

Best step-up treatments for children with uncontrolled asthma: A systematic review and network meta-analysis of individual participant data

Cividini, Sofia; Sinha, Ian; Donegan, Sarah; Maden, Michelle; Rose, Katie; Fulton, Olivia; Culeddu, Giovanna; Hughes, Dyfrig; Turner, Steve; Tudor-Smith, Catrin

European Respiratory Journal

DOI: 10.1183/13993003.01011-2023

Published: 21/12/2023

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Cividini, S., Sinha, I., Donegan, S., Maden, M., Rose, K., Fulton, O., Culeddu, G., Hughes, D., Turner, S., & Tudor-Smith, C. (2023). Best step-up treatments for children with uncontrolled asthma: A systematic review and network meta-analysis of individual participant data. *European Respiratory Journal*, 62(6), Article 2301011. https://doi.org/10.1183/13993003.01011-2023

Hawliau Cyffredinol / General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may frack distribute the URL identifying the publication in the public parts 2
- You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

EUROPEAN RESPIRATORY *journal*

OFFICIAL SCIENTIFIC JOURNAL OF THE ERS

Best step-up treatments for children with uncontrolled asthma: A systematic review and network meta-analysis of individual participant data

Journal:	European Respiratory Journal
Manuscript ID	ERJ-01011-2023.R2
Manuscript Type:	Original Research Article
Date Submitted by the Author:	24-Oct-2023
Complete List of Authors:	Cividini, Sofia; University of Liverpool, Health Data Science Sinha, Ian; Alder Hey Children's NHS Foundation Trust Donegan, Sarah; University of Liverpool Maden, Michelle; University of Liverpool Rose, Katie; Alder Hey Children's NHS Foundation Trust Fulton, Olivia; Patient Representative Culeddu, Giovanna; Bangor University Hughes, Dyfrig; Bangor University Turner, Steve; University of Aberdeen Tudur Smith, Catrin; University of Liverpool
Key Words:	Respiratory Medicine (Asthma), paediatrics, asthma exacerbations, lung function, asthma control, asthma treatment
Abstract:	Introduction: There is uncertainty about the best treatment option for children/adolescents with uncontrolled asthma despite inhaled corticosteroids, and international guidelines make different recommendations. Objectives: We evaluated the pharmacological treatments to reduce asthma exacerbations and symptoms in uncontrolled patients <18 years on inhaled corticosteroids. Methods: We searched MEDLINE, the Cochrane Database of Systematic Reviews, the Cochrane Central Register of Controlled Trials, Embase, the Web of Science platform, NICE Technology Appraisals, the NIHR HTA series, the WHO International Clinical Trials Registry Platform, conference abstracts and internal clinical trial registers (1 July 2014 to 5 May 2023) for randomised controlled trials of participants <18 with uncontrolled asthma on any inhaled corticosteroid (ICS) dose alone at screening. Studies before July 2014 were retrieved from previous systematic reviews/contact with authors. Patients had to be randomised to any dose of ICS alone or combined with long-acting β 2-agonists (LABAs) or combined with leukotriene receptor antagonists (LTRAs); LTRAs alone; theophylline; placebo. Primary outcomes were exacerbation and asthma control. The interventions evaluated were ICS (Low/Medium/High dose); ICS+LABA; ICS+LTRA; LTRA alone; theophylline; placebo.

data from 19 trials. Compared to ICS Low, ICS Medium+LABA was associated with the lowest odds of exacerbation (OR 0.44 [95% CrI 0.19–0.90]) and with an increased FEV1 (MD 0.71 [95% CrI 0.35– 1.06]). Treatment with LTRA was the least preferred. No apparent differences were found for asthma control. Conclusion: Uncontrolled children/adolescents on low-dose ICS should be recommended a change to medium-dose ICS+LABA to reduce the risk for exacerbation and improve lung function.

Note: The following files were submitted by the author for peer review, but cannot be converted to PDF. You must view these files (e.g. movies) online.

Supplement.zip

SCHOLARONE[™] Manuscripts

855x481mm (38 x 38 DPI)

Best step-up treatments for children with uncontrolled asthma: A systematic review and network meta-analysis of individual participant data

Sofia Cividini, MSc; Ian Sinha, PhD; Sarah Donegan, PhD; Michelle Maden, PhD; Katie Rose, MBChB; Olivia Fulton; Giovanna Culeddu, MSc; Dyfrig A. Hughes, PhD; Stephen Turner, MD; Catrin Tudur Smith, PhD on behalf of the EINSTEIN collaborative group

Institute of Population Health, Department of Health Data Science, University of Liverpool, Liverpool, UK (Sofia Cividini, 0000-0003-2705-9224; Sarah Donegan, 0000-0003-1709-2290; Catrin Tudur Smith, 0000-0003-3051-1445) |
Alder Hey Children's Foundation NHS Trust, Liverpool, UK (Ian Sinha, 0000-0002-7342-5523; Katie Rose, 0000-0002-2348-2036) | Institute of Population Health, Liverpool Reviews and Implementation Group, University of Liverpool, Liverpool, UK (Michelle Maden, 0000-0003-4419-6343) | Women and Children Division, NHS Grampian, Aberdeen, UK and Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, UK (Stephen Turner, 0000-0001-8393-5060) | Patient Representative, Liverpool, UK (Olivia Fulton, 0000-0001-7358-0219) | Centre for Health Economics and Medicines Evaluation, Bangor University, Bangor, UK (Giovanna Culeddu, 0000-0001-5032-4255; Dyfrig A. Hughes, 0000-0001-8247-7459)

The EINSTEIN Collaborative Group:

GlaxoSmithKline (GSK) Research & Development Ltd ("Trial Sponsor"), 980 Great West Road, Brentford, TW8 9GS, UK | Staffordshire Children's Hospital at Royal Stoke and Keele University, University Hospitals of the North Midlands, Stoke-on-Trent, UK (William D Carroll, MD) | London School of Hygiene and Tropical Medicine, London, UK (Chris Frost, PhD) | Emory University, Department of Pediatrics, Atlanta, GA, USA (Anne M Fitzpatrick, PhD) |
Penn State University, College of Medicine, Department of Public Health Sciences, Hershey, PA, USA (David T Mauger, PhD) | University of Colorado, Department of Pediatrics, Anschutz Medical Campus; Children's Hospital Colorado Breathing Institute; University of Colorado Anschutz Medical Campus, Adult and Child Consortium for Outcomes Research and Delivery Science, CO, USA (Stanley J Szefler, MD) | Pediatric Asthma Research Program, The Breathing Institute, Interim Medical Director, Research Institute Children's Hospital Colorado, National Jewish Health and University of Colorado School of Medicine, Denver, CO (Michael E Wechsler, MD, MMSc) | University of Manchester and Manchester University NHS Foundation Trust, UK (Clare S Murray, MBChB, MD, MRCP, MRCPCH) | KK Women's and Children's Hospital and Duke-NUS Medical School, Singapore (Biju Thomas, MBBS, FRCPCH) | University of Wisconsin School of Medicine and Public Health, Madison, WI, USA (Robert F. Lemanske, MD) | School of Pharmacy University of Wisconsin, WI, USA (Christine A Sorkness, PharmD, RPh)

Corresponding Author:

Catrin Tudur Smith, PhD, Institute of Population Health, Department of Health Data Science, University of Liverpool, Liverpool, L69 3GF, UK (cat1@liverpool.ac.uk).

Manuscript word count: 3959 Introduction: 498 Methods: 809 Results: 1861 Discussion & Conclusion: 791

Abstract

Introduction: There is uncertainty about the best treatment option for children/adolescents with uncontrolled asthma despite inhaled corticosteroids, and international guidelines make different recommendations.

Objectives: We evaluated the pharmacological treatments to reduce asthma exacerbations and symptoms in uncontrolled patients <18 years on inhaled corticosteroids.

Methods: We searched MEDLINE, the Cochrane Database of Systematic Reviews, the Cochrane Central Register of Controlled Trials, Embase, the Web of Science platform, NICE Technology Appraisals, the NIHR HTA series, the WHO International Clinical Trials Registry Platform, conference abstracts and internal clinical trial registers (1 July 2014 to 5 May 2023) for randomised controlled trials of participants <18 with uncontrolled asthma on any inhaled corticosteroid (ICS) dose alone at screening. Studies before July 2014 were retrieved from previous systematic reviews/contact with authors. Patients had to be randomised to any dose of ICS alone or combined with long-acting β_2 -agonists (LABAs) or combined with leukotriene receptor antagonists (LTRAs); LTRAs alone; theophylline; placebo. Primary outcomes were exacerbation and asthma control. The interventions evaluated were ICS (Low/Medium/High dose); ICS+LABA; ICS+LTRA; LTRA alone; theophylline; placebo.

Results: Of the 4708 publications identified, 144 trials were eligible. Individual participant data were obtained from 29 trials, and aggregate data from 19 trials. Compared to ICS Low, ICS Medium+LABA was associated with the lowest odds of exacerbation (OR 0.44 [95% CrI 0.19–0.90]) and with an increased FEV₁ (MD 0.71 [95% CrI 0.35–1.06]). Treatment with LTRA was the least preferred. No apparent differences were found for asthma control.

Conclusion: Uncontrolled children/adolescents on low-dose ICS should be recommended a change to medium-dose ICS+LABA to reduce the risk for exacerbation and improve lung function.

"Take home message": Using medium-dose inhaled corticosteroids with long-acting β_2 -agonists reduces the odds of exacerbation and increases FEV₁ in patients 6 to 17 years whose asthma is uncontrolled on a low dose of inhaled corticosteroids alone.

Introduction

Asthma is the most common long-term medical condition in young people [1] and is characterized by regular wheeze, breathlessness, chest tightness, and cough, with periods of relapse and remission. Asthma affects over one million children in the UK and six million in the US. The National Health Service (NHS) spends around £1 billion a year (2010/11 prices) treating and caring for people with asthma. [2] Asthma affects a child's quality of life by limiting daily activities such as sleep, attending school, and playing sports [3,4] and also by causing asthma exacerbations. Asthma cannot be cured, but preventer treatment is available to control symptoms and reduce risk for exacerbations in accordance with a number of guidelines. [5-7] The two British Guidelines on asthma management recommend that the preferred initial preventer for children is low dose inhaled corticosteroid (ICS). In 10–15% of children, low-dose ICS does not control asthma [8], and additional treatment options include increasing the dose of ICS or adding either a long-acting β_2 -adrenoceptor agonist (LABA) or leukotriene receptor antagonist (LTRA). [5-7] At present, guidelines recommend different options. Part of the uncertainty depends on the heterogeneity in treatment response within the population of children with asthma. [9, 10]

Systematic reviews and network meta-analysis (NMA) have tried to identify what the best treatment option is for children with poorly controlled asthma despite low dose ICS treatment. A Cochrane review [11] with 6381 children from 33 trials demonstrated that adding LABA to ICS was not associated with a significant decrease in exacerbations requiring systemic steroids. In children and adolescents with mild to moderate asthma, a second Cochrane review [12] found that combining LTRA with ICS was not associated with reducing rescue oral corticosteroids or hospital admission compared with the same or a higher dose of ICS. Two previous NMAs [13, 14] used aggregated data from randomized clinical trials (RCTs) whose participants were children with uncontrolled asthma. In 2012, Van der Mark et al. [13] published a review with 23 trials and 4129 patients but could not present a formal NMA since outcome measures were too heterogeneous and not wholly reported. In 2015, Zhao et al. [14] conducted a formal NMA using data from 35 RCTs with 12,010 children concluding that combined ICS and LABA treatments were most effective in preventing exacerbations and that medium-dose or high-dose ICS, combined ICS and LTRA, and low-dose ICS treatments seem to be equally effective. [14] Notably, the authors excluded 70 relevant RCTs because data about exacerbations or symptom-free days were not provided in trial publications, suggesting potential for outcome reporting bias if those excluded trials had selectively reported results based on the statistical significance of their findings. [15]

The EstablishINg the best STEp-up treatments for children with uncontrolled asthma despite INhaled corticosteroids (EINSTEIN) study addressed the ongoing need to identify what the best treatment option is for children and adolescents with asthma whose symptoms are uncontrolled despite low dose ICS by seeking to include published and unpublished data, using robust and unbiased methods.

Material and methods

We conducted a systematic review and network meta-analysis using individual participant data (IPD) from randomized clinical trials supplemented with aggregate data (AgD). We also carried out pairwise meta-analyses (MAs) and a network meta-regression (NMR) analysis to explore potential effect modifiers. The protocol was registered on PROSPERO (CRD42019127599) and was published in BMJ Open. [16]

Search strategy

We retrieved all trials identified (up to June 2014) in previous aggregate data network meta-analyses [13, 14] and Cochrane reviews. [11, 12, 17-19] We then created and applied a new search strategy, based on the previously published search strategies [13, 14; 11, 12, 17-19] (Methods S1 in Supplement 1), to identify published and unpublished trials. An initial search was conducted covering the period between 1 July 2014 to 11 September 2019. The search was subsequently updated to 5 May 2023. The search was conducted across 7 databases, 1 trial registry, internal pharmaceutical company trial registries, and guidelines. Additional details are in Supplement 1 (Methods S1). The search focused on identifying articles in the English language that included participants under 18. Two searches were conducted in MEDLINE to identify potential modifiers for the network meta-regression analysis (Methods S2, S3 in Supplement 1).

Eligibility criteria

A detailed description of trial designs, participants, and interventions and comparators is in Supplement 1 (Methods S4 and Table S1). In brief, we included parallel and crossover RCTs of any duration and with any level of blinding, which compared at least two of the interventions of interest. RCTs had to include participants aged <18 with "uncontrolled asthma" on ICS alone, defined as such by a validated diagnostic test or the trialists.

Outcomes and effect modifiers

The primary outcomes were (i) exacerbation (yes/no) and (ii) asthma control (yes/no; Methods S5 in Supplement 1). We defined exacerbations as "*events characterized by a change from the patient's previous status*", [20] mainly requiring a) the use of oral corticosteroids (OCS), b) the need for unscheduled visits with general practitioners (GPs) or at the emergency department (ED), c) hospitalization or d) when classified as exacerbation by the trial authors. We defined asthma control as "*the extent to which the various manifestations of asthma have been reduced or removed by treatment*". [20] Asthma control had to be measured by a validated test, for instance, the Asthma Control Test (ACT), [21] or Asthma Control Questionnaire (ACQ). [22] Secondary outcomes were forced expiratory volume in 1 second (FEV₁), symptoms, quality of life (QoL), mortality, adverse events (AEs), and hospital admissions. We evaluated a set of potential treatment effect modifiers that were informed by clinical opinion and the literature review for both the primary and secondary outcomes: age (years); sex (females vs. males); ethnicity (not Hispanic or Latino vs. Hispanic or Latino); eczema (present vs. absent); eosinophilia (eosinophilic vs. non-eosinophilic inflammatory type); and baseline asthma severity (mild, moderate, severe).

Trial selection

Two reviewers (SC, KR) independently screened and appraised all titles and abstracts, followed by full-text screening (excluded studies are in Supplements 2, 3) to identify trials for inclusion by resolving disagreements by consensus or discussion with a third reviewer (ST, IS, CTS). The inclusion of trials was not determined by the outcomes reported in publications to minimize the impact of selective outcome reporting.

Processing individual participant data and data extraction

A detailed description is in Supplement 1 (Methods S6).

Risk of bias assessment

One reviewer (SC) used the Cochrane Risk of Bias tool [23] to record the risk of bias concerning: a) randomisation method, b) allocation concealment, c) blinding, d) incomplete outcome data, e) selective reporting. The assessment was done at the trial level. Concerns were resolved through discussion with a second reviewer (CTS).

Data analysis

We used fixed effect and random-effects pairwise meta-analysis, network meta-analysis, and network metaregression (NMR) supplemented, wherever possible, with aggregate data when IPD were unavailable. Pairwise and network meta-analyses were performed using both the frequentist approach and the Bayesian approach. We used odds ratio (OR) as the measure of treatment effect for binary outcomes (exacerbation, asthma control, adverse events) and mean difference (MD) as the measure of treatment effect for continuous outcomes (FEV₁, QoL). We used the software R (package *"multinma"* based on Stan) to construct all plots and fit models. [24] Additional technical details of the applied methodology are available in Methods S7 and Table S2 in Supplement 1. We conducted sensitivity analyses to explore the impact of the exacerbation data collection approach by excluding trials that had recorded exacerbation data only through adverse event data collection and may not have captured all events systematically. Data availability bias could impact the IPD network meta-analysis results if the availability of IPD from included trials is related to the trial results. We attempted to overcome this by including AgD wherever possible in primary analyses and explored whether results and conclusions were different in sensitivity analyses that excluded AgD. We also compared the risk of bias and the participant and trial characteristics between IPD trials and trials with no IPD, wherever possible.

Patient and public involvement

See Methods S8 in Supplement 1.

Results

The flow diagram of the identification and inclusion of studies is shown in Figure 1. In the primary search (Figure 1), we screened 3343 trials overall: 2910 were excluded as irrelevant, and the full text was retrieved for the remaining 433 trials. We identified 144 trials as eligible for inclusion. The characteristics of included trials can be found in Tables S3, S4 in Supplement 1. Twenty-nine trials [9, 25-52] provided IPD for a total of 5494 participants. We could not retrieve the IPD for 115 trials: 24 because of issues with the data sharing agreement; 46 did not reply (2 of which had initially agreed to provide data but did not reply to our following contact); 41 did not want to share data; 4 did not have contact details. Of the 115 eligible trials without IPD, we were able to extract aggregate data for at least one outcome in 19 studies. [53-71] Full details of the 96 potentially eligible trials without IPD and aggregate data are summarised in Table S5 in Supplement 1. Of the 48 trials with IPD or aggregate data, 40 [25-43, 45, 46, 48-55, 58-65, 68, 71] could be included in the analysis of exacerbation outcome (39 in the ICS grouped analysis), 16 [9, 25, 26, 28, 35, 36, 39-41, 44-47, 50-52] in the analysis of asthma control outcome (15 in the ICS grouped analysis), and 23 [9, 25-30, 32, 34-37, 39-41, 43, 44, 49, 51, 52, 68, 70] in the analysis of FEV₁ outcome (22 in the ICS grouped analysis). For

the exacerbation and FEV₁ analyses, the trial by Lötvall 2014 [34] was split according to GINA 2019 [7] age groups to avoid the trial artificially contributing to a head-to-head comparison of ICS Low versus ICS Medium. One trial (Woodcock 2013 [51]) was excluded from the analyses with grouped ICS doses as all treatments randomized were within the same treatment class and could not contribute comparative data. A stratification of the ICS+LTRA combination on ICS was not possible because of insufficient data. A repeated search strategy with a date range between 10 September 2019 and 5 May 2023 (Figure S1 in Supplement 1) did not identify any new eligible studies that could impact the results. We assessed the risk of bias for 29 trials with IPD and 19 trials with aggregate data (Table S6 and Figures S2A, S2B, S2C in Supplement 1). Most trials (32 trials corresponding to 67% of all studies) were considered as low risk of bias across all domains; 12 (25%) trials had one domain classed as high risk; 2 (4%) trials had two domains classed as high risk; and 2 (4%) had 3 domains classed as high risk (Table S6 in Supplement 1).

Network Meta-Analysis

Exacerbation

Inhaled corticosteroids stratified by dose when combined with LABA (Analysis A1)

Forty trials (27 IPD; 13 AgD) that randomized 8168 patients (5381 [328 events], IPD; 2787 [321 events], AgD) provided evidence for 10 treatment classes included in the random-effects network meta-analysis (Figure 2A, Table S7). There is evidence in favour of ICS Low (OR 0.42 [95% CrI 0.18–0.91]), ICS Medium (0.33 [0.13–0.82]), ICS High (0.31 [0.09–0.98]), ICS Low+LABA (0.35 [0.14–0.84]), ICS Medium+LABA (0.18; [0.06–0.49]) for reducing exacerbations compared to placebo (Figure 3, Table S7). There is also evidence in favour of ICS Medium+LABA compared to both ICS Low (0.44 [0.19–0.90]) and LTRA (0.12 [0.01–0.84]) and to a lesser extent compared to ICS Medium (0.56 [0.27–1.04]) or ICS Low+LABA (0.52 [0.23–1.05]) (Figure 3, Table S7). In support of these results the posterior ranking suggests that ICS Medium+LABA (median interquartile range [IQR] rank 1 [1,2]) is the most likely treatment to be best whilst LTRA (median IQR rank 9 [8,10]) and placebo (median IQR rank 9 [8,9]) would be least preferred (Figure S3 in Supplement 1). However, there is uncertainty about the ranking of every treatment in the network as shown by the wide and overlapping intervals (Figure S3 in Supplement 1). A comparison of DIC between the network meta-analysis consistency model and the unrelated mean effects model did not suggest inconsistency in the network. Similar results and conclusions are drawn from the corresponding frequentist analyses presented in Supplement 1 (Figure S4).

Additional analyses

Results for inhaled corticosteroids grouped when combined with LABA (Analysis B1) are shown in Figure S5 and Table S8 in Supplement 1. Reliable estimates could not be obtained from a network meta-analysis of individual compounds due to the sparse nature of the network, with few trials and exacerbation events contributing data to particular nodes in the network. Sensitivity analyses (Tables S9, S10 in Supplement 1) were generally similar to the main analyses and further supported the conclusion that ICS Medium+LABA is the most promising of the included treatments.

Data availability bias

We explored the potential for data availability bias by comparing OR (95% CrI) from the principal analyses, which include all available IPD and AgD (Table S7, Table S8 in Supplement 1) against the corresponding sensitivity analysis excluding 13 trials (2787 participants and 321 events) with only AgD (Tables S11, S12 in Supplement 1). Where a comparison can be made, the conclusions are consistent. However, the ORs for comparisons against placebo are more extreme from the 'IPD only' analyses (Tables S11, S12 in Supplement 1), a trend which might be expected if IPD was more likely to be provided when results were more strongly in favor of the active treatment compared to placebo. Comparing the risk of bias and trial and patient characteristics between trials that provided IPD and trials with only AgD did not ascertain any apparent differences. Assessment of risk of bias in the trials with only AgD was more often "unclear" than in the IPD trials (Table S6 in Supplement 1); however, this is to be somewhat expected as additional information (e.g., detailed protocol) was often provided with IPD, which allowed further clarification during the assessment procedure. While we cannot rule out the possibility of data availability bias, we have tried to mitigate this risk by including both IPD and AgD in the primary analysis.

Asthma control

Inhaled corticosteroids stratified by dose when combined with LABA (Analysis A2)

Sixteen trials provided data for nine treatment classes in the network meta-analysis (Figure 2B). There were 2453 participants out of 3027 that experienced good/total asthma control at their last follow-up visit according to the ACT/ACQ tests. The fixed effect network meta-analysis (Figure 4, Table S13) suggests an advantage for both ICS Low+LABA (OR 5.00 [95% CrI 1.04–25.53]) and ICS High+LABA (6.36 [1.17–35.87]) when compared with LTRA. However, for all other pairwise comparisons, the 95% CrI includes values for the OR that could indicate benefit for either treatment being compared, as well as both being

European Respiratory Journal

identical. There is too much uncertainty to make any firm conclusions about preferred treatment for asthma control, and this is supported by the overlapping intervals for the rank probabilities (Figure S6 in Supplement 1). A comparison of DIC between the network meta-analysis consistency model and the unrelated mean effects model did not suggest inconsistency in the network. Similar results and conclusions are drawn from the corresponding frequentist analyses presented in Supplement 1 (Figure S7).

Additional analyses

Results for inhaled corticosteroids grouped when combined with LABA (Analysis B2) and individual compounds (Analysis C2) are shown in Tables S14, S15 and Figures S8, S9 in Supplement 1.

Forced expiratory volume in one second (FEV₁)

Inhaled corticosteroids stratified by dose when combined with LABA (Analysis A3)

Twenty-three trials (21 IPD; 2 AgD) with 2518 participants (2203 IPD; 315 AgD) provided data for 10 treatment classes included in this network (Figure 2C). The mean difference (95% CrI) from the fixed effect network meta-analysis (Figure 5, Table S16) suggests that ICS Low (MD 0.15 [95% CrI 0.04–0.27]); ICS Medium (0.17 [0.01–0.33]); ICS Low+LABA (0.18 [0.04–0.31]) and ICS Medium+LABA (0.86 [0.49–1.24]) are more effective than placebo. There is evidence that ICS Medium+LABA is more effective than ICS Low (0.71 [0.35–1.06]); ICS Medium (0.69 [0.33–1.05]); ICS High (0.54 [0.24–0.81]); ICS Low+LABA (0.68 [0.33–1.04]); ICS High+LABA (0.99 [0.67–1.27]) and ICS+LTRA (0.94 [0.07–1.82]) (Figure 5, Table S16). There is also some evidence to suggest that ICS High is better than ICS High+LABA (0.45 [0.25–0.64]) (Figure 5, Table S16). The rank probability plots (Figure S10 in Supplement 1) show that ICS Medium+LABA is likely the best treatment in this network, but there is considerable uncertainty around the rank probability of other treatments. A comparison of DIC between the network meta-analysis consistency model and the unrelated mean effects model did not suggest inconsistency in the network. Similar results and conclusions are drawn from the corresponding frequentist analyses presented in Supplement 1 (Figure S11).

Additional analyses

Results for inhaled corticosteroids grouped when combined with LABA (Analysis B3) and individual compounds (Analysis C3) are shown in Tables S17, S18 and Figures S12, S13 in Supplement 1.

Further secondary outcomes

There were no deaths recorded in any of the included trials. The "symptoms" outcome was not analyzed as it can be challenging to interpret isolated symptoms, e.g., coughing at night without needing reliever medication, missing school, and not wheezing when running around. The decision to abandon the analysis of this outcome was not influenced by any results or other investigations completed. Eleven trials measured the "Quality of Life" outcome using two questionnaires: (1) the Asthma Quality of Life Questionnaire (AQLQ) (32 items, developed for use in adults 17–70 years) [21]; (2) the Paediatric Asthma Quality of Life Questionnaire (PAQLQ) (23 items, developed for use in children 7–17 years). [22] There was insufficient data for a reliable network meta-analysis and limited pairwise meta-analyses (Table S19 in Supplement 1) did not suggest clinically important differences in quality of life. Data for "hospital admissions" caused by an asthma exacerbation were only available from five trials with IPD, with percentage admission ranging from 0.5% to 2.7% of participants (Table S20 in Supplement 1). There was considerable heterogeneity in the recording and coding of adverse events data across trials. We summarised the numerical results and conducted frequentist pairwise meta-analyses using IPD and AgD, where more than one trial recorded the same adverse event: infections/infestations; neurological disorders; oral candidiasis; pneumonia; cardiac disorders; clinically significant electrocardiogram (ECG) changes (favorable and unfavorable); heart rate (HR) (mean difference at the last visit vs. baseline) (Figures S14-S22 in Supplement 1). There is insufficient evidence to conclude that the odds of any of these adverse events differ between the treatment classes that could be compared, except for neurological disorders suggesting lower odds of neurological disorders (graded as mild or moderate) on ICS+LABA compared to ICS+LTRA (OR 0.09 [95% confidence interval 0.01–0.82]; 1 trial) and greater odds for ICS Medium compared to placebo (4.8 [1.12–20.60]; 3 trials).

Effect modification

We compared the DIC between network meta-regression models with and without interaction terms. We found no overall evidence of interactions in any models for exacerbation, asthma control, and FEV₁ (Tables S21, S25, S27 in Supplement 1). However, some models had non-zero interaction regression coefficients (Tables S22, S28 in Supplement 1) for exacerbation and FEV₁. Still, these results should be viewed cautiously due to the few patients included. Furthermore, as recommendations regarding the treatment and care of patients do not differ according to any of the studied covariates (Tables S23, S24, S29, S30 in Supplement 1), and the interactions were not consistently identified as non-zero across all outcomes, we conclude there is insufficient evidence for effect modification based on this data.

Discussion

Principal findings

The network meta-analysis results suggest that for a child with uncontrolled asthma despite inhaled corticosteroid treatment, the odds of an exacerbation are reduced by stepping up to medium-dose ICS in combination with LABA compared with low-dose ICS. Objective testing with lung function demonstrated that medium dose ICS plus LABA was superior compared to any dose of ICS without LABA and low dose ICS plus LABA. Low or high doses of ICS combined with LABA were associated with increased odds of good asthma control but only versus LTRA monotherapy. Across the trials there were no deaths, relatively few hospitalization admissions due to asthma, and adverse events were uncommon.

Strengths and limitations of the study

To our knowledge, this is the first network meta-analysis of studies in children and adolescents with asthma using IPD. The network meta-analysis approach with IPD enabled us to include direct and indirect evidence comparing different treatments and dose levels, which have not been compared against each other in previous randomized clinical trials or network meta-analysis. We did not manage to retrieve and include data from 96 potentially eligible trials (67% of the eligible trials on this question); this may have introduced bias. Due to a scarcity of RCTs conducted on theophylline, we had minimal data for ICS+Theophylline and insufficient data to stratify inhaled corticosteroid dose when combined with LTRA; therefore, uncertainty remains about these treatments. Furthermore, several of the credible intervals from the network metaanalyses are wide and include clinically important values indicating that further differences, or robust conclusions about the equivalence between treatments may be identified with additional data. Due to sparse data, we could not carry out time-to-event analyses. Diagnosing asthma can be more uncertain in younger children since they can comply less with lung function testing. However, few children under six years were included in our analysis, meaning that imprecision in asthma diagnosis between studies was not substantially affected by the inclusion of younger children. There are two aspects of childhood asthma management that we could not consider in this review: a) the role of Maintenance And Reliever Therapy (MART - there is only one publication) and symptom-driven approaches to using ICS, and b) long term or rare side effects of treatments. We were not able to explore the impact of inhaler technique or adherence.

Comparison with other studies

Van der Mark et al. 2012 [13] attempted a similar approach but could not synthesize results due to variations in the measurement and reporting of outcomes; they concluded that ranking of effectiveness was not possible. In 2015, the network meta-analysis by Zhao et al. [14] suggested that combining ICS (dose not specified) and LABA treatments were most effective in preventing exacerbations. They also reported that there was a little difference between continuing low-dose ICS, increasing the ICS dose to the medium-dose or high-dose range, or combining ICS with LTRA. However, they could not make recommendations about the dose of ICS when combined with LABA. Using IPD where available, our approach enabled us to analyse the data more robustly, identify more relevant dose-specific differences between treatments that were previously not evident, and explore the potential for treatment effect modification.

Implications for clinicians and policymakers and future research

The current recommendation for treating children and adolescents with asthma who are not well-controlled on inhaled corticosteroids is to check adherence, inhaler technique, and comorbidities first, then consider a "step-up" to their treatment by increasing the dose of ICS or adding another therapy. The 2019 GINA guideline [7] recommends the preferred controller for children aged 6–11 is "medium-dose ICS" or "lowdose ICS with LABA," which have similar benefits. However, the EINSTEIN analysis suggests that the preferred first "step-up" option should be to increase the dose of ICS to a medium dose in combination with LABA, as this has the most beneficial effect on exacerbation prevention and improves asthma control and lung function. The parents we consulted supported the recommendation of medium-dose ICS with LABA, preferring to avoid trying alternative "small-step" treatment adjustments, which could put children at an increased risk of exacerbation and hospital admission for a more extended period. A future update of the review is needed to incorporate additional IPD, ensure maximum representation of treatments within the network meta-analysis, and make a reliable recommendation regarding specific formulations.

Conclusions

Although more included patients would have led to more precise estimates, we can reasonably conclude that ICS Medium with LABA would be recommended for children and adolescents with asthma who are uncontrolled on a low dose of inhaled corticosteroids. Although there was insufficient data to infer whether LTRA monotherapy was superior to ICS monotherapy, no guideline currently recommends LTRA monotherapy over ICS monotherapy.

 Results from the EINSTEIN study will provide clinicians and patients with accessible, high-quality, patient-

- relevant information to help make evidence-informed treatment choices. Earlier identification of the best
- step-up treatment for a particular child could significantly impact children's lives with more extensive

benefits to society and the NHS.

Acknowledgements

We sincerely thank the following companies and authors for their contribution as part of the EINSTEIN collaborative group:

GlaxoSmithKline (GSK) provided IPD and documentation used in the EINSTEIN trial.

Professors Stanley J. Szefler, Anne M. Fitzpatrick, and David T. Mauger provided IPD and documentation for the INFANT trial via BioLINCC.

Professor Chris Frost provided IPD for the publication by Verberne 1998.
 Professor William D. Carroll provided IPD and decumentation for the CH

Professor William D. Carroll provided IPD and documentation for the CHEST trial.

- Professor Michael E. Wechsler provided IPD and documentation for the BARD trial via BioLINCC.
- Professor Biju Thomas provided IPD for the ARIDOL trial.
- Professor Clare S. Murray assisted to retrieve IPD of the GSK trial SAM40100.
 - Professor Robert F. Lemanske provided IPD and documentation for the BADGER trial.
 - Professor Christine A. Sorkness provided IPD and documentation for the PACT trial.
 - We thank patients and their families for their contribution to this project.

We thank Dr. David Phillippo (University of Bristol, UK) for his advice with the R package "multinma".

Contributors: CTS and IS conceived the trial. CTS, SD, ST, DH, OF and IS drafted the original version of the protocol, and SC subsequently drafted the protocol publication. MM developed the search strategies. KR and SC screened and selected eligible trials for inclusion in the review. SC and CTS contacted the authors and pharmaceutical companies and retrieved, extracted, and analysed data; CTS and SD checked for data consistency and correctness of the statistical analysis. DH and GC developed the economic analysis. SC carried out the risk of bias assessment, and CTS checked for coherence. CTS, SD, SC, ST, IS drafted the clinical section of the original manuscript, and DH and GC drafted the health economic section. All authors and the EINSTEIN collaborative group revised the manuscript critically for important intellectual content. OF and IS contributed to coordinating the group of patients and parents. OF contributed to developing the plain-language summary. SC drafted this article. All authors approved the final version of the article. CTS is the guarantor.

Declaration of interests: None declared.

Funding/Support: This work was supported by NIHR HTA grant number 16/110/16.

Role of the funding source: The funder had no role in the protocol development. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.

Data sharing: The study used individual patient data from various sources. Permission was obtained from trial data owners to use the data for the EINSTEIN study only. For this reason, whilst we cannot share the data we collected from trial data owners, we could share contact details and procedures for requesting data for trial data owners.

Ethical approval: The study used anonymised data and data available in the public domain hence ethical approval was not required. The University of Liverpool Research Ethics Committee confirmed this prior to the start of the project.

References

1 2

3

4 5

6

7

8

9

10

11

12

13

15

17

1. WHO - Asthma. https://www.who.int/news-room/fact-sheets/detail/asthma

2. Mukherjee M, Stoddart A, Gupta RP, et al. The epidemiology, healthcare and societal burden and costs of asthma in the UK and its member nations; analyses of standalone and linked national databases. BMC Med. 2016;14(1):113. Published 2016 Aug 29. doi:10.1186/s12916-016-0657-8

- 3. Asthma UK. Accessed February 2020. https://www.asthma.org.uk/about/media/facts-and-statistics/
- 4. NHS England. Accessed February 2020. https://www.england.nhs.uk/childhood-asthma/

5. British Thoracic Society SIGN. British guideline on the management of asthma. https://www.britthoracic.org.uk/quality-improvement/guidelines/asthma/

- 6. Asthma: diagnosis, monitoring and chronic asthma management. https://www.nice.org.uk/guidance/ng80
- 7. Reddel HK, Bacharier LB, Bateman ED, et al. Global Initiative for Asthma Strategy 2021: executive 14 summary and rationale for key changes. Eur Respir J. 2021;59(1):2102730. Published 2021 Dec 31. doi:10.1183/13993003.02730-2021
- 16 8. Turner S, Thomas M, von Ziegenweidt J, et al. Prescribing trends in asthma: a longitudinal observational study. Arch Dis Child. 2009;94(1):16-22. doi:10.1136/adc.2008.1406819
- 18 9. Lemanske RF Jr, Mauger DT, Sorkness CA, et al. Step-up therapy for children with uncontrolled asthma 19 receiving inhaled corticosteroids. N Engl J Med. 2010;362(11):975-985. doi:10.1056/NEJMoa1001278 20 10. Szefler SJ, Phillips BR, Martinez FD, et al. Characterization of within-subject responses to fluticasone 21 and montelukast in childhood asthma. J Allergy Clin Immunol. 2005;115(2):233-242. 22 23 doi:10.1016/j.jaci.2004.11.014
- 11. Chauhan BF, Chartrand C, Ni Chroinin M, et al. Addition of long-acting beta2-agonists to inhaled 24 25 corticosteroids for chronic asthma in children. Cochrane Database Syst Rev. 2015;2015(11):CD007949. 26 Published 2015 Nov 24. doi:10.1002/14651858.CD007949.pub2
- 27 12. Chauhan BF, Ben Salah R, Ducharme FM. Addition of anti-leukotriene agents to inhaled corticosteroids 28 in children with persistent asthma. Cochrane Database Syst Rev. 2013;(10):CD009585. Published 2013 Oct 29 2. doi:10.1002/14651858.CD009585.pub2
- 30 13. van der Mark LB, Lyklema PH, Geskus RB, et al. A systematic review with attempted network meta-31 analysis of asthma therapy recommended for five to eighteen year olds in GINA steps three and four. BMC 32 Pulm Med. 2012;12:63. Published 2012 Oct 15. doi:10.1186/1471-2466-12-63 33
- 14. Zhao Y, Han S, Shang J, et al. Effectiveness of drug treatment strategies to prevent asthma exacerbations 34 and increase symptom-free days in asthmatic children: a network meta-analysis. J Asthma. 2015;52(8):846-35 857. doi:10.3109/02770903.2015.1014101 36
- 15. Hutton JL, Williamson PR. Bias in meta-analysis due to outcome variable selection within studies. 37 Journal of the Royal Statistical Society: Series C (Applied Statistics). 2002;49(3):359-70 38
- 16. Cividini S, Sinha I, Donegan S, et al. EstablishINg the best STEp-up treatments for children with 39 uncontrolled asthma despite INhaled corticosteroids (EINSTEIN): protocol for a systematic review, network 40 meta-analysis and cost-effectiveness analysis using individual participant data (IPD). BMJ Open. 41 2021;11(2):e040528. Published 2021 Feb 5. doi:10.1136/bmjopen-2020-040528 42
- 17. Chauhan BF, Ducharme FM, Anti-leukotriene agents compared to inhaled corticosteroids in the 43 44 management of recurrent and/or chronic asthma in adults and children. Cochrane Database Syst Rev. 45 2012;2012(5);CD002314. Published 2012 May 16. doi:10.1002/14651858.CD002314.pub3
- 46 18. Chauhan BF, Ducharme FM. Addition to inhaled corticosteroids of long-acting beta2-agonists versus 47 anti-leukotrienes for chronic asthma. Cochrane Database Syst Rev. 2014;(1):CD003137. Published 2014 Jan 48 24. doi:10.1002/14651858.CD003137.pub5
- 49 19. Pruteanu AI, Chauhan BF, Zhang L, et al. Inhaled corticosteroids in children with persistent asthma: 50 dose-response effects on growth. Cochrane Database Syst Rev. 2014;2014(7):CD009878. Published 2014 Jul 51 17. doi:10.1002/14651858.CD009878.pub2 52
- 20. Reddel HK, Taylor DR, Bateman ED, et al. An official American Thoracic Society/European Respiratory 53 Society statement: asthma control and exacerbations: standardizing endpoints for clinical asthma trials and 54 clinical practice. Am J Respir Crit Care Med. 2009;180(1):59-99. doi:10.1164/rccm.200801-060ST 55 21. Nathan RA, Sorkness CA, Kosinski M, et al. Development of the asthma control test: a survey for 56 assessing asthma control. J Allergy Clin Immunol. 2004;113(1):59-65. doi:10.1016/j.jaci.2003.09.008 57 22. Juniper EF, Gruffydd-Jones K, Ward S, et al. Asthma Control Questionnaire in children: validation,
- 58 measurement properties, interpretation. Eur Respir J. 2010;36(6):1410-1416. 59
- doi:10.1183/09031936.00117509 60

1 2 23. Higgins JP, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias 3 in randomised trials. BMJ. 2011:343:d5928. Published 2011 Oct 18. doi:10.1136/bmi.d5928 4 24. Phillippo DM. multinma: Bayesian Network Meta-Analysis of Individual and Aggregate Data. R 5 package version 042, 2022 6 25. Bateman ED, O'Byrne PM, Busse WW, et al. Once-daily fluticasone furoate (FF)/vilanterol reduces risk 7 of severe exacerbations in asthma versus FF alone. Thorax. 2014;69(4):312-319. doi:10.1136/thoraxjnl-8 2013-203600 9 26. Bernstein DI, Bateman ED, Woodcock A, et al. Fluticasone furoate (FF)/vilanterol (100/25 mcg or 10 200/25 mcg) or FF (100 mcg) in persistent asthma. J Asthma. 2015;52(10):1073-1083. 11 doi:10.3109/02770903.2015.1056350 12 27. Bleecker ER, Bateman ED, Busse WW, et al. Once-daily fluticasone furoate is efficacious in patients 13 with symptomatic asthma on low-dose inhaled corticosteroids. Ann Allergy Asthma Immunol. 14 2012:109(5):353-358.e4. doi:10.1016/j.anai.2012.08.017 15 28. Bleecker ER, Lötvall J, O'Byrne PM, et al. Fluticasone furoate-vilanterol 100-25 mcg compared with 16 fluticasone furoate 100 mcg in asthma: a randomized trial. J Allergy Clin Immunol Pract. 2014;2(5):553-561. 17 doi:10.1016/j.jaip.2014.02.010 18 29. Carroll WD, Jones PW, Boit P, et al. Childhood evaluation of salmeterol tolerance--a double-blind 19 randomized controlled trial. Pediatr Allergy Immunol. 2010;21(2 Pt 1):336-344. doi:10.1111/j.1399-20 3038.2009.00927.x 21 22 30. de Blic J, Ogorodova L, Klink R, et al. Salmeterol/fluticasone propionate vs. double dose fluticasone 23 propionate on lung function and asthma control in children. Pediatr Allergy Immunol. 2009;20(8):763-771. 24 doi:10.1111/j.1399-3038.2009.00861.x 25 31. Fitzpatrick AM, Jackson DJ, Mauger DT, et al. Individualized therapy for persistent asthma in young 26 children. J Allergy Clin Immunol. 2016;138(6):1608-1618.e12. doi:10.1016/j.jaci.2016.09.028 27 32. Gappa M, Zachgo W, von Berg A, et al. Add-on salmeterol compared to double dose fluticasone in 28 pediatric asthma: a double-blind, randomized trial (VIAPAED). Pediatr Pulmonol. 2009;44(11):1132-1142. 29 doi:10.1002/ppul.21120 30 33. Li JS, Qaqundah PY, Weinstein SF, et al. Fluticasone propionate/salmeterol combination in children with 31 asthma: Key cardiac and overall safety results. Clin Res Regul Aff. 2010;27(3):87-95. 32 34. Lötvall J, Bateman ED, Busse WW, et al. Comparison of vilanterol, a novel long-acting beta2 agonist, 33 with placebo and a salmeterol reference arm in asthma uncontrolled by inhaled corticosteroids. J Negat 34 Results Biomed. 2014;13(1):9. Published 2014 Jun 13. doi:10.1186/1477-5751-13-9 35 35. Lötvall J, Bleecker ER, Busse WW, et al. Efficacy and safety of fluticasone furoate 100 µg once-daily in 36 patients with persistent asthma: a 24-week placebo and active-controlled randomised trial [published 37 correction appears in Respir Med. 2015 Jan;109(1):146]. Respir Med. 2014;108(1):41-49. 38 doi:10.1016/j.rmed.2013.11.009 39 36. Martin N, Weiler JM, Pearlman D, et al. Fluticasone furoate/vilanterol versus fluticasone propionate in 40 patients with asthma and exercise-induced bronchoconstriction. J Asthma. 2020;57(4):431-440. 41 42 doi:10.1080/02770903.2019.1579344 43 37. Murray CS, Custovic A, Lowe LA, et al. Effect of addition of salmeterol versus doubling the dose of 44 fluticasone propionate on specific airway resistance in children with asthma. Allergy Asthma Proc. 45 2010;31(5):415-421. doi:10.2500/aap.2010.31.3362 46 38. Murray JJ, Waitkus-Edwards KR, Yancey SW. Evaluation of fluticasone propionate and fluticasone 47 propionate/salmeterol combination on exercise in pediatric and adolescent patients with asthma. Open Respir 48 Med J. 2011;5:11-18. doi:10.2174/1874306401105010011 49 39. O'Byrne PM, Bleecker ER, Bateman ED, et al. Once-daily fluticasone furoate alone or combined with 50 vilanterol in persistent asthma. Eur Respir J. 2014;43(3):773-782. doi:10.1183/09031936.00064513 51 40. Oliver AJ, Covar RA, Goldfrad CH, et al. Randomized Trial of Once-Daily Fluticasone Furoate in 52 Children with Inadequately Controlled Asthma. J Pediatr. 2016;178:246-253.e2. 53 doi:10.1016/j.jpeds.2016.08.010 54 41. Oliver AJ, Covar RA, Goldfrad CH, et al. Randomised trial of once-daily vilanterol in children with 55 asthma on inhaled corticosteroid therapy. Respir Res. 2016;17:37. Published 2016 Apr 5. 56 doi:10.1186/s12931-016-0353-4 57 42. Pearlman D, Qaqundah P, Matz J, et al. Fluticasone propionate/salmeterol and exercise-induced asthma 58 in children with persistent asthma. Pediatr Pulmonol. 2009;44(5):429-435. doi:10.1002/ppul.20962 59 60

2 43. Scott C, Wu W, Ellsworth A. Efficacy and safety of fluticasone propioante/salmeterol DISKUS and 3 fluticasone propionate DISKUS and HFA in children. Eur Respir J, Suppl 2005;26(161) (plus poster) abstr. 4 P1057. 5 44. Sorkness CA, Lemanske RF Jr, Mauger DT, et al. Long-term comparison of 3 controller regimens for 6 mild-moderate persistent childhood asthma: the Pediatric Asthma Controller Trial [published correction 7 appears in J Allergy Clin Immunol. 2007 Aug;120(2):285]. J Allergy Clin Immunol. 2007;119(1):64-72. 8 doi:10.1016/j.jaci.2006.09.042 9 45. Stempel DA, Raphiou IH, Kral KM, et al. Serious Asthma Events with Fluticasone plus Salmeterol 10 versus Fluticasone Alone. N Engl J Med. 2016;374(19):1822-1830. doi:10.1056/NEJMoa1511049 11 46. Stempel DA, Szefler SJ, Pedersen S, et al. Safety of Adding Salmeterol to Fluticasone Propionate in 12 Children with Asthma. N Engl J Med. 2016;375(9):840-849. doi:10.1056/NEJMoa1606356 13 47. Thomas B. Effect of step up therapy on bronchial hyperresponsiveness in children with poorly 14 controlled asthma on inkaled corticosteroid (ICS) monotherapy. Pediatr Pulmonol. 2014;49(S37):S50-S89. 15 48. Vaessen-Verberne AA, van den Berg NJ, van Nierop JC, et al. Combination therapy 16 salmeterol/fluticasone versus doubling dose of fluticasone in children with asthma. Am J Respir Crit Care 17 Med. 2010;182(10):1221-1227. doi:10.1164/rccm.201002-0193OC 18 49. Verberne AA, Frost C, Duiverman EJ, et al. Addition of salmeterol versus doubling the dose of 19 beclomethasone in children with asthma. The Dutch Asthma Study Group. Am J Respir Crit Care Med. 20 1998;158(1):213-219. doi:10.1164/ajrccm.158.1.9706048 21 22 50. Wechsler ME, Szefler SJ, Ortega VE, et al. Step-Up Therapy in Black Children and Adults with Poorly 23 Controlled Asthma. N Engl J Med. 2019;381(13):1227-1239. doi:10.1056/NEJMoa1905560 24 51. Woodcock A, Bleecker ER, Lötvall J, et al. Efficacy and safety of fluticasone furoate/vilanterol 25 compared with fluticasone propionate/salmeterol combination in adult and adolescent patients with persistent 26 asthma: a randomized trial. Chest. 2013;144(4):1222-1229. doi:10.1378/chest.13-0178 27 52. Woodcock A, Lötvall J, Busse WW, et al. Efficacy and safety of fluticasone furoate 100 µg and 200 µg 28 once daily in the treatment of moderate-severe asthma in adults and adolescents: a 24-week randomised 29 study. BMC Pulm Med. 2014;14:113. Published 2014 Jul 9. doi:10.1186/1471-2466-14-113 30 53. Akpinarli A, Tuncer A, Saraclar Y, et al. Effect of formoterol on clinical parameters and lung functions 31 in patients with bronchial asthma: a randomised controlled trial. Arch Dis Child. 1999;81(1):45-48. 32 doi:10.1136/adc.81.1.45 33 54. Berger WE, Milgrom H, Chervinsky P, et al. Effects of treatment with mometasone furoate dry powder 34 inhaler in children with persistent asthma. Ann Allergy Asthma Immunol. 2006;97(5):672-680. 35 doi:10.1016/S1081-1206(10)61099-X 36 55. Bisgaard H, Le Roux P, Bjämer D, et al. Budesonide/formoterol maintenance plus reliever therapy: a 37 new strategy in pediatric asthma. Chest. 2006;130(6):1733-1743. doi:10.1378/chest.130.6.1733 38 56. Buchvald F, Bisgaard H. Comparisons of the complementary effect on exhaled nitric oxide of salmeterol 39 vs montelukast in asthmatic children taking regular inhaled budesonide. Ann Allergy Asthma Immunol. 40 2003;91(3):309-313. doi:10.1016/S1081-1206(10)63536-3 41 42 57. Everden P, Campbell M, Harnden C, et al. Eformoterol Turbohaler compared with salmeterol by dry 43 powder inhaler in asthmatic children not controlled on inhaled corticosteroids. Pediatr Allergy Immunol. 44 2004;15(1):40-47. doi:10.1046/j.0905-6157.2003.00094.x 45 58. Heuck C, Heickendorff L, Wolthers OD. A randomised controlled trial of short term growth and collagen 46 turnover in asthmatics treated with inhaled formoterol and budesonide. Arch Dis Child. 2000;83(4):334-339. 47 doi:10.1136/adc.83.4.334 48 59. Jat GC, Mathew JL, Singh M. Treatment with 400 microg of inhaled budesonide vs 200 microg of 49 inhaled budesonide and oral montelukast in children with moderate persistent asthma: randomized controlled 50 trial. Ann Allergy Asthma Immunol. 2006;97(3):397-401. doi:10.1016/s1081-1206(10)60807-1 51 60. Kondo N, Katsunuma T, Odajima Y, et al. A randomized open-label comparative study of montelukast 52 versus theophylline added to inhaled corticosteroid in asthmatic children. Allergol Int. 2006;55(3):287-293. 53 doi:10.2332/allergolint.55.287 54 61. Lenney W, McKay AJ, Tudur Smith C, et al. Management of Asthma in School age Children On 55 Therapy (MASCOT): a randomised, double-blind, placebo-controlled, parallel study of efficacy and 56 safety. Health Technol Assess. 2013;17(4):1-218. doi:10.3310/hta17040 57 62. Malone R, LaForce C, Nimmagadda S, et al. The safety of twice-daily treatment with fluticasone 58 propionate and salmeterol in pediatric patients with persistent asthma. Ann Allergy Asthma Immunol. 59 2005;95(1):66-71. doi:10.1016/S1081-1206(10)61190-8 60

- 63. Morice AH, Peterson S, Beckman O, et al. Efficacy and safety of a new pressurised metered-dose inhaler
 formulation of budesonide/formoterol in children with asthma: a superiority and therapeutic equivalence
 study. Pulm Pharmacol Ther. 2008;21(1):152-159. doi:10.1016/j.pupt.2007.01.006
- 64. Russell G, Williams DA, Weller P, et al. Salmeterol xinafoate in children on high dose inhaled
 steroids. Ann Allergy Asthma Immunol. 1995;75(5):423-428.
- ⁷ 65. Shapiro GG, Mendelson LM, Pearlman DS. Once-daily budesonide inhalation powder (Pulmicort
- Turbuhaler) maintains pulmonary function and symptoms of asthmatic children previously receiving inhaled corticosteroids. Ann Allergy Asthma Immunol. 2001;86(6):633-640. doi:10.1016/S1081-1206(10)62291-0
- 10 66. Simons FE, Villa JR, Lee BW, et al. Montelukast added to budesonide in children with persistent asthma:
- a randomized, double-blind, crossover study. J Pediatr. 2001;138(5):694-698. doi:10.1067/mpd.2001.112899
- a randomized, double-bind, clossover study. Frediat: 2001,158(5):094-098. doi:10.1007/mpd.2001.11289
 67. Strauch E, Moske O, Thoma S, et al. A randomized controlled trial on the effect of montelukast on
 sputum eosinophil cationic protein in children with corticosteroid-dependent asthma. Pediatr Res.
 2003:54(2):198-203. doi:10.1203/01.PDR.0000072328.28105.06
- 2003;54(2):198-203. doi:10.1203/01.PDR.00000/2328.28105.06
 68. Tal A, Simon G, Vermeulen JH, et al. Budesonide/formoterol in a single inhaler versus inhaled
 corticosteroids alone in the treatment of asthma. Pediatr Pulmonol. 2002;34(5):342-350.
 doi:10.1002/ppul.10173
- 69. Vermeulen JH, Gyurkovits K, Rauer H, et al. Randomized comparison of the efficacy and safety of
 ciclesonide and budesonide in adolescents with severe asthma. Respir Med. 2007;101(10):2182-2191.
 doi:10.1016/i.rmed.2007.05.006
- 70. Visitsunthorn N, Chirdjirapong V, Santadilog S, et al. The effect of montelukast on bronchial
 hyperreactivity and lung function in asthmatic children aged 6-13 years. Asian Pac J Allergy Immunol.
 2011;29(2):127-133.
 71. Zimmerman B, D'Urzo A, Bérubé D, Efficacy and safety of formoterol Turbuhaler when added to
 - 71. Zimmerman B, D'Urzo A, Bérubé D. Efficacy and safety of formoterol Turbuhaler when added to inhaled corticosteroid treatment in children with asthma. Pediatr Pulmonol. 2004;37(2):122-127. doi:10.1002/ppul.10404

Supplementary material

- Supplement 1
- Supplement 2
- Supplement 3

FIGURE TITLE (1) AND CAPTION (2)

(1) FIGURE 1 Study selection

(2) Study search from 1 July 2014 to 11 September 2019. The flowchart also comprises the studies retrieved before July 2014 from other sources/contacts with authors. These data were used in the analysis. The update from 10 September 2019 to 5 May 2023 did not provide studies eligible for inclusion (Figure S1 in Supplement 1). The studies by Scott 2005, Vaessen-Verberne 2010, and Thomas 2014 are unpublished. ICS: inhaled corticosteroid; LABA: Long-Acting β_2 -Agonist; LTRA: Leukotriene Receptor Antagonist; IPD: individual participant data; AgD: aggregate data; FEV₁: forced expiratory volume in 1 second.

(1) FIGURE 2 Network diagrams

(2) A, Network plot for the random-effects network meta-analysis with ICS stratified by dose when combined with LABA for exacerbation (Analysis A1). B, Network plot for the fixed-effect network metaanalysis with ICS stratified when combined with LABA for asthma control (Analysis A2). C, Network plot for the fixed-effect network meta-analysis with ICS stratified when combined with LABA for FEV₁ (Analysis A3). Network plots compare more interventions simultaneously in a single analysis by combining both direct and indirect evidence across a network of studies. ICS: inhaled corticosteroid; LABA: Long-Acting β_2 -Agonist; LTRA: Leukotriene Receptor Antagonist; IPD: individual participant data; AgD: aggregate data.

(1) FIGURE 3 Forest plot for exacerbation

(2) The results are from a Bayesian network meta-analysis. Squares are proportional to the weight of studies. ICS: inhaled corticosteroid; LABA: Long-Acting β_2 -Agonist; LTRA: Leukotriene Receptor Antagonist; OR: odds ratio; 95% CrI: 95% credibility interval. The star highlights 95% CrIs that exclude unity.

(1) FIGURE 4 Forest plot for asthma control

(2) The results are from a Bayesian network meta-analysis. Squares are proportional to the weight of studies. ICS: inhaled corticosteroid; LABA: Long-Acting β_2 -Agonist; LTRA: Leukotriene Receptor Antagonist; OR: odds ratio; 95% CrI: 95% credibility interval. The star highlights 95% CrIs that exclude unity.

(1) FIGURE 5 Forest plot for FEV₁

(2) The results are from a Bayesian network meta-analysis. Squares are proportional to the weight of studies. ICS: inhaled corticosteroid; LABA: Long-Acting β_2 -Agonist; LTRA: Leukotriene Receptor Antagonist; OR: odds ratio; 95% CrI: 95% credibility interval. The star highlights 95% CrIs that exclude zero.

Best step-up treatments for children with uncontrolled asthma: A systematic review and network meta-analysis of individual participant data

Sofia Cividini, MSc; Ian Sinha, PhD; Sarah Donegan, PhD; Michelle Maden, PhD; Katie Rose, MBChB; Olivia Fulton; Giovanna Culeddu, MSc; Dyfrig A. Hughes, PhD; Stephen Turner, MD; Catrin Tudur Smith, PhD on behalf of the EINSTEIN collaborative group

Institute of Population Health, Department of Health Data Science, University of Liverpool, Liverpool, UK (Sofia Cividini, 0000-0003-2705-9224; Sarah Donegan, 0000-0003-1709-2290; Catrin Tudur Smith, 0000-0003-3051-1445) |
Alder Hey Children's Foundation NHS Trust, Liverpool, UK (Ian Sinha, 0000-0002-7342-5523; Katie Rose, 0000-0002-2348-2036) | Institute of Population Health, Liverpool Reviews and Implementation Group, University of Liverpool, Liverpool, UK (Michelle Maden, 0000-0003-4419-6343) | Women and Children Division, NHS Grampian, Aberdeen, UK and Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, UK (Stephen Turner, 0000-0001-8393-5060) | Patient Representative, Liverpool, UK (Olivia Fulton, 0000-0001-7358-0219) | Centre for Health Economics and Medicines Evaluation, Bangor University, Bangor, UK (Giovanna Culeddu, 0000-0001-5032-4255; Dyfrig A. Hughes, 0000-0001-8247-7459)

The EINSTEIN Collaborative Group:

GlaxoSmithKline (GSK) Research & Development Ltd ("Trial Sponsor"), 980 Great West Road, Brentford, TW8 9GS, UK | Staffordshire Children's Hospital at Royal Stoke and Keele University, University Hospitals of the North Midlands, Stoke-on-Trent, UK (William D Carroll, MD) | London School of Hygiene and Tropical Medicine, London, UK (Chris Frost, PhD) | Emory University, Department of Pediatrics, Atlanta, GA, USA (Anne M Fitzpatrick, PhD) |
Penn State University, College of Medicine, Department of Public Health Sciences, Hershey, PA, USA (David T Mauger, PhD) | University of Colorado, Department of Pediatrics, Anschutz Medical Campus; Children's Hospital Colorado Breathing Institute; University of Colorado Anschutz Medical Campus, Adult and Child Consortium for Outcomes Research and Delivery Science, CO, USA (Stanley J Szefler, MD) | Pediatric Asthma Research Program, The Breathing Institute, Interim Medical Director, Research Institute Children's Hospital Colorado, National Jewish Health and University of Colorado School of Medicine, Denver, CO (Michael E Wechsler, MD, MMSc) | University of Manchester and Manchester University NHS Foundation Trust, UK (Clare S Murray, MBChB, MD, MRCP, MRCPCH) | KK Women's and Children's Hospital and Duke-NUS Medical School, Singapore (Biju Thomas, MBBS, FRCPCH) | University of Wisconsin School of Medicine and Public Health, Madison, WI, USA (Robert F. Lemanske, MD) | School of Pharmacy University of Wisconsin, WI, USA (Christine A Sorkness, PharmD, RPh)

Corresponding Author:

Catrin Tudur Smith, PhD, Institute of Population Health, Department of Health Data Science, University of Liverpool, Liverpool, L69 3GF, UK (<u>cat1@liverpool.ac.uk</u>).

Abstract

Introduction: There is uncertainty about the best treatment option for children/adolescents with uncontrolled asthma despite inhaled corticosteroids, and international guidelines make different recommendations.

Objectives: We evaluated the pharmacological treatments to reduce asthma exacerbations and symptoms in uncontrolled patients <18 years on inhaled corticosteroids.

Methods: We searched MEDLINE, the Cochrane Database of Systematic Reviews, the Cochrane Central Register of Controlled Trials, Embase, the Web of Science platform, NICE Technology Appraisals, the NIHR HTA series, the WHO International Clinical Trials Registry Platform, conference abstracts and internal clinical trial registers (1 July 2014 to 5 May 2023) for randomised controlled trials of participants <18 with uncontrolled asthma on any inhaled corticosteroid (ICS) dose alone at screening. Studies before July 2014 were retrieved from previous systematic reviews/contact with authors. Patients had to be randomised to any dose of ICS alone or combined with long-acting β_2 -agonists (LABAs) or combined with leukotriene receptor antagonists (LTRAs); LTRAs alone; theophylline; placebo. Primary outcomes were exacerbation and asthma control. The interventions evaluated were ICS (Low/Medium/High dose); ICS+LABA; ICS+LTRA; LTRA alone; theophylline; placebo.

Results: Of the 4708 publications identified, 144 trials were eligible. Individual participant data were obtained from 29 trials, and aggregate data from 19 trials. Compared to ICS Low, ICS Medium+LABA was associated with the lowest odds of exacerbation (OR 0.44 [95% CrI 0.19–0.90]) and with an increased FEV₁ (MD 0.71 [95% CrI 0.35–1.06]). Treatment with LTRA was the least preferred. No apparent differences were found for asthma control.

Conclusion: Uncontrolled children/adolescents on low-dose ICS should be recommended a change to medium-dose ICS+LABA to reduce the risk for exacerbation and improve lung function.

"Take home message": Using medium-dose inhaled corticosteroids with long-acting β_2 -agonists reduces the odds of exacerbation and increases FEV₁ in patients 6 to 17 years whose asthma is uncontrolled on a low dose of inhaled corticosteroids alone.

Introduction

Asthma is the most common long-term medical condition in young people [1] and is characterized by regular wheeze, breathlessness, chest tightness, and cough, with periods of relapse and remission. Asthma affects over one million children in the UK and six million in the US. The National Health Service (NHS) spends around £1 billion a year (2010/11 prices) treating and caring for people with asthma. [2] Asthma affects a child's quality of life by limiting daily activities such as sleep, attending school, and playing sports [3,4] and also by causing asthma exacerbations. Asthma cannot be cured, but preventer treatment is available to control symptoms and reduce risk for exacerbations in accordance with a number of guidelines. [5-7] The two British Guidelines on asthma management recommend that the preferred initial preventer for children is low dose inhaled corticosteroid (ICS). In 10–15% of children, low-dose ICS does not control asthma [8], and additional treatment options include increasing the dose of ICS or adding either a long-acting β_2 -adrenoceptor agonist (LABA) or leukotriene receptor antagonist (LTRA). [5-7] At present, guidelines recommend different options. Part of the uncertainty depends on the heterogeneity in treatment response within the population of children with asthma. [9, 10]

Systematic reviews and network meta-analysis (NMA) have tried to identify what the best treatment option is for children with poorly controlled asthma despite low dose ICS treatment. A Cochrane review [11] with 6381 children from 33 trials demonstrated that adding LABA to ICS was not associated with a significant decrease in exacerbations requiring systemic steroids. In children and adolescents with mild to moderate asthma, a second Cochrane review [12] found that combining LTRA with ICS was not associated with reducing rescue oral corticosteroids or hospital admission compared with the same or a higher dose of ICS. Two previous NMAs [13, 14] used aggregated data from randomized clinical trials (RCTs) whose participants were children with uncontrolled asthma. In 2012, Van der Mark et al. [13] published a review with 23 trials and 4129 patients but could not present a formal NMA since outcome measures were too heterogeneous and not wholly reported. In 2015, Zhao et al. [14] conducted a formal NMA using data from 35 RCTs with 12,010 children concluding that combined ICS and LABA treatments were most effective in preventing exacerbations and that medium-dose or high-dose ICS, combined ICS and LTRA, and low-dose ICS treatments seem to be equally effective. [14] Notably, the authors excluded 70 relevant RCTs because data about exacerbations or symptom-free days were not provided in trial publications, suggesting potential for outcome reporting bias if those excluded trials had selectively reported results based on the statistical significance of their findings. [15]

The EstablishINg the best STEp-up treatments for children with uncontrolled asthma despite INhaled corticosteroids (EINSTEIN) study addressed the ongoing need to identify what the best treatment option is for children and adolescents with asthma whose symptoms are uncontrolled despite low dose ICS by seeking to include published and unpublished data, using robust and unbiased methods.

Material and methods

We conducted a systematic review and network meta-analysis using individual participant data (IPD) from randomized clinical trials supplemented with aggregate data (AgD). We also carried out pairwise meta-analyses (MAs) and a network meta-regression (NMR) analysis to explore potential effect modifiers. The protocol was registered on PROSPERO (CRD42019127599) and was published in BMJ Open. [16]

Search strategy

We retrieved all trials identified (up to June 2014) in previous aggregate data network meta-analyses [13, 14] and Cochrane reviews. [11, 12, 17-19] We then created and applied a new search strategy, based on the previously published search strategies [13, 14; 11, 12, 17-19] (Methods S1 in Supplement 1), to identify published and unpublished trials. An initial search was conducted covering the period between 1 July 2014 to 11 September 2019. The search was subsequently updated to 5 May 2023. The search was conducted across 7 databases, 1 trial registry, internal pharmaceutical company trial registries, and guidelines. Additional details are in Supplement 1 (Methods S1). The search focused on identifying articles in the English language that included participants under 18. Two searches were conducted in MEDLINE to identify potential modifiers for the network meta-regression analysis (Methods S2, S3 in Supplement 1).

Eligibility criteria

A detailed description of trial designs, participants, and interventions and comparators is in Supplement 1 (Methods S4 and Table S1). In brief, we included parallel and crossover RCTs of any duration and with any level of blinding, which compared at least two of the interventions of interest. RCTs had to include participants aged <18 with "uncontrolled asthma" on ICS alone, defined as such by a validated diagnostic test or the trialists.

Outcomes and effect modifiers

The primary outcomes were (i) exacerbation (yes/no) and (ii) asthma control (yes/no; Methods S5 in Supplement 1). We defined exacerbations as "events characterized by a change from the patient's previous status", [20] mainly requiring a) the use of oral corticosteroids (OCS), b) the need for unscheduled visits with general practitioners (GPs) or at the emergency department (ED), c) hospitalization or d) when classified as exacerbation by the trial authors. We defined asthma control as "the extent to which the various manifestations of asthma have been reduced or removed by treatment". [20] Asthma control had to be measured by a validated test, for instance, the Asthma Control Test (ACT), [21] or Asthma Control Questionnaire (ACQ). [22] Secondary outcomes were forced expiratory volume in 1 second (FEV₁), symptoms, quality of life (QoL), mortality, adverse events (AEs), and hospital admissions. We evaluated a set of potential treatment effect modifiers that were informed by clinical opinion and the literature review for both the primary and secondary outcomes: age (years); sex (females vs. males); ethnicity (not Hispanic or Latino vs. Hispanic or Latino); eczema (present vs. absent); eosinophilia (eosinophilic vs. non-eosinophilic inflammatory type); and baseline asthma severity (mild, moderate, severe).

Trial selection

Two reviewers (SC, KR) independently screened and appraised all titles and abstracts, followed by full-text screening (excluded studies are in Supplements 2, 3) to identify trials for inclusion by resolving disagreements by consensus or discussion with a third reviewer (ST, IS, CTS). The inclusion of trials was not determined by the outcomes reported in publications to minimize the impact of selective outcome reporting.

Processing individual participant data and data extraction

A detailed description is in Supplement 1 (Methods S6).

Risk of bias assessment

One reviewer (SC) used the Cochrane Risk of Bias tool [23] to record the risk of bias concerning: a) randomisation method, b) allocation concealment, c) blinding, d) incomplete outcome data, e) selective reporting. The assessment was done at the trial level. Concerns were resolved through discussion with a second reviewer (CTS).

Data analysis

We used fixed effect and random-effects pairwise meta-analysis, network meta-analysis, and network metaregression (NMR) supplemented, wherever possible, with aggregate data when IPD were unavailable.

Pairwise and network meta-analyses were performed using both the frequentist approach and the Bayesian approach. We used odds ratio (OR) as the measure of treatment effect for binary outcomes (exacerbation, asthma control, adverse events) and mean difference (MD) as the measure of treatment effect for continuous outcomes (FEV₁, QoL). We used the software R (package *"multinma"* based on Stan) to construct all plots and fit models. [24] Additional technical details of the applied methodology are available in Methods S7 and Table S2 in Supplement 1. We conducted sensitivity analyses to explore the impact of the exacerbation data collection approach by excluding trials that had recorded exacerbation data only through adverse event data collection and may not have captured all events systematically. Data availability bias could impact the IPD network meta-analysis results if the availability of IPD from included trials is related to the trial results. We attempted to overcome this by including AgD wherever possible in primary analyses and explored whether results and conclusions were different in sensitivity analyses that excluded AgD. We also compared the risk of bias and the participant and trial characteristics between IPD trials and trials with no IPD, wherever possible.

Patient and public involvement

See Methods S8 in Supplement 1.

Results

The flow diagram of the identification and inclusion of studies is shown in Figure 1. In the primary search (Figure 1), we screened 3343 trials overall: 2910 were excluded as irrelevant, and the full text was retrieved for the remaining 433 trials. We identified 144 trials as eligible for inclusion. The characteristics of included trials can be found in Tables S3, S4 in Supplement 1. Twenty-nine trials [9, 25-52] provided IPD for a total of 5494 participants. We could not retrieve the IPD for 115 trials: 24 because of issues with the data sharing agreement; 46 did not reply (2 of which had initially agreed to provide data but did not reply to our following contact); 41 did not want to share data; 4 did not have contact details. Of the 115 eligible trials without IPD, we were able to extract aggregate data for at least one outcome in 19 studies. [53-71] Full details of the 96 potentially eligible trials without IPD and aggregate data are summarised in Table S5 in Supplement 1. Of the 48 trials with IPD or aggregate data, 40 [25-43, 45, 46, 48-55, 58-65, 68, 71] could be included in the analysis of exacerbation outcome (39 in the ICS grouped analysis), 16 [9, 25, 26, 28, 35, 36, 39-41, 44-47, 50-52] in the analysis of asthma control outcome (15 in the ICS grouped analysis), and 23 [9, 25-30, 32, 34-37, 39-41, 43, 44, 49, 51, 52, 68, 70] in the analysis of FEV₁ outcome (22 in the ICS grouped analysis). For

the exacerbation and FEV₁ analyses, the trial by Lötvall 2014 [34] was split according to GINA 2019 [7] age groups to avoid the trial artificially contributing to a head-to-head comparison of ICS Low versus ICS Medium. One trial (Woodcock 2013 [51]) was excluded from the analyses with grouped ICS doses as all treatments randomized were within the same treatment class and could not contribute comparative data. A stratification of the ICS+LTRA combination on ICS was not possible because of insufficient data. A repeated search strategy with a date range between 10 September 2019 and 5 May 2023 (Figure S1 in Supplement 1) did not identify any new eligible studies that could impact the results. We assessed the risk of bias for 29 trials with IPD and 19 trials with aggregate data (Table S6 and Figures S2A, S2B, S2C in Supplement 1). Most trials (32 trials corresponding to 67% of all studies) were considered as low risk of bias across all domains; 12 (25%) trials had one domain classed as high risk; 2 (4%) trials had two domains classed as high risk; and 2 (4%) had 3 domains classed as high risk (Table S6 in Supplement 1).

Network Meta-Analysis

Exacerbation

Inhaled corticosteroids stratified by dose when combined with LABA (Analysis A1)

Forty trials (27 IPD; 13 AgD) that randomized 8168 patients (5381 [328 events], IPD; 2787 [321 events], AgD) provided evidence for 10 treatment classes included in the random-effects network meta-analysis (Figure 2A, Table S7). There is evidence in favour of ICS Low (OR 0.42 [95% CrI 0.18–0.91]), ICS Medium (0.33 [0.13–0.82]), ICS High (0.31 [0.09–0.98]), ICS Low+LABA (0.35 [0.14–0.84]), ICS Medium+LABA (0.18; [0.06–0.49]) for reducing exacerbations compared to placebo (Figure 3, Table S7). There is also evidence in favour of ICS Medium+LABA compared to both ICS Low (0.44 [0.19–0.90]) and LTRA (0.12 [0.01–0.84]) and to a lesser extent compared to ICS Medium (0.56 [0.27–1.04]) or ICS Low+LABA (0.52 [0.23–1.05]) (Figure 3, Table S7). In support of these results the posterior ranking suggests that ICS Medium+LABA (median interquartile range [IQR] rank 1 [1,2]) is the most likely treatment to be best whilst LTRA (median IQR rank 9 [8,10]) and placebo (median IQR rank 9 [8,9]) would be least preferred (Figure S3 in Supplement 1). However, there is uncertainty about the ranking of every treatment in the network as shown by the wide and overlapping intervals (Figure S3 in Supplement 1). A comparison of DIC between the network meta-analysis consistency model and the unrelated mean effects model did not suggest inconsistency in the network. Similar results and conclusions are drawn from the corresponding frequentist analyses presented in Supplement 1 (Figure S4).

Additional analyses

Results for inhaled corticosteroids grouped when combined with LABA (Analysis B1) are shown in Figure S5 and Table S8 in Supplement 1. Reliable estimates could not be obtained from a network meta-analysis of individual compounds due to the sparse nature of the network, with few trials and exacerbation events contributing data to particular nodes in the network. Sensitivity analyses (Tables S9, S10 in Supplement 1) were generally similar to the main analyses and further supported the conclusion that ICS Medium+LABA is the most promising of the included treatments.

Data availability bias

We explored the potential for data availability bias by comparing OR (95% CrI) from the principal analyses, which include all available IPD and AgD (Table S7, Table S8 in Supplement 1) against the corresponding sensitivity analysis excluding 13 trials (2787 participants and 321 events) with only AgD (Tables S11, S12 in Supplement 1). Where a comparison can be made, the conclusions are consistent. However, the ORs for comparisons against placebo are more extreme from the 'IPD only' analyses (Tables S11, S12 in Supplement 1), a trend which might be expected if IPD was more likely to be provided when results were more strongly in favor of the active treatment compared to placebo. Comparing the risk of bias and trial and patient characteristics between trials that provided IPD and trials with only AgD did not ascertain any apparent differences. Assessment of risk of bias in the trials with only AgD was more often "unclear" than in the IPD trials (Table S6 in Supplement 1); however, this is to be somewhat expected as additional information (e.g., detailed protocol) was often provided with IPD, which allowed further clarification during the assessment procedure. While we cannot rule out the possibility of data availability bias, we have tried to mitigate this risk by including both IPD and AgD in the primary analysis.

Asthma control

Inhaled corticosteroids stratified by dose when combined with LABA (Analysis A2)

Sixteen trials provided data for nine treatment classes in the network meta-analysis (Figure 2B). There were 2453 participants out of 3027 that experienced good/total asthma control at their last follow-up visit according to the ACT/ACQ tests. The fixed effect network meta-analysis (Figure 4, Table S13) suggests an advantage for both ICS Low+LABA (OR 5.00 [95% CrI 1.04–25.53]) and ICS High+LABA (6.36 [1.17–35.87]) when compared with LTRA. However, for all other pairwise comparisons, the 95% CrI includes values for the OR that could indicate benefit for either treatment being compared, as well as both being

European Respiratory Journal

identical. There is too much uncertainty to make any firm conclusions about preferred treatment for asthma control, and this is supported by the overlapping intervals for the rank probabilities (Figure S6 in Supplement 1). A comparison of DIC between the network meta-analysis consistency model and the unrelated mean effects model did not suggest inconsistency in the network. Similar results and conclusions are drawn from the corresponding frequentist analyses presented in Supplement 1 (Figure S7).

Additional analyses

Results for inhaled corticosteroids grouped when combined with LABA (Analysis B2) and individual compounds (Analysis C2) are shown in Tables S14, S15 and Figures S8, S9 in Supplement 1.

Forced expiratory volume in one second (FEV₁)

Inhaled corticosteroids stratified by dose when combined with LABA (Analysis A3)

Twenty-three trials (21 IPD; 2 AgD) with 2518 participants (2203 IPD; 315 AgD) provided data for 10 treatment classes included in this network (Figure 2C). The mean difference (95% CrI) from the fixed effect network meta-analysis (Figure 5, Table S16) suggests that ICS Low (MD 0.15 [95% CrI 0.04–0.27]); ICS Medium (0.17 [0.01–0.33]); ICS Low+LABA (0.18 [0.04–0.31]) and ICS Medium+LABA (0.86 [0.49–1.24]) are more effective than placebo. There is evidence that ICS Medium+LABA is more effective than ICS Low (0.71 [0.35–1.06]); ICS Medium (0.69 [0.33–1.05]); ICS High (0.54 [0.24–0.81]); ICS Low+LABA (0.68 [0.33–1.04]); ICS High+LABA (0.99 [0.67–1.27]) and ICS+LTRA (0.94 [0.07–1.82]) (Figure 5, Table S16). There is also some evidence to suggest that ICS High is better than ICS High+LABA (0.45 [0.25–0.64]) (Figure 5, Table S16). The rank probability plots (Figure S10 in Supplement 1) show that ICS Medium+LABA is likely the best treatment in this network, but there is considerable uncertainty around the rank probability of other treatments. A comparison of DIC between the network meta-analysis consistency model and the unrelated mean effects model did not suggest inconsistency in the network. Similar results and conclusions are drawn from the corresponding frequentist analyses presented in Supplement 1 (Figure S11).

Additional analyses

Results for inhaled corticosteroids grouped when combined with LABA (Analysis B3) and individual compounds (Analysis C3) are shown in Tables S17, S18 and Figures S12, S13 in Supplement 1.

Further secondary outcomes

There were no deaths recorded in any of the included trials. The "symptoms" outcome was not analyzed as it can be challenging to interpret isolated symptoms, e.g., coughing at night without needing reliever medication, missing school, and not wheezing when running around. The decision to abandon the analysis of this outcome was not influenced by any results or other investigations completed. Eleven trials measured the "Quality of Life" outcome using two questionnaires: (1) the Asthma Quality of Life Questionnaire (AQLQ) (32 items, developed for use in adults 17–70 years) [21]; (2) the Paediatric Asthma Quality of Life Questionnaire (PAQLQ) (23 items, developed for use in children 7–17 years). [22] There was insufficient data for a reliable network meta-analysis and limited pairwise meta-analyses (Table S19 in Supplement 1) did not suggest clinically important differences in quality of life. Data for "hospital admissions" caused by an asthma exacerbation were only available from five trials with IPD, with percentage admission ranging from 0.5% to 2.7% of participants (Table S20 in Supplement 1). There was considerable heterogeneity in the recording and coding of adverse events data across trials. We summarised the numerical results and conducted frequentist pairwise meta-analyses using IPD and AgD, where more than one trial recorded the same adverse event: infections/infestations; neurological disorders; oral candidiasis; pneumonia; cardiac disorders; clinically significant electrocardiogram (ECG) changes (favorable and unfavorable); heart rate (HR) (mean difference at the last visit vs. baseline) (Figures S14-S22 in Supplement 1). There is insufficient evidence to conclude that the odds of any of these adverse events differ between the treatment classes that could be compared, except for neurological disorders suggesting lower odds of neurological disorders (graded as mild or moderate) on ICS+LABA compared to ICS+LTRA (OR 0.09 [95% confidence interval 0.01–0.82]; 1 trial) and greater odds for ICS Medium compared to placebo (4.8 [1.12–20.60]; 3 trials).

Effect modification

We compared the DIC between network meta-regression models with and without interaction terms. We found no overall evidence of interactions in any models for exacerbation, asthma control, and FEV₁ (Tables S21, S25, S27 in Supplement 1). However, some models had non-zero interaction regression coefficients (Tables S22, S28 in Supplement 1) for exacerbation and FEV₁. Still, these results should be viewed cautiously due to the few patients included. Furthermore, as recommendations regarding the treatment and care of patients do not differ according to any of the studied covariates (Tables S23, S24, S29, S30 in Supplement 1), and the interactions were not consistently identified as non-zero across all outcomes, we conclude there is insufficient evidence for effect modification based on this data.

Discussion

Principal findings

The network meta-analysis results suggest that for a child with uncontrolled asthma despite inhaled corticosteroid treatment, the odds of an exacerbation are reduced by stepping up to medium-dose ICS in combination with LABA compared with low-dose ICS. Objective testing with lung function demonstrated that medium dose ICS plus LABA was superior compared to any dose of ICS without LABA and low dose ICS plus LABA. Low or high doses of ICS combined with LABA were associated with increased odds of good asthma control but only versus LTRA monotherapy. Across the trials there were no deaths, relatively few hospitalization admissions due to asthma, and adverse events were uncommon.

Strengths and limitations of the study

To our knowledge, this is the first network meta-analysis of studies in children and adolescents with asthma using IPD. The network meta-analysis approach with IPD enabled us to include direct and indirect evidence comparing different treatments and dose levels, which have not been compared against each other in previous randomized clinical trials or network meta-analysis. We did not manage to retrieve and include data from 96 potentially eligible trials (67% of the eligible trials on this question); this may have introduced bias. Due to a scarcity of RCTs conducted on theophylline, we had minimal data for ICS+Theophylline and insufficient data to stratify inhaled corticosteroid dose when combined with LTRA; therefore, uncertainty remains about these treatments. Furthermore, several of the credible intervals from the network metaanalyses are wide and include clinically important values indicating that further differences, or robust conclusions about the equivalence between treatments may be identified with additional data. Due to sparse data, we could not carry out time-to-event analyses. Diagnosing asthma can be more uncertain in younger children since they can comply less with lung function testing. However, few children under six years were included in our analysis, meaning that imprecision in asthma diagnosis between studies was not substantially affected by the inclusion of younger children. There are two aspects of childhood asthma management that we could not consider in this review: a) the role of Maintenance And Reliever Therapy (MART - there is only one publication) and symptom-driven approaches to using ICS, and b) long term or rare side effects of treatments. We were not able to explore the impact of inhaler technique or adherence.

Comparison with other studies

Van der Mark et al. 2012 [13] attempted a similar approach but could not synthesize results due to variations in the measurement and reporting of outcomes; they concluded that ranking of effectiveness was not possible. In 2015, the network meta-analysis by Zhao et al. [14] suggested that combining ICS (dose not specified) and LABA treatments were most effective in preventing exacerbations. They also reported that there was a little difference between continuing low-dose ICS, increasing the ICS dose to the medium-dose or high-dose range, or combining ICS with LTRA. However, they could not make recommendations about the dose of ICS when combined with LABA. Using IPD where available, our approach enabled us to analyse the data more robustly, identify more relevant dose-specific differences between treatments that were previously not evident, and explore the potential for treatment effect modification.

Implications for clinicians and policymakers and future research

The current recommendation for treating children and adolescents with asthma who are not well-controlled on inhaled corticosteroids is to check adherence, inhaler technique, and comorbidities first, then consider a "step-up" to their treatment by increasing the dose of ICS or adding another therapy. The 2019 GINA guideline [7] recommends the preferred controller for children aged 6–11 is "medium-dose ICS" or "lowdose ICS with LABA," which have similar benefits. However, the EINSTEIN analysis suggests that the preferred first "step-up" option should be to increase the dose of ICS to a medium dose in combination with LABA, as this has the most beneficial effect on exacerbation prevention and improves asthma control and lung function. The parents we consulted supported the recommendation of medium-dose ICS with LABA, preferring to avoid trying alternative "small-step" treatment adjustments, which could put children at an increased risk of exacerbation and hospital admission for a more extended period. A future update of the review is needed to incorporate additional IPD, ensure maximum representation of treatments within the network meta-analysis, and make a reliable recommendation regarding specific formulations.

Conclusions

Although more included patients would have led to more precise estimates, we can reasonably conclude that ICS Medium with LABA would be recommended for children and adolescents with asthma who are uncontrolled on a low dose of inhaled corticosteroids. Although there was insufficient data to infer whether LTRA monotherapy was superior to ICS monotherapy, no guideline currently recommends LTRA monotherapy over ICS monotherapy.

 Results from the EINSTEIN study will provide clinicians and patients with accessible, high-quality, patient-

- relevant information to help make evidence-informed treatment choices. Earlier identification of the best
- step-up treatment for a particular child could significantly impact children's lives with more extensive

benefits to society and the NHS.

Acknowledgements

We sincerely thank the following companies and authors for their contribution as part of the EINSTEIN collaborative group:

GlaxoSmithKline (GSK) provided IPD and documentation used in the EINSTEIN trial.

Professors Stanley J. Szefler, Anne M. Fitzpatrick, and David T. Mauger provided IPD and documentation for the INFANT trial via BioLINCC.

Professor Chris Frost provided IPD for the publication by Verberne 1998.
 Professor William D. Carroll provided IPD and decumentation for the CH

Professor William D. Carroll provided IPD and documentation for the CHEST trial.

- Professor Michael E. Wechsler provided IPD and documentation for the BARD trial via BioLINCC.
- Professor Biju Thomas provided IPD for the ARIDOL trial.
- 23 Professor Clare S. Murray assisted to retrieve IPD of the GSK trial SAM40100.
 - Professor Robert F. Lemanske provided IPD and documentation for the BADGER trial.
 - Professor Christine A. Sorkness provided IPD and documentation for the PACT trial.
 - We thank patients and their families for their contribution to this project.

We thank Dr. David Phillippo (University of Bristol, UK) for his advice with the R package "multinma".

Contributors: CTS and IS conceived the trial. CTS, SD, ST, DH, OF and IS drafted the original version of the protocol, and SC subsequently drafted the protocol publication. MM developed the search strategies. KR and SC screened and selected eligible trials for inclusion in the review. SC and CTS contacted the authors and pharmaceutical companies and retrieved, extracted, and analysed data; CTS and SD checked for data consistency and correctness of the statistical analysis. DH and GC developed the economic analysis. SC carried out the risk of bias assessment, and CTS checked for coherence. CTS, SD, SC, ST, IS drafted the clinical section of the original manuscript, and DH and GC drafted the health economic section. All authors and the EINSTEIN collaborative group revised the manuscript critically for important intellectual content. OF and IS contributed to coordinating the group of patients and parents. OF contributed to developing the plain-language summary. SC drafted this article. All authors approved the final version of the article. CTS is the guarantor.

Declaration of interests: None declared.

Funding/Support: This work was supported by NIHR HTA grant number 16/110/16.

Role of the funding source: The funder had no role in the protocol development. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.

Data sharing: The study used individual patient data from various sources. Permission was obtained from trial data owners to use the data for the EINSTEIN study only. For this reason, whilst we cannot share the data we collected from trial data owners, we could share contact details and procedures for requesting data for trial data owners.

Ethical approval: The study used anonymised data and data available in the public domain hence ethical approval was not required. The University of Liverpool Research Ethics Committee confirmed this prior to the start of the project.

