 1054 0,0965 0,1043 0,0659 

CM_SnBernAZ 0,1089 0,1080 0, 1089 0,0828 0,0955 0,1094 0,1064 0,1011 0,1116 0,0732 

CM_LUvasNM 0,1125 0,1098 0,1107 0,0773 0,0891 0,1075 0,1073 0,0992 0,1071 0,0768 

CM_QuertMX 0,1089 0,1089 0,1098 0,0783 0,0856 0,1012 0,1046 0,0992 0,1017 0,0786 

CDcul_lxtMX 0,1373 0,1365 0,1356 0, 1120 0,1184 0,0235 0,0842 0,0787 0,0587 0, 1079 

CDD_ChisMX 0,1283 0,1274 0, 1265 0,1040 0,1104 0,0666 0.0629 0,0620 0,0000 0,1027 

CDtz_Bez 0,1303 0,1294 0,1303 0, 1033 0,1061 0,0767 0,0747 0,0712 0,0728 0,0984 

CMO_OaxMX 0,1140 0, 1131 0, 1122 0,0877 0,0806 0, 1153 o. 1106 0,1043 0,1103 0,0907 

CD_PLaBZ 0,1327 0,1318 0,1327 0,1014 o. 1104 0,0756 0,0306 0,0360 0,0565 0,1009 

CD_RCasBZ 0,1316 0,1316 0,1307 0, 1063 0, 11 36 0,0750 0,0271 0,0316 0,0541 0,1004 

CD_BelmBZ 0,1329 0,1320 0,131 1 0, 1050 0,1114 0,0721 0,0261 0.0315 0,0539 0,1000 

CD_GuanBZ 0,1375 0,1366 0,1357 0,1045 o. 1128 0,0758 0,0301 0,0365 0,0564 0,1023 

CDcul_MorMX 0,1365 0,1356 0,1347 0, 1077 0, 1123 0,0108 0,0783 0,0765 0,0709 0, 1055 

CDcas_GrajBZ 0,1370 0,1360 0,1351 0,1054 0,1135 0,0759 0,0298 0,0361 0,0567 0,1049 

CDcol_ABoaBZ 0,1349 0,1358 0,1349 0,1078 0,1142 0,0746 0,0272 0,0336 0,0543 0,1009 

CDcuman 0,1416 0,1407 0,1398 0, 1109 0, 1182 0,0833 0,0163 0,0235 0,0640 o. 1069 

CBB_NaytMX 0, 1175 0, 11 75 0,1166 0,0753 0,0808 0,1054 0,1087 0,0971 0,1058 0,0171 

CDTr_ArapBZ 0,1320 0,1311 0,1302 0,1050 0,1114 0,0721 0,0252 0,0306 0.0512 0,0992 

CM_EdomexMX 0, 11 93 0,1184 0,1166 0,0906 0,0933 0.1135 0,1070 0,1061 0, 1139 0,0839 
El Salvador 0,1292 0, 1283 0,1274 o. 1076 0,1140 0,0666 0,061 1 0,0612 0,0081 0,1036 

CDdry_Guyana 0,1401 0,1392 0, 1383 0,1114 0, 1187 0,0821 0,0153 0,0243 0,0647 0, 1055 
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11 12 13 14 15 16 17 18 19 20 21 22 23 

0,0000 

0,0164 0,0000 

0,0153 0,0137 0,0000 

0,0144 0,0237 0,0162 0,0000 

0,0063 0,0173 0,0117 0,0090 0,0000 

0,0993 0,1113 0,1061 0,0954 0,0989 0,0000 

0,1038 0,1142 0, 1107 0,1027 0,1035 0,0208 0,0000 

0,1029 0, 1132 0,1098 0,1009 0,1025 0,0289 0,0190 0,0000 

0, 1011 0, 1113 0, 1044 0, 1027 0,1008 0 ,0686 0,0740 0,0741 0,0000 

0 ,0761 0,0850 0,0822 0,0804 0,0750 0,1105 0, 1124 0, 1115 0,0979 0,0000 

0,0540 0,0655 0,0610 0,0593 0,0511 0, 1043 0, 1116 0,1071 0,1017 0,0587 0,0000 

0,0676 0,0809 0,0773 0,0737 0,0674 0,0982 0,1037 0,1045 0,0974 0,0770 0,0728 0,0000 