References

1 2

3

4 5

6

7

8

9

10

11

12

13

14

15

1. WHO - Asthma. https://www.who.int/news-room/fact-sheets/detail/asthma

2. Mukherjee M, Stoddart A, Gupta RP, et al. The epidemiology, healthcare and societal burden and costs of asthma in the UK and its member nations: analyses of standalone and linked national databases. BMC Med. 2016;14(1):113. Published 2016 Aug 29. doi:10.1186/s12916-016-0657-8

- 3. Asthma UK. Accessed February 2020. https://www.asthma.org.uk/about/media/facts-and-statistics/
- 4. NHS England. Accessed February 2020. https://www.england.nhs.uk/childhood-asthma/

5. British Thoracic Society SIGN. British guideline on the management of asthma. <u>https://www.brit-thoracic.org.uk/quality-improvement/guidelines/asthma/</u>

- 6. Asthma: diagnosis, monitoring and chronic asthma management. https://www.nice.org.uk/guidance/ng80
- 7. Reddel HK, Bacharier LB, Bateman ED, et al. Global Initiative for Asthma Strategy 2021: executive summary and rationale for key changes. *Eur Respir J*. 2021;59(1):2102730. Published 2021 Dec 31. doi:10.1183/13993003.02730-2021
- addi.10.1183/13995005.02750-2021
 8. Turner S, Thomas M, von Ziegenweidt J, et al. Prescribing trends in asthma: a longitudinal observational study. Arch Dis Child. 2009;94(1):16-22. doi:10.1136/adc.2008.1406819
- study. Arch Dis Child. 2009;94(1):16-22. doi:10.1136/adc.2008.1406819
 9. Lemanske RF Jr, Mauger DT, Sorkness CA, et al. Step-up therapy for children with uncontrolled asthma receiving inhaled corticosteroids. N Engl J Med. 2010;362(11):975-985. doi:10.1056/NEJMoa1001278
 10. Szefler SJ, Phillips BR, Martinez FD, et al. Characterization of within-subject responses to fluticasone and montelukast in childhood asthma. J Allergy Clin Immunol. 2005;115(2):233-242.
 doi:10.1016/j.jaci.2004.11.014
- 24 11. Chauhan BF, Chartrand C, Ni Chroinin M, et al. Addition of long-acting beta2-agonists to inhaled
 25 corticosteroids for chronic asthma in children. Cochrane Database Syst Rev. 2015;2015(11):CD007949.
 26 Published 2015 Nov 24. doi:10.1002/14651858.CD007949.pub2
- 12. Chauhan BF, Ben Salah R, Ducharme FM. Addition of anti-leukotriene agents to inhaled corticosteroids
 in children with persistent asthma. Cochrane Database Syst Rev. 2013;(10):CD009585. Published 2013 Oct
 2. doi:10.1002/14651858.CD009585.pub2
- addition of the forest of the f
- 14. Zhao Y, Han S, Shang J, et al. Effectiveness of drug treatment strategies to prevent asthma exacerbations
 and increase symptom-free days in asthmatic children: a network meta-analysis. J Asthma. 2015;52(8):846 857. doi:10.3109/02770903.2015.1014101
- 15. Hutton JL, Williamson PR. Bias in meta-analysis due to outcome variable selection within studies.
 Journal of the Royal Statistical Society: Series C (Applied Statistics). 2002;49(3):359-70
- 16. Cividini S, Sinha I, Donegan S, et al. EstablishINg the best STEp-up treatments for children with
 uncontrolled asthma despite INhaled corticosteroids (EINSTEIN): protocol for a systematic review, network
 meta-analysis and cost-effectiveness analysis using individual participant data (IPD). BMJ Open.
 2021;11(2):e040528. Published 2021 Feb 5. doi:10.1136/bmjopen-2020-040528
- 17. Chauhan BF, Ducharme FM. Anti-leukotriene agents compared to inhaled corticosteroids in the
 management of recurrent and/or chronic asthma in adults and children. Cochrane Database Syst Rev.
 2012;2012(5):CD002314. Published 2012 May 16. doi:10.1002/14651858.CD002314.publ
- 18. Chauhan BF, Ducharme FM. Addition to inhaled corticosteroids of long-acting beta2-agonists versus
 anti-leukotrienes for chronic asthma. Cochrane Database Syst Rev. 2014;(1):CD003137. Published 2014 Jan
 24. doi:10.1002/14651858.CD003137.pub5
- 19. Pruteanu AI, Chauhan BF, Zhang L, et al. Inhaled corticosteroids in children with persistent asthma:
 dose-response effects on growth. Cochrane Database Syst Rev. 2014;2014(7):CD009878. Published 2014 Jul
 17. doi:10.1002/14651858.CD009878.pub2
 20. Do 111 1111/2 To 12 DD Data Database Syst Rev. 2014;2014 (7):CD009878.
- 20. Reddel HK, Taylor DR, Bateman ED, et al. An official American Thoracic Society/European Respiratory
 Society statement: asthma control and exacerbations: standardizing endpoints for clinical asthma trials and
 clinical practice. Am J Respir Crit Care Med. 2009;180(1):59-99. doi:10.1164/rccm.200801-060ST
 21. Nathan RA, Sorkness CA, Kosinski M, et al. Development of the asthma control test: a survey for
 assessing asthma control. J Allergy Clin Immunol. 2004;113(1):59-65. doi:10.1016/j.jaci.2003.09.008
 22. Juniner FE, Careford Lange K, Ward S, et al. A. (1990)
- Juniper EF, Gruffydd-Jones K, Ward S, et al. Asthma Control Questionnaire in children: validation,
 measurement properties, interpretation. Eur Respir J. 2010;36(6):1410-1416.
- 60 doi:10.1183/09031936.00117509
1 2 23. Higgins JP, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias 3 in randomised trials. BMJ. 2011:343:d5928. Published 2011 Oct 18. doi:10.1136/bmi.d5928 4 24. Phillippo DM. multinma: Bayesian Network Meta-Analysis of Individual and Aggregate Data. R 5 package version 042, 2022 6 25. Bateman ED, O'Byrne PM, Busse WW, et al. Once-daily fluticasone furoate (FF)/vilanterol reduces risk 7 of severe exacerbations in asthma versus FF alone. Thorax. 2014;69(4):312-319. doi:10.1136/thoraxjnl-8 2013-203600 9 26. Bernstein DI, Bateman ED, Woodcock A, et al. Fluticasone furoate (FF)/vilanterol (100/25 mcg or 10 200/25 mcg) or FF (100 mcg) in persistent asthma. J Asthma. 2015;52(10):1073-1083. 11 doi:10.3109/02770903.2015.1056350 12 27. Bleecker ER, Bateman ED, Busse WW, et al. Once-daily fluticasone furoate is efficacious in patients 13 with symptomatic asthma on low-dose inhaled corticosteroids. Ann Allergy Asthma Immunol. 14 2012:109(5):353-358.e4. doi:10.1016/j.anai.2012.08.017 15 28. Bleecker ER, Lötvall J, O'Byrne PM, et al. Fluticasone furoate-vilanterol 100-25 mcg compared with 16 fluticasone furoate 100 mcg in asthma: a randomized trial. J Allergy Clin Immunol Pract. 2014;2(5):553-561. 17 doi:10.1016/j.jaip.2014.02.010 18 29. Carroll WD, Jones PW, Boit P, et al. Childhood evaluation of salmeterol tolerance--a double-blind 19 randomized controlled trial. Pediatr Allergy Immunol. 2010;21(2 Pt 1):336-344. doi:10.1111/j.1399-20 3038.2009.00927.x 21 22 30. de Blic J, Ogorodova L, Klink R, et al. Salmeterol/fluticasone propionate vs. double dose fluticasone 23 propionate on lung function and asthma control in children. Pediatr Allergy Immunol. 2009;20(8):763-771. 24 doi:10.1111/j.1399-3038.2009.00861.x 25 31. Fitzpatrick AM, Jackson DJ, Mauger DT, et al. Individualized therapy for persistent asthma in young 26 children. J Allergy Clin Immunol. 2016;138(6):1608-1618.e12. doi:10.1016/j.jaci.2016.09.028 27 32. Gappa M, Zachgo W, von Berg A, et al. Add-on salmeterol compared to double dose fluticasone in 28 pediatric asthma: a double-blind, randomized trial (VIAPAED). Pediatr Pulmonol. 2009;44(11):1132-1142. 29 doi:10.1002/ppul.21120 30 33. Li JS, Qaqundah PY, Weinstein SF, et al. Fluticasone propionate/salmeterol combination in children with 31 asthma: Key cardiac and overall safety results. Clin Res Regul Aff. 2010;27(3):87-95. 32 34. Lötvall J, Bateman ED, Busse WW, et al. Comparison of vilanterol, a novel long-acting beta2 agonist, 33 with placebo and a salmeterol reference arm in asthma uncontrolled by inhaled corticosteroids. J Negat 34 Results Biomed. 2014;13(1):9. Published 2014 Jun 13. doi:10.1186/1477-5751-13-9 35 35. Lötvall J, Bleecker ER, Busse WW, et al. Efficacy and safety of fluticasone furoate 100 µg once-daily in 36 patients with persistent asthma: a 24-week placebo and active-controlled randomised trial [published 37 correction appears in Respir Med. 2015 Jan;109(1):146]. Respir Med. 2014;108(1):41-49. 38 doi:10.1016/j.rmed.2013.11.009 39 36. Martin N, Weiler JM, Pearlman D, et al. Fluticasone furoate/vilanterol versus fluticasone propionate in 40 patients with asthma and exercise-induced bronchoconstriction. J Asthma. 2020;57(4):431-440. 41 42 doi:10.1080/02770903.2019.1579344 43 37. Murray CS, Custovic A, Lowe LA, et al. Effect of addition of salmeterol versus doubling the dose of 44 fluticasone propionate on specific airway resistance in children with asthma. Allergy Asthma Proc. 45 2010;31(5):415-421. doi:10.2500/aap.2010.31.3362 46 38. Murray JJ, Waitkus-Edwards KR, Yancey SW. Evaluation of fluticasone propionate and fluticasone 47 propionate/salmeterol combination on exercise in pediatric and adolescent patients with asthma. Open Respir 48 Med J. 2011;5:11-18. doi:10.2174/1874306401105010011 49 39. O'Byrne PM, Bleecker ER, Bateman ED, et al. Once-daily fluticasone furoate alone or combined with 50 vilanterol in persistent asthma. Eur Respir J. 2014;43(3):773-782. doi:10.1183/09031936.00064513 51 40. Oliver AJ, Covar RA, Goldfrad CH, et al. Randomized Trial of Once-Daily Fluticasone Furoate in 52 Children with Inadequately Controlled Asthma. J Pediatr. 2016;178:246-253.e2. 53 doi:10.1016/j.jpeds.2016.08.010 54 41. Oliver AJ, Covar RA, Goldfrad CH, et al. Randomised trial of once-daily vilanterol in children with 55 asthma on inhaled corticosteroid therapy. Respir Res. 2016;17:37. Published 2016 Apr 5. 56 doi:10.1186/s12931-016-0353-4 57 42. Pearlman D, Qaqundah P, Matz J, et al. Fluticasone propionate/salmeterol and exercise-induced asthma 58 in children with persistent asthma. Pediatr Pulmonol. 2009;44(5):429-435. doi:10.1002/ppul.20962 59 60

2 43. Scott C, Wu W, Ellsworth A. Efficacy and safety of fluticasone propioante/salmeterol DISKUS and 3 fluticasone propionate DISKUS and HFA in children. Eur Respir J, Suppl 2005;26(161) (plus poster) abstr. 4 P1057. 5 44. Sorkness CA, Lemanske RF Jr, Mauger DT, et al. Long-term comparison of 3 controller regimens for 6 mild-moderate persistent childhood asthma: the Pediatric Asthma Controller Trial [published correction 7 appears in J Allergy Clin Immunol. 2007 Aug;120(2):285]. J Allergy Clin Immunol. 2007;119(1):64-72. 8 doi:10.1016/j.jaci.2006.09.042 9 45. Stempel DA, Raphiou IH, Kral KM, et al. Serious Asthma Events with Fluticasone plus Salmeterol 10 versus Fluticasone Alone. N Engl J Med. 2016;374(19):1822-1830. doi:10.1056/NEJMoa1511049 11 46. Stempel DA, Szefler SJ, Pedersen S, et al. Safety of Adding Salmeterol to Fluticasone Propionate in 12 Children with Asthma. N Engl J Med. 2016;375(9):840-849. doi:10.1056/NEJMoa1606356 13 47. Thomas B. Effect of step up therapy on bronchial hyperresponsiveness in children with poorly 14 controlled asthma on inkaled corticosteroid (ICS) monotherapy. Pediatr Pulmonol. 2014;49(S37):S50-S89. 15 48. Vaessen-Verberne AA, van den Berg NJ, van Nierop JC, et al. Combination therapy 16 salmeterol/fluticasone versus doubling dose of fluticasone in children with asthma. Am J Respir Crit Care 17 Med. 2010;182(10):1221-1227. doi:10.1164/rccm.201002-0193OC 18 49. Verberne AA, Frost C, Duiverman EJ, et al. Addition of salmeterol versus doubling the dose of 19 beclomethasone in children with asthma. The Dutch Asthma Study Group. Am J Respir Crit Care Med. 20 1998;158(1):213-219. doi:10.1164/ajrccm.158.1.9706048 21 22 50. Wechsler ME, Szefler SJ, Ortega VE, et al. Step-Up Therapy in Black Children and Adults with Poorly 23 Controlled Asthma. N Engl J Med. 2019;381(13):1227-1239. doi:10.1056/NEJMoa1905560 24 51. Woodcock A, Bleecker ER, Lötvall J, et al. Efficacy and safety of fluticasone furoate/vilanterol 25 compared with fluticasone propionate/salmeterol combination in adult and adolescent patients with persistent 26 asthma: a randomized trial. Chest. 2013;144(4):1222-1229. doi:10.1378/chest.13-0178 27 52. Woodcock A, Lötvall J, Busse WW, et al. Efficacy and safety of fluticasone furoate 100 µg and 200 µg 28 once daily in the treatment of moderate-severe asthma in adults and adolescents: a 24-week randomised 29 study. BMC Pulm Med. 2014;14:113. Published 2014 Jul 9. doi:10.1186/1471-2466-14-113 30 53. Akpinarli A, Tuncer A, Saraclar Y, et al. Effect of formoterol on clinical parameters and lung functions 31 in patients with bronchial asthma: a randomised controlled trial. Arch Dis Child. 1999;81(1):45-48. 32 doi:10.1136/adc.81.1.45 33 54. Berger WE, Milgrom H, Chervinsky P, et al. Effects of treatment with mometasone furoate dry powder 34 inhaler in children with persistent asthma. Ann Allergy Asthma Immunol. 2006;97(5):672-680. 35 doi:10.1016/S1081-1206(10)61099-X 36 55. Bisgaard H, Le Roux P, Bjämer D, et al. Budesonide/formoterol maintenance plus reliever therapy: a 37 new strategy in pediatric asthma. Chest. 2006;130(6):1733-1743. doi:10.1378/chest.130.6.1733 38 56. Buchvald F, Bisgaard H. Comparisons of the complementary effect on exhaled nitric oxide of salmeterol 39 vs montelukast in asthmatic children taking regular inhaled budesonide. Ann Allergy Asthma Immunol. 40 2003;91(3):309-313. doi:10.1016/S1081-1206(10)63536-3 41 42 57. Everden P, Campbell M, Harnden C, et al. Eformoterol Turbohaler compared with salmeterol by dry 43 powder inhaler in asthmatic children not controlled on inhaled corticosteroids. Pediatr Allergy Immunol. 44 2004;15(1):40-47. doi:10.1046/j.0905-6157.2003.00094.x 45 58. Heuck C, Heickendorff L, Wolthers OD. A randomised controlled trial of short term growth and collagen 46 turnover in asthmatics treated with inhaled formoterol and budesonide. Arch Dis Child. 2000;83(4):334-339. 47 doi:10.1136/adc.83.4.334 48 59. Jat GC, Mathew JL, Singh M. Treatment with 400 microg of inhaled budesonide vs 200 microg of 49 inhaled budesonide and oral montelukast in children with moderate persistent asthma: randomized controlled 50 trial. Ann Allergy Asthma Immunol. 2006;97(3):397-401. doi:10.1016/s1081-1206(10)60807-1 51 60. Kondo N, Katsunuma T, Odajima Y, et al. A randomized open-label comparative study of montelukast 52 versus theophylline added to inhaled corticosteroid in asthmatic children. Allergol Int. 2006;55(3):287-293. 53 doi:10.2332/allergolint.55.287 54 61. Lenney W, McKay AJ, Tudur Smith C, et al. Management of Asthma in School age Children On 55 Therapy (MASCOT): a randomised, double-blind, placebo-controlled, parallel study of efficacy and 56 safety. Health Technol Assess. 2013;17(4):1-218. doi:10.3310/hta17040 57 62. Malone R, LaForce C, Nimmagadda S, et al. The safety of twice-daily treatment with fluticasone 58 propionate and salmeterol in pediatric patients with persistent asthma. Ann Allergy Asthma Immunol. 59 2005;95(1):66-71. doi:10.1016/S1081-1206(10)61190-8 60

- 63. Morice AH, Peterson S, Beckman O, et al. Efficacy and safety of a new pressurised metered-dose inhaler
 formulation of budesonide/formoterol in children with asthma: a superiority and therapeutic equivalence
 study. Pulm Pharmacol Ther. 2008;21(1):152-159. doi:10.1016/j.pupt.2007.01.006
- 64. Russell G, Williams DA, Weller P, et al. Salmeterol xinafoate in children on high dose inhaled
 steroids. Ann Allergy Asthma Immunol. 1995;75(5):423-428.
- 7 65. Shapiro GG, Mendelson LM, Pearlman DS. Once-daily budesonide inhalation powder (Pulmicort
- Turbuhaler) maintains pulmonary function and symptoms of asthmatic children previously receiving inhaled corticosteroids. Ann Allergy Asthma Immunol. 2001;86(6):633-640. doi:10.1016/S1081-1206(10)62291-0
- 10 66. Simons FE, Villa JR, Lee BW, et al. Montelukast added to budesonide in children with persistent asthma:
- a randomized, double-blind, crossover study. J Pediatr. 2001;138(5):694-698. doi:10.1067/mpd.2001.112899
- a randomized, double-offidi, crossover study. Frediat: 2001,138(3):094-098. doi:10.1007/mpd.2001.11289
 67. Strauch E, Moske O, Thoma S, et al. A randomized controlled trial on the effect of montelukast on
 sputum eosinophil cationic protein in children with corticosteroid-dependent asthma. Pediatr Res.
 2003:54(2):198-203. doi:10.1203/01.PDR.0000072328.28105.06
- 2003;54(2):198-203. doi:10.1203/01.PDR.00000/2328.28105.06
 68. Tal A, Simon G, Vermeulen JH, et al. Budesonide/formoterol in a single inhaler versus inhaled
 corticosteroids alone in the treatment of asthma. Pediatr Pulmonol. 2002;34(5):342-350.
 doi:10.1002/ppul.10173
- 69. Vermeulen JH, Gyurkovits K, Rauer H, et al. Randomized comparison of the efficacy and safety of
 ciclesonide and budesonide in adolescents with severe asthma. Respir Med. 2007;101(10):2182-2191.
 doi:10.1016/i.rmed.2007.05.006
- 70. Visitsunthorn N, Chirdjirapong V, Santadilog S, et al. The effect of montelukast on bronchial
 hyperreactivity and lung function in asthmatic children aged 6-13 years. Asian Pac J Allergy Immunol.
 2011;29(2):127-133.
 71. Zimmerman B, D'Urzo A, Bérubé D, Efficacy and safety of formateral Turbuhaler when added to
 - 71. Zimmerman B, D'Urzo A, Bérubé D. Efficacy and safety of formoterol Turbuhaler when added to inhaled corticosteroid treatment in children with asthma. Pediatr Pulmonol. 2004;37(2):122-127. doi:10.1002/ppul.10404

Supplementary material

- Supplement 1
- Supplement 2
- Supplement 3

FIGURE TITLE (1) AND CAPTION (2)

(1) FIGURE 1 Study selection

(2) Study search from 1 July 2014 to 11 September 2019. The flowchart also comprises the studies retrieved before July 2014 from other sources/contacts with authors. These data were used in the analysis. The update from 10 September 2019 to 5 May 2023 did not provide studies eligible for inclusion (Figure S1 in Supplement 1). The studies by Scott 2005, Vaessen-Verberne 2010, and Thomas 2014 are unpublished. ICS: inhaled corticosteroid; LABA: Long-Acting β_2 -Agonist; LTRA: Leukotriene Receptor Antagonist; IPD: individual participant data; AgD: aggregate data; FEV₁: forced expiratory volume in 1 second.

(1) FIGURE 2 Network diagrams

(2) A, Network plot for the random-effects network meta-analysis with ICS stratified by dose when combined with LABA for exacerbation (Analysis A1). B, Network plot for the fixed-effect network metaanalysis with ICS stratified when combined with LABA for asthma control (Analysis A2). C, Network plot for the fixed-effect network meta-analysis with ICS stratified when combined with LABA for FEV₁ (Analysis A3). Network plots compare more interventions simultaneously in a single analysis by combining both direct and indirect evidence across a network of studies. ICS: inhaled corticosteroid; LABA: Long-Acting β_2 -Agonist; LTRA: Leukotriene Receptor Antagonist; IPD: individual participant data; AgD: aggregate data.

(1) FIGURE 3 Forest plot for exacerbation

(2) The results are from a Bayesian network meta-analysis. Squares are proportional to the weight of studies. ICS: inhaled corticosteroid; LABA: Long-Acting β_2 -Agonist; LTRA: Leukotriene Receptor Antagonist; OR: odds ratio; 95% CrI: 95% credibility interval. The star highlights 95% CrIs that exclude unity.

(1) FIGURE 4 Forest plot for asthma control

(2) The results are from a Bayesian network meta-analysis. Squares are proportional to the weight of studies. ICS: inhaled corticosteroid; LABA: Long-Acting β_2 -Agonist; LTRA: Leukotriene Receptor Antagonist; OR: odds ratio; 95% CrI: 95% credibility interval. The star highlights 95% CrIs that exclude unity.

(1) FIGURE 5 Forest plot for FEV₁

(2) The results are from a Bayesian network meta-analysis. Squares are proportional to the weight of studies. ICS: inhaled corticosteroid; LABA: Long-Acting β_2 -Agonist; LTRA: Leukotriene Receptor Antagonist; OR: odds ratio; 95% CrI: 95% credibility interval. The star highlights 95% CrIs that exclude zero.

European Respiratory Journal

Treatment		OR	95%
ICS Low		1	-
ICS Medium	· ₽	0.78	(0.41; 1.
ICS High		0 74	(0.30.1
		0.04	(0.54, 1
ICS LOW+LADA		0.64	(0.51; 1.
ICS Medium+LABA		0.44	(0.19; 0.
ICS High+LABA	⊢−−−− ∎−−−−−−	0.94	(0.36; 2.
ICS+I TRA		1 25	(0.36.4
		2.62	(0.50, 24
LIKA		3.03	(0.59; 24.
ICS+Theophylline	<→	1.35	(0.02; 74.
Placebo	·	2.39	(1.09; 5.
Treatment		OR	95%
ICS Medium		1	
			(0.07.0
ICS High		0.95	(0.37; 2.
ICS Low+LABA	⊢ ⊢ →	1.07	(0.60; 1
ICS Medium+LABA		0.56	(0.27: 1
		1 21	(0.46:3
		1.21	(0.40, 5
ICS+LIRA		1.60	(0.48; 5.
LTRA	► ● →	4.66	(0.69; 36
ICS+Theophylline	<u> </u>	1.72	(0.03: 95
Placeho		3.03	(1 22.7
		5.05	(1.22, 7.
T		00	05%
reatment		UK	95%
ICS High		1	
ICS Low+LABA	▶ <u> </u>	1.13	(0.46; 2
ICS Medium+LABA		0.59	(0.22.1
		1.07	(0.50.0
		1.27	(0.58, 2
ICS+LTRA		1.68	(0.39; 7
LTRA	└────	4.90	(0.66; 42
ICS+Theophylline	<u>جــــــــــــــــــــــــــــــــــــ</u>	1.82	(0.03.109
Diagoba		2.22	(1.02:10
FIACEDO		5.22	(1.02, 10.
T ue et au e at		00	05%
Ireatment		UR	95%
ICS LOW+LABA		1	<i>(</i>
ICS Medium+LABA		0.52	(0.23; 1
			(0 1 1 . 2
ICS HIGN+LABA		1.13	(0.44, 2
ICS HIGH+LABA		1.13 1.49	(0.44; 2
ICS HIGN+LABA ICS+LTRA		1.13 1.49 4.35	(0.44; 2
ICS HIGH+LABA ICS+LTRA LTRA		1.13 1.49 4.35	(0.44; 2 (0.44; 4 (0.66; 32
ICS High+LABA ICS+LTRA LTRA ICS+Theophylline		1.13 1.49 4.35 1.60	(0.44, 2 (0.44; 4 (0.66; 32 (0.03; 86
ICS High+LABA ICS+LTRA LTRA ICS+Theophylline Placebo		1.13 1.49 4.35 1.60 2.86	(0.44, 2 (0.44; 4 (0.66; 32 (0.03; 86 (1.19; 7)
ICS High+LABA ICS+LTRA LTRA ICS+Theophylline Placebo		1.13 1.49 4.35 1.60 2.86	(0.44; 2 (0.44; 4 (0.66; 32 (0.03; 86 (1.19; 7.
ICS High+LABA ICS+LTRA LTRA ICS+Theophylline Placebo Treatment		1.13 1.49 4.35 1.60 2.86 OR	(0.44, 2 (0.44; 4 (0.66; 32 (0.03; 86 (1.19; 7. 95%
ICS High+LABA ICS+LTRA LTRA ICS+Theophylline Placebo Treatment ICS Medium+LABA		1.13 1.49 4.35 1.60 2.86 OR 1	(0.44; 4 (0.46; 32 (0.03; 86 (1.19; 7. 95%
ICS High+LABA		1.13 1.49 4.35 1.60 2.86 OR 1 2.16	(0.44; 4 (0.44; 4 (0.66; 32 (0.03; 86 (1.19; 7. 95%
ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS Medium+LABA ICS High+LABA ICS High+LABA		1.13 1.49 4.35 1.60 2.86 OR 1 2.16 2.86	(0.44, 2) (0.44; 4) (0.66; 32) (0.03; 86) (1.19; 7) 95% (0.85; 5)
ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS Medium+LABA ICS High+LABA ICS+LTRA		1.13 1.49 4.35 1.60 2.86 OR 1 2.16 2.86 8.22	(0.44; 2. (0.44; 4. (0.66; 32. (0.03; 86. (1.19; 7. 95% (0.85; 5. (0.79; 10.
ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS Medium+LABA ICS High+LABA ICS+LTRA LTRA		1.13 1.49 4.35 1.60 2.86 OR 1 2.16 2.86 8.33	(0.44; 4 (0.46; 32 (0.03; 86 (1.19; 7. 95% (0.85; 5 (0.79; 10 (1.20; 69.
ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS Medium+LABA ICS High+LABA ICS+LTRA LTRA ICS+Theophylline		1.13 1.49 4.35 1.60 2.86 OR 1 2.16 2.86 8.33 3.10	(0.44; 4 (0.44; 4 (0.66; 32 (0.03; 86 (1.19; 7. 95% (0.85; 5 (0.79; 10 (1.20; 69. (0.06; 181
ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS Medium+LABA ICS High+LABA ICS+LTRA LTRA ICS+Theophylline Placebo		1.13 1.49 4.35 1.60 2.86 OR 1 2.16 2.86 8.33 3.10 5.47	(0.44; 4) (0.44; 4) (0.66; 32) (0.03; 86) (1.19; 7) 95% (0.85; 5) (0.79; 10) (1.20; 69) (0.06; 181) (2.03; 17)
ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS Medium+LABA ICS High+LABA ICS+LTRA ICS+LTRA ICS+Theophylline Placebo		1.13 1.49 4.35 1.60 2.86 OR 1 2.16 2.86 8.33 3.10 5.47	(0.44; 4) (0.44; 4) (0.66; 32) (0.03; 86) (1.19; 7) 95% (0.85; 5) (0.79; 10) (1.20; 69) (0.06; 181) (2.03; 17)
ICS High+LABA		1.13 1.49 4.35 1.60 2.86 0R 1 2.16 2.86 8.33 3.10 5.47 0R	(0.44; 4 (0.44; 4 (0.66; 32 (0.03; 86 (1.19; 7. 95% (0.85; 5 (0.79; 10 (1.20; 69. (0.06; 181 (2.03; 17. 95%
ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS Medium+LABA ICS High+LABA ICS+LTRA ICS+LTRA ICS+Theophylline Placebo Treatment ICS High+LABA		1.13 1.49 4.35 1.60 2.86 0R 1 2.16 2.86 8.33 3.10 5.47 0R 1	(0.44; 2 (0.44; 4 (0.66; 32 (0.03; 86 (1.19; 7. 95% (0.85; 5 (0.79; 10 (1.20; 69. (0.06; 181 (2.03; 17. 95%
ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS Medium+LABA ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS High+LABA ICS High+LABA ICS+LTRA		1.13 1.49 4.35 1.60 2.86 0R 1 2.16 2.86 8.33 3.10 5.47 0R 1 1.32	(0.44; 4 (0.46; 32 (0.03; 86 (1.19; 7. 95% (0.85; 5 (0.79; 10 (1.20; 69. (0.06; 181 (2.03; 17. 95%
ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS Medium+LABA ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS High+LABA ICS High+LABA ICS+LTRA		1.13 1.49 4.35 1.60 2.86 0 R 1 2.16 2.86 8.33 3.10 5.47 0 R 1 1.32 2.96	(0.44; 4 (0.46; 32 (0.03; 86 (1.19; 7. 95% (0.85; 5 (0.79; 10 (1.20; 69: (0.06; 181 (2.03; 17. 95% (0.31; 5
ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS Medium+LABA ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS High+LABA ICS High+LABA ICS+LTRA ICS+LTRA		1.13 1.49 4.35 1.60 2.86 OR 1 2.16 2.86 8.33 3.10 5.47 OR 1 1.32 3.86 4.45 OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR	(0.44; 4 (0.46; 32 (0.03; 86 (1.19; 7. 95% (0.85; 5 (0.79; 10 (1.20; 69. (0.06; 181 (2.03; 17. 95% (0.31; 5 (0.50; 34
ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS Medium+LABA ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS High+LABA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA		1.13 1.49 4.35 1.60 2.86 OR 1 2.16 2.86 8.33 3.10 5.47 OR 1 1.32 3.86 1.42	(0.44; 2 (0.44; 4 (0.66; 32 (0.03; 86 (1.19; 7. 95% (0.85; 5 (0.79; 10 (1.20; 69) (0.06; 181 (2.03; 17. 95% (0.31; 5 (0.50; 34 (0.02; 84
ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS Medium+LABA ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS High+LABA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA		1.13 1.49 4.35 1.60 2.86 OR 1 2.16 2.86 8.33 3.10 5.47 OR 1 1.32 3.86 1.42 2.53	(0.44; 4 (0.46; 32 (0.03; 86 (1.19; 7. 95% (0.85; 5 (0.79; 10 (1.20; 69) (0.06; 181 (2.03; 17. 95% (0.31; 5 (0.50; 34 (0.02; 84 (0.79; 8
ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS Medium+LABA ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS High+LABA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA ICS+Theophylline Placebo		1.13 1.49 4.35 1.60 2.86 OR 1 2.16 2.86 8.33 3.10 5.47 OR 1 1.32 3.86 1.42 2.53	(0.44; 4 (0.44; 4 (0.66; 32 (0.03; 86 (1.19; 7. 95% (0.85; 5 (0.79; 10 (1.20; 69. (0.06; 181 (2.03; 17. 95% (0.31; 5 (0.50; 34 (0.02; 84 (0.79; 8
ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS Medium+LABA ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS High+LABA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA		1.13 1.49 4.35 1.60 2.86 OR 1 2.16 2.86 8.33 3.10 5.47 OR 1 1.32 3.86 1.42 2.53 OR	(0.44; 4 (0.46; 32 (0.03; 86 (1.19; 7. 95% (0.85; 5 (0.79; 10 (1.20; 69. (0.06; 181 (2.03; 17. 95% (0.31; 5 (0.50; 34 (0.02; 84 (0.79; 8 95%
ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS Medium+LABA ICS High+LABA ICS+LTRA ICS+LTRA ICS+LTRA ICS High+LABA ICS+LTRA ICS High+LABA ICS HIGH ICS HIGH I		1.13 1.49 4.35 1.60 2.86 OR 1 2.16 2.86 8.33 3.10 5.47 OR 1 1.32 3.86 1.42 2.53 OR 1 4 2.53 OR 1 4 2.53 OR 1 4 2.53 OR 1 4 2.53 OR 1 4 2.53 OR 1 4 5 4 7 OR 1 5 4 7 OR 1 5 4 7 OR 1 5 4 7 OR 1 5 4 7 OR 1 5 4 7 OR 1 5 4 7 OR 1 5 4 7 OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR	(0.44; 4 (0.46; 32 (0.03; 86 (1.19; 7. 95% (0.85; 5 (0.79; 10 (1.20; 69. (0.06; 181 (2.03; 17. 95% (0.31; 5 (0.50; 34 (0.02; 84 (0.79; 8) 95%
ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS Medium+LABA ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS High+LABA ICS+LTRA ICS+LTRA ICS+Theophylline Placebo Treatment ICS+TRA ICS+TRA ICS+TRA ICS+LTRA ICS+LTRA		1.13 1.49 4.35 1.60 2.86 0R 1 2.16 2.86 8.33 3.10 5.47 0R 1 1.32 3.86 1.42 2.53 0R 1.42 2.53	(0.44; 4 (0.46; 32 (0.03; 86 (1.19; 7. 95% (0.85; 5 (0.79; 10 (1.20; 69. (0.06; 181 (2.03; 17. 95% (0.31; 5 (0.50; 34 (0.79; 8 95%
ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS Medium+LABA ICS High+LABA ICS High+LABA ICS+Theophylline Placebo Treatment ICS High+LABA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA		1.13 1.49 4.35 1.60 2.86 OR 1 2.16 2.86 8.33 3.10 5.47 OR 1 1.32 3.86 1.42 2.53 OR OR 1 1.22 OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR	(0.44; 4 (0.46; 32 (0.03; 86 (1.19; 7. 95% (0.85; 5 (0.79; 10 (1.20; 69. (0.06; 181 (2.03; 17. 95% (0.31; 5 (0.50; 34 (0.02; 84 (0.79; 8 95% (0.33; 28
ICS High+LABA ICS+LTRA ICS+LTRA ICS+Theophylline Placebo Treatment ICS Medium+LABA ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS High+LABA ICS+LTRA ICS+LTRA ICS+Theophylline Placebo Treatment ICS+LTRA ICS+TRA ICS+TRA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA		1.13 1.49 4.35 1.60 2.86 OR 1 2.16 2.86 8.33 3.10 5.47 OR 1.32 3.86 1.42 2.53 OR 1.42 2.53 OR 1.42 2.53	(0.44; 4 (0.44; 4 (0.66; 32 (0.03; 86 (1.19; 7. 95% (0.85; 5 (0.79; 10 (1.20; 69. (0.06; 181 (2.03; 17. 95% (0.31; 5 (0.50; 34 (0.02; 84 (0.79; 8 95% (0.33; 28 (0.02; 47
ICS High+LABA ICS+LTRA ICS+LTRA ICS+Theophylline Placebo Treatment ICS Medium+LABA ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA		1.13 1.49 4.35 1.60 2.86 OR 1 2.16 2.86 8.33 3.10 5.47 OR 1 1.32 3.86 1.42 2.53 OR 1.42 2.53 OR 1.42 2.53 OR 1.42 2.53	(0.44; 4 (0.46; 32 (0.03; 86 (1.19; 7. 95% (0.85; 5 (0.79; 10 (1.20; 69) (0.06; 181 (2.03; 17. 95% (0.31; 5 (0.50; 34 (0.02; 84 (0.79; 8 95% (0.33; 28 (0.02; 47 (0.47; 8
ICS High+LABA ICS+LTRA ICS+LTRA ICS+Theophylline Placebo Treatment ICS Medium+LABA ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS High+LABA ICS+LTRA ICS+LTRA ICS+Theophylline Placebo Treatment ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA		1.13 1.49 4.35 1.60 2.86 OR 1 2.16 2.86 8.33 3.10 5.47 OR 1 1.32 3.86 1.42 2.53 OR 1 1.42 2.53 OR 1 1.42 2.53 OR 1 1.42 2.53	(0.44; 4 (0.46; 32 (0.03; 86 (1.19; 7. 95% (0.85; 5 (0.79; 10 (1.20; 69) (0.06; 181 (2.03; 17. 95% (0.31; 5 (0.50; 34 (0.02; 84 (0.79; 8) 95% (0.33; 28 (0.02; 47 (0.47; 8)
ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS Medium+LABA ICS High+LABA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA ICS High+LABA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA ICS+LTRA ICS+Theophylline Placebo Treatment		1.13 1.49 4.35 1.60 2.86 OR 1 2.16 2.86 8.33 3.10 5.47 OR 1 1.32 3.86 1.42 2.53 OR 1.42 2.53 OR 1.42 2.53 OR 1.42 2.53 OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR O O O O O O O O	(0.44; 4 (0.46; 32 (0.03; 86 (1.19; 7. 95% (0.85; 5 (0.79; 10 (1.20; 69) (0.06; 181 (2.03; 17. 95% (0.31; 5 (0.50; 34 (0.02; 84 (0.79; 8) 95% (0.33; 28 (0.02; 47 (0.47; 8)
ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS Medium+LABA ICS High+LABA ICS High+LABA ICS+Theophylline Placebo Treatment ICS High+LABA ICS+Theophylline Placebo Treatment ICS+LTRA ICS+Theophylline Placebo Treatment ICS+Theophylline Placebo		1.13 1.49 4.35 1.60 2.86 OR 1 2.16 2.86 8.33 3.10 5.47 OR 1 1.32 3.86 1.42 2.53 OR 1 2.53 OR 1 2.92 1.07 1.90 OR 4	(0.44; 4 (0.46; 32 (0.03; 86 (1.19; 7. 95% (0.85; 5 (0.79; 10 (1.20; 69. (0.06; 181 (2.03; 17. 95% (0.31; 5 (0.50; 34 (0.02; 84 (0.79; 8 95% (0.33; 28 (0.02; 47 (0.47; 8 95%
ICS High+LABA ICS+LTRA ICS+LTRA ICS+Theophylline Placebo Treatment ICS Medium+LABA ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS+LTRA ICS+Theophylline Placebo Treatment ICS+LTRA ICS+Theophylline Placebo Treatment ICS+Theophylline Placebo		1.13 1.49 4.35 1.60 2.86 0 R 1 2.16 2.86 8.33 3.10 5.47 0 R 1 1.32 3.86 1.42 2.53 0 R 1 2.92 1.07 1.90 0 R 1 2.92 1.07 1.90	(0.44; 4 (0.46; 32 (0.03; 86 (1.19; 7. 95% (0.85; 5 (0.79; 10 (1.20; 69. (0.06; 181 (2.03; 17. 95% (0.31; 5 (0.50; 34 (0.02; 84 (0.79; 8 95% (0.33; 28 (0.02; 47 (0.47; 8 95%
ICS High+LABA ICS+LTRA ICS+LTRA ICS+Theophylline Placebo Treatment ICS Medium+LABA ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS+LTRA ICS+Theophylline Placebo Treatment ICS+LTRA ICS+Theophylline Placebo		1.13 1.49 4.35 1.60 2.86 OR 1 2.16 2.86 8.33 3.10 5.47 OR 1 1.32 3.86 1.42 2.53 OR 1 2.92 1.07 1.90 OR 1 0.90 OR 1 2.92 1.07 1.90 OR 1 0.90 OR 1 0.90 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR 1 0 OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR	(0.44, 2 (0.44, 4 (0.66; 32 (0.03; 86 (1.19; 7. 95% (0.85; 5 (0.79; 10 (1.20; 69. (0.06; 181 (2.03; 17. 95% (0.31; 5 (0.50; 34 (0.02; 84 (0.79; 8 95% (0.33; 28 (0.02; 47 (0.47; 8 95% (0.00; 29
ICS High+LABA ICS+LTRA ICS+LTRA ICS+Theophylline Placebo Treatment ICS Medium+LABA ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS High+LABA ICS+LTRA ICS+LTRA ICS+Theophylline Placebo Treatment ICS+LTRA ICS+Theophylline Placebo Treatment ICS+LTRA ICS+Theophylline Placebo		1.13 1.49 4.35 1.60 2.86 OR 1 2.16 2.86 8.33 3.10 5.47 OR 1 1.32 3.86 1.42 2.53 OR 1 1.42 2.53 OR 1 1.32 3.86 1.42 2.53 OR 1 1.32 3.86 1.42 2.53 OR 1 1.32 3.86 1.42 2.53 OR 1 1.32 3.86 1.42 2.53 OR 1 1.32 3.86 1.42 2.53 OR 1 1.32 OR 1 1.32 OR 1 1.32 OR 1 1.32 OR 1 1.32 OR 1 1.32 OR 1 1.32 OR 1 1.32 OR 1 1.32 OR 1 1.32 OR 1 1.32 OR 1 1.32 OR 1 1.32 OR 1 1.42 2.53 OR 1 1.42 2.53 OR 1 2.92 1.07 1.90 OR 1.07 1.90 OR 1.037 OR 1.037 OR 1.037 OR 1.037 OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR O O O O O O O O	(0.44; 4 (0.44; 4 (0.66; 32 (0.03; 86 (1.19; 7. 95% (0.85; 5 (0.79; 10 (1.20; 69. (0.06; 181 (2.03; 17. 95% (0.31; 5 (0.50; 34 (0.02; 84 (0.02; 84 (0.79; 8) 95% (0.33; 28 (0.02; 47 (0.47; 8) 95% (0.00; 29 (0.08; 4
ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS Medium+LABA ICS High+LABA ICS+Igh+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS+LTRA ICS+Theophylline Placebo		1.13 1.49 4.35 1.60 2.86 OR 1 2.16 2.86 8.33 3.10 5.47 OR 1 1.32 3.86 1.42 2.53 OR 1 1.32 3.86 1.42 2.53 OR 1 1.32 3.86 1.42 2.53 OR 1 1.32 3.86 1.42 2.53 OR 1 1.32 3.86 1.42 2.53 OR 1 1.32 3.86 1.42 2.53 OR 1 1.32 3.86 1.42 2.53 OR 1 1.32 3.86 1.42 2.53 OR 1 1.32 3.86 1.42 2.53 OR 1 1.32 OR 1 1.32 OR 1 1.32 OR 1 1.32 OR 1 1.32 OR 1 1.32 OR 1 1.42 2.53 OR 1 2.92 1.07 1.90 OR 1 0.37 0.66	(0.44; 4 (0.66; 32 (0.03; 86 (1.19; 7. 95% (0.85; 5 (0.79; 10 (1.20; 69. (0.06; 181 (2.03; 17. 95% (0.31; 5 (0.50; 34 (0.02; 84 (0.02; 84 (0.02; 84 (0.02; 47 (0.47; 8 95% (0.00; 29 (0.08; 4
ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS Medium+LABA ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS+LTRA ICS+Theophylline Placebo Treatment ICS+LTRA ICS+Theophylline Placebo Treatment ICS+Theophylline Placebo Treatment ICS+Theophylline Placebo		1.13 1.49 4.35 1.60 2.86 0 7 1 2.16 2.86 8.33 3.10 5.47 0 0 0 1 1.32 3.86 1.42 2.53 0 0 0 1 2.92 1.07 1.90 0 0 0 1 0.37 0.37 0 0 0 0 0 0 0 0 0 0 0 0 0	(0.44; 4 (0.46; 32 (0.03; 86 (1.19; 7. 95% (0.85; 5 (0.79; 10 (1.20; 69. (0.06; 181 (2.03; 17. 95% (0.31; 5 (0.50; 34 (0.02; 84 (0.02; 84 (0.79; 8) 95% (0.33; 28 (0.02; 47 (0.47; 8) 95% (0.00; 29 (0.08; 4)
ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS Medium+LABA ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS+LTRA ICS+Theophylline Placebo Treatment ICS+Theophylline Placebo Treatment ICS+Theophylline Placebo Treatment ICS+Theophylline Placebo		1.13 1.49 4.35 1.60 2.86 0R 1 2.16 2.86 8.33 3.10 5.47 0R 1 1.32 3.86 1.42 2.53 0R 1 2.92 1.07 1.90 0R 1 0.37 0.	(0.44; 4 (0.66; 32 (0.03; 86 (1.19; 7 95% (0.85; 5 (0.79; 10 (1.20; 69. (0.06; 181 (2.03; 17. 95% (0.31; 5 (0.50; 34 (0.02; 84 (0.02; 84 (0.02; 47 (0.47; 8 95% (0.08; 4 95%
ICS High+LABA ICS+LTRA ICS+Theophylline Placebo Treatment ICS Medium+LABA ICS High+LABA ICS High+LABA ICS+Theophylline Placebo Treatment ICS High+LABA ICS+Theophylline Placebo Treatment ICS+LTRA ICS+Theophylline Placebo Treatment ICS+Theophylline Placebo Treatment ICS+Theophylline Placebo Treatment ICS+Theophylline Placebo		1.13 1.49 4.35 1.60 2.86 OR 1 2.16 2.86 8.33 3.10 5.47 OR 1 1.32 3.86 1.42 2.53 OR 1 2.92 1.07 1.90 OR 1 2.92 1.07 1.90 OR 1 0.37 0.66 OR 1 0.37 0.66 OR 1 0.37 0.66 OR 1 0.37 0.66 OR 1 0.37 0.66 OR 1 0.37 0.66 OR 1 0.37 0.66 OR 1 0.37 0.66 OR 1 0.37 0.66 OR 1 0.37 0.66 OR 1 0.37 0.66 OR 1 0.37 0.66 OR 1 0.37 0.66 OR 1 0.37 0.66 OR 1 0.37 0.66 OR 1 0.37 0.66 OR 1 0.37 0.66 OR 1 0.37 0.66 OR 1 0.37 0.66 OR 1 0.37 0.66 OR 1 0.37 0.66 OR 1 0.37 0.66 OR 1 0.37 0.66 OR 1 0.37 0.66 OR 1 0.37 0.66 OR 1 0.37 0.66 OR 1 0.37 0.66 OR 1 0.37 0.66 OR 1 0.37 0.66 OR 1 0.37 0.66 OR 1 0.37 0.66 OR 1 0.37 0.66 OR 1 0.37 0.66 OR 1 0 0 OR 1 0 0 OR 1 0 0 OR 1 0 OR 1 0 OR 1 0 OR OR 1 0 OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR OR O O O O O O O O	(0.44; 4 (0.44; 4 (0.66; 32 (0.03; 86 (1.19; 7 95% (0.85; 5 (0.79; 10 (1.20; 69 (0.06; 181 (2.03; 17 95% (0.31; 5 (0.50; 34 (0.02; 84 (0.79; 8 95% (0.33; 28 (0.02; 47 (0.47; 8 95% (0.00; 29 (0.08; 4 95%

		OR	95% Cr
ICS Low		1	
ICS Medium	⊢	1.06	(0.58; 1.99)
ICS High		0.76	(0.41; 1.43)
ICS Low+LABA	⊢ <mark>∎</mark> →	1.16	(0.83; 1.62)
ICS Medium+LABA	⊢	1.12	(0.60; 2.05)
ICS High+LABA	·	1.48	(0.76; 2.94)
ICS+LTRA	· · · · · · · · · · · · · · · · · · ·	1.22	(0.21; 7.61)
LTRA	<t< td=""><td>0.23</td><td>(0.05; 1.11)</td></t<>	0.23	(0.05; 1.11)
Placebo		0.70	(0.39; 1.28)
Treatment		OR	95% Cr
ICS Medium		1	
ICS High	·	0.70	(0.37; 1.36)
ICS Low+LABA	⊨ ⊟ (1.08	(0.59; 1.99)
ICS Medium+LABA	⊢ <mark>_</mark> →	1.04	(0.79; 1.38)
ICS High+LABA	· · · · · · · · · · · · · · · · · · ·	1.39	(0.70; 2.86)
ICS+LTRA	• •	1.15	(0.20; 7.10)
LTRA	۔ ۔ ۔ ۔ ا	0.22	(0.04; 1.15)
Placebo	·	0.66	(0.29; 1.51)
Treatment		OP	95% Cr
		1	5576 01
		1.54	(0 82. 2 86)
		1.04	(0.32, 2.30)
		1.40	(0.77, 2.83)
		1.97	(0.97; 4.01)
		• 1.62	(0.27; 10.59)
LIRA	€	0.31	(0.06; 1.63)
Treatment		OR	95% Cr
Treatment ICS Low+LABA		OR 1	95% Cr
Treatment ICS Low+LABA ICS Medium+LABA		OR 1 0.96	95% Cr (0.52; 1.75)
Treatment ICS Low+LABA ICS Medium+LABA ICS High+LABA		OR 1 0.96 1.28	95% Cr (0.52; 1.75) (0.66; 2.53)
Treatment ICS Low+LABA ICS Medium+LABA ICS High+LABA ICS+LTRA		OR 1 0.96 1.28 1.05	95% Cr (0.52; 1.75) (0.66; 2.53) (0.19; 6.69)
Treatment ICS Low+LABA ICS Medium+LABA ICS High+LABA ICS+LTRA LTRA		OR 1 0.96 1.28 1.05 0.20	95% Cr (0.52; 1.75) (0.66; 2.53) (0.19; 6.69) (0.04; 0.96)*
Treatment ICS Low+LABA ICS Medium+LABA ICS High+LABA ICS+LTRA LTRA Placebo		OR 1 0.96 1.28 1.05 0.20 0.61	95% Cri (0.52; 1.75) (0.66; 2.53) (0.19; 6.69) (0.04; 0.96)" (0.32; 1.16)
Treatment ICS Low+LABA ICS Medium+LABA ICS High+LABA ICS+LTRA LTRA Placebo Treatment		OR 1 0.96 1.28 1.05 0.20 0.61 OR	95% Cr (0.52; 1.75) (0.66; 2.53) (0.19; 6.69) (0.04; 0.96)' (0.32; 1.16) 95% Cr
Treatment ICS Low+LABA ICS Medium+LABA ICS High+LABA ICS+LTRA LTRA Placebo Treatment ICS Medium+LABA		OR 1 0.96 1.28 1.05 0.20 0.61 OR 1	95% Cr (0.52; 1.75) (0.66; 2.53) (0.19; 6.69) (0.04; 0.96)' (0.32; 1.16) 95% Cr
Treatment ICS Low+LABA ICS Medium+LABA ICS High+LABA ICS+LTRA LTRA Placebo Treatment ICS Medium+LABA ICS High+LABA		OR 1 0.96 1.28 1.05 0.20 0.61 OR 1 1.34	95% Cr (0.52; 1.75) (0.66; 2.53) (0.19; 6.69) (0.04; 0.96) (0.32; 1.16) 95% Cr (0.67; 2.75)
Treatment ICS Low+LABA ICS Medium+LABA ICS High+LABA ICS+LTRA LTRA Placebo Treatment ICS Medium+LABA ICS High+LABA ICS+LTRA		OR 1 0.96 1.28 1.05 0.20 0.61 0.61 0 R 1 1.34 1.11	95% Cr (0.52; 1.75) (0.66; 2.53) (0.19; 6.69) (0.04; 0.96) (0.32; 1.16) 95% Cr (0.67; 2.75) (0.19; 6.96)
Treatment ICS Low+LABA ICS Medium+LABA ICS High+LABA ICS+LTRA LTRA Placebo Treatment ICS Medium+LABA ICS High+LABA ICS High+LABA ICS+LTRA		OR 1 0.96 1.28 1.05 0.20 0.61 0.61 0 R 1 1.34 1.34 1.11 0.21	95% Cr (0.52; 1.75) (0.66; 2.53) (0.19; 6.69) (0.32; 1.16) 95% Cr (0.32; 1.16) (0.67; 2.75) (0.19; 6.96) (0.04; 1.09)
Treatment ICS Low+LABA ICS High+LABA ICS High+LABA ICS+LTRA ITRA Placebo Treatment ICS Medium+LABA ICS High+LABA ICS High+LABA ICS+LTRA LTRA Placebo		OR 1 0.96 1.28 1.05 0.20 0.61 0.20 1 1.34 1.11 0.21 0.63	95% Cr (0.52; 1.75) (0.66; 2.53) (0.19; 6.69) (0.04; 0.96) (0.32; 1.16) 95% Cr (0.67; 2.75) (0.19; 6.96) (0.04; 1.09) (0.28; 1.45)
Treatment ICS Low+LABA ICS Medium+LABA ICS High+LABA ICS+LTRA LTRA Placebo Treatment ICS Medium+LABA ICS High+LABA ICS+LTRA LTRA Placebo Treatment		OR 1 0.96 1.28 1.05 0.20 0.61 0.61 1 1.34 1.11 0.21 0.63	95% Cr (0.52; 1.75) (0.66; 2.53) (0.19; 6.69) (0.04; 0.96) (0.32; 1.16) 95% Cr (0.67; 2.75) (0.19; 6.96) (0.04; 1.09) (0.28; 1.45) 95% Cr
Treatment ICS Low+LABA ICS Medium+LABA ICS High+LABA ICS+LTRA ITRA Placebo Treatment ICS Medium+LABA ICS High+LABA ICS+LTRA ITRA Placebo Treatment ICS High+LABA		OR 1 0.96 1.28 1.05 0.20 0.61 0.61 1 1.34 1.11 0.21 0.63 0.63 0 R 0 R	95% Cr (0.52; 1.75) (0.66; 2.53) (0.19; 6.69) (0.04; 0.96) (0.32; 1.16) 95% Cr (0.67; 2.75) (0.19; 6.96) (0.04; 1.09) (0.28; 1.45) 95% Cr
Treatment ICS Low+LABA ICS Medium+LABA ICS High+LABA ICS+LTRA LTRA Placebo Treatment ICS Medium+LABA ICS High+LABA ICS+LTRA LTRA Placebo Treatment ICS High+LABA ICS High+LABA		OR 1 0.96 1.28 1.05 0.20 0.61 0.20 0.61 1 1.34 1.11 0.21 0.63 0 R 1 0.63	95% Cri (0.52; 1.75) (0.66; 2.53) (0.19; 6.69) (0.04; 0.96)' (0.32; 1.16) 95% Cri (0.67; 2.75) (0.19; 6.96) (0.04; 1.09) (0.28; 1.45) 95% Cri (0.13; 5.53)
Treatment ICS Low+LABA ICS Medium+LABA ICS High+LABA ICS+LTRA LTRA Placebo Treatment ICS Medium+LABA ICS High+LABA ICS+LTRA LTRA Placebo Treatment ICS High+LABA ICS High+LABA ICS High+LABA		OR 1 0.96 1.28 1.05 0.20 0.61 0.20 0.61 1 1.34 1.11 0.21 0.63 0.63 0.63 0.63	95% Crl (0.52; 1.75) (0.66; 2.53) (0.19; 6.69) (0.04; 0.96)* (0.32; 1.16) 95% Crl (0.67; 2.75) (0.19; 6.96) (0.04; 1.09) (0.28; 1.45) 95% Crl (0.13; 5.53) (0.03; 0.85)*
Treatment ICS Low+LABA ICS High+LABA ICS High+LABA ICS+LTRA ICS+LTRA Placebo Treatment ICS Medium+LABA ICS High+LABA ICS+LTRA ITRA Placebo Treatment ICS High+LABA ICS+LTRA ITRA Placebo		OR 1 0.96 1.28 1.05 0.20 0.61 0.20 0.61 1 0.21 0.63 0.11 0.83 0.16 0.47	95% Cri (0.52; 1.75) (0.66; 2.53) (0.19; 6.69) (0.04; 0.96)' (0.32; 1.16) 95% Cri (0.67; 2.75) (0.19; 6.96) (0.04; 1.09) (0.28; 1.45) 95% Cri (0.13; 5.53) (0.03; 0.85)' (0.19; 1.15)
Treatment ICS Low+LABA ICS Medium+LABA ICS High+LABA ICS+LTRA ITRA Placebo Treatment ICS Medium+LABA ICS+LTRA ICS+LTRA ICS+LTRA ITRA Placebo Treatment ICS High+LABA ICS+LTRA ICS+LTRA ICS+LTRA ITRA Placebo Treatment ICS High+LABA ICS+LTRA ITRA Placebo		OR 1 0.96 1.28 1.05 0.20 0.61 0.21 0.63 0.21 0.63 0.64 0.63 0.64 0.64 0.64 0.64 0.65 0.20 0.64 0.65 0.20 0.61 0.55 0.20 0.61 0.55 0.20 0.61 0.55 0.20 0.61 0.55 0.20 0.61 0.55 0.20 0.61 0.55 0.20 0.61 0.55 0.20 0.63 0.64 0.63 0.63 0.64 0.63 0.65 0.64 0.63 0.65	95% Cr (0.52; 1.75) (0.66; 2.53) (0.19; 6.69) (0.04; 0.96)' (0.32; 1.16) 95% Cr (0.32; 1.16) (0.32; 1.16) (0.67; 2.75) (0.19; 6.96) (0.04; 1.09) (0.28; 1.45) 95% Cr (0.13; 5.53) (0.03; 0.85)' (0.19; 1.15) 95% Cr
Treatment ICS Low+LABA ICS High+LABA ICS High+LABA ICS+LTRA ITRA Placebo Treatment ICS Medium+LABA ICS+LTRA ICS+LTRA ITRA Placebo Treatment ICS High+LABA ICS+LTRA		OR 1.28 1.05 0.20 0.61 0.21 0.21 0.21 0.21 0.23 0.23 0.20 0.63 0.21 0.21 0.23 0.21 0.23 0.21 0.21 0.23 0.21 0.23 0.21 0.23 0.21 0.23 0.21 0.23 0.21 0.23 0.21 0.23 0.21 0.23 0.21 0.23 0.21 0.23 0.21 0.23 0.21 0.23 0.21 0.23 0.21 0.23 0.21 0.	95% Crl (0.52; 1.75) (0.66; 2.53) (0.19; 6.69) (0.04; 0.96)* (0.32; 1.16) 95% Crl (0.67; 2.75) (0.19; 6.96) (0.04; 1.09) (0.28; 1.45) 95% Crl (0.13; 5.53) (0.03; 0.85)* (0.19; 1.15) 95% Crl
Treatment ICS Low+LABA ICS High+LABA ICS High+LABA ICS+LTRA ICS+LTRA Placebo Treatment ICS Medium+LABA ICS High+LABA ICS+LTRA ITRA Placebo Treatment ICS High+LABA ICS+LTRA ITRA Placebo Treatment ICS High+LABA ICS+LTRA ITRA Placebo		OR 1.28 1.05 0.20 0.61 0.20 0.61 1.34 1.34 1.34 1.11 0.21 0.63 0.16 0.83 0.16 0.47 CR 0.47 0.47 0.47	95% Cri (0.52; 1.75) (0.66; 2.53) (0.19; 6.69) (0.04; 0.96)' (0.32; 1.16) 95% Cri (0.67; 2.75) (0.19; 6.96) (0.04; 1.09) (0.28; 1.45) 95% Cri (0.13; 5.53) (0.03; 0.85)' (0.19; 1.15) 95% Cri
Treatment ICS Low+LABA ICS High+LABA ICS High+LABA ICS+LTRA ITRA Placebo Treatment ICS High+LABA ICS+LTRA		OR 1.28 1.05 0.20 0.61 0.21 0.63 1.11 0.21 0.63 0.16 0.63 0.76 0.70 0.	95% Cri (0.52; 1.75) (0.66; 2.53) (0.19; 6.69) (0.04; 0.96)' (0.32; 1.16) 95% Cri (0.19; 6.96) (0.04; 1.09) (0.28; 1.45) 95% Cri (0.13; 5.53) (0.03; 0.85)' (0.19; 1.15) 95% Cri (0.19; 1.15) 95% Cri
Treatment ICS Low+LABA ICS Medium+LABA ICS High+LABA ICS+LTRA ITRA Placebo Treatment ICS Medium+LABA ICS+LTRA ITRA Placebo Treatment ICS+LTRA ITRA Placebo		OR 1 0.96 1.28 1.05 0.20 0.61 0.21 0.63 0 0 0 0 1 0.63 0 0 0 0 1 0.83 0.16 0.47 0 1 0.83 0.16 0.47 0 0 0 0 0 0 0 0 0 0 0 0 0	95% Cri (0.52; 1.75) (0.66; 2.53) (0.19; 6.69) (0.04; 0.96)* (0.32; 1.16) 95% Cri (0.19; 6.96) (0.04; 1.09) (0.28; 1.45) 95% Cri 0.13; 5.53) (0.03; 0.85)* (0.19; 1.15) 95% Cri 0.02; 1.93) (0.08; 3.53)
Treatment ICS Low+LABA ICS Medium+LABA ICS High+LABA ICS+LTRA LTRA Placebo Treatment ICS Medium+LABA ICS+LTRA ICS+LTRA LTRA Placebo Treatment ICS High+LABA ICS+LTRA LTRA Placebo Treatment ICS+LTRA LTRA Placebo Treatment ICS+LTRA LTRA Placebo Treatment ICS+LTRA LTRA Placebo		OR 1.28 1.05 0.20 0.61 0.21 0.63 0.11 0.21 0.63 0.11 0.83 0.16 0.47 0.83 0.16 0.47 0.83 0.16 0.47 0.83 0.16 0.47 0.83 0.16 0.47 0.83 0.16 0.57 0 0 0 0 0 0 0 0 0 0 0 0 0	95% Crl (0.52; 1.75) (0.66; 2.53) (0.19; 6.69) (0.04; 0.96)* (0.32; 1.16) 95% Crl (0.67; 2.75) (0.19; 6.96) (0.04; 1.09) (0.28; 1.45) 95% Crl (0.13; 5.53) (0.03; 0.85)* (0.19; 1.15) 95% Crl (0.02; 1.93) (0.08; 3.53)

Page 45 of 273

95% Crl

(-0.55; 1.31) (-0.72; 0.90)

(-0.80; 0.19)

(-0.81; 0.92) (-0.15; 1.02) (-0.22; 0.50)

(-1.27; -0.67)* (-1.82; -0.07)* (-1.15; 0.04) (-1.24; -0.49)*

(0.33; 1.04)* (-0.66; 0.03) (-1.06; 0.54) (-0.36; 0.61) (-0.31; -0.04)*

(-0.92; 1.54) (-0.30; 2.27) (-1.28; 1.27) (-0.91; 1.01) (-0.90; 1.75) (-1.11; 1.37)

(-1.72; 0.83) (-0.43; 0.17) (0.24; 0.81)* (-0.64; -0.25)* (-1.25; 0.46) (-0.58; 0.55) (-0.63; 0.01)

(-0.16; 0.45) (-1.53; 0.93) (-0.09; 0.10) (0.33; 1.05)* (-0.66; 0.04) (-1.05; 0.55) (-0.36; 0.63) (-0.33; -0.01)*

 $\begin{array}{c} (-0.09; \ 0.13) \\ (-0.15; \ 0.46) \\ (-1.52; \ 0.95) \\ (-0.05; \ 0.10) \\ (0.35; \ 1.06)^* \\ (-0.64; \ 0.05) \\ (-1.04; \ 0.56) \\ (-0.33; \ 0.63) \\ (-0.27; \ -0.04)^* \end{array}$

	FEV1		
1	Treatment	· · · · · · · · · · · · · · · · · · ·	<u>MD</u>
2	ICS Low		0
2	ICS Medium		0.02
3	ICS High		0.16
4	ICS unknown dose		-0.27
5	ICS LOW+LABA	• ••• •	0.02
6	ICS Medium+LABA		0.71
7	ICS High+LABA		-0.29
8	ICS+LIRA	* * * * * * * * * * * * * * * * * * *	-0.23
0	LIRA		0.15
10	Placebo		-0.15
10	To a function of		MD
11	Ireatment		ND
12	ICS Medium		0
13	ICS High		0.14
14	ICS unknown dose		-0.29
15	ICS Low+LABA	H <mark>a</mark> t	0.01
16	ICS Medium+LABA		0.69
10	ICS High+LABA		-0.30
17	ICS+LIRA	e	-0.25
18	LIRA		0.13
19	Placebo		-0.17
20	— , ,		
21	Ireatment		<u></u>
22	ICS High		0
22	ICS unknown dose		-0.44
23	ICS LOW+LABA		-0.14
24	ICS Medium+LABA		0.54
25			-0.45
26			-0.39
27	LIKA		-0.02
28	Placebo		-0.32
20	Trootmont		MD
29			
30			0.30
31			0.98
32			-0.01
33		· · · · · · · · · · · · · · · · · · ·	0.05
34			0.42
35	Placebo		0.12
36	1 Ideebo		0.12
20	Treatment		MD
37	ICS I ow+I ABA		0
38	ICS Medium+LABA	·	0.68
39	ICS High+LABA	·	-0.31
40	ICS+LTRA	·	-0.25
41	LTRA	·	0.12
42	Placebo	-	-0.18
12			
43	Treatment		MD
44	ICS Medium+LABA		0
45	ICS High+LABA	← ∎	-0.99
46	ICS+LTRA	← →	-0.94
47	LTRA	، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، 	-0.56
48	Placebo	← 	-0.86
49			
4) 50	Treatment		MD
50	ICS High+LABA		0
51	ICS+LTRA	·	0.06
52	LTRA	F	0.43
53	Placebo		0.13
54			
55	Treatment		MD
55	ICS+LTRA		0
50	LTRA	بــــــــــــــــــــــــــــــــــــ	0.38
5/	Placebo	÷ 4	0.07
58			
59	Treatment		MD
60	LTRA		0
	Placebo		-0.30
		-1 0 1	

Favour comparator

Favour treatment

Supplement 1

Best step-up treatments for children with uncontrolled asthma: A systematic review and network meta-analysis of individual participant data

Sofia Cividini, MSc; Ian Sinha, PhD; Sarah Donegan, PhD; Michelle Maden, PhD; Katie Rose, MBChB; Olivia Fulton; Giovanna Culeddu, MSc; Dyfrig A. Hughes, PhD; Stephen Turner, MD; Catrin Tudur Smith, PhD on behalf of the EINSTEIN collaborative group

Methods S1. Search strategy; for example, MEDLINE (OVID) search Methods S2. Modifiers searches 1 - Database: Ovid MEDLINE(R) ALL <1946 to July 02, 2019> Methods S3. Modifiers searches 2 – Database: Ovid MEDLINE(R) ALL <1946 to July 02, 2019> Methods S4. Eligibility criteria **Methods S5. Outcomes** Methods S6. Processing individual participant data and data extraction Methods S7. Data analysis Methods S8. Patient and public involvement Table S1. Estimated clinical comparability daily doses (µg) of Inhaled Corticosteroids Table S2. Prior distributions used in Bayesian NMA and ML-NMR models Table S3. Characteristics of the included studies with individual participant data (parts 1 to 6) Table S4. Characteristics of the included studies with aggregate data (parts 1 to 4) Table S5. Eligible studies without individual participant data or aggregate data (parts 1 to 18) Table S6. Risk of bias for included studies with individual participant data or aggregate data (parts 1 to 5) Table S7. Exacerbation Bayesian random-effects network meta-analysis (ORa, 95% CrI) with IPD and AgD (Analysis A1: 40 trials, 8168 participants, 649 events) Table S8. Bayesian fixed effect network meta-analysis results (IPD And AgD) for exacerbations. ICS grouped with LABA - Analysis B1 Table S9. Sensitivity analysis excluding exacerbation events identified from adverse event data: Bayesian random-effects network meta-analysis results (IPD and AgD) for exacerbations. ICS stratified by dose when combined with LABA - Analysis A1 Table S10. Sensitivity analysis excluding exacerbation events identified from adverse event data: Bayesian fixed effect network meta-analysis results (IPD and AgD) for the exacerbation outcome. ICS grouped when combined with LABA - Analysis B1 Table S11. Sensitivity analysis to explore data availability bias: Bayesian fixed effect network metaanalysis results for exacerbations. ICS stratified by dose when combined with LABA (IPD trials only, i.e., excluding trials with AgD only) - Analysis A1 Table S12. Sensitivity analysis to explore data availability bias: Bayesian fixed effect network metaanalysis results for the exacerbation outcome (including ICS grouped when combined with LABA). IPD trials only (i.e., excluding trials with AgD only) - Analysis B1 Table S13. Asthma Control Bayesian fixed effect network meta-analysis (ORa, 95% CrI) with IPD (Analysis A2: 16 trials, 3027 participants, 2453 events) Table S14. Bayesian fixed effect network meta-analysis (IPD only) for asthma control. ICS grouped when combined with LABA – Analysis B2 Table S15. Bayesian random-effects network meta-analysis (IPD only) for asthma control (individual compounds) - Analysis C2 Table S16. FEV1 Bayesian fixed effect network meta-analysis (MDa, 95% CrI) with IPD and AgD (Analysis A3: 23 trials, 2518 participants) 51 Table S17. Bayesian random-effects network meta-analysis (IPD and AgD) for FEV1. ICS grouped when 52 combined with LABA - Analysis B3 53 Table S18. Bayesian fixed effect network meta-analysis (IPD only) for FEV1 (individual compounds) – 54 Analysis C3 55 Table S19. Direct pairwise comparisons of treatment classes (IPD and AgD) for quality of life outcome 56 Table S20. Hospital admissions 57 Table S21. Model comparison assessments from network meta-analysis models including interactions for 58 the outcome exacerbation 59 Table S22. Parameter estimates (Posterior mean [95% CrI]) from NMR models including interactions for 60 the outcome exacerbation

Page 47 of 273

1	
2	
3	Table \$23, Odds ratios (95% CrI) from fixed effect NMR with "treatment by ethnicity" interactions for
4	the outcome exacerbation
5	Table S24. Odds ratios (95% CrI) from fixed effect NMR with "treatment by baseline severity"
6	interactions for the outcome exacerbation
7	Table S25. Model comparison assessments from network meta-analysis models including interactions for
8	the outcome asthma control
9	Table S26. Parameter estimates (Posterior mean [95% CrII) from NMR models including interactions for
10	the outcome asthma control
10	Table S27. Model comparison assessments from network meta-analysis models including interactions for
12	the outcome FEV ₁
12	Table S28. Parameter estimates (Posterior mean [95% CrI]) from NMR models including interactions for
14	the outcome FEV ₁
14	Table S29. Mean difference (95% CrI) from random- effects NMR with "treatment by sex" interactions
15	for the outcome FEV ₁
10	Table S30. Mean difference (95% CrI) from fixed effect NMR with "treatment by eosinophilia"
17	interactions for the outcome FEV ₁
10	Figure S1 Secondary flowchart
19	Figure S1. Secondary nowchart
20	right S2A. Comparison-aujusteu funner plots (exacer batton frequentist random-effects network meta-
21	allalysis) Eigene S2D. Commonican a directed formed mlote (actions control for executive fined affect metropole moto
22	Figure S2B. Comparison-adjusted funnel plots (astima control frequentist fixed-effect network meta-
23	analysis)
24	Figure S2C. Comparison-adjusted funnel plots (FEV ₁ frequentist fixed-effect network meta-analysis)
25	Figure S3. Rankings for the random-effects network meta-analysis (ICS stratified by dose when
26	combined with LABA) for exacerbations – Analysis A1
2/	Figure S4 (parts 1 to 3). Exacerbation frequentist random-effects network meta-analysis (OR, 95% Cr)
28	with IPD and AgD (Analysis A1: 40 trials, 8168 participants, 649 events)
29	Figure S5. Network plot and rankings for the fixed effect network meta-analysis (ICS grouped when
30	combined with LABA) for exacerbations – Analysis B1
31	Figure S6. Network plot and rankings for the fixed effect network meta-analysis (ICS stratified when
32	combined with LABA) for asthma control – Analysis A2
33	Figure S7 (parts 1 to 3). Asthma Control frequentist fixed effect network meta-analysis (OR, 95% Cr)
34	with IPD (Analysis A2: 16 trials, 3027 participants, 2453 events)
35	Figure S8. Network plot and rankings for the fixed effect network meta-analysis (ICS grouped when
36	combined with LABA) for asthma control – Analysis B2
37	Figure S9. Network plot and rankings for the random-effects network meta-analysis (individual
38	compounds) for asthma control – Analysis C2
39	Figure S10 Notwork plot and rankings for the fixed affect network meta analysis (ICS stratified when
40	applied with LAPA) for EEV. Analysis A2
41	Combined with LADA) for FEV_1 – Analysis A5 Eigune S11 (parts 1 to 2) EEV, frequentist fixed effect network mate analysis (MD, 059/ CI) with IDD
42	Figure S11 (parts 1 to 5). FE v1 frequentist fixed effect network meta-analysis (MD, 95% C1) with FD
43	and AgD (Analysis A3: 25 triais, 2516 participants)
44	Figure S12. Network plot and rankings for the random-effects network-meta-analysis (ICS grouped when
45	combined with LABA) for FEV_1 – Analysis B3
46	Figure S13. Network plot and rankings for the fixed effect network meta-analysis (individual compounds)
47	for FEV ₁ – Analysis C3
48	Figure S14. Oral candidiasis (ICS dose stratified)
49	Figure S15. Oral candidiasis (any ICS dose combined with LABA)
50	Figure S16. Cardiac disorders (ICS dose grouped)
51	Figure S17. Clinically significant electrocardiogram (ECG) favorable changes (ICS dose grouped)
52	Figure S18. Clinically significant electrocardiogram (ECG) unfavorable changes (ICS dose grouped)
53	Figure S19. Heart rate (HR) change (last visit vs baseline) (ICS dose grouped)
54	Figure S20. (part 1). Infections and infestations (ICS dose grouped)
55	Figure S20. (part 2). Infections and infestations (ICS dose grouped)
56	Figure S20. (part 3). Infections and infestations (ICS dose grouped)
57	Figure S21. (part 1). Neurological disorders (ICS dose grouped)
58	Figure S21, (part 2), Neurological disorders (ICS dose grouped)
59	Figure S22. Pneumonia (ICS dose grouped)
60	- Bure Saar I neumoniu (100 uobe Broupeu)

Methods S1. Search strategy; for example, MEDLINE (OVID) search

We searched MEDLINE, the Cochrane Database of Systematic Reviews (CDSR), the Cochrane Central Register of Controlled Trials (CENTRAL), Embase, Web of Science (all databases), National Institute for Health and Care Excellence (NICE) Technology Appraisals, and the National Institute for Health Research (NIHR) Health Technology Assessment (HTA) series using relevant search terms. The reference list of included trials and relevant reviews, along with the reference lists of existing clinical guidelines such as the British Thoracic Society (BTS) Guideline [1, 2] and Global Initiative for Asthma (GINA), [3] were also scanned. Unpublished trials were located by searching across a range of clinical trial registries included within the World Health Organization (WHO) International Clinical Trials Registry Platform search portal (including clinicaltrials.gov and the International Traditional Medicine Clinical Trial Registry) and conference abstracts (e.g., European Respiratory Society; American Thoracic Society). We also searched internal clinical trial registers for pharmaceutical companies that manufacture health technologies of interest (e.g., GSK, AstraZeneca, Novartis, Merck). Selection and screening of studies were carried out using Covidence and Rayyan.

1 exp Asthma/

2 asthma.ti,ab.

3 1 or 2

4 exp Infant/

5 infant*.ti,ab.

6 infancy.ti,ab.

7 newborn*.ti,ab.

8 baby*.ti,ab.

9 babies.ti,ab.

10 neonat*.ti,ab.

11 preterm*.ti,ab.

12 prematur*.ti,ab.

13 postmatur*.ti,ab.

14 exp child/

15 child*.ti,ab.

16 schoolchild*.ti,ab.

17 "school age*".ti,ab.

18 preschool*.ti,ab.

19 kid.ti,ab.

20 kids.ti,ab.

21 toddler*.ti,ab.

22 exp Adolescent/

23 adoles*.ti,ab.

24 teen*.ti,ab.

25 boy*.ti,ab.

2	
3	26 girl*.ti,ab.
4 5	27 exp Minors/
6	28 minor*.ti,ab.
7 8	29 exp Puberty/
9 10	30 pubert*.ti,ab.
11	31 pubescen*.ti,ab.
12 13	32 prepubescen*.ti,ab.
14 15	33 exp Pediatrics/
16	34 paediatric*.ti,ab.
17 18	35 pediatric*.ti,ab.
19	36 exp Schools/
20 21	37 "nursery school*".ti.ab.
22	38 kindergar*.ti.ab.
23 24	39 "primary school*" ti ab
25 26	40 "secondary school*" ti ab
27	41 "elementary school*" ti ab
28 29	42 "high school*" ti ab
30	42 high school,ab.
31 32	43 mgnschool ² .u,au.
33 34	44 01/4-45
35	45 Innaled correcosteroid* .mp.
36 37	46 ICS.mp.
38	4/ exp Beclomethasone/
39 40	48 beclomethasone.mp.
41	49 "beclomethasone dipropionate".mp.
42 43	50 becotide.mp.
44 45	51 clenil.mp.
46	52 ciclesonide.mp.
47 48	53 "clenil modulite".mp.
49	54 exp Fluticasone/
50 51	55 "fluticasone propionate".mp.
52	56 fluticasone.mp.
53 54	57 flixotide.mp.
55 56	58 exp Budesonide/
57	59 budesonide.mp.
58 59	60 Mometasone Furoate/
60	61 mometasone.mp.

2
2
5
4
5
6
7
,
8
9
10
11
10
12
13
14
15
16
10
17
18
19
20
20
21
22
23
24
25
25
26
27
28
20
29
30
31
32
22
21
34
35
36
37
20
38
39
40
41
4 1 4 1
42
43
44
45
16
40
47
48
49
50
50
51
52
53
54
54
55
56
57
58
50
59
60

62 exp Adrenergic beta-Agonists/ 63 "long acting beta-2 agonist*".mp. 64 "long acting beta2 agonist*".mp. 65 LABA.mp. 66 exp Formoterol Fumarate/ 67 formoterol.mp. 68 Oxis.mp. 69 "fluticasone furoate".mp. 70 exp Salmeterol Xinafoate/ 71 salmeterol.mp. 72 serevent.mp. 73 vilanterol.mp. 74 exp Leukotriene Antagonists/ 75 "leukotriene receptor antagonist*".mp. 76 LTRA.mp. 77 zafirlukast.mp. 78 montelukast.mp. 79 exp Theophylline/ 80 theophylline.mp. 81 Tiotropium.mp. 82 spiriva.mp. 83 Symbicort.mp. 84 Seretide.mp. 85 flutiform.mp. 86 relvar.mp. 87 or/45-86 88 Clinical Trial.pt. 89 Randomized Controlled Trial.pt. 90 exp Random Allocation/ 91 exp Single-Blind Method/ 92 exp Double-Blind Method/ 93 exp Cross-Over Studies/ 94 exp Placebos/ 95 RCT.ti,ab. 96 Random*.ti,ab.

97 "Single blind*".ti,ab.

98 "Double blind*".ti,ab.
99 "triple blind*".ti,ab.
100 placebo*.ti,ab.
101 or/88-100
102 3 and 44 and 87 and 101
103 limit 102 to ed=20140701-20190911
104 limit 103 to english language
105 (case reports or editorial or letter).pt.
106 4 not 105

Methods S2. Modifiers searches 1 – Database: Ovid MEDLINE(R) ALL <1946 to July 02, 2019>

To identify potential modifiers for the network meta-regression analysis, a search was first conducted in MEDLINE combining four concepts; asthma terms AND child terms AND ICS terms AND modifier terms.

- 1 exp Asthma/
- 2 asthma.ti,ab.
- 3 1 or 2
- 4 exp Infant/
- 5 infant*.ti,ab.
- 6 infancy.ti,ab.
- 7 newborn*.ti,ab.
- 8 baby*.ti,ab.
- 9 babies.ti,ab.
- 10 neonat*.ti,ab.
- 11 preterm*.ti,ab.
- 12 prematur*.ti,ab.
- 13 postmatur*.ti,ab.
- 14 exp child/
- 15 child*.ti,ab.
- 16 schoolchild*.ti,ab.
- 17 "school age*".ti,ab.
- 18 preschool*.ti,ab.
- 19 kid.ti,ab.
 - 20 kids.ti,ab.

4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23

or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38 or 39 or 40 or 41 or 42

2	
3	
4	
5	
6	
7	
8	
9	
10	
17	
12	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
2/	
28	
29	
30	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
40	
47 70	
40 49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40 41

42

43

44

or 43

45

46

47

48

toddler*.ti,ab.

exp Adolescent/

adolescen*.ti,ab.

teen*.ti,ab.

boy*.ti,ab.

girl*.ti,ab.

exp Minors/

minor*.ti,ab.

exp Puberty/

pubert*.ti,ab.

pubescen*.ti,ab.

exp Pediatrics/

paediatric*.ti,ab.

pediatric*.ti,ab.

kindergar*.ti,ab.

"nursery school*".ti,ab.

"primary school*".ti,ab. "secondary school*".ti,ab.

"elementary school*".ti,ab.

"high school*".ti,ab.

highschool*.ti,ab.

exp Schools/

prepubescen*.ti,ab.

49 ciclesonide.ti,ab,kw.

exp Beclomethasone/

50 exp Fluticasone/

3 and 44

51 "fluticasone propionate".ti,ab,kw.

"inhaled corticosteroid*".ti,ab,kw.

"beclomethasone dipropionate".ti,ab,kw.

- 52 exp Budesonide/
- 53 budesonide.ti,ab,kw.
- 54 Mometasone Furoate/
- 55 mometasone.ti,ab,kw.

- 56 exp Adrenal Cortex Hormones/ or exp Adrenergic beta-Agonists/
- 57 "long acting beta-2 agonist*".ti,ab,kw.
 - 58 "long acting beta2 agonist*".ti,ab,kw.
- 59 exp Formoterol Fumarate/
- 60 formoterol.ti,ab,kw.
- 61 exp Salmeterol Xinafoate/
- 62 salmeterol.ti,ab,kw.
- 63 vilanterol.ti,ab,kw.
- 64 exp Leukotriene Antagonists/
 - 65 "leukotriene receptor antagonist*".ti,ab,kw.
 - 66 zafirlukast.ti,ab,kw.
 - 67 montelukast.ti,ab,kw.
 - 68 exp Theophylline/
 - 69 theophylline.ti,ab,kw.
 - 70 Tiotropium.ti,ab,kw.

71 46 or 47 or 48 or 49 or 50 or 51 or 52 or 53 or 54 or 55 or 56 or 57 or 58 or 59 or 60 or 61 or 62 or 63 or 64 or 65 or 66 or 67 or 68 or 69 or 70

- 72 45 and 71
- 73 modifi*.ti,ab,kw.
- 74 72 and 73

75 ((age or gender or ethnicity or eczema or asthma severity) adj3 (outcome* or effect* or modif* or success* or response or differen*)).mp.

76 72 and 75

77 ((age or gender or ethnic* or racial or eczema or asthma severity) and (effect* or differen* or modif* or success* or response or outcome*)).ti.

- 78 72 and 77
- 79 74 or 76 or 78
- 80 limit 79 to english language

Methods S3. Modifiers searches 2 – Database: Ovid MEDLINE(R) ALL <1946 to July 02, 2019>

As modifier details may not be identified from titles and abstracts, a second MEDLINE search was then conducted on the following concepts; asthma terms AND child terms AND ICS terms AND limit to RCTs. All results from this search were then imported into an Endnote Library and the full text for all RCTs were obtained. A full text search of the PDF files was then undertaken on the following terms; modifier*, modified, differential effect, predictor*, stratified, subgroup analysis.

- 1 exp Asthma/
- 2 asthma.ti,ab.
- 3 1 or 2

- 4 exp Infant/
- 5 infant*.ti,ab.
- 6 infancy.ti,ab.
- 7 newborn*.ti,ab.
- 8 baby*.ti,ab.
- 9 babies.ti,ab.
- 10 neonat*.ti,ab.
- 11 preterm*.ti,ab.
- 12 prematur*.ti,ab.
- 13 postmatur*.ti,ab.
- 14 exp child/
- 15 child*.ti,ab.
- 16 schoolchild*.ti,ab.
- 17 "school age*".ti,ab.
- 18 preschool*.ti,ab.
- 19 kid.ti,ab.
- 20 kids.ti,ab.
- 21 toddler*.ti,ab.
- 22 exp Adolescent/
- 23 adolescen*.ti,ab.
- 24 teen*.ti,ab.
- 25 boy*.ti,ab.
- 26 girl*.ti,ab.
- 27 exp Minors/
- 28 minor*.ti,ab.

1 2		
3	29	exp Puberty/
4 5	30	pubert*.ti,ab.
6 7	31	pubescen*.ti,ab.
8	32	prepubescen*.ti,ab.
9 10	33	exp Pediatrics/
11 12	34	paediatric*.ti,ab.
13 14	35	pediatric*.ti,ab.
15	36	exp Schools/
16 17	37	"nursery school*".ti,ab.
18 19	38	kindergar*.ti,ab.
20	39	"primary school*".ti,ab.
21 22	40	"secondary school*".ti,ab.
23 24	41	"elementary school*".ti,ab.
25	42	"high school*".ti,ab.
26 27	43	highschool*.ti,ab.
28 29	44	4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23
30	or 2 or 4	4 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38 or 39 or 40 or 41 or 42
32	45	3 and 44
33 34	46	"inhaled corticosteroid*" ti ah kw
35 36	47	exp Beclomethasone/
37	48	"beclomethasone dipropionate" ti ab kw
38 39	49	ciclesonide ti ah kw
40 41	50	exp Eluticasone/
42	51	"fluticasone propionate" ti ah kw
43 44	52	evn Budesonide/
45 46	53	budesonide ti ah kw
47	53	Mometasone Euroste/
48 49	55	mometasone ti ah kw
50 51	56	evn Adrenal Cortex Hormones/ or evn Adrenergic beta-Agonists/
52	57	"long acting beta 2 agonist*" ti ab kw
53 54	58	"long acting beta? agonist*" ti ah kw
55 56	50	
	50	exp Formoterol Fumarate/
57 58	59 60	exp Formoterol Fumarate/
57 58 59	59 60	exp Formoterol Fumarate/ formoterol.ti,ab,kw.

62 sa	almeterol.ti,ab,kw.
-------	---------------------

- 63 vilanterol.ti,ab,kw.
- 64 exp Leukotriene Antagonists/
- 65 "leukotriene receptor antagonist*".ti,ab,kw.
- 66 zafirlukast.ti,ab,kw.
- 67 montelukast.ti,ab,kw.
- 68 exp Theophylline/
- 69 theophylline.ti,ab,kw.
- 70 Tiotropium.ti,ab,kw.

71 46 or 47 or 48 or 49 or 50 or 51 or 52 or 53 or 54 or 55 or 56 or 57 or 58 or 59 or 60 or 61 or 62 or 63 or 64 or 65 or 66 or 67 or 68 or 69 or 70

72 45 and 71

73 limit 72 to english language and randomized controlled trials.pt

Methods S4. Eligibility criteria

Trial design

We included parallel and crossover RCTs of any duration and with any level of blinding, which compared at least one of the health technologies of interest. All trials meeting our inclusion criteria were included irrespective of the outcomes reported in the publications to reduce the potential for outcome reporting bias.

Participants

We aimed to include children/adolescents (<18 years) with poor asthma control of any ethnicity and on any dose of ICS alone at the screening visit as defined by the trial protocol.

Interventions and comparators

Trials had to include a direct head-to-head comparison of at least two of the following interventions, alone or in combination with each other (where applicable), compared against each other or against a placebo:

• Inhaled Corticosteroids (ICSs) – beclomethasone dipropionate (BDP); ciclesonide (CIC); fluticasone propionate (FP); fluticasone furoate (FF); budesonide (BUD); mometasone furoate (MF).

- Long-acting β_2 -agonists (LABAs) formoterol (FORM); salmeterol (SAL); vilanterol (VI).
- Leukotriene receptor antagonists (LTRAs) zafirlukast; montelukast.
- Theophylline.

We considered any dose of preventer treatment – inhaled or oral – and any inhaler devices used for administration. We compared patient outcomes at the level of the following treatment classes: a) ICS, b) LABA (combined with ICS), c) LTRA (as monotherapy or with ICS), d) theophylline, and e) placebo. We distinguished among low, medium, and high doses (Table S1) for the ICS class according to the GINA 2019 definitions. [3] We applied the dosage of the age class '6-11 years' for the age class ' \leq 5 years', which was undefined in the GINA guideline. We performed three different levels of analysis by considering (A) ICS stratified as low, medium, and high doses when in combination with LABA, (B) all ICS doses combined, and (C) with different ICS, LABA, and LTRA molecules regardless of doses.

Methods S5. Outcomes

Categorisation of the primary outcome "asthma control".

Test	Total score	Asthma control
ACT 4-11 (years)	score ≤19	0 = poor control
	score = 20-27	1 = good/total control
ACT 12+ (years)	score ≤19	0 = poor control
	score = 20-25	1 = good/total control
ACQ	score >1	0 = poor control
	score ≤1	1 = good/total control
Others	to be evaluated on an individual case by case	0 = poor control
	basis	1= good/total control

Methods S6. Processing individual participant data and data extraction

We approached the sponsor or the corresponding author of each eligible trial via email or a dedicated portal for data sharing (e.g., Clinical Study Data Request - CSDR), requesting anonymized individual participant data, metadata, and relevant documentation. [4] We conducted a range of standard quality and consistency checks of the data, cross-checking the re-analysed IPD against previously published results to highlight inconsistencies or possible errors. We created a new dataset for every included trial using a pre-specified variable dictionary to ensure a standardised approach across all trials. One reviewer (SC) extracted trial-level data, and a second reviewer (CTS) checked for consistency. For eligible trials without IPD, we abstracted suitable aggregate outcome and treatment effect modifier data to allow inclusion in analyses wherever possible. Discrepancies were resolved through a consensus procedure.

Methods S7. Data analysis

A logit link function was used for binary outcomes, and an identity link function for normally distributed continuous outcomes. All network meta-regression models used independent interactions between treatment and covariate, and all NMR models for FEV_1 were adjusted for baseline FEV_1 value (except for "baseline severity") based on the baseline per cent predicted normal FEV_1). Models accounted for correlation between treatment effects from multi-arm trials. The between trial variance was assumed to be constant across all comparisons in the network. The Markov Chain Monte Carlo (MCMC) algorithm with four chains was run for each model until convergence was achieved, and 50% of iterations were discarded during the warmup period. Convergence was assessed using the Gelman-Rubin R hat statistic. We used Normal prior distributions for model parameters (i.e., trial-specific event rate or mean, log odds ratio or mean difference, and regression coefficients for covariate terms), except for the between-trial standard deviation, for which we used a half-Normal prior distribution (Table S2). Divergent transitions were handled by choosing appropriate priors (weakly informative or informative) and/or increasing the target average proposal acceptance probability during Stan's adaptation period. Models were fitted using a tree depth of 15. We used the deviance information criteria (DIC) to compare the model fit and complexity of models (e.g., fixed effect and random-effects models; or models with and without interaction terms). If the difference in DIC was greater than five, we focussed interpretation on the model with the lowest DIC; otherwise, we focussed on the simplest model. We also ran models of inconsistency based on unrelated mean effects (UMEs) [5] to assess the consistency assumption based on the agreement of direct and indirect evidence. We evaluated the plausibility of the underlying transitivity assumption by examining covariate distributions across comparisons from an evaluation of treatment-covariate interactions. Treatment rankings were calculated for every outcome. For every outcome variable and fitted model of network meta-analysis or network meta-regression, we assessed the geometry of the treatment network.