0,1098 0, 1181 0, 1166 0, 1086 0,1085 0,0789 0 ,0844 0,0826 0,0789 0, 1175 0, 1103 0, 1033 0,0000 

0,0135 0,0237 0,0170 0,0180 0,0090 0,0971 0,1017 0,1007 0,1008 0,0786 0,0565 0,0701 0, 1103 

0,0054 0,0201 0,0126 0,0117 0,0054 0,1003 0,1049 0,1039 0, 1012 0,0771 0,0541 0,0659 0,1108 

0,0090 0,0146 0,0090 0,0135 0,0045 0, 1017 0, 1054 0, 1045 0,1026 0,0760 0,0539 0,0701 0, 1112 

0,0137 0,0212 0,0154 0,0191 0,0109 0,1040 0,1078 0,1049 0,1031 0,0796 0,0564 0,0701 0, 1107 

0,0711 0,0799 0,0772 0,0772 0,0691 0, 1098 0, 1117 0, 1108 0,1027 0,0253 0,0709 0,0774 0, 1168 

0,0154 0,0211 0,0171 0,0207 0,0135 0, 1020 0,1066 0,1030 0, 1013 0,0789 0,0567 0,0703 0,1099 

0,0046 0,0175 0,0154 0,0163 0,0081 0,1016 0,1053 0,1044 0,1027 0,0767 0,0543 0,0681 0, 11 13 

0,0298 0,0366 0,0325 0,0325 0,0279 0,1013 0,1040 0, 1049 0, 1050 0,0827 0,0640 0,0786 0, 1118 

0,1026 0,1146 0, 1085 0,1023 0,1022 0,0719 0,0774 0,0818 0,0819 0,1075 0, 1058 0,0979 0,0895 

0,0063 0,0173 0,0117 0,0090 0,0000 0,0990 0, 1036 0,1027 0,1009 0,0750 0,0512 0,0674 0,1086 

0, 1062 0, 1155 0,1112 0,1077 0,1058 0,0647 0,0657 0,0675 0,0270 0,1075 0, 1139 0, 1043 0,0841 

0,0504 0,0610 0,0565 0,0548 0,0484 0,1 052 0, 1125 0,1080 0,1008 0,0560 0 ,0081 0,0719 0,1103 

0,0306 0,0383 0,0332 0,0333 0,0288 0,1018 0,1037 0, 1036 0, 1054 0,0833 0,0647 0,0801 0, 1133 
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24 25 26 27 28 29 30 31 32 33 34 35 36 

0,0000 

0,0117 0,0000 

0,0117 0,0081 0,0000 

0,0182 0,0128 0,0082 0,0000 

0,0727 0,0721 0,0692 0,0728 0,0000 

0,0207 0,0172 0,0108 0,0082 0,0740 0,0000 

0,0154 0,0100 0,0100 0,0165 0,0717 0,0155 0,0000 

0,0333 0,0290 0,0289 0,0348 0,0804 0,0317 0,0301 0,0000 

0,1040 0,1036 0,1032 0,1055 0,1051 0, 1081 0,1041 0, 1100 0,0000 

0,0090 0,0054 0,0045 0,0109 0,0692 0,01 35 0,0081 0,0280 0, 1023 0,0000 

0,1076 0,1063 0, 1078 0,1083 0,1131 0,1063 0,1078 0,1055 0,0861 0,1059 0,0000 

0,0538 0,0505 0,0512 0,0528 0,0709 0,0532 0,0498 0,0622 0,1067 0,0485 0, 1130 0 ,0000 