Methods S8. Patient and public involvement

We developed the EINSTEIN protocol in consultation with children with asthma and their parents and with National Health Service (NHS) clinicians routinely caring for children with uncontrolled asthma in NHS

settings. We also included a patient with lived experience (OF) as part of the research team. We sought advice on our proposal and the lay summary from five families, including two children, who attended our asthma clinic at Alder Hey. We selected the outcomes in our review from the core outcomes set that clinicians and patients agreed were crucial. [6] Finally, we consulted an Alder Hey patient advisory group comprising children with asthma and their parents.

References

1. British Thoracic Society SIGN. British guideline on the management of asthma. https://www.brit-thoracic.org.uk/quality-improvement/guidelines/asthma/

2. Asthma: diagnosis, monitoring and chronic asthma management. https://www.nice.org.uk/guidance/ng80

3. Reddel HK, Bacharier LB, Bateman ED, et al. Global Initiative for Asthma Strategy 2021: executive summary and rationale for key changes. Eur Respir J. 2021;59(1):2102730. Published 2021 Dec 31. doi:10.1183/13993003.02730-2021

4. Tudur Smith C, Hopkins C, Sydes MR, et al. How should individual participant data (IPD) from publicly funded clinical trials be shared? BMC Med. 2015;13:298. Published 2015 Dec 17. doi:10.1186/s12916-015-0532-z

5. Dias S, Welton NJ, Sutton AJ, et al. NICE DSU Technical Support Document 4: Inconsistency in Networks of Evidence Based on Randomised Controlled Trials. London: National Institute for Health and Care Excellence (NICE); April 2014

6. Sinha IP, Gallagher R, Williamson PR, et al. Development of a core outcome set for clinical trials in childhood asthma: a survey of clinicians, parents, and young people. Trials. 2012;13:103. Published 2012 Jul 2. doi:10.1186/1745-6215-13-103

ACQ

1

Asthma Control Questionnaire

2	
3	
1	
4	
5	
6	
7	
Q	
0	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
21	
22	
23	
24	
25	
20	
20	
27	
28	
29	
30	
20	
31	
32	
33	
3/	
25	
35	
36	
37	
38	
20	
39	
40	
41	
42	
<u>⊿</u> २	
44	
45	
46	
47	
10	
40	
49	
50	
51	
57	
52	
53	
54	
55	
56	
50	
57	
58	
59	

60

LIST OF ABBREVIATIONS

ACT	Asthma Control Test
AEs	Adverse Events
AgD	Aggregate Data
AQLQ	Asthma Quality of Life Questionnaire
BDP	Beclomethasone dipropionate
BUD	Budesonide
CIC	Ciclesonide
CI	Confidence Interval
CrI	Credibility Interval
DIC	Deviance Information Criterion
ECG	Electrocardiogram
ED	Emergency Department
FE	Fixed Effect
FEV_1	Forced Expiratory Volume in one second
FF	Fluticasone furoate
FP	Fluticasone propionate
GP	General Practitioner
ICS	Inhaled Corticosteroid
IPD	Individual Participant Data
IQR	Interquartile Range
LABA	Long-Acting β_2 -Agonist
LTRA	Leukotriene Receptor Antagonist
MA	Meta-Analysis
MCMC	Markov Chain Monte Carlo
MD	Mean difference
MF	Mometasone furoate
NMA	Network Meta-analysis
NMR	Network Meta-regression
OCS	Oral Corticosteroids
OR	Odds Ratio
PAQLQ	Paediatric Asthma Quality of Life Questionnaire
QoL	Quality of Life
RCT	Randomised Controlled Trial
RE	Random Effects
RR	Relative Risk
SAL	Salmeterol
UME	Unrelated Mean Effects
VI	Vilanterol

3
4
5
6
7
/
8
9
10
11
12
13
17
14
15
16
17
18
19
20
20
∠ I 22
22
23
24
25
26
27
27
20
29
30
31
32
33
34
25
22
30
37
38
39
40
41
12
⊥ב ⊿ר
43
44
45
46
47
48
40
50
50
51
52
53
54
55
56
57
5/
58

≤5-year-old (Children)			
Drug	Low Dose	Medium Dose	High Dose
Beclomethasone dipropionate (HFA)	100 (≥5 years)	N.A.	N.A.
Budesonide nebulised	500 (≥1 year)	N.A.	N.A.
Budesonide pMDI + spacer	N.A.	N.A.	N.A.
Fluticasone propionate (HFA)	50 (≥4 years)	N.A.	N.A.
Mometasone furoate	110 (≥4 years)	N.A.	N.A.
Ciclesonide	N.A.	N.A.	N.A.
6-11-year-old (Children)			
Drug	Low Dose	Medium Dose	High Dose
Beclomethasone dipropionate (CFC)	100-200	>200-400	>400
Beclomethasone dipropionate (HFA)	50-100	>100-200	>200
Budesonide (DPI)	100-200	>200-400	>400
Budesonide (nebules)	250-500	>500-1000	>1000
Ciclesonide	80	>80-160	>160
Fluticasone furoate (DPI)	N.A.	N.A.	N.A.
Fluticasone propionate (DPI)	100-200	>200-400	>400
Fluticasone propionate (HFA)	100-200	>200-500	>500
Mometasone furoate	110	≥220-<440	≥440
≥ 12-year-old (Adults and adolescents))		
Drug	Low Dose	Medium Dose	High Dose
Beclomethasone dipropionate (CFC)	200-500	>500-1000	>1000
Beclomethasone dipropionate (HFA)	100-200	>200-400	>400
Budesonide (DPI)	200-400	>400-800	>800
Ciclesonide (HFA)	80-160	>160-320	>320
Fluticasone furoate (DPI)	100	N.A.	200
Fluticasone propionate (DPI)	100-250	>250-500	>500
Fluticasone propionate (HFA)	100-250	>250-500	>500
Mometasone furoate	110-220	>220-440	>440

CFC = chlorofluorocarbon propellant (no longer used; included for comparison with older literature); DPI = dry powder inhaler; HFA = hydrofluoroalkane propellant; N.A. = not applicable; pMDI = pressurized metered dose inhaler

Table S2. Prior	distributions	used in	Bayesian	NMA	and ML	-NMR	models
			•				

Outcome	Model	Prior distribution				
		Fixed-effect model	Random-effects model			
EXACERBATION	NMA 1 NMA 2	Intercept, trt ~ Normal(0,100 ²)	Intercept, trt ~ Normal $(0,100^2)$ het ~ half-Normal (2.5^2)			
	ML-NMR All covariates	Intercept, trt, reg ~ Normal $(0, 100^2)$	Intercept, trt, reg ~ Normal $(0,100^2)$ het ~ half-Normal (2.5^2)			
ASTHMA CONTROL	NMA 1 NMA2 NMA 3	Intercept, trt ~ Normal(0,10 ²)	Intercept, trt ~ Normal(0,100 ²) het ~ half-Normal(2.5 ²)			
	ML-NMR: Age Sex Ethnicity Baseline severity	Intercept, trt, reg ~ Normal(0,100 ²)	Intercept, trt, reg ~ Normal(0,100 ²) het ~ half-Normal(2.5 ²)			
	Eczema	Intercept, trt, reg ~ Normal(0,100 ²)	Intercept ~ Normal $(0,5^2)$ trt, reg ~ Normal $(0,3^2)$ het ~ half-Normal (0.5^2)			
	Eosinophilia	Intercept, trt, reg ~ Normal $(0,100^2)$	Intercept, trt, reg ~ Normal $(0,100^2)$ het ~ half-Normal (1.5^2)			
FEV ₁ (L)	NMA 1	intercept ~ Normal(0,10 ²) trt, aux ~ Normal(0, 5 ²)	intercept ~ Normal(scale ~ 100) trt ~ Normal(scale ~ 10) het ~ half-Normal(scale ~ 1.5) aux ~ Normal(scale ~ 10)			
	NMA 2	intercept ~ Normal(0,10 ²) trt, aux ~ normal(0, 5 ²)	intercept ~ Normal(scale ~ 100) trt ~ Normal(scale ~ 10) het ~ half-Normal(scale ~ 1) aux ~ Normal(scale ~ 10)			
	NMA 3	intercept ~ Normal(0,100 ²) trt, aux ~ Normal(0,10 ²)	intercept ~ Normal(scale ~ 100) trt ~ Normal(scale ~ 10) het ~ half-Normal(scale ~ 1.5) aux ~ Normal(scale ~ 10)			
	NMR 1* NMR 2*	Intercept, reg ~ Normal $(0,10^2)$ trt, aux ~ Normal $(0,5^2)$	intercept ~ Normal(scale ~ 10) trt ~ Normal(scale ~ 3) reg ~ Normal(scale ~ 3) het ~ half-Normal(scale ~ 1) aux ~ Normal(scale ~ 3)			
	NMR 3*	Intercept, trt ~ Normal(0, 10 ²) trt, aux ~ Normal(0, 5 ²)	intercept ~ Normal(scale ~ 10) trt ~ Normal(scale ~ 2) reg ~ Normal(scale ~ 2) het ~ half-Normal(scale ~ 1) aux ~ Normal(scale ~ 2)			
	ML-NMR: Age Ethnicity	Intercept, aux ~ Normal(0,10 ²) trt, reg ~ Normal(0,5 ²)	Intercept ~ Normal $(0,100^2)$ trt, reg, aux ~ Normal $(0,3^2)$ het ~ half-Normal (1^2)			
	Sex		Intercept ~ Normal $(0,100^2)$ trt, reg, ~ Normal $(0,5^2)$ aux ~ Normal $(0,10^2)$ het ~ half-Normal (1.5^2)			
	Eczema	intercept ~ Normal(0,100 ²) trt, reg, aux ~ Normal(0,10 ²)	intercept ~ Normal(0,10 ²) trt, reg, aux ~ Normal(0,2 ²) het ~ half-Normal(0.1 ²)			
	Eosinophilia	intercept ~ Normal(0,100 ²) trt, reg, aux ~ Normal(0,5 ²)	intercept ~ Normal(0,5 ²) trt, reg, aux ~ Normal(0,2 ²) het ~ half-Normal(0.5 ²)			

* the same models as NMA but adjusted for FEV₁ at baseline

NMA 1 = analysis with grouped ICS + LABA; NMA 2 = analysis with stratified ICS dose + LABA; NMA 3 = analysis of individual compounds. The 'intercept' represents the log odds of an event in the baseline group, 'trt' represents the treatment effects, 'reg' represents the regression coefficients for the interaction' 'het' represents the between trial standard deviation; 'aux' represents the arm-level standard deviations.

Table S3.	Characteristics	of the include	d studies with	n individual	participant	t data (narts 1	to 6)
Lable 55.	Characteristics	of the metauco	a staates with	i mui i uuai	participan	i uata (partor	UUUJ

Author Year	Countries	Subjects included*, demographics, and clinical features	Patients' characteristics	Protocol inclusion criteria	Study type Blinding	Treatment arms	Follow-up (weeks)
Bateman 2014	USA, Argentina, Australia, Germany, Japan, Mexico, Philippines, Poland, Romania, Russian Federation, Ukraine	N = 213 mean age (SD) = 14.1 (1.7) Females – N (%) = 82 (38) Not Hispanic or Latino - N (%) = 141 (66) Eczema – N (%) = NA Eosinophilia – N (%) = 75 (38) BL-severity (mild) – N (%) = 104 (49)	Patients ≥12 years of age with persistent asthma using ICS alone (the doses in Table 1 look low, medium, and high) or ICS+LABA.	Subjects must be using an approved dose of an ICS (as per specific prescribing information) for at least 12 weeks preceding Visit 1 and at a stable dose for at least 4 weeks preceding Visit 1. In addition, subjects may be using a combination product with an ICS (as per specific prescribing information) or an ICS plus a LABA for at least 12 weeks preceding Visit 1 and at a stable dose for at least 4 weeks preceding Visit 1.	parallel groups double-blind	fluticasone furoate/vilanterol 100/25 mcg OD (DPI) fluticasone furoate 100 mcg OD (DPI)	≥24–78 mean days (SD) ³ : 378.7 (43.1)
Bernstein 2015	USA, Russia, Argentina, Ukraine, Romania, Chile, Germany, Poland, Mexico, Netherlands, Sweden	$\begin{split} N &= 42 \\ mean age (SD) &= 14.6 (1.8) \\ Females &= N (\%) &= 15 (36) \\ Not Hispanic or Latino - N (\%) &= 23 (55) \\ Eczema &= N (\%) &= NA \\ Eosinophilia &= N (\%) &= 18 (44) \\ BL-severity (mild) &= N (\%) &= 0 (0) \end{split}$	Patients ≥12 years of age with moderate to severe, persistent asthma using ICS or ICS/LABA.	Subjects are eligible if they have received ICS for at least 12 weeks prior to Visit 1 and their treatment during the 4 weeks immediately prior to Visit 1.	parallel groups double-blind	fluticasone furoate/vilanterol 200/25 mcg OD (DPI) fluticasone furoate/vilanterol 100/25 mcg OD (DPI) fluticasone furoate 100 mcg OD (DPI)	12 mean days (SD) ³ : 87.2 (13.8)
Bleecker 2012	USA, Canada, Estonia, Germany, Greece, Korea, Mexico, Philippines, Poland, Romania, Russian Federation, Slovakia, South Africa	$ N = 69 \\ mean age (5D) = 14.1 (1.6) \\ Females - N (%) = 28 (41) \\ Not Hispanic or Latino - N (%) = 60 (87) \\ Eczema - N (%) = 42 (61) \\ Eosinophilia - N (%) = 35 (52) \\ BL-severity (mild) - N (%) = 29 (42) $	Patients ≥12 years of age with persistent asthma and symptomatic on ICS.	Subjects must have been using an ICS for at least 8 weeks prior to visit 1 and maintained on a stable dose of inhaled corticosteroids for four weeks prior to visit 1	parallel groups double-blind	fluticasone propionate 250 mcg BID (Diskus/Accuhaler) fluticasone furoate 100 mcg OD (DPI) fluticasone furoate 200 mcg OD (DPI) fluticasone furoate 300 mcg OD (DPI) fluticasone furoate 400 mcg OD (DPI) placebo	8 mean days (SD) ³ : 52.2 (20.2)
Bleecker 2014	USA, Germany, Japan, Poland, Romania, Ukraine	N = 61 mean age (SD) = 14.4 (1.6) Females – N (%) = 24 (39) Not Hispanic or Latino - N (%) = 44 (72) Eczema – N (%) = NA Eosinophilia – N (%) = 14 (23) BL-severity (mild) – N (%) = 17 (28)	Patients with persistent asthma aged 12 years and older (Child, Adult, Older Adult).	All patients must be using an ICS with or without LABA for at least 12 weeks before visit 1.	parallel groups double-blind	fluticasone furoate/vilanterol 100/25 OD (DPI) fluticasone furoate 100 OD (DPI) placebo	12 mean days (SD) ³ : 86.6 (25.3)
Carroll 2010	υκ	N = 39 mean age (SD) = 10.6 (2.8) Females – N (%) = 15 (38) Not Hispanic or Latino - N (%) = 39 (100) Eczema – N (%) = NA Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = 30 (81)	Age 7-18 years (effective range: 7- 15). Asthmatic children on 400 mcg/day BDP equivalent.	This study contains 37 participants under 18, although the inclusion criteria allowed the inclusion until 18. All participants were using ICS alone at entry. We included all participants from the dataset provided (39 subjects of whom two withdrew at week four). One of these was withdrawn because of an asthma exacerbation considered as an AE, and the other patient does not have contributing data.	Parallel groups double-blind	fluticasone 100 mcg BD salmeterol/fluticasone 50/100 mcg BD	8 mean days (SD) ³ : 56.0 (0.0)
de Blic 2009	Belgium, Denmark, France, Italy, Latvia, Lithuania, Netherlands, Norway, Poland, Russian Federation, Spain, Sweden	N = 303 mean age (SD) = 8.0 (2.0) Females – N (%) = 108 (36) Not Hispanic or Latino - N (%) = 292 (96) Eczema – N (%) = 265 (88) Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = 243 (80)	Patients are asthmatic children aged 4 to 11 years not controlled by ICS alone at medium dose.	Patients were receiving beclomethasone HFA or budesonide or fluticasone at least three months prior to visit 1.	parallel groups double-blind	fluticasone propionate/salmeterol 100/50 mcg BID fluticasone propionate 200 mcg BID	12 mean days (SD) ³ : 85.0 (7.7)

Page	63	of	27	3
------	----	----	----	---

Author Year	Countries	Subjects included*, demographics, and clinical features	Patients' characteristics	Protocol inclusion criteria	Study type Blinding	Treatment arms	Follow-up (weeks)
Fitzpatrick 2016	USA	$\begin{split} N &= 60^1 \\ mean age (SD) &= 3.0 (1.0) \\ Females &= N (\%) &= 23 (38) \\ Not Hispanic or Latino - N (\%) &= 52 (87) \\ Eczema &= N (\%) &= 34 (57) \\ Eosinophilia &= N (\%) &= 14 (27) \\ BL-severity (mild) &= N (\%) &= NA \end{split}$	Preschool children 12-59 months of age who meet criteria for treatment with long-term, Step 2 asthma controller therapy.	 ICS- and LTRA-naïve children treated only with intermittent SABA who require step-up therapy. Children on current step 2 therapy who are treated with daily ICS, daily LTRA, or intermittent ICS or LTRA. Thus, the inclusion criteria for this study differ somewhat according to prior ICS and LTRA exposure. 	Crossover double-blind	fluticasone propionate HFA – 186 mcg/day montelukast – 4 mg as-needed ICS (FP HFA – 88 mcg) + SABA	P1: 16 P2: 16 P3: 16 mean days (SD) ³ : 109.9 (17.3)
Gappa 2009	Germany	N = 262 mean age (SD) = NA Females – N (%) = 81 (31) Not Hispanic or Latino - N (%) = 262 (100) Eczema – N (%) = NA Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = 192 (76)	Patients are children and adolescents 4 to 16 years of age with documented history of persisting seasonal or perennial bronchial asthma.	Patients must have been pretreated with an inhaled corticosteroid at a dosage of 200-400 µg BDP equivalents / day during the last 4 weeks.	Parallel groups double-blind	fluticasone propionate/salmeterol 100/50 mcg BID (Diskus) fluticasone propionate 200 mcg BID (Diskus)	8 mean days (SD) ³ : 56.7 (3.9)
Lemanske 2010	USA	N = 31 mean age (SD) = 10.6 (3.7) Females – N (%) = 8 (26) Not Hispanic or Latino - N (%) = 17 (55) Eczema – N (%) = 7 (23) Eosinophilia – N (%) = 14 (45) BL-severity (mild) – N (%) = 27 (87)	Patients aged 6 to 17 with a lack of acceptable asthma control during run-in period.	Children enrolled into BADGER can be characterized as falling into one of three groups: • Step-neutral – currently receiving an ICS dose = 200 ug/day fluticasone equivalent • Step-up – naïve to controller therapy or receiving an ICS dose < 200 ug/day fluticasone equivalent or non-ICS controller therapy (e.g., montelukast, theophylline or cromolyn), and needing step- up therapy • Step-down – currently receiving controller therapy considered by the NAEPP guidelines to be a step above 1x ICS (e.g. 2x ICS or combination therapy 0 1x ICS + LABA, montelukast, theophylline or cromolyn)	crossover double-blind	2x ICS: DPI 250 mcg fluticasone + DPI 250 mcg fluticasone + placebo 1x ICS + LTRA: DPI 100 mcg fluticasone + DPI 100 mcg fluticasone + montelukast 1x ICS + LABA: DPI 100 mcg fluticasone/50 mcg salmeterol + DPI 100 mcg fluticasone/50 mcg salmeterol + placebo	P1: 16 P2: 16 P3: 16 mean days (SD) ³ : 106.4 (17.4)
Li 2010	USA, Australia, Canada, Chile, Costa Rica, Germany, Latvia, Lithuania, Mexico, Peru, Poland, Russian Federation, Spain	N = 350 mean age (SD) = 7.6 (2.1) Females – N (%) = 137 (39) Not Hispanic or Latino - N (%) = 207 (59) Eczema – N (%) = NA Eosinophilia – N (%) = 191 (56) BL-severity (mild) – N (%) = 195 (71)	Patients are children aged 4 to 11 years with asthma requiring pharmacotherapy for at least two months. Patients were using ICS at a consistent dose (low-medium doses) and SABA.	ICS doses: beclomethasone (CFC): 84-100 to 336-400 beclomethasone (HFA): 84-100 to 160-200 FP (powder): 100 to 200 FP (CFC or HFA): 88-100 to 176-200 BUD (powder): 200 to 400 BUD repulse: 500	parallel groups double-blind	fluticasone propionate/salmeterol 100/50 mcg BID (HFA) fluticasone propionate 100 mcg BID (HFA)	12 mean days (SD) ³ : 80.5 (19.3)
Lötvall 2014a1 §	USA, Germany, Peru, Poland, Ukraine	$ N = 20 \\ mean age (SD) = 14.3 (1.9) \\ Females - N (\%) = 8 (40) \\ Not Hispanic or Latino - N (\%) = 6 (30) \\ Eczema - N (\%) = NA \\ Eosinophilla - N (\%) = NA \\ BL-severity (mild) - N (\%) = 5 (25) \\ $	Patients ≥12 years of age with persistent asthma using a low, medium, or high dose of ICS at visit 1.	All subjects must be using an ICS for at least 12 weeks prior to visit 1. Subjects must be taking a stable dose of ICS (e.g., FP 200- 1000 mcg twice daily or equivalent) for at least 4 weeks prior to visit 1. Subjects will be stratified at randomization according to whether they are on low, medium or high dose ICS at visit 1.	parallel groups double-blind	vilanterol 25mcg OD (DPI) salmeterol 50 mcg BID (DPI) placebo All patients were additionally using their baseline ICS dose.	12 mean days (SD) ³ : 91.0 (18.0)
Lötvall 2014a2 §		N = 26 mean age (SD) = 14.1 (1.6) Females – N (%) = 15 (58) Not Hispanic or Latino - N (%) = 13 (50) Eczema – N (%) = NA Eosinophilia – N (%) = NA					12 mean days (SD) ³ : 95.3 (8.1)

1	
י ר	
2	
3	
4	
5	
6	
0	
7	
8	
9	
10	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
21	
51	
32	
33	
34	
35	
22	
36	
37	
38	
30	
40	
40	
41	
42	
43	
11	
44	
45	
46	

Author Year	Countries	Subjects included*, demographics, and clinical features	Patients' characteristics	Protocol inclusion criteria	Study type Blinding	Treatment arms	Follow-up (weeks)
Lötvall 2014b	USA, Belgium, Germany, Poland, Romania	N = 46 mean age (SD) = 13.9 (1.7) Females – N (%) = 20 (43) Not Hispanic or Latino - N (%) = 44 (96) Eczema – N (%) = NA Eosinophilia – N (%) = 14 (31) BL-severity (mild) – N (%) = 16 (36)	Patients ≥12 years of age with persistent asthma taking a stable dose of ICS.	All subjects must be taking a stable dose of ICS for at least 4 weeks prior to Visit 1.	parallel groups double-blind	fluticasone furoate 100 mcg OD (DPI) fluticasone propionate 250 mcg BID (Diskus/Accuhaler) placebo	24 mean days (SD) 163.4 (31.9)
Martin 2020	USA, Canada	N = 11 mean age (SD) = 13.7 (2.1) Females – N (%) = 4 (36) Not Hispanic or Latino - N (%) = 11 (100) Eczema – N (%) = NA Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = 11 (100)	Patients aged 12 to 50 years taking low or moderate dose ICS for 12 weeks before visit 1.	Patients with intermittent asthma, seasonal asthma, or exercise- induced bronchoconstriction only were NOT eligible.	crossover double-blind	FF/VI 100/25 mcg QD via Ellipta + Placebo BD via Diskus FP 250 mcg BD via Diskus + Placebo QD via Ellipta	P1: 2 washout: 2 P2: 2 mean days (SD) 14.4 (1.0)
Murray 2010	New Zealand, UK	N = 13 mean age (SD) = 7.7 (2.1) Females – N (%) = 9 (69) Not Hispanic or Latino - N (%) = 13 (100) Eczema – N (%) = 13 (100) Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = NA	Patients aged 4 to 11 years with asthma diagnosed by physicians.	Receiving a total daily dose of 200-800mcg/day BDP or equivalent for at least 4 weeks prior to the start of the run-in period, and in physicians' opinion be sufficiently stable to receive FP 200mcg/day during the 2-week run-in period.	parallel groups double-blind	fluticasone propionate 100 mcg bd BID + fluticasone propionate 100 mcg BID (ACTIVE/ACTIVE) fluticasone propionate/salmeterol 100/50 mcg BID + placebo (ACTIVE/PLACEBO)	6 mean days (SD) 42.5 (0.9)
Murray 2011	USA	N = 230 mean age (SD) = 11.5 (3.4) Females – N (%) = 99 (43) Not Hispanic or Latino - N (%) = 202 (88) Eczema – N (%) = NA Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = 157 (68)	Patients are children aged 4 to 17 years with persistent asthma on ICS alone (low-medium doses) and SABA.	Each subject must have been treated for their asthma with one of the following inhaled corticosteroids at the specified daily dosing range for at least 4 weeks prior to Visit 1 and with no other inhaled long acting bronchodilators for at least 2 weeks prior to Screening. Beclomethasone: 84-336 (4-11 y); 168-504 (12-17 y) FP: 88-220 (4-11 y); 88-264 (12-17 y) Budesonide: 200-400 (4-11 y); 200-600 (12-17 y) Not of interest: QVAR, triamcinolone, flunisolide	parallel groups double-blind	fluticasone propionate/salmeterol 100/50 mcg BID (Diskus) fluticasone propionate 100 mcg BID (Diskus)	4 mean days (SD) 28.1 (3.6)
O'Byrne 2014	USA, Germany, Japan, Poland, Romania, Russian Federation	N = 10 mean age (SD) = 15.8 (1.4) Females – N (%) = 2 (20) Not Hispanic or Latino - N (%) = 10 (100) Eczema – N (%) = NA Eosinophilia – N (%) = 2 (22) BL-severity (mild) – N (%) = 1 (10)	Patients ≥12 years of age with persistent asthma using ICS alone (FP 500 mcg twice daily or equivalent) or ICS+LABA.	All patients must be using an ICS with or without LABA for at least 12 weeks before visit 1.	parallel groups double-blind	fluticasone furoate/vilanterol 200/25 mcg OD (DPI) fluticasone furoate 200 mcg OD (DPI) fluticasone propionate 500 mcg BID (Diskus/Accuhaler) placebo	24 mean days (SD) 174.4 (4.8)
Oliver 2016a	USA, Argentina, Chile, Georgia, Germany, Japan, Mexico, Peru, Philippines, Poland, Puerto Rico, Slovakia, South Africa, Ukraine	N = 456 mean age (SD) = 7.9 (1.8) Females – N (%) = 180 (39) Not Hispanic or Latino - N (%) = 129 (28) Eczema – N (%) = NA Eosinophilia – N (%) = 175 (41) BL-severity (mild) – N (%) = 173 (45)	Patients aged 5-11 with a history of symptoms consistent with asthma diagnosis for at least 6 months prior to Visit 1. Asthma on a background of inhaled corticosteroid therapy.	Subjects with persistent uncontrolled asthma must been receiving stable asthma therapy for at least 4 weeks prior to screening: SABA + ICS (total daily dose FP 250 mcg or equivalent).	parallel groups double-blind	placebo OD + FP 100 BID vilanterol 6.25 mcg OD + FP 100 BID vilanterol 12.5 mcg OD + FP 100 BID vilanterol 25 mcg OD + FP 100 BID	5 mean days (SD) 32.8 (7.2)
Oliver 2016b	USA, Bulgaria, Georgia, Germany, Japan, Latvia, Mexico, Peru, Philippines, Poland, Puerto Rico, Russian Federation, South Africa, Sweden, Ukraine	N = 318 mean age (SD) = 8.1 (1.9) Females – N (%) = 119 (37) Not Hispanic or Latino - N (%) = 165 (52) Eczema – N (%) = NA Eosinophilia – N (%) = 96 (34) BL-severity (mild) – N (%) = 150 (47)	Patients aged 5-11 with a history of symptoms consistent with asthma diagnosis for at least 6 months prior to Visit 1.	Subjects with persistent uncontrolled asthma must been receiving stable asthma therapy for at least 4 weeks prior to screening: SABA alone, SABA+leukotriene, or SABA+ low-dose ICS.	parallel groups double-blind	placebo FP 100 mcg Diskus FF 25 mcg NDPI FF 50 mcg NDPI FF 100 mcg NDPI	13 mean days (SD) 75.4 (27.3)

Author Year	Countries	Subjects included*, demographics, and clinical features	Patients' characteristics	Protocol inclusion criteria	Study type Blinding	Treatment arms	Follow-up (weeks)
Pearlman 2009	USA	N = 248 mean age (SD) = 11.1 (3.4) Females – N (%) = 99 (40) Not Hispanic or Latino - N (%) = 228 (92) Eczema – N (%) = NA Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = 167 (67)	Patients are children aged 4 to 17 years with persistent asthma using ICS (low-medium doses) and SABA.	Each subject must have been treated for their asthma with inhaled corticosteroids at the specified daily dosing range for at least 4 weeks prior to Visit 1 and with no other inhaled long acting bronchodilators for at least 2 weeks prior to Screening. Beclomethasone: 84-336 (4-11 y); 168-504 (12-17 y) FP: 88-220 (4-11 y); 88-264 (12-17 y) Budesonide: 200-400 (4-11 y); 200-600 (12-17 y) Not of interest: QVAR, triamcinolone, flunisolide	parallel groups double-blind	fluticasone propionate/salmeterol 100/50 mcg BID (Diskus) fluticasone propionate 100 mcg BID (Diskus)	4 mean days (SD) ³ : 27.9 (4.3)
Scott 2005 [¢]	USA, Canada	N = 199 mean age (SD) = 8.0 (2.2) Females – N (%) = 73 (37) Not Hispanic or Latino - N (%) = 181 (91) Eczema – N (%) = NA Eosinophilia – N (%) = 99 (51) BL-severity (mild) – N (%) = 70 (43)	Patients are children aged 4 to 11 years with asthma requiring maintenance treatment (ICS or medication other than ICS or SABA alone).	Concurrent anti-asthma therapy. GROUP 1 > Inhaled corticosteroids: subjects must have been using inhaled corticosteroids for at least 3 months prior to Visit 1; and at least one month before Visit 1, must have been on a consistent daily dose of one of the reported table (doses are low-medium). GROUP 2 > Maintenance asthma medication other than inhaled corticosteroids: subjects are eligible if treated with a maintenance asthma medication other than inhaled corticosteroid (e.g., salmeterol, cromolyn or nedocromil, or montelukast) on a regular basis for at least 4 weeks prior to visit 1 OR Short acting beta2 agonists: subjects are eligible if treated with SABA alone for relief of respiratory for at least 4 weeks prior to visit 1 and should not have received an inhaled corticosteroid or maintenance asthma medication other than inhaled corticosteroids for at least 4 weeks prior to visit 1.	parallel groups double-blind	fluticasone propionate/salmeterol 100/50 mcg BID (Diskus) fluticasone propionate 100 mcg BID (Diskus)	12 mean days (SD) ³ : 79.0 (17.7)
Sorkness 2007	USA	N = 49 mean age (SD) = 9.3 (2.2) Females – N (%) = 15 (31) Not Hispanic or Latino - N (%) = 36 (73) Eczema – N (%) = 30 (61) Eosinophilia – N (%) = 29 (63) BL-severity (mild) – N (%) = 42 (86)	Children ages 6-14 years with mild- moderate persistent asthma defined by symptom criteria and positive methacholine challenge.	Only the naïve group could not use ICS at entry.	parallel groups double-blind	fluticasone propionate (100 mcg BID - Diskus) fluticasone/salmeterol (100 mcg/50 mcg qd - Diskus) + salmeterol (50 mcg qd - Diskus) montelukast (5 mg qd)	48 mean days (SD) ³ : 331.6 (32.2)
Stempel 2016a	USA, Argentina, Australia, Austria, Belgium, Bulgaria, Canada, Chile, Colombia, Croatia, Czechia, Germany, Hungary, Italy, Korea, Latvia, Lithuania, Malavsia, Mexico, Peru	N = 1631 mean age (SD) = 7.4 (2.2) Females – N (%) = 647 (40) Not Hispanic or Latino - N (%) = 1164 (71) Eczema – N (%) = 334 (20) Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = NA	Patients are children aged 4 to 11 years with persistent asthma.	The allowed pre-treatment consisted of ICS alone (different doses) or ICS with other medicines (LABA, LTRA, theophylline) or SABA, LABA, LTRA, theophylline alone.	parallel groups double-blind	fluticasone propionate - salmeterol combination 100/50 fluticasone propionate - salmeterol combination 250/50 fluticasone propionate 100 fluticasone propionate 250	26 mean days (SD) ³ : 168.1 (45.8)
	Philippines, Poland, Romania, Russian Federation, Serbia, Slovakia, South Africa, Spain, Taiwan, Thailand, Ukraine, UK						

Author Year	Countries	Subjects included*, demographics, and clinical features	Patients' characteristics	Protocol inclusion criteria	Study type Blinding	Treatment arms	Follow (weeks
Stempel 2016b	USA, Argentina, Australia, Austria, Belgium, Bulgaria, Canada, Chile, Colombia, Croatia, Czechia, Denmark, Germany, Hungary, Indonesia, Italy, Korea, Latvia, Lithuania, Malaysia, Mesico, Peru, Philippines, Poland, Romania, Russian Federation, Serbia, Slovakia, South Africa, Spain, Taiwan, Ukraine,	N = 222 mean age (SD) = 14.2 (1.6) Females – N (%) = 104 (47) Not Hispanic or Latino – N (%) = 156 (70) Eczema – N (%) = 33 (15) Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = NA	Patients are adolescents (12-17) and adults (18+) with persistent asthma.	Patients were stratified based on the entry medicine (ICS alone or ICS+LABA, ICS+LTRA, ICS+theophylline) and ACQ score.	parallel groups double-blind	FP 100 mcg FP+SAL 100/50 mcg FP 250 mcg FP+SAL 250/50 mcg FP 500 mcg FP+SAL 500/50 mcg	26 mean da 161.8 (5
Thomas 2014	UK Singapore	N = 33 mean age (SD) = 11.1 (3.1) Females – N (%) = 12 (36) Not Hispanic or Latino - N (%) = 33 (100) Eczema – N (%) = 16 (48) Eosinophilia – N (%) = 6 (18) BL-severity (mild) – N (%) = 17 (52)	Children and adolescents aged 6-18 years with uncontrolled or partially controlled asthma on 400 mcg BDP.	Children with uncontrolled or partially controlled asthma, on low- medium dose (400mg BDP [Beclomethasone dipropionate] equivalent) ICS monotherapy.	parallel groups open-label	ICS: 200 mcg of fluticasone twice daily ICS+LABA: 100 mcg of fluticasone plus 50mg of salmeterol (Seretide 50/100 Accuhaler, GlaxoSmithKline) twice daily ICS+LTRA: 100 mcg of fluticasone twice daily plus montelukast (Singulair, MSD) 5 mg (for children 15 years) or 10 mg (for >15 years)	8 mean d. 60.0 (0.1
/aessen- /erberne 2010	Netherlands	N = 158 mean age (SD) = NA Females – N (%) = 67 (42) Not Hispanic or Latino - N (%) = 158 (100) Eczema – N (%) = NA Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = NA	Children aged 6-16 years with symptomatic asthma.	Subjects who have received BDP, budesonide up to 100-200 mcg bd or fluticasone propionate at a dose of up to 125 mcg bd for at least 4 weeks before the start of the run-in period.	parallel groups double-blind	fluticasone propionate/salmeterol 100/50 mcg BID fluticasone propionate 200 mcg BID	10 mean d NA
/erberne 1998	Netherlands	N = 177 mean age (SD) = 11.2 (2.7) Females – N (%) = 58 (33) Not Hispanic or Latino - N (%) = 177 (100) Eczema – N (%) = NA Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = 119 (67)	Children aged 6 to 16 years with moderate asthma.	A history of stable asthma for at least 1 mo without exacerbations or respiratory tract infections; (6) used inhaled corticosteroids between 200 and 800 mcg daily for at least 3 months before the start of the study. From discussion: During the 6-wk run-in period they were treated with 200 mg beclomethasone twice daily, which is considered a moderate dose in the treatment of childhood asthma (14). Despite this treatment all children were symptomatic and had reversible airway obstruction and airway hyperresponsiveness.	parallel groups double-blind	beclomethasone+ SAL (BDP400+SAL100 mcg) beclomethasone (BDP800) placebo+beclomethasone (BDP400)	54 mean da 362.8 (6
Wechsler 2019	USA	N = 172 mean age (SD) = 9.2 (2.9) Females – N (%) = 77 (45) Not Hispanic or Latino - N (%) = 172 (100) Eczema – N (%) = 98 (70) Eosinophilia – N (%) = 63 (37) BL-severity (mild) – N (%) = 28 (100)	Patients aged 5 or older with at least one Black grandparent.	To enter the run-in, participants must be either: A) inadequately controlled on low-, medium- or high-dose ICS monotherapy, or low- or medium-dose ICS/LABA, or B) well-controlled on low-, medium- or high-dose ICS monotherapy, or low-, medium- or high-dose ICS/LABA (see Study Visits, Screen A, at -10 weeks).	crossover double-blind	5-11 years 2xICS = fluticasone 100 mcg (Diskus) BID 2xICS/LABA = 100/50 mcg (Advair Diskus - FP+SAL) BID 5xICS/LABA = 250/50 mcg (Diskus) BID 5xICS/LABA = 250/50 mcg (Advair Diskus - FP+SAL) BID 12-17 years 2.5xICS = fluticasone 250 mcg (Diskus) BID 1xICS/LABA = 100/50 mcg (Advair Diskus - FP+SAL) BID 5xICS = fluticasone 500 mcg (Diskus) BID 2.5xICS/LABA = 250/50 mcg (Advair Diskus - FP+SAL) BID	P1: 14 P2: 14 P3: 14 P4: 14 mean da 91.4 (27
Woodcock 2013	USA, Argentina, Chile, Korea, Netherlands, Philippines	N = 32 mean age (SD) = 13.8 (1.6) Females – N (%) = 9 (28) Not Hispanic or Latino - N (%) = 19 (59) Eczema – N (%) = NA Eosinophilia – N (%) = 17 (65) BL-severity (mild) – N (%) = 8 (25)	Patients ≥12 years of age with persistent asthma using ICS.	Subjects must have been using an inhaled corticosteroid for at least 12 weeks prior to visit 1 and be maintained on a medium dose (e.g., FP 250 mcg twice daily) for at least 4 weeks prior to Visit 1.	parallel groups double-blind	fluticasone furoate/vilanterol 100/25 mcg OD (DPI) fluticasone propionate/salmeterol 250/50 mcg BID (Diskus/Accuhaler) placebo	24 mean da 164.5 (2

Author Year	Countries	Subjects included*, demographics, and clinical features	Patients' characteristics	Protocol inclusion criteria	Study type Blinding	Treatment arms	Follow-up (weeks)
Woodcock 2014	USA, Argentina, Chile, France, Mexico, Russian Federation	N = 13 mean age (SD) = 14.7 (1.4) Females – N (%) = 5 (38)	Patients ≥12 years of age with persistent asthma with a stable dose, and regimen of ICS.	All subjects must be on stable dose, and regimen of ICS for at least 4 weeks prior to Visit 1.	parallel groups double-blind	fluticasone furoate 100 mcg OD (DPI) fluticasone furoate 200 mcg OD (DPI)	24
		Not Hispanic or Latino - N (%) = 10 (77) Eczema – N (%) = NA Eosinophilia – N (%) = 5 (71) BL-severity (mild) – N (%) = 5 (42)					mean days (SD) ³ : 174.5 (14.9)

*<18 and on ICS alone at randomization or at screening visit if not available

¹ as-needed group was not considered

[€] no publication; only two no longer working links of congress abstracts

³ follow up of included participants

§ split into two sub-studies because of randomization bias due to the treatment dose categorization based on age class with GINA

ICS = inhaled corticosteroids; LABA = long-acting beta-agonists; LTRA = leukotriene receptor antagonist; BDP = beclomethasone dipropionate; FP = fluticasone propionate; FF = fluticasone furoate; BUD = budesonide; MF = mometasone

furoate; SAL = salmeterol; SABA = short-acting beta-agonist

BD/BID = twice a day; OD/QD = once a day; DPI = dry powder inhaler; HFA = hydrofluoroalkane propellant

NA = not available; BL-severity = baseline asthma severity

NOTES: All children using ICS+LABA or other medicines/medicine combinations different from ICS alone at the screening visit were excluded. That was possible because we had sufficient information, from the individual participant data and the appropriate documentation supplied by the data providers (protocol, code of variables, statistical analysis plan, etc.). Conversely, that was not possible for the studies listed in Table S5 without IPD.

Table S4. Characteristics of the included studies with aggregate data (parts 1 to 4)

Study	Countries	Patients included, demographics, clinical features	Patient Characteristics	Study type Blinding	Follow up (weeks)	Interventions (participants)
Akpinarli 1999	Turkey	N = 32 mean age (SD) = 10.3 (13.1) Females – N (%) = 17 (53) Not Hispanic or Latino – N (%) = NA Eczema – N (%) = 21 (65.6) Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = NA	sex: 15 M and 17 F mean age: 10.25 - SE age: 2.31 (SD = 13.07) eczema: ICS+LABA = 11; ICS + placebo = 10 asthma severity (FEV1 % predicted): ICS+LABA = 79; ICS + placebo = 80	parallel groups double-blind	6	ICS + formoterol (16) ICS + placebo (16) ICS: 400-800 mcg day (no medicine specified)
Berger 2006	USA	N = 296 mean age (SD) = 8.6 (1.8) Females – N (%) = 109 (37) Not Hispanic or Latino – N (%) = 228 (77) Eczema – N (%) = NA Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = NA	sex: 100 mcg F=41; M=57; 200 mcg F=32; M=67; placebo F=36; M=63 mean age: 100 mcg = 9.0 (SD = 1.8); 200 mcg = 8.7 (SD = 1.8); placebo = 8.2 (SD = 1.9) ethnicity: 100 mcg: White=56; Black=16; Hispanic=22; Asian=1; Native American=1; Other=2 200 mcg: White=63; Black=11; Hispanic=22; Asian=1; Native American=2; Other=0 placebo: White=60; Black=12; Hispanic=24; Asian=0; Native American=0; Other=3 asthma severity (FEV1 % predicted): 100 mcg = 79.2; 200 mcg = 79.7; placebo = 77.3 BL_FEV1 (mean): 100 mcg = 1.60; 200 mcg = 1.57; placebo = 1.45 Baseline ICS use includes a small percentage of triamcinolone and flunisolide.	parallel groups double-blind	12	mometasone furoate DPI 100 mcg (98) mometasone furoate DPI 200 mcg (99) placebo (99)
Bisgaard 2006	Argentina, Brazil, Bulgaria, Canada, China, France, Great Britain, Hungary, Indonesia, Israel, Italy, Malaysia, Mexico, Norway, Philippines, Poland, Romania, Singapore, South Africa, Sweden, Taiwan, Turkey	N = 341 mean age (SD) = 8 (NA) Females – N (%) = 104 (30) Not Hispanic or Latino – N (%) = NA Eczema – N (%) = NA Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = NA	sex: BUD M = 70, F = 36; BUD/FORM M = 85, F = 35; SMART M = 85, F = 33 mean age: BUD = 8; BUD/FORM = 8; SMART = 8 (no SD) race: BUD white = 90, other = 16; BUD/FORM white = 101, other = 16; SMART white = 100, other= 18 asthma severity (FEV1 % predicted): BUD = 76; BUD/FORM = 76; SMART = 76 exacerbation: BUD = 28; BUD/FORM = 44; SMART = 17 BL_FEV1 (L): BUD = 1.6; BUD/FORM = 1.5; SMART = 1.6 FEV1 (L): BUD = 1.76; BUD/FORM = 1.70; SMART = 1.86	parallel groups double-blind	52	BUD 320 mcg qd (fixed dose) (106) BUD/FORM 80/4.5 mcg qd (fixed dose) (117) BUD/FORM 80/4.5 mcg qd maintenance + as needed (SMART) (118)
Buchvald 2003 ¹	Denmark	N = 23 mean age (SD) = 12 (NA) Females – N (%) = 11 (48) Not Hispanic or Latino – N (%) = NA Eczema – N (%) = 7 (30) Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = NA	sex: M=12; F=11 mean age: 12 (no SD) eczema: 7 mean asthma severity: 101 mean FEV1 (L): BUD+placebo = 2.48; BUD+LTRA = 2.57; BUD+SAL = 2.63 (N=22) mean BL_FEV1 (L): 2.54 (N=22) exacerbation: 0 Crossover study without the possibility to use the data from the first period only.	crossover double-blind	P1 = NA P2 = NA P3 = NA no washout	BUD 400 mcg die + salmeterol 50 mcg BID (23) BUD 400 mcg die + montelukast 5 mg OD (23) BUD 400 mcg die + placebo (23)

Study Countries Patients included, demographics,		Patients included, demographics,	Patient Characteristics Stud		Follow up	Interventions (participants)	
		clinical features		Blinding	(weeks)		
Everden 2004 ² UF	JK, Republic of Ireland	N = 155	sex: ICS+FORM M = 50, F = 29; ICS+SAL M = 38, F = 38	parallel	12	ICS+formoterol (79)	
		mean age $(SD) = 11.8 (2.9)$	mean age: ICS+FORIM = 11.7 (SD = 3.0); ICS+SAL = 11.8 (SD = 2.8)	groups		ICS+saimeteroi (76)	
		Females - N(%) = 67(43)	exacerbation (mean episodes): ICS+FORM = 8; ICS+SAL = 12	open-label			
		Not Hispanic or Latino – N (%) = NA	asthma aggravation (AEs): ICS+FORM = 8; ICS+SAL = 10			The ICS dose is unknown.	
		Eczema – N (%) = NA					
		Eosinophilia – N (%) = NA					
		BL-severity (mild) – N (%) = NA					
Heuck 2000 De	Denmark	N = 24	mean age: 9.5 (3 patients more) (no SD)	crossover	P1 = 6	budesonide+formoterol 200/24 mcg die DPI (14)	
		mean age (SD) = 9.5 (NA)	sex: M = 14; F = 13 (3 patients more)	double-blind	P2 = 6	budesonide DPI (400 mcg) + placebo die (10)	
		Females – N (%) = 10 (42)	exacerbation: BUD+placebo = 2; BUD+FORM = 0				
		Not Hispanic or Latino – N (%) = NA					
		Eczema – N (%) = NA					
		Eosinophilia – N (%) = NA					
		BL-severity (mild) – N (%) = NA					
Jat 2006 In	ndia	N = 63	sex: ICS+LTRA M = 21, F = 9; ICS M = 24, F = 9	parallel	12	A: budesonide (200 mcg) + montelukast (5 mg) die	
		mean age (SD) = 9.8 (2.6)	mean age: ICS+LTRA = 10.13 (SD = 2.67); ICS = 9.39 (SD = 2.46)	groups		(30)	
		Females – N (%) = 18 (29)	asthma severity (FEV1 % predicted): ICS+LABA = 64.17; ICS = 63.36	blinded		B: budesonide (400 mcg) die (33)	
		Not Hispanic or Latino – N (%) = NA	exacerbation: ICS+LTRA = 10; ICS = 3 (first exacerbation)				
		Eczema – N (%) = NA					
		Eosinophilia – N (%) = NA					
		BL-severity (mild) – N (%) = NA					
Kondo 2006 Ja	apan	N = 75	sex: montelukast M = 21, F = 18; theophylline M = 23, F = 13	parallel	4	ICS (CFC-BDP: 100-400 mcg or FP: 100-200 mcg) +	
		mean age (SD) = 9.1 (2.3)	mean age: montelukast = 9.4 (SD = 2.4); theophylline = 8.8 (SD = 2.2)	groups		montelukast 5 mg die (39)	
		Females – N (%) = 31 (41)	asthma severity:	open-label		ICS (CFC-BDP: 100-400 mcg or FP: 100-200 mcg) +	
		Not Hispanic or Latino – N (%) = NA	montelukast – mild = 24, moderate = 12, severe = 3			theophylline 10—16 mg/kg/day or 200—400	
		Eczema – N (%) = NA	theophylline – mild = 18, moderate = 16, severe = 2			mg/day (36)	
		Eosinophilia – N (%) = 46 (61)	phenotype:				
		BL-severity (mild) – N (%) = 42 (56)	montelukast – non-eosinophilic = 12, eosinophilic = 27				
			theophylline – non-eosinophilic = 17, eosinophilic = 19				
			exacerbation: montelukast = 1: theophylline = 1 (status asthmaticus and asthma				
			aggravation)				
			Data are available for the PP population only (75 of 79 ITT) - randomized: 84				
Lenney 2013	IK	N = 63	Sex: $ICS - M = 17$ E = 2: $ICS+I$ ABA - M = 13 E = 10: $ICS+I$ TBA - M = 10 E = 11	narallel	48	EP 200 mcg die (19)	
(MASCOT)		mean age (SD) = $10(21)$	mean age: $ICS = 10.37$ (SD=19): $ICS+I$ ABA = 10.46 (SD=23): $ICS+I$ TRA = 10.33	groups	40	FP 200 mcg + SAI 100 mcg die (23)	
(11/13001)		Females - N(%) = 23(37)	(SD=21)	double-blind		FP 200 mcg + montelukast 5 mg die (21)	
		Not Hispanic or Latino – N (%) = NA	asthma severity (FEV1 % predicted): ICS = 88 29: ICS+I ABA = 79 79: ICS+I TBA =				
		Eczema – N (%) = NA	86.47				
		Eosinophilia – N (%) = NA	BL FEV1 (L): $ICS = 1.98$: $ICS+IABA = 1.83$: $ICS+ITBA = 1.82$				
		BI-severity (mild) $- N(\%) = NA$	bL_1 LV1 (L). 105 - 1.50, 105 LABA - 1.05, 105 LABA - 1.02				
			exacerbation (any): ICS = 4/19: ICS+I ABA = 7/23: ICS+I TRA = 3/21 (Tot: 14/63)				
			exacerbation ((C)): $ CS = 4/18$: $ CS+ ABA = 3/17$: $ CS+ TBA = 3/19$ (Tot: 10/54) (24				
			weeks)				
Malone 2005	JSA. Canada	N = 203	sex: FP - M = 59. F = 41: FP+SAL - M = 68. F = 32:	parallel	12	FP 200 mcg die (102)	
	,	mean age (SD) = 8.1 (NA)	mean age: FP = 8.1: FP+SAL = 8.0 (no SD)	groups		FP+SAL 200/100 mcg die (101)	
		Females - N(%) = 73(36)	race:	double-blind		, (***/	
		Not Hispanic or Latino $-N$ (%) = NA	FP – White = 72. Black = 16. other = 12:				
		Eczema - N(%) = NA	FP+SAL - White = 67. Black = 23. other = 10:				
		Eosinophilia – N (%) = NA	asthma severity (FEV1 % predicted): FP \geq 80%: FP+SAL > 80%				
		BL-severity (mild) $- N$ (%) = NA		1			

	Study	Countries	Patients included, demographics,	Patient Characteristics	Study type	Follow up	Interventions (participants)
1			clinical features		Blinding	(weeks)	
2 3 4 5 6 7 8 9	Morice 2008	UK	N = 622 mean age (SD) = 8 (NA) Females – N (%) = 212 (34) Not Hispanic or Latino – N (%) = NA Eczema – N (%) = NA Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = NA	sex: BUD - M = 137, F = 70; BUD+FORM DPI - M = 141, F = 71; BUD+FORM pMDI - M = 132, F = 71 mean age: BUD = 9; BUD+FORM DPI = 8; BUD+FORM pMDI = 8 (no SD) asthma severity (FEV1% predicted): BUD = 87; BUD+FORM DPI = 89; BUD+FORM pMDI = 89 The mean change of FEV1 (L) is in a graph. exacerbation: BUD = 13, BUD+FORM DPI = 7, BUD+FORM pMDI = 7 (asthma	parallel groups double-blind	12	budesonide pMDI 400 mcg die (207) budesonide+formoterol DPI 320/18 mcg die (212) budesonide+formoterol pMDI 320/18 mcg die (203)
10 11 12 13 14	Russell 1995	UK	N = 206 mean age (SD) = 10.2 (2.7) Females – N (%) = 82 (40) Not Hispanic or Latino – N (%) = NA Eczema – N (%) = NA Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = NA	sex: ICS+LABA – M = 59, F = 40; ICS – M = 65, F = 42 mean age: ICS+LABA = 10.2 (SD = 2.7); ICS = 10.3 (SD = 2.7) exacerbation (asthma-related adverse events): ICS+LABA = 10; ICS = 13	parallel groups double-blind	12	ICS (beclomethasone or budesonide) + salmeterol 50 mcg BID (99) ICS (beclomethasone or budesonide) + placebo (107) ICS dose from 400 to 2,400 mcg die; the average dose was 750 mcg
15 16 17 18 19 20 21 22	Shapiro 2001	USA	N = 274 mean age (SD) = 12.1 (2.8) Females – N (%) = 96 (35) Not Hispanico r Latino – N (%) = NA Eczema – N (%) = NA Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = NA	sex: BUD 200 – M = 55, F = 35; BUD 400 – M = 66, F = 27; placebo – M = 57, F = 34 mean age: BUD 200 = 12.1 (SD = 2.8); BUD 400 = 12.1 (SD = 2.8); placebo = 12.1 (SD = 2.8) race: BUD 200 – Caucasian = 75; African American = 10; Asian = 4; Other = 1 BUD 400 – Caucasian = 85; African American = 6; Asian = 0; Other = 2 placebo – Caucasian = 83; African American = 6; Asian = 2; Other = 0 BL_FEV1 (L): BUD 200 = 2.1; BUD 400 = 2.1; placebo = 2.1 exacerbation (aggravated asthma): BUD 200 = 9; BUD 400 = 8; placebo = 10 Some patients used triamcinolone (N=107) and flunisolide (N=23) at entry.	parallel groups double-blind	12	BUD 200 mcg die Turbuhaler (90) BUD 400 mcg die Turbuhaler (93) placebo (91)
23 24 25 26 27 28 29	Simons 2001 ¹ Strauch 2003	Argentina, Australia, Austria, Brazil, Canada, France, Germany, Greece, Norway, Portugal, Sweden, The Netherlands, Russia, Turkey Germany	N = 279 mean age (SD) = 10.4 (2.2) Females – N (%) = 92 (33) Not Hispanic or Latino – N (%) = 17 (6) Eczema – N (%) = NA Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = NA N = 25 mean age (SD) = 10 (NA)	mean age: 10.4 (SD = 2.2) sex: F = 92; M = 187 ethnicity: 83% were white, 10% were Asian, 6% were Hispanic, and 1% were members of other ethnic groups. exacerbation (asthma worsening - AEs): BUD = 35/270; BUD+LTRA = 32/277 Some patients used triamcinolone and flunisolide at entry. First period data not available. sex: 16 M; 9 F age (JPD): table 1 (no indication of the treatment group)	crossover double-blind parallel groups	P1: 4 P2: 4 P3: 4 no washout	BUD 400 mcg die (270) BUD 400 mcg die + montelukast 5 mg OD (277) ICS (400-800 mcg BUD die) + montelukast 5 mg
30 31 32			Females – N (%) = 9 (36) Not Hispanic or Latino – N (%) = NA Eczema – N (%) = NA Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = NA	asthma severity (FEV1 % predicted): table 1 (IPD) (no indication of the treatment group); table 2 (median) overall QoL (median, 95%Cl) (PAQLQ; cores are expressed as the mean score per item): placebo – 7.0 (5.0 – 7.0); montelukast – 7.0 (6.0 – 7.0)	double-blind		
33 34 35 36 37 38	Tal 2002	Czech Republic, Belgium, Hungary, Israel, South Africa, Spain, UK	N = 286 mean age (SD) = 11 (NA) Females – N (%) = 109 (38) Not Hispanic or Latino – N (%) = NA Eczema – N (%) = NA Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = NA	sex: ICS+LABA – M = 90, F = 58; ICS – M = 87, F = 51 mean age: ICS+LABA = 11; ICS = 11 (no SD) asthma severity: ICS+LABA = 74; ICS = 76 mean FEV1 (L): ICS+LABA = 2.01; ICS = 1.91 (no SD) exacerbation (asthma aggravated): ICS+LABA = 8; ICS = 4;	parallel groups double-blind	12	budesonide/formoterol 320/18 mcg die (148) budesonide 400 mcg die (138)
Study	Countries	Patients included, demographics,	Patient Characteristics	Study type	Follow up	Interventions (participants)	
--------------------------------	---	--	---	------------------------------------	------------------------------	---	
		clinical features		Blinding	(weeks)		
Vermeulen 2007 ²	Hungary, Poland, Serbia/Montenegro, South Africa, Spain	N = 403 mean age (SD) = NA Females – N (%) = 131 (33) Not Hispanic or Latino – N (%) = NA Eczema – N (%) = NA Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = NA	sex: CIC - M = 192, F = 80; ICS - M = 80, F = 51 age: no mean, only the median asthma severity: CIC = 73.2; ICS = 73.1 BL FEV1 (mL): CIC = 2310 (2.31 L) (N=270); ICS = 2310 (2.31 L) (N=130) FEV1 (mL): CIC = 2815 (2.82 L) (N=270); ICS = 2846 (2.85 L) (N=130) exacerbation: CIC = 7; ICS = 2	parallel groups double-blind	12	ciclesonide (320 mcg OD) (272) budesonide (800 mcg OD) (31) randomization 2 (CIC):1 (BUD)	
Visitsunthorn 2011	Thailand	N = 29 mean age (SD) = 9 (1) Females – N (%) = 6 (21) Not Hispanic or Latino – N (%) = NA Eczema – N (%) = 29 (100) Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = 25 (86)	sex: ICS+placebo – M = 13, F = 2; ICS+LTRA – M = 10, F = 4 age: ICS+placebo = 9.1 (SD = 1.1); ICS+LTRA = 8.9 (SD = 0.9) eczema: all patients asthma severity: ICS+placebo – mild = 14, moderate = 1; ICS+LTRA – mild = 11, moderate = 3 phenotype: ICS+placebo = 566.34 (eosinophilic); ICS+LTRA = 706.87 (cells)(eosinophilic) FEV1 (L): ICS+placebo = 1.38; ICS+LTRA = 1.43 BL FEV1 (L): ICS+placebo = 1.42: ICS+LTRA = 1.31	crossover double-blind	P1: 6 washout: 2 P2: 6	ICS+placebo (ICS unknown dose) (15) ICS+montelukast (14)	
Zimmerman 2004	Canada	N = 302 mean age (SD) = 8.7 (NA) Females – N (%) = 114 (38) Not Hispanic or Latino – N (%) = NA Eczema – N (%) = NA Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = NA	sex: ICS \rightarrow M = 65, F =36; ICS+LABA 4.5 mcg \rightarrow M = 65, F = 41; ICS+LABA 9 mcg \rightarrow M = 58, F = 37 mean age: ICS = 9; ICS+LABA 4.5 mcg = 8; ICS+LABA 9 mcg = 9 (no SD) asthma severity: ICS = 77.2; ICS+LABA 4.5 mcg = 78.3; ICS+LABA 9 mcg = 77.5 BL FEV1 (L): ICS = 1.49; ICS+LABA 4.5 mcg = 1.53; ICS+LABA 9 mcg = 1.50 FEV1 (L): ICS = 1.61; ICS+LABA 4.5 mcg = 1.71; ICS+LABA 9 mcg = 1.68 exacerbation: ICS = 11; ICS+LABA 4.5 mcg = 5; ICS+LABA 9 mcg = 6 (asthma aggravated)	parallel groups double-blind	12	ICS + placebo (101) ICS + formoterol 4.5 mcg BID (106) ICS + formoterol 9 mcg BID (95) ICS dose is unknown	

1 trial could not be included in analyses as aggregate data for the first period were not presented in the publication 2 trial could not be included in analyses as no comparison could be made when treatment groups considered at the treatment class level

Table S5. Eligible studies without individual participant data or aggregate data (parts 1 to 18)

First author (Year)	Sponsor	Study Reference	Reasons for not extracting AgD	Study	Total randomized participants (age range)	Total randomized children / adolescents*	Treatments (number of participants reported)	Outcome(s) reported in the publication (does not imply adequate AgD)
Abbas (2016)	_	 Abbas, A.; Maheshwari, M. P.; Siddiqui, Z. A.; Maheshwari, R. R. Role of long acting beta2 agonist salmeterol, in management of mild to moderate asthmatic patients. Pakistan Journal of Medical and Health Sciences 2016;10(4):1112-1115 	population of both adults and adolescents	parallel groups	50 (15-65)	not possible to establish	salmeterol 50 mcg and fluticasone propionate 250 mcg twice daily (24) beclomethasone dipropionate 500 mcg twice daily (23)	symptoms
Amar (2017)	MERCK	Amar NJ, Shekar T, Varnell TA, Mehta A, Philip G. Mometasone furoate (MF) improves lung function in pediatric asthma: A double-blind, randomized controlled dose-ranging trial of MF metered-dose inhaler. Pediatr Pulmonol. 2017 Mar;52(3):310-318. doi: 10.1002/ppul.23563. Epub 2016 Oct 14. Erratum in: Pediatr Pulmonol. 2019 May;54(5):655-656.	ICS or ICS+LABA at screening	parallel groups	578 (5-11)	578	mometasone furoate-MDI 50 mcg BID (120) mometasone furoate-MDI 100 mcg BID (113) mometasone furoate-MDI 200 mcg BID (108) mometasone furoate-DPI 100 mcg QD PM (125) placebo (112)	FEV1 QoL AEs
Arama (2016) (§)	_	Marina Arama, Tatiana Gorelco, Tatiama Kuleshina (2016). Antileukotriens in management of paediatric asthma: The hormon reducing force. European Respiratory Journal 2016 48: PA1249; DOI: 10.1183/13993003.congress- 2016.PA1249	congress abstract with no data	parallel groups	40 (5-15)	40	ICS+montelukast (NA) ICS+placebo (NA)	symptoms FEV1 (spirometry)
Arsovski (2016) (§)	_	Arsovski, Z.; Dokic, D.; Kjaeva, B.; Goseva, Z.; Pejkovska, S.; Arbutina, S.; Janeva, E. (2016). Different therapeutic response to inhaled Fluticasone propionate in smokers and non-smokers with asthma. Allergy, 71, 365-366.	congress abstract with no data	parallel groups	38 (NA)	not possible to establish	fluticasone propionate 250 mcg BID in smokers and non-smokers	asthma control FEV1
Bensch (2002)	Novartis	Bensch G, Berger WE, Blokhin BM, Socolovsky AL, Thomson MH, Till MD, Castellsague J, Della Cioppa G; International Study Group on Foradil Evaluation in Pediatric Asthma. One-year efficacy and safety of inhaled formoterol dry powder in children with persistent asthma. Ann Allergy Asthma Immunol. 2002 Aug;89(2):180-90.	not only ICS alone at screening	parallel groups	518 (5-12)	518	formoterol 12 mcg BID (171) formoterol 24 mcg BID (171) placebo (176)	FEV1 AEs
Berger (2010)	AstraZeneca	Berger WE, Leflein JG, Geller DE, Parasuraman B, Miller CJ, O'Brien CD, O'Dowd L. The safety and clinical benefit	LABA too at screening	parallel groups	187 (6-11)	187	budesonide/formoterol pMDI 320/9 mcg BID (124) budesonide DPI 400 μg BID (63)	FEV1 AEs

Page 73 of 273

First author (Year)	Sponsor	Study Reference	Reasons for not extracting AgD	Study	Total randomized participants (age range)	Total randomized children / adolescents*	Treatments (number of participants reported)	Outcome(s reported in publication (does not in adequate A
		of budesonide/formoterol pressurized metered-dose inhaler versus budesonide alone in children. Allergy Asthma Proc. 2010 Jan-Feb;31(1):26-39. doi: 10.2500/aap.2010.31.3301.						QoL symptoms
Berger (2014)	MERCK	Berger WE, Bensch GW, Weinstein SF, Skoner DP, Prenner BM, Shekar T, Nolte H, Teper AA. Bronchodilation with mometasone furoate/formoterol fumarate administered by metered-dose inhaler with and without a spacer in children with persistent asthma. Pediatr Pulmonol. 2014 May;49(5):441-50. doi: 10.1002/ppul.22850. Epub 2013 Sep 9.	ICS or ICS+LABA at screening	crossover	92 (5-11)	92	mometasone furoate/formoterol without spacer 100/10 mcg (23) mometasone furoate/formoterol with spacer 100/10 mcg (23) formoterol-DPI 10 mcg (23) placebo (23) All patients used mometasone furoate Dry Powder Inhaler (DPI) 100 mcg once daily (QD) in the evening (PM) throughout the whole study, including the treatment periods.	
Bernstein (2011)	MERCK	Bernstein DI, Hébert J, Cheema A, Murphy KR, Chérrez-Ojeda I, Matiz-Bueno CE, Kuo WL, Nolte H. Efficacy and onset of action of mometasone furoate/formoterol and fluticasone propionate/salmeterol combination treatment in subjects with persistent asthma. Allergy Asthma Clin Immunol. 2011 Dec 7;7:21. doi: 10.1186/1710-1492-7-21.	population of both adults and children/ adolescents ICS or ICS+LABA at screening	parallel groups	722 (12-82)	not possible to establish	fluticasone propionate/salmeterol DPI 250/50 mcg BID (351) mometasone furoate/formoterol MDI 200/10 mcg BID (371)	exacerbati asthma con QoL symptoms FEV1 AEs
Bernstein (2017)	TEVA	David I. Bernstein, Michael Gillespie, Sharon Song & Jonathan Steinfeld (2017). Safety, efficacy, and dose response of fluticasone propionate delivered via the novel MDPI in patients with severe asthma: A randomized, controlled, dose- ranging study, Journal of Asthma, 54:6, 559-569, DOI: 10.1080/02770903.2016.1242137	population of both adults and children/ adolescents ICS or ICS+LABA at screening	parallel groups	640 (12-65+)	9	fluticasone propionate MDPI 50 mcg (107) fluticasone propionate MDPI 100 mcg BID (107) fluticasone propionate MDPI 200 mcg BID (106) fluticasone propionate MDPI 400 mcg BID (107) fluticasone propionate DPI 250 mcg BID (107) placebo MDPI (106)	FEV1 AEs
Bernstein (2019) (§)	Unknown	David I. Bernstein — Efficacy Comparison of Mometasone Furoate/Formoterol Versus Fluticasone Propionate/Salmeterol Combination Therapies in Subjects With Persistent Asthma: noninferiority and Onset-of-Action Findings. Breast (Edinburgh, Scotland) 2019;44():S62-	not found	parallel groups	-	_	mometasone furoate/formoterol (NA) fluticasone propionate/salmeterol (NA)	_
Bose (1987)	-	Bose B, Cater JI, Clark RA. A once daily theophylline preparation in prevention of nocturnal symptoms in childhood asthma. Eur J Pediatr. 1987 Sep;146(5):524-7.	other medicine used at screening	crossover	20 (5-16)	20	theophylline (OD) (20) placebo (20)	symptoms AEs

First author (Year)	Sponsor	Study Reference	Reasons for not extracting AgD	Study	Total randomized participants (age range)	Total randomized children / adolescents*	Treatments (number of participants reported)	Outcome(s) reported in the publication (does not imply adequate AgD)
Botan (2019)	_	Botan, V.; Miranda, M.; Couto, S.; Rocha, E.; Imaculada Muniz-Junqueira, M. Influence of Montelukast on the State of Eosinophil Activation in Asthmatic Children. Breast (Edinburgh, Scotland) 2019;44():S64-2019	different outcomes in the publication; the author confirmed to have the outcomes of interest, but after the first consensus, she no longer replied	parallel groups	83 (2-18)	83	montelukast (NA) placebo (NA) healthy control (NA)	none of interest
Byrnes (2000) (§)	GSK	Byrnes C, Shrewsbury S, Barnes PJ, Bush A. Salmeterol in paediatric asthma. Thorax. 2000 Sep;55(9):780-4.	control group: salbutamol it is not clear if ICS treatment was maintained after the run-in	crossover	45 (5-16)	45	salmeterol 50 μg bd (45) salmeterol 100 μg bd (45) salbutamol 200 μg qds (45)	FEV1 AEs
D'Alonzo (1994)	GSK	D'Alonzo GE, Nathan RA, Henochowicz S, Morris RJ, Ratner P, Rennard SI. Salmeterol xinafoate as maintenance therapy compared with albuterol in patients with asthma. JAMA. 1994 May 11;271(18):1412-6.	population of both adults and children/adoles cents only 20% used ICS at screening	parallel groups	322 (NA)	not possible to establish	ICS+salmeterol 42 mcg BID (106) ICS+albuterol 180 mcg 4-time day(108) ICS+placebo (108)	exacerbation FEV1 AEs
D'Urzo (2005)	MERCK	D'Urzo A, Karpel JP, Busse WW, Boulet LP, Monahan ME, Lutsky B, Staudinger H. Efficacy and safety of mometasone furoate administered once-daily in the evening in patients with persistent asthma dependent on inhaled corticosteroids. Curr Med Res Opin. 2005 Aug;21(8):1281-9.	population of both adults and children/adoles cents	parallel groups	400 (12-78)	not possible to establish	mometasone furoate-DPI 200 μg qd PM (78) mometasone furoate-DPI 400 μg qd PM as one inhalation (from a DPI delivering 400 μg/inhalation) (80) mometasone furoate-DPI 400 μg qd PM as two inhalations (from a DPI delivering 200 μg/inhalation) (78) mometasone furoate-DPI 200 μg bid (81) placebo (83)	FEV1 symptoms QoL AEs
Emeryk (2016)	Mundi pharma	Emeryk, Andrzej; Klink, Rabih; McIver, Tammy; Dalvi, Prashant (2016). A 12-week open-label, randomized, controlled trial and 24-week extension to assess the efficacy and safety of fluticasone propionate/formoterol in children with asthma. Therapeutic advances in respiratory disease, 10(4), 324-37.	ICS or LABA at screening	parallel groups	211 (4-12)	211 (180 eligible)	FP/FORM 100/10 mcg BID (106) FP/SAL 100/50 mcg BID (105)	FEV1 AEs
EudraCT number: 2014-005047- 40 (§)	Sanofi	NO PUBLICATION	no publication population of both adults and children/	crossover	122 (12-64)	12	salmeterol/fluticasone propionate 12.5/250 mcg via DPI PulmoJet (122) salmeterol/fluticasone Propionate 50/250 mcg via DPI PulmoJet (122)	FEV1 AEs

First author (Year)	Sponsor	Study Reference	Reasons for not extracting AgD	Study	Total randomized participants (age range)	Total randomized children / adolescents*	Treatments (number of participants reported)	Outcome(s) reported in th publication (does not imp adequate Age
			adolescents				salmeterol/fluticasone Propionate 50/250 mcg Seretide Diskus (122)	
EudraCT number: 2017-004424- 29-NL (PUFFIN)	_	NO PUBLICATION	still recruiting	-	-	-	-	-
Farzan (2017)	_	Farzan, Sherry; Khan, Sundas; Elera, Claudia; Tsang, James; Akerman, Meredith; DeVoti, James (2017). Effectiveness of montelukast in overweight and obese atopic asthmatics. Ann Allergy Asthma Immunol 119, 189- 193.	population of both adults and children/ adolescents not possible to use ACT as a binary variable	parallel groups	26 (NA)	23	ICS+montelukast (Overweight/Obese) ICS+placebo (Overweight/Obese) ICS+montelukast (Normal Weight) ICS+placebo (Normal Weight)	asthma contr
Fitzgerald (2003) (§)	AstraZeneca	JM FitzGerald, MR Sears, L-P Boulet, AB Becker, et al. Adjustable maintenance dosing with budesonide/formoterol reduces asthma exacerbations compared with traditional fixed dosing: A five-month multicentre Canadian study. Can Respir J 2003;10(8):427-434.	population of both adults and children/ adolescents ICS or ICS+LABA at screening	parallel groups	995 (12-96)	not possible to establish	budesonide/formoterol (adjustable maintenance) (499) budesonide/formoterol (fixed maintenance) (496)	exacerbation hospitalization and health economic parameters AEs
Gelfand (2006)	COVIS PHARMA	Gelfand EW, Georgitis JW, Noonan M, Ruff ME. Once-daily ciclesonide in children: efficacy and safety in asthma. J Pediatr. 2006 Mar;148(3):377-83.	ICS or leukotriene or cromones at screening	parallel groups	1031 (4-11)	1031	ciclesonide 40 mcg OD (252) ciclesonide 80 mcg OD (259) ciclesonide 160 mcg OD (253) placebo mcg OD (254)	FEV1 (not L/s) QoL symptoms AEs
Gustafsson (1993)	_	Gustafsson P, Tsanakas J, Gold M, Primhak R, Radford M, Gillies E. Comparison of the efficacy and safety of inhaled fluticasone propionate 200 micrograms/day with inhaled beclomethasone dipropionate 400 micrograms/day in mild and moderate asthma. Arch Dis Child. 1993 Aug;69(2):206-11.	children/ adolescent until 19 other medicines at screening	parallel groups	398 (4-19)	not possible to establish	fluticasone propionate 200 mcg OD (197) beclometasone dipropionate 400 mcg OD (201)	exacerbation FEV1 symptoms AEs
Hampel (2017)	TEVA	Hampel FC Jr, Carr W, Gillespie M, Small CJ. (2017). Evaluation of beclomethasone dipropionate (80 and 160 micrograms/day) delivered via a breath- actuated inhaler for persistent asthma. Allergy Asthma Proc., 38(6):419-430. doi: 10.2500/aap.2017.38.4089. Epub 2017 Sep 8.	population of both adults and children/ adolescents ICS and non-ICS therapy at screening	parallel groups	273 (12-65+)	30	beclometasone dipropionate BAI 80 mcg OD (90) beclometasone dipropionate BAI 160 mcg OD (92) placebo BAI (91)	FEV1 QoL symptoms AEs
lkeda (2015) (§)	Kyorin pharmaceutical Co	K. Ikeda. Comparison Of Efficacy Onset And Clinical Benefit Between Formoterol/fluticasone And Salmeterol/fluticasone In Unstable	abstract with no age range ICS or ICS+LABA at screening	parallel groups	21 (NA)	not possible to establish	formoterol/fluticasone combination 636 mcg per day (11) salmeterol/fluticasone combination 620 mcg per day (10)	pulmonary function asthma contro

First author (Year)	Sponsor	Study Reference	Reasons for not extracting AgD	Study	Total randomized participants (age range)	Total randomized children / adolescents*	Treatments (number of participants reported)	Outcome(s) reported in the publication (does not imply adequate AgD)
		Chronic Asthma: An Open-Label, Randomized Study. Am J Respir Crit Care Med 191;2015:A4238						(ACQ) symptoms
llowite (2004)	MERCK	Ilowite J, Webb R, Friedman B, Kerwin E, Bird SR, Hustad CM, Edelman JM: Addition of montelukast or salmeterol to fluticasone for protection against asthma attacks: a randomized, double-blind, multicenter study. Ann Allergy Asthma Immunol. 2004, 92 (6): 641-648	population of both adults and children/ adolescents	parallel groups	1473 (14-73)	not possible to establish	fluticasone 220 mcg + montelukast 10 mg OD (743) fluticasone 220 mcg + salmeterol 84 mcg OD (730)	exacerbation (asthma attack) symptoms AEs
Jamaati (2015)	COVIS PHARMA	Hamidreza Jamaati, Majid Malekmohammad, Fanak Fahimi, Arvin Najafi, Seyed Mohammadreza Hashemian (2015). Efficacy of Low-Dose Ciclesonide and Fluticasone Propionate for Mild to Moderate Persistent Asthma. Tanaffos, 14(1): 1-9	population of both adults and children/ adolescents	parallel groups	230 (15-65)	not possible to establish	ciclesonide 80 mcg OD (115) fluticasone propionate 100 mcg BID (115)	FEV1 QoL asthma control AEs
Jehan (2014) (§)	_	Jehan, N.; Rehman, M. U.; Zarkoon, M. H. To determine the efficacy of inhaled corticosteroids compared to montelukast in reducing exacerbation in uncontrolled asthma in children 6 months to 5 years. Pakistan Journal of Medical and Health Sciences 2014;8(3):662-666 Pakistan Lahore Medical And Dental College (Tulspura, North Canal Bank, Lahore, Pakistan. E-mail: prof_abdulmajeed@hotmail.com) 2014	recruitment at the emergency room and no indication of previous treatment patients were given ICS and tab Montelukast by lottery method to remove the bias	parallel groups	2400 (6 months-5 years)	2400	ICS 200 mcg die (1200) montelukast 4 or 5 mg die (1200)	exacerbation
Kerwin (2017)	TEVA	E. M. Kerwin, G. Yiu, L. Hickey, C. J. Small. Analysis Of The Relationship Between Handheld And Clinic-Based Spirometry Measurements In A Randomized, Double- Blind, Placebo-Controlled Study Of Beclomethasone Dipropionate Via Breath- Actuated Inhaler For Persistent Asthma. Am J Respir Crit Care Med 2017;195:A3205	population of both adults and children/ adolescents only abstract	parallel groups	425 (12-NA)	not possible to establish	beclomethasone dipropionate (BAI) 40 mcg/inhalation x 4 inhalations twice daily (BID) (320 mcg/day) beclomethasone dipropionate (BAI) 80 mcg/inhalation x 4 inhalations twice daily (BID) (640 mcg/day) beclomethasone dipropionate (MDI) 40 mcg/inhalation x 4 inhalations BID (320 mcg/day) placebo BAI placebo MDI	FEV1

Page 77 of 273

European Respiratory Journal

<u>2</u> 3	First author (Year)	Sponsor	Study Reference	Reasons for not extracting AgD	Study	Total randomized participants (age range)	Total randomized children / adolescents*	Treatments (number of participants reported)	Outcome(s) reported in the publication (does not imply adequate AgD)
4 5 7 3 9 10	Knorr (1998)	MERCK	Knorr B, Matz J, Bernstein JA, Nguyen H, Seidenberg BC, Reiss TF, Becker A. Montelukast for chronic asthma in 6- to 14-year-old children: a randomized, double-blind trial. Pediatric Montelukast Study Group. JAMA. 1998 Apr 15;279(15):1181-6. doi: 10.1001/jama.279.15.1181. PMID: 9555757.	only 20-24% of patients used ICS at screening	parallel groups	336 (6-15)	72	montelukast 5 mg OD (201) placebo (135)	FEV1 AEs
12 13 14 15 16 17 18	Knorr (2001)	MERCK	Knorr B, Franchi LM, Bisgaard H, Vermeulen JH, LeSouef P, Santanello N, Michele TM, Reiss TF, Nguyen HH, Bratton DL. Montelukast, a leukotriene receptor antagonist, for the treatment of persistent asthma in children aged 2 to 5 years. Pediatrics. 2001 Sep;108(3):E48. doi: 10.1542/peds.108.3.e48. PMID: 11533366.	up to 50% of patients used inhaled or nebulized corticosteroids or cromolyn at screening and during the study	parallel groups	689 (2-6)	56	montelukast 4 mg (461) placebo (228)	asthma control symptoms QoL AEs
19 20 21 22 23 24 25 26 27 28 29 30	Kunoe (2016) (§)	_	Kunoe, A.; Agertoft, L.; Chawes, B. L.; Bonnelykke, K.; Bisgaard, H.; Pedersen, S. Early intervention with high-dose inhaled corticosteroids for preschool wheezing does not improve lung function at school age. Allergy: European Journal of Allergy and Clinical Immunology 2016;71(Supplement 102):365	poster – no information on the pre-study treatment (perhaps, naïve) "a trial to investigate if use of high- dose inhaled corticosteroids for preschool wheezing improves lung function at 6 years of age"	parallel groups	220 (6–35 months)	220	fluticasone propionate 1000 mcg/day pMDI (112) placebo (108)	FEV1
31 32 33 34 35	Langton Hewer (1995)	-	Langton Hewer S, Hobbs J, French D, Lenney W. Pilgrim's progress: the effect of salmeterol in older children with chronic severe asthma. Respir Med. 1995 Jul;89(6):435-40.	34.8% of patients used OC and other medicine besides ICS at screening	parallel groups	24 (12-17)	23	ICS (range 50-1000 mcg BID) + salmeterol 100 mcg BID (11) ICS (range 50-1000 mcg BID) + placebo (12)	exacerbation FEV1 symptoms AEs
36 37 38 39 40 41	Lin (2015) (IPD supplied)	GSK	Lin J, Kang J, Lee SH, Wang C, Zhou X, Crawford J, Jacques L, Stone S. Fluticasone furoate/vilanterol 200/25 mcg in Asian asthma patients: a randomized trial. Respir Med. 2015 Jan;109(1):44-53. doi:	population of both adults and children/ adolescents all eligible participants	parallel groups	309 (13-79)	0	fluticasone furoate/vilanterol 200/25 mcg OD (155) fluticasone propionate 500 mcg BID (154)	ACT exacerbation FEV1 symptoms QoL AEs

First author (Year)	Sponsor	Study Reference	Reasons for not extracting AgD	Study	Total randomized participants (age range)	Total randomized children / adolescents*	Treatments (number of participants reported)	Outcome(s) reported in the publication (does not imply adequate AgD)
		10.1016/j.rmed.2014.10.012. Epub 2014 Oct 31.	were using ICS+LABA at screening					
Lin (2016) (IPD supplied)	GSK	Lin J, Tang H, Chen P, Wang H, Kim MK, Crawford J, Jacques L, Stone S. Efficacy and safety evaluation of once-daily fluticasone furoate/vilanterol in Asian patients with asthma uncontrolled on a low- to mid-strength inhaled corticosteroid or low-dose inhaled corticosteroid/long-acting beta2-agonist. Allergy Asthma Proc. 2016 Jul;37(4):302- 10. doi: 10.2500/aap.2016.37.3968.	population of both adults and children/ adolescents only one participant was using ICS alone at screening	parallel groups	307 (14-79)	1	fluticasone furoate/vilanterol 100/25 mcg OD (153) placebo (154)	ACT exacerbation FEV1 symptoms QoL AEs
Mallol (2016)	COVIS PHARMA	J. Mallol, V. Aguirrea, A. Gallardoa, E. Corteza, C. Sáncheza, C. Riquelmea, P. Córdovaa, M. Martíneza, A. Galindob. Effect of once-daily generic ciclesonide on exhaled nitric oxide in atopic children with persistent asthma. Allergologia et immunopathologia 2016;44(2):106-12	 not possible to use ACT as a binary variable; not possible to classify ICS dose based on age for the secondary analysis 	parallel groups	60 (7-15)	60	ciclesonide 80 mcg OD (27) ciclesonide 160 mcg OD (29)	ACT AES
Mansfield (2017)	TEVA	Mansfield L, Yiu G, Sakov A, Liu S, Caracta C. A 6-month safety and efficacy study of fluticasone propionate and fluticasone propionate/salmeterol multidose dry powder inhalers in persistent asthma. Allergy Asthma Proc. 2017 Jul 24;38(4):264-276. doi: 10.2500/aap.2017.38.4061. Epub 2017 May 24.	population of both adults and children/ adolescents ICS or ICS+LABA at screening	parallel groups	674 (12-65+)	73	fluticasone propionate MDPI 100 mcg BID (127) fluticasone propionate HFA 220 mcg BID (42) fluticasone propionate MDPI 200 mcg BID (126) fluticasone propionate HFA 440 mcg BID (126) fluticasone propionate/salmeterol MDPI 100/12.5 mcg BID (120) fluticasone propionate/salmeterol DPI 250/50 mcg BID (41) fluticasone propionate/salmeterol MDPI 200/12.5 mcg BID (133) fluticasone propionate/salmeterol DPI 500/50 mcg BID (44)	FEV1 AEs
Maspero (2010)	MERCK	Maspero JF, Nolte H, Chérrez-Ojeda I; P04139 Study Group. Long-term safety of mometasone furoate/formoterol combination for treatment of patients with persistent asthma. J Asthma. 2010 Dec;47(10):1106-15. doi: 10.3109/02770903.2010.514634. Epub 2010 Nov 1. Erratum in: J Asthma. 2011 Feb;48(1):114.	population of both adults and children/ adolescents ICS or ICS+LABA at screening	parallel groups	404 (NA)	not possible to establish	mometasone furoate/formoterol 200/10 mcg (141) fluticasone propionate/salmeterol 250/50 mcg (68) mometasone furoate/formoterol 400/10 mcg (130) fluticasone propionate/salmeterol 500/50 mcg (65)	AEs FEV1 symptoms

European Respiratory Journal

First author (Year)	Sponsor	Study Reference	Reasons for not extracting AgD	Study	Total randomized participants (age range)	Total randomized children / adolescents*	Treatments (number of participants reported)	Outcome(s) reported in the publication (does not imply adequate AgD)
McIver (2011)	Mundipharma	McIver, T.; Emeryk, A.; Klink, R.; Schwab, B. (2011). Fluticasone propionate/formoterol fumarate (FLUT/FORM) combination therapy has comparable efficacy to fluticasone propionate/salmeterol xinafoate (FLUT/SAL) in paediatric patients with asthma. European Respiratory Journal, 38, SUPPL. 55.	likely conference abstract – no information on pre-treatment at screening	parallel groups	211 (4-12)	211	fluticasone propionate/formoterol 100/10μg BID (102) fluticasone propionate/salmeterol 100/50μg BID (99)	FEV1
Meltzer (2012)	MERCK	Meltzer EO, Kuna P, Nolte H, Nayak AS, Laforce C; P04073. Study Investigators. Mometasone furoate/formoterol reduces asthma deteriorations and improves lung function. Eur Respir J. 2012 Feb;39(2):279- 89. doi: 10.1183/09031936.00020310.	population of both adults and children/ adolescents ICS or ICS+LABA at screening	parallel groups	746	not possible to establish	formoterol 10 mcg MDI BID (188) mometasone furoate 100 mcg MDI BID (188) mometasone furoate/formoterol 100/10 mcg MDI BID (182) placebo (188)	exacerbation (asthma deterioration) ACQ FEV1 QoL AEs
Meltzer (2019)	_	Meltzer (2019). Efficacy and Safety of Combined Mometasone Furoate/Formoterol 100/10µg Twice Daily in Subjects with Asthma Inadequately Controlled on Low-Dose Inhaled Corticosteroids. Breast (Edinburgh, Scotland) 2019;44():S63-S64	paper not found	-	-	-	-	-
Miller (2016) (§)	TEVA	David S. Miller, Gloria Yiu, Edward T. Hellriegel, and Jonathan Steinfeld (2016). Dose-ranging study of salmeterol using a novel fluticasone propionate/salmeterol multidose dry powder inhaler in patients with persistent asthma. Proc 37:291–301, 2016; doi: 10.2500/aap.2016.37.3963	population of both adults and children/ adolescents	crossover	72 (12-65+)	3	fluticasone propionate/salmeterol MDPI 100/6.25 mcg (one dose per treatment) fluticasone propionate/salmeterol MDPI 100/12.5 mcg (one dose per treatment) fluticasone propionate/salmeterol MDPI 100/25 mcg (one dose per treatment) fluticasone propionate/salmeterol MDPI 100/50 mcg (one dose per treatment) fluticasone propionate MDPI 100 mcg (one dose per treatment) fluticasone propionate/salmeterol DPI 100/50mcg (one dose per treatment)	FEV1 AEs
Murphy (2015)	AstraZeneca	Kevin R. Murphy, Rajiv Dhand, Frank Trudo, Tom Uryniak, Ajay Aggarwal, Goran Eckerwall (2015). Therapeutic equivalence of budesonide/formoterol delivered via breath-actuated inhaler vs pMDI. Respiratory Medicine, 109, 170-179. http://dx.doi.org/10.1016/j.rmed.2014.12 .009	population of both adults and children/ adolescents "Two patients receiving ICS/LABA combination therapy before study screening	parallel groups	214 (12-75+)	21	BUD/FM BAI 320/9 mcg BID (71) BUD/FM pMDI 320/9 mcg BID (71) BUD pMDI 320 mcg BID (72)	FEV1 AEs

First author (Year)	Sponsor	Study Reference	Reasons for not extracting AgD	Study	Total randomized participants (age range)	Total randomized children / adolescents*	Treatments (number of participants reported)	Outcome(s) reported in the publication (does not imply adequate AgD)
			were not switched to mono- component ICS before run-in but were subsequently included in the study".					
Nathan (2010)	MERCK	Nathan RA, Nolte H, Pearlman DS; P04334 Study Investigators. Twenty-six-week efficacy and safety study of mometasone furoate/formoterol 200/10 microg combination treatment in patients with persistent asthma previously receiving medium-dose inhaled corticosteroids. Allergy Asthma Proc. 2010 Jul- Aug;31(4):269-79. doi: 10.2500/aap.2010.31.3364. Epub 2010 Jul 30.	population of both adults and children/ adolescents ICS or ICS+LABA at screening	parallel groups	781 (NA)	not possible to establish	mometasone furoate/formoterol 200/10 μg BID (191) mometasone furoate 200 μg BID (192) formotero 10 μg BID (202) placebo (196)	exacerbation (asthma deterioration) ACQ FEV1 QoL AEs
NCT00392288 or EFC6695	COVIS PHARMA	NO PUBLICATION	no publication ICS or montelukast at screening	parallel groups	501 (4-12)	501	ciclesonide MDI 40 µg BID (166) ciclesonide MDI 80 µg BID (172) placebo (163)	FEV1 symptoms
NCT00419952 or D5896C00022	AstraZeneca	NO PUBLICATION	no publication population of both adults and children/ adolescents	parallel groups	742 (NA)	not possible to establish	budesonide+formoterol pMDI 160/4.5 ug x 2 actuations (twice daily) BID (377) budesonide HFA pMDI 160 ug x 2 actuations (twice daily) BID (365)	exacerbation symptoms FEV1 AEs
NCT00442117 or P04880	MERCK	NO PUBLICATION	no publication population of both adults and children/ adolescents	parallel groups	180 (NA)	not possible to establish	mometasone furoate DPI 200 mcg, two puffs once daily PM (total of 400 mcg/day) (85) budesonide DPI DPI 200 mcg, two puffs twice daily (total of 800 mcg/day) (87)	FEV1
NCT00442559	MERCK	NO PUBLICATION	no publication unknown pre- treatment	parallel groups	191 (2-14)	191	montelukast 4/5 mg tablet (oral chewable), OD (100) ICS solution, 1-4 puffs daily (91)	symptoms
NCT00651768	AstraZeneca	NO PUBLICATION	no publication population of both adults and children/ adolescents	parallel groups	570 (NA)	not possible to establish	budesonide/formoterol Symbicort pMDI 2 X 160/4.5mcg & budesonide HFA pMDI 4 X 160mcg	exacerbation lung function AEs