0,0341 0,0298 0,0297 0,0355 0,0810 0,0325 0,0309 0,0027 0, 1087 0,0288 0,1060 0,0629 
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APPENDIX 4. Pairwise distances of the AFLP patterns between taxa. 
Below diagonal: Total character differences; Above diagonal: Mean character differences 

Label Locality 2 3 4 
Ctx Sonora.MX 0,06855 0,42742 0,42742 
CPY Michoacan,MX 17 - 0,39113 0,39113 
Cd001 Veracruz,MX 106 97 - 0,01613 
Cd002 Pucbla.MX 106 97 4-
Cd004 Puebla,MX 107 98 3 3 
cdcul Puebla.MX 104 95 8 8 
Cdg1 Veracruz,MX 104 95 8 6 
SD Tamaulipas,MX 124 111 66 70 
SA Tamaulipas.MX 126 117 70 68 
Cd 3102 Queretaro, MX 110 101 56 54 
Cd 1566 Queretaro, MX 86 89 86 84 
Cd 1576 lxtapan, MX 111 106 27 27 
Cd 2065 Chiapas, MX 113 104 23 21 
Cd 2067 Chiapas, MX 109 104 27 27 
Cd 2072 Chiapas, MX 114 105 24 22 
Cd 255 Corozal, Belize 92 81 64 66 
Cd 259 Corozal, Belize 104 93 76 76 
SAL1 El Salvador 120 111 42 42 
SAL2 El Salvador 114 107 44 46 
SAL6 El Salvador 119 110 39 39 
Cd 316 Pontes e Lacerda BZ 79 66 81 81 
Cd 317 Ribeirvo Cascal. BZ 82 69 88 88 
Cd 318 BrasPlia. BZ 93 80 93 93 
Cd 319 Svo Dcsid9rio BZ 91 76 93 93 
Cd 320 Bel9m S. Francis. BZ 80 65 88 86 
Cd 321 Guanambi BZ 72 59 90 92 
Cd 346 Grajau, BZ 85 72 93 93 
Cd 349 Grajau, BZ 88 73 88 88 
Cd 352 Grajau, BZ 101 86 101 101 
Cd 353 Grajau, BZ 95 82 87 87 
Cd 630 Grajau, BZ 85 72 85 85 
Cd 635 Grajau, BZ 86 73 90 90 
Cd 667 Alto da Boa Vista, BZ 83 68 75 75 
Cd 775 La Guaira, Venezuela 85 70 83 81 
Cd 780 Falc :. n, Venezuela 90 77 86 86 
Cd 781 Falc :. n, Venezuela 91 76 81 81 
Cd 906 Arapoti,BZ 95 84 89 89 
Cd 907 Arapoti,BZ 101 88 95 95 
Cd 908 Arapoti,BZ 97 86 95 95 
Cd 1043 SE Guyana 104 89 86 86 
Cd 1092 SE Guyana 99 84 85 85 
Cd 1095 SE Guyana 88 73 78 78 
C.vegrand Venezuela 109 94 93 93 
Cd 212 Aruba I. 96 85 86 86 
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5 6 7 8 9 10 11 
0,43145 0,41935 0,41935 0,5 0,50806 0,44355 0,34677 
0,39516 0,38306 0,38306 0,44758 0,47177 0,40726 0,35887 

0,0121 0,03226 0,03226 0,26613 0,28226 0,22581 0,34677 
0,0121 0,03226 0,02419 0,28226 0,27419 0,21774 0,33871 

0,02823 0,03629 0,27016 0,27823 0,21371 0,34274 
7 - 0,03226 0,25806 0,28226 0,21774 0,35484 
9 8- 0,27419 0,27419 0,21774 0,33871 

67 64 68 - 0,08065 0, 10484 0,41935 
69 70 68 20 - 0,09677 0,41129 
53 54 54 26 24 - 0,3629 
85 88 84 104 102 90 -
26 29 27 79 83 65 87 
22 23 21 79 79 63 83 
26 29 27 79 79 61 83 
23 24 22 78 78 62 86 
63 64 62 100 104 96 106 
77 78 76 100 100 100 108 
41 42 38 88 90 70 86 
43 44 42 88 90 68 88 
40 41 39 85 89 73 87 
82 85 81 99 103 91 107 
89 92 86 102 102 94 108 
94 95 95 107 105 95 113 
94 93 91 109 109 97 111 
87 86 82 106 110 96 108 
89 90 88 102 108 92 110 
94 95 93 101 105 105 107 
89 90 84 108 108 102 112 

102 99 95 111 115 113 133 
88 91 85 103 105 105 11 3 
86 89 85 105 107 105 107 
91 94 90 110 114 108 112 
76 79 75 97 101 93 107 
84 83 83 103 99 91 105 
87 88 86 104 100 102 108 
82 83 77 101 99 95 105 
90 91 87 97 105 99 111 
94 95 91 103 111 105 121 
96 97 93 107 115 103 117 
87 86 88 100 104 98 118 
86 87 85 95 99 97 111 
77 76 76 96 102 94 114 
94 99 93 117 113 115 123 
85 86 86 108 114 106 112 
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12 13 14 15 16 17 18 
0,43952 0,45968 0,37097 0,41935 0,45968 0,45968 0,47984 
0,41935 0,42339 0,32661 0,375 0,41532 0,431 45 0,44355 
0, 10887 0,09677 0,25806 0,30645 0,29032 0,17742 0,15726 
0, 10887 0,08871 0,26613 0,30645 0,29032 0, 18548 0,15726 
0,10484 0,09274 0,25403 0,31048 0,29435 0,17339 0,16129 
0,11694 0,09677 0,25806 0,31452 0,31452 0,17742 0,16532 
0, 10887 0,08871 0,25 0,30645 0,29839 0, 16935 0,15726 
0,31855 0,31452 0,40323 0,40323 0,43548 0,35484 0,34274 
0,31855 0,31452 0,41935 0,40323 0,42742 0,3629 0,35887 
0,24597 0,25 0,3871 0,40323 0,42742 0,27419 0,29435 
0,33468 0,34677 0,42742 0,43548 0,42742 0,35484 0,35081 
0,03226 0,03629 0,29435 0,31855 0,34274 0,10887 0,12097 
0,03226 0,0121 0,28629 0,31048 0,33468 0, 10887 0,09677 

0,02823 0,30242 0,32661 0,35887 0,10887 0,12903 
7 - 0,29032 0,29839 0,33871 0,1129 0, 10887 

75 72 - 0,09677 0,12903 0,26613 0,27016 
81 74 24 - 0,16129 0,28226 0,27016 
25 22 64 66 82 0,03226 0,04435 
27 28 66 70 86 - 0,05242 
32 27 67 67 81 13 -
92 89 55 61 69 85 80 
93 94 52 60 66 90 89 
96 99 67 69 73 87 88 

102 99 67 69 75 89 90 
95 92 52 62 66 84 85 
93 98 54 70 74 84 91 

102 101 63 59 77 97 90 
97 92 58 58 74 82 79 

112 109 65 73 75 103 100 
102 97 61 61 67 95 88 
98 97 61 61 73 89 84 

107 102 62 66 72 94 91 
92 87 51 57 61 85 78 
98 91 65 65 73 89 84 
99 94 56 54 62 90 85 
96 91 59 61 71 83 82 
98 93 63 67 79 87 86 

104 99 61 71 71 93 90 
102 99 63 67 75 95 94 
101 94 66 64 78 92 89 
102 97 67 67 73 93 88 
95 90 52 60 68 86 85 