First author (Year)	Sponsor	Study Reference	Reasons for not extracting AgD	Study	Total randomized	Total randomized	Treatments (number of participants reported)	Outcom
(1001)			extracting App		participants	adolescents*		publicat
					(age range)			(does no adequat
NCT01845025	Novartis	NO PUBLICATION	no publication	parallel groups	820 (NA)	not possible to	formoterol 12 mcg + fluticasone propionate 100	exacerb
(9)			population of			establish	mcg/fluticasone propionate 250 mcg/	ACQ
			children/				nuccasone propionale 500 mcg (411)	hosnital
			adolescents				mcg/fluticasone propionate 250	mortalit
			"Use of ICS,				mcg/fluticasone propionate 500 mcg (409)	AEs
			LABA,					unplanr
			ICS+LABA,					healthc
			LTRAs,					utilizatio
			neukotriene modifiers					
			anticholineraic.					
			or theophylline					
			must be					
			discontinued					
			prior to the first					
			dose of investigational					
			treatment".					
NCT02298205	Washington	NO PUBLICATION	no publication	parallel groups	206 (6-17)	206	Provider-based adjustment: The provider will	asthma
(§)	University		ICS or LTRA or				adjust the dose of Beclomethasone based on	exacert
	School of		ICS+LABA at				the participant's asthma control at their	FEV1
	Medicine		screening				encounter with them	QoL
							(Beclomethasone) adjustment strategy: The	
							participant will adjust the dose of	
							Beclomethasone based on symptoms	
NCT02495168	TEVA	NO PUBLICATION	no publication	parallel groups	1714 (12-75)	not possible to	generic budesonide/formoterol – 2 inhalations	FEV1
			population of			establish	BID (80/4.5 mcg) pMDI (501)	
			both adults and				Symbicort budesonide/formoterol – 2	
			adolescents				placebo (126)	
NCT02577497	University of	NO PUBLICATION	no publication	crossover	31 (6-17)	31	beclomethasone (31)	none of
	Virginia		ICS and/or an				fluticasone (31)	interest
			anti-leukotriene					
NCT02C40470			at screening		1420	n at a sociale to		
102049478	ΠΙΚΙΝΙΑ	NUPUBLICATION		parallel groups	1430	not possible to	Advair Diskus 100/50 mcg (NA)	
			both adults and			establish	placebo (NA)	
			children/					
			adolescents					
			ICS with or					
			without LABA,					
			LTRA,					
	1		theophylline	1	1			1

First author (Year)	Sponsor	Study Reference	Reasons for not extracting AgD	Study	Total randomized participants (age range)	Total randomized children / adolescents*	Treatments (number of participants reported)	Outcome(s) reported in the publication (does not imply adequate AgD)
NCT02680561 (§)	TEVA	NO PUBLICATION	no publication	crossover	20 (4-11)	20	fluticasone propionate MDPI (20) fluticasone propionate/salmeterol MDPI (20) fluticasone propionate/salmeterol (20)	AEs
NCT02758873	University of Sussex	NO PUBLICATION	no publication ICS with/without second line controller (i.e. LABA/LTRA) at screening	parallel groups	241 (12-18)	not possible to establish	salmeterol (NA) montelukast (NA) standard care (NA)	ACQ QoL
NCT03096327	PharmEvo Pvt Ltd	NO PUBLICATION	no publication population of both adults and children/ adolescents	parallel groups	180 (NA)	not possible to establish	montelukast 4-10 mg (NA) placebo (NA)	QoL AEs
NCT03248128 or 107116A	GSK	NO PUBLICATION	recruiting	parallel groups	870 (5-17)	870	fluticasone furoate/vilanterol 50 or 100/25 mcg DPI (NA) fluticasone furoate 50 or 100 mcg DPI (NA)	exacerbation ACQ FEV1 symptoms AEs
NCT03387241	Mundipharma	NO PUBLICATION	no publication / no plan to share IPD population of both adults and children/ adolescents	parallel groups	330 (12-75)	not possible to establish	fluticasone/formoterol fluticasone/ salmeterol	FEV1 asthma control (ACQ) exacerbation
NCT03535870	HIKMA	NO PUBLICATION	no publication / no plan to share IPD population of both adults and children/ adolescents ICS with or without LABA/LTM at screening	parallel groups	1556 (12-65)	not possible to establish	fluticasone propionate/salmeterol 100/50 mcg DPI Advair Diskus, 100/ 50 mcg DPI Placebo	FEV1
NCT03676413 (§)	Respirent Pharmaceuticals	NO PUBLICATION	no publication / no plan to share IPD population of	parallel groups	451 (NA)	not possible to establish	fluticasone propionate/salmeterol 100/50 mcg DPI BID ADVAIR DISKUS® 100/50 mcg DPI BID placebo	FEV1 AEs

	First author	Sponsor	Study Reference	Reasons for not	Study	Total	Total randomized	Treatments (number of participants reported)	Outcome(s)
1	(Year)			extracting AgD		randomized	children /		reported in the
2						participants	adolescents*		publication
3						(age range)			(does not imply
4				both adults and					adequate AgD)
5				children/					
6				adolescents					
7				ICS and LABA at					
8				screening				a	
9	NCT03756883	TEVA	NO PUBLICATION	no publication /	parallel groups	999 (12-75)	not possible to	fluticasone propionate/salmeterol DPI 100/50	FEV1
10				no plan to share			establish	mcg (485)	
10				nonulation of				propionate and salmeterol) DPI (413)	
11				both adults and				placebo (101)	
12				children/					
13				adolescents					
14	NCT03847896	Bond Avillion 2	NO PUBLICATION	no publication /	parallel groups	1001 (NA)	not possible to	budesonide/albuterol sulfate metered-dose	FEV1
15		Development		no plan to share			establish	inhaler 80/180 mcg (NA)	ACQ
16		LP		IPD				budesonide/albuterol sulfate metered-dose	
17				population of				hudosonido motorod-doso inhalor 160 mcg (NA)	
18				children/				albuterol sulfate metered-dose inhaler 180 mcg	
19				adolescents				(NA)	
20				ICS+SABA or				placebo (NA)	
21				SABA alone at					
21				screening					
22	Nielsen (2000)	AstraZeneca	Nielsen KG, Bisgaard H. The effect of	ICS or other	parallel groups	38 (2-5)	34	budesonide (19)	symptoms
23			inhaled budesonide on symptoms, lung	medicines				placebo (19)	
24			responsiveness in 2- to 5-year-old	(SABA dS needed IABA					
25			asthmatic children. Am J Respir Crit Care	sodio					
26			Med 2000;162:1500–1506.	cromoglycate -					
27				4 patients, 11%)					
28				at entry					
29	Pearlman	SkyePharma AG	Pearlman, D. S.; La-Force, C.; Kaiser, K.	population of	parallel groups	357 (NA)	not possible to	fluticasone/formoterol 100/10 mcg BID (in a	FEV1
30	(2011)		Fluticasone propionate/formoterol	both adults and			establish	single inhaler) (NA)	
31			superior efficacy to both fluticasone and	children/				formateral 10 mcg BID (NA)	
32			formoterol alone European Respiratory	congress					
33			Journal 2011;38(SUPPL. 55): European	abstract, the					
34			Respiratory Society 2011	author is retired					
35	Pearlman	AstraZeneca	David S. Pearlman, Göran Eckerwall, Julie	ICS or ICS+LABA	parallel groups	279 (6-11)	137	budesonide/formoterol pMDI 160/9 mcg BID	exacerbation
36	(2017)		McLaren, Rosa Lamarca, Margareta Puu,	at screening				(92)	FEV1
50 27			Ileen Gilbert, Carin Jorup, Kristina Sandin,					budesonide/formoterol pMDI 160/4.5 mcg BID	symptoms
رد 20			iviguel J. Lanz. Efficacy and safety of					(95) budeconido nMDI 160 mcc PID (02)	QOL A Ec
38			hudesonide nMDI in asthmatic children					מעפיסווותה לואוסו דסס ווולג פוח (אל)	AES
39			(6-<12 years). Annals of allergy, asthma &						
40			immunology : official publication of the						
41		•		•		•	•		•

First author (Year)	Sponsor	Study Reference	Reasons for not extracting AgD	Study	Total randomized participants (age range)	Total randomized children / adolescents*	Treatments (number of participants reported)	Outcome(s) reported in the publication (does not imply adequate AgD)
		American College of Allergy, Asthma, & Immunology 2017;118(4):489-499.e1						
Pearlman (2019)	_	Pearlman, D.; Nathan, R.; Meltzer, E.; Nolte, H.; Weinstein, S. Effect of Mometasone Furoate/Formoterol Combination Therapy on Nocturnal Awakenings in Subjects With Persistent Asthma. Breast (Edinburgh, Scotland) 2019;44():S63-2019	author retired and paper not found	-	-	-	-	-
Peden (1998)	GSK	Peden DB, Berger WE, Noonan MJ, Thomas MR, Hendricks VL, Hamedani AG, Mahajan P, House KW. Inhaled fluticasone propionate delivered by means of two different multidose powder inhalers is effective and safe in a large pediatric population with persistent asthma. J Allergy Clin Immunol. 1998 Jul;102(1):32- 8.	ICS or cromolyn or LABA alone at screening	parallel groups	437 (4-11)	437	fluticasone propionate 50 mcg BID Diskus (90) fluticasone propionate 100 mcg BID Diskus (87) fluticasone propionate 50 mcg BID Diskhaler (91) fluticasone propionate 100 mcg BID Diskhaler (83) placebo (86)	FEV1 symptoms AEs
Pedersen (2009)	COVIS PHARMA	Pedersen S, Engelstätter R, Weber HJ, Hirsch S, Barkai L, Emeryk A, Weber H, Vermeulen J. Efficacy and safety of ciclesonide once daily and fluticasone propionate twice daily in children with asthma. Pulm Pharmacol Ther. 2009 Jun;22(3):214-20. doi: 10.1016/j.pupt.2008.12.013. Epub 2008 Dec 27.	ICS and non-ICS at screening	parallel groups	744 (6-11)	366	ciclesonide 80 mcg OD (252) ciclesonide 160 mcg OD (242) fluticasone propionate 88 mcg BID (250)	FEV1 symptoms QoL AEs
Pedersen (2017)	COVIS PHARMA	Søren E Pedersen, Niyati Prasad, Udo- Michael Goehring, Henrik Andersson, Dirkje S Postma. Control of moderate-to- severe asthma with randomized ciclesonide doses of 160, 320 and 640 mug/day. Journal of Asthma and Allergy 2017;10():35-46	population of both adults and children/ adolescents	parallel groups	367 (12-70)	not possible to establish	ciclesonide 160 mcg/day (120) ciclesonide 320 mcg/day (122) ciclesonide 640 mcg/day (125)	FEV1 ACQ AEs
Pertseva (2012)	_	Efficacy and safety of fluticasone/formoterol compared to fluticasone alone in patients with asthma. European Respiratory Journal 2012;40(SUPPL. 56): European Respiratory Society 2012 (CONGRESS)	congress abstract population of both adults and children/ adolescents	parallel groups	438 (NA)	not possible to establish	fluticasone propionate/formoterol 250/10 mcg BID pMDI (146) fluticasone 250/10 mcg BID (146) SkyePharma pMDI fluticasone 250/10 mcg BID (146) GSK pMDI	FEV1
Peters (2016)	AstraZeneca	Stephen P. Peters, Eugene R. Bleecker, Giorgio W. Canonica, Yong B. Park, Ricardo Ramirez, Sally Hollis, Harald Fjallbrant, Carin Jorup, and Ubaldo J. Martin. Serious Asthma Events with	population of both adults and children/	parallel groups	11693 (12-65+)	1268	budesonide-formoterol 80/4.5 mcg BID (1645) budesonide 80 mcg BID (1646) budesonide-formoterol 160/4.5 mcg BID (4201) budesonide 160 mcg BID (4201)	exacerbation ACQ AEs

First author (Year)	Sponsor	Study Reference	Reasons for not extracting AgD	Study	Total randomized participants (age range)	Total randomized children / adolescents*	Treatments (number of participants reported)	Outcome(s) reported in the publication (does not imply adequate AgD)
		Budesonide plus Formoterol vs. Budesonide Alone. The New England journal of medicine 2016;375(9):850-60	adolescents ICS or ICS+LABA at screening					
Petnak (2016)(§)	_	Petnak, T.; Pornsuriysak, P.; Boonsarngsuk, V.; Amornputtisathaporn, N.; Kawamatawong, T. Effect of inhaled mometasone/formoterol vs inhaled fluticasone/salmeterol on peripheral airway function in asthma patients: a randomized open label trial. Chest 2016;150(4):16A-2016	no age range (likely naïve)	parallel groups	50	not possible to establish	mometasone/formoterol (25) fluticasone/salmeterol (25)	none of interest
Philip (2011)	MERCK	Philip G, Villarán C, Shah SR, Vandormael K, Smugar SS, Reiss TF. The efficacy and tolerability of inhaled montelukast plus inhaled mometasone compared with mometasone alone in patients with chronic asthma. J Asthma. 2011 Jun;48(5):495-502. doi: 10.3109/02770903.2011.573042. Epub 2011 May 5.	population of both adults and children/ adolescents not only ICS alone at screening (ICS+LABA and montelukast: 35%)	crossover	134 (15-74)	not possible to establish	montelukast 1 mg + mometasone 220 µg (delivered by separate dry powder inhalers) OD (66 - first period) placebo + mometasone 220 µg OD (68 - first period)	exacerbation asthma control FEV1 AEs
Phipatanakul (2003)	MERCK	Phipatanakul W, Greene C, Downes SJ, Cronin B, Eller TJ, Schneider LC, Irani AM. Montelukast improves asthma control in asthmatic children maintained on inhaled corticosteroids. Ann Allergy Asthma Immunol. 2003 Jul;91(1):49-54.	no useful data in the article	two-period parallel groups	36 (6-14)	36	ICS+montelukast (run-in dose/5 mg) (19) ICS+placebo (run-in dose) (17)	none of interest
Płoszczuk (2018)	Mundipharma	Anna Płoszczuk, Miroslava Bosheva, Kay Spooner, Tammy McIver and Sanjeeva Dissanayake (2018). Efficacy and safety of fluticasone propionate/formoterol fumarate in pediatric asthma patients: a randomized controlled trial. Ther Adv Respir Dis, 12: 1–15. DOI: 10.1177/1753466618777924	ICS (uncontrolled asthma) or ICS+LABA (controlled asthma) at screening	parallel groups	512 (5-12)	379	fluticasone propionate/formoterol pMDI 100/10 mcg BID (169) fluticasone propionate pMDI 100 mcg BID (173) fluticasone/salmeterol pMDI 100/50 mcg BID (170)	exacerbation FEV1 QoL asthma control AEs
Pohunek (2006)	AstraZeneca	Pohunek P, Kuna P, Jorup C, De Boeck K. Budesonide/formoterol improves lung function compared with budesonide alone in children with asthma. Pediatr Allergy Immunol 2006;17:458–465.	ICS (any brand) or ICS+LABA or LABA at screening	parallel groups	630 (4-11)	630	budesonide/formoterol (Symbicort) 80/4.5 mcg, two inhalations BID (216) budesonide (Pulmicort) 100 mcg, two inhalations BID (213) budesonide, 100 mcg, two inhalations BID (Pulmicort) + formoterol 4.5 mcg, two inhalations BID (Oxis) (201)	FEV1 QoL AEs

First author (Year)	Sponsor	Study Reference	Reasons for not extracting AgD	Study	Total randomized participants (age range)	Total randomized children / adolescents*	Treatments (number of participants reported)	Outcome(s) reported in the publication (does not imply adequate AgD)
Pohunek (2014)	Chiesi Farmaceutici	Pohunek, P.; Scuri, M.; Reznichenko, Y.; Varoli, G.; Mokia-Serbina, S.; Baronio, R.; Brzostek, J.; Kaczmarek, J. Bronchodilating effects of extrafine beclometasone dipropionate and formoterol fumarate via pressurized metered dose inhaler in asthmatic children. Pediatric pulmonology 2014;49(SUPPL. 37):S55 Wiley-Liss Inc. 2014	abstract	crossover	56 (5-12)	56	BDP /FF 100/12 mcg (CHF1535) BDP pMDI 100 mcg + FF 12 mcg pMDI	FEV1 AEs
Rani (2016)	_	Rani, S.; Rawal, M.; Kumar, S.; Lamba, S. To compare efficacy and safety of fixed drug combination of salmeterol / fluticasone and budesonide / formoterol on the lung functions in childhood patients with moderate persistent asthma. Indian Journal of Public Health Research and Development 2016;7(4):203-207	abstract (no data or enough information)	parallel groups	68 (NA)	68	salmeterol/fluticasone (NA) budesonide/formoterol (NA)	FEV1
Raphael (2018)	TEVA	Raphael G, Yiu G, Sakov A, Liu S, Caracta C. Randomized, double-blind trial evaluating the efficacy and safety of fluticasone propionate and fluticasone propionate/salmeterol delivered via multidose dry powder inhalers in patients with persistent asthma aged 12 years and older. J Asthma. 2018 Jun;55(6):640-650. doi: 10.1080/02770903.2017.1350971.	population of both adults and children/ adolescents ICS or ICS+LABA at screening	parallel groups	625 (12-65+)	86	fluticasone propionate 50 mcg DPI BID (125) fluticasone propionate 100 mcg DPI BID (125) fluticasone propionate/salmeterol 50/12.5 DPI BID (125) fluticasone propionate/salmeterol 100/12.5 DPI BID (125) placebo (125)	exacerbation FEV1 QoL AEs
Saeed (2018)	_	Saeed, R.; Mustafa, K.; U. Saqib N. Comparison of montelukast with fluticasone for control of Asthma in children. Medical forum monthly 2018;29(3):25-28	unknown if patients used ICS at screening	parallel groups	780 (4-10)	780	montelukast 5-10 mg OD (390) fluticasone 100 mcg BID (390)	FEV1
Shapiro (1998)	AstraZeneca	Shapiro GG, Bronsky EA, LaForce CF, Mendelson L, Pearlman D, Schwartz RH, Szefler SJ. Dose-related efficacy of budesonide administered via a dry powder inhaler in the treatment of children with moderate to severe persistent asthma. J Pediatr. 1998, 132 (6): 976-982	6-18 years not only ICS on entry triamcinolone is not on our list	parallel groups	404 (6-18)	not possible to establish	budesonide 100 mcg DPI BID (102) budesonide 200 mcg DPI BID (100) budesonide 400 mcg DPI BID (99) placebo (103)	FEV1 symptoms AEs
Shatalina (2017)	_	Shatalina, S.; Geppe, N.; Denisova, A.; Denisova, V.; Kolosova, N. Intermittent therapy with budesonide/formoterol in children with moderate asthma. European Respiratory Journal 2017;50(Supplement	congress abstract 6-18 years	parallel groups	95 (6-18)	not possible to establish	group 1: budesonide/formoterol in a fixed dose twice a day group 2: budesonide/formoterol once a day and in exacerbation of asthma patient increased budesonide/formoterol to 4 inhalations/day for	FEV1 asthma symptoms

First author (Year)	Sponsor	Study Reference	Reasons for not extracting AgD	Study	Total randomized participants (age range)	lotal randomized children / adolescents*	Treatments (number of participants reported)	reported publicati (does no adequate
		61): Netherlands European Respiratory Society 2017					7-14 days (intermittent therapy) group 3: ICS (100-200µg budesonide/day)	
Sher (2017)	ΤΕVΑ	Sher LD, Yiu G, Sakov A, Liu S, Caracta CF. Fluticasone propionate and fluticasone propionate/salmeterol multidose dry powder inhalers compared with placebo for persistent asthma. Allergy Asthma Proc. 2017 Sep 21;38(5):343-353. doi: 10.2500/aap.2017.38.4069.	population of both adults and children/ adolescents ICS or ICS+LABA at entry	parallel groups	728 (12-65+)	45	fluticasone propionate 100 mcg MDPI BID (146) fluticasone propionate 200 mcg MDPI BID (146) fluticasone propionate/salmeterol 100/12.5 mcg MDPI BID (145) fluticasone propionate/salmeterol 200/12.5 mcg MDPI BID (146) placebo (145)	FEV1 QoL AEs
Skoner (2008)	COVIS PHARMA	Skoner DP, Maspero J, Banerji D; Ciclesonide Pediatric Growth Study Group. Assessment of the long-term safety of inhaled ciclesonide on growth in children with asthma. Pediatrics. 2008 Jan;121(1):e1-14. doi: 10.1542/peds.2006-2206. Epub 2007 Dec 10. PMID: 18070931.	ICS or LTRA or SABA at screening	parallel groups	661 (5.5-9.1)	661	ciclesonide 40 mcg QD (221) ciclesonide 160 mcg QD (219) placebo (221)	FEV1 AEs (gro
Steinfeld (2015)(§)	TEVA	Steinfeld, J.; Yiu, G.; Miller, S. D. Dose- ranging study to evaluate the efficacy and safety of four doses of fluticasone propionate/salmeterol multidose dry powder inhaler (FS MDPI) compared with fluticasone propionate (FP) MDPI and FS DPI in subjects with persistent asthma. Journal of allergy and clinical immunology. 2015;135(2 SUPPL. 1):AB6 2015	conference abstract population of both adults and children/ adolescents single dose	crossover	72 (NA)	not possible to establish	fluticasone/salmeterol MDPI 100/6.25 mcg fluticasone/salmeterol MDPI 100/12.5 mcg fluticasone/salmeterol MDPI 100/25 mcg fluticasone/salmeterol MDPI 100/50 mcg fluticasone propionate MDPI 100 mcg fluticasone/salmeterol DPI 100/50 mcg	FEV1
Strunk (2008) (IPD)	CARE Network	Strunk RC, Bacharier LB, Phillips BR, Szefler SJ, Zeiger RS, Chinchilli VM, Martinez FD, Lemanske RF Jr, Taussig LM, Mauger DT, Morgan WJ, Sorkness CA, Paul IM, Guilbert T, Krawiec M, Covar R, Larsen G; CARE Network. Azithromycin or montelukast as inhaled corticosteroid- sparing agents in moderate-to-severe childhood asthma study. J Allergy Clin Immunol. 2008 Dec;122(6):1138-1144.e4. doi: 10.1016/j.jaci.2008.09.028. Epub 2008 Oct 25. PMID: 18951618; PMCID: PMC2737448.	not enough eligible patients ICS alone (uncontrolled) or ICS+LABA or other (controlled)	parallel groups	55 (6-17)	1	placebo and budesonide (400 mcg as minimum)+ salmeterol (50 mcg) BID (19) montelukast (5 or 10 mg) OD and budesonide (400 mcg as minimum)+ salmeterol (50 mcg) BID (19)	asthma AEs
Suessmuth (2003)	-	Suessmuth S, Freihorst J, Gappa M. Low- dose theophylline in childhood asthma: a placebo-controlled, double-blind study.	adolescents aged 18	parallel groups	36 (6-18)	36	ICS+theophylline 10 mg/kg bodyweight ICS+placebo	sympto lung fur

First author (Year)	Sponsor	Study Reference	Reasons for not extracting AgD	Study	Total randomized participants (age range)	Total randomized children / adolescents*	Treatments (number of participants reported)	Outcome(s) reported in the publication (does not imply adequate AgD)
		Pediatr Allergy Immunol. 2003 Oct;14(5):394-400.						
van Adelsberg (2005)	MERCK	van Adelsberg J, Moy J, Wei LX, Tozzi CA, Knorr B, Reiss TF. Safety, tolerability, and exploratory efficacy of montelukast in 6- to 24-month-old patients with asthma. Curr Med Res Opin. 2005 Jun;21(6):971-9.	50% used ICS; other medicine or no medicine used at screening and concomitant use of those during the study	parallel groups	256 (6-24 months)	128	ICS (87/175)+montelukast 4 mg (175) ICS (41/81)+placebo (81)	exacerbation (asthma attack) hospitalization AEs
Vandewalker (2017)	TEVA	Vandewalker, Mark; Hickey, Lisa; Small, Calvin J. Efficacy and safety of beclomethasone dipropionate breath- actuated or metered-dose inhaler in pediatric patients with asthma. Allergy and asthma proceedings 2017;38(5):354- 364	ICS or NCS at entry	parallel groups	628 (4-11)	445	beclomethasone dipropionate BAI 80 mcg die (126) beclomethasone dipropionate BAI 160 mcg die (125) beclomethasone dipropionate MDI 80 mcg die (125) beclomethasone dipropionate MDI 160 mcg die (125) placebo (127)	FEV1 exacerbation symptoms asthma control AEs
Venugopal (2019)(§)	-	Venugopal, S. Effect of Addition of Single Dose of Oral Montelukast to Standard Therapy in Acute Moderate Asthma in Children 5-12 Years of Age - a Randomised Double Blind Placebo Controlled Trial. American journal of respiratory and critical care medicine 2019;199(): 2019	abstract - no information on previous treatments single dose of montelukast to standard therapy in exacerbation	parallel groups	43 (5-12)	43	standard therapy+single tablet of montelukast (5mg) (29) standard therapy+single tablet of placebo (14)	none of interest
Verini (2007)	-	Verini M, Peroni D, Piacentini G, Nicodemo A, Rossi N, Bodini A, Chiarelli F, Boner A: Comparison of add-on therapy to inhaled fluticasone propionate in children with asthma: residual volume and exhaled nitric oxide as outcome measures. Allergy and asthma proceedings. 2007, 28 (6): 691-694	no data for the first period	crossover	12 (6-13)	12	fluticasone propionate 100 mcg BID + montelukast 5 mg OD (12) fluticasone propionate 100 mcg BID + salmeterol 50 mcg BID (12)	exacerbation (none) AEs (none)
von Berg (1998)	GSK	von Berg A, de Blic J, la Rosa M, Kaad PH, Moorat A. A comparison of regular salmeterol vs 'as required' salbutamol therapy in asthmatic children. Respir Med. 1998 Feb;92(2):292-9.	only 50% of patients used ICS at entry patients were allowed to use ICS, cromoglycate,	parallel groups	426 (5-15)	223	ICS (122/220) + salmeterol 50 mcg BID Diskhaler (220) ICS (101/206) + placebo (206)	exacerbation FEV1 symptoms AEs

First author (Year)	Sponsor	Study Reference	Reasons for not extracting AgD	Study	Total randomized participants (age range)	Total randomized children / adolescents*	Treatments (number of participants reported)	Outcome(s) reported in the publication (does not imply adequate AgD)
			nedocromyl, or ketotifen during the study					
Weinstein (1998)	GSK	Weinstein SF, Pearlman DS, Bronsky EA, Byrne A, Arledge T, Liddle R, Stahl E. Efficacy of salmeterol xinafoate powder in children with chronic persistent asthma. Ann Allergy Asthma Immunol. 1998 Jul;81(1):51-8.	other medicine used at screening patients were allowed to use ICS, cromolyn, nedocromil or immunotherapy during the study	parallel groups	207 (4-11)	118	ICS (no patient number)+salmeterol 50 mcg BID (102) ICS (no patient number)+placebo (105)	FEV1 AEs
Weinstein (2010)	MERCK	Weinstein SF, Corren J, Murphy K, Nolte H, White M; Study Investigators of P04431. Twelve-week efficacy and safety study of mometasone furoate/formoterol 200/10 microg and 400/10 microg combination treatments in patients with persistent asthma previously receiving high-dose inhaled corticosteroids. Allergy Asthma Proc. 2010 Jul-Aug;31(4):280-9. doi: 10.2500/aap.2010.31.3381. Epub 2010 Aug 3.	population of both adults and children/ adolescents ICS or ICS+LABA at entry	parallel groups	728 (NA)	not possible to establish	mometasone furoate/formoterol 200/10 mcg BID (233) mometasone furoate/formoterol 400/10 mcg BID (255) mometasone furoate 400 mcg BID (240)	FEV1 exacerbation ACQ QoL AEs
Weiss (2010)	MERCK	Weiss KB, Gern JE, Johnston NW, Sears MR, Jones CA, Jia G, Watkins MW, Smugar SS, Edelman JM, Grant EN. The Back to School asthma study: the effect of montelukast on asthma burden when initiated prophylactically at the start of the school year. Ann Allergy Asthma Immunol. 2010 Aug;105(2):174-81. doi: 10.1016/j.anai.2010.04.018. Epub 2010 Jul 1.	only 50% of patients used ICS	parallel groups	1162 (6-14)	597	ICS (314) + montelukast 5 mg (580) ICS (283) + placebo (582)	worsening asthma AEs
Zangrilli (2001)	AstraZeneca	Zangrilli J, Mansfield LE, Uryniak T, O'Brien CD. Efficacy of budesonide/formoterol pressurized metered-dose inhaler versus budesonide pressurized metered-dose inhaler alone in Hispanic adults and adolescents with asthma: a randomized, controlled trial. Ann Allergy Asthma Immunol. 2011 Sep;107(3):258-65.e2. doi: 10.1016/j.anai.2011.05.024. Epub 2011 Jul 14. PMID: 21875546.	population of both adults and children/ adolescents	parallel groups	250 (NA)	not possible to establish	budesonide/formoterol pMDI 160/4.5 μg × 2 inhalations (320/9 μg) twice daily (127) budesonide pMDI 160 μg × 2 inhalations (320 μg) twice daily (123)	exacerbation FEV1 symptoms AEs
* Not all reported	participants can be	e eligible for inclusion because it is not possible to	o establish if all inclu	usion criteria are me	et (e.g., pre-study tr	eatment with ICS alone	e). (§): study that may be not eligible after further ass	essment 44

Study	Data	Treatment classes	Random sequence generation	Allocation concealment	Blinding of participants and personnel	Blinding of outcome assessment	Incomplete outcome data	Selective reporting	Other bias
Akpinarli 1999	AgD	ICS+LABA	Unclear	Unclear	Unclear	Low	Unclear	Low	Low
		ICS High							
Bateman 2014	IPD	ICS Low	Low	Low	Low	Low	Low	Low	Low
		ICS+LABA							
Berger 2006	AgD	ICS Low	Low	Unclear	Unclear	High ^a	Unclear	Low	Low
		placebo							
Bernstein 2015	IPD	ICS Low	Low	Low	Low	Low	Low	Low	Low
		ICS+LABA							
Bisgaard 2006	AgD	ICS Medium	Low	Low	Low	Low	Low	Low	Low
		ICS+LABA							
Bleecker 2012	IPD	ICS High	Low	Low	Low	Low	Low	Low	Low
		ICS Low							
		ICS Medium							
		Placebo							
Bleecker 2014	IPD	ICS Low	Low	Low	Low	Low	Low	Low	Low
		ICS+LABA							
		Placebo							
Buchvald 2003 ¹	AgD	ICS Medium	Low	Unclear	Unclear	Low	Low	Low	Unclear
l		ICS+LABA							
		ICS+LTRA							
Carroll 2010	IPD	ICS Low	Unclear	Unclear	Low	Low	Low	Low	Low
		ICS+LABA							
de Blic 2009	IPD	ICS Medium	Low	Low	Low	Low	Low	Low	Low
		ICS+LABA							

Table S6. Risk of bias for included studies with individual participant data or aggregate data (parts 1 to 5)

Study	Data	Treatment classes	Random sequence generation	Allocation concealment	Blinding of participants and personnel	Blinding of outcome assessment	Incomplete outcome data	Selective reporting	Other bias
Everden 2004	AgD	ICS+LABA (SAL) ICS+LABA (FORM)	Low	High ^b	High ^b	High ^b	Low	Low	Unclear
Fitzpatrick 2016	IPD	ICS Low LTRA	Low	Low	Low	Low	High	Low	High ^c
Gappa 2009	IPD	ICS Medium ICS+LABA	Low	Low	Low	Low	Low	Low	Low
Heuck 2000	AgD	ICS+LABA ICS Medium	Low	Low	Unclear	Low	High ^d	Low	Low
Jat 2006	AgD	ICS+LTRA ICS Medium	Unclear	Unclear	Unclear	Low	High ^e	Low	Low
Kondo 2006	AgD	ICS+LTRA ICS+theophylline	Low	Unclear	High	Low	Low	Unclear	Low
Lemanske 2010	IPD	ICS Medium ICS+LABA ICS+LTRA	Low	Low	Low	Low	Low	Low	High ^f
Lenney 2013	AgD	ICS Low ICS+LABA ICS+LTRA	Low	Low	Low	Low	High	Low	Low
Li 2010	IPD	ICS Low ICS+LABA	Low	Low	Low	Low	Low	Low	Low
Lötvall 2014 a ²	IPD	ICS Low ICS Medium ICS+LABA	Low	Low	Low	Low	Low	Low	Low
Lötvall 2014 b	IPD	ICS Low ICS Medium Placebo	Low	Low	Low		Low	Low	Low
Malone 2005	AgD	ICS Low ICS+LABA	Low	Low	Low	Low	Low	Low	Low

Study	Data	Treatment classes	Random sequence generation	Allocation concealment	Blinding of participants and personnel	Blinding of outcome assessment	Incomplete outcome data	Selective reporting	Other bia
Martin 2020	IPD	ICS Medium ICS+LABA	Low	Low	Low	Low	Low	Low	High ^f
Morice 2008	AgD	ICS Low	Low	Unclear	Unclear	Low	Low	Low	Low
		ICS+LABA							
Murray 2010	IPD	ICS Medium	Low	Low	Low	Low	Low	Low	Low
		ICS+LABA							
Murray 2011	IPD	ICS Low	Low	Low	Low	Low	Low	Low	Low
		ICS+LABA							
O'Byrne 2014	IPD	ICS High	Low	Low	Low	Low	Low	Low	Low
		ICS+LABA							
Oliver 2016 a	IPD	ICS Low	Low	Low	Low	Low	Low	Low	Low
		ICS+LABA							
Oliver 2016 b	IPD	ICS Low	Low	Low	Low	Low	Low	Low	Low
		Placebo							
Pearlman 2009	IPD	ICS Low	Low	Low	Low	Low	Low	Low	Low
		ICS+LABA							
Russell 1995	AgD	ICS+LABA	Unclear	Unclear	Unclear	Unclear	Unclear	Low	Unclear
		ICS High							
Scott 2005	IPD	ICS Low	Low	Low	Low	Low	Low	Unclear	High ^g
		ICS+LABA							
Shapiro 2001	AgD	ICS Low	Unclear	Unclear	Low	Low	Unclear	Low	Low
		ICS Medium Placebo							
Simons 2001 ¹	AgD	ICS Medium	Unclear	Unclear	Low	Low	Low	Low	High ^c
		ICS+LTRA							

Study	Data	Treatment classes	Random sequence generation	Allocation concealment	Blinding of participants and personnel	Blinding of outcome assessment	Incomplete outcome data	Selective reporting	Other bias
Sorkness 2007	IPD	ICS Low	Low	Low	Low	Low	Low	Low	Low
		ICS+LABA							
		LTRA							
Stempel 2016 a	IPD	ICS Medium	Low	Low	Unclear	Low	Low	Low	Unclear
		ICS+LABA							
Stempel 2016 b	IPD	ICS High ICS Low ICS Medium ICS+LABA	Low	Low	Unclear	Low	Low	Low	Unclear
Strauch 2003	AgD	ICS High	Unclear	Unclear	Low	Low	Low	Low	Low
		ICS+LTRA							
Tal 2002	AgD	ICS Low	Low	Low	Low	Low	Low	Low	Low
		ICS+LABA							
Thomas 2014	IPD	ICS Medium	High ^h	High ^h	High ^h	Low	Low	Low	Unclear
		ICS+LABA							
		ICS+LTRA							
Vaessen- Verberne 2010	IPD	ICS Medium ICS+LABA	Low	Low	Unclear	Low	Low	Low	High ^g
Verberne 1998	IPD	ICS High	Low	Low	Low	Low	High ⁱ	Low	High ⁱ
		ICS+LABA					Ŭ		Ŭ
Vermeulen 2007	AgD	ICS Medium (CIC) ICS Medium (BUD)	Low	Low	Unclear	Low	Low	Low	Low
Visitsunthorn 2011	AgD	ICS unknown dose ICS+LTRA	Unclear	Unclear	Unclear	Low	Low	Low	High ^f

Study	Data	Treatment classes	Random sequence generation	Allocation concealment	Blinding of participants and personnel	Blinding of outcome assessment	Incomplete outcome data	Selective reporting	Other bias
Wechsler 2019	IPD	ICS High	Low	Low	Low	Low	Low	Low	High ^f
		ICS Low							
		ICS+LABA							
Woodcock 2013	IPD	ICS Low+LABA	Low	Low	Low	Low	Low	Low	Low
		ICS Medium+LABA							
Woodcock 2014	IPD	ICS High	Low	Low	Low	Low	Low	Low	Low
		ICS Low							
Zimmerman 2004	AgD	ICS Medium ICS+LABA	Unclear	Unclear	Unclear	Low	Low	Low	Unclear

¹ data could not be included in analyses as insufficient data reported for first period of cross-over

² Lötvall 2014 a included in analyses as two separate studies

^a response to therapy was assessed by the physician or a designee by comparing the current level of symptoms with those noted at the baseline visit using a 5-point scale. The method can be affected by subjectivity.

^b study medication was sourced from commercially available stock and was repackaged and administered according to a computer-generated randomization scheme provided by the sponsor. No further details

^c cross-over trial with no wash-out period

^d only 24 of 27 children were included in the analysis (11% of missing outcome data). These three withdrawn children were all in the BUD-placebo group, and two had an exacerbation requiring oral corticosteroids.

e 8 (11.3%) of 71 randomized patients were dropped out in the first two weeks and were not included in the analysis. Patients dropped out were 4 for each group, and no reasons were provided.

^f possible carry-over effect

^g no peer reviewed publication

^h no methods reported. No protocol was provided by the author

¹ possible bias as discrepancy identified between data and publication that could not be verified due to age of trial and lack of documentation

Page	95	of	27	3
------	----	----	----	---

TABLE S7 Exparticipants,	TABLE S7 Exacerbation Bayesian random-effects network meta-analysis (OR ^a , 95% CrI) with IPD and AgD (Analysis A1: 40 trials, 8168 participants, 649 events)									
TRT 1 TRT 2	ICS Low	ICS Medium	ICS High	ICS Low + LABA	ICS Medium + LABA	ICS High + LABA	ICS+LTRA	LTRA	ICS + Theophylline	Placebo
ICS Low	0	1.28 (0.67–2.44)	1.35 (0.54–3.39)	1.20 (0.73–1.95)	2.29 (1.11–5.21)	1.06 (0.41–2.77)	0.80 (0.23–2.75)	0.28 (0.04–1.68)	0.74 (0.01–41.26)	0.42 (0.18–0.91)
ICS Medium	0.78 (0.41–1.49)	0	1.05 (0.41–2.72)	0.93 (0.53–1.67)	1.79 (0.96–3.74)	0.83 (0.33–2.18)	0.63 (0.19–2.10)	0.21 (0.03–1.45)	0.58 (0.01–30.88)	0.33 (0.13–0.82)
ICS High	0.74 (0.30–1.84)	0.95 (0.37–2.44)	0	0.89 (0.35–2.18)	1.70 (0.68–4.62)	0.79 (0.36–1.72)	0.59 (0.14–2.53)	0.20 (0.02–1.52)	0.55 (0.01–32.46)	0.31 (0.09–0.98)
ICS Low + LABA	0.84 (0.51–1.38)	1.07 (0.60–1.90)	1.13 (0.46–2.83)	0	1.92 (0.95–4.31)	0.89 (0.35–2.27)	0.67 (0.20–2.27)	0.23 (0.03–1.51)	0.63 (0.01–35.16)	0.35 (0.14–0.84)
ICS Medium + LABA	0.44 (0.19–0.90)	0.56 (0.27–1.04)	0.59 (0.22–1.46)	0.52 (0.23–1.05)	0	0.46 (0.17–1.17)	0.35 (0.09–1.27)	0.12 (0.01–0.84)	0.32 (0.01–18.17)	0.18 (0.06–0.49)
ICS High + LABA	0.94 (0.36–2.41)	1.21 (0.46–3.03)	1.27 (0.58–2.80)	1.13 (0.44–2.83)	2.16 (0.85–5.87)	0	0.76 (0.18–3.25)	0.26 (0.03–1.99)	0.70 (0.01–40.85)	0.39 (0.12–1.26)
ICS+LTRA	1.25 (0.36–4.35)	1.60 (0.48–5.26)	1.68 (0.39–7.17)	1.49 (0.44–4.90)	2.86 (0.79–10.91)	1.32 (0.31–5.58)	0	0.34 (0.03–3.03)	0.93 (0.02–41.26)	0.53 (0.12–2.14)
LTRA	3.63 (0.59–24.78)	4.66 (0.69–36.97)	4.90 (0.66–42.95)	4.35 (0.66–32.14)	8.33 (1.20–69.41)	3.86 (0.50–34.12)	2.92 (0.33–28.79)	0	2.72 (0.03–230.44)	1.52 (0.21–12.18)
ICS + Theophylline	1.35 (0.02–74.44)	1.72 (0.03–95.58)	1.82 (0.03–109.95)	1.60 (0.03–86.49)	3.10 (0.06–181.27)	1.42 (0.02–84.77)	1.07 (0.02–47.94)	0.37 (0.00–29.67)	0	0.57 (0.01–31.82)
Placebo	2.39 (1.09–5.42)	3.03 (1.22–7.77)	3.22 (1.02–10.70)	2.86 (1.19–7.10)	5.47 (2.03–17.12)	2.53 (0.79–8.58)	1.90 (0.47–8.17)	0.66 (0.08–4.71)	1.77 (0.03–100.48)	0

The table compares the effect estimate for an intervention in the row with an intervention in a column (TRT 1 vs. TRT 2).

 a OR > 1 favors treatment 2 (the probability of having exacerbation was modelled); 95% CrIs that exclude unity are highlighted in bold.

OR: odds ratio; CrI: credibility interval; IPD: individual participant data; AgD: aggregate data; TRT: treatment; ICS: inhaled corticosteroid; LABA: Long-Acting β₂-Agonist; LTRA: Leukotriene Receptor Antagonist

	1							
TRT 2 TRT 1	ICS Low	ICS Medium	ICS High	ICS+LABA	ICS+LTRA	LTRA	ICS+ Theophylline	Placebo
ICS Low		1.11 (0.75; 1.63) 1.19 (0.46; 3.03)	1.42 (0.84; 2.46) 2.48 (0.90; 7.10)	1.27 (0.90; 1.79) 1.25 (0.87; 1.79)	0.75 (0.30; 1.90) 1.49 (0.32; 8.85) **	0.28 (0.05; 1.17) 033 (0.07; 1.23) **	0.74 (0.02; 27.66)	0.43 (0.28; 0.66) 0.41 (0.26; 0.64)
ICS Medium	0.90 (0.61; 1.34) 0.84 (0.33; 2.18)		1.30 (0.78; 2.14) 0.52 (0.07; 3.60)	1.15 (0.90; 1.48) 1.19 (0.92; 1.52)	0.68 (0.28; 1.65) 0.22 (0.05; 0.76) **	0.25 (0.05; 1.12)	0.68 (0.02; 24.53)	0.39 (0.22; 0.66) 0.72 (0.27; 1.90)
ICS High	0.70 (0.41; 1.20) 0.40 (0.14; 1.11)	0.77 (0.47; 1.28) <i>1.92</i> (0.28; 15.03)		0.90 (0.57; 1.40) 0.96 (0.61; 1.52)	0.52 (0.19; 1.45)	0.20 (0.04; 0.92)	0.52 (0.01; 19.69)	0.30 (0.15; 0.58) Not estimable*
ICS+LABA	0.79 (0.56; 1.11) <i>0.80 (0.56; 1.15)</i>	0.87 (0.68; 1.11) 0.84 (0.66; 1.08)	1.12 (0.71; 1.77) 1.04 (0.66; 1.65)		0.58 (0.24; 1.45) 2.46 (0.59; 12.18) **	0.22 (0.04; 0.95)	0.58 (0.02; 21.76)	0.33 (0.20; 0.56) Not estimable*
ICS+LTRA	1.64 (0.53; 3.35) 0.67 (0.13; 3.22) **	1.48 (0.61; 3.60) <i>4.48</i> (1.30; 21.12) **	1.92 (0.69; 5.16)	1.72 (0.69; 4.14) <i>0.41 (0.07; 1.58) **</i>		0.37 (0.06; 2.08)	1.00 (0.03; 32.14) 1.00 (0.08; 12.55) **	0.57 (0.21; 1.54)
LTRA	3.60 (0.85; 18.36) <i>3.32 (0.86; 13.30)</i> **	3.97 (0.90; 21.33)	5.10 (1.08; 28.50)	4.57 (1.05; 24.29)	2.69 (0.48; 16.78)		2.66 (0.05; 135.95)	1.54 (0.33; 8.33)
ICS+ Theophylline	1.35 (0.04; 49.40)	1.48 (0.04; 54.60)	1.92 (0.05; 72.97)	1.72 (0.05; 64.07)	1.00 (0.03; 33.45) 1.11 (0.10; 13.60) **	0.38 (0.01; 18.73)		0.57 (0.02; 21.76)
Placebo	2.34 (1.52; 3.63) 2.46 (1.55; 3.86)	2.59 (1.51; 4.48) 1.39 (0.53; 3.74)	3.35 (1.72; 6.55) Not estimable*	3.00 (1.79; 5.05) Not estimable*	1.75 (0.65; 4.81)	0.65 (0.12; 3.00)	1.75 (0.05; 66.02)	

Table S8. Bayesian fixed effect network meta-analysis results (IPD and AgD) for exacerbations. ICS grouped with LABA – Analysis B1

The table compares the effect estimate for an intervention in the row with an intervention in a column (TRT 1 vs. TRT 2).

39 studies, 8136 patients, 649 events - Reference treatment is: ICS+LABA, DIC: 2296.3, residual deviance: 2254.1 (on 5377 data points).

OR > 1 favours treatment 2 (the probability of having exacerbations was modelled). Results with CrI that exclude the OR value of 1 are highlighted in bold. Direct results from pairwise meta-analyses, where applicable, are in

Italic. * Not estimable: zero events in both arms; ** Estimates from Bayesian logistic regression models (Stan) (one study).

Table S9. Sensitivity analysis excluding exacerbation events identified from adverse event data: Bayesian random-effects network meta-
analysis results (IPD and AgD) for exacerbations. ICS stratified by dose when combined with LABA – Analysis A1

TRT 1 TRT 2	ICS Low	ICS Medium	ICS High	ICS Low + LABA	ICS Medium + LABA	ICS High + LABA	ICS+LTRA	LTRA	ICS + Theophylline	Placebo
ICS Low		2.34 (0.96 to 6.36)	1.93 (0.64 to 5.93)	1.34 (0.70 to 2.53)	4.10 (1.36 to 15.03)	1.26 (0.4 1to 4.18)	1.11 (0.28 to 4.76)	NA	NA	0.25 (0.07 to 0.77)
ICS Medium	0.43 (0.16 to 1.04)		0.83 (0.25 to 2.59)	0.58 (0.23 to 1.21)	1.75 (0.69 to 5.05)	0.54 (0.16 to 1.75)	0.47 (0.12 to 1.88)	NA	NA	0.11 (0.02 to 0.43)
ICS High	0.52 (0.17 to 1.55)	1.21 (0.39 to 4.01)		0.70 (0.23 to 1.97)	2.12 (0.68 to 7.92)	0.66 (0.23 to 1.93)	0.58 (0.11 to 3.03)	NA	NA	0.13 (0.02 to 0.59)
ICS Low + LABA	0.75 (0.39 to 1.42)	1.73 (0.8 3to 4.26)	1.43 (0.51 to 4.44)		3.06 (1.11 to 10.80)	0.94 (0.3 2to 3.03)	0.83 (0.22 to 3.35)	NA	NA	0.19 (0.05 to 0.68)
ICS Medium + LABA	0.24 (0.07 to 0.73)	0.57 (0.20 to 1.45)	0.47 (0.13 to 1.48)	0.33 (0.09 to 0.90)		0.31 (0.08 to 0.98)	0.27 (0.05 to 1.30)	NA	NA	0.06 (0.01 to 0.29)
ICS High + LABA	0.79 (0.24 to 2.44)	1.84 (0.57 to 6.17)	1.52 (0.52 to 4.35)	1.06 (0.33 to 3.10)	3.22 (1.02 to 12.06)		0.88 (0.17 to 4.81)	NA	NA	0.20 (0.04 to 0.95)
ICS+LTRA	0.90 (0.21 to 3.56)	2.12 (0.53 to 8.58)	1.73 (0.33 to 9.03)	1.21 (0.30 to 4.53)	3.71 (0.77 to 20.29)	1.14 (0.21 to 6.05)		NA	NA	0.23 (0.03 to 1.34)
LTRA	NA	NA	NA	NA	NA	NA	NA		NA	NA
ICS + Theophylline	NA	NA	NA	NA	NA	NA	NA	NA		NA
Placebo	3.94 (1.30 to 13.60)	9.12 (2.34 to 45.15)	7.54 (1.68 to 40.45)	5.26 (1.48 to 20.91)	15.96 (3.46 to 98.49)	4.95 (1.05 to 28.50)	4.35 (0.75 to 29.08)	NA	NA	

The table compares the effect estimate for an intervention in the row with an intervention in a column (TRT 1 vs. TRT 2).

OR (95% Crl) (29 studies, 6005 participants, 519 events). Reference treatment: ICS Low – DIC: 2152.5; Residual deviance: 2113 (on 5020 data points). OR > 1 favours treatment 2 (the probability of having exacerbation was modelled). Results with Crl that exclude the OR value of 1 are highlighted in bold. All available data included (IPD and AgD wherever available); TRT 1 = treatment 1; TRT 2 = treatment 2; OR = odds ratio; Crl = credibility interval; DIC = deviance information criterion; ICS = inhaled corticosteroid; LABA = long-acting beta-agonist; LTRA = leukotriene receptor antagonist; NA = not available

Table S10. Sensitivity analysis excluding exacerbation events identified from adverse event data: Bayesian fixed effect network meta-analysis
results (IPD and AgD) for the exacerbation outcome. ICS grouped when combined with LABA – Analysis B1

TRT 2 TRT 1	ICS Low	ICS Medium	ICS High	ICS+LABA	ICS+LTRA	LTRA	ICS+ Theophylline	Placebo
ICS Low		1.36 (0.83 to 2.23)	1.73 (0.90 to 3.32)	1.39 (0.90 to 2.16)	0.83 (0.32 to 2.18)	NA	NA	0.32 (0.19 to 0.53)
ICS Medium	0.73 (0.45 to 1.21)		1.27 (0.70 to 2.32)	1.02 (0.79 to 1.32)	0.61 (0.24 to 1.51)	NA	NA	0.24 (0.12 to 0.48)
ICS High	0.58 (0.30 to 1.11)	0.79 (0.43 to 1.42)		0.80 (0.46 to 1.38)	0.48 (0.17 to 1.35)	NA	NA	0.19 (0.08 to 0.42)
ICS+LABA	0.72 (0.46 to 1.11)	0.98 (0.76 to 1.27)	1.25 (0.73 to 2.16)		0.59 (0.24 to 1.48)	NA	NA	0.23 (0.12 to 0.44)
ICS+LTRA	1.21 (0.46 to 3.13)	1.63 (0.66 to 4.14)	2.10 (0.74 to 6.05)	1.68 (0.68to 4.18)		NA	NA	0.39 (0.13 to 1.15)
LTRA	NA	NA	NA	NA	NA		NA	NA
ICS+Theophylline	NA	NA	NA	NA	NA	NA		NA
Placebo	3.10 (1.88 to 5.16)	4.18 (2.10 to 8.50)	5.37 (2.36 to 12.18)	4.31 (2.25 to 8.33)	2.56 (0.87 to 7.61)	NA	NA	

The table compares the effect estimate for an intervention in the row with an intervention in a column (TRT 1 vs. TRT 2).

28 studies, 5973 patients, 519 events – Reference treatment is: ICS+LABA, DIC: 2160.7; Residual deviance: 2132.2 (on 4988 data points). OR > 1 favors treatment 2 (the probability of having exacerbation was modelled). Results with CrI that exclude the OR value of 1 are highlighted in bold.

All available data included (IPD and AgD wherever available); TRT 1 = treatment 1; TRT 2 = treatment 2; OR = odds ratio; CrI = credibility interval; DIC = deviance information criterion.

ICS = inhaled corticosteroid; LABA = long-acting beta-agonist; LTRA = leukotriene receptor antagonist; NA = not available

European Respiratory Journal

TRT 1 TRT2	ICS Low	ICS Medium	ICS High	ICS Low + LABA	ICS Medium + LABA	ICS High + LABA	ICS+ LTRA	LTRA	ICS + Theophylline	Placebo
ICS Low		1.82 (0.87 to 3.78)	1.67 (0.76 to 3.63)	1.32 (0.79 to 2.20)	2.32 (1.08 to 4.90)	1.04 (0.47 to 2.29)	NA	0.28 (0.06 to 1.21)	NA	0.12 (0.02 to 0.59)
ICS Medium	0.55 (0.26 to 1.15)		0.91 (0.44 to 1.93)	0.73 (0.39 to 1.35)	1.27 (0.90 to 1.77)	0.57 (0.27 to 1.22)	NA	0.15 (0.03 to 0.79)	NA	0.07 (0.01 to 0.38)
ICS High	0.60 (0.28 to 1.31)	1.09 (0.52 to 2.29)		0.79 (0.38 to 1.65)	1.39 (0.67 to 2.92)	0.63 (0.34 to 1.16)	NA	0.17 (0.03 to 0.88)	NA	0.07 (0.01 to 0.42)
ICS Low + LABA	0.76 (0.45 to 1.26)	1.38 (0.74 to 2.53)	1.26 (0.61 to 2.61)		1.75 (0.91 to 3.32)	0.79 (0.37 to 1.65)	NA	0.21 (0.04 to 0.98)	NA	0.09 (0.01 to 0.49)
ICS Medium + LABA	0.43 (0.20 to 0.92)	0.79 (0.57 to 1.11)	0.72 (0.34 to 1.49)	0.57 (0.30 to 1.09)		0.45 (0.21 to 0.96)	NA	0.12 (0.02 to 0.64)	NA	0.05 (0.01 to 0.30)
ICS High + LABA	0.96 (0.44 to 2.12)	1.75 (0.82 to 3.74)	1.60 (0.86 to 2.97)	1.27 (0.61 to 2.69)	2.23 (1.04 to 4.71)		NA	0.27 (0.04 to 1.42)	NA	0.11 (0.02 to 0.68)
ICS+LTRA	NA	NA	NA	NA	NA	NA		NA	NA	NA
LTRA	3.60 (0.83 to 18.17)	6.55 (1.26 to 39.25)	5.99 (1.14 to 36.23)	4.81 (1.02 to 26.05)	8.33 (1.55 to 50.40)	3.74 (0.70 to 22.65)	NA		NA	0.43 (0.04 to 4.22)
ICS + Theophylline	NA	NA	NA	NA	NA	NA	NA	NA		NA
Placebo	8.41 (1.70 to 52.98)	15.33 (2.66 to 109.95)	14.01 (2.39 to 100.48)	11.13 (2.05 to 75.94)	19.49 (3.35 to 141.17)	8.76 (1.48 to 62.18)	NA	2.34 (0.24 to 23.57)	NA	

 Table S11. Sensitivity analysis to explore data availability bias: Bayesian fixed effect network meta-analysis results for exacerbations. ICS

 stratified by dose when combined with LABA (IPD trials only, i.e., excluding trials with AgD only) – Analysis A1

The table compares the effect estimate for an intervention in the row with an intervention in a column (TRT 1 vs. TRT 2).

OR (95% CrI) (27 studies, 5381 patients, 328 events); Reference treatment: ICS Low – DIC: 2242.3; Residual deviance: 2212.7 (on 5381 data points). OR > 1 favours treatment 2 (the probability of having exacerbation was modelled). Results with CrI that exclude the OR value of 1 are highlighted in bold. TRT 1 = treatment 1; TRT 2 = treatment 2; OR = odds ratio; CrI = credibility interval; DIC = deviance information criterion; ICS = inhaled corticosteroid; LABA = long-acting beta-agonist; LTRA = leukotriene receptor antagonist; NA = not available

Table S12. Sensitivity analysis to explore data availability bias: Bayesian fixed effect network meta-analysis results for the exacerbation
outcome (including ICS grouped when combined with LABA). IPD trials only (i.e., excluding trials with AgD only) – Analysis B1

TRT 2 TRT 1	ICS Low	ICS Medium	ICS High	ICS+LABA	ICS+LTRA	LTRA	ICS+ Theophylline	Placebo
ICS Low		1.09 (0.61 to 1.93)	1.54 (0.79 to 3.03)	1.23 (0.75 to 1.99)	NA	0.28 (0.05 to 1.17)	NA	0.12 (0.02 to 0.59)
ICS Medium	0.91 (0.52 to 1.63)		1.40 (0.76 to 2.59)	1.13 (0.84 to 1.52)	NA	0.25 (0.05 to 1.21)	NA	0.11 (0.02 to 0.57)
ICS High	0.65 (0.33 to 1.27)	0.71 (0.39 to 1.31)		0.80 (0.47 to 1.36)	NA	0.18 (0.03 to 0.90)	NA	0.08 (0.01 to 0.44)
ICS+LABA	0.81 (0.50 to 1.34)	0.89 (0.66 to 1.20)	1.25 (0.73 to 2.14)		NA	0.23 (0.04 to 1.03)	NA	0.09 (0.01 to 0.50)
ICS+LTRA	NA	NA	NA	NA		NA	NA	NA
LTRA	3.60 (0.85 to 18.36)	3.97 (0.83 to 22.20)	5.53 (1.11 to 31.50)	4.44 (0.97 to 24.05)	NA		NA	0.42 (0.04 to 4.18)
ICS+Theophylline	NA	NA	NA	NA	NA	NA		NA
Placebo	8.58 (1.68 to 52.46)	9.39 (1.75 to 60.95)	13.20 (2.29 to 88.23)	10.59 (1.99 to 67.36)	NA	2.36 (0.24 to 23.57)	NA	

The table compares the effect estimate for an intervention in the row with an intervention in a column (TRT 1 vs. TRT 2).

OR (95% CrI) (26 studies, 5349 participants, 328 events). Reference treatment: ICS Low – DIC: 2243.4; Residual deviance: 2215.5 (on 5349 data points)

OR > 1 favours treatment 2 (the probability of having exacerbation was modelled). Results with CrI that exclude the OR value of 1 are highlighted in bold.

All available data included (IPD and AgD wherever available) – IPD = Individual Participant Data; AgD = Aggregate Data; TRT 1 = treatment 1; TRT 2 = treatment 2; OR = odds ratio; CrI = credibility interval;

DIC = deviance information criterion; ICS = inhaled corticosteroid; LABA = long-acting beta-agonist; LTRA = leukotriene receptor antagonist; NA = not available

2	
3	
4	
5	
6	
7	
, 8	
0	
10	
10	
17	
12	
17	
14	
16	
10	
1/ 10	
10	
20	
20 21	
∠ I วว	
22	
23	
24 25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
3/	
38	
39	
40	
41	
42	
43	
44	
45	

46

TABLE S13 Ast	thma Control	Bayesian fixe	d effect netwo	rk meta-analy	rsis (OR ^a , 95%	CrI) with IP	D (Analysis A2	2: 16 trials, 3027	<i>participants</i> ,
2453 events)				, j					I I ,
TRT 1 TRT 2	ICS Low	ICS Medium	ICS High	ICS Low + LABA	ICS Medium + LABA	ICS High + LABA	ICS+LTRA	LTRA	Placebo
ICS Low	0	0.94 (0.50–1.73)	1.32 (0.70–2.46)	0.86 (0.62–1.21)	0.90 (0.49–1.67)	0.68 (0.34–1.31)	0.82 (0.13–4.71)	4.31 (0.90–21.54)	1.42 (0.78–2.56)
ICS Medium	1.06 (0.58–1.99)	0	1.42 (0.73–2.72)	0.92 (0.50–1.68)	0.96 (0.73–1.27)	0.72 (0.35–1.43)	0.87 (0.14–4.95)	4.57 (0.87–25.28)	1.52 (0.66–3.42)
ICS High	0.76 (0.41–1.43)	0.70 (0.37–1.36)	0	0.65 (0.35–1.22)	0.68 (0.35–1.30)	0.51 (0.25–1.03)	0.62 (0.09–3.74)	3.25 (0.61–18.17)	1.07 (0.46–2.48)
ICS Low + LABA	1.16 (0.83–1.62)	1.08 (0.59–1.99)	1.54 (0.82–2.86)	0	1.04 (0.57–1.92)	0.78 (0.39–1.51)	0.95 (0.15–5.31)	5.00 (1.04–25.53)	1.65 (0.86–3.16)
ICS Medium + LABA	1.12 (0.60–2.05)	1.04 (0.79–1.38)	1.48 (0.77–2.83)	0.96 (0.52–1.75)	0	0.75 (0.36–1.49)	0.90 (0.14–5.21)	4.76 (0.91–26.05)	1.58 (0.69–3.60)
ICS High + LABA	1.48 (0.76–2.94)	1.39 (0.70–2.86)	1.97 (0.97–4.01)	1.28 (0.66–2.53)	1.34 (0.67–2.75)	0	1.21 (0.18–7.46)	6.36 (1.17–35.87)	2.12 (0.87–5.16)
ICS+LTRA	1.22 (0.21–7.61)	1.15 (0.20–7.10)	1.62 (0.27–10.59)	1.05 (0.19–6.69)	1.11 (0.19–6.96)	0.83 (0.13–5.53)	0	5.26 (0.52–60.34)	1.75 (0.28–11.82)
LTRA	0.23 (0.05–1.11)	0.22 (0.04–1.15)	0.31 (0.06–1.63)	0.20 (0.04–0.96)	0.21 (0.04–1.09)	0.16 (0.03–0.85)	0.19 (0.02–1.93)	0	0.33 (0.06–1.75)
Placebo	0.70 (0.39–1.28)	0.66 (0.29–1.51)	0.93 (0.40–2.16)	0.61 (0.32–1.16)	0.63 (0.28–1.45)	0.47 (0.19–1.15)	0.57 (0.08–3.53)	3.00 (0.57–16.61)	0

The table compares the effect estimate for an intervention in the row with an intervention in a column (TRT 1 vs. TRT 2).

^a OR > 1 favours treatment 1 (the probability of having good/total asthma control was modelled); 95% CrIs that exclude unity are highlighted in bold.

OR: odds ratio; CrI: credibility interval; IPD: individual participant data; TRT: treatment; ICS: inhaled corticosteroid; LABA: Long-Acting β₂-Agonist; LTRA: Leukotriene Receptor Antagonist

TRT 2 TRT 1	ICS Low	ICS Medium	ICS High	ICS+LABA	ICS+LTRA	LTRA	ICS + Theophylline	Placebo
ICS Low		0.90 (0.59 to 1.36) 0.54 (0.18 to 1.54)	1.36 (0.76 to 2.44) 0.80 (0.37 to 1.73)	0.85 (0.62 to 1.17) 0.90 (0.64 to 1.26)	0.81 (0.14 to 4.76)	4.35 (0.93 to 21.98) 3.32 (0.73 to 18.17) **	NA	1.42 (0.77 to 2.56) 1.16 (0.59 to 2.20)
ICS Medium	1.12 (0.73 to 1.68) 1.86 (0.65 to 5.42)		1.51 (0.84 to 2.69) 2.23 (0.88 to 5.53) **	0.94 (0.72 to 1.25) 0.91 (0.69 to 1.22)	0.90 (0.15 to 5.10) Not estimable (*)	4.85 (1.00 to 25.28)	NA	1.58 (0.79 to 3.13) 0.67 (0.12 to 4.01) **
ICS High	0.73 (0.41 to 1.31) 1.25 (0.58 to 2.72)	0.66 (0.37 to 1.19) 0.45 (0.18 to 1.16) **		0.63 (0.37 to 1.07) 0.53 (0.30 to 0.96)	0.59 (0.09 to 3.63)	3.19 (0.62 to 17.99)	NA	1.04 (0.46 to 2.36)
ICS+LABA	1.17 (0.85 to 1.62) 1.12 (0.79 to 1.55)	1.06 (0.80 to 1.39) 1.09 (0.82 to 1.45)	1.60 (0.93 to 2.72) 1.88 (1.04 to 3.39)		0.95 (0.16 to 5.37) 0.43 (0.06 to 2.56)	5.16 (1.08 to 26.58) 4.48 (0.70 to 53.52) **	NA	1.67 (0.88 to 3.22) 9.97 (2.01 to 59.15) **
ICS+LTRA	1.23 (0.21 to 7.39)	1.12 (0.20 to 6.62) <i>Not estimable</i>	1.68 (0.28 to 10.80)	1.05 (0.19 to 6.23) 2.34 (0.39 to 15.49)		5.42 (0.52 to 60.95)	NA	1.75 (0.28 to 11.36)
LTRA	0.23 (0.05 to 1.07) 0.27 (0.06 to 1.27) **	0.21 (0.04 to 1.00)	0.31 (0.10 to 1.62)	0.19 (0.04 to 0.92) 0.22 (0.02 to 1.54) **	0.18 (0.02 to 1.93)		NA	0.33 (0.06 to 1.68)
ICS + Theophylline	NA	NA	NA	NA	NA	NA		NA
Placebo	0.70 (0.39 to 1.30) 0.86 (0.45 to 1.68)	0.63 (0.32 to 1.26) 1.35 (0.23 to 8.08) **	0.96 (0.42 to 2.18)	0.60 (0.31 to 1.14) 0.11 (0.02 to 0.50) **	0.57 (0.09 to 3.60)	3.06 (0.59 to 17.46)	NA	

Table S14. Bayesian fixed effect network meta-analysis (IPD only) for asthma control. ICS grouped when combined with LABA – Analysis B2

The table compares the effect estimate for an intervention in the row with an intervention in a column (TRT 1 vs. TRT 2).

15 studies, 2998 patients, 2433 events. Reference treatment: ICS+LABA - DIC: 2822.5; Residual deviance: 2801.3 (on 2998 data points))

OR > 1 favors treatment 1 (the probability of having good/total asthma control was modelled). Direct results from pairwise meta-analyses, where applicable, are in Italic. Results with CrI that exclude the OR value of 1 are

highlighted in bold. ICS = inhaled corticosteroid; LABA = long-acting beta-agonist; LTRA = leukotriene receptor antagonist; OR = odds ratio; CrI = credibility interval; DIC = deviance information criterion; NA: not available; ** Estimates from Bayesian logistic regression models (Stan) (one study).

			1	1	1	-	1	[
TRT 1 TRT 2	FF	FF + VI	FP	FP + Montelukast	FP + SAL	FP + VI	Montelukast	Placebo
FF		0.51 (0.16 to 1.26)	1.63 (0.53 to 5.00)	1.58 (0.13 to 18.36)	1.73 (0.50 to 7.32)	1.68 (0.22 to 12.81)	8.17 (0.78 to 94.63)	1.54 (0.50 to 4.57)
FF + VI	1.97 (0.79 to 6.42)		3.25 (0.97 to 12.55)	3.13 (0.26 to 43.82)	3.46 (0.93 to 18.54)	3.32 (0.45 to 31.82)	16.28 (1.52 to 212.72)	3.03 (0.88 to 13.20)
FP	0.61 (0.20 to 1.90)	0.31 (0.08 to 1.03)		0.96 (0.10 to 9.03)	1.06 (0.50 to 2.91)	1.02 (0.19 to 5.58)	5.00 (0.61 to 44.70)	0.93 (0.25 to 3.35)
FP + Montelukast	0.63 (0.05 to 7.46)	0.32 (0.02 to 3.78)	1.04 (0.11 to 9.97)		1.11 (0.13 to 10.59)	1.06 (0.06 to 16.61)	5.21 (0.25 to 108.85)	0.97 (0.08 to 12.68)
FP + SAL	0.58 (0.14 to 2.01)	0.29 (0.05 to 1.07)	0.94 (0.34 to 2.01)	0.90 (0.09 to 7.77)		0.96 (0.12 to 5.70)	4.71 (0.51 to 40.45)	0.88 (0.17 to 3.56)
FP + VI	0.59 (0.08 to 4.62)	0.30 (0.03 to 2.20)	0.98 (0.18 to 5.31)	0.94 (0.06 to 15.80)	1.04 (0.18 to 8.00)		4.90 (0.36 to 75.19)	0.91 (0.11 to 7.54)
Montelukast	0.12 (0.01 to 1.28)	0.06 (0.00 to 0.66)	0.20 (0.02 to 1.63)	0.19 (0.01 to 3.97)	0.21 (0.02 to 1.95)	0.20 (0.01 to 2.80)		0.19 (0.01 to 2.16)
Placebo	0.65 (0.22 to 2.01)	0.33 (0.08 to 1.14)	1.07 (0.30 to 3.94)	1.03 (0.08 to 13.20)	1.14 (0.28 to 5.75)	1.09 (0.13 to 9.30)	5.37 (0.46 to 70.11)	

Table S15. Bayesian random-effects network meta-analysis (IPD only) for asthma control (individual compounds) – Analysis C2

The table compares the effect estimate for an intervention in the row with an intervention in a column (TRT 1 vs. TRT 2).

OR (95% CrI) (15 studies, 3014 participants, 2447 events) Reference treatment: FP – DIC: 2836.9; Residual deviance: 2808.4 (on 3014 data points)

OR > 1 favours treatment 1 (the probability of having good/total asthma control was modelled).

All available data included (only IPD) – IPD = Individual Participant Data available. Results with CrI that exclude the OR value of 1 are highlighted in bold.

FF = fluticasone furoate; VI = vilanterol; FP = fluticasone propionate; TRT 1 = treatment 1; TRT 2 = treatment 2; OR = odds ratio, CrI = credibility interval; DIC = deviance information criterion; NA = not available.

TABLE S16 FEV1 Bayesian fixed effect network meta-analysis (MD ^a , 95% CrI) with IPD and AgD (Analysis A3: 23 trials, 2518 participants)										
TRT 1 TRT 2	ICS Low	ICS Medium	ICS High	ICS unknown dose	ICS Low + LABA	ICS Medium + LABA	ICS High + LABA	ICS+LTRA	LTRA	Placebo
ICS Low	0	-0.02 (-0.13 to 0.09)	-0.16 (-0.46 to 0.15)	0.27 (-0.95 to 1.52)	-0.02 (-0.10 to 0.05)	-0.71 (-1.06 to -0.35)	0.29 (-0.05 to 0.64)	0.23 (-0.56 to1.04)	-0.15 (-0.63 to 0.33)	0.15 (0.04 to 0.27)
ICS Medium	0.02 (-0.09 to 0.13)	0	-0.14 (-0.45 to 0.16)	0.29 (-0.93 to 1.53)	-0.01 (-0.10 to 0.09)	-0.69 (-1.05 to -0.33)	0.30 (-0.04 to 0.66)	0.25 (-0.55 to 1.05)	-0.13 (-0.63 to 0.36)	0.17 (0.01 to 0.33)
ICS High	0.16 (-0.15 to 0.46)	0.14 (-0.16 to 0.45)	0	0.44 (-0.83 to 1.72)	0.14 (-0.17 to 0.43)	-0.54 (-0.81 to -0.24)	0.45 (0.25 to 0.64)	0.39 (-0.46 to 1.25)	0.02 (-0.55 to 0.58)	0.32 (-0.01 to 0.63)
ICS unknown dose	-0.27 (-1.52 to 0.95)	-0.29 (-1.53 to 0.93)	-0.44 (-1.72 to 0.83)	0	-0.30 (-1.54 to 0.92)	-0.98 (-2.27 to 0.30)	0.01 (-1.27 to 1.28)	-0.05 (-1.01 to 0.91)	-0.42 (-1.75 to 0.90)	-0.12 (-1.37 to 1.11)
ICS Low + LABA	0.02 (-0.05 to 0.10)	0.01 (-0.09 to 0.10)	-0.14 (-0.43 to 0.17)	0.30 (-0.92 to 1.54)	0	-0.68 (-1.04 to -0.33)	0.31 (-0.03 to 0.66)	0.25 (-0.54 to 1.06)	-0.12 (-0.61 to 0.36)	0.18 (0.04 to 0.31)
ICS Medium + LABA	0.71 (0.35 to 1.06)	0.69 (0.33 to 1.05)	0.54 (0.24 to 0.81)	0.98 (-0.30 to 2.27)	0.68 (0.33 to 1.04)	0	0.99 (0.67 to 1.27)	0.94 (0.07 to 1.82)	0.56 (-0.04 to 1.15)	0.86 (0.49 to 1.24)
ICS High + LABA	-0.29 (-0.64 to 0.05)	-0.30 (-0.66 to 0.04)	-0.45 (-0.64 to -0.25)	-0.01 (-1.28 to 1.27)	-0.31 (-0.66 to 0.03)	-0.99 (-1.27 to -0.67)	0	-0.06 (-0.92 to 0.81)	-0.43 (-1.02 to 0.15)	-0.13 (-0.50 to 0.22)
ICS+LTRA	-0.23 (-1.04 to 0.56)	-0.25 (-1.05 to 0.55)	-0.39 (-1.25 to 0.46)	0.05 (-0.91 to 1.01)	-0.25 (-1.06 to 0.54)	-0.94 (-1.82 to -0.07)	0.06 (-0.81 to 0.92)	0	-0.38 (-1.31 to 0.55)	-0.07 (-0.90 to 0.72)
LTRA	0.15 (-0.33 to 0.63)	0.13 (-0.36 to 0.63)	-0.02 (-0.58 to 0.55)	0.42 (-0.90 to 1.75)	0.12 (-0.36 to 0.61)	-0.56 (-1.15 to 0.04)	0.43 (-0.15 to 1.02)	0.38 (-0.55 to 1.31)	0	0.30 (-0.19 to 0.80)
Placebo	-0.15 (-0.27 to -0.04)	-0.17 (-0.33 to -0.01)	-0.32 (-0.63 to 0.01)	0.12 (-1.11 to 1.37)	-0.18 (-0.31 to -0.04)	-0.86 (-1.24 to -0.49)	0.13 (-0.22 to 0.50)	0.07 (-0.72 to 0.90)	-0.30 (-0.80 to 0.19)	0

The table compares the effect estimate for an intervention in the row with an intervention in a column (TRT 1 vs. TRT 2). ^a MD > 0 favours treatment 1; MD < 0 favours treatment 2. 95% CrIs that exclude the MD value of 0 are highlighted in bold.

FEV1 (L): forced expiratory volume in 1 second; MD: mean difference; CrI: credibility interval; IPD: individual participant data; AgD: aggregate data; TRT: treatment; ICS: inhaled corticosteroid; LABA: Long-Acting β_2 -Agonist; LTRA: Leukotriene Receptor Antagonist

TRT 1 TRT 2	ICS Low	ICS Medium	ICS High	ICS unknown dose	ICS+LABA	ICS+LTRA	LTRA	ICS + Theophylline	Placebo
ICS Low		0.00 (-0.14 to 0.14) -0.06 (-1.64 to 1.47)	-0.15 (-0.37 to 0.07) -0.38 (-2.77 to 2.08)	0.30 (-0.97 to 1.60)	-0.02 (-0.11 to 0.08) 0.00 (-0.12 to 0.17)	0.24 (-0.58 to 1.09)	-0.15 (-0.63 to 0.35) -0.10 (-0.56 to 0.41) **	NA	0.16 (0.01 to 0.30) 0.15 (-0.17 to 0.46)
ICS Medium	0.00 (-0.14 to 0.14) 0.06 (-1.47 to 1.64)		-0.15 (-0.38 to 0.09) -0.20 (-0.64 to 2.28) **	0.30 (-0.96 to 1.59)	-0.02 (-0.13 to 0.10) 0.01 (-0.30 to 0.38)	0.24 (-0.57 to 1.08) 0.76 (-0.17 to 1.69) **	-0.14 (-0.65 to 0.36)	NA	0.16 (-0.04 to 0.35) 0.12 (-1.03 to 1.29)
ICS High	0.15 (-0.07 to 0.37) 0.38 (-2.08 to 2.77)	0.15 (-0.09 to 0.38) 0.20 (-0.28 to 0.63) **		0.45 (-0.83 to 1.76)	0.13 (-0.08 to 0.35) -0.28 (-3.22 to 2.48)	0.39 (-0.43 to 1.26)	0.01 (-0.53 to 0.54)	NA	0.31 (0.05 to 0.57) 0.40 (-0.14 to 0.96) **
ICS unknown dose	-0.30 (-1.60 to 0.97)	-0.30 (-1.59 to 0.96)	-0.45 (-1.76 to 0.83)		-0.32 (-1.61 to 0.95)	-0.05 (-1.02 to 0.91) not calculated	-0.44 (-1.81 to 0.91)	NA	-0.14 (-1.44 to 1.13)
ICS+LABA	0.02 (-0.08 to 0.11) 0.00 (-0.17 to 0.12)	0.02 (-0.10 to 0.13) 0.01 (-0.38 to 0.30)	-0.13 (-0.35 to 0.08) 0.28 (-2.48 to 3.22)	0.32 (-0.95 to 1.61)		0.26 (-0.55 to 1.10) -0.02 (-0.76 to 0.77) **	-0.13 (-0.61 to 0.36) -0.20 (-0.74 to 0.34) **	NA	0.18 (0.00 to 0.34) 0.20 (-0.29 to 0.76) **
ICS+LTRA	-0.24 (-1.09 to 0.58)	-0.24 (-1.08 to 0.57) -0.78 (-1.64 to 0.14) **	-0.39 (-1.26 to 0.43)	0.05 (-0.91 to 1.02) not calculated	-0.26 (-1.10 to 0.55) 0.02 (-0.72 to 0.77) **		-0.39 (-1.37 to 0.56)	NA	-0.09 (-0.94 to 0.73)
LTRA	0.15 (-0.35 to 0.63) 0.10 (-0.40 to 0.53) **	0.14 (-0.36 to 0.65)	-0.01 (-0.54 to 0.53)	0.44 (-0.91 to 1.81)	0.13 (-0.36 to 0.61) 0.20 (-0.3 to 0.73) **	0.39 (-0.56 to 1.37)		NA	0.30 (-0.21 to 0.81)
ICS + Theophylline	NA	NA	NA	NA	NA	NA	NA		NA
Placebo	-0.16 (-0.30 to -0.01) -0.15 (-0.46 to 0.17)	-0.16 (-0.35 to 0.04) -0.12 (-1.29 to 1.03)	-0.31 (-0.57 to -0.05) -0.40 (-0.92 to 0.12) **	0.14 (-1.13 to 1.44)	-0.18 (-0.34 to 0.00) -0.20 (-0.75 to 0.27) **	0.09 (-0.73 to 0.94)	-0.30 (-0.81 to 0.21)	NA	

Table S17. Bayesian random-effects network meta-analysis (IPD and AgD) for FEV1. ICS grouped when combined with LABA – Analysis B3

The table compares the effect estimate for an intervention in the row with an intervention in a column (TRT 1 vs. TRT 2).

MD (95% CrI) from NMA with direct results from pairwise meta-analyses in Italics; 22 studies, 2486 patients; Reference treatment: ICS+LABA; DIC; 1768.4, Residual deviance: 2129.2 (on 2175 data points)

* MD > 0 favours treatment 1; MD < 0 favours treatment 2. Results with CrI that excludes the MD value of 0 are highlighted in bold. ** Estimates from Bayesian linear regression models (Stan).

TRT 1 = treatment 1; TRT 2 = treatment 2; FEV_1 = forced expiratory volume in 1 second; ICS = inhaled corticosteroid; LABA = long-acting beta-agonist; LTRA = leukotriene receptor antagonist; MD = mean difference; CrI = credibility interval; DIC = deviance information criterion; NA: not available.

TRT 1 TRT 2	FF	FF + VI	FP	FP + Montelukast	FP + SAL	FP + VI	Montelukast	Placebo
FF		-0.05 (-0.22 to 0.12)	0.07 (-0.05 to 0.19)	0.31 (-0.49 to 1.16)	0.05 (-0.09 to 0.20)	0.05 (-0.11 to 0.21)	-0.08 (-0.57 to 0.41)	0.18 (0.05 to 0.30)
FF + VI	0.05 (-0.12 to 0.22)		0.12 (-0.08 to 0.32)	0.37 (-0.44 to 1.23)	0.10 (-0.11 to 0.32)	0.10 (-0.12 to 0.33)	-0.02 (-0.54 to 0.49)	0.23 (0.03 to 0.43)
FP	-0.07 (-0.19 to 0.05)	-0.12 (-0.19 to 0.08)		0.25 (-0.55 to 1.08)	-0.02 (-0.09 to 0.06)	-0.02 (-0.12 to 0.09)	-0.14 (-0.62 to 0.33)	0.11 (-0.04 to 0.26)
FP + Montelukast	-0.31 (-1.16 to 0.49)	-0.37 (-1.23 to 0.44)	-0.25 (-1.08 to 0.55)		-0.26 (-1.10 to 0.53)	-0.26 (-1.10 to 0.53)	-0.39 (-1.36 to 0.55)	-0.14 (-0.99 to 0.66)
FP + SAL	-0.05 (-0.20 to 0.09)	-0.10 (-0.32 to 0.11)	0.02 (-0.06 to 0.09)	0.26 (-0.53 to 1.10)		0.00 (-0.13 to 0.13)	-0.13 (-0.61 to 0.35)	0.12 (-0.05 to 0.29)
FP + VI	-0.05 (-0.21 to 0.11)	-0.10 (-0.33 to 0.12)	0.02 (-0.09 to 0.12)	0.26 (-0.53 to 1.10)	0.00 (-0.13 to 0.13)		-0.13 (-0.62 to 0.36)	0.12 (-0.06 to 0.31)
Montelukast	0.08 (-0.41 to 0.57)	0.02 (-0.49 to 0.54)	0.14 (-0.33 to 0.62)	0.39 (-0.55 to 1.36)	0.13 (-0.35 to 0.61)	0.13 (-0.36 to 0.62)		0.25 (-0.25 to 0.75)
Placebo	-0.18 (-0.30 to -0.05)	-0.23 (-0.43 to -0.03)	-0.11 (-0.26 to 0.04)	0.14 (-0.66 to 0.99)	-0.12 (-0.29 to 0.05)	-0.12 (-0.31 to 0.06)	-0.25 (-0.75 to 0.25)	

Table S18. Bayesian fixed effect network meta-analysis (IPD only) for FEV1 (individual compounds) – Analysis C3

The table compares the effect estimate for an intervention in the row with an intervention in a column (TRT 1 vs. TRT 2).

MD (95% CrI) (17 studies, 1984 participants). Reference treatment: FP - DIC: 1087.7; Residual deviance: 1943.1 (on 1984 data points)

MD > 0 favours treatment 1; MD < 0 favours treatment 2. Results with CrI that excludes the MD value of 0 are highlighted in bold.

IPD = Individual Participant Data available; FEV₁ = forced expiratory volume in 1 second; FF = fluticasone furoate; VI = vilanterol; FP = fluticasone propionate; TRT 1 = treatment 1; TRT 2 = treatment 2; MD = mean difference; CrI = credibility interval; DIC = deviance information criterion.
Table S19. Direct pairwise comparisons of treatment classes (IPD and AgD) for quality of life outcome

Direct comparison	Dataa	Author Year (participants on	Studies	Participants	QoL Tool	Total score at the	Bayesian meta-analy	Bayesian meta-analysis		
TRT 1 vs TRT 2		each treatment)	(N)	(N)		last visit (average score) TRT 1 vs TRT 2 Mean (SD)	Fixed-effect model MD (95% Crl)	DIC	Random effects model MD (95% CrI)	DIC
ICS+LABA vs ICS Low	IPD AgD	Lenney 2013 (15 vs 10) ^(*) Murray 2011 (86 vs 87) ^(*) Pearlman 2009 (91 vs 79) ^(*) Wechsler 2019 (51 vs 22)	4	243 vs 198	PAQLQ	5.4 (1.6) vs 6.3 (0.9) 5.9 (0.8) vs 5.9 (0.8) 5.8 (0.9) vs 5.8 (0.9) 6.2 (0.9) vs 5.7 (1.2)	0.01 (-0.17; 0.19)	431.1	0.06 (-0.53; 0.68)	433.1
ICS+LABA vs ICS Medium	IPD	Lemanske 2010 (8 vs 6) ^(*) Thomas 2014 (11 vs 11) ^(*)	2	19 vs 17	PAQLQ	5.8 (1.0) vs 5.3 (1.4) 5.4 (1.1) vs 6.4 (0.6)	-0.91 (-1.53; -0.29)	37.6	-0.89 (-2.27; 0.50)	38.3
ICS+LTRA vs ICS Medium	IPD	Lemanske 2010 (13 vs 6) Thomas 2014 (11 vs 11)	2	24 vs 17	PAQLQ	6.2 (1.1) vs 6.6 (0.3) 6.1 (0.9) vs 6.4 (0.6)	-0.35 (-0.85; 0.18)	42.5	-0.35 (-1.68; 0.95)	43.2
ICS+LTRA vs ICS+LABA	IPD AgD	Lemanske 2010 (13 vs 8) Lenney 2013 (12 vs 15) ^(*) Thomas 2014(11 vs 11) ^(*)	3	36 vs 34	PAQLQ	6.2 (1.1) vs 5.8 (1.0) 6.3 (0.9) vs 5.4 (1.6) 6.1 (0.9) vs 5.4 (1.1)	0.59 (-0.11; 1.30)	46.7	0.60 (-0.56; 1.76)	47.6
ICS Low vs ICS High	IPD	Wechsler 2019 (22 vs 22)	1	22 vs 22	PAQLQ	5.7 (1.2) vs 6.3 (0.9)	Bayesian linear regres	sion mod	el (Stan): -0.61 (-1.23; 0.03)	
ICS+LABA vs ICS High	IPD	Wechsler 2019 (51 vs 22)	1	51 vs 22	PAQLQ	6.2 (0.9) vs 6.3 (0.9)	Bayesian linear regres	sion mod	el (Stan): -0.13 (-0.58; 0.32)	
ICS Low vs ICS+LTRA	AgD	Lenney 2013 (10 vs 12) (*)	1	10 vs 12	PAQLQ	6.3 (0.9) vs 6.3 (0.9)	Bayesian linear regres	sion mod	el (Stan): not estimable**	
ICS+LABA vs ICS Low	IPD	Bernstein 2015 (24 vs 16) Bleecker 2014 (13 vs 14)	2	37 vs 30	AQLQ	5.5 (1.1) vs 5.4 (1.1) 6.3 (0.7) vs 5.9 (0.6)	0.31 (-0.15; 0.75)	14.4	0.27 (-1.10; 1.62)	16
ICS+LABA vs ICS High	IPD	O'Byrne 2014 (3 vs 5) ^(§) Wechsler 2019 (21 vs 10)	2	24 vs 15	AQLQ	6.1 (0.3) vs 5.6 (1.5) 6.1 (0.8) vs 6.5 (0.5)	-0.17 (-0.50; 0.17)	113.3	-0.03 (-1.57; 1.72)	114.2
placebo vs ICS Low	IPD	Bleecker 2014 (21 vs 14) Lötvall 2014 b (14 vs 15)	2	35 vs 29	AQLQ	5.5 (0.9) vs 5.9 (0.6) 5.9 (0.7) vs 6.2 (0.6)	-0.32 (-0.66; 0.03)	59.7	-0.29 (-1.45; 1.03)	60.4
ICS Medium vs ICS Low	IPD	Lötvall 2014 b (10 vs 15)	1	10 vs 15	AQLQ	5.6 (1.3) vs 6.2 (0.6)	Bayesian linear regres	sion mod	el (Stan): -0.55 (-1.33; 0.23)	
placebo vs ICS Medium	IPD	Lötvall 2014 b (14 vs 10)	1	14 vs 10	AQLQ	5.9 (0.7) vs 5.6 (1.3)	Bayesian linear regres	sion mod	el (Stan): 0.31 (-0.50; 1.16)	
placebo vs ICS+LABA	IPD	Bleecker 2014 (21 vs 13)	1	21 vs 13	AQLQ	5.5 (0.9) vs 6.3 (0.7)	Bayesian linear regres	sion mod	el (Stan): -0.81 (-1.39; -0.27	')

MD > 0 favors TRT 1; MD < 0 favors TRT 2

^aAll data available were used (IPD and AgD where possible); IPD = individual participant data; AgD = aggregate data

(*) ICS Low+LABA

(§) ICS High+LABA

** Same mean and SD in both arms (constant)

TRT = treatment; QoL = quality of life; SD = standard deviation; MD = mean difference; CrI = credibility interval; DIC = deviance information criterion; NA = not available; ICS = inhaled corticosteroids;

LABA = long-acting beta-agonist; LTRA = leukotriene receptor antagonist; AQLQ = asthma quality of life questionnaire; PAQLQ = paediatric asthma quality of life questionnaire.