104 101 67 71 73 93 90 
95 94 62 74 78 92 93 
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19 20 21 22 23 24 25 26 
0,31855 0,33065 0,375 0,36694 0,32258 0,29032 0,34274 0,35484 
0,26613 0,27823 0,32258 0,30645 0,2621 0,2379 0,29032 0,29435 
0,32661 0,35484 0,375 0,375 0,35484 0,3629 0,375 0,35484 
0,32661 0,35484 0,375 0,375 0,34677 0,37097 0,375 0,35484 
0,33065 0,35887 0,37903 0,37903 0,35081 0,35887 0,37903 0,35887 
0,34274 0,37097 0,38306 0,375 0,34677 0,3629 0,38306 0,3629 
0,32661 0,34677 0,38306 0,36694 0,33065 0,35484 0,375 0,33871 

0,39919 0,41129 0,43145 0,43952 0,42742 0,41129 0,40726 0,43548 
0,41532 0,41129 0,42339 0,43952 0,44355 0,43548 0,42339 0,43548 
0,36694 0,37903 0,38306 0,39113 0,3871 0,37097 0,42339 0,41129 
0,43145 0,43548 0,45565 0,44758 0,43548 0,44355 0,43145 0,45161 
0,37097 0,39919 0,40323 0,41935 0,36694 0,38306 0,41129 0,375 
0,35484 0,375 0,39516 0,40323 0,36694 0,39113 0,40323 0,36694 
0,37097 0,375 0,3871 0,41129 0,38306 0,375 0,41129 0,39113 
0,35887 0,37903 0,39919 0,39919 0,37097 0,39516 0,40726 0,37097 
0,22177 0,20968 0,27016 0,27016 0,20968 0,21774 0,25403 0,23387 
0,24597 0,24194 0,27823 0,27823 0,25 0,28226 0,2379 0,23387 
0,33468 0,3629 0,35081 0,35887 0,33065 0,35484 0,375 0,33065 
0,34274 0,3629 0,35081 0,35887 0,33871 0,33871 0,39113 0,33065 
0,32258 0,35887 0,35484 0,3629 0,34274 0,36694 0,3629 0,31855 

0,06048 0,12903 0, 1129 0,06048 0,05242 0,1129 0,125 
15 - 0,14113 0,125 0,08065 0,07258 0,125 0,14516 
32 35 - 0,16129 0,125 0,14113 0,20161 0,20565 
28 31 40 - 0,125 0,11694 0,16935 0,17339 
15 20 31 31 - 0,06452 0,14919 0,12903 
13 18 35 29 16 - 0, 13306 0,1371 
28 31 50 42 37 33 - 0,08468 
31 36 51 43 32 34 21 -
42 47 56 52 43 43 38 33 
36 41 58 48 41 43 28 29 
26 31 44 42 33 33 16 17 
27 36 51 45 34 34 19 22 
24 27 42 36 29 29 26 31 
30 35 42 36 35 39 36 37 
29 32 47 39 34 36 33 38 
34 39 52 42 37 41 42 43 
44 49 62 56 51 51 42 45 
38 41 58 56 39 41 52 51 
38 41 56 48 41 41 50 45 
43 52 61 45 50 52 47 52 
40 43 54 44 43 45 46 47 
31 34 45 37 32 36 37 36 
56 55 66 66 61 63 62 55 
51 60 61 69 54 54 55 58 
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27 28 29 30 31 32 33 34 

0,40726 0,38306 0,29435 0,32661 0,33468 0,3629 0,36694 0,43548 

0,34677 0,33065 0,23387 0 ,26613 0,2741 9 0,31048 0,30645 0,375 

0,40726 0,35081 0,32661 0,32661 0,30242 0,34677 0,32661 0,34677 

0,40726 0,35081 0,31855 0,33468 0,30242 0,34677 0,32661 0,34677 

0,41129 0,35484 0,33065 0,33065 0,30645 0,35081 0,33065 0,35081 

0,39919 0,36694 0,32661 0,33468 0 ,31855 0,35484 0,33468 0,35484 

0,38306 0,34274 0,31048 0,33468 0,30242 0,34677 0,31048 0,33871 

0,44758 0,41532 0,42339 0,39919 0,39113 0,41935 0,40726 0,41129 

0,46371 0,42339 0,43952 0,41532 0,40726 0,40323 0,39919 0,43548 

0 ,45565 0,42339 0,3911 3 0,391 13 0,375 0,41 129 0,38306 0,40323 

0,53629 0,45565 0,431 45 0,41532 0,43145 0,43548 0,42339 0 ,5 

0,44355 0,39516 0,3629 0,37903 0,35484 0,40726 0,3871 0,38306 

0,43548 0,3871 0,35484 0,35484 0,34677 0,38306 0,3629 0,36694 

0,45161 0,41129 0,37903 0,3871 0,37097 0,39919 0,3871 0,391 13 

0,43952 0,3911 3 0,35887 0,36694 0,35081 0,37903 0,36694 0,37097 

0,2621 0,24597 0,20565 0,20565 0,20565 0,22581 0,2379 0,25806 

0 ,29435 0,24597 0,24597 0,2379 0,22984 0,21774 0,24597 0,26613 

0,41 532 0,375 0 ,32661 0,32661 0,33468 0,3629 0,32661 0,35484 

0,41532 0,38306 0,33468 0,33468 0,34274 0,3629 0,33468 0,37097 

0,40323 0,35484 0,31452 0,32258 0,31452 0,34274 0,33065 0,34274 

0,16935 0,14516 0,06452 0,08871 0,09677 0,11 694 0,1371 0,18952 

0, 18952 0,16532 0, 10081 0,10887 0, 10887 0, 12903 0, 15726 0,20968 

0,22581 0,23387 0, 15323 0 ,16129 0,16935 0,18952 0,20968 0,2379 

0,20968 0,19355 0,12903 0, 15323 0,14516 0,15726 0,16935 0,18952 

0, 17339 0,16532 0,06855 0,10887 0, 11694 0, 1371 0,14919 0,19355 

0,17339 0,17339 0,08468 0,10887 0,11 694 0 ,14516 0,16532 0,20968 

0, 15323 0, 1129 0, 10484 0,10484 0, 10484 0,13306 0,16935 0,20565 

0, 13306 0,11694 0,09274 0,13306 0,125 0,15323 0, 17339 0,16935 

0 , 15323 0,14516 0, 18548 0,18548 0, 18145 0,2 1774 0,20565 

38 - 0, 12097 0 ,14516 0,14516 0,15726 0,16935 0,18952 

40 28 0,08871 0, 10484 0,08871 0,14113 0,15323 0 ,19758 

37 25 0,08468 0,09274 0,10081 0, 1371 0,15726 0,19355 

46 36 14 16 - 0,10081 0, 12097 0,17339 

54 42 22 28 30 0,10887 0, 12097 0, 15726 

45 39 27 29 25 - 0,10887 0,15323 

54 42 26 32 30 27 - 0,14919 

60 52 44 42 46 53 50 59 

54 48 44 44 46 55 56 69 

56 54 42 44 44 57 58 63 

59 49 41 41 45 36 35 44 

54 44 34 34 36 29 32 37 

47 35 25 29 27 28 27 32 

58 52 48 52 50 51 52 53 

63 59 47 51 45 52 53 54 
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35 36 37 38 39 40 41 42 