Table S20. Hospital admissions

Author Year	Data	Treatment class	Compounds	No. of patients	Was the patient hospitalized due to an asthma attack? No. (%)
Bateman 2014	IPD	ICS Low	FF	102	0
		ICS+LABA	FF+VI	111	3 (2.7%)
De Blic 2009	IPD	ICS Medium	FP	153	0
		ICS+LABA	FP+SAL	150	1 (0.7%)
Stempel 2016 a	IPD	ICS Medium	FP	813	4 (0.5%)
		ICS+LABA	FP+SAL	818	5 (0.6%)
Stempel 2016 b	IPD	ICS High	FP	40	0
		ICS Low	FP	15	0
		ICS Medium	FP	50	0
		ICS+LABA	FP+SAL	117	2 (1.7%)
Wechsler 2019	IPD	ICS High	FP	45	1 (2.2%)
		ICS Low	FP	33	0
		ICS+LABA	FP+SAL	93	1 (1.1%)

IPD: individual participant data; LABA: long-acting beta₂-agonist; FF: fluticasone furoate; VI: vilanterol; FP: fluticasone propionate; SAL: salmeterol.

Network meta-regression to explore effect modifiers

We compared the DIC between network meta-regression (NMR) models with and without interaction terms and found no overall evidence of interactions in any of the models. However, for some models there were non-zero interaction regression coefficients, which are described further below. The lack of consistent robust statistical evidence and clinical rationale to support these suggested effects, along with issues of small numbers of patients in some analyses suggests that these results should be viewed very cautiously, they are potentially spurious and should not be over-interpreted. Further research would be needed to explore these effects in more detail, and we note that recommendations regarding the treatment and care of patients would not differ according to any of the studied covariates.

Exacerbation

We did not detect any "treatment by covariate" interaction for age (24 trials, 4929 participants), sex (26 trials, 5349 participants), eczema (8 trials, 2469 participants), and eosinophilia (13 trials, 1898 participants), based on interpretation of the 95% CrI of the interaction regression coefficient and comparison of DIC for models with and without interactions (eTable 18). For the covariates ethnicity (27 trials, 5645 participants) and baseline severity (21 trials, 2916 participants), the DIC comparison did not suggest evidence for an interaction, and the fixed effect model without interactions was the most appropriate model overall. However, the 95% CrI of the interaction regression coefficients (difference in the log odds ratio for levels of the covariate) excludes zero for some comparisons:
(1) *ethnicity*: ICS Medium (OR, -1.25; 95% CrI, -2.47 to -0.18), ICS+LABA (OR, -1.09; 95% CrI, -2.27 to -0.06), and placebo (OR, -2.70; 95% CrI, -5.19 to -0.24) against ICS Low;

(2) baseline severity: ICS Medium (OR, 2.11; 95% CrI, 0.32 to 3.89) against ICS Low;

suggesting possible interaction effects (Table S22). The corresponding subgroup level effects have 95% credibility intervals that overlap across subgroup levels for ethnicity and baseline severity (Tables S23, S24). Furthermore, the 95% credibility intervals mostly include the null effect (unity) apart from comparisons with placebo and LTRA for ethnicity with results that are consistent in clinical interpretation with main effect analyses (Table S7). The NMR for baseline severity suggests an advantage to ICS Low over ICS Medium for severe asthma (OR, 0.04; 95% CrI, 0.00 to 0.68) but this is based on sparse data (Table S22) and isn't supported by clinical rationale. Overall, we do not consider that the network meta-regression analyses provide sufficiently robust, conclusive evidence of interaction effects to justify any deviation from the main network meta-analysis results (Table S7).

Asthma control

The network meta-regression analyses for asthma control did not identify any effect modifiers based on interpretation of the 95% CrI of the estimated interaction regression coefficients and comparison of DIC for models with and without interactions (Tables S25, S26) for all covariates considered: age (15 trials, 2998 participants), sex (15 trials, 2998 participants), ethnicity (15 trials, 2998 participants), eczema (6 trials, 1968 participants), eosinophilia (12 trials, 1192 participants), and baseline severity (13 trials, 1074 participants). No AgD were available.

FEV₁

The network meta-regression analyses for FEV₁ did not identify "treatment by covariate" interactions based on the 95% CrI and comparison of DIC for models with and without interactions for covariates age (19 trials, 1689 participants), ethnicity (19 trials, 1908 participants), and eczema (5 trials, 455 participants) (Table S27). For the covariate "*sex*" (20 trials, 1937 participants), although the comparison of DIC of different models did not suggest an interaction (random-effects without interactions is the most appropriate model), the 95% CrI for the "treatment by sex" interaction regression coefficient (difference in the MD for females compared to the MD for males) excludes the zero null effect for LTRA vs ICS+LABA (Table S28), and corresponding subgroup level effects suggest benefit for LTRA for females (Table S29). However, we do not consider these results to be sufficiently robust to claim a conclusive interactions. Similarly, for the covariate "*eosinophilia*" (11 trials, 1024 participants), the comparison of DIC of different models did not suggest an interaction (fixed effect without interactions is the most appropriate model), but the 95% CrI for the "treatment by eosinophilia" interaction regression coefficient excludes the zero-null effect for ICS+LABA vs ICS Low (Table S28). However, the 95% credibility intervals for corresponding subgroup level MDs overlap between subgroup levels for all comparisons (Table S30); therefore, we conclude that there is insufficient evidence to suggest an interaction between treatment and "*eosinophilia*".

			• • • • /		• •
Table S21. Model comparison	assessments from network	meta-analysis model	is including interac	tions for the outcom	e exacerbation

Interaction	Model	Number of trials (number of participants)	Number of data points	Residual deviance	Effective number of parameters (Pd)	Deviance information Criterion (DIC)	Between trial standard deviation
	Fixed-effect without interactions	24 (4,929)	4929	2052.7	27.4	2080.0	-
Treatment by age	Fixed-effect with interactions	24 (4,929)	4929	2052.0	33.1	2085.1	-
	Random-effects with interactions	24 (4,929)	4929	2049.1	36.4	2085.5	0.47 (0.02, 1.37)
	Fixed-effect without interactions	26 (5,349)	5349	2216.2	29.5	2245.7	-
Treatment by sex	Fixed-effect with interactions	26 (5,349)	5349	2216.7	34.7	2251.5	-
	Random-effects with interactions	26 (5,349)	5349	2215.1	38.0	2253.1	0.34 (0.01, 1.01)
Treestreent her	Fixed-effect without interactions	27 (5,645)	5351	2215.8	30.3	2246.1	-
athnicity	Fixed-effect with interactions	27 (5,645)	5351	2210.3	34.8	2245.0	-
einnicuy	Random-effects with interactions	27 (5,645)	5351	2209.7	37.3	2246.9	0.22 (0.01, 0.85)
Two stars and has	Fixed-effect without interactions	8 (2,469)	2439	1312.4	12.3	1324.7	-
I reatment by	Fixed-effect with interactions	8 (2,469)	2439	1313.9	16.7	1330.6	-
eczema	Random-effects with interactions	8 (2,469)	2439	1313.4	18.5	1331.9	0.69 (0.02, 2.44)
Tuesday and have	Fixed-effect without interactions	13 (1,898)	1898	600.3	15.9	616.1	-
1 reatment by	Fixed-effect with interactions	13 (1,898)	1898	601.8	20.3	622.1	-
eosinopnilla	Random-effects with interactions	13 (1,898)	1898	596.0	23.6	619.7	1.04 (0.09, 3.17)
Treatment by	Fixed-effect without interactions	21 (2,916)	2916	741.7	22.1	763.8	-
(based on FEV)	Fixed-effect with interactions	21 (2,916)	2916	740.2	25.4	765.7	-
$(buseu on FEV_1)$	Random-effects with interactions	21 (2,916)	2916	736.0	29.8	765.9	0.87 (0.04, 3.07)

Table S22. Parameter estimates (Posterior mean [95% CrI]) from NMR models including interactions for the outcome ex	acerbation
---	------------

Interaction	Comparison	Fixed-effect with interacti	ons	Random-effects with intera	ctions
		Log OR at the mean	Regression coefficient treatment by	Log OR at the mean covariate	Regression coefficient treatment
		covariate value (95% CrI)	covariate interaction (95% CrI)	value (95% CrI)	by covariate interaction (95% CrI)
Treatment by	ICS High vs ICS Low	-0.33 (-1.05 to 0.39)	0.02 (-0.16 to 0.19)	-0.31 (-1.33 to 0.74)	0.00 (-0.19 to 0.19)
age	ICS Medium vs ICS Low	-0.19 (-0.81 to 0.42)	0.11 (-0.04 to 0.26)	-0.29 (-1.35 to 0.66)	0.11 (-0.04 to 0.27)
(24 trials, 4929	ICS+LABA vs ICS Low	-0.28 (-0.78 to 0.22)	0.09 (-0.04 to 0.21)	-0.23 (-0.86 to 0.47)	0.07 (-0.08 to 0.21)
participants)	LTRA vs ICS Low	-2.74 (-9.05 to 2.74)	-0.65 (-1.60 to 0.19)	-2.83 (-9.25 to 2.89)	-0.66 (-1.60 to 0.19)
	placebo vs ICS Low	2.41 (0.65 to 4.44)	0.20 (-0.23 to 0.67)	2.28 (0.18 to 4.52)	0.21 (-0.22 to 0.69)
Treatment by	ICS High vs ICS+LABA	-0.23 (-0.78 to 0.30)	0.27 (-0.56 to 1.11)	-0.26 (-1.03 to 0.47)	0.28 (-0.56 to 1.12)
sex	ICS Low vs ICS+LABA	0.24 (-0.26 to 0.72)	-0.02 (-0.80 to 0.75)	0.22 (-0.40 to 0.80)	-0.03 (-0.80 to 0.76)
(26 trials, 5349	ICS Medium vs ICS+LABA	0.12 (-0.18 to 0.42)	-0.28 (-0.85 to 0.28)	0.13 (-0.45 to 0.73)	-0.28 (-0.84 to 0.27)
participants)	LTRA vs ICS+LABA	1.53 (-0.03 to 3.27)	0.94 (-0.84 to 2.76)	1.51 (-0.34 to 3.44)	0.95 (-0.84 to 2.80)
	placebo vs ICS+LABA	2.33 (0.35 to 4.49)	-1.80 (-5.21 to 0.56)	2.28 (0.18 to 4.56)	-1.78 (-5.06 to 0.55)
Treatment by	ICS High vs ICS Low	-0.52 (-1.51 to 0.32)	-0.55 (-2.97 to 2.65)	-0.54 (-1.66 to 0.41)	-0.50 (-2.97 to 2.91)
ethnicity	ICS Medium vs ICS Low	-0.08 (-0.66 to 0.52)	-1.25 (-2.47 to -0.18)	-0.06 (-0.77 to 0.70)	-1.21 (-2.40 to -0.11)
(27 trials, 5645	ICS+LABA vs ICS Low	-0.19 (-0.70 to 0.32)	-1.09 (-2.27 to -0.06)	-0.18 (-0.75 to 0.39)	-1.03 (-2.20 to 0.04)
participants)	LTRA vs ICS Low	not estimable	not estimable	not estimable	not estimable
	placebo vs ICS Low	1.19 (0.59 to 1.80)	-2.70 (-5.19 to -0.24)	1.24 (0.43 to 2.15)	-2.61 (-5.14 to -0.06)
Treatment by	ICS High vs ICS Medium	-0.01 (-1.34 to 1.52)	-1.89 (-4.40 to 0.43)	0.00 (-1.88 to 2.02)	-1.88 (-4.46 to 0.45)
eczema	ICS Low vs ICS Medium	0.07 (-1.14 to 1.52)	-1.04 (-3.06 to 0.63)	0.05 (-1.94 to 2.21)	-0.99 (-3.06 to 0.71)
(8 trials, 2469	ICS+LABA vs ICS Medium	-0.04 (-1.20 to 1.37)	-1.29 (-3.30 to 0.37)	0.01 (-1.74 to 1.97)	-1.22 (-3.29 to 0.48)
participants)	ICS+LTRA vs ICS Medium	not estimable	not estimable	not estimable	not estimable
	LTRA vs ICS Medium	1.49 (-0.40 to 3.48)	-0.67 (-3.34 to 2.05)	1.46 (-1.18 to 4.18)	-0.63 (-3.39 to 2.13)
	placebo vs ICS Medium	not estimable	not estimable	not estimable	not estimable
Treatment by	ICS High vs ICS Low	-1.20 (-2.72 to 0.02)	-1.38 (-4.73 to 1.18)	-1.67 (-4.91 to 0.57)	-1.38 (-4.66 to 1.11)
eosinophilia	ICS Medium vs ICS Low	not estimable	not estimable	not estimable	not estimable
(13 trials, 1898	ICS+LABA vs ICS Low	-0.40 (-0.98 to 0.16)	-0.28 (-1.31 to 0.75)	-0.44 (-1.94 to 0.98)	-0.25 (-1.31 to 0.79)
participants)	LTRA vs ICS Low	1.12 (-0.45 to 2.86)	0.18 (-2.19 to 2.39)	1.09 (-2.36 to 4.37)	0.19 (-2.22 to 2.41)
	placebo vs ICS Low	2.15 (0.29 to 4.26)	1.32 (-0.79 to 3.61)	1.88 (-0.97 to 4.76)	1.37 (-0.78 to 3.69)
Treatment by	ICS High vs ICS Low	-0.38 (-1.31 to 0.55)	0.71 (-0.39 to 1.85)	-1.24 (-5.13 to 0.71)	0.65 (-0.47 to 1.80)
baseline severity	ICS Medium vs ICS Low	0.04 (-1.57 to 1.61)	2.11 (0.32 to 3.89)	-0.31 (-3.02 to 1.81)	2.01 (0.16 to 3.89)
(21 trials, 2916	ICS+LABA vs ICS Low	-0.10 (-0.74 to 0.55)	0.49 (-0.43 to 1.47)	-0.32 (-1.79 to 0.79)	0.39 (-0.59 to 1.40)
participants)	placebo vs ICS Low	2.40 (0.60 to 4.54)	0.64 (-1.45 to 2.78)	2.22 (-0.48 to 4.98)	0.61 (-1.44 to 2.73)

Bold indicates that zero is excluded from the credibility interval. Regression coefficient: change in the log OR per unit increase in the covariate value.

	TRT 1 TRT 2	ICS Medium	ICS High	ICS+LABA	LTRA	Placebo
	ICS Low	0.43	1.12	0.54	Not	0.04
00	N=418	(0.13 to 1.21)	(0.11 to 27.11)	(0.17 to 1.43)	estimable	(0.01 to 0.28)
atin		ICS Medium	2.61	1.26	Not	0.10
L ²		N = 258	(0.32 to 56.83)	(0.75 to 2.12)	estimable	(0.01 to 0.62)
or 14:			ICS High	0.48	Not	0.04
i i			N = 18	(0.02 to 3.86)	estimable	(0.00 to 0.61)
(N N				ICS+LABA	Not	0.08
isp				N = 698	estimable	(0.01 to 0.49)
H					LTRA	Not
					N = 3	estimable
	ICS Low	1.49	1.93	1.60	0.26	0.61
Ł	N = 941	(0.80 to 2.72)	(0.95 to 3.97)	(0.94 to 2.69)	(0.05 to 1.09)	(0.27 to 1.42)
10		ICS Medium	1.30	1.07	0.17	0.41
0 88		N = 1014	(0.69 to 2.51)	(0.75 to 1.52)	(0.03 to 0.83)	(0.15 to 1.13)
par tin 413			ICS High	0.83	0.13	0.31
lis 			N = 226	(0.47 to 1.42)	(0.02 to 0.67)	(0.11 to 0.91)
L I (N				ICS+LABA	0.16	0.38
No				N = 1824	(0.03 to 0.75)	(0.15 to 1.00)
					LTRA	2.36
					N = 27	(0.45 to 15.03)

Table S23. Odds ratios (95% CrI) from fixed effect NMR with "treatment by ethnicity" interactions for the outcome exacerbation

The table compares the effect estimate for an intervention in the row with an intervention in a column (TRT 1 vs. TRT 2).

OR > 1 favours TRT 2 (all data included, IPD and AgD where possible). 95% CrIs that exclude unity are highlighted in bold N = number of participants; TRT = treatment; ICS = inhaled corticosteroids; LABA = long-acting beta₂-agonists; LTRA = leukotriene receptor antagonists.

	TRT 1 TRT 2	ICS Medium	ICS High	ICS+LABA	Placebo*
	ICS Low N = 544	2.64 (0.41 to 20.29)	2.05 (0.75 to 5.64)	1.39 (0.65 to 3.00)	0.12 (0.01 to 1.16)
Mild (N = 1716, 60 events		ICS Medium N = 236	0.78 (0.10 to 5.05)	0.53 (0.08 to 3.10)	0.05 (0.00 to 0.76)
			ICS High N = 98	0.68 (0.31 to 1.46)	0.06 (0.01 to 0.64)
				ICS+LABA N = 788	0.09 (0.01 to 0.88)
(8	ICS Low N = 416	0.32 (0.06 to 1.62)	1.00 (0.32 to 3.13)	0.85 (0.36 to 1.93)	0.06 (0.01 to 0.48)
rate 40 events		ICS Medium N = 73	3.16 (0.57 to 16.78)	2.69 (0.61 to 11.47)	0.20 (0.02 to 2.01)
Mode = 1007, [.]		<u></u>	ICS High N = 60	0.85 (0.35 to 2.10)	0.06 (0.01 to 0.58)
N)				ICS+LABA N = 392	0.08 (0.01 to 0.59)
	ICS Low N = 49	0.04 (0.00 to 0.68)	0.49 (0.06 to 3.53)	0.52 (0.10 to 2.44)	0.03 (0.00 to 1.32)
re 5 events)		ICS Medium N = 6	12.68 (0.65 to 204.38)	13.60 (0.89 to 152.93)	0.89 (0.02 to 43.82)
Seve [= 193, 4		L	ICS High N = 5	1.06 (0.20 to 5.64)	0.07 (0.00 to 2.77)
N)			L	ICS+LABA N = 130	0.07 (0.00 to 2.27)

Table S24. Odds ratios (95% CrI) from fixed effect NMR with "treatment by baselineseverity" interactions for the outcome exacerbation

The table compares the effect estimate for an intervention in the row with an intervention in a column (TRT 1 vs. TRT 2).

OR > 1 favours TRT 2 (all data included, only IPD). 95% CrIs that exclude unity are highlighted in bold. N = number of participants; TRT = treatment; ICS = inhaled corticosteroids; LABA = long-acting beta2-agonists; *placebo (mild), N = 50; (moderate) N = 66; (severe) N = 3.

Table S25. Model comparison assessments from network meta-analysis models including interactions for the outcome asthma control

Interaction	Model	Number of trials (number of participants)	Number of data points	Residual deviance	Effective number of parameters (Pd)	Deviance information Criterion (DIC)	Between trial standard deviation
	Random-effects without interactions	15 (2998)	2998	2797.0	27.8	2824.8	0.43 (0.03,1.02)
Treatment	Fixed-effect with interactions	15 (2998)	2998	2804.6	29.2	2833.9	-
by age	Random-effects with interactions	15 (2998)	2998	2790.8	36.7	2827.5	0.75 (0.19,1.47)
Treatment	Fixed-effect without interactions	15 (2998)	2998	2800.7	22.5	2823.2	-
hv ser	Fixed-effect with interactions	15 (2998)	2998	2799.2	28	2827.2	-
by sex	Random-effects with interactions	15 (2998)	2998	2793.1	33	2826.1	0.44 (0.03,1.06)
	Fixed-effect without interactions	15 (2998)	2998	2802.6	22.7	2825.3	-
I reatment	Fixed-effect with interactions	15 (2998)	2998	2805.2	28.9	2834.1	-
by ennicity	Random-effects with interactions	15 (2998)	2998	2798.4	34.7	2833.1	0.49 (0.04,1.11)
Treatment	Fixed-effect without interactions	6 (1968)	1968	1607.3	12.3	1619.5	-
hy eczema	Fixed-effect with interactions	6 (1968)	1968	1610.0	17.6	1627.6	-
ву селети	Random-effects with interactions	6 (1968)	1968	1608.6	17.6	1626.2	0.29(0.01,0.87)
Treatment	Fixed-effect without interactions	12 (1192)	1192	1326.2	19.5	1345.7	-
by	Fixed-effect with interactions	12 (1192)	1192	1328.7	26.3	1355.0	-
eosinophilia	Random-effects with interactions	12 (1192)	1192	1325.1	30	1355.1	0.54 (0.02,1.52)
Treatment by <i>Baseline</i>	Fixed-effect without interactions	13 (1074)	1074	1187.2	20.5	1207.6	-
severity	Fixed-effect with interactions	13 (1074)	1074	1187.3	25.5	1212.7	-
(based on FEV1)	Random-effects with interactions	13 (1074)	1074	1177.8	30.8	1208.7	1.09 (0.08,2.78)

Table S26. Parameter estimates (Posterior mean [95% CrI]) from NMR models including interactions for the outcome asthma control

Model		Fixed-effect NMA with inte	ractions	Random-effects NMA with interactions		
		Log odds ratio at the mean covariate value (95% CrI)	Regression coefficient for the treatment by covariate interaction (95% CrI)	Log odds ratio at the mean covariate value (95% CrI)	Regression coefficient for the treatment by covariate interaction (95% CrI)	
Treatment by age	ICS High vs ICS+LABA	-0.56 (-1.27 to 0.17)	0.01 (-0.15 to 0.17)	-0.98 (-2.36 to 0.22)	0.12 (-0.08 to 0.33)	
	ICS Low vs ICS+LABA	-0.20 (-0.55 to 0.15)	0.01 (-0.07 to 0.10)	-0.51 (-1.38 to 0.23)	0.04 (-0.07 to 0.16)	
	ICS Medium vs ICS+LABA	-0.09 (-0.37 to 0.20)	-0.07 (-0.15 to 0.01)	0.36 (-0.55 to 1.44)	-0.10 (-0.21 to 0.00)	
	ICS+LTRA vs ICS+LABA	0.06 (-1.69 to 1.96)	-0.04 (-0.45 to 0.43)	0.19 (-2.06 to 2.59)	-0.04 (-0.45 to 0.43)	
	LTRA vs ICS+LABA	-1.57 (-3.21 to 0.08)	-0.15 (-0.70 to 0.36)	-1.83 (-4.16 to 0.35)	-0.14 (-0.68 to 0.35)	
	placebo vs ICS+LABA	-0.46 (-1.19 to 0.30)	-0.05 (-0.23 to 0.12)	-0.69 (-2.16 to 0.70)	-0.01 (-0.25 to 0.23)	
Treatment by sex	ICS High vs ICS+LABA	-0.43 (-0.98 to 0.15)	-0.08 (-1.05 to 0.86)	-0.45 (-1.27 to 0.37)	-0.04 (-1.00 to 0.92)	
	ICS Low vs ICS+LABA	-0.17 (-0.50 to 0.15)	0.48 (-0.03 to 1.00)	-0.30 (-0.90 to 0.19)	0.48 (-0.03 to 0.99)	
	ICS Medium vs ICS+LABA	-0.06 (-0.34 to 0.22)	0.14 (-0.34 to 0.63)	0.00 (-0.65 to 0.72)	0.14 (-0.35 to 0.62)	
	ICS+LTRA vs ICS+LABA	not estimable	not estimable	not estimable	not estimable	
	LTRA vs ICS+LABA	-2.03 (-3.97 to -0.23)	-1.85 (-5.50 to 1.16)	-2.15 (-4.37 to -0.14)	-1.85 (-5.63 to 1.26)	
	placebo vs ICS+LABA	-0.48 (-1.12 to 0.18)	-0.49 (-1.57 to 0.58)	-0.58 (-1.58 to 0.35)	-0.56 (-1.65 to 0.53)	
Treatment by <i>ethnicity</i>	ICS High vs ICS+LABA	-0.53 (-1.09 to 0.05)	0.43 (-0.86 to 1.68)	-0.51 (-1.39 to 0.36)	0.22 (-1.12 to 1.53)	
	ICS Low vs ICS+LABA	-0.17 (-0.49 to 0.16)	0.07 (-0.44 to 0.57)	-0.32 (-0.96 to 0.21)	0.15 (-0.39 to 0.69)	
	ICS Medium vs ICS+LABA	-0.05 (-0.32 to 0.23)	-0.05 (-0.61 to 0.49)	0.05 (-0.66 to 0.84)	-0.03 (-0.60 to 0.52)	
	ICS+LTRA vs ICS+LABA	0.49 (-1.51 to 2.92)	1.24 (-1.77 to 4.89)	0.51 (-1.67 to 3.12)	1.23 (-1.75 to 4.75)	
	LTRA vs ICS+LABA	-1.49 (-3.21 to 0.25)	-1.00 (-4.45 to 1.82)	-1.59 (-3.63 to 0.41)	-1.00 (-4.56 to 1.79)	
	placebo vs ICS+LABA	-0.52 (-1.15 to 0.15)	0.94 (-0.22 to 2.10)	-0.69 (-1.77 to 0.28)	1.17 (-0.12 to 2.54)	
Treatment by eczema	ICS High vs ICS+LABA	-0.82 (-1.45 to -0.18)	-0.02 (-1.12 to 1.07)	-0.73 (-1.49 to 0.13)	-0.09 (-1.21 to 1.01)	
	ICS Low vs ICS+LABA	-0.91 (-1.76 to -0.04)	0.52 (-0.73 to 1.74)	-0.79 (-1.69 to 0.18)	0.45 (-0.84 to 1.70)	
	ICS Medium vs ICS+LABA	-0.06 (-0.35 to 0.22)	0.50 (-0.16 to 1.18)	0.04 (-0.48 to 0.81)	0.47 (-0.20 to 1.16)	
	ICS+LTRA vs ICS+LABA	0.16 (-1.64 to 2.14)	0.02 (-3.06 to 3.58)	0.22 (-1.53 to 2.11)	-0.03 (-2.67 to 2.96)	
	LTRA vs ICS+LABA	-2.28 (-4.07 to -0.53)	0.73 (-1.72 to 3.29)	-1.98 (-3.79 to -0.21)	0.55 (-1.70 to 2.89)	
Treatment by <i>eosinophilia</i>	ICS High vs ICS+LABA	0.22 (-0.60 to 1.08)	0.99 (-0.51 to 2.70)	0.11 (-1.30 to 1.35)	0.98 (-0.55 to 2.70)	
v 1	ICS Low vs ICS+LABA	-0.05 (-0.39 to 0.31)	0.28 (-0.32 to 0.88)	-0.14 (-0.89 to 0.51)	0.27 (-0.32 to 0.87)	
	ICS Medium vs ICS+LABA	1.13 (-0.55 to 3.32)	-1.29 (-4.83 to 1.58)	1.23 (-0.66 to 3.64)	-1.30 (-4.82 to 1.67)	
	ICS+LTRA vs ICS+LABA	0.45 (-1.45 to 2.50)	1.32 (-1.69 to 4.85)	0.48 (-1.70 to 2.78)	1.32 (-1.63 to 4.96)	
	LTRA vs ICS+LABA	-1.78 (-3.70 to 0.08)	1.28 (-1.39 to 3.96)	-1.88 (-4.23 to 0.35)	1.30 (-1.43 to 4.05)	
	placebo vs ICS+LABA	-0.33 (-1.05 to 0.40)	-0.36 (-1.62 to 0.89)	-0.38 (-1.52 to 0.77)	-0.42 (-1.71 to 0.87)	
Treatment by baseline severity	ICS High vs ICS+LABA	0.34 (-1.53 to 2.30)	-0.51 (-3.16 to 2.03)	-0.04 (-2.86 to 2.55)	-0.23 (-3.04 to 2.62)	
	ICS Low vs ICS+LABA	-0.16 (-0.54 to 0.21)	0.22 (-0.22 to 0.65)	-0.66 (-2.10 to 0.36)	0.19 (-0.26 to 0.66)	
	ICS Medium vs ICS+LABA	0.52 (-0.90 to 2.09)	-0.77 (-3.04 to 1.59)	0.48 (-1.54 to 2.76)	-1.17 (-4.01 to 1.43)	
	ICS+LTRA vs ICS+LABA	not estimable	not estimable	not estimable	not estimable	
	LTRA vs ICS+LABA	-2.51 (-5.01 to -0.37)	-1.90 (-5.53 to 1.14)	-2.89 (-6.37 to 0.26)	-1.92 (-5.57 to 1.06)	
	placebo vs ICS+LABA	-0.49 (-1.18 to 0.22)	-0.69 (-1.88 to 0.41)	-0.85 (-2.84 to 0.86)	-0.61 (-1.82 to 0.52)	

Bold indicates that zero is excluded from the credibility interval. The regression coefficient represents the change in the log odds ratio per unit increase in the covariate value.

Table \$27 Madel companion accord	monte from notwark moto	analyzic models includi	ng interactions for the	o outoomo FFV.
1 able 547. Would comparison assess	пения птони негмогк шега	-analysis models miciuul	ing interactions for the	
			8	

Interaction	Model	Number of trials (number of participants)	Number of data points	Residual deviance	Effective number of parameters (Pd)	Deviance information Criterion (DIC)	Between trial standard deviation
	Fixed-effect without interactions	18 (1,657)	1659	1616.8	-2196	-579.2	-
Treatment by age	Fixed-effect with interactions	18 (1,657)	1659	1616.2	-2330.5	-714.3	-
	Random-effects with interactions	18 (1,657)	1659	1618.3	-2299.9	-681.6	0.05 (0.00, 0.14)
Treatment by sex	Random-effects without interactions	20 (1,937)	1910	1864.3	-1193.8	670.6	0.04 (0.00, 0.12)
	Fixed-effect with interactions	20 (1,937)	1910	1866.9	-1105.4	761.5	-
	Random-effects with interactions	20 (1,937)	1910	1866.3	-1120	746.2	0.04 (0.00, 0.12)
Treatment by	Random-effects without interactions	19 (1,908)	1908	1865.7	-1205.8	659.8	0.04 (0.00, 0.12)
ethnicity	Fixed-effect with interactions	19 (1,908)	1908	1864.6	-1002.8	861.7	-
	Random-effects with interactions	19 (1,908)	1908	1864.9	-1029.6	835.3	0.04 (0.00, 0.12)
T ()	Fixed-effect without interactions	5 (455)	455	441.1	199.8	640.9	-
I reatment by	Fixed-effect with interactions	5 (455)	455	441.0	205.7	646.7	-
eczemu	Random-effects with interactions	5 (455)	455	441.9	203.3	645.1	0.08 (0.00, 0.22)
Treatment by	Fixed-effect without interactions	11 (1,024)	1024	996.9	121.4	1118.3	-
eosinophilia	Fixed-effect with interactions	11 (1,024)	1024	996.2	128.6	1124.8	-
*	Random-effects with interactions	11 (1,024)	1024	998.8	137.5	1136.3	0.07 (0.00, 0.21)

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	

Table S28. Parameter estimates (Posterior mean [95% CrI]) from NMR models including interactions for the outcome FEV1

Model		Fixed-effect NMA with inter	actions	Random-effects NMA with interactions	
		Log odds ratio at the mean covariate value (95% CrI)	Regression coefficient for the treatment by covariate interaction (95% CrI)	Log odds ratio at the mean covariate value (95% CrI)	Regression coefficient for the treatment by covariate interaction (95% CrI)
	ICS High vs ICS+LABA	-0.04 (-0.15 to 0.06)	0.02 (0.00 to 0.04)	-0.03 (-0.16 to 0.12)	0.02 (0.00 to 0.04)
	ICS Low vs ICS+LABA	-0.02 (-0.07 to 0.02)	0.00 (-0.02 to 0.01)	-0.02 (-0.09 to 0.06)	0.00 (-0.02 to 0.01)
	ICS Medium vs ICS+LABA	-0.02 (-0.07 to 0.02)	-0.01 (-0.03 to 0.00)	-0.03 (-0.13 to 0.06)	-0.01 (-0.03 to 0.01)
Treatment by age	ICS unknown dose vs ICS+LABA	-0.28 (-5.25 to 4.40)	-0.05 (-8.85 to 8.35)	-0.29 (-3.27 to 2.69)	-0.06 (-5.41 to 5.09)
	ICS+LTRA vs ICS+LABA	-0.10 (-0.18 to -0.01)	0.01 (0.00 to 0.03)	-0.10 (-0.24 to 0.05)	0.01 (-0.01 to 0.03)
	LTRA vs ICS+LABA	0.14 (-0.11 to 0.39)	0.04 (-0.05 to 0.13)	0.16 (-0.12 to 0.43)	0.04 (-0.05 to 0.13)
	placebo vs ICS+LABA	-0.13 (-0.21 to -0.05)	-0.02 (-0.04 to 0.01)	-0.13 (-0.27 to 0.00)	-0.02 (-0.05 to 0.01)
	ICS High vs ICS+LABA	0.02 (-0.08 to 0.12)	-0.02 (-0.15 to 0.12)	0.02 (-0.10 to 0.16)	-0.01 (-0.15 to 0.12)
	ICS Low vs ICS+LABA	-0.02 (-0.07 to 0.03)	0.00 (-0.07 to 0.06)	-0.02 (-0.08 to 0.05)	0.00 (-0.06 to 0.07)
	ICS Medium vs ICS+LABA	-0.01 (-0.05 to 0.02)	0.02 (-0.05 to 0.09)	-0.02 (-0.10 to 0.04)	0.02 (-0.05 to 0.09)
Treatment by sex	ICS unknown dose vs ICS+LABA	-0.37 (-2.74 to 2.04)	-0.14 (-9.96 to 9.57)	-0.32 (-2.79 to 1.99)	0.12 (-9.26 to 9.60)
·	ICS+LTRA vs ICS+LABA	-0.20 (-0.32 to -0.08)	-0.08 (-0.33 to 0.16)	-0.20 (-0.37 to -0.05)	-0.09 (-0.33 to 0.16)
	LTRA vs ICS+LABA	0.22 (-0.01 to 0.44)	0.67 (0.23 to 1.11)	0.23 (-0.01 to 0.48)	0.68 (0.21 to 1.14)
	placebo vs ICS+LABA	-0.12 (-0.21 to -0.03)	0.04 (-0.11 to 0.18)	-0.13 (-0.26 to -0.02)	0.04 (-0.09 to 0.17)
	ICS High vs ICS+LABA	0.05 (-0.10 to 0.20)	-0.10 (-0.56 to 0.34)	0.05 (-0.11 to 0.22)	-0.08 (-0.52 to 0.36)
	ICS Low vs ICS+LABA	-0.02 (-0.07 to 0.02)	-0.05 (-0.12 to 0.03)	-0.02 (-0.09 to 0.05)	-0.04 (-0.12 to 0.04)
Treatment by	ICS Medium vs ICS+LABA	0.02 (-0.03 to 0.08)	-0.16 (-0.32 to 0.00)	0.01 (-0.08 to 0.09)	-0.16 (-0.32 to 0.00)
ethnicity	ICS+LTRA vs ICS+LABA	-0.18 (-0.30 to -0.07)	-0.08 (-0.23 to 0.06)	-0.18 (-0.34 to -0.03)	-0.07 (-0.21 to 0.07)
	LTRA vs ICS+LABA	0.12 (-0.16 to 0.39)	0.23 (-0.32 to 0.77)	0.13 (-0.15 to 0.40)	0.23 (-0.32 to 0.77)
	placebo vs ICS+LABA	-0.11 (-0.20 to -0.02)	0.03 (-0.12 to 0.18)	-0.13 (-0.27 to -0.01)	0.04 (-0.11 to 0.19)
	ICS High vs ICS Medium	0.14 (-0.15 to 0.44)	-0.01 (-0.37 to 0.35)	0.12 (-0.24 to 0.46)	0.00 (-0.37 to 0.35)
	ICS Low vs ICS Medium	0.08 (-0.14 to 0.28)	-0.03 (-0.27 to 0.21)	0.05 (-0.25 to 0.30)	-0.03 (-0.27 to 0.20)
Treatment by	ICS+LABA vs ICS Medium	0.00 (-0.04 to 0.05)	0.03 (-0.10 to 0.15)	-0.01 (-0.17 to 0.13)	0.04 (-0.10 to 0.17)
eczema	ICS+LTRA vs ICS Medium	-0.18 (-0.32 to -0.05)	-0.03 (-0.20 to 0.13)	-0.19 (-0.42 to 0.04)	-0.02 (-0.19 to 0.14)
	LTRA vs ICS Medium	0.24 (-0.11 to 0.59)	0.12 (-0.40 to 0.63)	0.22 (-0.22 to 0.62)	0.12 (-0.40 to 0.63)
	placebo vs ICS Medium	-0.30 (-0.78 to 0.19)	-0.51 (-1.20 to 0.17)	-0.30 (-0.80 to 0.19)	-0.49 (-1.14 to 0.19)
	ICS High vs ICS Low	0.16 (-0.08 to 0.39)	-0.14 (-0.45 to 0.18)	0.15 (-0.14 to 0.42)	-0.14 (-0.44 to 0.17)
	ICS Medium vs ICS Low	0.03 (-0.12 to 0.19)	-0.08 (-0.34 to 0.16)	0.03 (-0.17 to 0.22)	-0.08 (-0.34 to 0.15)
Treatment by	ICS+LABA vs ICS Low	0.01 (-0.05 to 0.06)	0.11 (0.03 to 0.19)	0.00 (-0.12 to 0.10)	0.10 (0.03 to 0.18)
eosinophilia	ICS+LTRA vs ICS Low	-0.15 (-0.28 to -0.01)	-0.05 (-0.22 to 0.11)	-0.15 (-0.39 to 0.08)	-0.05 (-0.22 to 0.11)
	LTRA vs ICS Low	0.04 (-0.29 to 0.36)	0.26 (-0.32 to 0.81)	0.05 (-0.30 to 0.42)	0.25 (-0.29 to 0.79)
	placebo vs ICS Low	-0.09 (-0.17 to -0.01)	-0.03 (-0.18 to 0.13)	-0.11 (-0.28 to 0.01)	-0.03 (-0.18 to 0.12)

Bold indicates that zero is excluded from the credibility interval. The regression coefficient represents the change in the mean difference per unit increase in the covariate value.

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
20
21
22
22
27
25
20
27
20
29
50 21
21
3Z
33 24
34 25
35
30
3/
38
39
40
41
42
43
44
45

1

Table S29. Mean difference (95% CrI) from random- effects NMR with "treatment by sex" interactions for the outcome FEV1

	TRT 2	ICS Medium	ICS High	ICS+LABA	ICS unknown	ICS+LTRA	LTRA	Placebo*
					dose			
	ICS Low	-0.01	-0.03	-0.02	0.23	0.24	-0.68	0.09
	N = 195	(-0.11 to 0.11)	(-0.20 to 0.13)	(-0.09 to 0.06)	(-7.91 to 8.50)	(-0.03 to 0.53)	(-1.10 to -0.27)	(-0.04 to 0.24)
		ICS Medium	-0.02	-0.01	0.24	0.25	-0.67	0.10
1)		N = 111	(-0.21 to 0.14)	(-0.10 to 0.07)	(-7.87 to 8.53)	(-0.02 to 0.52)	(-1.10 to -0.24)	(-0.05 to 0.26)
70			ICS High	0.02	0.26	0.28	-0.65	0.12
Ш			N = 45	(-0.14 to 0.18)	(-7.85 to 8.57)	(-0.03 to 0.59)	(-1.10 to -0.21)	(-0.09 to 0.35)
S				ICS+LABA	0.25	0.26	-0.66	0.11
es				N = 290	(-7.87 to 8.55)	(-0.02 to 0.52)	(-1.09 to -0.24)	(-0.03 to 0.26)
nal					ICS unknown	0.01	-0.91	-0.14
Fer					dose $N = 2$	(-8.22 to 8.13)	(-9.09 to 7.35)	(-8.40 to 7.99)
						ICS+LTRA	-0.92	-0.15
						N = 6	(-1.41 to -0.43)	(-0.45 to 0.16)
							LTRA	0.77
							N = 3	(0.33 to 1.22)
	ICS Low	0.01	-0.05	-0.02	0.35	0.16	0.00	0.13
	N = 311	(-0.08 to 0.12)	(-0.19 to 0.10)	(-0.09 to 0.06)	(-1.19 to 1.94)	(0.00 to 0.32)	(-0.25 to 0.24)	(0.02 to 0.27)
		ICS Medium	-0.06	-0.03	0.33	0.14	-0.01	0.12
•		N = 213	(-0.22 to 0.08)	(-0.11 to 0.04)	(-1.21 to 1.93)	(-0.01 to 0.29)	(-0.28 to 0.24)	(-0.02 to 0.27)
37			ICS High	0.03	0.39	0.20	0.05	0.18
12			N = 102	(-0.10 to 0.17)	(-1.16 to 1.98)	(0.01 to 0.41)	(-0.23 to 0.33)	(0.01 to 0.37)
				ICS+LABA	0.36	0.17	0.02	0.15
£				N = 499	(-1.17 to 1.96)	(0.03 to 0.32)	(-0.24 to 0.26)	(0.03 to 0.29)
les					ICS unknown	-0.19	-0.35	-0.21
Ма					dose N = 13	(-1.79 to 1.33)	(-1.96 to 1.20)	(-1.81 to 1.31)
F 4						ICS+LTRA	-0.15	-0.02
						N = 23	(-0.45 to 0.13)	(-0.20 to 0.17)
							LTRA	0.13
							N = 11	(-0.14 to 0.41)

The table compares the effect estimate for an intervention in the row with an intervention in a column (TRT 1 vs. TRT 2).

MD > 0 favours TRT 1 (all data included, IPD and AgD where possible); 95% CrIs that exclude zero are highlighted in bold; N = number of participants; TRT = treatment; ICS = inhaled corticosteroids; LABA = long-acting beta2-agonists; LTRA = leukotriene receptor antagonists; *Placebo (females), N = 49; (males), N=65.

~		-				
TRT 2	ICS Medium	ICS High	ICS+LABA	ICS+LTRA	LTRA	Placebo*
ICS Low	0.02	-0.08	-0.07	0.18	-0.19	0.10
N = 178	(-0.19 to 0.23)	(-0.33 to 0.17)	(-0.14 to 0.00)	(0.02 to 0.34)	(-0.50 to 0.13)	(-0.03 to 0.23)
	ICS Medium	-0.10	-0.08	0.16	-0.20	0.09
	N = 11	(-0.40 to 0.20)	(-0.29 to 0.12)	(-0.06 to 0.39)	(-0.58 to 0.17)	(-0.15 to 0.33)
		ICS High	0.01	0.26	-0.11	0.19
		N = 21	(-0.24 to 0.27)	(-0.02 to 0.55)	(-0.50 to 0.30)	(-0.09 to 0.45)
			ICS+LABA	0.25	-0.12	0.17
			N = 161	(0.09 to 0.40)	(-0.44 to 0.20)	(0.03 to 0.31)
				ICS+LTRA	-0.37	-0.07
				N = 7	(-0.72 to -0.02)	(-0.27 to 0.12)
					LTRA	0.29
					N = 10	(-0.05 to 0.63)
ICS Low	-0.06	-0.22	0.04	0.13	0.07	0.08
N = 270	(-0.25 to 0.12)	(-0.52 to 0.09)	(-0.02 to 0.10)	(-0.03 to 0.29)	(-0.43 to 0.57)	(-0.01 to 0.16)
	ICS Medium	-0.16	0.10	0.19	0.13	0.14
				(0, 00, (1, 0, 20))	(0.30 to 0.65)	(-0.06 to 0.34)
	N = 18	(-0.49 to 0.18)	(-0.08 to 0.29)	(0.00 to 0.39)	(-0.59100.05)	(0.00 10 0.0.)
	N = 18	(-0.49 to 0.18) ICS High	(-0.08 to 0.29) 0.26	0.35	0.29	0.29
	N = 18	(-0.49 to 0.18) ICS High N = 15	(-0.08 to 0.29) 0.26 (-0.05 to 0.56)	0.35 (0.02 to 0.67)	0.29 (-0.29 to 0.87)	0.29 (-0.02 to 0.60)
	N = 18	(-0.49 to 0.18) ICS High N = 15	(-0.08 to 0.29) 0.26 (-0.05 to 0.56) ICS+LABA	(0.00 to 0.39) 0.35 (0.02 to 0.67) 0.09	(-0.39 to 0.83) 0.29 (-0.29 to 0.87) 0.03	0.29 (-0.02 to 0.60) 0.04
	N = 18	(-0.49 to 0.18) ICS High N = 15	(-0.08 to 0.29) 0.26 (-0.05 to 0.56) ICS+LABA N = 215	(0.00 to 0.39) 0.35 (0.02 to 0.67) 0.09 (-0.07 to 0.24)	(-0.29 to 0.87) (-0.29 to 0.87) 0.03 (-0.46 to 0.52)	0.29 (-0.02 to 0.60) 0.04 (-0.06 to 0.14)
	N = 18	(-0.49 to 0.18) ICS High N = 15	(-0.08 to 0.29) 0.26 (-0.05 to 0.56) ICS+LABA N = 215	(0.00 to 0.39) 0.35 (0.02 to 0.67) 0.09 (-0.07 to 0.24) ICS+LTRA	(-0.39 to 0.03) 0.29 (-0.29 to 0.87) 0.03 (-0.46 to 0.52) -0.06	0.29 (-0.02 to 0.60) 0.04 (-0.06 to 0.14) -0.05
	N = 18	(-0.49 to 0.18) ICS High N = 15	(-0.08 to 0.29) 0.26 (-0.05 to 0.56) ICS+LABA N = 215	(0.00 to 0.39) 0.35 (0.02 to 0.67) 0.09 (-0.07 to 0.24) ICS+LTRA N = 7	(-0.39 to 0.03) 0.29 (-0.29 to 0.87) 0.03 (-0.46 to 0.52) -0.06 (-0.57 to 0.45)	0.29 (-0.02 to 0.60) 0.04 (-0.06 to 0.14) -0.05 (-0.23 to 0.12)
	N = 18	(-0.49 to 0.18) ICS High N = 15	(-0.08 to 0.29) 0.26 (-0.05 to 0.56) ICS+LABA N = 215	(0.00 to 0.39) 0.35 (0.02 to 0.67) 0.09 (-0.07 to 0.24) ICS+LTRA N = 7	(-0.39 to 0.03) 0.29 (-0.29 to 0.87) 0.03 (-0.46 to 0.52) -0.06 (-0.57 to 0.45) LTRA	0.29 (-0.02 to 0.60) 0.04 (-0.06 to 0.14) -0.05 (-0.23 to 0.12) 0.01

come FEV1

The table compares the effect estimate for an intervention in the row with an intervention in a column (TRT 1 vs. TRT 2).

MD > 0 favours TRT 1 (all data included, only IPD). The estimates not including 0 are in bold. N = number of participants; TRT = treatment; ICS = inhaled corticosteroids; LABA = long-acting beta₂-agonists; LTRA = leukotriene receptor antagonists; *Placebo (Eosinophilic), N = 31; (Non-Eosinophilic), N=76.

Figure S1. Secondary flowchart

Study search from 10 September 2019 to 5 May 2023 (used to assess the impact on results of any missing studies).

*This study does not report any outcome of interest for the network meta-analysis and whether children were using ICS alone at screening. ICS: inhaled corticosteroid; LABA: Long-Acting β_2 -Agonist; LTRA: Leukotriene Receptor Antagonist; IPD: individual participant data; FEV₁: forced expiratory volume in 1 second.

The comparison-adjusted funnel plots appear symmetric, implying the absence of small-study effects in the network. The Egger's test did not show publication bias at the confidence level of 0.05.

There are insufficient direct comparisons to carry out Egger's test for ICS+LTRA, LTRA, and ICS+Theophylline.

The comparison-adjusted funnel plots appear symmetric, implying the absence of small-study effects in the network. The Egger's test did not show publication bias at the confidence level of 0.05.

There are insufficient direct comparisons to carry out Egger's test for ICS+LTRA, LTRA, and placebo.

Figure S2C. Comparison-adjusted funnel plots (FEV1 frequentist fixed effect network meta-analysis)

The comparison-adjusted funnel plots appear symmetric, implying the absence of small-study effects in the network. The Egger's test did not show publication bias at the confidence level of 0.05.

There are insufficient direct comparisons to carry out Egger's test for ICS High, ICS Medium+LABA, ICS High+LABA, ICS+LTRA, LTRA, ICS unknown dose, and placebo.

Figure S4 (parts 1 to 3). Exacerbation frequentist random-effects network meta-analysis (OR, 95% Cr) with IPD and AgD (Analysis A1: 40 trials, 8168 participants, 649 events)

C	Comparison: other vs 'ICS Low'					
Treatment	(Random Effects Model)	OR	95%-CI			
ICS Low ICS Medium ICS High ICS Low+LABA ICS Medium+LABA ICS High+LABA		1.00 0.75 0.62 0.81 0.57 0.84	[0.49; 1.16] [0.30; 1.31] [0.56; 1.17] [0.35; 0.93] [0.39; 1.82]			
ICS+LTRA LTRA ICS+Theophylline Placebo		1.23 3.27 - 1.34 2.24	[0.44; 3.48] [0.77; 13.83] [0.07; 26.77] [1.44; 3.49]			
Favour	0.1 0.5 1 2 10 other treatment Favour ICS Le	ow				

Treatment	Comparison: other vs 'ICS Hig (Random Effects Model)	h' OR 95%-Cl
ICS High ICS Low ICS Medium ICS Low+LABA ICS Medium+LABA ICS High+LABA ICS+LTRA LTRA ICS+Theophylline Placebo	A 	1.00 1.60 [0.76; 3.36] 1.21 [0.58; 2.50] 1.29 [0.63; 2.65] 0.92 [0.44; 1.93] 1.35 [0.81; 2.24] 1.97 [0.59; 6.65] 5.24 [1.04; 26.50] - 2.14 [0.10; 45.74] 3.59 [1.54; 8.37]

1	
2	
3	
4	
5	
6	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
∠ I วว	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
27	
27	
38 20	
39	
40	
41	
42	
43	
44	
45	
46	

Compa	rison: other vs 'ICS Medium	+LABA'
Treatment	(Random Effects Model)	OR 95%-CI
ICS Medium+LABA ICS Low ICS Medium ICS High ICS Low+LABA ICS High+LABA ICS+LTRA LTRA		1.00 1.74 [1.07; 2.82] 1.31 [0.98; 1.76] 1.09 [0.52; 2.29] 1.41 [0.92; 2.16] 1.47 [0.68; 3.16] 2.15 [0.76; 6.10] 5.70 [1.25; 26.08] 2.23 [0.40; 46, 74]
Placebo		3.91 [2.11; 7.25]
	01 051 2 10	

	0.1	0.5 1	2	10	
Favour othe	r treatr	nent	Favour	ICS Medium+LAB	А

	Comparison: other vs 'ICS+LTF	RA'
Treatment	(Random Effects Model)	OR 95%-CI
ICS+LTRA ICS Low ICS Medium ICS High ICS Low+LABA ICS Medium+LAB ICS High+LABA LTRA ICS+Theophylling Placebo		1.00 0.81 [0.29; 2.29] 0.61 [0.22; 1.68] 0.51 [0.15; 1.71] 0.66 [0.24; 1.81] 0.47 [0.16; 1.32] 0.68 [0.20; 2.34] 2.65 [0.45; 15.69] - 1.09 [0.07; 18.03] 1.82 [0.60; 5.54]
	0.1 0.5 1 2 10	
Eove	un other treatment Equaur ICC I	

Treatment	Comparison: other vs 'LTRA' (Random Effects Model)	OR	95%-CI
LTRA		1.00	
ICS Low		0.31	[0.07; 1.29]
ICS Medium		0.23	[0.05; 1.04]
ICS High		0.19	[0.04; 0.97]
ICS Low+LABA		0.25	[0.06; 1.09]
ICS Medium+LABA		0.18	[0.04; 0.80]
ICS High+LABA		0.26	[0.05; 1.32]
ICS+LTRA		0.38	[0.06; 2.23]
ICS+Theophylline		0.41	[0.01; 11.36]
Placebo		0.69	[0.15; 3.09]
	0.1 0.51 2 10		
Favour	other treatment Favour LTRA		

Between designs – Q = 26.54, d.f. = 25, p-value = 0.3791

Figure S5. Network plot and rankings for the fixed effect network meta-analysis (ICS grouped when combined with LABA) for exacerbations – Analysis B1

A, Network plot

B, Posterior treatment rankings from fitted NMA model. Rank median (point), IQR (bold line), 95% interval (thin line). Lower rank is better.

C, Rank probability plots from fitted NMA model.

European Respiratory Journal

Figure S6. Network plot and rankings for the fixed effect network meta-analysis (ICS stratified when combined with LABA) for asthma

A, Posterior treatment rankings from fitted NMA model. Rank median (point), IQR (bold line), 95% interval (thin line). Lower rank is better.

B, Rank probability plots from fitted NMA model.

OR

1.00

95%-CI

0.87 [0.46; 1.65]

0.72 [0.37; 1.40]

0.95 [0.49; 1.85]

1.06 [0.80; 1.41]

1.36 [0.66; 2.78]

1.51 [0.22; 10.21]

0.21 [0.04; 1.07]

0.63 [0.27; 1.50]

95%-CI

0.91 [0.65; 1.29]

1.05 [0.54; 2.04]

0.76 [0.39; 1.46]

1.11 [0.58; 2.16]

1.43 [0.71; 2.87]

1.59 [0.26; 9.59]

0.22 [0.05; 1.01]

0.67 [0.33; 1.33]

OR

1.00

10

Figure S7 (parts 1 to 3). Asthma Control frequentist fixed effect network meta-analysis (OR, 95% Cr) with IPD (Analysis A2: 16 trials, 3027 participants, 2453 events)

1 2

3

40 41

2
3
4
5
6
7
/ 0
0
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
<u>4</u> 2
11
 //5
- TJ

1

Treatment	Comparison: other vs 'Placebo (Common Effects Model)	, OR	95%-CI
Placebo		1.00	
ICS Low		1.37	[0.73; 2.56]
ICS Medium		1.58	[0.67; 3.75]
ICS High		1.14	[0.48; 2.73]
ICS Low+LABA		1.50	[0.75; 3.01]
ICS Medium+LABA		1.68	[0.70; 3.99]
ICS High+LABA	· · ·	2.14	[0.86; 5.33]
ICS+LTRA		2.39	[0.35; 16.39]
LTRA		0.33	[0.06; 1.69]
	0.1 0.5 1 2 10		
I	Favour Placebo Favour other tr	eatme	nt

The probability of having good/total asthma control was modelled.

OR: odds ratio; CI: confidence interval; IPD: individual participant data; ICS: inhaled corticosteroid; LABA: Long-Acting β₂-Agonist; LTRA: Leukotriene Receptor Antagonist

Quantifying heterogeneity / inconsistency: $tau^2 = 0.0834$; tau = 0.2887; $I^2 = 16\%$ [0.0%; 49.6%].

Tests of heterogeneity (within designs) and inconsistency (between designs):

Total – Q = 25.00, d.f. = 21, p-value = 0.2471 Within designs – Q = 0.66, d.f. = 3, p-value = 0.8832 Between designs – Q = 24.34, d.f. = 18, p-value = 0.1441

Figure S8. Network plot and rankings for the fixed effect network meta-analysis (ICS grouped when combined with LABA) for asthma control – Analysis B2

A, Network plot

B, Posterior treatment rankings from fitted NMA model. Rank median (point), IQR (bold line), 95% interval (thin line). Lower rank is better.

Figure S9. Network plot and rankings for the random-effects network meta-analysis (individual compounds) for asthma control – Analysis C2

A, Network plot

B, Posterior treatment rankings from fitted NMA model. Rank median (point), IQR (bold line), 95% interval (thin line). Lower rank is better.

Figure S10. Network plot and rankings for the fixed effect network meta-analysis (ICS stratified when combined with LABA) for FEV₁ – Analysis A3

A, Posterior treatment rankings from fitted NMA model. Rank median (point), IQR (bold line), 95% interval (thin line). Lower rank is better.

Figure S11 (parts 1 to 3). FEV₁ frequentist fixed effect network meta-analysis (MD, 95% CI) with IPD and AgD (Analysis A3: 23 trials, 2518 participants)

ICS Medium+LABA

ICS High+LABA

ICS+LTRA

LTRA

Placebo

0.55 [0.33; 0.77]

-0.40 [-0.58; -0.22]

-0.42 [-1.10; 0.27]

-0.01 [-0.49; 0.48]

-0.31 [-0.57; -0.04]

Comp. Treatment	arison: other vs 'ICS unknown (Common Effects Model)	n dose' MD 95%-Cl		
ICS unknown dose		0.00		
ICS Low		0.31 [-0.38; 1.00]		
ICS Medium		0.34 [-0.35; 1.03]		
ICS High		0.47 [-0.26; 1.19]		
ICS Low+LABA		0.33 [-0.35; 1.02]		
ICS Medium+LABA		- 1.02 [0.28; 1.75]		
ICS High+LABA		0.07 [-0.67; 0.80]		
ICS+LTRA		0.05 [-0.20; 0.30]		
LTRA		0.46 [-0.35; 1.27]		
Placebo		0.16 [-0.54; 0.86]		
	-1.5 -1 -0.5 0 0.5 1 1.5			
Four ICS unknown doog - Four sther treatment				

Figure S12. Network plot and rankings for the random-effects network-meta-analysis (ICS grouped when combined with LABA) for FEV₁ – Analysis B3

A, Network plot

B, Posterior treatment rankings from fitted NMA model. Rank median (point), IQR (bold line), 95% interval (thin line). Lower rank is better.

Figure S13. Network plot and rankings for the fixed effect network meta-analysis (individual compounds) for FEV₁ – Analysis C3

A, Network plot

FF+VI FP FF 1.00 0.75 0.50 0.25 0.00 FP+Montelukast FP+SAL FP+VI 1.00 Lobability 0.50 2 2 0.25 0.00 MONTELUKAST Placebo 1.00 0.75 0.50 0.25 0.00 ź 4 5 i. 4 5 Rank C, Rank probability plots from fitted NMA model.

B, Posterior treatment rankings from fitted NMA model. Rank median (point), IQR (bold line), 95% interval (thin line). Lower rank is better.

Treatment 1 Treatment 2

Figure S14. Oral candidiasis (ICS dose stratified)

2
3
1
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
17
18
19
20
21
22
22
23
24
25
26
27
28
20
29
30
31
32
33
3/
24
35
36
37
38
39
10
40
41
42
43
44
45
46
40
4/
48
49
50
51
52
22
52
53
53 54
53 54 55
53 54 55 56
53 54 55 56 57
53 54 55 56 57 58
53 54 55 56 57 58 50

Study	Events	Total	Events	Total	Odds Ratio	OR	95%-CI
aroup = ICS L vs ICS L-	+LABA						
Bernstein 2015	0	17	0	14		0.83	[0 02. 44 40]
Bloockor 2014	0	10	1	10		0.00	[0.02, 44.40]
	1	177	0	172		2.05	[0.01, 0.20]
LI 2010	1	1//	0	1/3		2.95	[0.12; 72.89]
Malone 2005	1	102	4	101		0.24	[0.03; 2.19]
Oliver 2016 a	0	115	2	341		0.59	[0.03; 12.34]
Pearlman 2009	0	124	1	124		0.33	[0.01; 8.20]
Scott 2005	0	100	0	99		0.99	[0.02; 50.39]
Wechsler 2019	0	33	0	53		1.60	[0.03: 82.42]
Fixed effect model		687		924		0.56	[0.20: 1.58]
Random effects model				•=•		0.57	[0 19 1 76]
Hotorogonoity: $l^2 = 00/(-2^2)$	-0	0.05				0.57	[0.13, 1.70]
Helelogeneity. 7 – 0%, t	-0, p - 0	0.95					
group = ICS M VS ICS L	+LABA	_					
Murray 2010	0	1	0	6		0.87	[0.01; 50.15]
Fixed effect model		7		6		0.87	[0.01; 50.15]
Random effects model						0.87	[0.01; 50.15]
Heterogeneity: not applical	ble						
group = ICS H vs ICS L	+I ABA						
Wechsler 2019	1	15	0	53		3 61	[0 1/· 90 7/]
Fixed offect model		40	0	53		2.64	[0.14, 30.74]
Pixed effect model		45		55		3.01	[0.14; 90.74]
Random effects model						3.61	[0.14; 90.74]
Heterogeneity: not applical	ble						
group = ICS L vs ICS M	+LABA						
Wechsler 2019	0	33	0	10		0.31	[0.01; 16.79]
Fixed effect model		33		10		0.31	[0.01: 16.79]
Random effects model						0.31	[0.01: 16.79]
Heterogeneity: not applical	hle					0.01	[0.01, 10.10]
Therefogeneity. Her applied	510						
group = ICS H vs ICS M		45	~	10		0.74	10 00 40 001
vvecnsier 2019	1	45	0	10		0.71	[0.03; 18.63]
Fixed effect model		45		10		0.71	[0.03; 18.63]
Random effects model						0.71	[0.03; 18.63]
Heterogeneity: not applical	ble						
group = ICS L vs ICS H	+LABA						
Bernstein 2015	0	17	1	11		0.20	[0.01: 5.37]
Wechsler 2019	0	33	1	31		0.30	[0 01 7 73]
Fixed effect model	0	50		12		0.25	[0.02: 2 50]
Pandom offects model		50		74		0.25	[0.02, 2.00]
Random enects model	- 0					0.25	[0.02; 2.49]
Heterogeneity: $I = 0\%$, τ	= 0, p = 0	J.86					
group = ICS H vs ICS H	+LABA						
Wechsler 2019	1	45	1	31		0.68	[0.04; 11.33]
Fixed effect model		45		31		0.68	[0.04; 11.33]
Random effects model						0.68	[0.04; 11.33]
Heterogeneity: not applical	ble						- / -
	nlacob	~					
Blooker 2014	s placed	10	0	22		2.04	10 15, 00 001
Bleecker 2014	1	19	0	23		3.81	[0.15; 99.08]
Fixed effect model		19		23		3.81	[0.15; 99.08]
Random effects model						3.81	[0.15; 99.08]
Heterogeneity: not applical	ble						
					0.01 0.1 1 10 10	00	
				Fav	our Treament 1 Favour Treat	ment 2	

Meta-analyses with a frequentist approach (Mantel-Haenszel) based on all available comparisons. All data included (IPD and AgD where possible).

OR > 1 favours treatment 2. IPD = individual participant data; AgD = aggregate data; ICS = inhaled corticosteroids; LABA = long-acting beta-agonists;

LTRA = leukotriene receptor antagonists; L = low dose; M = medium dose; H = high dose; OR = odds ratio; CI = confidence interval.

Figure S15. Oral candidiasis (any ICS dose combined with LABA)

3	-	Freatm	ent 1	Treatm	ent 2			
4	Study E	vents	Total	Events	Total	Odds Ratio	OR	95%-CI
5		~ ^						
6	Bernstein 2015	5A 0	17	1	25		0 47	[0 02 [.] 12 14]
7	Bleecker 2014	Ő	19	1	19		0.32	[0.01; 8.26]
/ 0	Li 2010	1	177	0	173		2.95	[0.12; 72.89]
8	Malone 2005	1	102	4	101		0.24	[0.03; 2.19]
9	Pearlman 2009	0	124	2	34 I 124		0.59	[0.03, 12.34] [0.01, 8.20]
10	Scott 2005	õ	100	, 0	99		0.99	[0.02; 50.39]
11	Wechsler 2019	0	33	1	94		0.93	[0.04; 23.40]
12	Fixed effect model		687		976		0.53	[0.19; 1.46]
13	Heterogeneity: $I^2 = 0\%$. $\tau^2 = 0$). p = 0.	.96				0.00	[0.10, 1.57]
13	3							
14	group = ICS M vs ICS+LA	BA	_	•				
15	Murray 2010	0	7	0	6		0.87	[0.01; 50.15]
16	Random effects model		'		Ŭ		0.87	[0.01; 50.15]
17	Heterogeneity: not applicable							• • •
18								
19	group = ICS H vs ICS L Bleecker 2012	1	29	1	14		0.46	10 03· 8 021
20	Wechsler 2019	1	45	0	33		2.26	[0.09; 57.20]
20	Fixed effect model		74		47		1.00	[0.13; 7.64]
21	Random effects model						0.93	[0.11; 7.86]
22	Heterogeneity: $I^{2} = 0\%$, $\tau^{2} = 0$	p = 0.	.47					
23	group = ICS H vs ICS M							
24	Bleecker 2012	1	29	0	13		1.42	[0.05; 37.22]
25	Fixed effect model		29		13		1.42	[0.05; 37.22]
26	Heterogeneity: not applicable						1.42	[0.05; 37.22]
20	neteregeneny. net applicable							
2/	group = ICS H vs ICS+LA	BA						
28	Wechsler 2019	1	45	1	94		2.11	[0.13; 34.58]
29	Random effects model		45		94		2.11	[0.13; 34.58] [0.13: 34.58]
30	Heterogeneity: not applicable					_		[0110, 01100]
31								
32	group = ICS H vs placebo	1	20	0	10		1 1 2	10 05: 27 221
22	Fixed effect model		29 29	0	13		1.42	[0.05, 37.22] [0.05: 37.22]
24	Random effects model						1.42	[0.05; 37.22]
34	Heterogeneity: not applicable							
35	group = ICS L vs ICS M							
36	Bleecker 2012	1	14	0	13		3.00	[0.11: 80.39]
37	Lotvall 2014 b	0	17	1	11		0.20	[0.01; 5.37]
38	Fixed effect model		31		24		0.79	[0.11; 5.65]
20	Random effects model	0 9504	n = (25			0.78	[0.05; 11.02]
39	Helelogeneity. 7 – 23%, t –	0.0504	, <i>μ</i> – c	0.25				
40	group = ICS L vs placebo							
41	Berger 2006	0	197	1	99 -		0.17	[0.01; 4.12]
42	Bleecker 2012 Bleecker 2014	1	14	0	13		3.00	[0.11; 80.39]
43	Lotvall 2014 b	0	17	0	18		1.06	[0.02; 56.24]
44	Fixed effect model		247		153		0.82	[0.17; 3.99]
15	Random effects model						0.83	[0.14; 4.94]
45	Heterogeneity: $I^{-} = 0\%$, $\tau^{-} = 0$	p = 0.	.66					
46	group = ICS M vs placebo)						
47	Bleecker 2012	0	13	0	13		1.00	[0.02; 54.16]
48	Lotvall 2014 b	1	11	0	18		- 5.29	[0.20; 141.74]
49	Fixed effect model		24		31		2.77	[0.25; 31.09] [0.21: 34.13]
50	Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$	p = 0	53				2.70	[0.21, 04.10]
51								
51	group = ICS+LABA vs pla	cebo	40	~	22		2.04	10 15: 00 083
52	Fixed effect model	1	19 19	0	23 23		3.81 3.81	[0.15; 99.08] [0.15: 99.08]
53	Random effects model				20		3.81	[0.15; 99.08]
54	Heterogeneity: not applicable					· · · · · · · · · · · · · · · · · · ·		-
55					~		0	
56					Favo	our Treament 1 Favour Treatr	nent 2	
57								

Meta-analyses with a frequentist approach (Mantel-Haenszel) based on all available comparisons. All data included (IPD and AgD where possible). OR > 1 favours treatment 2. IPD = individual participant data; AgD = aggregate data; ICS = inhaled corticosteroids; LABA = long-acting beta-agonists; LTRA = leukotriene receptor antagonists; L = low dose; M = medium dose; H = high dose; OR = odds ratio; CI = confidence interval.

57

60

Figure S16. Cardiac disorders (ICS dose grouped)

3									
4	Study	Ireatm	ent 1	I reatm	ent 2	Odda Patia			0.5% ()
5	Study	Events	Total	Events	Total		UK		95%-01
6	aroun = ICS vs ICS+					I			
7	Bateman 2014		102	1	111		0.36	[0 01·	8 921
, 8		13	177	q	173		1 44	[0.01, [0.60·	3 471
0	Fixed effect model	10	279	0	284		1 29	[0.00,	2 961
9	Random effects model		210		204		1.31	[0.56:	3.061
10	Heterogeneity: $I^2 = 0\%$, $\tau^2 =$	$= 0, \rho = 0$.41			-		[0.00,	
11		ο, μ							
12	group = ICS M vs ICS+L	ABA							
13	De Blic 2009	2	153	0	150		4.97	[0.24;	104.33]
14	Stempel 2016 a	2	813	0	818		5.04	[0.24;	105.21]
15	Fixed effect model		966		968		5.01	[0.58;	42.99]
16	Random effects model						5.01	[0.58;	42.99]
17	Heterogeneity: $I^2 = 0\%$, $\tau^2 =$	= 0, <i>p</i> = 0.	.99						
18									
10	group = ICS H vs ICS L								
20	Bleecker 2012	0	29	1	14		0.15	[0.01;	3.99]
20	Fixed effect model		29		14		0.15	[0.01;	3.99]
21	Random effects model						0.15	[0.01;	3.99]
22	Heterogeneity: not applicab	le							
23									
24	group = ICS H vs ICS M					_			
25	Bleecker 2012	0	29	2	13		0.08	[0.00;	1.75]
26	Fixed effect model		29		13		0.08	[0.00;	1.75]
27	Random effects model						0.08	[0.00;	1.75]
28	Heterogeneity: not applicab	le							
20									
29	group = ICS H vs placer	0	20	0	10		0.46	[0.01.	04 241
30	Bleecker 2012	0	29	0	13		0.46	[0.01;	24.31]
31	Pixed effect model		29		15		0.40	[0.01;	24.31]
32	Heterogeneity: not applicab						0.40	[0.01;	24.31]
33	neterogeneity. not applicat	ne -							
34	aroup = ICS L vs ICS M								
35	Bleecker 2012	1	14	0	13		3.00	[0 11·	80 391
36	Lotvall 2014 b	0	17	õ	11		0.66	[0.11,	35 521
37	Fixed effect model	Ŭ	31	Ŭ	24		1.70	[0.15:	19.281
38	Random effects model		•••		- ·		1.62	[0.13:	20.531
30	Heterogeneity: $I^2 = 0\%$, $\tau^2 =$	= 0, p = 0	.56					L etter,	
10		-, -							
40	group = ICS L vs placeb	00							
41	Bleecker 2012	1	14	0	13		3.00	[0.11;	80.39]
42	Lotvall 2014 b	0	17	1	18		0.33	[0.01;	8.76]
43	Oliver 2016 b	1	253	0	65		0.78	[0.03;	19.32]
44	Fixed effect model		284		96		0.93	[0.17;	5.20]
45	Random effects model						0.91	[0.14;	5.99]
46	Heterogeneity: $I^2 = 0\%$, $\tau^2 =$	= 0, <i>p</i> = 0,	.64						
47									
48	group = ICS M vs place	00							
10	Bleecker 2012	0	13	0	13		1.00	[0.02;	54.16]
50	Lotvall 2014 b	0	11	1	18		0.51	[0.02;	13.56]
50	Fixed effect model		24		31		0.66	[0.05;	7.92]
21	Random effects model						0.67	[0.05;	8.43]
52	Heterogeneity: $I^2 = 0\%$, $\tau^2 =$	= 0, p = 0	.80						
53									
54					Fee		marto		
55					Favo	bur i reament i Favour I reati	nent 2		
56									

Meta-analysis with a frequentist approach (Mantel-Haenszel) based on all available comparisons. All data included (IPD only).

58 OR > 1 favours treatment 2. IPD = individual participant data; AgD = aggregate data; ICS = inhaled corticosteroids; LABA = long-acting beta-agonists; 59

LTRA = leukotriene receptor antagonists; L = low dose; M = medium dose; H = high dose; OR = odds ratio; CI = confidence interval

Figure S17. Clinically significant electrocardiogram (ECG) favorable changes (ICS dose grouped)

3										
4		Treatn	nent 1	Treatm	nent 2					
5	Study	Events	Total	Events	Total		Odd	ls Ratio	OR	95%-CI
6								т		
7	group = ICS L vs ICS+L	ABA	100					_		
8	Bateman 2014	26	102	39	111		-	•	0.63	[0.35; 1.14]
9	Bleecker 2014	0	19	1	18	-			0.30	[0.01; 7.83]
10	LI 2010	10	1/1	3	169				0.33	[0.03; 3.16]
11	Scott 2005	19	202	12	207				1.70	[0.76; 3.72]
12	Pixed effect model		392		391			1	0.05	[0.54; 1.32]
12	Hotorogonoity: $I^2 = 41\%$	2 - 0.214	2 p = 0	17					0.04	[0.40, 1.77]
13	Heterogeneity. $T = 41\%$, t	- 0.214	5, p - 0	/						
14	group = ICS L vs placet	10								
15	Bleecker 2014	0	19	3	23				0 15	[0 01· 3 10]
16	Fixed effect model		19		23				0.15	[0.01: 3.10]
17	Random effects model								0.15	[0.01: 3.10]
18	Heterogeneity: not applicat	ble								
19										
20	group = ICS+LABA vs p	lacebo								
21	Bleecker 2014	1	18	3	23		+		0.39	[0.04; 4.13]
22	Fixed effect model		18		23				0.39	[0.04; 4.13]
23	Random effects model								0.39	[0.04; 4.13]
24	Heterogeneity: not applicat	ble								
25										
26	group = ICS M vs ICS+L	ABA						_		
27	Lotvall 2014 a2	1	9	1	16				- 1.88	[0.10; 34.13]
28	Fixed effect model		9		16				- 1.88	[0.10; 34.13]
29	Random effects model								1.88	[0.10; 34.13]
30	Heterogeneity: not applicat	bie								
31										
37	O'Byrne 2014	1	7	0	3		2 <u></u>	-		[0 05· 51 11]
32	Fixed effect model		7	0	3				- 1.62	[0.05: 51 11]
27	Random effects model				Ŭ				1.62	[0.05: 51 11]
24 25	Heterogeneity: not applicat	ole								[0.00, 01.11]
33							Т			
30					C	0.01	0.1	1 10	100	
3/					Fav	our T	reament	1 Favour	Treatment 2	
38										

Meta-analysis with a frequentist approach (Mantel-Haenszel) based on all available comparisons. All data included (IPD only). OR > 1 favours treatment 2 IPD = individual participant data; AgD = aggregate data; ICS = inhaled corticosteroids; LABA = long-acting beta-agonists; LTRA = leukotriene receptor antagonists; L = low dose; M = medium dose; H = high dose; OR = odds ratio; CI = confidence interval.

Figure S18. Clinically significant electrocardiogram (ECG) unfavorable changes (ICS dose grouped)

1	
2	
3	
4	
5	
6	
7	
/	
8	
9	
1	0
1	1
1	2
1	2
1	ر ۸
1	4
1	5
1	6
1	7
1	8
1	9
י ר	ñ
2	1
2	1
2	2
2	3
2	4
2	5
2	۵ ۵
2	-
2	/
2	8
2	9
3	0
3	1
2	ว
2	2 2
2	2
3	4
3	5
3	6
3	7
3	8
ר כ	0 0
2	ד ר
4	U
4	1
4	2
4	3
4	4
4	5
۸	6
7	7
4	~
4	8
4	9
5	0
5	1
5	2
5	2
5	د ۸
5	4
5	5
5	6
5	7

58 59 60

Study	Treatm Events	ent 1 Total	Treatme Events	ent 2 Total	Odds Ratio	OR	95%-CI
group = ICS L vs ICS+L/	ABA						
Bateman 2014	0	102	0	111		1.09	[0.02; 55.33]
Bleecker 2014	0	19	2	18		0.17	[0.01; 3.78]
Li 2010	19	171	24	169		0.76	[0.40; 1.44]
Scott 2005	0	100	0	99		0.99	[0.02; 50.39]
Fixed effect model		392		397	-	0.71	[0.39; 1.30]
Random effects model					-	0.72	[0.39; 1.34]
Heterogeneity: $I^2 = 0\%$, $\tau^2 =$	= 0, <i>p</i> = 0	.82					
group = ICS L vs placeb	0						
Bleecker 2014	0	19	2	23		0.22	[0.01; 4.88]
Fixed effect model		19		23		0.22	[0.01; 4.88]
Random effects model						0.22	[0.01; 4.88]
Heterogeneity: not applicab	le						
group = ICS+LABA vs p	lacebo		-				
Bleecker 2014	2	18	2	23		1.31	[0.17; 10.35]
Fixed effect model		18		23		1.31	[0.17; 10.35]
Random effects model						1.31	[0.17; 10.35]
Heterogeneity: not applicab	le						
group = ICS M vs ICS+L	ABA						
Lotvall 2014 a2	2	9	0	16		— 11.00	[0.47; 258.41]
Fixed effect model		9		16		- 11.00	[0.47; 258.41]
Random effects model						- 11.00	[0.47; 258.41]
Heterogeneity: not applicab	le						
group = ICS H vs ICS+L	ABA						
O'Byrne 2014	1	7	0	3		1.62	[0.05; 51.11]
Fixed effect model		7		3		1.62	[0.05; 51.11]
Random effects model						1.62	[0.05; 51.11]
Heterogeneity: not applicab	le						
					0.01 0.1 1 10 100)	
				Favo	our Treament 1 Favour Treat	ment 2	

Meta-analysis with a frequentist approach (Mantel-Haenszel) based on all available comparisons. All data included (IPD only). OR > 1 favours treatment 2. IPD = individual participant data; AgD = aggregate data; ICS = inhaled corticosteroids; LABA = long-acting beta-agonists; LTRA = leukotriene receptor antagonists; L = low dose; M = medium dose; H = high dose; OR = odds ratio; CI = confidence interval.

Figure S19. Heart rate (HR) change (last visit vs baseline) (ICS dose grouped)

3										
4		1	reatm	ent 1	Т	reatm	ent 2			
5	Study	Total	Mean	SD	Total	Mean	SD	Mean Difference	MD	95%-CI
6								Ϋ́,		
7	group = ICS L vs ICS+L	ABA	1 10	~ ~		0.70	10.0		4.40	
8	Bleecker 2014	14	-1.40	9.0	15	2.70	10.6	<u>+</u>	-4.10	[-11.24; 3.04]
9		1/1	0.40	13.2	169	1.10	13.3	·	-0.70	[-3.52; 2.12]
10	Oliver 2016 a	08	-2.00	9.1	204	4.50	12.5		-0.50	[-17.00, 4.00]
10	Scott 2005	94	-0.50	13.1	93	-0.50	14.3	_ <u>_</u>	0.00	[-2.04, 2.04]
11	Fixed effect model	381	0.00	10.1	584	0.00	14.0	•	-0.58	[-2.27: 1.10]
12	Random effects model							4	-0.58	[-2.27: 1.10]
13	Heterogeneity: $I^2 = 0\%$, $\tau^2 =$	= 0, p =	= 0.68							
14	5, ,	<u>.</u>								
15	group = ICS L vs placeb	00								
16	Bleecker 2014	14	-1.40	9.0	21	0.60	11.5		-2.00	[-8.81; 4.81]
17	Fixed effect model	14			21			-	-2.00	[-8.81; 4.81]
18	Random effects model	4							-2.00	[-8.81; 4.81]
19	Heterogeneity: not applicab	le								
20		laash	-							
20	group = ICS+LABA vs p	Iaced 15	0 2 70	10.6	21	0 60	115		2 10	[5 19 0 29]
21	Fixed effect model	15	2.70	10.0	21	0.00	11.5		2.10	[-5.10, 9.30] [-5.18· 9.38]
22	Random effects model	15							2 10	[-5 18: 9 38]
23	Heterogeneity: not applicab	le							2.10	[0.10, 0.00]
24										
25	group = ICS M vs ICS+L	ABA								
26	Lotvall 2014 a1	8	3.10	19.8	15	5.60	15.9		-2.50	[-18.41; 13.41]
27	Murray 2010	5	4.20	16.5	5	3.40	7.6		0.80	[-15.12; 16.72]
28	Fixed effect model	13			20				-0.85	[-12.10; 10.40]
29	Random effects model								-0.85	[-12.10; 10.40]
30	Heterogeneity: $I^2 = 0\%$, $\tau^2 =$	= 0, p =	= 0.77							
31	aroun - ICS H ve ICS+I									
32	O'Byrne 2014	ADA 6	-3 20	77	З	0.70	197		-3 90	[_27 03· 19 23]
32	Fixed effect model	6	-0.20	1.1	3	0.70	13.1		-3.90	[-27.03, 19.23]
24	Random effects model	•			Ŭ				-3.90	[-27.03: 19.23]
2F	Heterogeneity: not applicab	le								
33										
30								-20 -10 0 10 20		
3/								bradycardia tachycardia		

Meta-analysis with a frequentist approach (inverse variance) based on all available comparisons. All data included (IPD only).

When MD > 0, treatment 1 increases HR compared to treatment 2; when MD < 0, treatment 1 decreases HR compared to treatment 2.

IPD = individual participant data; AgD = aggregate data; ICS = inhaled corticosteroids; LABA = long-acting beta-agonists; LTRA = leukotriene receptor antagonists; L = low dose; M = medium dose; H = high dose; MD = mean difference; SD = standard deviation; CI = confidence interval.

Figure S20 (part 1). Infections and infestations (ICS dose grouped)

2								
3		Treatm	ant 1	Treatm	ant 2			
4	Study	Freatm		Freatm	Tetel	Odda Batia		
5	Study	Events	Total	Events	Total	Odds Ratio	UK	95%-01
6	aroup = ICS vs ICS+I	ΔΒΔ				1		
7	Bateman 2014	35	102	57	111		0 49	10 28 [.] 0 861
8	Bernstein 2015	3	17	3	25		1.57	[0.28, 8.91]
9	Bleecker 2014	2	19	1	19		2 12	[0.20, 0.01]
10	Lennev 2013	7	19	9	23		0.91	$[0.26^{\circ}, 20.00]$
11	Li 2010	68	177	54	173		1 37	[0.20, 0.10] [0.88, 2.14]
12	Lotvall 2014 a1	0	5	4	15		0.23	[0.00, 2.11]
13	Malone 2005	23	102	21	101	_ <u>+</u>	1.11	[0.57: 2.16]
14	Morice 2008	52	207	112	415	+	0.91	[0.62: 1.33]
15	Murray 2011	8	117	8	113		0.96	[0.35; 2.66]
16	Oliver 2016 a	22	115	91	341		0.65	[0.39; 1.10]
17	Pearlman 2009	12	124	13	124		0.91	[0.40; 2.09]
18	Stempel 2016 b	0	15	2	117		1.49	[0.07; 32.50]
10	Tal 2002	32	138	43	148		0.74	[0.43; 1.25]
20	Wechsler 2019	2	33	5	94	+	1.15	[0.21; 6.22]
20	Fixed effect model		1190		1819	•	0.87	[0.73; 1.05]
21	Random effects model					•	0.88	[0.73; 1.06]
22	Heterogeneity: $I^2 = 0\%$, τ^2	= 0, p = 0	.52					
23								
24	group = ICS M vs ICS+L	ABA						
25	De Blic 2009	66	153	59	150		1.17	[0.74; 1.85]
20	Gappa 2009	30	133	30	129		0.96	[0.54; 1.71]
2/	Lotvall 2014 a2	3	9	5	17		1.20	[0.21; 6.80]
28	Stempel 2016 a	2	813	7	818		0.29	[0.06; 1.38]
29	Stempel 2016 b	0	50	2	117		0.46	[0.02; 9.70]
30	Zimmerman 2004	61	101	123	201	-	0.97	[0.59; 1.58]
31	Fixed effect model		1259		1432	•	0.98	[0.75; 1.30]
32	Random effects model					•	1.00	[0.75; 1.32]
33	Heterogeneity: $I^2 = 0\%$, τ^2	= 0, p = 0	.67					
34								
35	group = ICS H vs ICS L	4	00				0.40	[0.00, 4.00]
36	Bleecker 2012	4	29	4	14		0.40	[0.08; 1.92]
37	Stempel 2016 b	0	40	0	15		0.38	[0.01; 20.14]
38	Weedster 2019	4	45	2	33		1.51	[0.26; 8.79]
39	VVOOdcock 2014	0	420	Z	~^^		0.17	[0.01; 4.33]
40	Pixed effect model		120		69		0.59	[0.22; 1.01]
41	Random effects model	- 0 0	50				0.59	[0.20; 1.70]
42	Heterogeneity: $I^{-} = 0\%$, τ^{-}	-0, p = 0	.56					
43					ſ	01 01 1 10	100	
44					Fave	our Treament 1 Eavour Trea	atment 2	
45					1 4 10			

Meta-analysis with a frequentist approach (Mantel-Haenszel) based on all available comparisons. All data included (IPD and AgD where possible).

OR > 1 favours treatment 2. IPD = individual participant data; AgD = aggregate data; ICS = inhaled corticosteroids; LABA = long-acting beta-agonists; LTRA

= leukotriene receptor antagonists; L = low dose; M = medium dose; H = high dose; OR = odds ratio; CI = confidence interval.

Figure S20 (part 2). Infections and infestations (ICS dose grouped)

2									
4	1	reatm	ent 1	Treatm	ient 2				
5	Study E	vents	Total	Events	Total	Odds Ratio	OR	95%	% -C
6						1			
7	group = ICS H vs ICS M								_
2 8	Bleecker 2012	4	29	1	13		1.92	[0.19; 19	.09]
0 0	Stempel 2016 b	0	40	0	50		1.25	[0.02; 64	.22
10	Fixed effect model		69		63		1.74	[0.24; 12	.43]
10	Random effects model						1.72	[0.24; 12	.52]
11	Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$	0, p = 0	.85						
12									
13	group = ICS H vs ICS+LAI	ЗА	10		10				
14	Akpinarli 1990	0	16	0	16		1.00	[0.02; 53	.46
15	O Byrne 2014	2	7	1	3		0.80	[0.04; 14	.64
16	Russell 1995	7	107	7	99		0.92	[0.31; 2	.72
17	Stempel 2016 b	0	40	2	117		0.57	[0.03; 12	.13
18	Wechsler 2019	4	45	5	94		1.74	[0.44; 6	.81
10	Fixed effect model		215		329		1.07	[0.50; 2	.31]
19	Random effects model					-	1.09	[0.50; 2	.35]
20	Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$	0, p = 0	.94						
21									
22	group = ICS H vs placebo				10	_	0.50		
23	Bleecker 2012	4	29	3	13		0.53	[0.10; 2	.82
24	Fixed effect model		29		13		0.53	[0.10; 2	.82]
25	Random effects model						0.53	[0.10; 2	.82]
26	Heterogeneity: not applicable								
27									
28	group = ICS L vs ICS M				10		4.00	10 10 50	4.01
20	Bleecker 2012	4	14	1	13		4.80	[0.46; 50	.16
29	Lotvall 2014 b	6	17	5	11		0.65	[0.14; 3	.08
30	Shapiro 2001	29	90	34	93		0.82	[0.45; 1	.52
31	Stempel 2016 b	0	15	0	50		- 3.26	[0.06; 171	.09
32	Fixed effect model		136		167	—	0.93	[0.54; 1	.59
33	Random effects model						0.91	[0.52; 1	.57
34	Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$	p, p = 0	.46						
35									
36	group = ICS L vs placebo	40	407	05	00		0.00	10 47. 4	45
37	Berger 2006	43	197	25	99		0.83	[0.47; 1	.45
38	Bleecker 2012	4	14	3	13		1.33	[0.24; 7	.56
20		2	19	3	23		0.78	[0.12; 5	.26
39	Lotvall 2014 b	6	17	5	18		1.42	[0.34; 5	.94
40	Oliver 2016 b	50	253	12	65	T	1.09	[0.54; 2	.19
41	Shapiro 2001	29	90	29	91		1.02	[0.54; 1	.90
42	Fixed effect model		590		309	T	0.98	[0.70; 1	.37]
43	Random effects model		07			–	0.98	[0.70; 1	.37
44	Heterogeneity: $I^{-} = 0\%$, $\tau^{-} = 0$	p, p = 0	.97						
45						0.01 0.1 1 10 10	`		
46							J		
17					Fave	our reament i Favour reath	ient 2		

Meta-analysis with a frequentist approach (Mantel-Haenszel) based on all available comparisons. All data included (IPD and AgD where possible). OR > 1 favours treatment 2. IPD = individual participant data; AgD = aggregate data; ICS = inhaled corticosteroids; LABA = long-acting beta-agonists; LTRA = leukotriene receptor antagonists; L = low dose; M = medium dose; H = high dose; OR = odds ratio; CI = confidence interval.