0,41129 0,40726 0,39113 0,41935 0,39919 0,35484 0,43952 0,3871 

0,35081 0,35484 0,34677 0,35887 0,33871 0,29435 0,37903 0,34274 

0,37097 0,38306 0,38306 0,34677 0,34274 0,31452 0,375 0,34677 

0,37097 0,38306 0,38306 0,34677 0,34274 0,31452 0,375 0,34677 

0,375 0,37903 0,3871 0,35081 0,34677 0,31048 0,37903 0,34274 

0,37903 0,38306 0,39113 0,34677 0,35081 0,30645 0,39919 0,34677 

0,37097 0,36694 0,375 0,35484 0,34274 0,30645 0,375 0,34677 

0,41129 0,41532 0,43145 0,40323 0,38306 0,3871 0,47177 0,43548 

0,42742 0,44758 0,46371 0,41935 0,39919 0,41129 0,45565 0,45968 

0,41935 0,42339 0,41532 0,39516 0,39113 0,37903 0,46371 0,42742 

0,44355 0,4879 0,47177 0,47581 0,44758 0,45968 0,49597 0,45161 

0,42339 0,41129 0,40323 0,40726 0,40323 0,375 0,42742 0,375 

0,39919 0,39516 0,39516 0,38306 0,3871 0,35887 0,40323 0,38306 

0,43145 0,41935 0,41129 0,40726 0,41129 0,38306 0,41935 0,38306 

0,41129 0,39919 0,39919 0,37903 0,39113 0,3629 0,40726 0,37903 

0,28226 0,24597 0,25403 0,26613 0,27016 0,20968 0,27016 0,25 

0,29032 0,28629 0,27016 0,25806 0,27016 0,24194 0,28629 0,29839 

0,37903 0,36694 0,375 0,35484 0,375 0,33871 0,38306 0,3629 

0,37903 0,375 0,38306 0,37097 0,375 0,34677 0,375 0,37097 

0,35081 0,3629 0,37903 0,35887 0,35484 0,34274 0,3629 0,375 

0,16532 0,15323 0, 15323 0,17339 0,16129 0,125 0,22581 0,20565 

0, 18548 0,16532 0, 16532 0 ,20968 0,17339 0, 1371 0,22177 0,24194 

0 ,24597 0,23387 0,22581 0,24597 0,21774 0,18145 0,26613 0,24597 

0,21371 0,22581 0,19355 0,18145 0,17742 0,14919 0,26613 0,27823 

0,20161 0, 15726 0,16532 0,20161 0,17339 0, 12903 0,24597 0,21774 

0,20161 0, 16532 0,16532 0,20968 0,18145 0,14516 0,25403 0,21774 

0,18145 0,20968 0,20161 0, 18952 0, 18548 0,14919 0,25 0,22177 

0,20968 0,20565 0,18145 0,20968 0,18952 0,14516 0,22177 0,23387 

0,2379 0,21774 0,22581 0,2379 0,21774 0, 18952 0,23387 0,25403 

0,20565 0,19355 0,21774 0, 19758 0,1 7742 0,14113 0 ,20968 0,2379 

0,20565 0, 19355 0, 19355 0,19758 0, 18548 0,13306 0,20968 0,21371 

0,20968 0, 19758 0, 19758 0, 18548 0,18145 0, 1371 0,22177 0,21774 

0,17339 0, 18548 0,17742 0 ,18145 0,14516 0, 10887 0,20161 0,18145 

0,125 0,25 0,23387 0,125 0,12097 0,1 1694 0,20161 0,21371 

0,14516 0,22177 0,22984 0,14516 0,11694 0, 1129 0,20565 0,20968 

0,125 0,22581 0,23387 0,14113 0, 12903 0 , 10887 0,20968 0,21371 

53 0, 16129 0, 1371 0,18145 0,22581 0, 19758 0,27419 0,27823 

61 - 0, 10484 0,20565 0,21774 0, 18952 0 ,26613 0,27016 

63 26 - 0,18145 0,20968 0,20565 0,28226 0,30242 

38 51 45 - 0,13306 0,12097 0,25403 0,28226 

37 54 52 33 - 0,09274 0,20968 0,2379 

36 47 51 30 23 - 0,18952 0,20161 

57 66 70 63 52 47 - 0,18145 

52 67 75 70 59 50 45 -
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