Figure S20 (part 3). Infections and infestations (ICS dose grouped)

1	
2	
3	
Λ	
~	
5	
6	
7	
Q	
~	
9	
1	0
1	1
1	2
1	2
1	2
1	4
1	5
1	6
1	7
1	/ ~
1	8
1	9
2	0
2	1
2	1
2	2
2	3
2	4
2	5
2	2
2	6
2	7
2	8
2	a
2	2
3	0
3	1
3	2
3	З
2	ر ۸
3	4
3	5
3	6
3	7
ר ר	, 0
3	ð
3	9
4	0
4	1
1	ว
4	2
4	3
4	4
4	5
۸	6
+	-
4	1
4	8
4	9
5	0
ר ר	1
5	I
5	2

	Study	Treatm Events	nent 1 Total	Treatm Events	ent 2 Total	Odds Ratio	OR	95%-CI
	otaaj		. etai				•	
	group = ICS M vs place	bo						
	Bleecker 2012	1	13	3	13		0.28	[0.02; 3.10]
	Lotvall 2014 b	5	11	5	18		2.17	[0.45; 10.44]
C	Shapiro 2001	34	93	29	91		1.23	[0.67; 2.27]
1	Fixed effect model		117		122	-	1.20	[0.70; 2.08]
2	Random effects model					-	1.22	[0.70; 2.13]
3	Heterogeneity: $I^2 = 0\%$, τ^2	= 0, <i>p</i> = 0	.38					
4								
5	group = ICS+LABA vs I	CS+LTR	Α					
5	Lenney 2013	9	23	7	21		1.29	[0.37; 4.42]
7	Fixed effect model		23		21		1.29	[0.37; 4.42]
/ D	Random effects model						1.29	[0.37; 4.42]
	Heterogeneity: not applicat	ole						
9								
5	group = ICS L vs ICS+L	TRA _		_		L		
1	Lenney 2013	7	19	7	21		1.17	[0.32; 4.28]
2	Fixed effect model		19		21		1.17	[0.32; 4.28]
3	Random effects model						1.17	[0.32; 4.28]
4	Heterogeneity: not applicat	ble						
5								
5	group = ICS+LABA vs p	lacebo	10	•	00	_	0.07	10.04.0.001
7	Bleecker 2014	1	19	3	23		0.37	[0.04; 3.89]
8	Fixed effect model		19		23		0.37	[0.04; 3.89]
- 9	Random effects model	-1-					0.37	[0.04; 3.89]
-)	Heterogeneity: not applicat	bie						
1						01 051 2 10		
י כ					For	0.1 $0.51 2$ 10	tmont 2	
۷.					Favo	ou reament ravour rea	inent 2	

Meta-analysis with a frequentist approach (Mantel-Haenszel) based on all available comparisons. All data included (IPD and AgD where possible). OR > 1 favours treatment 2. IPD = individual participant data; AgD = aggregate data; ICS = inhaled corticosteroids; LABA = long-acting beta-agonists; LTRA = leukotriene receptor antagonists; L = low dose; M = medium dose; H = high dose; OR = odds ratio; CI = confidence interval.

Figure S21 (part 1). Neurological disorders (ICS dose grouped)

3		Trootm	ont 1	Trootm	ant 2			
4 5	Study	Events	Total	Events	Total	Odds Ratio	OR	95%-CI
6						I		
7	Bateman 2014	14	102	20	111		0 72	[0.34 1.52]
/	Bernstein 2015	0	17	6	25		0.09	[0.00, 1.02]
8	Bleecker 2014	0	19	1	19		0.32	[0.01: 8.26]
9	Lenney 2013	5	19	1	23		7.86	[0.83; 74.48]
10	Li 2010	30	177	28	173	÷-	1.06	[0.60; 1.86]
11	Lotvall 2014 a1	0	5	0	15		2.82	[0.05; 159.96]
12	Malone 2005	20	102	20	101	-+-	0.99	[0.49; 1.97]
13	Murray 2011	8	117	7	113	- 	1.11	[0.39; 3.17]
14	Oliver 2016 a	8	115	26	341		0.91	[0.40; 2.06]
15	Pearlman 2009	9	124	4	124	+	2.35	[0.70; 7.84]
16	Tal 2002	6	138	9	148		0.70	[0.24; 2.03]
17	Vvechsler 2019	2	33	5	94		1.15	[0.21; 6.22]
17	Pixed effect model		968		1287	I	0.98	[0.74; 1.30]
18	Heterogeneity: $l^2 = 0\% r^2$	-0 -0	54			Ť	0.99	[0.74; 1.33]
19	Helefogeneity. $T = 0.00, \tau$	- 0, <i>μ</i> - 0	.04					
20	group = ICS M vs ICS+L	ABA						
21	De Blic 2009	30	153	33	150	+	0.86	[0.50: 1.51]
22	Gappa 2009	6	133	4	129	.	1.48	[0.41; 5.36]
23	Lotvall 2014 a2	0	9	2	17		0.33	[0.01; 7.55]
24	Martin 2020	0	5	1	6		0.33	[0.01; 10.11]
25	Stempel 2016 a	0	813	3	818		0.14	[0.01; 2.78]
26	Fixed effect model		1113		1120	+	0.82	[0.51; 1.32]
20	Random effects model					+	0.85	[0.52; 1.39]
27	Heterogeneity: $I^2 = 0\%$, τ^2	= 0, <i>p</i> = 0	.60					
28								
29	group = ICS H vs ICS L	0	20	0			0.04	IO 40. EO COL
30	Bleecker 2012	2	29	0	14		2.64	
31	Fixed effect model	3	45 74	2	33 17		1.11	[0.17, 7.03]
32	Random effects model		/4		47		1.40	[0.28: 6.80]
33	Heterogeneity: $l^2 = 0\% \tau^2$	$= 0 \ n = 0$	64				1.00	[0.20, 0.00]
34		ο, ρ ο	.01					
35	group = ICS H vs ICS M							
36	Bleecker 2012	2	29	1	13		0.89	[0.07; 10.77]
37	Fixed effect model		29		13		0.89	[0.07; 10.77]
27	Random effects model						0.89	[0.07; 10.77]
20	Heterogeneity: not applicat	ole						
39								
40	group = ICS H vs ICS+L	.ABA	10	0	10		4.00	10 00 50 401
41	Akpinarli 1990	0	16	0	16		1.00	[0.02; 53.46]
42	Russell 1995	12	107	23	99		1.07	[0.20; 0.89]
43	Fixed offect model	3	40	5	200		1.27	[0.29, 5.57]
44	Random effects model		100		209		0.55	[0.27, 1.04]
45	Heterogeneity: $l^2 = 0\% \tau^2$	$= 0 \ n = 0$	40			-	0.54	[0.20, 1.04]
46		- 0, μ - 0	.+0					
10	group = ICS H vs place	bo						
47	Bleecker 2012	2	29	0	13		2.45	[0.11; 54.78]
40	Fixed effect model		29		13		2.45	[0.11; 54.78]
49	Random effects model						2.45	[0.11; 54.78]
50	Heterogeneity: not applical	ole						-
51								
52					_	0.01 0.1 1 10 100		
53					Fav	our Treament 1 Favour Treatm	ent 2	
54								

Meta-analysis with a frequentist approach (Mantel-Haenszel) based on all available comparisons. All data included (IPD and AgD where possible). OR > 1 favours treatment 2. IPD = individual participant data; AgD = aggregate data; ICS = inhaled corticosteroids; LABA = long-acting beta-agonists; LTRA = leukotriene receptor antagonists; L = low dose; M = medium dose; H = high dose; OR = odds ratio; CI = confidence interval

Figure S21 (part 2). Neurological disorders (ICS dose grouped)

3	
4	
5	
6	
7	
, 8	
9	
1	ი
1	1
1	י ר
1	2 2
1	כ ∧
1	4 7
1	с С
1	0
1	/
1	8
1	9
2	0
2	1
2	2
2	3
2	4
2	5
2	6
2	7
2	8
2	9
3	0
3	1
3	2
3	3
3	4
3	5
3	6
3	7
2	γ Q
ר כ	0 0
כ ⊿	9 0
4	1
4	רי ר
4	2
4	5 ∧
4	4 7
4	5
4	6
4	/
4	8
4	9
5	Û
5	1
5	2
5	3
5	4
5	5
5	6
5	7
5	8
5	9
6	0

1	1	С
т	т	2

Study	Treatme Events	ent 1 Total	Treatm Events	ent 2 Total	Odds Ratio	OR		95%-CI
group = ICS L vs ICS M								
Bleecker 2012	0	14	1	13		0.29	[0.01;	7.70]
Lotvall 2014 b	2	17	2	11		0.60	[0.07;	5.03]
Shapiro 2001	4	90	6	93		0.67	0.18;	2.47
Fixed effect model		121		117		0.59	[0.21;	1.69
Random effects model						0.60	10.21:	1.72
Heterogeneity: $I^2 = 0\%$, $\tau^2 =$	= 0, p = 0.	89					L ,	
·								
group = ICS L vs placeb	0							
Berger 2006	17	197	14	99		0.57	[0.27;	1.22]
Bleecker 2012	0	14	0	13		0.93	[0.02;	50.30]
Bleecker 2014	0	19	2	23 -		0.22	[0.01;	4.88]
Lotvall 2014 b	2	17	1	18		2.27	[0.19;	27.58]
Oliver 2016 b	9	253	0	65		- 5.09	[0.29;	88.60]
Shapiro 2001	4	90	1	91	+	4.19	[0.46;	38.20
Fixed effect model		590		309		0.92	[0.51:	1.671
Random effects model						1.02	[0.41	2.491
Heterogeneity: $I^2 = 17\%$, τ^2	= 0.2415	p = 0).31				L ,	,
aroup = ICS M ve placet	20							
Bleecker 2012	1	12	0	12		- 3.24	IU 15.	87 121
Lotvall 2017 h	י כ	11	1	10		379	[0.12, [0.30)	17 561
Eotvall 2014 D Shapira 2004	2	11	1	10		0.70	10.30,	47.00] 52.601
	0	93	1	91		0.21	[0.73;	52.62
Fixed effect model		117		122		4.80	[1.12;	20.60]
Random effects model						4.63	[1.07;	19.98]
Heterogeneity: $I^2 = 0\%$, $\tau^2 =$	= 0, <i>p</i> = 0.	93						
group = ICS L vs ICS+L	TRA							
Lenney 2013	5	19	7	21		0.71	[0.18;	2.80]
Fixed effect model		19		21		0.71	[0.18;	2.80]
Random effects model						0.71	[0.18;	2.80
Heterogeneity: not applicab	le						• /	-
aroup = ICS+I ABA vs I								
Jenney 2013	1	23	7	21 -		0.09	[[] 01.	0 821
Fixed effect model	'	20	,	21		0.00	[0.01,	0.02
Random offects model		23		41		0.09	[0.01,	0.02
Heterogeneity: not opplicable	ام					0.09	[0.01;	0.02
neterogeneity, not applicab								
group = ICS+LABA vs p	lacebo							
Bleecker 2014	1	19	2	23		0.58	[0.05;	6.98]
Fixed effect model		19		23		0.58	[0.05;	6.98]
Random effects model						0.58	[0.05;	6.98]
Heterogeneity: not applicab	le						- /	-
aroup = ICS+I TRA ve IC	S+Theo	nhvil	ine					
Sondo 2006	1	20	0	36		- 284	[[] 11.	72 081
Fixed offect model		20	0	20		2.04 - 2.04	[0.11,	72.00
Pandam offects med-		29		20		2.04	[0.11;	72.00
Random enects model	-					- 2 .ŏ4	[v.11;	12.08]
neterogeneity: not applicab	le			Г		-		
				~		100		
				0.0	JT U.1 1 10 wr Treament 1 Eavour Treat	100 mont 2		
				гаус	ui neament i Favour Freat	mentz		

Meta-analysis with a frequentist approach (Mantel-Haenszel) based on all available comparisons. All data included (IPD and AgD where possible). OR > 1 favours treatment 2. IPD = individual participant data; AgD = aggregate data; ICS = inhaled corticosteroids; LABA = long-acting beta-agonists; LTRA = leukotriene receptor antagonists; L = low dose; M = medium dose; H = high dose; OR = odds ratio; CI = confidence interval.

Figure S22. Pneumonia (ICS dose grouped)

5		Treatm	nent 1	Treatm	nent 2			
6	Study	Events	Total	Events	Total	Odds Ratio	OR	95%-CI
7								
8	group = ICS L vs ICS+LA	ABA			1011010	_		
a a	Bateman 2014	0	102	2	111		0.21	[0.01; 4.50]
10	Oliver 2016 a	0	115	1	341		0.98	[0.04; 24.29]
10	Pearlman 2009	1	124	0	124		3.02	[0.12; 74.96]
11	Stempel 2016 b	0	15	1	117	*	2.51	[0.10; 64.24]
12	Fixed effect model		356		693		0.91	[0.22; 3.80]
13	Random effects model						1.07	[0.22; 5.23]
14	Heterogeneity: $I^{-} = 0\%$, $\tau^{-} =$	= 0, p = 0	0.62					
15								
16	group = ICS M VS ICS+L	ABA	100	2	225		0.44	[0.02, 0.24]
17	De Blie 2000	0	100	2	230		0.44	[0.02, 9.21]
18	De Blic 2009	1	103	0	150		2.90	[0.12, 73.25]
19	Stempel 2016 h	1	50	1	117		0.20	[0.02, 1.72]
20	Stelliper 2016 b	0	1122	1	1220		0.11	[0.03, 19.20]
21	Pandom offects model		1122		1320		0.49	[0.14, 1.00]
21	Hotorogonoity: $l^2 = 0\%$, $z^2 = 0\%$	0 0 - 0	59				0.50	[0.13, 2.01]
22	heterogeneity. 7 = 0 %, t =	0, p = 0						
23	group = ICS H vs ICS I							
24	Stempel 2016 b	0	40	0	15		0.38	[0 01· 20 14]
25	Fixed effect model	0	40	U	15		0.38	[0.01: 20.14]
26	Random effects model		40		10		0.38	[0.01: 20.14]
27	Heterogeneity: not applicab	le					0.00	[0.01, 2011]
28								
29	group = ICS H vs ICS M							
30	Stempel 2016 b	0	40	0	50		1.25	[0.02; 64.22]
31	Fixed effect model		40		50		1.25	[0.02; 64.22]
32	Random effects model						1.25	[0.02; 64.22]
33	Heterogeneity: not applicab	le						
34								
35	group = ICS H vs ICS+L	ABA						
36	Stempel 2016 b	0	40	1	117		0.96	[0.04; 24.01]
20	Fixed effect model		40		117		0.96	[0.04; 24.01]
3/	Random effects model						0.96	[0.04; 24.01]
38	Heterogeneity: not applicab	le						
39								
40	group = ICS L vs ICS M					_		
41	Stempel 2016 b	0	15	0	50		- 3.26	[0.06; 171.09]
42	Fixed effect model		15		50		3.26	[0.06; 171.09]
43	Random effects model						3.26	[0.06; 171.09]
44	Heterogeneity: not applicab	le						
45								
46					- ()	
47					Favo	our reament 1 Favour Freatm	ent 2	

Meta-analysis with a frequentist approach (Mantel-Haenszel) based on all available comparisons. All data included (IPD and AgD where possible). OR > 1 favours treatment 2. IPD = individual participant data; AgD = aggregate data; ICS = inhaled corticosteroids; LABA = long-acting beta-agonists; LTRA = leukotriene receptor antagonists; L = low dose; M = medium dose; H = high dose; OR = odds ratio; CI = confidence interval.

1	
2	
3	Supplement 1
4	
5	
7 8	Best step-up treatments for children with uncontrolled asthma: A systematic review and network meta-analysis of individual participant data
9	Sofia Cividini, MSc: Ian Sinha, PhD: Sarah Donegan, PhD: Michelle Maden, PhD: Katie Rose, MBChB: Olivia
10	Fulton; Giovanna Culeddu, MSc; Dyfrig A. Hughes, PhD; Stephen Turner, MD; Catrin Tudur Smith, PhD on
11	behalf of the EINSTEIN collaborative group
12	
14	Methods S1 Search strategy: for example MEDI INF (OVID) search
15	Methods S1. Search strategy, for example, MEDLINE (OVID) search Methods S2. Modifiers searches 1 – Database: Ovid MEDLINE(R) ALL <1946 to July 02. 2019>
16	Methods S2. Modifiers searches 2 – Database: Ovid MEDLINE(R) ALL <1946 to July 02, 2019>
17	Methods S4. Eligibility criteria
18	Methods S5. Outcomes
19	Methods S6. Processing individual participant data and data extraction
20	Methods S7. Data analysis
21	Methods S8. Patient and public involvement
22	Table S1. Estimated clinical comparability daily doses (μ g) of inhaled Corticosteroids Table S2. Drien distributions used in Payesian NMA and ML NMP models
23	Table S2. Frior distributions used in Dayesian NNIA and MIL-NNIK models Table S3. Characteristics of the included studies with individual participant data (parts 1 to 6)
24	Table S4. Characteristics of the included studies with individual participant data (parts 1 to 0) Table S4. Characteristics of the included studies with aggregate data (parts 1 to 4)
25	Table S5. Eligible studies without individual participant data or aggregate data (parts 1 to 18)
20	Table S6. Risk of bias for included studies with individual participant data or aggregate data (parts 1 to
27	5)
29	Table S7. Exacerbation Bayesian random-effects network meta-analysis (ORa, 95% CrI) with IPD and
30	AgD (Analysis A1: 40 trials, 8168 participants, 649 events)
31	Table S8. Bayesian fixed effect network meta-analysis results (IPD And AgD) for exacerbations. ICS grouned with LAPA Analysis P1
32	groupeu with LADA – Allarysis Di Table SQ Sensitivity analysis evoluding exacerbation events identified from adverse event data: Bavesian
33	random-effects network meta-analysis results (IPD and AgD) for exacerbations. ICS stratified by dose
34	when combined with LABA – Analysis A1
35	Table S10. Sensitivity analysis excluding exacerbation events identified from adverse event data:
36	Bayesian fixed effect network meta-analysis results (IPD and AgD) for the exacerbation outcome. ICS
3/	grouped when combined with LABA – Analysis B1
38 20	Table S11. Sensitivity analysis to explore data availability bias: Bayesian fixed effect network meta-
39 40	analysis results for exact battons. ICS stratified by dose when combined with LADA (IFD trials only, i.e., excluding trials with ΔgD only) – $\Delta nalysis \Delta 1$
41	Table S12. Sensitivity analysis to explore data availability bias: Bayesian fixed effect network meta-
42	analysis results for the exacerbation outcome (including ICS grouped when combined with LABA). IPD
43	trials only (i.e., excluding trials with AgD only) – Analysis B1
44	Table S13. Asthma Control Bayesian fixed effect network meta-analysis (ORa, 95% CrI) with IPD
45	(Analysis A2: 16 trials, 3027 participants, 2453 events)
46	Table S14. Bayesian fixed effect network meta-analysis (IPD only) for asthma control. ICS grouped when
47	compined with LABA – Analysis B2 Table \$15 Bayesian random-affects network meta-analysis (IPD only) for asthma control (individual
48	compounds) – Analysis C2
49	Table S16. FEV1 Bayesian fixed effect network meta-analysis (MDa, 95% CrI) with IPD and AgD
50	(Analysis A3: 23 trials, 2518 participants)
52	Table S17. Bayesian random-effects network meta-analysis (IPD and AgD) for FEV1. ICS grouped when
53	combined with LABA – Analysis B3
54	1 able 518. Bayesian fixed effect network meta-analysis (IPD only) for FEV1 (individual compounds) –
55	Allarysis US Table S19 Direct nairwise comparisons of treatment classes (IPD and AgD) for quality of life outcome
56	Table S20. Hospital admissions
57	Table S21. Model comparison assessments from network meta-analysis models including interactions for
58	the outcome exacerbation
59	Table S22. Parameter estimates (Posterior mean [95% CrI]) from NMR models including interactions for
60	the outcome exacerbation

2	
3	Table S23. Odds ratios (95% CrI) from fixed effect NMR with "treatment by ethnicity" interactions for
4	the outcome exacerbation
5	Table S24. Odds ratios (95% CrI) from fixed effect NMR with "treatment by baseline severity"
6	interactions for the outcome exacerbation
7	Table S25. Model comparison assessments from network meta-analysis models including interactions for
8	the outcome asthma control
9	Table S26. Parameter estimates (Posterior mean [95% CrI]) from NMR models including interactions for
10	the outcome asthma control
11	Table S27. Model comparison assessments from network meta-analysis models including interactions for
12	the outcome FEV ₁
13	Table S28. Parameter estimates (Posterior mean [95% Cr1]) from NMR models including interactions for
14	the outcome FEV ₁
15	Table S29. Mean difference (95% Cr1) from random- effects NMR with "treatment by sex" interactions
16	for the outcome FEV ₁
17	Table S30. Mean difference (95% CrI) from fixed effect NMR with "treatment by eosinophilia"
18	interactions for the outcome FEV_1
19	Figure S1. Secondary flowchart
20	Figure S2A. Comparison-adjusted funnel plots (exacerbation frequentist random-effects network meta-
21	analysis)
22	Figure S2B. Comparison-adjusted funnel plots (asthma control frequentist fixed-effect network meta-
23	analysis)
24	Figure S2C. Comparison-adjusted funnel plots (FEV ₁ frequentist fixed-effect network meta-analysis)
25	Figure S3. Rankings for the random-effects network meta-analysis (ICS stratified by dose when
26	combined with LABA) for exacerbations – Analysis A1
27	Figure S4 (parts 1 to 3). Exacerbation frequentist random-effects network meta-analysis (OR, 95% Cr)
28	with IPD and AgD (Analysis A1: 40 trials, 8168 participants, 649 events)
29	Figure S5. Network plot and rankings for the fixed effect network meta-analysis (ICS grouped when
30	combined with LABA) for exacerbations – Analysis B1
31	Figure S6. Network plot and rankings for the fixed effect network meta-analysis (ICS stratified when
32	combined with LABA) for asthma control – Analysis A2
33	Figure S7 (parts 1 to 3). Asthma Control frequentist fixed effect network meta-analysis (OR, 95% Cr)
34 25	with IPD (Analysis A2: 16 trials, 3027 participants, 2453 events)
35	Figure S8. Network plot and rankings for the fixed effect network meta-analysis (ICS grouped when
30	combined with LABA) for asthma control – Analysis B2
37 20	Figure S9. Network plot and rankings for the random-effects network meta-analysis (individual
38	compounds) for asthma control – Analysis C2
39	Figure S10. Network plot and rankings for the fixed effect network meta-analysis (ICS stratified when
40	combined with LABA) for FEV ₁ – Analysis A3
41	Figure S11 (parts 1 to 3). FEV ₁ frequentist fixed effect network meta-analysis (MD, 95% CI) with IPD
42	and AgD (Analysis A3: 23 trials, 2518 participants)
43	Figure S12. Network plot and rankings for the random-effects network-meta-analysis (ICS grouped when
44	combined with LABA) for FEV_1 – Analysis B3
45	Figure S13. Network plot and rankings for the fixed effect network meta-analysis (individual compounds)
40	for FEV ₁ – Analysis C3
48	Figure S14. Oral candidiasis (ICS dose stratified)
40	Figure S15. Oral candidiasis (any ICS dose combined with LABA)
4) 50	Figure S16. Cardiac disorders (ICS dose grouped)
51	Figure S17. Clinically significant electrocardiogram (ECG) favorable changes (ICS dose grouped)
52	Figure S18. Clinically significant electrocardiogram (ECG) unfavorable changes (ICS dose grouped)
53	Figure S19. Heart rate (HR) change (last visit vs baseline) (ICS dose grouned)
54	Figure S20. (nart 1). Infections and infestations (ICS dose grouped)
55	Figure S20. (part 2). Infections and infestations (ICS dose grouped)
56	Figure S20. (part 2). Infections and infestations (ICS dose grouped)
57	Figure S21. (part 1). Neurological disorders (ICS dose grouped)
58	Figure S21. (part 2). Neurological disorders (ICS dose grouped)
59	Figure S22. Preumonia (ICS dose grouped)
60	- Bare 222. I nonmonia (100 aobe Brouhea)

Methods S1. Search strategy; for example, MEDLINE (OVID) search

We searched MEDLINE, the Cochrane Database of Systematic Reviews (CDSR), the Cochrane Central Register of Controlled Trials (CENTRAL), Embase, Web of Science (all databases), National Institute for Health and Care Excellence (NICE) Technology Appraisals, and the National Institute for Health Research (NIHR) Health Technology Assessment (HTA) series using relevant search terms. The reference list of included trials and relevant reviews, along with the reference lists of existing clinical guidelines such as the British Thoracic Society (BTS) Guideline [1, 2] and Global Initiative for Asthma (GINA), [3] were also scanned. Unpublished trials were located by searching across a range of clinical trial registries included within the World Health Organization (WHO) International Clinical Trials Registry Platform search portal (including clinicaltrials.gov and the International Traditional Medicine Clinical Trial Registry) and conference abstracts (e.g., European Respiratory Society; American Thoracic Society). We also searched internal clinical trial registers for pharmaceutical companies that manufacture health technologies of interest (e.g., GSK, AstraZeneca, Novartis, Merck). Selection and screening of studies were carried out using Covidence and Rayyan.

- 1 exp Asthma/
- 2 asthma.ti,ab.
- 3 1 or 2
- 4 exp Infant/
- 5 infant*.ti,ab.
- 6 infancy.ti,ab.
- 7 newborn*.ti,ab.
- 8 baby*.ti,ab.
- 9 babies.ti,ab.
- 10 neonat*.ti,ab.
- 11 preterm*.ti,ab.
- 12 prematur*.ti,ab.
- 13 postmatur*.ti,ab.
- 14 exp child/
- 15 child*.ti,ab.
- 16 schoolchild*.ti,ab.
- 17 "school age*".ti,ab.
- 18 preschool*.ti,ab.
- 19 kid.ti,ab.
- 20 kids.ti,ab.
- 21 toddler*.ti,ab.
- 22 exp Adolescent/
- 23 adoles*.ti,ab.
- 24 teen*.ti,ab.
- 25 boy*.ti,ab.

2	
3	
4	
5	
6	
7	
, 8	
٥ ٥	
9 10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
20	
24	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
10	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50	
57	
20	
59	
60	

26 girl*.ti,ab.
27 exp Minors/
28 minor*.ti,ab.
29 exp Puberty/
30 pubert*.ti,ab.

31 pubescen*.ti,ab.

33 exp Pediatrics/

34 paediatric*.ti,ab.35 pediatric*.ti,ab.

36 exp Schools/

38 kindergar*.ti,ab.

37 "nursery school*".ti,ab.

39 "primary school*".ti,ab.40 "secondary school*".ti,ab.41 "elementary school*".ti,ab.

42 "high school*".ti,ab.

47 exp Beclomethasone/

48 beclomethasone.mp.

50 becotide.mp.

52 ciclesonide.mp.

54 exp Fluticasone/

56 fluticasone.mp.

58 exp Budesonide/59 budesonide.mp.

61 mometasone.mp.

60 Mometasone Furoate/

57 flixotide.mp.

53 "clenil modulite".mp.

55 "fluticasone propionate".mp.

51 clenil.mp.

45 "inhaled corticosteroid*".mp.

49 "beclomethasone dipropionate".mp.

43 highschool*.ti,ab.

44 or/4-43

46 ICS.mp.

32 prepubescen*.ti,ab.

1	
2	62 our Advancesia hota Aganista/
4	62 exp Adrenergic beta-Agoinsts/
5	63 "long acting beta-2 agonist*".mp.
7	64 "long acting beta2 agonist*".mp.
8	65 LABA.mp.
9 10	66 exp Formoterol Fumarate/
11 12	67 formoterol.mp.
13	68 Oxis.mp.
14 15	69 "fluticasone furoate".mp.
16	70 exp Salmeterol Xinafoate/
17 18	71 salmeterol.mp.
19	72 serevent.mp.
20 21	73 vilanterol mp.
22	74 over Loukotriana Antogonista/
23 24	
25	/5 "leukotriene receptor antagonist*".mp.
26 27	76 LTRA.mp.
28	77 zafirlukast.mp.
29 30	78 montelukast.mp.
31	79 exp Theophylline/
32 33	80 theophylline.mp.
34	81 Tiotropium.mp.
35 36	82 spiriva.mp.
37	83 Symbicort.mp.
38 39	84 Seretide.mp.
40	85 flutiform mp
41 42	
43	so reivar.mp.
44 45	8 / or/45-86
46	88 Clinical Trial.pt.
47 48	89 Randomized Controlled Trial.pt.
49	90 exp Random Allocation/
50 51	91 exp Single-Blind Method/
52	92 exp Double-Blind Method/
53 54	93 exp Cross-Over Studies/
55	94 exp Placebos/
56 57	95 RCT.ti.ab.
58	96 Random* ti ah
59 60	07 "Single blind*" tigh
00	7/ Single bind" .ti,ab.

98 "Double blind*".ti,ab.
99 "triple blind*".ti,ab.
100 placebo*.ti,ab.
101 or/88-100
102 3 and 44 and 87 and 101
103 limit 102 to ed=20140701-20190911
104 limit 103 to english language
105 (case reports or editorial or letter).pt.
106 4 not 105

Methods S2. Modifiers searches 1 – Database: Ovid MEDLINE(R) ALL <1946 to July 02, 2019>

To identify potential modifiers for the network meta-regression analysis, a search was first conducted in MEDLINE combining four concepts; asthma terms AND child terms AND ICS terms AND modifier terms.

- 1 exp Asthma/
- 2 asthma.ti,ab.
- 3 1 or 2
- 4 exp Infant/
- 5 infant*.ti,ab.
- 6 infancy.ti,ab.
- 7 newborn*.ti,ab.
- 8 baby*.ti,ab.
- 9 babies.ti,ab.
- 10 neonat*.ti,ab.
- 11 preterm*.ti,ab.
- 12 prematur*.ti,ab.
- 13 postmatur*.ti,ab.
- 14 exp child/
- 15 child*.ti,ab.
- 16 schoolchild*.ti,ab.
- 17 "school age*".ti,ab.
- 18 preschool*.ti,ab.
- 19 kid.ti,ab.
 - 20 kids.ti,ab.

2		
3 4	21	toddler*.ti,ab.
4 5	22	exp Adolescent/
6 7	23	adolescen*.ti,ab.
8	24	teen*.ti,ab.
9 10	25	boy*.ti,ab.
11 12	26	girl*.ti,ab.
12	27	exp Minors/
14 15	28	minor*.ti,ab.
16	29	exp Puberty/
17 18	30	pubert*.ti,ab.
19 20	31	pubescen*.ti,ab.
20 21	32	prepubescen*.ti,ab.
22 23	33	exp Pediatrics/
24	34	paediatric*.ti,ab.
25 26	35	pediatric*.ti,ab.
27	36	exp Schools/
28 29	37	"nursery school*".ti,ab.
30 31	38	kindergar*.ti,ab.
32	39	"primary school*".ti.ab.
33 34	40	"secondary school*".ti.ab.
35 36	41	"elementary school*".ti.ab.
37	42	"high school*".ti.ab.
38 39	43	highschool*.ti.ab.
40	44	4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23
41 42	or 24	4 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38 or 39 or 40 or 41 or 42
43	or 4:	
44 45	45	3 and 44
46 47	46	"inhaled corticosteroid*".ti,ab,kw.
48	47	exp Beclomethasone/
49 50	48	"beclomethasone dipropionate".ti,ab,kw.
51 52	49	ciclesonide.ti,ab,kw.
52 53	50	exp Fluticasone/
54 55	51	"fluticasone propionate".ti,ab,kw.
56	52	exp Budesonide/
57 58	53	budesonide.ti,ab,kw.
59	54	Mometasone Furoate/
60	55	mometasone.ti,ab,kw.

- 56 exp Adrenal Cortex Hormones/ or exp Adrenergic beta-Agonists/
- 57 "long acting beta-2 agonist*".ti,ab,kw.
- 58 "long acting beta2 agonist*".ti,ab,kw.
- 59 exp Formoterol Fumarate/
- 60 formoterol.ti,ab,kw.
- 61 exp Salmeterol Xinafoate/
- 62 salmeterol.ti,ab,kw.
- 63 vilanterol.ti,ab,kw.
- 64 exp Leukotriene Antagonists/
- 65 "leukotriene receptor antagonist*".ti,ab,kw.
- 66 zafirlukast.ti,ab,kw.
- 67 montelukast.ti,ab,kw.
- 68 exp Theophylline/
- 69 theophylline.ti,ab,kw.
- 70 Tiotropium.ti,ab,kw.

71 46 or 47 or 48 or 49 or 50 or 51 or 52 or 53 or 54 or 55 or 56 or 57 or 58 or 59 or 60 or 61 or 62 or 63 or 64 or 65 or 66 or 67 or 68 or 69 or 70

- 72 45 and 71
- 73 modifi*.ti,ab,kw.
- 74 72 and 73

75 ((age or gender or ethnicity or eczema or asthma severity) adj3 (outcome* or effect* or modif* or success* or response or differen*)).mp.

76 72 and 75

77 ((age or gender or ethnic* or racial or eczema or asthma severity) and (effect* or differen* or modif* or success* or response or outcome*)).ti.

- 78 72 and 77
- 79 74 or 76 or 78
- 80 limit 79 to english language

Methods S3. Modifiers searches 2 – Database: Ovid MEDLINE(R) ALL <1946 to July 02, 2019>

As modifier details may not be identified from titles and abstracts, a second MEDLINE search was then conducted on the following concepts; asthma terms AND child terms AND ICS terms AND limit to RCTs. All results from this search were then imported into an Endnote Library and the full text for all RCTs were obtained. A full text search of the PDF files was then undertaken on the following terms; modifier*, modified, differential effect, predictor*, stratified, subgroup analysis.

- 1 exp Asthma/
- 2 asthma.ti,ab.
- 3 1 or 2
- 4 exp Infant/
- 5 infant*.ti,ab.
- 6 infancy.ti,ab.
- 7 newborn*.ti,ab.
- 8 baby*.ti,ab.
- 9 babies.ti,ab.
- 10 neonat*.ti,ab.
- 11 preterm*.ti,ab.
- 12 prematur*.ti,ab.
- 13 postmatur*.ti,ab.
- 14 exp child/
- 15 child*.ti,ab.
 - 16 schoolchild*.ti,ab.
 - 17 "school age*".ti,ab.
 - 18 preschool*.ti,ab.
 - 19 kid.ti,ab.
 - 20 kids.ti,ab.
- 21 toddler*.ti,ab.
- 22 exp Adolescent/
- 23 adolescen*.ti,ab.
- 24 teen*.ti,ab.
- 25 boy*.ti,ab.
- 26 girl*.ti,ab.
- 27 exp Minors/
- 28 minor*.ti,ab.

3	
4	
5	
6	
7	
, 8	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
27	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
27	
38	
39	
40	
41	
42	
43	
44	
45	
16	
70 71	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
58	
59	
60	

30 pubert*.ti,ab.
31 pubescen*.ti,ab.
32 prepubescen*.ti,ab.
33 exp Pediatrics/
34 paediatric*.ti,ab.
35 pediatric*.ti,ab.
36 exp Schools/

exp Puberty/

29

- 37 "nursery school*".ti,ab.
- 38 kindergar*.ti,ab.
- 39 "primary school*".ti,ab.
- 40 "secondary school*".ti,ab.
- 41 "elementary school*".ti,ab.
- 42 "high school*".ti,ab.
- 43 highschool*.ti,ab.

44 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38 or 39 or 40 or 41 or 42 or 43

- 45 3 and 44
- 46 "inhaled corticosteroid*".ti,ab,kw.
- 47 exp Beclomethasone/
- 48 "beclomethasone dipropionate".ti,ab,kw.
- 49 ciclesonide.ti,ab,kw.
- 50 exp Fluticasone/
- 51 "fluticasone propionate".ti,ab,kw.
- 52 exp Budesonide/
- 53 budesonide.ti,ab,kw.
- 54 Mometasone Furoate/
- 55 mometasone.ti,ab,kw.
- 56 exp Adrenal Cortex Hormones/ or exp Adrenergic beta-Agonists/
- 57 "long acting beta-2 agonist*".ti,ab,kw.
- 58 "long acting beta2 agonist*".ti,ab,kw.
- 59 exp Formoterol Fumarate/
- 60 formoterol.ti,ab,kw.
- 61 exp Salmeterol Xinafoate/

4
4
5
6
7
0
0
9
10
11
12
13
14
14
15
16
17
18
10
20
20
21
22
23
24
25
25
20
27
28
29
30
31
32
22
27
34
35
36
37
38
30
40
40
41
42
43
44
45
46
70 71
4/
48
49
50
51
52
53
55
54 55
55
56
57
58
50

60

62	salmeterol.ti,ab,kw.
63	vilanterol.ti,ab,kw.
64	exp Leukotriene Antagonists/
65	"leukotriene receptor antagonist*".ti,ab,kw.
66	zafirlukast.ti,ab,kw.
67	montelukast.ti,ab,kw.
68	exp Theophylline/
69	theophylline.ti,ab,kw.
70	Tiotropium.ti,ab,kw.
71 64 oi	46 or 47 or 48 or 49 or 50 or 51 or 52 or 53 or 54 or 55 or 56 or 57 or 58 or 59 or 60 or 61 or 62 or 63 or 65 or 66 or 67 or 68 or 69 or 70

72 45 and 71

73 limit 72 to english language and randomized controlled trials.pt

Methods S4. Eligibility criteria

Trial design

We included parallel and crossover RCTs of any duration and with any level of blinding, which compared at least one of the health technologies of interest. All trials meeting our inclusion criteria were included irrespective of the outcomes reported in the publications to reduce the potential for outcome reporting bias.

Participants

We aimed to include children/adolescents (<18 years) with poor asthma control of any ethnicity and on any dose of ICS alone at the screening visit as defined by the trial protocol.

Interventions and comparators

Trials had to include a direct head-to-head comparison of at least two of the following interventions, alone or in combination with each other (where applicable), compared against each other or against a placebo:

• Inhaled Corticosteroids (ICSs) – beclomethasone dipropionate (BDP); ciclesonide (CIC); fluticasone propionate (FP); fluticasone furoate (FF); budesonide (BUD); mometasone furoate (MF).

• Long-acting β_2 -agonists (LABAs) – formoterol (FORM); salmeterol (SAL); vilanterol (VI).

- Leukotriene receptor antagonists (LTRAs) zafirlukast; montelukast.
- Theophylline.

We considered any dose of preventer treatment – inhaled or oral – and any inhaler devices used for administration. We compared patient outcomes at the level of the following treatment classes: a) ICS, b) LABA (combined with ICS), c) LTRA (as monotherapy or with ICS), d) theophylline, and e) placebo. We distinguished among low, medium, and high doses (Table S1) for the ICS class according to the GINA 2019 definitions. [3] We applied the dosage of the age class '6-11 years' for the age class '5 years', which was undefined in the GINA guideline. We performed three different levels of analysis by considering (A) ICS stratified as low, medium, and high doses when in combination with LABA, (B) all ICS doses combined, and (C) with different ICS, LABA, and LTRA molecules regardless of doses.

Methods S5. Outcomes

Test	Total score	Asthma control
ACT 4-11 (years)	score ≤19	0 = poor control
	score = 20-27	1 = good/total control
ACT 12+ (years)	score ≤19	0 = poor control
	score = 20-25	1 = good/total control
ACQ	score >1	0 = poor control
	score ≤1	1 = good/total control
Others	to be evaluated on an individual case by case	0 = poor control
	basis	1= good/total control

Categorisation of the primary outcome "asthma control".

Methods S6. Processing individual participant data and data extraction

We approached the sponsor or the corresponding author of each eligible trial via email or a dedicated portal for data sharing (e.g., Clinical Study Data Request - CSDR), requesting anonymized individual participant data, metadata, and relevant documentation. [4] We conducted a range of standard quality and consistency checks of the data, cross-checking the re-analysed IPD against previously published results to highlight inconsistencies or possible errors. We created a new dataset for every included trial using a pre-specified variable dictionary to ensure a standardised approach across all trials. One reviewer (SC) extracted trial-level data, and a second reviewer (CTS) checked for consistency. For eligible trials without IPD, we abstracted suitable aggregate outcome and treatment effect modifier data to allow inclusion in analyses wherever possible. Discrepancies were resolved through a consensus procedure.

Methods S7. Data analysis

A logit link function was used for binary outcomes, and an identity link function for normally distributed continuous outcomes. All network meta-regression models used independent interactions between treatment and covariate, and all NMR models for FEV_1 were adjusted for baseline FEV_1 value (except for "baseline severity") based on the baseline per cent predicted normal FEV_1). Models accounted for correlation between treatment effects from multi-arm trials. The between trial variance was assumed to be constant across all comparisons in the network. The Markov Chain Monte Carlo (MCMC) algorithm with four chains was run for each model until convergence was achieved, and 50% of iterations were discarded during the warmup period. Convergence was assessed using the Gelman-Rubin R hat statistic. We used Normal prior distributions for model parameters (i.e., trial-specific event rate or mean, log odds ratio or mean difference, and regression coefficients for covariate terms), except for the between-trial standard deviation, for which we used a half-Normal prior distribution (Table S2). Divergent transitions were handled by choosing appropriate priors (weakly informative or informative) and/or increasing the target average proposal acceptance probability during Stan's adaptation period. Models were fitted using a tree depth of 15. We used the deviance information criteria (DIC) to compare the model fit and complexity of models (e.g., fixed effect and random-effects models; or models with and without interaction terms). If the difference in DIC was greater than five, we focussed interpretation on the model with the lowest DIC; otherwise, we focussed on the simplest model. We also ran models of inconsistency based on unrelated mean effects (UMEs) [5] to assess the consistency assumption based on the agreement of direct and indirect evidence. We evaluated the plausibility of the underlying transitivity assumption by examining covariate distributions across comparisons from an evaluation of treatment-covariate interactions. Treatment rankings were calculated for every outcome. For every outcome variable and fitted model of network meta-analysis or network meta-regression, we assessed the geometry of the treatment network.

Methods S8. Patient and public involvement

We developed the EINSTEIN protocol in consultation with children with asthma and their parents and with National Health Service (NHS) clinicians routinely caring for children with uncontrolled asthma in NHS

settings. We also included a patient with lived experience (OF) as part of the research team. We sought advice on our proposal and the lay summary from five families, including two children, who attended our asthma clinic at Alder Hey. We selected the outcomes in our review from the core outcomes set that clinicians and patients agreed were crucial. [6] Finally, we consulted an Alder Hey patient advisory group comprising children with asthma and their parents.

References

1. British Thoracic Society SIGN. British guideline on the management of asthma. https://www.brit-thoracic.org.uk/quality-improvement/guidelines/asthma/

2. Asthma: diagnosis, monitoring and chronic asthma management. https://www.nice.org.uk/guidance/ng80

3. Reddel HK, Bacharier LB, Bateman ED, et al. Global Initiative for Asthma Strategy 2021: executive summary and rationale for key changes. Eur Respir J. 2021;59(1):2102730. Published 2021 Dec 31. doi:10.1183/13993003.02730-2021

4. Tudur Smith C, Hopkins C, Sydes MR, et al. How should individual participant data (IPD) from publicly funded clinical trials be shared? BMC Med. 2015;13:298. Published 2015 Dec 17. doi:10.1186/s12916-015-0532-z

5. Dias S, Welton NJ, Sutton AJ, et al. NICE DSU Technical Support Document 4: Inconsistency in Networks of Evidence Based on Randomised Controlled Trials. London: National Institute for Health and Care Excellence (NICE); April 2014

6. Sinha IP, Gallagher R, Williamson PR, et al. Development of a core outcome set for clinical trials in childhood asthma: a survey of clinicians, parents, and young people. Trials. 2012;13:103. Published 2012 Jul 2. doi:10.1186/1745-6215-13-103

LIST OF ABBREVIATIONS

ACO	Asthma Control Questionnaire
ACT	Asthma Control Test
AEs	Adverse Events
AgD	Aggregate Data
AOLO	Asthma Quality of Life Questionnaire
BDP	Beclomethasone dipropionate
BUD	Budesonide
CIC	Ciclesonide
CI	Confidence Interval
CrI	Credibility Interval
DIC	Deviance Information Criterion
ECG	Electrocardiogram
ED	Emergency Department
FE	Fixed Effect
FEV_1	Forced Expiratory Volume in one second
FF	Fluticasone furoate
FP	Fluticasone propionate
GP	General Practitioner
ICS	Inhaled Corticosteroid
IPD	Individual Participant Data
IQR	Interquartile Range
LABA	Long-Acting β_2 -Agonist
LTRA	Leukotriene Receptor Antagonist
MA	Meta-Analysis
MCMC	Markov Chain Monte Carlo
MD	Mean difference
MF	Mometasone furoate
NMA	Network Meta-analysis
NMR	Network Meta-regression
OCS	Oral Corticosteroids
OR	Odds Ratio
PAQLQ	Paediatric Asthma Quality of Life Questionnaire
QoL	Quality of Life
RCT	Randomised Controlled Trial
RE	Random Effects
RR	Relative Risk
SAL	Salmeterol
UME	Unrelated Mean Effects
VI	Vilanterol

≤ 5-year-old (Children)

1 2

3	
4	
5	
6	
7	
, 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
20	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40 //1	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54 57	
55	
56	
57	
58	
59	

60

Table S1. Estimated clinical comparability daily doses (µg) of Inhaled Corticosteroids

Drug	Low Dose	Medium Dose	High Dose
Beclomethasone dipropionate (HFA)	100 (≥5 years)	N.A.	N.A.
Budesonide nebulised	500 (≥1 year)	N.A.	N.A.
Budesonide pMDI + spacer	N.A.	N.A.	N.A.
Fluticasone propionate (HFA)	50 (≥4 years)	N.A.	N.A.
Mometasone furoate	110 (≥4 years)	N.A.	N.A.
Ciclesonide	N.A.	N.A.	N.A.
6-11-year-old (Children)			
Drug	Low Dose	Medium Dose	High Dose
Beclomethasone dipropionate (CFC)	100-200	>200-400	>400
Beclomethasone dipropionate (HFA)	50-100	>100-200	>200
Budesonide (DPI)	100-200	>200-400	>400
Budesonide (nebules)	250-500	>500-1000	>1000
Ciclesonide	80	>80-160	>160
Fluticasone furoate (DPI)	N.A.	N.A.	N.A.
Fluticasone propionate (DPI)	100-200	>200-400	>400
Fluticasone propionate (HFA)	100-200	>200-500	>500
Mometasone furoate	110	≥220-<440	≥440
\geq 12-year-old (Adults and adolescents))		
Drug	Low Dose	Medium Dose	High Dose
Beclomethasone dipropionate (CFC)	200-500	>500-1000	>1000
Beclomethasone dipropionate (HFA)	100-200	>200-400	>400
Budesonide (DPI)	200-400	>400-800	>800
Ciclesonide (HFA)	80-160	>160-320	>320
Fluticasone furoate (DPI)	100	N.A.	200
Fluticasone propionate (DPI)	100-250	>250-500	>500
Fluticasone propionate (HFA)	100-250	>250-500	>500
Mometasone furoate	110-220	>220-440	>440

CFC = chlorofluorocarbon propellant (no longer used; included for comparison with older literature); DPI = dry powder inhaler; HFA = hydrofluoroalkane propellant; N.A. = not applicable; pMDI = pressurized metered dose inhaler

3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
10
17
18
19
20
21
22
23
2/
24
25
26
27
28
29
30
31
32
33
24
54 25
35
36
37
38
39
40
41
42
12
رب ²
44
45
46
47
48
49
50
51
52
52 52
55
54
55
56
57
57 58

1 2

Outcome	Model	Prior distribution	
		Fixed-effect model	Random-effects model
EXACERBATION	NMA 1 NMA 2	Intercept, trt ~ Normal(0,100 ²)	Intercept, trt ~ Normal(0,100 ²) het ~ half-Normal(2,5 ²)
	ML-NMR All covariates	Intercept, trt, reg ~ Normal $(0,100^2)$	Intercept, trt, reg ~ Normal $(0,100^2)$ het ~ half-Normal (2.5^2)
ASTHMA CONTROL	NMA 1 NMA2 NMA 3	Intercept, trt ~ Normal(0,10 ²)	Intercept, trt ~ Normal(0,100 ²) het ~ half-Normal(2.5 ²)
	ML-NMR: Age Sex Ethnicity Baseline severity	Intercept, trt, reg ~ Normal(0,100 ²)	Intercept, trt, reg ~ Normal $(0,100^2)$ het ~ half-Normal (2.5^2)
	Eczema	Intercept, trt, reg ~ Normal(0,100 ²)	Intercept ~ Normal $(0,5^2)$ trt, reg ~ Normal $(0,3^2)$ het ~ half-Normal (0.5^2)
	Eosinophilia	Intercept, trt, reg ~ Normal(0,100 ²)	Intercept, trt, reg ~ Normal $(0,100^2)$ het ~ half-Normal (1.5^2)
FEV ₁ (L)	NMA 1	intercept ~ Normal(0,10 ²) trt, aux ~ Normal(0, 5 ²)	intercept ~ Normal(scale ~ 100) trt ~ Normal(scale ~ 10) het ~ half-Normal(scale ~ 1.5) aux ~ Normal(scale ~ 10)
	NMA 2	intercept ~ Normal $(0,10^2)$ trt, aux ~ normal $(0, 5^2)$	intercept ~ Normal(scale ~ 100) trt ~ Normal(scale ~ 10) het ~ half-Normal(scale ~ 1) aux ~ Normal(scale ~ 10)
	NMA 3	intercept ~ Normal(0,100 ²) trt, aux ~ Normal(0,10 ²)	intercept ~ Normal(scale ~ 100) trt ~ Normal(scale ~ 10) het ~ half-Normal(scale ~ 1.5) aux ~ Normal(scale ~ 10)
	NMR 1* NMR 2*	Intercept, reg ~ Normal(0,10 ²) trt, aux ~ Normal(0,5 ²)	intercept ~ Normal(scale ~ 10) trt ~ Normal(scale ~ 3) reg ~ Normal(scale ~ 3) het ~ half-Normal(scale ~ 1) aux ~ Normal(scale ~ 3)
	NMR 3*	Intercept, trt ~ Normal(0, 10 ²) trt, aux ~ Normal(0, 5 ²)	intercept ~ Normal(scale ~ 10) trt ~ Normal(scale ~ 2) reg ~ Normal(scale ~ 2) het ~ half-Normal(scale ~ 1) aux ~ Normal(scale ~ 2)
	ML-NMR: Age Ethnicity	Intercept, aux ~ Normal $(0,10^2)$ trt, reg ~ Normal $(0,5^2)$	Intercept ~ Normal $(0,100^2)$ trt, reg, aux ~ Normal $(0,3^2)$ het ~ half-Normal (1^2)
	Sex		Intercept ~ Normal $(0,100^2)$ trt, reg, ~ Normal $(0,5^2)$ aux ~ Normal $(0,10^2)$ het ~ half-Normal (1.5^2)
	Eczema	intercept ~ Normal(0,100 ²) trt, reg, aux ~ Normal(0,10 ²)	intercept ~ Normal(0,10 ²) trt, reg, aux ~ Normal(0,2 ²) het ~ half-Normal(0.1 ²)
	Eosinophilia	intercept ~ Normal(0,100 ²) trt, reg, aux ~ Normal(0,5 ²)	intercept ~ Normal(0,5 ²) trt, reg, aux ~ Normal(0,2 ²) het ~ half-Normal(0.5 ²)

* the same models as NMA but adjusted for FEV_1 at baseline NMA 1 = analysis with grouped ICS + LABA; NMA 2 = analysis with stratified ICS dose + LABA; NMA 3 = analysis of individual compounds. The 'intercept' represents the log odds of an event in the baseline group, 'trt' represents the treatment effects, 'reg' represents the regression coefficients for the interaction' 'het' represents the between trial standard deviation; 'aux' represents the arm-level standard deviations.

Table S3. Characteristics of the included studies with individual	participant data	(parts 1 to 6)
Table 55. Characteristics of the included studies with individual	par nerpant uata	(par to 1 to 0)

Author Year	Countries	Subjects included*, demographics, and clinical features	Patients' characteristics	Protocol inclusion criteria	Study type Blinding	Treatment arms	Follow-up (weeks)
Bateman 2014	USA, Argentina, Australia, Germany, Japan, Mexico, Philippines, Poland, Romania, Russian Federation, Ukraine	N = 213 mean age (SD) = 14.1 (1.7) Females – N (%) = 82 (38) Not Hispanic or Latino - N (%) = 141 (66) Eczema – N (%) = NA Eosinophilia – N (%) = 75 (38) BL-severty (mild) – N (%) = 104 (49)	Patients ≥12 years of age with persistent asthma using ICS alone (the doses in Table 1 look low, medium, and high) or ICS+LABA.	Subjects must be using an approved dose of an ICS (as per specific prescribing information) for at least 12 weeks preceding Visit 1 and at a stable dose for at least 4 weeks preceding Visit 1. In addition, subjects may be using a combination product with an ICS (as per specific prescribing information) or an ICS plus a LABA for at least 12 weeks preceding Visit 1 and at a stable dose for at least 4 weeks preceding Visit 1.	parallel groups double-blind	fluticasone furoate/vilanterol 100/25 mcg OD (DPI) fluticasone furoate 100 mcg OD (DPI)	≥24–78 mean days (SD) ³ : 378.7 (43.1)
Bernstein 2015	USA, Russia, Argentina, Ukraine, Romania, Chile, Germany, Poland, Mexico, Netherlands, Sweden	N = 42 mean age (SD) = 14.6 (1.8) Females – N (%) = 15 (36) Not Hispanic or Latino - N (%) = 23 (55) Eczema – N (%) = NA Eosinophilia – N (%) = 18 (44) BL-severity (mild) – N (%) = 0 (0)	Patients ≥12 years of age with moderate to severe, persistent asthma using ICS or ICS/LABA.	Subjects are eligible if they have received ICS for at least 12 weeks prior to Visit 1 and their treatment during the 4 weeks immediately prior to Visit 1.	parallel groups double-blind	fluticasone furoate/vilanterol 200/25 mcg OD (DPI) fluticasone furoate/vilanterol 100/25 mcg OD (DPI) fluticasone furoate 100 mcg OD (DPI)	12 mean days (SD) ³ : 87.2 (13.8)
Bleecker 2012	USA, Canada, Estonia, Germany, Greece, Korea, Mexico, Philippines, Poland, Romania, Russian Federation, Slovakia, South Africa	$\begin{split} N &= 69 \\ mean age (SD) &= 14.1 (1.6) \\ Females - N (\%) &= 28 (41) \\ Not Hispanic or Latino - N (\%) &= 60 (87) \\ Eczema - N (\%) &= 42 (61) \\ Eosinophilia - N (\%) &= 35 (52) \\ BL-severity (mild) - N (\%) &= 29 (42) \end{split}$	Patients ≥12 years of age with persistent asthma and symptomatic on ICS.	Subjects must have been using an ICS for at least 8 weeks prior to visit 1 and maintained on a stable dose of inhaled corticosteroids for four weeks prior to visit 1	parallel groups double-blind	fluticasone propionate 250 mcg BID (Diskus/Accuhaler) fluticasone furoate 100 mcg OD (DPI) fluticasone furoate 200 mcg OD (DPI) fluticasone furoate 300 mcg OD (DPI) fluticasone furoate 400 mcg OD (DPI) placebo	8 mean days (SD) ³ : 52.2 (20.2)
Bleecker 2014	USA, Germany, Japan, Poland, Romania, Ukraine	$\begin{split} N &= 61 \\ mean age (SD) &= 14.4 (1.6) \\ Females &= N (\%) = 24 (39) \\ Not Hispanic or Latino - N (\%) = 44 (72) \\ Eczema &= N (\%) = NA \\ Eosinophilia &= N (\%) = 14 (23) \\ BL-severity (mild) &= N (\%) = 17 (28) \end{split}$	Patients with persistent asthma aged 12 years and older (Child, Adult, Older Adult).	All patients must be using an ICS with or without LABA for at least 12 weeks before visit 1.	parallel groups double-blind	fluticasone furoate/vilanterol 100/25 OD (DPI) fluticasone furoate 100 OD (DPI) placebo	12 mean days (SD) ³ : 86.6 (25.3)
Carroll 2010	UK	N = 39 mean age (SD) = 10.6 (2.8) Females – N (%) = 15 (38) Not Hispanic or Latino - N (%) = 39 (100) Eczema – N (%) = NA Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = 30 (81)	Age 7-18 years (effective range: 7- 15), Asthmatic children on 400 mcg/day BDP equivalent.	This study contains 37 participants under 18, although the inclusion criteria allowed the inclusion until 18. All participants were using ICS alone at entry. We included all participants from the dataset provided (39 subjects of whom two withdrew at week four). One of these was withdrawn because of an asthma exacerbation considered as an AE, and the other patient does not have contributing data.	Parallel groups double-blind	fluticasone 100 mcg BD salmeterol/fluticasone 50/100 mcg BD	8 mean days (SD) ³ : 56.0 (0.0)
de Blic 2009	Belgium, Denmark, France, Italy, Latvia, Lithuania, Netherlands, Norway, Poland, Russian Federation, Spain, Sweden	N = 303 mean age (SD) = 8.0 (2.0) Females – N (%) = 108 (36) Not Hispanic or Latino - N (%) = 292 (96) Eczema – N (%) = 265 (88) Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = 243 (80)	Patients are asthmatic children aged 4 to 11 years not controlled by ICS alone at medium dose.	Patients were receiving beclomethasone HFA or budesonide or fluticasone at least three months prior to visit 1.	parallel groups double-blind	fluticasone propionate/salmeterol 100/50 mcg BID fluticasone propionate 200 mcg BID	12 mean days (SD) ³ : 85.0 (7.7)

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
24	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
25	
20	
30	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
75	
40	

Author Year	Countries	Subjects included*, demographics, and clinical features	Patients' characteristics	Protocol inclusion criteria	Study type Blinding	Treatment arms	Follow-up (weeks)
Fitzpatrick 2016	USA	$\begin{split} N &= 60^1 \\ mean age (SD) &= 3.0 (1.0) \\ Females &= N (\%) &= 23 (38) \\ Not Hispanic or Latino - N (\%) &= 52 (87) \\ Eczema &= N (\%) &= 34 (57) \\ Eosinophilia &= N (\%) &= 14 (27) \\ BL-severity (mild) &= N (\%) &= NA \end{split}$	Preschool children 12-59 months of age who meet criteria for treatment with long-term, Step 2 asthma controller therapy.	 ICS- and LTRA-naïve children treated only with intermittent SABA who require step-up therapy. Children on current step 2 therapy who are treated with daily ICS, daily LTRA, or intermittent ICS or LTRA. Thus, the inclusion criteria for this study differ somewhat according to prior ICS and LTRA exposure. 	Crossover double-blind	fluticasone propionate HFA – 186 mcg/day montelukast – 4 mg as-needed ICS (FP HFA – 88 mcg) + SABA	P1: 16 P2: 16 P3: 16 mean days (SD) 109.9 (17.3)
Gappa 2009	Germany	N = 262 mean age (SD) = NA Females – N (%) = 81 (31) Not Hispanic or Latino - N (%) = 262 (100) Eczema – N (%) = NA Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = 192 (76)	Patients are children and adolescents 4 to 16 years of age with documented history of persisting seasonal or perennial bronchial asthma.	Patients must have been pretreated with an inhaled corticosteroid at a dosage of 200-400 µg BDP equivalents / day during the last 4 weeks.	Parallel groups double-blind	fluticasone propionate/salmeterol 100/50 mcg BID (Diskus) fluticasone propionate 200 mcg BID (Diskus)	8 mean days (SD) ⁷ 56.7 (3.9)
Lemanske 2010	USA	N = 31 Patients aged 6 to 17 with a lack of mean age (SD) = 10.6 (3.7) Patients aged 6 to 17 with a lack of acceptable asthma control during run-in period. Children enrolled into BADGER can be characterized as falling into one of three groups: crossover double-blind 2x ICS: DPI 250 mor fluticasone + place Not Hispanic or Latino - N (%) = 17 (55) run-in period. Step-neutral – currently receiving an ICS dose = 200 ug/day fluticasone = quivalent 1x ICS + LTRA: DPI mcg fluticasone + place Ecsimophilia - N (%) = 14 (45) BL-severity (mild) - N (%) = 27 (87) US <	2x ICS: DPI 250 mcg fluticasone + DPI 250 mcg fluticasone + placebo 1x ICS + LTRA: DPI 100 mcg fluticasone + DPI 100 mcg fluticasone + montelukast 1x ICS + LABA: DPI 100 mcg fluticasone/50 mcg salmeterol + DPI 100 mcg fluticasone/50 mcg salmeterol + placebo	P1: 16 P2: 16 P3: 16			
				 Step-down – currently receiving controller therapy considered by the NAEPP guidelines to be a step above 1x ICS (e.g. 2x ICS or combination therapy of 1x ICS + LABA, montelukast, theophylline or cromolyn) 			106.4 (17.4)
Li 2010	USA, Australia, Canada, Chile, Costa Rica, Germany, Latvia, Lithuania, Mexico, Peru,	N = 350 mean age (SD) = 7.6 (2.1) Females – N (%) = 137 (39) Not Hispanic or Latino - N (%) = 207	Patients are children aged 4 to 11 years with asthma requiring pharmacotherapy for at least two months. Patients were using ICS at a	ICS doses: beclomethasone (CFC): 84-100 to 336-400 beclomethasone (HFA): 84-100 to 160-200 FP (opwder): 100 to 200	parallel groups double-blind	fluticasone propionate/salmeterol 100/50 mcg BID (HFA) fluticasone propionate 100 mcg BID (HFA)	12
	Poland, Russian Federation, Spain	(59) Eczema – N (%) = NA Eosinophilia – N (%) = 191 (56) BL-severity (mild) – N (%) = 195 (71)	consistent dose (low-medium doses) and SABA.	FP (CFC or HFA): 88-100 to 176-200 BUD (powder): 200 to 400 BUD repulse: 500			mean days (SD) 80.5 (19.3)
Lötvall 2014a1 §	USA, Germany, Peru, Poland, Ukraine	N = 20 mean age (SD) = 14.3 (1.9) Females – N (%) = 8 (40) Not Hispanic or Latino - N (%) = 6 (30)	Patients ≥12 years of age with persistent asthma using a low, medium, or high dose of ICS at visit 1.	All subjects must be using an ICS for at least 12 weeks prior to visit 1. Subjects must be taking a stable dose of ICS (e.g., FP 200- 1000 mcg twice daily or equivalent) for at least 4 weeks prior to visit 1. Subjects will be stratified at randomization according to	parallel groups double-blind	vilanterol 25mcg OD (DPI) salmeterol 50 mcg BID (DPI) placebo	12
		Eczema – N (%) = NA Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = 5 (25)		whether they are on low, medium or high dose ICS at visit 1.		All patients were additionally using their baseline ICS dose.	mean days (SD) 91.0 (18.0)
Lötvall 2014a2 §		N = 26 mean age (SD) = 14.1 (1.6) Females – N (%) = 15 (58) Not Hispanic or Latino - N (%) = 13 (50)					12
		Eczema – N (%) = NA Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = 4 (16)					mean days (SD) 95.3 (8.1)

Page	177	of 273
------	-----	--------

Author Year	Countries	Subjects included*, demographics, and clinical features	Patients' characteristics	Protocol inclusion criteria	Study type Blinding	Treatment arms	Follow-up (weeks)
Lötvall 2014b	USA, Belgium, Germany, Poland, Romania	N = 46 mean age (SD) = 13.9 (1.7) Females – N (%) = 20 (43) Not Hispanic or Latino - N (%) = 44 (96) Eczema – N (%) = NA Eosinophilia – N (%) = 14 (31) BL-severity (mild) – N (%) = 16 (36)	Patients ≥12 years of age with persistent asthma taking a stable dose of ICS.	All subjects must be taking a stable dose of ICS for at least 4 weeks prior to Visit 1.	parallel groups double-blind	fluticasone furoate 100 mcg OD (DPI) fluticasone propionate 250 mcg BID (Diskus/Accuhaler) placebo	24 mean days (SD) ³ : 163.4 (31.9)
Martin 2020	USA, Canada	N = 11 mean age (SD) = 13.7 (2.1) Females – N (%) = 4 (36) Not Hispanic or Latino - N (%) = 11 (100) Eczema – N (%) = NA Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = 11 (100)	Patients aged 12 to 50 years taking low or moderate dose ICS for 12 weeks before visit 1.	Patients with intermittent asthma, seasonal asthma, or exercise- induced bronchoconstriction only were NOT eligible.	crossover double-blind	FF/VI 100/25 mcg QD via Ellipta + Placebo BD via Diskus FP 250 mcg BD via Diskus + Placebo QD via Ellipta	P1: 2 washout: 2 P2: 2 mean days (SD) ³ : 14.4 (1.0)
Murray 2010	New Zealand, UK	N = 13 mean age (SD) = 7.7 (2.1) Females – N (%) = 9 (69) Not Hispanic or Latino - N (%) = 13 (100) Eczema – N (%) = 13 (100)	Patients aged 4 to 11 years with asthma diagnosed by physicians.	Receiving a total daily dose of 200-800mcg/day BDP or equivalent for at least 4 weeks prior to the start of the run-in period, and in physicians' opinion be sufficiently stable to receive FP 200mcg/day during the 2-week run-in period.	parallel groups double-blind	fluticasone propionate 100 mcg bd BID + fluticasone propionate 100 mcg BID (ACTIVE/ACTIVE) fluticasone propionate/salmeterol 100/50 mcg BID + placebo (ACTIVE/PLACEBO)	6 mean days (SD) ³ :
		Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = NA					42.5 (0.9)
Murray 2011	USA	N = 230 mean age (SD) = 11.5 (3.4) Females – N (%) = 99 (43) Not Hispanic or Latino - N (%) = 202 (88) Eczema – N (%) = NA Eosinophila – N (%) = NA BL-severity (mild) – N (%) = 157 (68)	Patients are children aged 4 to 17 years with persistent asthma on ICS alone (low-medium doses) and SABA.	Each subject must have been treated for their asthma with one of the following inhaled corticosteroids at the specified daily dosing range for at least 4 weeks prior to Visit 1 and with no other inhaled long acting bronchodilators for at least 2 weeks prior to Screening. Beclomethasone: 84-336 (4-11 y); 168-504 (12-17 y) FP: 88-220 (4-11 y); 88-264 (12-17 y) Budesonide: 200-400 (4-11 y); 200-600 (12-17 y) Not of interest: QVAR, triamcinolone, flunisolide	parallel groups double-blind	fluticasone propionate/salmeterol 100/50 mcg BID (Diskus) fluticasone propionate 100 mcg BID (Diskus)	4 mean days (SD) ³ : 28.1 (3.6)
O'Byrne 2014	USA, Germany, Japan, Poland, Romania, Russian Federation	N = 10 mean age (SD) = 15.8 (1.4) Females – N (%) = 2 (20) Not Hispanic or Latino - N (%) = 10 (100) Eczema – N (%) = NA Eosinophilia – N (%) = 2 (22) BL-severity (mild) – N (%) = 1 (10)	Patients ≥12 years of age with persistent asthma using ICS alone (FP 500 mcg twice daily or equivalent) or ICS+LABA.	All patients must be using an ICS with or without LABA for at least 12 weeks before visit 1.	parallel groups double-blind	fluticasone furoate/vilanterol 200/25 mcg OD (DPI) fluticasone furoate 200 mcg OD (DPI) fluticasone propionate 500 mcg BID (Diskus/Accuhaler) placebo	24 mean days (SD) ³ : 174.4 (4.8)
Oliver 2016a	USA, Argentina, Chile, Georgia, Germany, Japan, Mexico, Peru, Philippines, Poland, Puerto Rico, Slovakia, South Africa, Ukraine	N = 456 mean age (SD) = 7.9 (1.8) Females – N (%) = 180 (39) Not Hispanic or Latino - N (%) = 129 (28) Eczema – N (%) = NA Eosinophilia – N (%) = 175 (41) BL-severity (mild) – N (%) = 173 (45)	Patients aged 5-11 with a history of symptoms consistent with asthma diagnosis for at least 6 months prior to Visit 1. Asthma on a background of inhaled corticosteroid therapy.	Subjects with persistent uncontrolled asthma must been receiving stable asthma therapy for at least 4 weeks prior to screening: SABA + ICS (total daily dose FP 250 mcg or equivalent).	parallel groups double-blind	placebo OD + FP 100 BID vilanterol 6.25 mcg OD + FP 100 BID vilanterol 12.5 mcg OD + FP 100 BID vilanterol 25 mcg OD + FP 100 BID	5 mean days (SD) ³ : 32.8 (7.2)
Oliver 2016b	USA, Bulgaria, Georgia, Germany, Japan, Latvia, Mexico, Peru, Philippines, Poland, Puerto Rico, Russian Federation, South Africa, Sweden, Ukraine	N = 318 mean age (SD) = 8.1 (1.9) Females – N (%) = 119 (37) Not Hispanic or Latino - N (%) = 165 (52) Eczema – N (%) = NA Eosinophilia – N (%) = 96 (34) BL-severity (mild) – N (%) = 150 (47)	Patients aged 5-11 with a history of symptoms consistent with asthma diagnosis for at least 6 months prior to Visit 1.	Subjects with persistent uncontrolled asthma must been receiving stable asthma therapy for at least 4 weeks prior to screening: SABA alone, SABA+leukotriene, or SABA+ low-dose ICS.	parallel groups double-blind	placebo FP 100 mcg Diskus FF 25 mcg NDPI FF 50 mcg NDPI FF 100 mcg NDPI	13 mean days (SD) ³ : 75.4 (27.3)

Author Year	Countries	Subjects included*, demographics, and clinical features	Patients' characteristics	Protocol inclusion criteria	Study type Blinding	Treatment arms	Follow-u (weeks)
Pearlman 2009	USA	N = 248 mean age (SD) = 11.1 (3.4) Females – N (%) = 99 (40) Not Hispanic or Latino - N (%) = 228 (92) Eczema – N (%) = NA Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = 167 (67)	Patients are children aged 4 to 17 years with persistent asthma using ICS (low-medium doses) and SABA.	Each subject must have been treated for their asthma with inhaled corticosteroids at the specified daily dosing range for at least 4 weeks prior to Visit 1 and with no other inhaled long acting bronchodilators for at least 2 weeks prior to Screening. Beclomethasone: 84-336 (4-11 y); 168-504 (12-17 y) FP: 88-220 (4-11 y); 88-264 (12-17 y) Budesonide: 200-400 (4-11 y); 200-600 (12-17 y) Not of interest: QVAR, triamcinolone, flunisolide	parallel groups double-blind	fluticasone propionate/salmeterol 100/50 mcg BID (Diskus) fluticasone propionate 100 mcg BID (Diskus)	4 mean day 27.9 (4.3)
Scott 2005 [€]	USA, Canada	N = 199 mean age (SD) = 8.0 (2.2) Females – N (%) = 73 (37) Not Hispanic or Latino - N (%) = 181 (91) Eczema – N (%) = NA Eosinophilia – N (%) = 99 (51) BL-severity (mild) – N (%) = 70 (43)	Patients are children aged 4 to 11 years with asthma requiring maintenance treatment (ICS or medication other than ICS or SABA alone).	Concurrent anti-asthma therapy. GROUP 1 > Inhaled corticosteroids: subjects must have been using inhaled corticosteroids for at least 3 months prior to Visit 1; and at least one month before Visit 1, must have been on a consistent daily dose of one of the reported table (doses are low-medium). GROUP 2 > Maintenance asthma medication other than inhaled corticosteroids: subjects are eligible if treated with a maintenance asthma medication other than inhaled corticosteroid (e.g., salmeterol, cromolyn or nedocromil, or montelukast) on a regular basis for at least 4 weeks prior to visit 1 OR Short acting beta2 agonists: subjects are eligible if treated with SABA alone for relief of respiratory for at least 4 weeks prior to visit 1 and should not have received an inhaled	parallel groups double-blind	fluticasone propionate/salmeterol 100/50 mcg BID (Diskus) fluticasone propionate 100 mcg BID (Diskus)	12 mean day 79.0 (17.7
Sorkness 2007	USA	N = 49 mean age (SD) = 9.3 (2.2) Females – N (%) = 15 (31) Not Hispanic or Latino - N (%) = 36 (73) Eczema – N (%) = 30 (61) Eosinophilia – N (%) = 29 (63) BL-severity (mild) – N (%) = 42 (86)	Children ages 6-14 years with mild- moderate persistent asthma defined by symptom criteria and positive methacholine challenge.	inhaled corticosteroids for at least 4 weeks prior to visit 1. Only the naïve group could not use ICS at entry.	parallel groups double-blind	fluticasone propionate (100 mcg BID - Diskus) fluticasone/salmeterol (100 mcg/50 mcg qd - Diskus) + salmeterol (50 mcg qd - Diskus) montelukast (5 mg qd)	48 mean day 331.6 (32
Stempel 2016a	USA, Argentina, Australia, Austria, Belgium, Bulgaria, Canada, Chile, Colombia, Croatia, Czechia, Germany, Hungary, Italy, Korea, Latvia, Lithuania, Malaysia, Mexico, Peru, Philippines, Poland, Romania, Russian Federation, Serbia, Slovakia, South Africa, Spain, Taiwan, Thailand Likraine, Likr	N = 1631 mean age (SD) = 7.4 (2.2) Females – N (%) = 647 (40) Not Hispanic or Latino - N (%) = 1164 (71) Eczema – N (%) = 334 (20) Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = NA	Patients are children aged 4 to 11 years with persistent asthma.	The allowed pre-treatment consisted of ICS alone (different doses) or ICS with other medicines (LABA, LTRA, theophylline) or SABA, LABA, LTRA, theophylline alone.	parallel groups double-blind	fluticasone propionate - salmeterol combination 100/50 fluticasone propionate - salmeterol combination 250/50 fluticasone propionate 100 fluticasone propionate 250	26 mean day: 168.1 (45.
Page 179 of 273

European Respiratory Journal

Author Year	Countries	Subjects included*, demographics, and clinical features	Patients' characteristics	Protocol inclusion criteria	Study type Blinding	Treatment arms	Follov (week
Stempel 2016b	USA, Argentina, Australia, Austria, Belgium, Bulgaria, Canada, Chile, Colombia, Croatia, Czechia, Denmark, Germany, Hungary, Indonesia, Italy, Korea, Latvia, Lithuania, Malaysia, Mexico, Peru, Philippines, Poland, Romania, Russian Federation, Serbia, Slovakia, South Africa, Spain, Taiwan, Ukraine, UK	N = 222 mean age (SD) = 14.2 (1.6) Females – N (%) = 104 (47) Not Hispanic or Latino - N (%) = 156 (70) Eczema – N (%) = 33 (15) Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = NA	Patients are adolescents (12-17) and adults (18+) with persistent asthma.	Patients were stratified based on the entry medicine (ICS alone or ICS+LABA, ICS+LTRA, ICS+theophylline) and ACQ score.	parallel groups double-blind	FP 100 mcg FP+SAL 100/50 mcg FP 250 mcg FP+SAL 250/50 mcg FP 500 mcg FP+SAL 500/50 mcg	26 mean c 161.8 (
Thomas 2014	Singapore	$ N = 33 \\ mean age (SD) = 11.1 (3.1) \\ Females - N (\%) = 12 (36) \\ Not Hispanic or Latino - N (\%) = 33 (100) \\ Eczema - N (\%) = 16 (48) \\ Eosinophilia - N (\%) = 6 (18) \\ BL-severity (mild) - N (\%) = 17 (52) $	Children and adolescents aged 6-18 years with uncontrolled or partially controlled asthma on 400 mcg BDP.	Children with uncontrolled or partially controlled asthma, on low- medium dose (400mg BDP [Beclomethasone dipropionate] equivalent) ICS monotherapy.	parallel groups open-label	ICS: 200 mcg of fluticasone twice daily ICS+LABA: 100 mcg of fluticasone plus 50mg of salmeterol (Seretide 50/100 Accuhaler, GlaxoSmithKline) twice daily ICS+LTRA: 100 mcg of fluticasone twice daily plus montelukast (Singulair, MSD) 5 mg (for children 15 years) or 10 mg (for >15 years)	8 mean 0 60.0 (0
/aessen- /erberne 2010	Netherlands	N = 158 mean age (SD) = NA Females – N (%) = 67 (42) Not Hispanic or Latino - N (%) = 158 (100) Eczema – N (%) = NA Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = NA	Children aged 6-16 years with symptomatic asthma.	Subjects who have received BDP, budesonide up to 100-200 mcg bd or fluticasone propionate at a dose of up to 125 mcg bd for at least 4 weeks before the start of the run-in period.	parallel groups double-blind	fluticasone propionate/salmeterol 100/50 mcg BID fluticasone propionate 200 mcg BID	10 mean o NA
Verberne 1998	Netherlands	$\begin{split} N &= 177 \\ mean age (SD) &= 11.2 (2.7) \\ Females - N (\%) &= 58 (33) \\ Not Hispanic or Latino - N (\%) &= 177 (100) \\ Eczema - N (\%) &= NA \\ Eosinophilia - N (\%) &= NA \\ BL-severity (mild) - N (\%) &= 119 (67) \end{split}$	Children aged 6 to 16 years with moderate asthma.	A history of stable asthma for at least 1 mo without exacerbations or respiratory tract infections; (6) used inhaled corticosteroids between 200 and 800 mcg daily for at least 3 months before the start of the study. From discussion: During the 6-wk run-in period they were treated with 200 mg beclomethasone twice daily, which is considered a moderate dose in the treatment of childhood asthma (14). Despite this treatment all children were symptomatic and had reversible airway obstruction and airway hyperresponsiveness.	parallel groups double-blind	beclomethasone+ SAL (BDP400+SAL100 mcg) beclomethasone (BDP800) placebo+beclomethasone (BDP400)	54 mean c 362.8 (1
Wechsler 2019	USA	N = 172 mean age (SD) = 9.2 (2.9) Females – N (%) = 77 (45) Not Hispanic or Latino - N (%) = 172 (100) Eczema – N (%) = 98 (70) Eosinophilia – N (%) = 63 (37) BL-severity (mild) – N (%) = 28 (100)	Patients aged 5 or older with at least one Black grandparent.	To enter the run-in, participants must be either: A) inadequately controlled on low-, medium- or high-dose ICS monotherapy, or low- or medium-dose ICS/LABA, or B) well-controlled on low-, medium- or high-dose ICS monotherapy, or low-, medium- or high-dose ICS/LABA (see Study Visits, Screen A, at -10 weeks).	crossover double-blind	5-11 years 2xICS = fluticasone 100 mcg (Diskus) BID 2xICS/LABA = 100/50 mcg (Advair Diskus - FP+SAL) BID 5xICS = fluticasone 250 mcg (Diskus) BID 5xICS/LABA = 250/50 mcg (Advair Diskus - FP+SAL) BID 12-17 years 2.5xICS = fluticasone 250 mcg (Diskus) BID 1xICS/LABA = 100/50 mcg (Advair Diskus - FP+SAL) BID 5xICS = fluticasone 500 mcg (Diskus) BID 2.5xICS/LABA = 250/50 mcg (Advair Diskus - FP+SAL) BID	P1: 14 P2: 14 P3: 14 P4: 14 mean c 91.4 (2)
Noodcock 2013	USA, Argentina, Chile, Korea, Netherlands, Philippines	N = 32 mean age (SD) = 13.8 (1.6) Females – N (%) = 9 (28) Not Hispanic or Latino - N (%) = 19 (59) Eczema – N (%) = NA Eosinophilia – N (%) = 17 (65) BL-severity (mild) – N (%) = 8 (25)	Patients ≥12 years of age with persistent asthma using ICS.	Subjects must have been using an inhaled corticosteroid for at least 12 weeks prior to visit 1 and be maintained on a medium dose (e.g., FP 250 mcg twice daily) for at least 4 weeks prior to Visit 1.	parallel groups double-blind	fluticasone furoate/vilanterol 100/25 mcg OD (DPI) fluticasone propionate/salmeterol 250/50 mcg BID (Diskus/Accuhaler) placebo	24 mean d 164.5 (;

Author Year	Countries	Subjects included*, demographics, and clinical features	Patients' characteristics	Protocol inclusion criteria	Study type Blinding	Treatment arms	Follow-up (weeks)
Woodcock 2014	USA, Argentina, Chile, France, Mexico, Russian Federation	N = 13 mean age (SD) = 14.7 (1.4) Females – N (%) = 5 (38)	Patients ≥12 years of age with persistent asthma with a stable dose, and regimen of ICS.	All subjects must be on stable dose, and regimen of ICS for at least 4 weeks prior to Visit 1.	parallel groups double-blind	fluticasone furoate 100 mcg OD (DPI) fluticasone furoate 200 mcg OD (DPI)	24
		Not Hispanic or Latino - N (%) = 10 (77) Eczema – N (%) = NA Eosinophilia – N (%) = 5 (71) BL-severity (mild) – N (%) = 5 (42)					mean days (SD) ³ : 174.5 (14.9)

*<18 and on ICS alone at randomization or at screening visit if not available

¹ as-needed group was not considered

[€] no publication; only two no longer working links of congress abstracts

³ follow up of included participants

\$ split into two sub-studies because of randomization bias due to the treatment dose categorization based on age class with GINA

ICS = inhaled corticosteroids; LABA = long-acting beta-agonists; LTRA = leukotriene receptor antagonist; BDP = beclomethasone dipropionate; FP = fluticasone propionate; FF = fluticasone furoate; BUD = budesonide; MF = mometasone

furoate; SAL = salmeterol; SABA = short-acting beta-agonist

BD/BID = twice a day; OD/QD = once a day; DPI = dry powder inhaler; HFA = hydrofluoroalkane propellant

NA = not available; BL-severity = baseline asthma severity

NOTES: All children using ICS+LABA or other medicines/medicine combinations different from ICS alone at the screening visit were excluded. That was possible because we had sufficient information, from the individual participant data and the appropriate documentation supplied by the data providers (protocol, code of variables, statistical analysis plan, etc.). Conversely, that was not possible for the studies listed in Table S5 without IPD.

Study	Countries	Patients included, demographics, clinical features	Patient Characteristics	Study type Blinding	Follow up (weeks)	Interventions (participants)
Akpinarli 1999	Turkey	N = 32 mean age (SD) = 10.3 (13.1) Females – N (%) = 17 (53) Not Hispanic or Latino – N (%) = NA Eczema – N (%) = 21 (65.6) Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = NA	sex: 15 M and 17 F mean age: 10.25 - SE age: 2.31 (SD = 13.07) eczema: ICS+LABA = 11; ICS + placebo = 10 asthma severity (FEV1 % predicted): ICS+LABA = 79; ICS + placebo = 80	parallel groups double-blind	6	ICS + formoterol (16) ICS + placebo (16) ICS: 400-800 mcg day (no medicine specified)
Berger 2006	USA	N = 296 mean age (SD) = 8.6 (1.8) Females – N (%) = 109 (37) Not Hispanic or Latino – N (%) = 228 (77) Eczema – N (%) = NA Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = NA	sex: 100 mcg F=41; M=57; 200 mcg F=32; M=67; placebo F=36; M=63 mean age: 100 mcg = 9.0 (SD = 1.8); 200 mcg = 8.7 (SD = 1.8); placebo = 8.2 (SD = 1.9) ethnicity: 100 mcg: White=56; Black=16; Hispanic=22; Asian=1; Native American=1; Other=2 200 mcg: White=63; Black=11; Hispanic=22; Asian=1; Native American=2; Other=0 placebo: White=60; Black=12; Hispanic=24; Asian=0; Native American=0; Other=3 asthma severity (FEV1 % predicted): 100 mcg = 79.2; 200 mcg = 79.7; placebo = 77.3 BL_FEV1 (mean): 100 mcg = 1.60; 200 mcg = 1.57; placebo = 1.45 Baseline ICS use includes a small percentage of triamcinolone and flunisolide.	parallel groups double-blind	12	mometasone furoate DPI 100 mcg (98) mometasone furoate DPI 200 mcg (99) placebo (99)
Bisgaard 2006	Argentina, Brazil, Bulgaria, Canada, China, France, Great Britain, Hungary, Indonesia, Israel, Italy, Malaysia, Mexico, Norway, Philippines, Poland, Romania, Singapore, South Africa, Sweden, Taiwan, Turkey	N = 341 mean age (SD) = 8 (NA) Females – N ($\%$) = 104 (30) Not Hispanic or Latino – N ($\%$) = NA Eczema – N ($\%$) = NA Eosinophilia – N ($\%$) = NA BL-severity (mild) – N ($\%$) = NA	sex: BUD M = 70, F = 36; BUD/FORM M = 85, F = 35; SMART M = 85, F = 33 mean age: BUD = 8; BUD/FORM = 8; SMART = 8 (no SD) race: BUD white = 90, other = 16; BUD/FORM white = 101, other = 16; SMART white = 100, other = 18 asthma severity (FEV1 % predicted): BUD = 76; BUD/FORM = 76; SMART = 76 exacerbation: BUD = 28; BUD/FORM = 44; SMART = 17 BL_FEV1 (L): BUD = 1.6; BUD/FORM = 1.5; SMART = 1.6 FEV1 (L): BUD = 1.76; BUD/FORM = 1.70; SMART = 1.86	parallel groups double-blind	52	BUD 320 mcg qd (fixed dose) (106) BUD/FORM 80/4.5 mcg qd (fixed dose) (117) BUD/FORM 80/4.5 mcg qd maintenance + as needed (SMART) (118)
Buchvald 2003 ¹	Denmark	$ N = 23 \\ mean age (SD) = 12 (NA) \\ Females - N (\%) = 11 (48) \\ Not Hispanic or Latino - N (\%) = NA \\ Eczema - N (\%) = 7 (30) \\ Eosinophilia - N (\%) = NA \\ BL-severity (mild) - N (\%) = NA $	sex: M=12; F=11 mean age: 12 (no SD) eczema: 7 mean asthma severity: 101 mean FEV1 (L): BUD+placebo = 2.48; BUD+LTRA = 2.57; BUD+SAL = 2.63 (N=22) mean BL_FEV1 (L): 2.54 (N=22) exacerbation: 0 Crossover study without the possibility to use the data from the first period only.	crossover double-blind	P1 = NA P2 = NA P3 = NA no washout	BUD 400 mcg die + salmeterol 50 mcg BID (23) BUD 400 mcg die + montelukast 5 mg OD (23) BUD 400 mcg die + placebo (23)

Study	Countries	Patients included, demographics, clinical features	Patient Characteristics	Study type Blinding	Follow up (weeks)	Interventions (participants)
Everden 2004 ²	UK, Republic of Ireland	N = 155 mean age (SD) = 11.8 (2.9) Females – N (%) = 67 (43) Not Hispanic or Latino – N (%) = NA Eczema – N (%) = NA Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = NA	sex: ICS+FORM M = 50, F = 29; ICS+SAL M = 38, F = 38 mean age: ICS+FORM = 11.7 (SD = 3.0); ICS+SAL = 11.8 (SD = 2.8) exacerbation (mean episodes): ICS+FORM = 8; ICS+SAL = 12 asthma aggravation (AEs): ICS+FORM = 8; ICS+SAL = 10	parallel groups open-label	12	ICS+formoterol (79) ICS+salmeterol (76) The ICS dose is unknown.
Heuck 2000	Denmark	N = 24 mean age (SD) = 9.5 (NA) Females – N (%) = 10 (42) Not Hispanic or Latino – N (%) = NA Eczema – N (%) = NA Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = NA	mean age: 9.5 (3 patients more) (no SD) sex: M = 14; F = 13 (3 patients more) exacerbation: BUD+placebo = 2; BUD+FORM = 0	crossover double-blind	P1 = 6 P2 = 6	budesonide+formoterol 200/24 mcg die DPI (14) budesonide DPI (400 mcg) + placebo die (10)
Jat 2006	India	N = 63 mean age (SD) = 9.8 (2.6) Females – N (%) = 18 (29) Not Hispanic or Latino – N (%) = NA Eczema – N (%) = NA Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = NA	sex: ICS+LTRA M = 21, F = 9; ICS M = 24, F = 9 mean age: ICS+LTRA = 10.13 (SD = 2.67); ICS = 9.39 (SD = 2.46) asthma severity (FEV1 % predicted): ICS+LABA = 64.17; ICS = 63.36 exacerbation: ICS+LTRA = 10; ICS = 3 (first exacerbation)	parallel groups blinded	12	A: budesonide (200 mcg) + montelukast (5 mg) die (30) B: budesonide (400 mcg) die (33)
Kondo 2006	Japan	N = 75 mean age (SD) = 9.1 (2.3) Females – N (%) = 31 (41) Not Hispanic or Latino – N (%) = NA Eczema – N (%) = NA Eosinophilia – N (%) = 46 (61) BL-severity (mild) – N (%) = 42 (56)	sex: montelukast M = 21, F = 18; theophylline M = 23, F = 13 mean age: montelukast = 9.4 (SD = 2.4); theophylline = 8.8 (SD = 2.2) asthma severity: montelukast - mild = 24, moderate = 12, severe = 3 theophylline - mild = 18, moderate = 16, severe = 2 phenotype: montelukast - non-eosinophilic = 12, eosinophilic = 27 theophylline - non-eosinophilic = 17, eosinophilic = 19 exacerbation: montelukast = 1; theophylline = 1 (status asthmaticus and asthma aggravation) Data are available for the PD population only (75 of 70 UT), randomized: 84	parallel groups open-label	4	ICS (CFC-BDP: 100-400 mcg or FP: 100-200 mcg) + montelukast 5 mg die (39) ICS (CFC-BDP: 100-400 mcg or FP: 100-200 mcg) + theophylline 10—16 mg/kg/day or 200—400 mg/day (36)
Lenney 2013 (MASCOT)	υκ	N = 63 mean age (SD) = 10 (21) Females – N (%) = 23 (37) Not Hispanic or Latino – N (%) = NA Eczema – N (%) = NA Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = NA	sex: ICS – M = 17, F = 2; ICS+LABA – M = 13, F = 10; ICS+LTRA – M = 10, F = 11 mean age: ICS = 10.37 (SD=19); ICS+LABA = 10.46 (SD=23); ICS+LTRA = 10.33 (SD=21) asthma severity (FEV1 % predicted): ICS = 88.29; ICS+LABA = 79.79; ICS+LTRA = 86.47 BL_FEV1 (L): ICS = 1.98; ICS+LABA = 1.83; ICS+LTRA = 1.82 exacerbation (any): ICS = 4/19; ICS+LABA = 7/23; ICS+LTRA = 3/21 (Tot: 14/63) exacerbation (OC): ICS = 4/18; ICS+LABA = 3/17; ICS+LTRA = 3/19 (Tot: 10/54) (24 weeks)	parallel groups double-blind	48	FP 200 mcg die (19) FP 200 mcg +SAL 100 mcg die (23) FP 200 mcg +montelukast 5 mg die (21)
Malone 2005	USA, Canada	N = 203 mean age (SD) = 8.1 (NA) Females – N (%) = 73 (36) Not Hispanic or Latino – N (%) = NA Eczema – N (%) = NA Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = NA	sex: $FP - M = 59$, $F = 41$; $FP+SAL - M = 68$, $F = 32$; mean age: $FP = 8.1$; $FP+SAL = 8.0$ (no SD) race: FP - White = 72, Black = 16, other = 12; FP+SAL - White = 67, Black = 23, other = 10; asthma severity (FEV1 % predicted): $FP \ge 80\%$; $FP+SAL > 80\%$ exacerbation: $FP = 8$; $FP+SAL = 3$	parallel groups double-blind	12	FP 200 mcg die (102) FP+SAL 200/100 mcg die (101)

Study	Countries	Patients included, demographics,	Patient Characteristics	Study type	Follow up	Interventions (participants)		
		clinical features		Blinding	(weeks)			
Morice 2008	UK	N = 622	sex:	parallel	12	budesonide pMDI 400 mcg die (207)		
		mean age (SD) = 8 (NA)	BUD – M = 137, F = 70;	groups		budesonide+formoterol DPI 320/18 mcg die (212)		
		Females – N (%) = 212 (34)	BUD+FORM DPI – M = 141, F = 71;	double-blind		budesonide+formoterol pMDI 320/18 mcg die (203)		
		Not Hispanic or Latino – N (%) = NA	BUD+FORM pMDI – M = 132, F = 71					
		Eczema – N (%) = NA	mean age: BUD = 9; BUD+FORM DPI = 8; BUD+FORM pMDI = 8 (no SD)					
		Eosinophilia – N (%) = NA	asthma severity (FEV1% predicted): BUD = 87; BUD+FORM DPI = 89; BUD+FORM					
		BL-severity (mild) – N (%) = NA	pMDI = 89					
			The mean change of FEV1 (L) is in a graph.					
			exacerbation: BUD = 13, BUD+FORM DPI = 7, BUD+FORM pMDI = 7 (asthma aggravated)					
Russell 1995	UK	N = 206	sex: ICS+LABA – M = 59, F = 40; ICS – M = 65, F = 42	parallel	12	ICS (beclomethasone or budesonide) + salmeterol		
		mean age (SD) = 10.2 (2.7)	mean age: ICS+LABA = 10.2 (SD = 2.7); ICS = 10.3 (SD = 2.7)	groups		50 mcg BID (99)		
		Females – N (%) = 82 (40)		double-blind		ICS (beclomethasone or budesonide) + placebo		
		Not Hispanic or Latino – N (%) = NA	exacerbation (asthma-related adverse events): ICS+LABA = 10; ICS = 13			(107)		
		Eczema – N (%) = NA						
		Eosinophilia – N (%) = NA				ICS dose from 400 to 2,400 mcg die; the average		
		BL-severity (mild) – N (%) = NA				dose was 750 mcg		
Shapiro 2001	USA	N = 274	sex: BUD 200 - M = 55, F = 35; BUD 400 - M = 66, F = 27; placebo - M = 57, F = 34	parallel	12	BUD 200 mcg die Turbuhaler (90)		
		mean age (SD) = 12.1 (2.8)	mean age:	groups		BUD 400 mcg die Turbuhaler (93)		
		Females – N (%) = 96 (35)	BUD 200 = 12.1 (SD = 2.8); BUD 400 = 12.1 (SD = 2.8); placebo = 12.1 (SD = 2.8)	double-blind		placebo (91)		
		Not Hispanic or Latino – N (%) = NA	race:					
		Eczema – N (%) = NA	BUD 200 – Caucasian = 75; African American = 10; Asian = 4; Other = 1					
		Eosinophilia – N (%) = NA	BUD 400 – Caucasian = 85; African American = 6; Asian = 0; Other = 2					
		BL-severity (mild) $- N(\%) = NA$	placebo – Caucasian = 83; African American = 6; Asian = 2; Other = 0					
			BL_FEV1 (L): BUD 200 = 2.1; BUD 400 = 2.1; placebo = 2.1					
			exacerbation (aggravated asthma): BUD 200 = 9; BUD 400 = 8; placebo = 10 Some patients used triamcinolone (N=107) and flunisolide (N=23) at entry.					
Simons 2001 ¹	Argentina, Australia,	N = 279	mean age: 10.4 (SD = 2.2)	crossover	P1: 4	BUD 400 mcg die (270)		
01110110 2002	Austria Brazil Canada	mean age (SD) = $10.4(2.2)$	sex: $F = 92$: $M = 187$	double-blind	P2:4	BUD 400 mcg die + montelukast 5 mg OD (277)		
	France Germany	Eemales $- N(\%) = 92(33)$	ethnicity: 83% were white 10% were Asian 6% were Hispanic and 1% were		P3:4			
	Greece Norway	Not Hispanic or Latino – N (%) = 17 (6)	members of other ethnic groups					
	Portugal Sweden The	Eczema – N (%) = NA	exacerbation (asthma worsening - Δ Es): BLID = 35/270: BLID+LTRA = 32/277		no washout			
	Netherlands Russia	Eosinophilia – $N(\%) = NA$	Some nations used triamcinolone and flunisolide at entry. First period data not		no washout			
	Turkey	BI-severity (mild) – N (%) = NA	available					
Strauch 2002	Germany	N = 25	cov: 16 M: 9 E	narallel	1	ICS (400-800 mcg BLID die) + montelukast 5 mg		
Strauch 2005	Germany	N = 25 mean age (SD) = 10 (NA)	Sex. 10 M, 9 F	groups	4	ICS (400-800 mcg BUD die) + montelukast 5 mg		
		Formulae $(3D) = 10$ (NA)	age (IFD). (able 1 (IIO Indication of the treatment group)	groups		1C3 (400-800 mcg BOD die) + placebo		
		Not Hispanic or Lating $-N(\%) = NA$	group): table 2 (median)	uouble-biillu				
		For the spanic of Latino – $N(\%) = NA$	group), table 2 (frictian)					
		Eczenia – $N(70) - NA$	item): placeba 70 (50, 70); mantalukast 70 (60, 70)					
		BL-severity (mild) – N (%) = NA	item): placebo – 7.0 (5.0 – 7.0); montelukast – 7.0 (6.0 – 7.0)					
Tal 2002	Czech Republic,	N = 286	sex: ICS+LABA – M = 90, F = 58; ICS – M = 87, F = 51	parallel	12	budesonide/formoterol 320/18 mcg die (148)		
	Belgium, Hungary.	mean age (SD) = 11 (NA)	mean age: ICS+LABA = 11; ICS = 11 (no SD)	groups		budesonide 400 mcg die (138)		
	Israel. South Africa	Females $- N(\%) = 109(38)$	asthma severity: ICS+LABA = 74: ICS = 76	double-blind				
	Spain, UK	Not Hispanic or Latino $- N$ (%) = NA	mean FEV1 (L): ICS+LABA = 2.01: ICS = 1.91 (no SD)					
		Eczema - N(%) = NA						
		Eosinophilia – N (%) = NA	exacerbation (asthma aggravated): $ICS+IABA = 8 \cdot ICS = 4$					
		BI-severity (mild) – N (%) = NA						
	L	$DL^{-}Sevency (IIIIIu) = IN (70) - INA$		I	1			

Study	Countries	Patients included, demographics,	Patient Characteristics	Study type	Follow up	Interventions (participants)
		clinical features		Blinding	(weeks)	
Vermeulen 2007 ²	Hungary, Poland, Serbia/Montenegro, South Africa, Spain	N = 403 mean age (SD) = NA Females – N (%) = 131 (33) Not Hispanic or Latino – N (%) = NA Eczema – N (%) = NA Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = NA	sex: CIC - M = 192, F = 80; ICS - M = 80, F = 51 age: no mean, only the median asthma severity: CIC = 73.2; ICS = 73.1 BL FEV1 (mL): CIC = 2310 (2.31 L) (N=270); ICS = 2310 (2.31 L) (N=130) FEV1 (mL): CIC = 2815 (2.82 L) (N=270); ICS = 2846 (2.85 L) (N=130) exacerbation: CIC = 7; ICS = 2	parallel groups double-blind	12	ciclesonide (320 mcg OD) (272) budesonide (800 mcg OD) (31) randomization 2 (CIC):1 (BUD)
Visitsunthorn 2011	Thailand	N = 29 mean age (SD) = 9 (1) Females – N (%) = 6 (21) Not Hispanic or Latino – N (%) = NA Eczema – N (%) = 29 (100) Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = 25 (86)	sex: ICS+placebo – M = 13, F = 2; ICS+LTRA – M = 10, F = 4 age: ICS+placebo = 9.1 (SD = 1.1); ICS+LTRA = 8.9 (SD = 0.9) eczema: all patients asthma severity: ICS+placebo – mild = 14, moderate = 1; ICS+LTRA – mild = 11, moderate = 3 phenotype: ICS+placebo = 566.34 (eosinophilic); ICS+LTRA = 706.87 (cells)(eosinophilic) FEV1 (L): ICS+placebo = 1.38; ICS+LTRA = 1.43 BL FEV1 (L): ICS+placebo = 1.42: ICS+LTRA = 1.31	crossover double-blind	P1: 6 washout: 2 P2: 6	ICS+placebo (ICS unknown dose) (15) ICS+montelukast (14)
Zimmerman 2004	Canada	N = 302 mean age (SD) = 8.7 (NA) Females – N (%) = 114 (38) Not Hispanic or Latino – N (%) = NA Eczema – N (%) = NA Eosinophilia – N (%) = NA BL-severity (mild) – N (%) = NA	sex: ICS \rightarrow M = 65, F =36; ICS+LABA 4.5 mcg \rightarrow M = 65, F = 41; ICS+LABA 9 mcg \rightarrow M = 58, F = 37 mean age: ICS = 9; ICS+LABA 4.5 mcg = 8; ICS+LABA 9 mcg = 9 (no SD) asthma severity: ICS = 77.2; ICS+LABA 4.5 mcg = 78.3; ICS+LABA 9 mcg = 77.5 BL FEV1 (L): ICS = 1.49; ICS+LABA 4.5 mcg = 1.53; ICS+LABA 9 mcg = 1.50 FEV1 (L): ICS = 1.61; ICS+LABA 4.5 mcg = 1.71; ICS+LABA 9 mcg = 1.68 exacerbation: ICS = 11; ICS+LABA 4.5 mcg = 5; ICS+LABA 9 mcg = 6 (asthma aggravated)	parallel groups double-blind	12	ICS + placebo (101) ICS + formoterol 4.5 mcg BID (106) ICS + formoterol 9 mcg BID (95) ICS dose is unknown

1 trial could not be included in analyses as aggregate data for the first period were not presented in the publication 2 trial could not be included in analyses as no comparison could be made when treatment groups considered at the treatment class level

Table S5. Eligible studies without individual participant data or aggregate data (parts 1 to 18)

First author (Year)	Sponsor	Study Reference	Reasons for not extracting AgD	Study	Total randomized participants (age range)	Total randomized children / adolescents*	Treatments (number of participants reported)	Outcome(s) reported in the publication (does not imply adequate AgD)
Abbas (2016)	-	Abbas, A.; Maheshwari, M. P.; Siddiqui, Z. A.; Maheshwari, R. R. Role of long acting beta2 agonist salmeterol, in management of mild to moderate asthmatic patients. Pakistan Journal of Medical and Health Sciences 2016;10(4):1112-1115	population of both adults and adolescents	parallel groups	50 (15-65)	not possible to establish	salmeterol 50 mcg and fluticasone propionate 250 mcg twice daily (24) beclomethasone dipropionate 500 mcg twice daily (23)	symptoms
Amar (2017)	MERCK	Amar NJ, Shekar T, Varnell TA, Mehta A, Philip G. Mometasone furoate (MF) improves lung function in pediatric asthma: A double-blind, randomized controlled dose-ranging trial of MF metered-dose inhaler. Pediatr Pulmonol. 2017 Mar;52(3):310-318. doi: 10.1002/ppul.23563. Epub 2016 Oct 14. Erratum in: Pediatr Pulmonol. 2019 May;54(5):655-656.	ICS or ICS+LABA at screening	parallel groups	578 (5-11)	578	mometasone furoate-MDI 50 mcg BID (120) mometasone furoate-MDI 100 mcg BID (113) mometasone furoate-MDI 200 mcg BID (108) mometasone furoate-DPI 100 mcg QD PM (125) placebo (112)	FEV1 QoL AEs
Arama (2016) (§)	_	Marina Arama, Tatiana Gorelco, Tatiama Kuleshina (2016). Antileukotriens in management of paediatric asthma: The hormon reducing force. European Respiratory Journal 2016 48: PA1249; DOI: 10.1183/13993003.congress- 2016.PA1249	congress abstract with no data	parallel groups	40 (5-15)	40	ICS+montelukast (NA) ICS+placebo (NA)	symptoms FEV1 (spirometry)
Arsovski (2016) (§)	_	Arsovski, Z.; Dokic, D.; Kjaeva, B.; Goseva, Z.; Pejkovska, S.; Arbutina, S.; Janeva, E. (2016). Different therapeutic response to inhaled Fluticasone propionate in smokers and non-smokers with asthma. Allergy, 71, 365-366.	congress abstract with no data	parallel groups	38 (NA)	not possible to establish	fluticasone propionate 250 mcg BID in smokers and non-smokers	asthma control FEV1
Bensch (2002)	Novartis	Bensch G, Berger WE, Blokhin BM, Socolovsky AL, Thomson MH, Till MD, Castellsague J, Della Cioppa G; International Study Group on Foradil Evaluation in Pediatric Asthma. One-year efficacy and safety of inhaled formoterol dry powder in children with persistent asthma. Ann Allergy Asthma Immunol. 2002 Aug;89(2):180-90.	not only ICS alone at screening	parallel groups	518 (5-12)	518	formoterol 12 mcg BID (171) formoterol 24 mcg BID (171) placebo (176)	FEV1 AEs
Berger (2010)	AstraZeneca	Berger WE, Leflein JG, Geller DE, Parasuraman B, Miller CJ, O'Brien CD, O'Dowd L. The safety and clinical benefit	LABA too at screening	parallel groups	187 (6-11)	187	budesonide/formoterol pMDI 320/9 mcg BID (124) budesonide DPI 400 μg BID (63)	FEV1 AEs

First author (Year)	Sponsor	Study Reference	Reasons for not extracting AgD	Study	Total randomized participants (age range)	Total randomized children / adolescents*	Treatments (number of participants reported)	Outcome(s) reported in the publication (does not imply adequate AgD)
		of budesonide/formoterol pressurized metered-dose inhaler versus budesonide alone in children. Allergy Asthma Proc. 2010 Jan-Feb;31(1):26-39. doi: 10.2500/aap.2010.31.3301.						QoL symptoms
Berger (2014)	MERCK	Berger WE, Bensch GW, Weinstein SF, Skoner DP, Prenner BM, Shekar T, Nolte H, Teper AA. Bronchodilation with mometasone furoate/formoterol fumarate administered by metered-dose inhaler with and without a spacer in children with persistent asthma. Pediatr Pulmonol. 2014 May;49(5):441-50. doi: 10.1002/ppul.22850. Epub 2013 Sep 9.	ICS or ICS+LABA at screening	crossover	92 (5-11)	92	mometasone furoate/formoterol without spacer 100/10 mcg (23) mometasone furoate/formoterol with spacer 100/10 mcg (23) formoterol-DPI 10 mcg (23) placebo (23) All patients used mometasone furoate Dry Powder Inhaler (DPI) 100 mcg once daily (QD) in the evening (PM) throughout the whole study, including the treatment periods.	
Bernstein (2011)	MERCK	Bernstein DI, Hébert J, Cheema A, Murphy KR, Chérrez-Ojeda I, Matiz-Bueno CE, Kuo WL, Nolte H. Efficacy and onset of action of mometasone furoate/formoterol and fluticasone propionate/salmeterol combination treatment in subjects with persistent asthma. Allergy Asthma Clin Immunol. 2011 Dec 7;7:21. doi: 10.1186/1710-1492-7-21.	population of both adults and children/ adolescents ICS or ICS+LABA at screening	parallel groups	722 (12-82)	not possible to establish	fluticasone propionate/salmeterol DPI 250/50 mcg BID (351) mometasone furoate/formoterol MDI 200/10 mcg BID (371)	exacerbation asthma control QoL symptoms FEV1 AEs
Bernstein (2017)	TEVA	David I. Bernstein, Michael Gillespie, Sharon Song & Jonathan Steinfeld (2017). Safety, efficacy, and dose response of fluticasone propionate delivered via the novel MDPI in patients with severe asthma: A randomized, controlled, dose- ranging study, Journal of Asthma, 54:6, 559-569, DOI: 10.1080/02770903.2016.1242137	population of both adults and children/ adolescents ICS or ICS+LABA at screening	parallel groups	640 (12-65+)	9	fluticasone propionate MDPI 50 mcg (107) fluticasone propionate MDPI 100 mcg BID (107) fluticasone propionate MDPI 200 mcg BID (106) fluticasone propionate MDPI 400 mcg BID (107) fluticasone propionate DPI 250 mcg BID (107) placebo MDPI (106)	FEV1 AEs
Bernstein (2019) (§)	Unknown	David I. Bernstein — Efficacy Comparison of Mometasone Furoate/Formoterol Versus Fluticasone Propionate/Salmeterol Combination Therapies in Subjects With Persistent Asthma: noninferiority and Onset-of-Action Findings. Breast (Edinburgh, Scotland) 2019;44():S62-	not found	parallel groups	_	_	mometasone furoate/formoterol (NA) fluticasone propionate/salmeterol (NA)	_
Bose (1987)	-	Bose B, Cater JI, Clark RA. A once daily theophylline preparation in prevention of nocturnal symptoms in childhood asthma. Eur J Pediatr. 1987 Sep;146(5):524-7.	other medicine used at screening	crossover	20 (5-16)	20	theophylline (OD) (20) placebo (20)	symptoms AEs

European Respiratory Journal

First author (Year)	Sponsor	Study Reference	Reasons for not extracting AgD	Study	Total randomized participants (age range)	Total randomized children / adolescents*	Treatments (number of participants reported)	Outcome(s) reported in the publication (does not imply adequate AgD)
Botan (2019)		Botan, V.; Miranda, M.; Couto, S.; Rocha, E.; Imaculada Muniz-Junqueira, M. Influence of Montelukast on the State of Eosinophil Activation in Asthmatic Children. Breast (Edinburgh, Scotland) 2019;44():S64-2019	different outcomes in the publication; the author confirmed to have the outcomes of interest, but after the first consensus, she no longer replied	parallel groups	83 (2-18)	83	montelukast (NA) placebo (NA) healthy control (NA)	none of interest
Byrnes (2000) (§)	GSK	Byrnes C, Shrewsbury S, Barnes PJ, Bush A. Salmeterol in paediatric asthma. Thorax. 2000 Sep;55(9):780-4.	control group: salbutamol it is not clear if ICS treatment was maintained after the run-in	crossover	45 (5-16)	45	salmeterol 50 μg bd (45) salmeterol 100 μg bd (45) salbutamol 200 μg qds (45)	FEV1 AEs
D'Alonzo (1994)	GSK	D'Alonzo GE, Nathan RA, Henochowicz S, Morris RJ, Ratner P, Rennard SI. Salmeterol xinafoate as maintenance therapy compared with albuterol in patients with asthma. JAMA. 1994 May 11;271(18):1412-6.	population of both adults and children/adoles cents only 20% used ICS at screening	parallel groups	322 (NA)	not possible to establish	ICS+salmeterol 42 mcg BID (106) ICS+albuterol 180 mcg 4-time day(108) ICS+placebo (108)	exacerbation FEV1 AEs
D'Urzo (2005)	MERCK	D'Urzo A, Karpel JP, Busse WW, Boulet LP, Monahan ME, Lutsky B, Staudinger H. Efficacy and safety of mometasone furoate administered once-daily in the evening in patients with persistent asthma dependent on inhaled corticosteroids. Curr Med Res Opin. 2005 Aug;21(8):1281-9.	population of both adults and children/adoles cents	parallel groups	400 (12-78)	not possible to establish	mometasone furoate-DPI 200 μg qd PM (78) mometasone furoate-DPI 400 μg qd PM as one inhalation (from a DPI delivering 400 μg/inhalation) (80) mometasone furoate-DPI 400 μg qd PM as two inhalations (from a DPI delivering 200 μg/inhalation) (78) mometasone furoate-DPI 200 μg bid (81) placebo (83)	FEV1 symptoms QoL AEs
Emeryk (2016)	Mundi pharma	Emeryk, Andrzej; Klink, Rabih; McIver, Tammy; Dalvi, Prashant (2016). A 12-week open-label, randomized, controlled trial and 24-week extension to assess the efficacy and safety of fluticasone propionate/formoterol in children with asthma. Therapeutic advances in respiratory disease, 10(4), 324-37.	ICS or LABA at screening	parallel groups	211 (4-12)	211 (180 eligible)	FP/FORM 100/10 mcg BID (106) FP/SAL 100/50 mcg BID (105)	FEV1 AEs
EudraCT number: 2014-005047- 40 (§)	Sanofi	NO PUBLICATION	no publication population of both adults and children/	crossover	122 (12-64)	12	salmeterol/fluticasone propionate 12.5/250 mcg via DPI PulmoJet (122) salmeterol/fluticasone Propionate 50/250 mcg via DPI PulmoJet (122)	FEV1 AEs

First author (Year)	Sponsor	Study Reference	Reasons for not extracting AgD	Study	Total randomized participants (age range)	Total randomized children / adolescents*	Treatments (number of participants reported)	Outcome(s) reported in the publication (does not imply adequate AgD)
			adolescents				salmeterol/fluticasone Propionate 50/250 mcg Seretide Diskus (122)	
EudraCT number: 2017-004424- 29-NL (PUFFIN)	_	NO PUBLICATION	still recruiting	-	-	-	-	-
Farzan (2017)	_	Farzan, Sherry; Khan, Sundas; Elera, Claudia; Tsang, James; Akerman, Meredith; DeVoti, James (2017). Effectiveness of montelukast in overweight and obese atopic asthmatics. Ann Allergy Asthma Immunol 119, 189- 193.	population of both adults and children/ adolescents not possible to use ACT as a binary variable	parallel groups	26 (NA)	23	ICS+montelukast (Overweight/Obese) ICS+placebo (Overweight/Obese) ICS+montelukast (Normal Weight) ICS+placebo (Normal Weight)	asthma control
Fitzgerald (2003) (§)	AstraZeneca	JM FitzGerald, MR Sears, L-P Boulet, AB Becker, et al. Adjustable maintenance dosing with budesonide/formoterol reduces asthma exacerbations compared with traditional fixed dosing: A five-month multicentre Canadian study. Can Respir J 2003;10(8):427-434.	population of both adults and children/ adolescents ICS or ICS+LABA at screening	parallel groups	995 (12-96)	not possible to establish	budesonide/formoterol (adjustable maintenance) (499) budesonide/formoterol (fixed maintenance) (496)	exacerbation hospitalization and health economic parameters AEs
Gelfand (2006)	COVIS PHARMA	Gelfand EW, Georgitis JW, Noonan M, Ruff ME. Once-daily ciclesonide in children: efficacy and safety in asthma. J Pediatr. 2006 Mar;148(3):377-83.	ICS or leukotriene or cromones at screening	parallel groups	1031 (4-11)	1031	ciclesonide 40 mcg OD (252) ciclesonide 80 mcg OD (259) ciclesonide 160 mcg OD (253) placebo mcg OD (254)	FEV1 (not L/s) QoL symptoms AEs
Gustafsson (1993)	_	Gustafsson P, Tsanakas J, Gold M, Primhak R, Radford M, Gillies E. Comparison of the efficacy and safety of inhaled fluticasone propionate 200 micrograms/day with inhaled beclomethasone dipropionate 400 micrograms/day in mild and moderate asthma. Arch Dis Child. 1993 Aug;69(2):206-11.	children/ adolescent until 19 other medicines at screening	parallel groups	398 (4-19)	not possible to establish	fluticasone propionate 200 mcg OD (197) beclometasone dipropionate 400 mcg OD (201)	exacerbation FEV1 symptoms AEs
Hampel (2017)	TEVA	Hampel FC Jr, Carr W, Gillespie M, Small CJ. (2017). Evaluation of beclomethasone dipropionate (80 and 160 micrograms/day) delivered via a breath- actuated inhaler for persistent asthma. Allergy Asthma Proc., 38(6):419-430. doi: 10.2500/aap.2017.38.4089. Epub 2017 Sep 8.	population of both adults and children/ adolescents ICS and non-ICS therapy at screening	parallel groups	273 (12-65+)	30	beclometasone dipropionate BAI 80 mcg OD (90) beclometasone dipropionate BAI 160 mcg OD (92) placebo BAI (91)	FEV1 QoL symptoms AEs
lkeda (2015) (§)	Kyorin pharmaceutical Co	K. Ikeda. Comparison Of Efficacy Onset And Clinical Benefit Between Formoterol/fluticasone And Salmeterol/fluticasone In Unstable	abstract with no age range ICS or ICS+LABA at screening	parallel groups	21 (NA)	not possible to establish	formoterol/fluticasone combination 636 mcg per day (11) salmeterol/fluticasone combination 620 mcg per day (10)	pulmonary function asthma control

	First author (Year)	Sponsor	Study Reference	Reasons for not extracting AgD	Study	Total randomized participants (age range)	Total randomized children / adolescents*	Treatments (number of participants reported)	Outcome(s) reported in the publication (does not imply adequate AgD)
			Chronic Asthma: An Open-Label, Randomized Study. Am J Respir Crit Care Med 191;2015:A4238						(ACQ) symptoms
) 2	llowite (2004)	MERCK	Ilowite J, Webb R, Friedman B, Kerwin E, Bird SR, Hustad CM, Edelman JM: Addition of montelukast or salmeterol to fluticasone for protection against asthma attacks: a randomized, double-blind, multicenter study. Ann Allergy Asthma Immunol. 2004, 92 (6): 641-648	population of both adults and children/ adolescents	parallel groups	1473 (14-73)	not possible to establish	fluticasone 220 mcg + montelukast 10 mg OD (743) fluticasone 220 mcg + salmeterol 84 mcg OD (730)	exacerbation (asthma attack) symptoms AEs
3 1 5 7 8	Jamaati (2015)	COVIS PHARMA	Hamidreza Jamaati, Majid Malekmohammad, Fanak Fahimi, Arvin Najafi, Seyed Mohammadreza Hashemian (2015). Efficacy of Low-Dose Ciclesonide and Fluticasone Propionate for Mild to Moderate Persistent Asthma. Tanaffos, 14(1): 1-9	population of both adults and children/ adolescents	parallel groups	230 (15-65)	not possible to establish	ciclesonide 80 mcg OD (115) fluticasone propionate 100 mcg BID (115)	FEV1 QoL asthma control AEs
)) 2 3 4 5 5 7 3	Jehan (2014) (§)	_	Jehan, N.; Rehman, M. U.; Zarkoon, M. H. To determine the efficacy of inhaled corticosteroids compared to montelukast in reducing exacerbation in uncontrolled asthma in children 6 months to 5 years. Pakistan Journal of Medical and Health Sciences 2014;8(3):662-666 Pakistan Lahore Medical And Dental College (Tulspura, North Canal Bank, Lahore, Pakistan. E-mail: prof_abdulmajeed@hotmail.com) 2014	recruitment at the emergency room and no indication of previous treatment patients were given ICS and tab Montelukast by lottery method to remove the bias	parallel groups	2400 (6 months-5 years)	2400	ICS 200 mcg die (1200) montelukast 4 or 5 mg die (1200)	exacerbation
9) 2 3 4 5 5 7 8	Kerwin (2017)	TEVA	E. M. Kerwin, G. Yiu, L. Hickey, C. J. Small. Analysis Of The Relationship Between Handheld And Clinic-Based Spirometry Measurements In A Randomized, Double- Blind, Placebo-Controlled Study Of Beclomethasone Dipropionate Via Breath- Actuated Inhaler For Persistent Asthma. Am J Respir Crit Care Med 2017;195:A3205	population of both adults and children/ adolescents only abstract	parallel groups	425 (12-NA)	not possible to establish	beclomethasone dipropionate (BAI) 40 mcg/inhalation x 4 inhalations twice daily (BID) (320 mcg/day) beclomethasone dipropionate (BAI) 80 mcg/inhalation x 4 inhalations twice daily (BID) (640 mcg/day) beclomethasone dipropionate (MDI) 40 mcg/inhalation x 4 inhalations BID (320 mcg/day) placebo BAI placebo MDI	FEV1

First author (Year)	Sponsor	Study Reference	Reasons for not extracting AgD	Study	Total randomized participants (age range)	Total randomized children / adolescents*	Treatments (number of participants reported)	Outcome(s) reported in the publication (does not imply adequate AgD)
Knorr (1998)	MERCK	Knorr B, Matz J, Bernstein JA, Nguyen H, Seidenberg BC, Reiss TF, Becker A. Montelukast for chronic asthma in 6- to 14-year-old children: a randomized, double-blind trial. Pediatric Montelukast Study Group. JAMA. 1998 Apr 15;279(15):1181-6. doi: 10.1001/jama.279.15.1181. PMID: 9555757.	only 20-24% of patients used ICS at screening	parallel groups	336 (6-15)	72	montelukast 5 mg OD (201) placebo (135)	FEV1 AEs
Knorr (2001)	MERCK	Knorr B, Franchi LM, Bisgaard H, Vermeulen JH, LeSouef P, Santanello N, Michele TM, Reiss TF, Nguyen HH, Bratton DL. Montelukast, a leukotriene receptor antagonist, for the treatment of persistent asthma in children aged 2 to 5 years. Pediatrics. 2001 Sep;108(3):E48. doi: 10.1542/peds.108.3.e48. PMID: 11533366.	up to 50% of patients used inhaled or nebulized corticosteroids or cromolyn at screening and during the study	parallel groups	689 (2-6)	56	montelukast 4 mg (461) placebo (228)	asthma control symptoms QoL AEs
Kunoe (2016) (§)	_	Kunoe, A.; Agertoft, L.; Chawes, B. L.; Bonnelykke, K.; Bisgaard, H.; Pedersen, S. Early intervention with high-dose inhaled corticosteroids for preschool wheezing does not improve lung function at school age. Allergy: European Journal of Allergy and Clinical Immunology 2016;71(Supplement 102):365	poster – no information on the pre-study treatment (perhaps, naïve) "a trial to investigate if use of high- dose inhaled corticosteroids for preschool wheezing improves lung function at 6 years of age"	parallel groups	220 (6–35 months)	220	fluticasone propionate 1000 mcg/day pMDI (112) placebo (108)	FEV1
Langton Hewer (1995)	-	Langton Hewer S, Hobbs J, French D, Lenney W. Pilgrim's progress: the effect of salmeterol in older children with chronic severe asthma. Respir Med. 1995 Jul;89(6):435-40.	34.8% of patients used OC and other medicine besides ICS at screening	parallel groups	24 (12-17)	23	ICS (range 50-1000 mcg BID) + salmeterol 100 mcg BID (11) ICS (range 50-1000 mcg BID) + placebo (12)	exacerbation FEV1 symptoms AEs
Lin (2015) (IPD supplied)	GSK	Lin J, Kang J, Lee SH, Wang C, Zhou X, Crawford J, Jacques L, Stone S. Fluticasone furoate/vilanterol 200/25 mcg in Asian asthma patients: a randomized trial. Respir Med. 2015 Jan;109(1):44-53. doi:	population of both adults and children/ adolescents all eligible participants	parallel groups	309 (13-79)	0	fluticasone furoate/vilanterol 200/25 mcg OD (155) fluticasone propionate 500 mcg BID (154)	ACT exacerbation FEV1 symptoms QoL AEs

First author (Year)	Sponsor	Study Reference	Reasons for not extracting AgD	Study	Total randomized participants (age range)	Total randomized children / adolescents*	Treatments (number of participants reported)	Outcome(s) reported in the publication (does not imply adequate AgD)
		10.1016/j.rmed.2014.10.012. Epub 2014 Oct 31.	were using ICS+LABA at screening					
Lin (2016) (IPD supplied)	GSK	Lin J, Tang H, Chen P, Wang H, Kim MK, Crawford J, Jacques L, Stone S. Efficacy and safety evaluation of once-daily fluticasone furoate/vilanterol in Asian patients with asthma uncontrolled on a low- to mid-strength inhaled corticosteroid or low-dose inhaled corticosteroid/long-acting beta2-agonist. Allergy Asthma Proc. 2016 Jul;37(4):302- 10. doi: 10.2500/aap.2016.37.3968.	population of both adults and children/ adolescents only one participant was using ICS alone at screening	parallel groups	307 (14-79)	1	fluticasone furoate/vilanterol 100/25 mcg OD (153) placebo (154)	ACT exacerbation FEV1 symptoms QoL AEs
Mallol (2016)	COVIS PHARMA	J. Mallol, V. Aguirrea, A. Gallardoa, E. Corteza, C. Sáncheza, C. Riquelmea, P. Córdovaa, M. Martíneza, A. Galindob. Effect of once-daily generic ciclesonide on exhaled nitric oxide in atopic children with persistent asthma. Allergologia et immunopathologia 2016;44(2):106-12	1) not possible to use ACT as a binary variable; 2) not possible to classify ICS dose based on age for the secondary analysis	parallel groups	60 (7-15)	60	ciclesonide 80 mcg OD (27) ciclesonide 160 mcg OD (29)	ACT AEs
Mansfield (2017)	ΤΕVΑ	Mansfield L, Yiu G, Sakov A, Liu S, Caracta C. A 6-month safety and efficacy study of fluticasone propionate and fluticasone propionate/salmeterol multidose dry powder inhalers in persistent asthma. Allergy Asthma Proc. 2017 Jul 24;38(4):264-276. doi: 10.2500/aap.2017.38.4061. Epub 2017 May 24.	population of both adults and children/ adolescents ICS or ICS+LABA at screening	parallel groups	674 (12-65+)	73	fluticasone propionate MDPI 100 mcg BID (127) fluticasone propionate HFA 220 mcg BID (42) fluticasone propionate MDPI 200 mcg BID (126) fluticasone propionate HFA 440 mcg BID (126) fluticasone propionate/salmeterol MDPI 100/12.5 mcg BID (120) fluticasone propionate/salmeterol DPI 250/50 mcg BID (41) fluticasone propionate/salmeterol MDPI 200/12.5 mcg BID (133) fluticasone propionate/salmeterol DPI 500/50 mcg BID (44)	FEV1 AEs
Maspero (2010)	MERCK	Maspero JF, Nolte H, Chérrez-Ojeda I; P04139 Study Group. Long-term safety of mometasone furoate/formoterol combination for treatment of patients with persistent asthma. J Asthma. 2010 Dec;47(10):1106-15. doi: 10.3109/02770903.2010.514634. Epub 2010 Nov 1. Erratum in: J Asthma. 2011 Feb;48(1):114.	population of both adults and children/ adolescents ICS or ICS+LABA at screening	parallel groups	404 (NA)	not possible to establish	mometasone furoate/formoterol 200/10 mcg (141) fluticasone propionate/salmeterol 250/50 mcg (68) mometasone furoate/formoterol 400/10 mcg (130) fluticasone propionate/salmeterol 500/50 mcg (65)	AEs FEV1 symptoms

First author (Year)	Sponsor	Study Reference	Reasons for not extracting AgD	Study	Total randomized participants (age range)	Total randomized children / adolescents*	Treatments (number of participants reported)	Outcome(s) reported in the publication (does not imply adequate AgD)
McIver (2011)	Mundipharma	McIver, T.; Emeryk, A.; Klink, R.; Schwab, B. (2011). Fluticasone propionate/formoterol fumarate (FLUT/FORM) combination therapy has comparable efficacy to fluticasone propionate/salmeterol xinafoate (FLUT/SAL) in paediatric patients with asthma. European Respiratory Journal, 38, SUPPL. 55.	likely conference abstract – no information on pre-treatment at screening	parallel groups	211 (4-12)	211	fluticasone propionate/formoterol 100/10μg BID (102) fluticasone propionate/salmeterol 100/50μg BID (99)	FEV1
Meltzer (2012)	MERCK	Meltzer EO, Kuna P, Nolte H, Nayak AS, Laforce C; P04073. Study Investigators. Mometasone furoate/formoterol reduces asthma deteriorations and improves lung function. Eur Respir J. 2012 Feb;39(2):279- 89. doi: 10.1183/09031936.00020310.	population of both adults and children/ adolescents ICS or ICS+LABA at screening	parallel groups	746	not possible to establish	formoterol 10 mcg MDI BID (188) mometasone furoate 100 mcg MDI BID (188) mometasone furoate/formoterol 100/10 mcg MDI BID (182) placebo (188)	exacerbation (asthma deterioration) ACQ FEV1 QoL AEs
Meltzer (2019)	_	Meltzer (2019). Efficacy and Safety of Combined Mometasone Furoate/Formoterol 100/10µg Twice Daily in Subjects with Asthma Inadequately Controlled on Low-Dose Inhaled Corticosteroids. Breast (Edinburgh, Scotland) 2019;44():S63-S64	paper not found	-	-	-	-	-
Miller (2016) (§)	TEVA	David S. Miller, Gloria Yiu, Edward T. Hellriegel, and Jonathan Steinfeld (2016). Dose-ranging study of salmeterol using a novel fluticasone propionate/salmeterol multidose dry powder inhaler in patients with persistent asthma. Proc 37:291–301, 2016; doi: 10.2500/aap.2016.37.3963	population of both adults and children/ adolescents	crossover	72 (12-65+)	3	fluticasone propionate/salmeterol MDPI 100/6.25 mcg (one dose per treatment) fluticasone propionate/salmeterol MDPI 100/12.5 mcg (one dose per treatment) fluticasone propionate/salmeterol MDPI 100/25 mcg (one dose per treatment) fluticasone propionate/salmeterol MDPI 100/50 mcg (one dose per treatment) fluticasone propionate MDPI 100 mcg (one dose per treatment) fluticasone propionate/salmeterol DPI 100/50mcg (one dose per treatment)	FEV1 AEs
Murphy (2015)	AstraZeneca	Kevin R. Murphy, Rajiv Dhand, Frank Trudo,Tom Uryniak, Ajay Aggarwal, Goran Eckerwall (2015). Therapeutic equivalence of budesonide/formoterol delivered via breath-actuated inhaler vs pMDI. Respiratory Medicine, 109, 170-179. http://dx.doi.org/10.1016/j.rmed.2014.12 .009	population of both adults and children/ adolescents "Two patients receiving ICS/LABA combination therapy before study screening	parallel groups	214 (12-75+)	21	BUD/FM BAI 320/9 mcg BID (71) BUD/FM pMDI 320/9 mcg BID (71) BUD pMDI 320 mcg BID (72)	FEV1 AEs

First author (Year)	Sponsor	Study Reference	Reasons for not extracting AgD	Study	Total randomized participants (age range)	Total randomized children / adolescents*	Treatments (number of participants reported)	Outcome(s) reported in the publication (does not imply adequate AgD)
			were not switched to mono- component ICS before run-in but were subsequently included in the study".					
Nathan (2010)	MERCK	Nathan RA, Nolte H, Pearlman DS; P04334 Study Investigators. Twenty-six-week efficacy and safety study of mometasone furoate/formoterol 200/10 microg combination treatment in patients with persistent asthma previously receiving medium-dose inhaled corticosteroids. Allergy Asthma Proc. 2010 Jul- Aug;31(4):269-79. doi: 10.2500/aap.2010.31.3364. Epub 2010 Jul 30.	population of both adults and children/ adolescents ICS or ICS+LABA at screening	parallel groups	781 (NA)	not possible to establish	mometasone furoate/formoterol 200/10 μg BID (191) mometasone furoate 200 μg BID (192) formotero 10 μg BID (202) placebo (196)	exacerbation (asthma deterioration) ACQ FEV1 QoL AEs
NCT00392288 or EFC6695	COVIS PHARMA	NO PUBLICATION	no publication ICS or montelukast at screening	parallel groups	501 (4-12)	501	ciclesonide MDI 40 μg BID (166) ciclesonide MDI 80 μg BID (172) placebo (163)	FEV1 symptoms
NCT00419952 or D5896C00022	AstraZeneca	NO PUBLICATION	no publication population of both adults and children/ adolescents	parallel groups	742 (NA)	not possible to establish	budesonide+formoterol pMDI 160/4.5 ug x 2 actuations (twice daily) BID (377) budesonide HFA pMDI 160 ug x 2 actuations (twice daily) BID (365)	exacerbation symptoms FEV1 AEs
NCT00442117 or P04880	MERCK	NO PUBLICATION	no publication population of both adults and children/ adolescents	parallel groups	180 (NA)	not possible to establish	mometasone furoate DPI 200 mcg, two puffs once daily PM (total of 400 mcg/day) (85) budesonide DPI DPI 200 mcg, two puffs twice daily (total of 800 mcg/day) (87)	FEV1
NCT00442559	MERCK	NO PUBLICATION	no publication unknown pre- treatment	parallel groups	191 (2-14)	191	montelukast 4/5 mg tablet (oral chewable), OD (100) ICS solution, 1-4 puffs daily (91)	symptoms
NCT00651768	AstraZeneca	NO PUBLICATION	no publication population of both adults and children/ adolescents	parallel groups	570 (NA)	not possible to establish	budesonide/formoterol Symbicort pMDI 2 X 160/4.5mcg & budesonide HFA pMDI 4 X 160mcg	exacerbation lung function AEs

First author (Year)	Sponsor	Study Reference	Reasons for not extracting AgD	Study	Total randomized participants (age range)	Total randomized children / adolescents*	Treatments (number of participants reported)	Outcome(s) reported in the publication (does not imply adequate AgD)
NCT01845025 (§)	Novartis	NO PUBLICATION	no publication population of both adults and children/ adolescents "Use of ICS, LABA, ICS+LABA, LTRAs, leukotriene modifiers, anticholinergic, or theophylline must be discontinued prior to the first dose of investigational treatment".	parallel groups	820 (NA)	not possible to establish	formoterol 12 mcg + fluticasone propionate 100 mcg/fluticasone propionate 250 mcg/ fluticasone propionate 500 mcg (411) placebo + fluticasone propionate 100 mcg/fluticasone propionate 250 mcg/fluticasone propionate 500 mcg (409)	exacerbation ACQ symptoms hospitalization mortality AEs unplanned healthcare utilization
NCT02298205 (§)	Washington University School of Medicine	NO PUBLICATION	no publication ICS or LTRA or ICS+LABA at screening	parallel groups	206 (6-17)	206	Provider-based adjustment: The provider will adjust the dose of Beclomethasone based on the participant's asthma control at their encounter with them Asthma controller medication (Beclomethasone) adjustment strategy: The participant will adjust the dose of Beclomethasone based on symptoms	asthma control exacerbation FEV1 QoL
NCT02495168	TEVA	NO PUBLICATION	no publication population of both adults and children/ adolescents	parallel groups	1714 (12-75)	not possible to establish	generic budesonide/formoterol – 2 inhalations BID (80/4.5 mcg) pMDI (501) Symbicort budesonide/formoterol – 2 inhalations BID (80/4.5 mcg) pMDI (514) placebo (126)	FEV1
NCT02577497	University of Virginia	NO PUBLICATION	no publication ICS and/or an anti-leukotriene at screening	crossover	31 (6-17)	31	beclomethasone (31) fluticasone (31)	none of interest
NCT02649478	НІКМА	NO PUBLICATION	no publication population of both adults and children/ adolescents ICS with or without LABA, LTRA, theophylline	parallel groups	1430	not possible to establish	fluticasone / salmeterol 100/50 mcg (NA) Advair Diskus 100/50 mcg (NA) placebo (NA)	FEV1 AEs

European Respiratory Journal

First author (Year)	Sponsor	Study Reference	Reasons for not extracting AgD	Study	Total randomized participants (age range)	Total randomized children / adolescents*	Treatments (number of participants reported)	Outcome(s) reported in th publication (does not imp adequate Ag
NCT02680561 (§)	TEVA	NO PUBLICATION	no publication	crossover	20 (4-11)	20	fluticasone propionate MDPI (20) fluticasone propionate/salmeterol MDPI (20) fluticasone propionate/salmeterol (20)	AEs
NCT02758873	University of Sussex	NO PUBLICATION	no publication ICS with/without second line controller (i.e. LABA/LTRA) at screening	parallel groups	241 (12-18)	not possible to establish	salmeterol (NA) montelukast (NA) standard care (NA)	ACQ QoL
NCT03096327	PharmEvo Pvt Ltd	NO PUBLICATION	no publication population of both adults and children/ adolescents	parallel groups	180 (NA)	not possible to establish	montelukast 4-10 mg (NA) placebo (NA)	QoL AEs
NCT03248128 or 107116A	GSK	NO PUBLICATION	recruiting	parallel groups	870 (5-17)	870	fluticasone furoate/vilanterol 50 or 100/25 mcg DPI (NA) fluticasone furoate 50 or 100 mcg DPI (NA)	exacerbation ACQ FEV1 symptoms AEs
NCT03387241	Mundipharma	NO PUBLICATION	no publication / no plan to share IPD population of both adults and children/ adolescents	parallel groups	330 (12-75)	not possible to establish	fluticasone/formoterol fluticasone/ salmeterol	FEV1 asthma contro (ACQ) exacerbation
VCT03535870	HIKMA	NO PUBLICATION	no publication / no plan to share IPD population of both adults and children/ adolescents ICS with or without LABA/LTM at screening	parallel groups	1556 (12-65)	not possible to establish	fluticasone propionate/salmeterol 100/50 mcg DPI Advair Diskus, 100/ 50 mcg DPI Placebo	FEV1
NCT03676413 (§)	Respirent Pharmaceuticals	NO PUBLICATION	no publication / no plan to share IPD population of	parallel groups	451 (NA)	not possible to establish	fluticasone propionate/salmeterol 100/50 mcg DPI BID ADVAIR DISKUS® 100/50 mcg DPI BID placebo	FEV1 AEs

First author (Year)	Sponsor	Study Reference	Reasons for not extracting AgD	Study	Total randomized participants (age range)	Total randomized children / adolescents*	Treatments (number of participants reported)	Outcome(s) reported in the publication (does not imply adequate AgD)
			both adults and children/ adolescents ICS and LABA at screening					
NCT03756883	ΤΕνΑ	NO PUBLICATION	no publication / no plan to share IPD population of both adults and children/ adolescents	parallel groups	999 (12-75)	not possible to establish	fluticasone propionate/salmeterol DPI 100/50 mcg (485) ADVAIR DISKUS® 100/50 (fluticasone propionate and salmeterol) DPI (413) placebo (101)	FEV1
NCT03847896	Bond Avillion 2 Development LP	NO PUBLICATION	no publication / no plan to share IPD population of both adults and children/ adolescents ICS+SABA or SABA alone at screening	parallel groups	1001 (NA)	not possible to establish	budesonide/albuterol sulfate metered-dose inhaler 80/180 mcg (NA) budesonide/albuterol sulfate metered-dose inhaler 160/180 mcg (NA) budesonide metered-dose inhaler 160 mcg (NA) albuterol sulfate metered-dose inhaler 180 mcg (NA) placebo (NA)	FEV1 ACQ
Nielsen (2000)	AstraZeneca	Nielsen KG, Bisgaard H. The effect of inhaled budesonide on symptoms, lung function, and cold air and methacholine responsiveness in 2- to 5-year-old asthmatic children. Am J Respir Crit Care Med 2000;162:1500–1506.	ICS or other medicines (SABA as needed, LABA, sodio cromoglycate - 4 patients, 11%) at entry	parallel groups	38 (2-5)	34	budesonide (19) placebo (19)	symptoms
Pearlman (2011)	SkyePharma AG	Pearlman, D. S.; La-Force, C.; Kaiser, K. Fluticasone propionate/formoterol fumarate combination therapy has superior efficacy to both fluticasone and formoterol alone European Respiratory Journal 2011;38(SUPPL. 55): European Respiratory Society 2011	population of both adults and children/ adolescents congress abstract, the author is retired	parallel groups	357 (NA)	not possible to establish	fluticasone/formoterol 100/10 mcg BID (in a single inhaler) (NA) fluticasone 100 mcg BID (NA) formoterol 10 mcg BID (NA)	FEV1
Pearlman (2017)	AstraZeneca	David S. Pearlman, Göran Eckerwall, Julie McLaren, Rosa Lamarca, Margareta Puu, Ileen Gilbert, Carin Jorup, Kristina Sandin, Miguel J. Lanz. Efficacy and safety of budesonide/formoterol pMDI vs budesonide pMDI in asthmatic children (6-<12 years). Annals of allergy, asthma & immunology : official publication of the	ICS or ICS+LABA at screening	parallel groups	279 (6-11)	137	budesonide/formoterol pMDI 160/9 mcg BID (92) budesonide/formoterol pMDI 160/4.5 mcg BID (95) budesonide pMDI 160 mcg BID (92)	exacerbation FEV1 symptoms QoL AEs

1 2 3	First author (Year)	Sponsor	Study Reference	Reasons for not extracting AgD	Study	Total randomized participants (age range)	Total randomized children / adolescents*	Treatments (number of participants reported)	Outcome(s) reported in the publication (does not imply adequate AgD)
4 5			American College of Allergy, Asthma, & Immunology 2017;118(4):489-499.e1						
6 7 8 9 10 11	Pearlman (2019)	_	Pearlman, D.; Nathan, R.; Meltzer, E.; Nolte, H.; Weinstein, S. Effect of Mometasone Furoate/Formoterol Combination Therapy on Nocturnal Awakenings in Subjects With Persistent Asthma. Breast (Edinburgh, Scotland) 2019;44():S63-2019	author retired and paper not found	_	-	-	-	-
12 13 14 15 16 17 18	Peden (1998)	GSK	Peden DB, Berger WE, Noonan MJ, Thomas MR, Hendricks VL, Hamedani AG, Mahajan P, House KW. Inhaled fluticasone propionate delivered by means of two different multidose powder inhalers is effective and safe in a large pediatric population with persistent asthma. J Allergy Clin Immunol. 1998 Jul;102(1):32- 8.	ICS or cromolyn or LABA alone at screening	parallel groups	437 (4-11)	437	fluticasone propionate 50 mcg BID Diskus (90) fluticasone propionate 100 mcg BID Diskus (87) fluticasone propionate 50 mcg BID Diskhaler (91) fluticasone propionate 100 mcg BID Diskhaler (83) placebo (86)	FEV1 symptoms AEs
19 20 21 22 23 24 25 26	Pedersen (2009)	COVIS PHARMA	Pedersen S, Engelstätter R, Weber HJ, Hirsch S, Barkai L, Emeryk A, Weber H, Vermeulen J. Efficacy and safety of ciclesonide once daily and fluticasone propionate twice daily in children with asthma. Pulm Pharmacol Ther. 2009 Jun;22(3):214-20. doi: 10.1016/j.pupt.2008.12.013. Epub 2008 Dec 27.	ICS and non-ICS at screening	parallel groups	744 (6-11)	366	ciclesonide 80 mcg OD (252) ciclesonide 160 mcg OD (242) fluticasone propionate 88 mcg BID (250)	FEV1 symptoms QoL AEs
20 27 28 29 30 31	Pedersen (2017)	COVIS PHARMA	Søren E Pedersen, Niyati Prasad, Udo- Michael Goehring, Henrik Andersson, Dirkje S Postma. Control of moderate-to- severe asthma with randomized ciclesonide doses of 160, 320 and 640 mug/day. Journal of Asthma and Allergy 2017;10():35-46	population of both adults and children/ adolescents	parallel groups	367 (12-70)	not possible to establish	ciclesonide 160 mcg/day (120) ciclesonide 320 mcg/day (122) ciclesonide 640 mcg/day (125)	FEV1 ACQ AEs
32 33 34 35 36	Pertseva (2012)		Efficacy and safety of fluticasone/formoterol compared to fluticasone alone in patients with asthma. European Respiratory Journal 2012;40(SUPPL. 56): European Respiratory Society 2012 (CONGRESS)	congress abstract population of both adults and children/ adolescents	parallel groups	438 (NA)	not possible to establish	fluticasone propionate/formoterol 250/10 mcg BID pMDI (146) fluticasone 250/10 mcg BID (146) SkyePharma pMDI fluticasone 250/10 mcg BID (146) GSK pMDI	FEV1
37 38 39 40 41	Peters (2016)	AstraZeneca	Stephen P. Peters, Eugene R. Bleecker, Giorgio W. Canonica, Yong B. Park, Ricardo Ramirez, Sally Hollis, Harald Fjallbrant, Carin Jorup, and Ubaldo J. Martin. Serious Asthma Events with	population of both adults and children/	parallel groups	11693 (12-65+)	1268	budesonide–formoterol 80/4.5 mcg BID (1645) budesonide 80 mcg BID (1646) budesonide–formoterol 160/4.5 mcg BID (4201) budesonide 160 mcg BID (4201)	exacerbation ACQ AEs

First author (Year)	Sponsor	Study Reference	Reasons for not extracting AgD	Study	Total randomized participants (age range)	Total randomized children ∕ adolescents*	Treatments (number of participants reported)	Outcome(s) reported in the publication (does not imply adequate AgD)
		Budesonide plus Formoterol vs. Budesonide Alone. The New England journal of medicine 2016;375(9):850-60	adolescents ICS or ICS+LABA at screening					
Petnak (2016)(§)	_	Petnak, T.; Pornsuriysak, P.; Boonsarngsuk, V.; Amornputtisathaporn, N.; Kawamatawong, T. Effect of inhaled mometasone/formoterol vs inhaled fluticasone/salmeterol on peripheral airway function in asthma patients: a randomized open label trial. Chest 2016;150(4):16A-2016	no age range (likely naïve)	parallel groups	50	not possible to establish	mometasone/formoterol (25) fluticasone/salmeterol (25)	none of interest
Philip (2011)	MERCK	Philip G, Villarán C, Shah SR, Vandormael K, Smugar SS, Reiss TF. The efficacy and tolerability of inhaled montelukast plus inhaled mometasone compared with mometasone alone in patients with chronic asthma. J Asthma. 2011 Jun;48(5):495-502. doi: 10.3109/02770903.2011.573042. Epub 2011 May 5.	population of both adults and children/ adolescents not only ICS alone at screening (ICS+LABA and montelukast: 35%)	crossover	134 (15-74)	not possible to establish	montelukast 1 mg + mometasone 220 µg (delivered by separate dry powder inhalers) OD (66 - first period) placebo + mometasone 220 µg OD (68 - first period)	exacerbation asthma control FEV1 AEs
Phipatanakul (2003)	MERCK	Phipatanakul W, Greene C, Downes SJ, Cronin B, Eller TJ, Schneider LC, Irani AM. Montelukast improves asthma control in asthmatic children maintained on inhaled corticosteroids. Ann Allergy Asthma Immunol. 2003 Jul;91(1):49-54.	no useful data in the article	two-period parallel groups	36 (6-14)	36	ICS+montelukast (run-in dose/5 mg) (19) ICS+placebo (run-in dose) (17)	none of interest
Płoszczuk (2018)	Mundipharma	Anna Płoszczuk, Miroslava Bosheva, Kay Spooner, Tammy McIver and Sanjeeva Dissanayake (2018). Efficacy and safety of fluticasone propionate/formoterol fumarate in pediatric asthma patients: a randomized controlled trial. Ther Adv Respir Dis, 12: 1–15. DOI: 10.1177/1753466618777924	ICS (uncontrolled asthma) or ICS+LABA (controlled asthma) at screening	parallel groups	512 (5-12)	379	fluticasone propionate/formoterol pMDI 100/10 mcg BID (169) fluticasone propionate pMDI 100 mcg BID (173) fluticasone/salmeterol pMDI 100/50 mcg BID (170)	exacerbation FEV1 QoL asthma control AEs
Pohunek (2006)	AstraZeneca	Pohunek P, Kuna P, Jorup C, De Boeck K. Budesonide/formoterol improves lung function compared with budesonide alone in children with asthma. Pediatr Allergy Immunol 2006;17:458–465.	ICS (any brand) or ICS+LABA or LABA at screening	parallel groups	630 (4-11)	630	budesonide/formoterol (Symbicort) 80/4.5 mcg, two inhalations BID (216) budesonide (Pulmicort) 100 mcg, two inhalations BID (213) budesonide, 100 mcg, two inhalations BID (Pulmicort) + formoterol 4.5 mcg, two inhalations BID (Oxis) (201)	FEV1 QoL AEs

European Respiratory Journal

1 2 3	First author (Year)	Sponsor	Study Reference	Reasons for not extracting AgD	Study	Total randomized participants (age range)	Total randomized children ⁄ adolescents*	Treatments (number of participants reported)	Outcome(s) reported in the publication (does not imply adequate AgD)
4 5 7 8 9 10	Pohunek (2014)	Chiesi Farmaceutici	Pohunek, P.; Scuri, M.; Reznichenko, Y.; Varoli, G.; Mokia-Serbina, S.; Baronio, R.; Brzostek, J.; Kaczmarek, J. Bronchodilating effects of extrafine beclometasone dipropionate and formoterol fumarate via pressurized metered dose inhaler in asthmatic children. Pediatric pulmonology 2014;49(SUPPL. 37):S55 Wiley-Liss Inc. 2014	abstract	crossover	56 (5-12)	56	BDP /FF 100/12 mcg (CHF1535) BDP pMDI 100 mcg + FF 12 mcg pMDI	FEV1 AEs
12 13 14 15 16 17 18	Rani (2016)	_	Rani, S.; Rawal, M.; Kumar, S.; Lamba, S. To compare efficacy and safety of fixed drug combination of salmeterol / fluticasone and budesonide / formoterol on the lung functions in childhood patients with moderate persistent asthma. Indian Journal of Public Health Research and Development 2016;7(4):203-207	abstract (no data or enough information)	parallel groups	68 (NA)	68	salmeterol/fluticasone (NA) budesonide/formoterol (NA)	FEV1
19 20 21 22 23 24 25	Raphael (2018)	TEVA	Raphael G, Yiu G, Sakov A, Liu S, Caracta C. Randomized, double-blind trial evaluating the efficacy and safety of fluticasone propionate and fluticasone propionate/salmeterol delivered via multidose dry powder inhalers in patients with persistent asthma aged 12 years and older. J Asthma. 2018 Jun;55(6):640-650. doi: 10.1080/02770903.2017.1350971.	population of both adults and children/ adolescents ICS or ICS+LABA at screening	parallel groups	625 (12-65+)	86	fluticasone propionate 50 mcg DPI BID (125) fluticasone propionate 100 mcg DPI BID (125) fluticasone propionate/salmeterol 50/12.5 DPI BID (125) fluticasone propionate/salmeterol 100/12.5 DPI BID (125) placebo (125)	exacerbation FEV1 QoL AEs
26 27 28 29 30	Saeed (2018)	_	Saeed, R.; Mustafa, K.; U. Saqib N. Comparison of montelukast with fluticasone for control of Asthma in children. Medical forum monthly 2018;29(3):25-28	unknown if patients used ICS at screening	parallel groups	780 (4-10)	780	montelukast 5-10 mg OD (390) fluticasone 100 mcg BID (390)	FEV1
31 32 33 34 35 36	Shapiro (1998)	AstraZeneca	Shapiro GG, Bronsky EA, LaForce CF, Mendelson L, Pearlman D, Schwartz RH, Szefler SJ. Dose-related efficacy of budesonide administered via a dry powder inhaler in the treatment of children with moderate to severe persistent asthma. J Pediatr. 1998, 132 (6): 976-982	6-18 years not only ICS on entry triamcinolone is not on our list	parallel groups	404 (6-18)	not possible to establish	budesonide 100 mcg DPI BID (102) budesonide 200 mcg DPI BID (100) budesonide 400 mcg DPI BID (99) placebo (103)	FEV1 symptoms AEs
37 38 39 40 41	Shatalina (2017)	_	Shatalina, S.; Geppe, N.; Denisova, A.; Denisova, V.; Kolosova, N. Intermittent therapy with budesonide/formoterol in children with moderate asthma. European Respiratory Journal 2017;50(Supplement	congress abstract 6-18 years	parallel groups	95 (6-18)	not possible to establish	group 1: budesonide/formoterol in a fixed dose twice a day group 2: budesonide/formoterol once a day and in exacerbation of asthma patient increased budesonide/formoterol to 4 inhalations/day for	FEV1 asthma symptoms

First author (Year)	Sponsor	Study Reference	Reasons for not extracting AgD	Study	Total randomized participants (age range)	Total randomized children / adolescents*	Treatments (number of participants reported)	Outcome(s) reported in the publication (does not imply adequate AgD)
		61): Netherlands European Respiratory Society 2017					7-14 days (intermittent therapy) group 3: ICS (100-200μg budesonide/day)	
Sher (2017)	ΤΕVΑ	Sher LD, Yiu G, Sakov A, Liu S, Caracta CF. Fluticasone propionate and fluticasone propionate/salmeterol multidose dry powder inhalers compared with placebo for persistent asthma. Allergy Asthma Proc. 2017 Sep 21;38(5):343-353. doi: 10.2500/aap.2017.38.4069.	population of both adults and children/ adolescents ICS or ICS+LABA at entry	parallel groups	728 (12-65+)	45	fluticasone propionate 100 mcg MDPI BID (146) fluticasone propionate 200 mcg MDPI BID (146) fluticasone propionate/salmeterol 100/12.5 mcg MDPI BID (145) fluticasone propionate/salmeterol 200/12.5 mcg MDPI BID (146) placebo (145)	FEV1 QoL AEs
Skoner (2008)	COVIS PHARMA	Skoner DP, Maspero J, Banerji D; Ciclesonide Pediatric Growth Study Group. Assessment of the long-term safety of inhaled ciclesonide on growth in children with asthma. Pediatrics. 2008 Jan;121(1):e1-14. doi: 10.1542/peds.2006-2206. Epub 2007 Dec 10. PMID: 18070931.	ICS or LTRA or SABA at screening	parallel groups	661 (5.5-9.1)	661	ciclesonide 40 mcg QD (221) ciclesonide 160 mcg QD (219) placebo (221)	FEV1 AEs (growth)
Steinfeld (2015)(§)	TEVA	Steinfeld, J.; Yiu, G.; Miller, S. D. Dose- ranging study to evaluate the efficacy and safety of four doses of fluticasone propionate/salmeterol multidose dry powder inhaler (FS MDPI) compared with fluticasone propionate (FP) MDPI and FS DPI in subjects with persistent asthma. Journal of allergy and clinical immunology. 2015;135(2 SUPPL. 1):AB6 2015	conference abstract population of both adults and children/ adolescents single dose	crossover	72 (NA)	not possible to establish	fluticasone/salmeterol MDPI 100/6.25 mcg fluticasone/salmeterol MDPI 100/12.5 mcg fluticasone/salmeterol MDPI 100/25 mcg fluticasone/salmeterol MDPI 100/50 mcg fluticasone propionate MDPI 100 mcg fluticasone/salmeterol DPI 100/50 mcg	FEV1
Strunk (2008) (IPD)	CARE Network	Strunk RC, Bacharier LB, Phillips BR, Szefler SJ, Zeiger RS, Chinchilli VM, Martinez FD, Lemanske RF Jr, Taussig LM, Mauger DT, Morgan WJ, Sorkness CA, Paul IM, Guilbert T, Krawiec M, Covar R, Larsen G; CARE Network. Azithromycin or montelukast as inhaled corticosteroid- sparing agents in moderate-to-severe childhood asthma study. J Allergy Clin Immunol. 2008 Dec;122(6):1138-1144.e4. doi: 10.1016/j.jaci.2008.09.028. Epub 2008 Oct 25. PMID: 18951618; PMCID: PMC2737448.	not enough eligible patients ICS alone (uncontrolled) or ICS+LABA or other (controlled)	parallel groups	55 (6-17)	1	placebo and budesonide (400 mcg as minimum)+ salmeterol (50 mcg) BID (19) montelukast (5 or 10 mg) OD and budesonide (400 mcg as minimum)+ salmeterol (50 mcg) BID (19)	asthma control AEs
Suessmuth (2003)	-	Suessmuth S, Freihorst J, Gappa M. Low- dose theophylline in childhood asthma: a placebo-controlled, double-blind study.	adolescents aged 18	parallel groups	36 (6-18)	36	ICS+theophylline 10 mg/kg bodyweight ICS+placebo	symptoms lung function

First author (Year)	Sponsor	Study Reference	Reasons for not extracting AgD	Study	Total randomized participants (age range)	Total randomized children / adolescents*	Treatments (number of participants reported)	Outcome(s) reported in the publication (does not imply adequate AgD)
		Pediatr Allergy Immunol. 2003 Oct;14(5):394-400.						
van Adelsberg (2005)	MERCK	van Adelsberg J, Moy J, Wei LX, Tozzi CA, Knorr B, Reiss TF. Safety, tolerability, and exploratory efficacy of montelukast in 6- to 24-month-old patients with asthma. Curr Med Res Opin. 2005 Jun;21(6):971-9.	50% used ICS; other medicine or no medicine used at screening and concomitant use of those during the study	parallel groups	256 (6-24 months)	128	ICS (87/175)+montelukast 4 mg (175) ICS (41/81)+placebo (81)	exacerbation (asthma attack) hospitalization AEs
Vandewalker (2017)	TEVA	Vandewalker, Mark; Hickey, Lisa; Small, Calvin J. Efficacy and safety of beclomethasone dipropionate breath- actuated or metered-dose inhaler in pediatric patients with asthma. Allergy and asthma proceedings 2017;38(5):354- 364	ICS or NCS at entry	parallel groups	628 (4-11)	445	beclomethasone dipropionate BAI 80 mcg die (126) beclomethasone dipropionate BAI 160 mcg die (125) beclomethasone dipropionate MDI 80 mcg die (125) beclomethasone dipropionate MDI 160 mcg die (125) placebo (127)	FEV1 exacerbation symptoms asthma control AEs
Venugopal (2019)(§)	_	Venugopal, S. Effect of Addition of Single Dose of Oral Montelukast to Standard Therapy in Acute Moderate Asthma in Children 5-12 Years of Age - a Randomised Double Blind Placebo Controlled Trial. American journal of respiratory and critical care medicine 2019;199(): 2019	abstract - no information on previous treatments single dose of montelukast to standard therapy in exacerbation	parallel groups	43 (5-12)	43	standard therapy+single tablet of montelukast (5mg) (29) standard therapy+single tablet of placebo (14)	none of interest
Verini (2007)	_	Verini M, Peroni D, Piacentini G, Nicodemo A, Rossi N, Bodini A, Chiarelli F, Boner A: Comparison of add-on therapy to inhaled fluticasone propionate in children with asthma: residual volume and exhaled nitric oxide as outcome measures. Allergy and asthma proceedings. 2007, 28 (6): 691-694	no data for the first period	crossover	12 (6-13)	12	fluticasone propionate 100 mcg BID + montelukast 5 mg OD (12) fluticasone propionate 100 mcg BID + salmeterol 50 mcg BID (12)	exacerbation (none) AEs (none)
von Berg (1998)	GSK	von Berg A, de Blic J, la Rosa M, Kaad PH, Moorat A. A comparison of regular salmeterol vs 'as required' salbutamol therapy in asthmatic children. Respir Med. 1998 Feb;92(2):292-9.	only 50% of patients used ICS at entry patients were allowed to use ICS, cromoglycate,	parallel groups	426 (5-15)	223	ICS (122/220) + salmeterol 50 mcg BID Diskhaler (220) ICS (101/206) + placebo (206)	exacerbation FEV1 symptoms AEs

First author (Year)	Sponsor	Study Reference	Reasons for not extracting AgD	Study	Total randomized participants (age range)	Total randomized children / adolescents*	Treatments (number of participants reported)	Outcome(s) reported in the publication (does not imply adequate AgD)
			nedocromyl, or ketotifen during the study					
Weinstein (1998)	GSK	Weinstein SF, Pearlman DS, Bronsky EA, Byrne A, Arledge T, Liddle R, Stahl E. Efficacy of salmeterol xinafoate powder in children with chronic persistent asthma. Ann Allergy Asthma Immunol. 1998 Jul;81(1):51-8.	other medicine used at screening patients were allowed to use ICS, cromolyn, nedocromil or immunotherapy during the study	parallel groups	207 (4-11)	118	ICS (no patient number)+salmeterol 50 mcg BID (102) ICS (no patient number)+placebo (105)	FEV1 AEs
Weinstein (2010)	MERCK	Weinstein SF, Corren J, Murphy K, Nolte H, White M; Study Investigators of P04431. Twelve-week efficacy and safety study of mometasone furoate/formoterol 200/10 microg and 400/10 microg combination treatments in patients with persistent asthma previously receiving high-dose inhaled corticosteroids. Allergy Asthma Proc. 2010 Jul-Aug;31(4):280-9. doi: 10.2500/aap.2010.31.3381. Epub 2010 Aug 3.	population of both adults and children/ adolescents ICS or ICS+LABA at entry	parallel groups	728 (NA)	not possible to establish	mometasone furoate/formoterol 200/10 mcg BID (233) mometasone furoate/formoterol 400/10 mcg BID (255) mometasone furoate 400 mcg BID (240)	FEV1 exacerbation ACQ QoL AEs
Weiss (2010)	MERCK	Weiss KB, Gern JE, Johnston NW, Sears MR, Jones CA, Jia G, Watkins MW, Smugar SS, Edelman JM, Grant EN. The Back to School asthma study: the effect of montelukast on asthma burden when initiated prophylactically at the start of the school year. Ann Allergy Asthma Immunol. 2010 Aug;105(2):174-81. doi: 10.1016/j.anai.2010.04.018. Epub 2010 Jul 1.	only 50% of patients used ICS	parallel groups	1162 (6-14)	597	ICS (314) + montelukast 5 mg (580) ICS (283) + placebo (582)	worsening asthma AEs
Zangrilli (2001)	AstraZeneca	Zangrilli J, Mansfield LE, Uryniak T, O'Brien CD. Efficacy of budesonide/formoterol pressurized metered-dose inhaler versus budesonide pressurized metered-dose inhaler alone in Hispanic adults and adolescents with asthma: a randomized, controlled trial. Ann Allergy Asthma Immunol. 2011 Sep;107(3):258-65.e2. doi: 10.1016/j.anai.2011.05.024. Epub 2011 Jul 14. PMID: 21875546.	population of both adults and children/ adolescents	parallel groups	250 (NA)	not possible to establish	budesonide/formoterol pMDI 160/4.5 μg × 2 inhalations (320/9 μg) twice daily (127) budesonide pMDI 160 μg × 2 inhalations (320 μg) twice daily (123)	exacerbation FEV1 symptoms AEs

Study	Data	Treatment classes	Random sequence generation	Allocation concealment	Blinding of participants and personnel	Blinding of outcome assessment	Incomplete outcome data	Selective reporting	Other bias
Akpinarli 1999	AgD	ICS+LABA	Unclear	Unclear	Unclear	Low	Unclear	Low	Low
		ICS High							
Bateman 2014	IPD	ICS Low	Low	Low	Low	Low	Low	Low	Low
		ICS+LABA							
Berger 2006	AgD	ICS Low	Low	Unclear	Unclear	High ^a	Unclear	Low	Low
		placebo							
Bernstein 2015	IPD	ICS Low	Low	Low	Low	Low	Low	Low	Low
		ICS+LABA							
Bisgaard 2006	AgD	ICS Medium	Low	Low	Low	Low	Low	Low	Low
		ICS+LABA							
Bleecker 2012	IPD	ICS High	Low	Low	Low	Low	Low	Low	Low
		ICS Low							
		ICS Medium Placebo							
Bleecker 2014	IPD	ICS Low	Low	Low	Low	Low	Low	Low	Low
		ICS+LABA							
		Placebo							
Buchvald 2003 ¹	AgD	ICS Medium	Low	Unclear	Unclear	Low	Low	Low	Unclear
		ICS+LABA							
		ICS+LTRA							
Carroll 2010	IPD	ICS Low	Unclear	Unclear	Low	Low	Low	Low	Low
		ICS+LABA							
de Blic 2009	IPD	ICS Medium	Low	Low	Low	Low	Low	Low	Low
		ICS+LABA							

Table S6. Risk of bias for included studies with individual participant data or aggregate data (parts 1 to 5)

1	
2	
2	
1	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
14	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
20	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
26	
20	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
-+0	

Study	Data	Treatment classes	Random sequence generation	Allocation concealment	Blinding of participants and personnel	Blinding of outcome assessment	Incomplete outcome data	Selective reporting	Other bias
Everden 2004	AgD	ICS+LABA (SAL) ICS+LABA (FORM)	Low	High ^b	High ^b	High ^b	Low	Low	Unclear
Fitzpatrick 2016	IPD	ICS Low LTRA	Low	Low	Low	Low	High	Low	High ^c
Gappa 2009	IPD	ICS Medium ICS+LABA	Low	Low	Low	Low	Low	Low	Low
Heuck 2000	AgD	ICS+LABA ICS Medium	Low	Low	Unclear	Low	High ^d	Low	Low
Jat 2006	AgD	ICS+LTRA ICS Medium	Unclear	Unclear	Unclear	Low	High ^e	Low	Low
Kondo 2006	AgD	ICS+LTRA ICS+theophylline	Low	Unclear	High	Low	Low	Unclear	Low
Lemanske 2010	IPD	ICS Medium ICS+LABA ICS+LTRA	Low	Low	Low	Low	Low	Low	High ^f
Lenney 2013	AgD	ICS Low ICS+LABA ICS+LTRA	Low	Low	Low	Low	High	Low	Low
Li 2010	IPD	ICS LOW ICS+LABA	Low	Low	Low	Low	Low	Low	Low
Lötvall 2014 a ²	IPD	ICS Low ICS Medium ICS+LABA	Low	Low	Low	Low	Low	Low	Low
Lötvall 2014 b	IPD	ICS Low ICS Medium Placebo	Low	Low	Low		Low	Low	Low
Malone 2005	AgD	ICS Low ICS+LABA	Low	Low	Low	Low	Low	Low	Low

1	
2	
3	
1	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
10	
י רי	
20	
21	
22	
23	
24	
25	
26	
27	
27	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
38	
39	
40	
41	
42	
43	
44	
45	
75 16	
40	

Study	Data	Treatment classes	Random sequence generation	Allocation concealment	Blinding of participants and personnel	Blinding of outcome assessment	Incomplete outcome data	Selective reporting	Other bias
Martin 2020	IPD	ICS Medium ICS+LABA	Low	Low	Low	Low	Low	Low	High ^f
Morice 2008	AgD	ICS Low	Low	Unclear	Unclear	Low	Low	Low	Low
Murray 2010	IPD	ICS+LABA ICS Medium ICS+LABA	Low	Low	Low	Low	Low	Low	Low
Murray 2011	IPD	ICS LOW ICS+LABA	Low	Low	Low	Low	Low	Low	Low
O'Byrne 2014	IPD	ICS High ICS+LABA	Low	Low	Low	Low	Low	Low	Low
Oliver 2016 a	IPD	ICS LOW ICS+LABA	Low	Low	Low	Low	Low	Low	Low
Oliver 2016 b	IPD	ICS Low Placebo	Low	Low	Low	Low	Low	Low	Low
Pearlman 2009	IPD	ICS Low ICS+LABA	Low	Low	Low	Low	Low	Low	Low
Russell 1995	AgD	ICS+LABA ICS High	Unclear	Unclear	Unclear	Unclear	Unclear	Low	Unclear
Scott 2005	IPD	ICS Low ICS+LABA	Low	Low	Low	Low	Low	Unclear	High ^g
Shapiro 2001	AgD	ICS Low ICS Medium Placebo	Unclear	Unclear	Low	Low	Unclear	Low	Low
Simons 2001 ¹	AgD	ICS Medium ICS+LTRA	Unclear	Unclear	Low	Low	Low	Low	High°

1
2
2
2
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
10
18
19
20
21
22
23
24
25
25
20
27
28
29
30
31
32
33
3/
25
35
36
37
38
39
40
41
42
12
43
44
45
46

Study	Data	Treatment classes	Random sequence generation	Allocation concealment	Blinding of participants and personnel	Blinding of outcome assessment	Incomplete outcome data	Selective reporting	Other bias
Sorkness 2007	IPD	ICS Low	Low	Low	Low	Low	Low	Low	Low
		ICS+LABA							
		LTRA							
Stempel 2016 a	IPD	ICS Medium	Low	Low	Unclear	Low	Low	Low	Unclear
		ICS+LABA							
Stempel 2016 b	IPD	ICS High ICS Low ICS Medium ICS+LABA	Low	Low	Unclear	Low	Low	Low	Unclear
Strauch 2003	AgD	ICS High ICS+LTRA	Unclear	Unclear	Low	Low	Low	Low	Low
Tal 2002	AgD	ICS Low	Low	Low	Low	Low	Low	Low	Low
		ICS+LABA							
Thomas 2014	IPD	ICS Medium	High ^h	High ^h	High ^h	Low	Low	Low	Unclear
		ICS+LABA ICS+LTRA							
Vaessen- Verberne 2010	IPD	ICS Medium ICS+LABA	Low	Low	Unclear	Low	Low	Low	High ^g
Verberne 1998	IPD	ICS High	Low	Low	Low	Low	High ⁱ	Low	High ⁱ
		ICS+LABA							
Vermeulen 2007	AgD	ICS Medium (CIC) ICS Medium (BUD)	Low	Low	Unclear	Low	Low	Low	Low
Visitsunthorn 2011	AgD	ICS unknown dose ICS+LTRA	Unclear	Unclear	Unclear	Low	Low	Low	High ^f

2	
3	
4	
5	
6	
7	
8	
9	
1	0
1	1
1	2
1	3
1	4
1	5
1	6
1	7
1	8
1	9
2	0
2	1
2	2
2	3
2	4
2	5
2	6
2	7
2	8
2	9
3	0
3	1
3	2
3	3
3	4
3	5
3	6
3	7
3	8
3	9
4	0
4	1
4	2
Δ	3

42	
43	
44	
45	

46

Study	Data	Treatment classes	Random sequence generation	Allocation concealment	Blinding of participants and personnel	Blinding of outcome assessment	Incomplete outcome data	Selective reporting	Other bias
Wechsler 2019	IPD	ICS High	Low	Low	Low	Low	Low	Low	High ^f
		ICS Low							
		ICS+LABA							
Woodcock 2013	IPD	ICS Low+LABA	Low	Low	Low	Low	Low	Low	Low
		ICS Medium+LABA							
Woodcock 2014	IPD	ICS High	Low	Low	Low	Low	Low	Low	Low
		ICS Low							
Zimmerman 2004	AgD	ICS Medium ICS+LABA	Unclear	Unclear	Unclear	Low	Low	Low	Unclear

¹ data could not be included in analyses as insufficient data reported for first period of cross-over

² Lötvall 2014 a included in analyses as two separate studies

^a response to therapy was assessed by the physician or a designee by comparing the current level of symptoms with those noted at the baseline visit using a 5-point scale. The method can be affected by subjectivity.

^b study medication was sourced from commercially available stock and was repackaged and administered according to a computer-generated randomization scheme provided by the sponsor. No further details

^c cross-over trial with no wash-out period

^d only 24 of 27 children were included in the analysis (11% of missing outcome data). These three withdrawn children were all in the BUD-placebo group, and two had an exacerbation requiring oral corticosteroids.

e 8 (11.3%) of 71 randomized patients were dropped out in the first two weeks and were not included in the analysis. Patients dropped out were 4 for each group, and no reasons were provided.

^f possible carry-over effect

^g no peer reviewed publication

^h no methods reported. No protocol was provided by the author

ⁱ possible bias as discrepancy identified between data and publication that could not be verified due to age of trial and lack of documentation

2
3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
18
19
20
20
27
22
23
24
25
20
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

1

	1 (*	•	<u> </u>	•					40 / • 1 04-66	
TABLE S7 Ex participants, 6	acerbation B 549 events)	ayesian rand	om-effects net	work meta-an	alysis (OR [*] , 95	% CrI) with	IPD and AgD	(Analysis A1	: 40 trials, 8168	5
TRT 1 TRT 2	ICS Low	ICS Medium	ICS High	ICS Low + LABA	ICS Medium + LABA	ICS High + LABA	ICS+LTRA	LTRA	ICS + Theophylline	Placebo
ICS Low	0	1.28 (0.67–2.44)	1.35 (0.54–3.39)	1.20 (0.73–1.95)	2.29 (1.11–5.21)	1.06 (0.41–2.77)	0.80 (0.23–2.75)	0.28 (0.04–1.68)	0.74 (0.01–41.26)	0.42 (0.18–0.91)
ICS Medium	0.78 (0.41–1.49)	0	1.05 (0.41–2.72)	0.93 (0.53–1.67)	1.79 (0.96–3.74)	0.83 (0.33–2.18)	0.63 (0.19–2.10)	0.21 (0.03–1.45)	0.58 (0.01–30.88)	0.33 (0.13–0.82)
ICS High	0.74 (0.30–1.84)	0.95 (0.37–2.44)	0	0.89 (0.35–2.18)	1.70 (0.68–4.62)	0.79 (0.36–1.72)	0.59 (0.14–2.53)	0.20 (0.02–1.52)	0.55 (0.01–32.46)	0.31 (0.09–0.98)
ICS Low + LABA	0.84 (0.51–1.38)	1.07 (0.60–1.90)	1.13 (0.46–2.83)	0	1.92 (0.95–4.31)	0.89 (0.35–2.27)	0.67 (0.20–2.27)	0.23 (0.03–1.51)	0.63 (0.01–35.16)	0.35 (0.14–0.84)
ICS Medium + LABA	0.44 (0.19–0.90)	0.56 (0.27–1.04)	0.59 (0.22–1.46)	0.52 (0.23–1.05)	0	0.46 (0.17–1.17)	0.35 (0.09–1.27)	0.12 (0.01–0.84)	0.32 (0.01–18.17)	0.18 (0.06–0.49)
ICS High + LABA	0.94 (0.36–2.41)	1.21 (0.46–3.03)	1.27 (0.58–2.80)	1.13 (0.44–2.83)	2.16 (0.85–5.87)	0	0.76 (0.18–3.25)	0.26 (0.03–1.99)	0.70 (0.01–40.85)	0.39 (0.12–1.26)
ICS+LTRA	1.25 (0.36–4.35)	1.60 (0.48–5.26)	1.68 (0.39–7.17)	1.49 (0.44–4.90)	2.86 (0.79–10.91)	1.32 (0.31–5.58)	0	0.34 (0.03–3.03)	0.93 (0.02–41.26)	0.53 (0.12–2.14)
LTRA	3.63 (0.59–24.78)	4.66 (0.69–36.97)	4.90 (0.66–42.95)	4.35 (0.66–32.14)	8.33 (1.20–69.41)	3.86 (0.50–34.12)	2.92 (0.33–28.79)	0	2.72 (0.03–230.44)	1.52 (0.21–12.18)
ICS + Theophylline	1.35 (0.02–74.44)	1.72 (0.03–95.58)	1.82 (0.03–109.95)	1.60 (0.03–86.49)	3.10 (0.06–181.27)	1.42 (0.02–84.77)	1.07 (0.02–47.94)	0.37 (0.00–29.67)	0	0.57 (0.01–31.82)
Placebo	2.39 (1.09–5.42)	3.03 (1.22–7.77)	3.22 (1.02–10.70)	2.86 (1.19–7.10)	5.47 (2.03–17.12)	2.53 (0.79–8.58)	1.90 (0.47–8.17)	0.66 (0.08–4.71)	1.77 (0.03–100.48)	0

The table compares the effect estimate for an intervention in the row with an intervention in a column (TRT 1 vs. TRT 2). ^a OR > 1 favors treatment 2 (the probability of having exacerbation was modelled); 95% CrIs that exclude unity are highlighted in bold.

OR: odds ratio; CrI: credibility interval; IPD: individual participant data; AgD: aggregate data; TRT: treatment; ICS: inhaled corticosteroid; LABA: Long-Acting β₂-Agonist; LTRA: Leukotriene **Receptor Antagonist**

TRT 2 TRT 1	ICS Low	ICS Medium	ICS High	ICS+LABA	ICS+LTRA	LTRA	ICS+ Theophylline	Placebo
ICS Low		1.11 (0.75; 1.63) <i>1.19</i> (0.46; 3.03)	1.42 (0.84; 2.46) 2.48 (0.90; 7.10)	1.27 (0.90; 1.79) 1.25 (0.87; 1.79)	0.75 (0.30; 1.90) 1.49 (0.32; 8.85) **	0.28 (0.05; 1.17) 0.33 (0.07; 1.23) **	0.74 (0.02; 27.66)	0.43 (0.28; 0.66) 0.41 (0.26; 0.64)
ICS Medium	0.90 (0.61; 1.34) 0.84 (0.33; 2.18)		1.30 (0.78; 2.14) 0.52 (0.07; 3.60)	1.15 (0.90; 1.48) 1.19 (0.92; 1.52)	0.68 (0.28; 1.65) 0.22 (0.05;0.76) **	0.25 (0.05; 1.12)	0.68 (0.02; 24.53)	0.39 (0.22; 0.66) 0.72 (0.27; 1.90)
ICS High	0.70 (0.41; 1.20) 0.40 (0.14; 1.11)	0.77 (0.47; 1.28) 1.92 (0.28; 15.03)		0.90 (0.57; 1.40) 0.96 (0.61; 1.52)	0.52 (0.19; 1.45)	0.20 (0.04; 0.92)	0.52 (0.01; 19.69)	0.30 (0.15; 0.58) Not estimable*
ICS+LABA	0.79 (0.56; 1.11) 0.80 (0.56; 1.15)	0.87 (0.68; 1.11) 0.84 (0.66; 1.08)	1.12 (0.71; 1.77) 1.04 (0.66; 1.65)		0.58 (0.24; 1.45) 2.46 (0.59; 12.18) **	0.22 (0.04; 0.95)	0.58 (0.02; 21.76)	0.33 (0.20; 0.56) Not estimable*
ICS+LTRA	1.64 (0.53; 3.35) 0.67 (0.13; 3.22) **	1.48 (0.61; 3.60) 4.48 (1.30; 21.12) **	1.92 (0.69; 5.16)	1.72 (0.69; 4.14) <i>0.41</i> (0.07; 1.58) **		0.37 (0.06; 2.08)	1.00 (0.03; 32.14) 1.00 (0.08; 12.55) **	0.57 (0.21; 1.54)
LTRA	3.60 (0.85; 18.36) <i>3.32</i> (0.86; 13.30) **	3.97 (0.90; 21.33)	5.10 (1.08; 28.50)	4.57 (1.05; 24.29)	2.69 (0.48; 16.78)		2.66 (0.05; 135.95)	1.54 (0.33; 8.33)
ICS+ Theophylline	1.35 (0.04; 49.40)	1.48 (0.04; 54.60)	1.92 (0.05; 72.97)	1.72 (0.05; 64.07)	1.00 (0.03; 33.45) 1.11 (0.10; 13.60) **	0.38 (0.01; 18.73)		0.57 (0.02; 21.76)
Placebo	2.34 (1.52; 3.63) 2.46 (1.55; 3.86)	2.59 (1.51; 4.48) 1.39 (0.53; 3.74)	3.35 (1.72; 6.55) Not estimable*	3.00 (1.79; 5.05) Not estimable*	1.75 (0.65; 4.81)	0.65 (0.12; 3.00)	1.75 (0.05; 66.02)	

Table S8. Bayesian fixed effect network meta-analysis results (IPD and AgD) for exacerbations. ICS grouped with LABA – Analysis B1

The table compares the effect estimate for an intervention in the row with an intervention in a column (TRT 1 vs. TRT 2).

39 studies, 8136 patients, 649 events – Reference treatment is: ICS+LABA, DIC: 2296.3, residual deviance: 2254.1 (on 5377 data points).

OR > 1 favours treatment 2 (the probability of having exacerbations was modelled). Results with CrI that exclude the OR value of 1 are highlighted in bold. Direct results from pairwise meta-analyses, where applicable, are in

Italic. * Not estimable: zero events in both arms; ** Estimates from Bayesian logistic regression models (Stan) (one study).

Table S9. Sensitivity analysis excluding exacerbation events identified from adverse event data: Bayesian random-effects network metaanalysis results (IPD and AgD) for exacerbations. ICS stratified by dose when combined with LABA – Analysis A1

TRT 1 TRT 2	ICS Low	ICS Medium	ICS High	ICS Low + LABA	ICS Medium + LABA	ICS High + LABA	ICS+LTRA	LTRA	ICS + Theophylline	Placebo
ICS Low		2.34 (0.96 to 6.36)	1.93 (0.64 to 5.93)	1.34 (0.70 to 2.53)	4.10 (1.36 to 15.03)	1.26 (0.4 1to 4.18)	1.11 (0.28 to 4.76)	NA	NA	0.25 (0.07 to 0.77)
ICS Medium	0.43 (0.16 to 1.04)		0.83 (0.25 to 2.59)	0.58 (0.23 to 1.21)	1.75 (0.69 to 5.05)	0.54 (0.16 to 1.75)	0.47 (0.12 to 1.88)	NA	NA	0.11 (0.02 to 0.43)
ICS High	0.52 (0.17 to 1.55)	1.21 (0.39 to 4.01)		0.70 (0.23 to 1.97)	2.12 (0.68 to 7.92)	0.66 (0.23 to 1.93)	0.58 (0.11 to 3.03)	NA	NA	0.13 (0.02 to 0.59)
ICS Low + LABA	0.75 (0.39 to 1.42)	1.73 (0.8 3to 4.26)	1.43 (0.51 to 4.44)		3.06 (1.11 to 10.80)	0.94 (0.3 2to 3.03)	0.83 (0.22 to 3.35)	NA	NA	0.19 (0.05 to 0.68)
ICS Medium + LABA	0.24 (0.07 to 0.73)	0.57 (0.20 to 1.45)	0.47 (0.13 to 1.48)	0.33 (0.09 to 0.90)		0.31 (0.08 to 0.98)	0.27 (0.05 to 1.30)	NA	NA	0.06 (0.01 to 0.29)
ICS High + LABA	0.79 (0.24 to 2.44)	1.84 (0.57 to 6.17)	1.52 (0.52 to 4.35)	1.06 (0.33 to 3.10)	3.22 (1.02 to 12.06)		0.88 (0.17 to 4.81)	NA	NA	0.20 (0.04 to 0.95)
ICS+LTRA	0.90 (0.21 to 3.56)	2.12 (0.53 to 8.58)	1.73 (0.33 to 9.03)	1.21 (0.30 to 4.53)	3.71 (0.77 to 20.29)	1.14 (0.21 to 6.05)		NA	NA	0.23 (0.03 to 1.34)
LTRA	NA	NA	NA	NA	NA	NA	NA		NA	NA
ICS + Theophylline	NA	NA	NA	NA	NA	NA	NA	NA		NA
Placebo	3.94 (1.30 to 13.60)	9.12 (2.34 to 45.15)	7.54 (1.68 to 40.45)	5.26 (1.48 to 20.91)	15.96 (3.46 to 98.49)	4.95 (1.05 to 28.50)	4.35 (0.75 to 29.08)	NA	NA	

The table compares the effect estimate for an intervention in the row with an intervention in a column (TRT 1 vs. TRT 2).

OR (95% CrI) (29 studies, 6005 participants, 519 events). Reference treatment: ICS Low – DIC: 2152.5; Residual deviance: 2113 (on 5020 data points). OR > 1 favours treatment 2 (the probability of having exacerbation was modelled). Results with CrI that exclude the OR value of 1 are highlighted in bold. All available data included (IPD and AgD wherever available); TRT 1 = treatment 1; TRT 2 = treatment 2; OR = odds ratio; CrI = credibility interval; DIC = deviance information criterion; ICS = inhaled corticosteroid; LABA = long-acting beta-agonist; LTRA = leukotriene receptor antagonist; NA = not available

Table S10. Sensitivity analysis excluding exacerbation events identified from adverse event data: Bayesian fixed effect network meta-analysis
results (IPD and AgD) for the exacerbation outcome. ICS grouped when combined with LABA – Analysis B1

TRT 2 TRT 1	ICS Low	ICS Medium	ICS High	ICS+LABA	ICS+LTRA	LTRA	ICS+ Theophylline	Placebo
ICS Low		1.36 (0.83 to 2.23)	1.73 (0.90 to 3.32)	1.39 (0.90 to 2.16)	0.83 (0.32 to 2.18)	NA	NA	0.32 (0.19 to 0.53)
ICS Medium	0.73 (0.45 to 1.21)		1.27 (0.70 to 2.32)	1.02 (0.79 to 1.32)	0.61 (0.24 to 1.51)	NA	NA	0.24 (0.12 to 0.48)
ICS High	0.58 (0.30 to 1.11)	0.79 (0.43 to 1.42)		0.80 (0.46 to 1.38)	0.48 (0.17 to 1.35)	NA	NA	0.19 (0.08 to 0.42)
ICS+LABA	0.72 (0.46 to 1.11)	0.98 (0.76 to 1.27)	1.25 (0.73 to 2.16)		0.59 (0.24 to 1.48)	NA	NA	0.23 (0.12 to 0.44)
ICS+LTRA	1.21 (0.46 to 3.13)	1.63 (0.66 to 4.14)	2.10 (0.74 to 6.05)	1.68 (0.68to 4.18)		NA	NA	0.39 (0.13 to 1.15)
LTRA	NA	NA	NA	NA	NA		NA	NA
ICS+Theophylline	NA	NA	NA	NA	NA	NA		NA
Placebo	3.10 (1.88 to 5.16)	4.18 (2.10 to 8.50)	5.37 (2.36 to 12.18)	4.31 (2.25 to 8.33)	2.56 (0.87 to 7.61)	NA	NA	

The table compares the effect estimate for an intervention in the row with an intervention in a column (TRT 1 vs. TRT 2).

28 studies, 5973 patients, 519 events – Reference treatment is: ICS+LABA, DIC: 2160.7; Residual deviance: 2132.2 (on 4988 data points). OR > 1 favors treatment 2 (the probability of having exacerbation was modelled). Results with CrI that exclude the OR value of 1 are highlighted in bold.

All available data included (IPD and AgD wherever available); TRT 1 = treatment 1; TRT 2 = treatment 2; OR = odds ratio; CrI = credibility interval; DIC = deviance information criterion.

ICS = inhaled corticosteroid; LABA = long-acting beta-agonist; LTRA = leukotriene receptor antagonist; NA = not available

European Respiratory Journal

Table S11. Sensitivity analysis to explore data availability bias: Bayesian fixed effect network meta-analysis results for exacerbations. ICS
stratified by dose when combined with LABA (IPD trials only, i.e., excluding trials with AgD only) – Analysis A1

TRT 1 TRT2	ICS Low	ICS Medium	ICS High	ICS Low + LABA	ICS Medium + LABA	ICS High + LABA	ICS+ LTRA	LTRA	ICS + Theophylline	Placebo
ICS Low		1.82 (0.87 to 3.78)	1.67 (0.76 to 3.63)	1.32 (0.79 to 2.20)	2.32 (1.08 to 4.90)	1.04 (0.47 to 2.29)	NA	0.28 (0.06 to 1.21)	NA	0.12 (0.02 to 0.59)
ICS Medium	0.55 (0.26 to 1.15)		0.91 (0.44 to 1.93)	0.73 (0.39 to 1.35)	1.27 (0.90 to 1.77)	0.57 (0.27 to 1.22)	NA	0.15 (0.03 to 0.79)	NA	0.07 (0.01 to 0.38)
ICS High	0.60 (0.28 to 1.31)	1.09 (0.52 to 2.29)		0.79 (0.38 to 1.65)	1.39 (0.67 to 2.92)	0.63 (0.34 to 1.16)	NA	0.17 (0.03 to 0.88)	NA	0.07 (0.01 to 0.42)
ICS Low + LABA	0.76 (0.45 to 1.26)	1.38 (0.74 to 2.53)	1.26 (0.61 to 2.61)		1.75 (0.91 to 3.32)	0.79 (0.37 to 1.65)	NA	0.21 (0.04 to 0.98)	NA	0.09 (0.01 to 0.49)
ICS Medium + LABA	0.43 (0.20 to 0.92)	0.79 (0.57 to 1.11)	0.72 (0.34 to 1.49)	0.57 (0.30 to 1.09)		0.45 (0.21 to 0.96)	NA	0.12 (0.02 to 0.64)	NA	0.05 (0.01 to 0.30)
ICS High + LABA	0.96 (0.44 to 2.12)	1.75 (0.82 to 3.74)	1.60 (0.86 to 2.97)	1.27 (0.61 to 2.69)	2.23 (1.04 to 4.71)		NA	0.27 (0.04 to 1.42)	NA	0.11 (0.02 to 0.68)
ICS+LTRA	NA	NA	NA	NA	NA	NA		NA	NA	NA
LTRA	3.60 (0.83 to 18.17)	6.55 (1.26 to 39.25)	5.99 (1.14 to 36.23)	4.81 (1.02 to 26.05)	8.33 (1.55 to 50.40)	3.74 (0.70 to 22.65)	NA		NA	0.43 (0.04 to 4.22)
ICS + Theophylline	NA	NA	NA	NA	NA	NA	NA	NA		NA
Placebo	8.41 (1.70 to 52.98)	15.33 (2.66 to 109.95)	14.01 (2.39 to 100.48)	11.13 (2.05 to 75.94)	19.49 (3.35 to 141.17)	8.76 (1.48 to 62.18)	NA	2.34 (0.24 to 23.57)	NA	

The table compares the effect estimate for an intervention in the row with an intervention in a column (TRT 1 vs. TRT 2).

OR (95% CrI) (27 studies, 5381 patients, 328 events); Reference treatment: ICS Low – DIC: 2242.3; Residual deviance: 2212.7 (on 5381 data points). OR > 1 favours treatment 2 (the probability of having exacerbation was modelled). Results with CrI that exclude the OR value of 1 are highlighted in bold. TRT 1 = treatment 1; TRT 2 = treatment 2; OR = odds ratio; CrI = credibility interval; DIC = deviance information criterion; ICS = inhaled corticosteroid; LABA = long-acting beta-agonist; LTRA = leukotriene receptor antagonist; NA = not available

Table S12. Sensitivity analysis to explore data availability bias: Bayesian fixed effect network meta-analysis results for the exacerbation
outcome (including ICS grouped when combined with LABA). IPD trials only (i.e., excluding trials with AgD only) – Analysis B1

TRT 2 TRT 1	ICS Low	ICS Medium	ICS High	ICS+LABA	ICS+LTRA	LTRA	ICS+ Theophylline	Placebo
ICS Low		1.09 (0.61 to 1.93)	1.54 (0.79 to 3.03)	1.23 (0.75 to 1.99)	NA	0.28 (0.05 to 1.17)	NA	0.12 (0.02 to 0.59)
ICS Medium	0.91 (0.52 to 1.63)		1.40 (0.76 to 2.59)	1.13 (0.84 to 1.52)	NA	0.25 (0.05 to 1.21)	NA	0.11 (0.02 to 0.57)
ICS High	0.65 (0.33 to 1.27)	0.71 (0.39 to 1.31)		0.80 (0.47 to 1.36)	NA	0.18 (0.03 to 0.90)	NA	0.08 (0.01 to 0.44)
ICS+LABA	0.81 (0.50 to 1.34)	0.89 (0.66 to 1.20)	1.25 (0.73 to 2.14)		NA	0.23 (0.04 to 1.03)	NA	0.09 (0.01 to 0.50)
ICS+LTRA	NA	NA	NA	NA		NA	NA	NA
LTRA	3.60 (0.85 to 18.36)	3.97 (0.83 to 22.20)	5.53 (1.11 to 31.50)	4.44 (0.97 to 24.05)	NA		NA	0.42 (0.04 to 4.18)
ICS+Theophylline	NA	NA	NA	NA	NA	NA		NA
Placebo	8.58 (1.68 to 52.46)	9.39 (1.75 to 60.95)	13.20 (2.29 to 88.23)	10.59 (1.99 to 67.36)	NA	2.36 (0.24 to 23.57)	NA	

The table compares the effect estimate for an intervention in the row with an intervention in a column (TRT 1 vs. TRT 2).

OR (95% CrI) (26 studies, 5349 participants, 328 events). Reference treatment: ICS Low – DIC: 2243.4; Residual deviance: 2215.5 (on 5349 data points)

OR > 1 favours treatment 2 (the probability of having exacerbation was modelled). Results with CrI that exclude the OR value of 1 are highlighted in bold.

All available data included (IPD and AgD wherever available) – IPD = Individual Participant Data; AgD = Aggregate Data; TRT 1 = treatment 1; TRT 2 = treatment 2; OR = odds ratio; CrI = credibility interval;

DIC = deviance information criterion; ICS = inhaled corticosteroid; LABA = long-acting beta-agonist; LTRA = leukotriene receptor antagonist; NA = not available

1	
2	
2	
1	
4	
5	
6	
7	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
27	
27	
20	
29	
30	
31	
32	
33	
34	
35	
26	
20	
3/	
38	
39	
40	
41	
42	
43	
44	
77	
40	

TABLE S13 Ast2453 events)	hma Control	Bayesian fixed	l effect networ	k meta-analy	sis (ORª, 95%	CrI) with IPI	D (Analysis A2	2: 16 trials, 3027	' participants,
TRT 1 TRT 2	ICS Low	ICS Medium	ICS High	ICS Low + LABA	ICS Medium + LABA	ICS High + LABA	ICS+LTRA	LTRA	Placebo
ICS Low	0	0.94 (0.50–1.73)	1.32 (0.70–2.46)	0.86 (0.62–1.21)	0.90 (0.49–1.67)	0.68 (0.34–1.31)	0.82 (0.13–4.71)	4.31 (0.90–21.54)	1.42 (0.78–2.56)
ICS Medium	1.06 (0.58–1.99)	0	1.42 (0.73–2.72)	0.92 (0.50–1.68)	0.96 (0.73–1.27)	0.72 (0.35–1.43)	0.87 (0.14–4.95)	4.57 (0.87–25.28)	1.52 (0.66–3.42)
ICS High	0.76 (0.41–1.43)	0.70 (0.37–1.36)	0	0.65 (0.35–1.22)	0.68 (0.35–1.30)	0.51 (0.25–1.03)	0.62 (0.09–3.74)	3.25 (0.61–18.17)	1.07 (0.46–2.48)
ICS Low + LABA	1.16 (0.83–1.62)	1.08 (0.59–1.99)	1.54 (0.82–2.86)	0	1.04 (0.57–1.92)	0.78 (0.39–1.51)	0.95 (0.15–5.31)	5.00 (1.04–25.53)	1.65 (0.86–3.16)
ICS Medium + LABA	1.12 (0.60–2.05)	1.04 (0.79–1.38)	1.48 (0.77–2.83)	0.96 (0.52–1.75)	0	0.75 (0.36–1.49)	0.90 (0.14–5.21)	4.76 (0.91–26.05)	1.58 (0.69–3.60)
ICS High + LABA	1.48 (0.76–2.94)	1.39 (0.70–2.86)	1.97 (0.97–4.01)	1.28 (0.66–2.53)	1.34 (0.67–2.75)	0	1.21 (0.18–7.46)	6.36 (1.17–35.87)	2.12 (0.87–5.16)
ICS+LTRA	1.22 (0.21–7.61)	1.15 (0.20–7.10)	1.62 (0.27–10.59)	1.05 (0.19–6.69)	1.11 (0.19–6.96)	0.83 (0.13–5.53)	0	5.26 (0.52–60.34)	1.75 (0.28–11.82)
LTRA	0.23 (0.05–1.11)	0.22 (0.04–1.15)	0.31 (0.06–1.63)	0.20 (0.04–0.96)	0.21 (0.04–1.09)	0.16 (0.03–0.85)	0.19 (0.02–1.93)	0	0.33 (0.06–1.75)
Placebo	0.70 (0.39–1.28)	0.66 (0.29–1.51)	0.93 (0.40–2.16)	0.61 (0.32–1.16)	0.63 (0.28–1.45)	0.47 (0.19–1.15)	0.57 (0.08–3.53)	3.00 (0.57–16.61)	0
The table compares t	he effect estimate	for an interventio	n in the row with a	n intervention in	a column (TRT 1	vs TRT 2)			

intervention in the row with an intervention in a column (TRT 1 vs. The table compa

^a OR > 1 favours treatment 1 (the probability of having good/total asthma control was modelled); 95% CrIs that exclude unity are highlighted in bold.

OR: odds ratio; CrI: credibility interval; IPD: individual participant data; TRT: treatment; ICS: inhaled corticosteroid; LABA: Long-Acting β₂-Agonist; LTRA: Leukotriene Receptor Antagonist
TRT 2 TRT 1	ICS Low	ICS Medium	ICS High	ICS+LABA	ICS+LTRA	LTRA	ICS + Theophylline	Placebo
ICS Low		0.90 (0.59 to 1.36) 0.54 (0.18 to 1.54)	1.36 (0.76 to 2.44) 0.80 (0.37 to 1.73)	0.85 (0.62 to 1.17) 0.90 (0.64 to 1.26)	0.81 (0.14 to 4.76)	4.35 (0.93 to 21.98) 3.32 (0.73 to 18.17) **	NA	1.42 (0.77 to 2.56) 1.16 (0.59 to 2.20)
ICS Medium	1.12 (0.73 to 1.68) 1.86 (0.65 to 5.42)		1.51 (0.84 to 2.69) 2.23 (0.88 to 5.53) **	0.94 (0.72 to 1.25) 0.91 (0.69 to 1.22)	0.90 (0.15 to 5.10) Not estimable (*)	4.85 (1.00 to 25.28)	NA	1.58 (0.79 to 3.13) 0.67 (0.12 to 4.01) **
ICS High	0.73 (0.41 to 1.31) 1.25 (0.58 to 2.72)	0.66 (0.37 to 1.19) 0.45 (0.18 to 1.16) **		0.63 (0.37 to 1.07) 0.53 (0.30 to 0.96)	0.59 (0.09 to 3.63)	3.19 (0.62 to 17.99)	NA	1.04 (0.46 to 2.36)
ICS+LABA	1.17 (0.85 to 1.62) 1.12 (0.79 to 1.55)	1.06 (0.80 to 1.39) 1.09 (0.82 to 1.45)	1.60 (0.93 to 2.72) 1.88 (1.04 to 3.39)		0.95 (0.16 to 5.37) 0.43 (0.06 to 2.56)	5.16 (1.08 to 26.58) 4.48 (0.70 to 53.52) **	NA	1.67 (0.88 to 3.22) 9.97 (2.01 to 59.15) **
ICS+LTRA	1.23 (0.21 to 7.39)	1.12 (0.20 to 6.62) <i>Not estimable</i>	1.68 (0.28 to 10.80)	1.05 (0.19 to 6.23) 2.34 (0.39 to 15.49)		5.42 (0.52 to 60.95)	NA	1.75 (0.28 to 11.36)
LTRA	0.23 (0.05 to 1.07) 0.27 (0.06 to 1.27) **	0.21 (0.04 to 1.00)	0.31 (0.10 to 1.62)	0.19 (0.04 to 0.92) 0.22 (0.02 to 1.54) **	0.18 (0.02 to 1.93)		NA	0.33 (0.06 to 1.68)
ICS + Theophylline	NA	NA	NA	NA	NA	NA		NA
Placebo	0.70 (0.39 to 1.30) 0.86 (0.45 to 1.68)	0.63 (0.32 to 1.26) 1.35 (0.23 to 8.08) **	0.96 (0.42 to 2.18)	0.60 (0.31 to 1.14) 0.11 (0.02 to 0.50) **	0.57 (0.09 to 3.60)	3.06 (0.59 to 17.46)	NA	

Table S14. Bayesian fixed effect network meta-analysis (IPD only) for asthma control. ICS grouped when combined with LABA – Analysis B2

The table compares the effect estimate for an intervention in the row with an intervention in a column (TRT 1 vs. TRT 2).

15 studies, 2998 patients, 2433 events. Reference treatment: ICS+LABA - DIC: 2822.5; Residual deviance: 2801.3 (on 2998 data points))

OR > 1 favors treatment 1 (the probability of having good/total asthma control was modelled). Direct results from pairwise meta-analyses, where applicable, are in Italic. Results with CrI that exclude the OR value of 1 are

highlighted in bold. ICS = inhaled corticosteroid; LABA = long-acting beta-agonist; LTRA = leukotriene receptor antagonist; OR = odds ratio; CrI = credibility interval; DIC = deviance information criterion; NA: not available; ** Estimates from Bayesian logistic regression models (Stan) (one study).

TRT 1 TRT 2	FF	FF + VI	FP	FP + Montelukast	FP + SAL	FP + VI	Montelukast	Placebo
FF		0.51 (0.16 to 1.26)	1.63 (0.53 to 5.00)	1.58 (0.13 to 18.36)	1.73 (0.50 to 7.32)	1.68 (0.22 to 12.81)	8.17 (0.78 to 94.63)	1.54 (0.50 to 4.57)
FF + VI	1.97 (0.79 to 6.42)		3.25 (0.97 to 12.55)	3.13 (0.26 to 43.82)	3.46 (0.93 to 18.54)	3.32 (0.45 to 31.82)	16.28 (1.52 to 212.72)	3.03 (0.88 to 13.20)
FP	0.61 (0.20 to 1.90)	0.31 (0.08 to 1.03)		0.96 (0.10 to 9.03)	1.06 (0.50 to 2.91)	1.02 (0.19 to 5.58)	5.00 (0.61 to 44.70)	0.93 (0.25 to 3.35)
FP + Montelukast	0.63 (0.05 to 7.46)	0.32 (0.02 to 3.78)	1.04 (0.11 to 9.97)		1.11 (0.13 to 10.59)	1.06 (0.06 to 16.61)	5.21 (0.25 to 108.85)	0.97 (0.08 to 12.68)
FP + SAL	0.58 (0.14 to 2.01)	0.29 (0.05 to 1.07)	0.94 (0.34 to 2.01)	0.90 (0.09 to 7.77)		0.96 (0.12 to 5.70)	4.71 (0.51 to 40.45)	0.88 (0.17 to 3.56)
FP + VI	0.59 (0.08 to 4.62)	0.30 (0.03 to 2.20)	0.98 (0.18 to 5.31)	0.94 (0.06 to 15.80)	1.04 (0.18 to 8.00)		4.90 (0.36 to 75.19)	0.91 (0.11 to 7.54)
Montelukast	0.12 (0.01 to 1.28)	0.06 (0.00 to 0.66)	0.20 (0.02 to 1.63)	0.19 (0.01 to 3.97)	0.21 (0.02 to 1.95)	0.20 (0.01 to 2.80)		0.19 (0.01 to 2.16)
Placebo	0.65 (0.22 to 2.01)	0.33 (0.08 to 1.14)	1.07 (0.30 to 3.94)	1.03 (0.08 to 13.20)	1.14 (0.28 to 5.75)	1.09 (0.13 to 9.30)	5.37 (0.46 to 70.11)	

Table S15. Bayesian random-effects network meta-analysis (IPD only) for asthma control (individual compounds) – Analysis C2

The table compares the effect estimate for an intervention in the row with an intervention in a column (TRT 1 vs. TRT 2).

OR (95% CrI) (15 studies, 3014 participants, 2447 events) Reference treatment: FP – DIC: 2836.9; Residual deviance: 2808.4 (on 3014 data points)

OR > 1 favours treatment 1 (the probability of having good/total asthma control was modelled).

All available data included (only IPD) – IPD = Individual Participant Data available. Results with CrI that exclude the OR value of 1 are highlighted in bold.

FF = fluticasone furoate; VI = vilanterol; FP = fluticasone propionate; TRT 1 = treatment 1; TRT 2 = treatment 2; OR = odds ratio, CrI = credibility interval; DIC = deviance information criterion; NA = not available.

TABLE S16 F	EV ₁ Bayesian	fixed effect netv	vork meta-ana	lysis (MD ^a , 95	% CrI) with l	(PD and AgD (Analysis A3:	23 trials, 2518	8 participants)
TRT 1 TRT 2	ICS Low	ICS Medium	ICS High	ICS unknown dose	ICS Low + LABA	ICS Medium + LABA	ICS High + LABA	ICS+LTRA	LTRA	Placebo
ICS Low	0	-0.02 (-0.13 to 0.09)	-0.16 (-0.46 to 0.15)	0.27 (-0.95 to 1.52)	-0.02 (-0.10 to 0.05)	-0.71 (-1.06 to -0.35)	0.29 (-0.05 to 0.64)	0.23 (-0.56 to1.04)	-0.15 (-0.63 to 0.33)	0.15 (0.04 to 0.27)
ICS Medium	0.02 (-0.09 to 0.13)	0	-0.14 (-0.45 to 0.16)	0.29 (-0.93 to 1.53)	-0.01 (-0.10 to 0.09)	-0.69 (-1.05 to -0.33)	0.30 (-0.04 to 0.66)	0.25 (-0.55 to 1.05)	-0.13 (-0.63 to 0.36)	0.17 (0.01 to 0.33)
ICS High	0.16 (-0.15 to 0.46)	0.14 (-0.16 to 0.45)	0	0.44 (-0.83 to 1.72)	0.14 (-0.17 to 0.43)	-0.54 (-0.81 to -0.24)	0.45 (0.25 to 0.64)	0.39 (-0.46 to 1.25)	0.02 (-0.55 to 0.58)	0.32 (-0.01 to 0.63)
ICS unknown dose	-0.27 (-1.52 to 0.95)	-0.29 (-1.53 to 0.93)	-0.44 (-1.72 to 0.83)	0	-0.30 (-1.54 to 0.92)	-0.98 (-2.27 to 0.30)	0.01 (-1.27 to 1.28)	-0.05 (-1.01 to 0.91)	-0.42 (-1.75 to 0.90)	-0.12 (-1.37 to 1.11)
ICS Low + LABA	0.02 (-0.05 to 0.10)	0.01 (-0.09 to 0.10)	-0.14 (-0.43 to 0.17)	0.30 (-0.92 to 1.54)	0	-0.68 (-1.04 to -0.33)	0.31 (-0.03 to 0.66)	0.25 (-0.54 to 1.06)	-0.12 (-0.61 to 0.36)	0.18 (0.04 to 0.31)
ICS Medium + LABA	0.71 (0.35 to 1.06)	0.69 (0.33 to 1.05)	0.54 (0.24 to 0.81)	0.98 (-0.30 to 2.27)	0.68 (0.33 to 1.04)	0	0.99 (0.67 to 1.27)	0.94 (0.07 to 1.82)	0.56 (-0.04 to 1.15)	0.86 (0.49 to 1.24)
ICS High + LABA	-0.29 (-0.64 to 0.05)	-0.30 (-0.66 to 0.04)	-0.45 (-0.64 to -0.25)	-0.01 (-1.28 to 1.27)	-0.31 (-0.66 to 0.03)	-0.99 (-1.27 to -0.67)	0	-0.06 (-0.92 to 0.81)	-0.43 (-1.02 to 0.15)	-0.13 (-0.50 to 0.22)
ICS+LTRA	-0.23 (-1.04 to 0.56)	-0.25 (-1.05 to 0.55)	-0.39 (-1.25 to 0.46)	0.05 (-0.91 to 1.01)	-0.25 (-1.06 to 0.54)	-0.94 (-1.82 to -0.07)	0.06 (-0.81 to 0.92)	0	-0.38 (-1.31 to 0.55)	-0.07 (-0.90 to 0.72)
LTRA	0.15 (-0.33 to 0.63)	0.13 (-0.36 to 0.63)	-0.02 (-0.58 to 0.55)	0.42 (-0.90 to 1.75)	0.12 (-0.36 to 0.61)	-0.56 (-1.15 to 0.04)	0.43 (-0.15 to 1.02)	0.38 (-0.55 to 1.31)	0	0.30 (-0.19 to 0.80)
Placebo	-0.15 (-0.27 to -0.04)	-0.17 (-0.33 to -0.01)	-0.32 (-0.63 to 0.01)	0.12 (-1.11 to 1.37)	-0.18 (-0.31 to -0.04)	-0.86 (-1.24 to -0.49)	0.13 (-0.22 to 0.50)	0.07 (-0.72 to 0.90)	-0.30 (-0.80 to 0.19)	0

The table compares the effect estimate for an intervention in the row with an intervention in a column (TRT 1 vs. TRT 2).

 a MD > 0 favours treatment 1; MD < 0 favours treatment 2. 95% CrIs that exclude the MD value of 0 are highlighted in bold.

FEV₁ (L): forced expiratory volume in 1 second; MD: mean difference; CrI: credibility interval; IPD: individual participant data; AgD: aggregate data; TRT: treatment; ICS: inhaled corticosteroid; LABA: Long-Acting β₂-Agonist; LTRA: Leukotriene Receptor Antagonist

Table S17. Bayesian random-effects network meta-analysis (IPD and AgD) for FEV1. ICS grouped when combined with LABA – Analysis B3

TRT 1 TRT 2	ICS Low	ICS Medium	ICS High	ICS unknown dose	ICS+LABA	ICS+LTRA	LTRA	ICS + Theophylline	Placebo
ICS Low		0.00 (-0.14 to 0.14) -0.06 (-1.64 to 1.47)	-0.15 (-0.37 to 0.07) -0.38 (-2.77 to 2.08)	0.30 (-0.97 to 1.60)	-0.02 (-0.11 to 0.08) 0.00 (-0.12 to 0.17)	0.24 (-0.58 to 1.09)	-0.15 (-0.63 to 0.35) -0.10 (-0.56 to 0.41) **	NA	0.16 (0.01 to 0.30) 0.15 (-0.17 to 0.46)
ICS Medium	0.00 (-0.14 to 0.14) 0.06 (-1.47 to 1.64)		-0.15 (-0.38 to 0.09) -0.20 (-0.64 to 2.28) **	0.30 (-0.96 to 1.59)	-0.02 (-0.13 to 0.10) 0.01 (-0.30 to 0.38)	0.24 (-0.57 to 1.08) 0.76 (-0.17 to 1.69) **	-0.14 (-0.65 to 0.36)	NA	0.16 (-0.04 to 0.35) 0.12 (-1.03 to 1.29)
ICS High	0.15 (-0.07 to 0.37) 0.38 (-2.08 to 2.77)	0.15 (-0.09 to 0.38) 0.20 (-0.28 to 0.63) **		0.45 (-0.83 to 1.76)	0.13 (-0.08 to 0.35) -0.28 (-3.22 to 2.48)	0.39 (-0.43 to 1.26)	0.01 (-0.53 to 0.54)	NA	0.31 (0.05 to 0.57) 0.40 (-0.14 to 0.96) **
ICS unknown dose	-0.30 (-1.60 to 0.97)	-0.30 (-1.59 to 0.96)	-0.45 (-1.76 to 0.83)		-0.32 (-1.61 to 0.95)	-0.05 (-1.02 to 0.91) not calculated	-0.44 (-1.81 to 0.91)	NA	-0.14 (-1.44 to 1.13)
ICS+LABA	0.02 (-0.08 to 0.11) 0.00 (-0.17 to 0.12)	0.02 (-0.10 to 0.13) 0.01 (-0.38 to 0.30)	-0.13 (-0.35 to 0.08) 0.28 (-2.48 to 3.22)	0.32 (-0.95 to 1.61)		0.26 (-0.55 to 1.10) -0.02 (-0.76 to 0.77) **	-0.13 (-0.61 to 0.36) -0.20 (-0.74 to 0.34) **	NA	0.18 (0.00 to 0.34) 0.20 (-0.29 to 0.76) **
ICS+LTRA	-0.24 (-1.09 to 0.58)	-0.24 (-1.08 to 0.57) -0.78 (-1.64 to 0.14) **	-0.39 (-1.26 to 0.43)	0.05 (-0.91 to 1.02) not calculated	-0.26 (-1.10 to 0.55) 0.02 (-0.72 to 0.77) **		-0.39 (-1.37 to 0.56)	NA	-0.09 (-0.94 to 0.73)
LTRA	0.15 (-0.35 to 0.63) 0.10 (-0.40 to 0.53) **	0.14 (-0.36 to 0.65)	-0.01 (-0.54 to 0.53)	0.44 (-0.91 to 1.81)	0.13 (-0.36 to 0.61) 0.20 (-0.3 to 0.73) **	0.39 (-0.56 to 1.37)		NA	0.30 (-0.21 to 0.81)
ICS + Theophylline	NA	NA	NA	NA	NA	NA	NA		NA
Placebo	-0.16 (-0.30 to -0.01) -0.15 (-0.46 to 0.17)	-0.16 (-0.35 to 0.04) -0.12 (-1.29 to 1.03)	-0.31 (-0.57 to -0.05) -0.40 (-0.92 to 0.12) **	0.14 (-1.13 to 1.44)	-0.18 (-0.34 to 0.00) -0.20 (-0.75 to 0.27) **	0.09 (-0.73 to 0.94)	-0.30 (-0.81 to 0.21)	NA	

The table compares the effect estimate for an intervention in the row with an intervention in a column (TRT 1 vs. TRT 2).

MD (95% CrI) from NMA with direct results from pairwise meta-analyses in Italics; 22 studies, 2486 patients; Reference treatment: ICS+LABA; DIC; 1768.4, Residual deviance: 2129.2 (on 2175 data points)

* MD > 0 favours treatment 1; MD < 0 favours treatment 2. Results with CrI that excludes the MD value of 0 are highlighted in bold. ** Estimates from Bayesian linear regression models (Stan).

TRT 1 = treatment 1; TRT 2 = treatment 2; FEV_1 = forced expiratory volume in 1 second; ICS = inhaled corticosteroid; LABA = long-acting beta-agonist; LTRA = leukotriene receptor antagonist; MD = mean difference; CrI = credibility interval; DIC = deviance information criterion; NA: not available.

TRT 2	FF	FF + VI	FP	FP + Montelukast	FP + SAL	FP + VI	Montelukast	Placebo
FF		-0.05 (-0.22 to 0.12)	0.07 (-0.05 to 0.19)	0.31 (-0.49 to 1.16)	0.05 (-0.09 to 0.20)	0.05 (-0.11 to 0.21)	-0.08 (-0.57 to 0.41)	0.18 (0.05 to 0.30)
FF + VI	0.05 (-0.12 to 0.22)		0.12 (-0.08 to 0.32)	0.37 (-0.44 to 1.23)	0.10 (-0.11 to 0.32)	0.10 (-0.12 to 0.33)	-0.02 (-0.54 to 0.49)	0.23 (0.03 to 0.43)
FP	-0.07 (-0.19 to 0.05)	-0.12 (-0.19 to 0.08)		0.25 (-0.55 to 1.08)	-0.02 (-0.09 to 0.06)	-0.02 (-0.12 to 0.09)	-0.14 (-0.62 to 0.33)	0.11 (-0.04 to 0.26)
FP + Montelukast	-0.31 (-1.16 to 0.49)	-0.37 (-1.23 to 0.44)	-0.25 (-1.08 to 0.55)		-0.26 (-1.10 to 0.53)	-0.26 (-1.10 to 0.53)	-0.39 (-1.36 to 0.55)	-0.14 (-0.99 to 0.66)
FP + SAL	-0.05 (-0.20 to 0.09)	-0.10 (-0.32 to 0.11)	0.02 (-0.06 to 0.09)	0.26 (-0.53 to 1.10)		0.00 (-0.13 to 0.13)	-0.13 (-0.61 to 0.35)	0.12 (-0.05 to 0.29)
FP + VI	-0.05 (-0.21 to 0.11)	-0.10 (-0.33 to 0.12)	0.02 (-0.09 to 0.12)	0.26 (-0.53 to 1.10)	0.00 (-0.13 to 0.13)		-0.13 (-0.62 to 0.36)	0.12 (-0.06 to 0.31)
Montelukast	0.08 (-0.41 to 0.57)	0.02 (-0.49 to 0.54)	0.14 (-0.33 to 0.62)	0.39 (-0.55 to 1.36)	0.13 (-0.35 to 0.61)	0.13 (-0.36 to 0.62)		0.25 (-0.25 to 0.75)
Placebo	-0.18 (-0.30 to -0.05)	-0.23 (-0.43 to -0.03)	-0.11 (-0.26 to 0.04)	0.14 (-0.66 to 0.99)	-0.12 (-0.29 to 0.05)	-0.12 (-0.31 to 0.06)	-0.25 (-0.75 to 0.25)	

 Table S18. Bayesian fixed effect network meta-analysis (IPD only) for FEV1 (individual compounds) – Analysis C3

The table compares the effect estimate for an intervention in the row with an intervention in a column (TRT 1 vs. TRT 2).

MD (95% CrI) (17 studies, 1984 participants). Reference treatment: FP – DIC: 1087.7; Residual deviance: 1943.1 (on 1984 data points)

MD > 0 favours treatment 1; MD < 0 favours treatment 2. Results with CrI that excludes the MD value of 0 are highlighted in bold.

IPD = Individual Participant Data available; FEV₁ = forced expiratory volume in 1 second; FF = fluticasone furoate; VI = vilanterol; FP = fluticasone propionate; TRT 1 = treatment 1; TRT 2 = treatment 2; MD = mean difference; CrI = credibility interval; DIC = deviance information criterion.

Table S19. Direct pairwise comparisons of treatment classes (IPD and AgD) for quality of life outcome

Direct comparison	Data ^a	Author Year (participants on	Studies	Participants	QoL Tool	Total score at the	Bayesian meta-analy	sis		
TRT 1 vs TRT 2		each treatment)	(N)	(N)		last visit (average score) TRT 1 vs TRT 2 Mean (SD)	Fixed-effect model MD (95% Crl)	DIC	Random effects model MD (95% Crl)	DIC
ICS+LABA vs ICS Low	IPD AgD	Lenney 2013 (15 vs 10) ^(*) Murray 2011 (86 vs 87) ^(*) Pearlman 2009 (91 vs 79) ^(*) Wechsler 2019 (51 vs 22)	4	243 vs 198	PAQLQ	5.4 (1.6) vs 6.3 (0.9) 5.9 (0.8) vs 5.9 (0.8) 5.8 (0.9) vs 5.8 (0.9) 6.2 (0.9) vs 5.7 (1.2)	0.01 (-0.17; 0.19)	431.1	0.06 (-0.53; 0.68)	433.1
ICS+LABA vs ICS Medium	IPD	Lemanske 2010 (8 vs 6) ^(*) Thomas 2014 (11 vs 11) ^(*)	2	19 vs 17	PAQLQ	5.8 (1.0) vs 5.3 (1.4) 5.4 (1.1) vs 6.4 (0.6)	-0.91 (-1.53; -0.29)	37.6	-0.89 (-2.27; 0.50)	38.3
ICS+LTRA vs ICS Medium	IPD	Lemanske 2010 (13 vs 6) Thomas 2014 (11 vs 11)	2	24 vs 17	PAQLQ	6.2 (1.1) vs 6.6 (0.3) 6.1 (0.9) vs 6.4 (0.6)	-0.35 (-0.85; 0.18)	42.5	-0.35 (-1.68; 0.95)	43.2
ICS+LTRA vs ICS+LABA	IPD AgD	Lemanske 2010 (13 vs 8) Lenney 2013 (12 vs 15) ^(*) Thomas 2014(11 vs 11) ^(*)	3	36 vs 34	PAQLQ	6.2 (1.1) vs 5.8 (1.0) 6.3 (0.9) vs 5.4 (1.6) 6.1 (0.9) vs 5.4 (1.1)	0.59 (-0.11; 1.30)	46.7	0.60 (-0.56; 1.76)	47.6
ICS Low vs ICS High	IPD	Wechsler 2019 (22 vs 22)	1	22 vs 22	PAQLQ	5.7 (1.2) vs 6.3 (0.9)	Bayesian linear regre	ssion mod	el (Stan): -0.61 (-1.23; 0.03)
ICS+LABA vs ICS High	IPD	Wechsler 2019 (51 vs 22)	1	51 vs 22	PAQLQ	6.2 (0.9) vs 6.3 (0.9)	Bayesian linear regre	ssion mod	el (Stan): -0.13 (-0.58; 0.32))
ICS Low vs ICS+LTRA	AgD	Lenney 2013 (10 vs 12) (*)	1	10 vs 12	PAQLQ	6.3 (0.9) vs 6.3 (0.9)	Bayesian linear regre	ssion mod	el (Stan): not estimable**	
ICS+LABA vs ICS Low	IPD	Bernstein 2015 (24 vs 16) Bleecker 2014 (13 vs 14)	2	37 vs 30	AQLQ	5.5 (1.1) vs 5.4 (1.1) 6.3 (0.7) vs 5.9 (0.6)	0.31 (-0.15; 0.75)	14.4	0.27 (-1.10; 1.62)	16
ICS+LABA vs ICS High	IPD	O'Byrne 2014 (3 vs 5) ^(§) Wechsler 2019 (21 vs 10)	2	24 vs 15	AQLQ	6.1 (0.3) vs 5.6 (1.5) 6.1 (0.8) vs 6.5 (0.5)	-0.17 (-0.50; 0.17)	113.3	-0.03 (-1.57; 1.72)	114.2
placebo vs ICS Low	IPD	Bleecker 2014 (21 vs 14) Lötvall 2014 b (14 vs 15)	2	35 vs 29	AQLQ	5.5 (0.9) vs 5.9 (0.6) 5.9 (0.7) vs 6.2 (0.6)	-0.32 (-0.66; 0.03)	59.7	-0.29 (-1.45; 1.03)	60.4
ICS Medium vs ICS Low	IPD	Lötvall 2014 b (10 vs 15)	1	10 vs 15	AQLQ	5.6 (1.3) vs 6.2 (0.6)	Bayesian linear regre	ssion mod	el (Stan): -0.55 (-1.33; 0.23)
placebo vs ICS Medium	IPD	Lötvall 2014 b (14 vs 10)	1	14 vs 10	AQLQ	5.9 (0.7) vs 5.6 (1.3)	Bayesian linear regre	ssion mod	lel (Stan): 0.31 (-0.50; 1.16)	
placebo vs ICS+LABA	IPD	Bleecker 2014 (21 vs 13)	1	21 vs 13	AQLQ	5.5 (0.9) vs 6.3 (0.7)	Bayesian linear regre	ssion mod	lel (Stan): -0.81 (-1.39; -0.27	7)

MD > 0 favors TRT 1; MD < 0 favors TRT 2

^aAll data available were used (IPD and AgD where possible); IPD = individual participant data; AgD = aggregate data

(*) ICS Low+LABA

(§) ICS High+LABA

** Same mean and SD in both arms (constant)

TRT = treatment; QoL = quality of life; SD = standard deviation; MD = mean difference; CrI = credibility interval; DIC = deviance information criterion; NA = not available; ICS = inhaled corticosteroids;

LABA = long-acting beta-agonist; LTRA = leukotriene receptor antagonist; AQLQ = asthma quality of life questionnaire; PAQLQ = paediatric asthma quality of life questionnaire.

Table S20. Hospital admissions

			~ .		Was the patient hospitalized due to an asthma attack?
Author Year	Data	Treatment class	Compounds	No. of patients	No. (%)
Bateman 2014	IPD	ICS Low	FF	102	0
		ICS+LABA	FF+VI	111	3 (2.7%)
De Blic 2009	IPD	ICS Medium	FP	153	0
		ICS+LABA	FP+SAL	150	1 (0.7%)
Stempel 2016 a	IPD	ICS Medium	FP	813	4 (0.5%)
		ICS+LABA	FP+SAL	818	5 (0.6%)
Stempel 2016 b	IPD	ICS High	FP	40	0
		ICS Low	FP	15	0
		ICS Medium	FP	50	0
		ICS+LABA	FP+SAL	117	2 (1.7%)
Wechsler 2019	IPD	ICS High	FP	45	1 (2.2%)
		ICS Low	FP	33	0
		ICS+LABA	FP+SAL	93	1 (1.1%)

IPD: individual participant data; LABA: long-acting beta₂-agonist; FF: fluticasone furoate; VI: vilanterol; FP: fluticasone propionate; SAL: salmeterol.

Network meta-regression to explore effect modifiers

We compared the DIC between network meta-regression (NMR) models with and without interaction terms and found no overall evidence of interactions in any of the models. However, for some models there were non-zero interaction regression coefficients, which are described further below. The lack of consistent robust statistical evidence and clinical rationale to support these suggested effects, along with issues of small numbers of patients in some analyses suggests that these results should be viewed very cautiously, they are potentially spurious and should not be over-interpreted. Further research would be needed to explore these effects in more detail, and we note that recommendations regarding the treatment and care of patients would not differ according to any of the studied covariates.

Exacerbation

We did not detect any "treatment by covariate" interaction for age (24 trials, 4929 participants), sex (26 trials, 5349 participants), eczema (8 trials, 2469 participants), and eosinophilia (13 trials, 1898 participants), based on interpretation of the 95% CrI of the interaction regression coefficient and comparison of DIC for models with and without interactions (eTable 18). For the covariates ethnicity (27 trials, 5645 participants) and baseline severity (21 trials, 2916 participants), the DIC comparison did not suggest evidence for an interaction, and the fixed effect model without interactions was the most appropriate model overall. However, the 95% CrI of the interaction regression coefficients (difference in the log odds ratio for levels of the covariate) excludes zero for some comparisons: (1) *ethnicity*: ICS Medium (OR, -1.25; 95% CrI, -2.47 to -0.18), ICS+LABA (OR, -1.09; 95% CrI, -2.27 to -0.06), and placebo (OR, -2.70; 95% CrI, -5.19 to -0.24) against ICS Low;

(2) baseline severity: ICS Medium (OR, 2.11; 95% CrI, 0.32 to 3.89) against ICS Low;

suggesting possible interaction effects (Table S22). The corresponding subgroup level effects have 95% credibility intervals that overlap across subgroup levels for ethnicity and baseline severity (Tables S23, S24). Furthermore, the 95% credibility intervals mostly include the null effect (unity) apart from comparisons with placebo and LTRA for ethnicity with results that are consistent in clinical interpretation with main effect analyses (Table S7). The NMR for baseline severity suggests an advantage to ICS Low over ICS Medium for severe asthma (OR, 0.04; 95% CrI, 0.00 to 0.68) but this is based on sparse data (Table S22) and isn't supported by clinical rationale. Overall, we do not consider that the network meta-regression analyses provide sufficiently robust, conclusive evidence of interaction effects to justify any deviation from the main network meta-analysis results (Table S7).

Asthma control

The network meta-regression analyses for asthma control did not identify any effect modifiers based on interpretation of the 95% CrI of the estimated interaction regression coefficients and comparison of DIC for models with and without interactions (Tables S25, S26) for all covariates considered: age (15 trials, 2998 participants), sex (15 trials, 2998 participants), ethnicity (15 trials, 2998 participants), eczema (6 trials, 1968 participants), eosinophilia (12 trials, 1192 participants), and baseline severity (13 trials, 1074 participants). No AgD were available.

\mathbf{FEV}_1

The network meta-regression analyses for FEV₁ did not identify "treatment by covariate" interactions based on the 95% CrI and comparison of DIC for models with and without interactions for covariates age (19 trials, 1689 participants), ethnicity (19 trials, 1908 participants), and eczema (5 trials, 455 participants) (Table S27). For the covariate "*sex*" (20 trials, 1937 participants), although the comparison of DIC of different models did not suggest an interaction (random-effects without interactions is the most appropriate model), the 95% CrI for the "treatment by sex" interaction regression coefficient (difference in the MD for females compared to the MD for males) excludes the zero null effect for LTRA vs ICS+LABA (Table S28), and corresponding subgroup level effects suggest benefit for LTRA for females (Table S29). However, we do not consider these results to be sufficiently robust to claim a conclusive interactions. Similarly, for the covariate "*eosinophilia*" (11 trials, 1024 participants), the comparison of DIC of different models did not suggest an interaction (fixed effect without interactions is the most appropriate model), but the 95% CrI for the "treatment by eosinophilia" interaction regression coefficient excludes the zero-null effect for ICS+LABA vs ICS Low (Table S28). However, the 95% credibility intervals for corresponding subgroup level MDs overlap between subgroup levels for all comparisons (Table S30); therefore, we conclude that there is insufficient evidence to suggest an interaction between treatment and "*eosinophilia*".

Interaction	Model	Number of trials (number of participants)	Number of data points	Residual deviance	Effective number of parameters (Pd)	Deviance information Criterion (DIC)	Between trial standard deviation
	Fixed-effect without interactions	24 (4,929)	4929	2052.7	27.4	2080.0	-
Treatment by age	Fixed-effect with interactions	24 (4,929)	4929	2052.0	33.1	2085.1	-
	Random-effects with interactions	24 (4,929)	4929	2049.1	36.4	2085.5	0.47 (0.02, 1.37)
	Fixed-effect without interactions	26 (5,349)	5349	2216.2	29.5	2245.7	-
Treatment by sex	Fixed-effect with interactions	26 (5,349)	5349	2216.7	34.7	2251.5	-
	Random-effects with interactions	26 (5,349)	5349	2215.1	38.0	2253.1	0.34 (0.01, 1.01)
T	Fixed-effect without interactions	27 (5,645)	5351	2215.8	30.3	2246.1	-
I reatment by	Fixed-effect with interactions	27 (5,645)	5351	2210.3	34.8	2245.0	-
einnicuy	Random-effects with interactions	27 (5,645)	5351	2209.7	37.3	2246.9	0.22 (0.01, 0.85)
	Fixed-effect without interactions	8 (2,469)	2439	1312.4	12.3	1324.7	-
Treatment by	Fixed-effect with interactions	8 (2,469)	2439	1313.9	16.7	1330.6	-
eczema	Random-effects with interactions	8 (2,469)	2439	1313.4	18.5	1331.9	0.69 (0.02, 2.44)
	Fixed-effect without interactions	13 (1,898)	1898	600.3	15.9	616.1	-
Treatment by	Fixed-effect with interactions	13 (1,898)	1898	601.8	20.3	622.1	-
eosinopnilla	Random-effects with interactions	13 (1,898)	1898	596.0	23.6	619.7	1.04 (0.09, 3.17)
Treatment by	Fixed-effect without interactions	21 (2,916)	2916	741.7	22.1	763.8	-
baseline severity	Fixed-effect with interactions	21 (2,916)	2916	740.2	25.4	765.7	-
(UUSEU ON PEV)	Random-effects with interactions	21 (2,916)	2916	736.0	29.8	765.9	0.87 (0.04, 3.07)

	• • •			• • • • • • •	· · · · · ·
Table S71 Model com	narienn accacemente tror	n natwark mata-analysi	e modale including	intorgetions for the	Autroma avacarhation
	Uai isun assessinents nuu	1 IICLWUIK IIICLA-AIIAIVS		IIII a cuons ioi une	VULLVIIIE EXACTIVATIVI
			8 8		

Table S22. Parameter estimates (Posterior mean [95% CrI]) from NMR models including interactions for the outcome exacerbation

Interaction	Comparison	Fixed-effect with interacti	ons	Random-effects with intera	octions
		Log OR at the mean	Regression coefficient treatment by	Log OR at the mean covariate	Regression coefficient treatment
		covariate value (95% CrI)	covariate interaction (95% CrI)	value (95% CrI)	by covariate interaction (95% CrI)
Treatment by	ICS High vs ICS Low	-0.33 (-1.05 to 0.39)	0.02 (-0.16 to 0.19)	-0.31 (-1.33 to 0.74)	0.00 (-0.19 to 0.19)
age	ICS Medium vs ICS Low	-0.19 (-0.81 to 0.42)	0.11 (-0.04 to 0.26)	-0.29 (-1.35 to 0.66)	0.11 (-0.04 to 0.27)
(24 trials, 4929	ICS+LABA vs ICS Low	-0.28 (-0.78 to 0.22)	0.09 (-0.04 to 0.21)	-0.23 (-0.86 to 0.47)	0.07 (-0.08 to 0.21)
participants)	LTRA vs ICS Low	-2.74 (-9.05 to 2.74)	-0.65 (-1.60 to 0.19)	-2.83 (-9.25 to 2.89)	-0.66 (-1.60 to 0.19)
	placebo vs ICS Low	2.41 (0.65 to 4.44)	0.20 (-0.23 to 0.67)	2.28 (0.18 to 4.52)	0.21 (-0.22 to 0.69)
Treatment by	ICS High vs ICS+LABA	-0.23 (-0.78 to 0.30)	0.27 (-0.56 to 1.11)	-0.26 (-1.03 to 0.47)	0.28 (-0.56 to 1.12)
sex	ICS Low vs ICS+LABA	0.24 (-0.26 to 0.72)	-0.02 (-0.80 to 0.75)	0.22 (-0.40 to 0.80)	-0.03 (-0.80 to 0.76)
(26 trials, 5349	ICS Medium vs ICS+LABA	0.12 (-0.18 to 0.42)	-0.28 (-0.85 to 0.28)	0.13 (-0.45 to 0.73)	-0.28 (-0.84 to 0.27)
participants)	LTRA vs ICS+LABA	1.53 (-0.03 to 3.27)	0.94 (-0.84 to 2.76)	1.51 (-0.34 to 3.44)	0.95 (-0.84 to 2.80)
	placebo vs ICS+LABA	2.33 (0.35 to 4.49)	-1.80 (-5.21 to 0.56)	2.28 (0.18 to 4.56)	-1.78 (-5.06 to 0.55)
Treatment by	ICS High vs ICS Low	-0.52 (-1.51 to 0.32)	-0.55 (-2.97 to 2.65)	-0.54 (-1.66 to 0.41)	-0.50 (-2.97 to 2.91)
ethnicity	ICS Medium vs ICS Low	-0.08 (-0.66 to 0.52)	-1.25 (-2.47 to -0.18)	-0.06 (-0.77 to 0.70)	-1.21 (-2.40 to -0.11)
(27 trials, 5645	ICS+LABA vs ICS Low	-0.19 (-0.70 to 0.32)	-1.09 (-2.27 to -0.06)	-0.18 (-0.75 to 0.39)	-1.03 (-2.20 to 0.04)
participants)	LTRA vs ICS Low	not estimable	not estimable	not estimable	not estimable
	placebo vs ICS Low	1.19 (0.59 to 1.80)	-2.70 (-5.19 to -0.24)	1.24 (0.43 to 2.15)	-2.61 (-5.14 to -0.06)
Treatment by	ICS High vs ICS Medium	-0.01 (-1.34 to 1.52)	-1.89 (-4.40 to 0.43)	0.00 (-1.88 to 2.02)	-1.88 (-4.46 to 0.45)
eczema	ICS Low vs ICS Medium	0.07 (-1.14 to 1.52)	-1.04 (-3.06 to 0.63)	0.05 (-1.94 to 2.21)	-0.99 (-3.06 to 0.71)
(8 trials, 2469	ICS+LABA vs ICS Medium	-0.04 (-1.20 to 1.37)	-1.29 (-3.30 to 0.37)	0.01 (-1.74 to 1.97)	-1.22 (-3.29 to 0.48)
participants)	ICS+LTRA vs ICS Medium	not estimable	not estimable	not estimable	not estimable
	LTRA vs ICS Medium	1.49 (-0.40 to 3.48)	-0.67 (-3.34 to 2.05)	1.46 (-1.18 to 4.18)	-0.63 (-3.39 to 2.13)
	placebo vs ICS Medium	not estimable	not estimable	not estimable	not estimable
Treatment by	ICS High vs ICS Low	-1.20 (-2.72 to 0.02)	-1.38 (-4.73 to 1.18)	-1.67 (-4.91 to 0.57)	-1.38 (-4.66 to 1.11)
eosinophilia	ICS Medium vs ICS Low	not estimable	not estimable	not estimable	not estimable
(13 trials, 1898	ICS+LABA vs ICS Low	-0.40 (-0.98 to 0.16)	-0.28 (-1.31 to 0.75)	-0.44 (-1.94 to 0.98)	-0.25 (-1.31 to 0.79)
participants)	LTRA vs ICS Low	1.12 (-0.45 to 2.86)	0.18 (-2.19 to 2.39)	1.09 (-2.36 to 4.37)	0.19 (-2.22 to 2.41)
	placebo vs ICS Low	2.15 (0.29 to 4.26)	1.32 (-0.79 to 3.61)	1.88 (-0.97 to 4.76)	1.37 (-0.78 to 3.69)
Treatment by	ICS High vs ICS Low	-0.38 (-1.31 to 0.55)	0.71 (-0.39 to 1.85)	-1.24 (-5.13 to 0.71)	0.65 (-0.47 to 1.80)
baseline severity	ICS Medium vs ICS Low	0.04 (-1.57 to 1.61)	2.11 (0.32 to 3.89)	-0.31 (-3.02 to 1.81)	2.01 (0.16 to 3.89)
(21 trials, 2916	ICS+LABA vs ICS Low	-0.10 (-0.74 to 0.55)	0.49 (-0.43 to 1.47)	-0.32 (-1.79 to 0.79)	0.39 (-0.59 to 1.40)
participants)	placebo vs ICS Low	2.40 (0.60 to 4.54)	0.64 (-1.45 to 2.78)	2.22 (-0.48 to 4.98)	0.61 (-1.44 to 2.73)

Bold indicates that zero is excluded from the credibility interval. Regression coefficient: change in the log OR per unit increase in the covariate value.

	TRT 2 TRT 1	ICS Medium	ICS High	ICS+LABA	LTRA	Placebo
	ICS Low	0.43	1.12	0.54	Not	0.04
0U	N=418	(0.13 to 1.21)	(0.11 to 27.11)	(0.17 to 1.43)	estimable	(0.01 to 0.28)
ati		ICS Medium	2.61	1.26	Not	0.10
51) 51		N = 258	(0.32 to 56.83)	(0.75 to 2.12)	estimable	(0.01 to 0.62)
0r 14			ICS High	0.48	Not	0.04
.e ii			N = 18	(0.02 to 3.86)	estimable	(0.00 to 0.61)
N an				ICS+LABA	Not	0.08
isp (N = 698	estimable	(0.01 to 0.49)
H					LTRA	Not
					N = 3	estimable
	ICS Low	1.49	1.93	1.60	0.26	0.61
	N = 941	(0.80 to 2.72)	(0.95 to 3.97)	(0.94 to 2.69)	(0.05 to 1.09)	(0.27 to 1.42)
10		ICS Medium	1.30	1.07	0.17	0.41
38) ii		N = 1014	(0.69 to 2.51)	(0.75 to 1.52)	(0.03 to 0.83)	(0.15 to 1.13)
115 115			ICS High	0.83	0.13	0.31
is] 			N = 226	(0.47 to 1.42)	(0.02 to 0.67)	(0.11 to 0.91)
E T Z				ICS+LABA	0.16	0.38
lov (N = 1824	(0.03 to 0.75)	(0.15 to 1.00)
K					LTRA	2.36
					N - 27	(0.45 to 15.03)

ith 664 t k .. (050/ C **.T**\ £ . cc th nicity"

The table compares the effect estimate for an intervention in the row with an intervention in a column (TRT 1 vs. TRT 2).

OR > 1 favours TRT 2 (all data included, IPD and AgD where possible). 95% CrIs that exclude unity are highlighted in bold N = number of participants; TRT = treatment; ICS = inhaled corticosteroids; LABA = long-acting beta₂-agonists; LTRA = leukotriene receptor antagonists.

3
4
4
5
6
7
, Q
0
9
10
11
12
13
14
14
15
16
17
18
10
17
20
21
22
23
24
27
25
26
27
28
29
20
50
31
32
33
34
35
22
36
37
38
39
40
40
41
42
43
44
45
16
-10 17
4/
48
49
50
51
50
5Z
53
54
55
56
57
57
58

1 2

ſ

Table S24. Odds ratios (95% CrI) from fixed effect NMR with "treatment by baseline
severity" interactions for the outcome exacerbation

	TRT 2	ICS Medium	ICS High	ICS+LABA	Placebo*
ld 60 events)	ICS Low N = 544	2.64 (0.41 to 20.29)	2.05 (0.75 to 5.64)	1.39 (0.65 to 3.00)	0.12 (0.01 to 1.16)
		ICS Medium N = 236	0.78 (0.10 to 5.05)	0.53 (0.08 to 3.10)	0.05 (0.00 to 0.76)
Mi = 1716,			ICS High N = 98	0.68 (0.31 to 1.46)	0.06 (0.01 to 0.64)
N)				ICS+LABA N = 788	0.09 (0.01 to 0.88)
rate 40 events)	ICS Low N = 416	0.32 (0.06 to 1.62)	1.00 (0.32 to 3.13)	0.85 (0.36 to 1.93)	0.06 (0.01 to 0.48)
		ICS Medium N = 73	3.16 (0.57 to 16.78)	2.69 (0.61 to 11.47)	0.20 (0.02 to 2.01)
Mode = 1007,			ICS High N = 60	0.85 (0.35 to 2.10)	0.06 (0.01 to 0.58)
Ŋ				ICS+LABA N = 392	0.08 (0.01 to 0.59)
Severe V = 193, 5 events)	ICS Low N = 49	0.04 (0.00 to 0.68)	0.49 (0.06 to 3.53)	0.52 (0.10 to 2.44)	0.03 (0.00 to 1.32)
		ICS Medium N = 6	12.68 (0.65 to 204.38)	13.60 (0.89 to 152.93)	0.89 (0.02 to 43.82)
			ICS High N = 5	1.06 (0.20 to 5.64)	0.07 (0.00 to 2.77)
0				ICS+LABA N = 130	0.07 (0.00 to 2.27)

The table compares the effect estimate for an intervention in the row with an intervention in a column (TRT 1 vs. TRT 2).

OR > 1 favours TRT 2 (all data included, only IPD). 95% CrIs that exclude unity are highlighted in bold. N = number of participants; TRT = treatment; ICS = inhaled corticosteroids; LABA = long-acting beta2-agonists; *placebo (mild), N = 50; (moderate) N = 66; (severe) N = 3.

Table S25. Model comparison assessments from network meta-analysis models including interactions for the outcome asthma control

Interaction	Model	Number of trials (number of participants)	Number of data points	Residual deviance	Effective number of parameters (Pd)	Deviance information Criterion (DIC)	Between trial standard deviation
_	Random-effects without interactions	15 (2998)	2998	2797.0	27.8	2824.8	0.43 (0.03,1.02)
Treatment	Fixed-effect with interactions	15 (2998)	2998	2804.6	29.2	2833.9	-
by age	Random-effects with interactions	15 (2998)	2998	2790.8	36.7	2827.5	0.75 (0.19,1.47)
Treatment	Fixed-effect without interactions	15 (2998)	2998	2800.7	22.5	2823.2	-
h reatment	Fixed-effect with interactions	15 (2998)	2998	2799.2	28	2827.2	-
by sex	Random-effects with interactions	15 (2998)	2998	2793.1	33	2826.1	0.44 (0.03,1.06)
Treatment by <i>ethnicity</i>	Fixed-effect without interactions	15 (2998)	2998	2802.6	22.7	2825.3	-
	Fixed-effect with interactions	15 (2998)	2998	2805.2	28.9	2834.1	-
	Random-effects with interactions	15 (2998)	2998	2798.4	34.7	2833.1	0.49 (0.04,1.11)
Treatment	Fixed-effect without interactions	6 (1968)	1968	1607.3	12.3	1619.5	-
hv eczema	Fixed-effect with interactions	6 (1968)	1968	1610.0	17.6	1627.6	-
by eegema	Random-effects with interactions	6 (1968)	1968	1608.6	17.6	1626.2	0.29(0.01,0.87)
Treatment	Fixed-effect without interactions	12 (1192)	1192	1326.2	19.5	1345.7	-
by	Fixed-effect with interactions	12 (1192)	1192	1328.7	26.3	1355.0	-
eosinophilia	Random-effects with interactions	12 (1192)	1192	1325.1	30	1355.1	0.54 (0.02,1.52)
Treatment by <i>Baseline</i>	Fixed-effect without interactions	13 (1074)	1074	1187.2	20.5	1207.6	-
severity	Fixed-effect with interactions	13 (1074)	1074	1187.3	25.5	1212.7	-
(based on FEV ₁)	Random-effects with interactions	13 (1074)	1074	1177.8	30.8	1208.7	1.09 (0.08,2.78)

Table S26 Denometer actimates (Destanian m	oon [050/ CnI]) from NMD models including	a interactions for the outcome asthma control
Table 520. Farameter estimates (Fosterior in	ean 19576 Crith from INVIN models metuding	2 Interactions for the outcome astimuta control
	······································	

Model		Fixed-effect NMA with inter	ractions	Random-effects NMA with interactions		
		Log odds ratio at the mean covariate value (95% CrI)	Regression coefficient for the treatment by covariate interaction (95% CrI)	Log odds ratio at the mean covariate value (95% CrI)	Regression coefficient for the treatment by covariate interaction (95% CrI)	
Treatment by age	ICS High vs ICS+LABA	-0.56 (-1.27 to 0.17)	0.01 (-0.15 to 0.17)	-0.98 (-2.36 to 0.22)	0.12 (-0.08 to 0.33)	
	ICS Low vs ICS+LABA	-0.20 (-0.55 to 0.15)	0.01 (-0.07 to 0.10)	-0.51 (-1.38 to 0.23)	0.04 (-0.07 to 0.16)	
	ICS Medium vs ICS+LABA	-0.09 (-0.37 to 0.20)	-0.07 (-0.15 to 0.01)	0.36 (-0.55 to 1.44)	-0.10 (-0.21 to 0.00)	
	ICS+LTRA vs ICS+LABA	0.06 (-1.69 to 1.96)	-0.04 (-0.45 to 0.43)	0.19 (-2.06 to 2.59)	-0.04 (-0.45 to 0.43)	
	LTRA vs ICS+LABA	-1.57 (-3.21 to 0.08)	-0.15 (-0.70 to 0.36)	-1.83 (-4.16 to 0.35)	-0.14 (-0.68 to 0.35)	
	placebo vs ICS+LABA	-0.46 (-1.19 to 0.30)	-0.05 (-0.23 to 0.12)	-0.69 (-2.16 to 0.70)	-0.01 (-0.25 to 0.23)	
Treatment by sex	ICS High vs ICS+LABA	-0.43 (-0.98 to 0.15)	-0.08 (-1.05 to 0.86)	-0.45 (-1.27 to 0.37)	-0.04 (-1.00 to 0.92)	
-	ICS Low vs ICS+LABA	-0.17 (-0.50 to 0.15)	0.48 (-0.03 to 1.00)	-0.30 (-0.90 to 0.19)	0.48 (-0.03 to 0.99)	
	ICS Medium vs ICS+LABA	-0.06 (-0.34 to 0.22)	0.14 (-0.34 to 0.63)	0.00 (-0.65 to 0.72)	0.14 (-0.35 to 0.62)	
	ICS+LTRA vs ICS+LABA	not estimable	not estimable	not estimable	not estimable	
	LTRA vs ICS+LABA	-2.03 (-3.97 to -0.23)	-1.85 (-5.50 to 1.16)	-2.15 (-4.37 to -0.14)	-1.85 (-5.63 to 1.26)	
	placebo vs ICS+LABA	-0.48 (-1.12 to 0.18)	-0.49 (-1.57 to 0.58)	-0.58 (-1.58 to 0.35)	-0.56 (-1.65 to 0.53)	
Treatment by <i>ethnicity</i>	ICS High vs ICS+LABA	-0.53 (-1.09 to 0.05)	0.43 (-0.86 to 1.68)	-0.51 (-1.39 to 0.36)	0.22 (-1.12 to 1.53)	
	ICS Low vs ICS+LABA	-0.17 (-0.49 to 0.16)	0.07 (-0.44 to 0.57)	-0.32 (-0.96 to 0.21)	0.15 (-0.39 to 0.69)	
	ICS Medium vs ICS+LABA	-0.05 (-0.32 to 0.23)	-0.05 (-0.61 to 0.49)	0.05 (-0.66 to 0.84)	-0.03 (-0.60 to 0.52)	
	ICS+LTRA vs ICS+LABA	0.49 (-1.51 to 2.92)	1.24 (-1.77 to 4.89)	0.51 (-1.67 to 3.12)	1.23 (-1.75 to 4.75)	
	LTRA vs ICS+LABA	-1.49 (-3.21 to 0.25)	-1.00 (-4.45 to 1.82)	-1.59 (-3.63 to 0.41)	-1.00 (-4.56 to 1.79)	
	placebo vs ICS+LABA	-0.52 (-1.15 to 0.15)	0.94 (-0.22 to 2.10)	-0.69 (-1.77 to 0.28)	1.17 (-0.12 to 2.54)	
Treatment by eczema	ICS High vs ICS+LABA	-0.82 (-1.45 to -0.18)	-0.02 (-1.12 to 1.07)	-0.73 (-1.49 to 0.13)	-0.09 (-1.21 to 1.01)	
-	ICS Low vs ICS+LABA	-0.91 (-1.76 to -0.04)	0.52 (-0.73 to 1.74)	-0.79 (-1.69 to 0.18)	0.45 (-0.84 to 1.70)	
	ICS Medium vs ICS+LABA	-0.06 (-0.35 to 0.22)	0.50 (-0.16 to 1.18)	0.04 (-0.48 to 0.81)	0.47 (-0.20 to 1.16)	
	ICS+LTRA vs ICS+LABA	0.16 (-1.64 to 2.14)	0.02 (-3.06 to 3.58)	0.22 (-1.53 to 2.11)	-0.03 (-2.67 to 2.96)	
	LTRA vs ICS+LABA	-2.28 (-4.07 to -0.53)	0.73 (-1.72 to 3.29)	-1.98 (-3.79 to -0.21)	0.55 (-1.70 to 2.89)	
Treatment by eosinophilia	ICS High vs ICS+LABA	0.22 (-0.60 to 1.08)	0.99 (-0.51 to 2.70)	0.11 (-1.30 to 1.35)	0.98 (-0.55 to 2.70)	
	ICS Low vs ICS+LABA	-0.05 (-0.39 to 0.31)	0.28 (-0.32 to 0.88)	-0.14 (-0.89 to 0.51)	0.27 (-0.32 to 0.87)	
	ICS Medium vs ICS+LABA	1.13 (-0.55 to 3.32)	-1.29 (-4.83 to 1.58)	1.23 (-0.66 to 3.64)	-1.30 (-4.82 to 1.67)	
	ICS+LTRA vs ICS+LABA	0.45 (-1.45 to 2.50)	1.32 (-1.69 to 4.85)	0.48 (-1.70 to 2.78)	1.32 (-1.63 to 4.96)	
	LTRA vs ICS+LABA	-1.78 (-3.70 to 0.08)	1.28 (-1.39 to 3.96)	-1.88 (-4.23 to 0.35)	1.30 (-1.43 to 4.05)	
	placebo vs ICS+LABA	-0.33 (-1.05 to 0.40)	-0.36 (-1.62 to 0.89)	-0.38 (-1.52 to 0.77)	-0.42 (-1.71 to 0.87)	
Treatment by baseline severity	ICS High vs ICS+LABA	0.34 (-1.53 to 2.30)	-0.51 (-3.16 to 2.03)	-0.04 (-2.86 to 2.55)	-0.23 (-3.04 to 2.62)	
	ICS Low vs ICS+LABA	-0.16 (-0.54 to 0.21)	0.22 (-0.22 to 0.65)	-0.66 (-2.10 to 0.36)	0.19 (-0.26 to 0.66)	
	ICS Medium vs ICS+LABA	0.52 (-0.90 to 2.09)	-0.77 (-3.04 to 1.59)	0.48 (-1.54 to 2.76)	-1.17 (-4.01 to 1.43)	
	ICS+LTRA vs ICS+LABA	not estimable	not estimable	not estimable	not estimable	
	LTRA vs ICS+LABA	-2.51 (-5.01 to -0.37)	-1.90 (-5.53 to 1.14)	-2.89 (-6.37 to 0.26)	-1.92 (-5.57 to 1.06)	
	placebo vs ICS+LABA	-0.49 (-1.18 to 0.22)	-0.69 (-1.88 to 0.41)	-0.85 (-2.84 to 0.86)	-0.61 (-1.82 to 0.52)	

Bold indicates that zero is excluded from the credibility interval. The regression coefficient represents the change in the log odds ratio per unit increase in the covariate value.

Interaction	Model	Number of trials (number of participants)	Number of data points	Residual deviance	Effective number of parameters (Pd)	Deviance information Criterion (DIC)	Between trial standard deviation
	Fixed-effect without interactions	18 (1,657)	1659	1616.8	-2196	-579.2	-
Treatment by age	Fixed-effect with interactions	18 (1,657)	1659	1616.2	-2330.5	-714.3	-
	Random-effects with interactions	18 (1,657)	1659	1618.3	-2299.9	-681.6	0.05 (0.00, 0.14)
T	Random-effects without interactions	20 (1,937)	1910	1864.3	-1193.8	670.6	0.04 (0.00, 0.12)
Treatment by sex	Fixed-effect with interactions	20 (1,937)	1910	1866.9	-1105.4	761.5	-
	Random-effects with interactions	20 (1,937)	1910	1866.3	-1120	746.2	0.04 (0.00, 0.12)
Treatment by	Random-effects without interactions	19 (1,908)	1908	1865.7	-1205.8	659.8	0.04 (0.00, 0.12)
<i>ethnicity</i>	Fixed-effect with interactions	19 (1,908)	1908	1864.6	-1002.8	861.7	-
	Random-effects with interactions	19 (1,908)	1908	1864.9	-1029.6	835.3	0.04 (0.00, 0.12)
m / / l	Fixed-effect without interactions	5 (455)	455	441.1	199.8	640.9	-
Treatment by	Fixed-effect with interactions	5 (455)	455	441.0	205.7	646.7	-
eczema	Random-effects with interactions	5 (455)	455	441.9	203.3	645.1	0.08 (0.00, 0.22)
Treatment by	Fixed-effect without interactions	11 (1,024)	1024	996.9	121.4	1118.3	-
eosinophilia	Fixed-effect with interactions	11 (1,024)	1024	996.2	128.6	1124.8	-
	Random-effects with interactions	11 (1,024)	1024	998.8	137.5	1136.3	0.07 (0.00, 0.21)

Table S27. Model comparison assessments from network meta-analysis models including interactions for the outcome FEV1

2
3
Δ
5
6
0
/
8
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
27
28
20
29
50 21
31
32
33
34
35
36
37
38
39
40
д1
41
42
43
44
45
46

Table S28. Parameter estimates (Posterior mean [95% CrI]) from NMR models including interactions for the outcome FEV1

		Fixed-effect NMA with inter	actions	Random-effects NMA with interactions		
Model		Log odds ratio at the mean covariate value (95% CrI)	Regression coefficient for the treatment by covariate interaction (95% CrI)	Log odds ratio at the mean covariate value (95% CrI)	Regression coefficient for the treatment by covariate interaction (95% CrI)	
	ICS High vs ICS+LABA	-0.04 (-0.15 to 0.06)	0.02 (0.00 to 0.04)	-0.03 (-0.16 to 0.12)	0.02 (0.00 to 0.04)	
	ICS Low vs ICS+LABA	-0.02 (-0.07 to 0.02)	0.00 (-0.02 to 0.01)	-0.02 (-0.09 to 0.06)	0.00 (-0.02 to 0.01)	
Treatment by <i>age</i>	ICS Medium vs ICS+LABA	-0.02 (-0.07 to 0.02)	-0.01 (-0.03 to 0.00)	-0.03 (-0.13 to 0.06)	-0.01 (-0.03 to 0.01)	
Treatment by age	ICS unknown dose vs ICS+LABA	-0.28 (-5.25 to 4.40)	-0.05 (-8.85 to 8.35)	-0.29 (-3.27 to 2.69)	-0.06 (-5.41 to 5.09)	
Treatment by age	ICS+LTRA vs ICS+LABA	-0.10 (-0.18 to -0.01)	0.01 (0.00 to 0.03)	-0.10 (-0.24 to 0.05)	0.01 (-0.01 to 0.03)	
	LTRA vs ICS+LABA	0.14 (-0.11 to 0.39)	0.04 (-0.05 to 0.13)	0.16 (-0.12 to 0.43)	0.04 (-0.05 to 0.13)	
	placebo vs ICS+LABA	-0.13 (-0.21 to -0.05)	-0.02 (-0.04 to 0.01)	-0.13 (-0.27 to 0.00)	-0.02 (-0.05 to 0.01)	
	ICS High vs ICS+LABA	0.02 (-0.08 to 0.12)	-0.02 (-0.15 to 0.12)	0.02 (-0.10 to 0.16)	-0.01 (-0.15 to 0.12)	
	ICS Low vs ICS+LABA	-0.02 (-0.07 to 0.03)	0.00 (-0.07 to 0.06)	-0.02 (-0.08 to 0.05)	0.00 (-0.06 to 0.07)	
	ICS Medium vs ICS+LABA	-0.01 (-0.05 to 0.02)	0.02 (-0.05 to 0.09)	-0.02 (-0.10 to 0.04)	0.02 (-0.05 to 0.09)	
Treatment by sex	ICS unknown dose vs ICS+LABA	-0.37 (-2.74 to 2.04)	-0.14 (-9.96 to 9.57)	-0.32 (-2.79 to 1.99)	0.12 (-9.26 to 9.60)	
· ·	ICS+LTRA vs ICS+LABA	-0.20 (-0.32 to -0.08)	-0.08 (-0.33 to 0.16)	-0.20 (-0.37 to -0.05)	-0.09 (-0.33 to 0.16)	
	LTRA vs ICS+LABA	0.22 (-0.01 to 0.44)	0.67 (0.23 to 1.11)	0.23 (-0.01 to 0.48)	0.68 (0.21 to 1.14)	
	placebo vs ICS+LABA	-0.12 (-0.21 to -0.03)	0.04 (-0.11 to 0.18)	-0.13 (-0.26 to -0.02)	0.04 (-0.09 to 0.17)	
	ICS High vs ICS+LABA	0.05 (-0.10 to 0.20)	-0.10 (-0.56 to 0.34)	0.05 (-0.11 to 0.22)	-0.08 (-0.52 to 0.36)	
	ICS Low vs ICS+LABA	-0.02 (-0.07 to 0.02)	-0.05 (-0.12 to 0.03)	-0.02 (-0.09 to 0.05)	-0.04 (-0.12 to 0.04)	
Treatment by	ICS Medium vs ICS+LABA	0.02 (-0.03 to 0.08)	-0.16 (-0.32 to 0.00)	0.01 (-0.08 to 0.09)	-0.16 (-0.32 to 0.00)	
ethnicity	ICS+LTRA vs ICS+LABA	-0.18 (-0.30 to -0.07)	-0.08 (-0.23 to 0.06)	-0.18 (-0.34 to -0.03)	-0.07 (-0.21 to 0.07)	
	LTRA vs ICS+LABA	0.12 (-0.16 to 0.39)	0.23 (-0.32 to 0.77)	0.13 (-0.15 to 0.40)	0.23 (-0.32 to 0.77)	
	placebo vs ICS+LABA	-0.11 (-0.20 to -0.02)	0.03 (-0.12 to 0.18)	-0.13 (-0.27 to -0.01)	0.04 (-0.11 to 0.19)	
	ICS High vs ICS Medium	0.14 (-0.15 to 0.44)	-0.01 (-0.37 to 0.35)	0.12 (-0.24 to 0.46)	0.00 (-0.37 to 0.35)	
	ICS Low vs ICS Medium	0.08 (-0.14 to 0.28)	-0.03 (-0.27 to 0.21)	0.05 (-0.25 to 0.30)	-0.03 (-0.27 to 0.20)	
Treatment by	ICS+LABA vs ICS Medium	0.00 (-0.04 to 0.05)	0.03 (-0.10 to 0.15)	-0.01 (-0.17 to 0.13)	0.04 (-0.10 to 0.17)	
eczema	ICS+LTRA vs ICS Medium	-0.18 (-0.32 to -0.05)	-0.03 (-0.20 to 0.13)	-0.19 (-0.42 to 0.04)	-0.02 (-0.19 to 0.14)	
	LTRA vs ICS Medium	0.24 (-0.11 to 0.59)	0.12 (-0.40 to 0.63)	0.22 (-0.22 to 0.62)	0.12 (-0.40 to 0.63)	
	placebo vs ICS Medium	-0.30 (-0.78 to 0.19)	-0.51 (-1.20 to 0.17)	-0.30 (-0.80 to 0.19)	-0.49 (-1.14 to 0.19)	
	ICS High vs ICS Low	0.16 (-0.08 to 0.39)	-0.14 (-0.45 to 0.18)	0.15 (-0.14 to 0.42)	-0.14 (-0.44 to 0.17)	
	ICS Medium vs ICS Low	0.03 (-0.12 to 0.19)	-0.08 (-0.34 to 0.16)	0.03 (-0.17 to 0.22)	-0.08 (-0.34 to 0.15)	
Treatment by	ICS+LABA vs ICS Low	0.01 (-0.05 to 0.06)	0.11 (0.03 to 0.19)	0.00 (-0.12 to 0.10)	0.10 (0.03 to 0.18)	
eosinophilia	ICS+LTRA vs ICS Low	-0.15 (-0.28 to -0.01)	-0.05 (-0.22 to 0.11)	-0.15 (-0.39 to 0.08)	-0.05 (-0.22 to 0.11)	
	LTRA vs ICS Low	0.04 (-0.29 to 0.36)	0.26 (-0.32 to 0.81)	0.05 (-0.30 to 0.42)	0.25 (-0.29 to 0.79)	
	placebo vs ICS Low	-0.09 (-0.17 to -0.01)	-0.03 (-0.18 to 0.13)	-0.11 (-0.28 to 0.01)	-0.03 (-0.18 to 0.12)	

Bold indicates that zero is excluded from the credibility interval. The regression coefficient represents the change in the mean difference per unit increase in the covariate value.

Table S2	ble S29. Mean difference (95% CrI) from random- effects NMR with "treatment by sex" interactions for the outcome FEV1							
	TRT 1 TRT 2	ICS Medium	ICS High	ICS+LABA	ICS unknown dose	ICS+LTRA	LTRA	Placebo*
	ICS Low	-0.01	-0.03	-0.02	0.23	0.24	-0.68	0.09
	N = 195	(-0.11 to 0.11)	(-0.20 to 0.13)	(-0.09 to 0.06)	(-7.91 to 8.50)	(-0.03 to 0.53)	(-1.10 to -0.27)	(-0.04 to 0.24)
	-	ICS Medium	-0.02	-0.01	0.24	0.25	-0.67	0.10
()		N = 111	(-0.21 to 0.14)	(-0.10 to 0.07)	(-7.87 to 8.53)	(-0.02 to 0.52)	(-1.10 to -0.24)	(-0.05 to 0.26)
701			ICS High	0.02	0.26	0.28	-0.65	0.12
Î			N = 45	(-0.14 to 0.18)	(-7.85 to 8.57)	(-0.03 to 0.59)	(-1.10 to -0.21)	(-0.09 to 0.35)
S				ICS+LABA	0.25	0.26	-0.66	0.11
es				N = 290	(-7.87 to 8.55)	(-0.02 to 0.52)	(-1.09 to -0.24)	(-0.03 to 0.26)
nal					ICS unknown	0.01	-0.91	-0.14
Fer					dose $N = 2$	(-8.22 to 8.13)	(-9.09 to 7.35)	(-8.40 to 7.99)
-						ICS+LTRA	-0.92	-0.15
						N = 6	(-1.41 to -0.43)	(-0.45 to 0.16)
							LTRA	0.77
				-			N = 3	(0.33 to 1.22)
	ICS Low	0.01	-0.05	-0.02	0.35	0.16	0.00	0.13
	N = 311	(-0.08 to 0.12)	(-0.19 to 0.10)	(-0.09 to 0.06)	(-1.19 to 1.94)	(0.00 to 0.32)	(-0.25 to 0.24)	(0.02 to 0.27)
		ICS Medium	-0.06	-0.03	0.33	0.14	-0.01	0.12
		N = 213	(-0.22 to 0.08)	(-0.11 to 0.04)	(-1.21 to 1.93)	(-0.01 to 0.29)	(-0.28 to 0.24)	(-0.02 to 0.27)
237			ICS High	0.03	0.39	0.20	0.05	0.18
11			N = 102	(-0.10 to 0.17)	(-1.16 to 1.98)	(0.01 to 0.41)	(-0.23 to 0.33)	(0.01 to 0.37)
Z				ICS+LABA	0.36	0.17	0.02	0.15
5				N = 499	(-1.17 to 1.96)	(0.03 to 0.32)	(-0.24 to 0.26)	(0.03 to 0.29)
ules					ICS unknown	-0.19	-0.35	-0.21
M					dose N = 13	(-1.79 to 1.33)	(-1.96 to 1.20)	(-1.81 to 1.31)
						ICS+LTRA	-0.15	-0.02
						N = 23	(-0.45 to 0.13)	(-0.20 to 0.17)
							LTRA	0.13
							N = 11	(-0.14 to 0.41)

The table compares the effect estimate for an intervention in the row with an intervention in a column (TRT 1 vs. TRT 2).

MD > 0 favours TRT 1 (all data included, IPD and AgD where possible); 95% CrIs that exclude zero are highlighted in bold; N = number of participants; TRT = treatment; ICS = inhaled corticosteroids; LABA = long-acting beta2-agonists; LTRA = leukotriene receptor antagonists; *Placebo (females), N = 49; (males), N=65.

1	
2	
3	
4	
5	
6	
7	
, 8	
a	
10	
11	
17	
12	
13	
14	
15	
10	
1/	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
тт	

Table S30. Mean difference (95% CrI) from fixed	effect NMR with "treatment by eosinophilia"	interactions for the outcome FEV1
---	---	-----------------------------------

	TRT 1 TRT 2	ICS Medium	ICS High	ICS+LABA	ICS+LTRA	LTRA	Placebo*
	ICS Low	0.02	-0.08	-0.07	0.18	-0.19	0.10
-	N = 178	(-0.19 to 0.23)	(-0.33 to 0.17)	(-0.14 to 0.00)	(0.02 to 0.34)	(-0.50 to 0.13)	(-0.03 to 0.23)
(61		ICS Medium	-0.10	-0.08	0.16	-0.20	0.09
4		N = 11	(-0.40 to 0.20)	(-0.29 to 0.12)	(-0.06 to 0.39)	(-0.58 to 0.17)	(-0.15 to 0.33)
"Z			ICS High	0.01	0.26	-0.11	0.19
ic (N = 21	(-0.24 to 0.27)	(-0.02 to 0.55)	(-0.50 to 0.30)	(-0.09 to 0.45)
lih				ICS+LABA	0.25	-0.12	0.17
opl				N = 161	(0.09 to 0.40)	(-0.44 to 0.20)	(0.03 to 0.31)
sin					ICS+LTRA	-0.37	-0.07
Eo					N = 7	(-0.72 to -0.02)	(-0.27 to 0.12)
						LTRA	0.29
						N = 10	(-0.05 to 0.63)
	ICS Low	-0.06	-0.22	0.04	0.13	0.07	0.08
5)	N = 270	(-0.25 to 0.12)	(-0.52 to 0.09)	(-0.02 to 0.10)	(-0.03 to 0.29)	(-0.43 to 0.57)	(-0.01 to 0.16)
: 9(ICS Medium	-0.16	0.10	0.19	0.13	0.14
" 7		N = 18	(-0.49 to 0.18)	(-0.08 to 0.29)	(0.00 to 0.39)	(-0.39 to 0.65)	(-0.06 to 0.34)
c (]			ICS High	0.26	0.35	0.29	0.29
ili			N = 15	(-0.05 to 0.56)	(0.02 to 0.67)	(-0.29 to 0.87)	(-0.02 to 0.60)
lqo				ICS+LABA	0.09	0.03	0.04
sine				N = 215	(-0.07 to 0.24)	(-0.46 to 0.52)	(-0.06 to 0.14)
eos					ICS+LTRA	-0.06	-0.05
-uo					N = 7	(-0.57 to 0.45)	(-0.23 to 0.12)
Ž						LTRA	0.01
						N = 4	(-0.49 to 0.50)

The table compares the effect estimate for an intervention in the row with an intervention in a column (TRT 1 vs. TRT 2).

MD > 0 favours TRT 1 (all data included, only IPD). The estimates not including 0 are in bold. N = number of participants; TRT = treatment; ICS = inhaled corticosteroids; LABA = long-acting beta₂-agonists; LTRA = leukotriene receptor antagonists; *Placebo (Eosinophilic), N = 31; (Non-Eosinophilic), N=76.

Figure S1. Secondary flowchart

Study search from 10 September 2019 to 5 May 2023 (used to assess the impact on results of any missing studies).

*This study does not report any outcome of interest for the network meta-analysis and whether children were using ICS alone at screening. ICS: inhaled corticosteroid; LABA: Long-Acting β_2 -Agonist; LTRA: Leukotriene Receptor Antagonist; IPD: individual participant data; FEV₁: forced expiratory volume in 1 second.

Figure S2A. Comparison-adjusted funnel plots (exacerbation frequentist random-effects network meta-analysis)

The comparison-adjusted funnel plots appear symmetric, implying the absence of small-study effects in the network. The Egger's test did not show publication bias at the confidence level of 0.05.

There are insufficient direct comparisons to carry out Egger's test for ICS+LTRA, LTRA, and ICS+Theophylline.

Figure S2B. Comparison-adjusted funnel plots (asthma control frequentist fixed effect network meta-analysis)

The comparison-adjusted funnel plots appear symmetric, implying the absence of small-study effects in the network. The Egger's test did not show publication bias at the confidence level of 0.05.

There are insufficient direct comparisons to carry out Egger's test for ICS+LTRA, LTRA, and placebo.

The comparison-adjusted funnel plots appear symmetric, implying the absence of small-study effects in the network. The Egger's test did not show publication bias at the confidence level of 0.05.

There are insufficient direct comparisons to carry out Egger's test for ICS High, ICS Medium+LABA, ICS High+LABA, ICS+LTRA, LTRA, ICS unknown dose, and placebo.

 European Respiratory Journal

Figure S4 (parts 1 to 3). Exacerbation frequentist random-effects network meta-analysis (OR, 95% Cr) with IPD and AgD (Analysis A1: 40 trials, 8168 participants, 649 events)

Treatment	(Random Effects Model)	OR	95%-C
ICS Low		1.00	
ICS Medium		0.75	[0.49; 1.16
ICS High		0.62	[0.30; 1.31
ICS Low+LABA		0.81	[0.56; 1.17
ICS Medium+LABA		0.57	[0.35; 0.93
ICS High+LABA		0.84	[0.39; 1.82
ICS+LTRA		1.23	[0.44; 3.48
LTRA		3.27	[0.77; 13.83
ICS+Theophylline		- 1.34	[0.07; 26.77
Placebo		2.24	[1.44; 3.49
	0.1 0.5 1 2 10		
Favour	other treatment Favour ICS Lo	wc	

Comparison: other vs 'ICS High'					
Treatment	(Random Effects Model)	OR	95%-CI		
ICS High ICS Low		1.00 1.60 [0.7	'6; 3.36]		
ICS Medium		1.21 [0.5	8; 2.50]		
ICS Low+LABA		1.29 0.6	3; 2.65]		
ICS Medium+LABA		0.92 [0.4	4; 1.93]		
ICS High+LABA		1.35 [0.8	31; 2.24]		
ICS+LTRA		1.97 [0.5	59; 6.65]		
LTRA		5.24 [1.0	4; 26.50]		
ICS+Theophylline		- 2.14 [0.1	0; 45.74]		
Placebo		3.59 [1.5	54; 8.37]		
	0.1 0.5 1 2 10				
Favour other treatment Favour ICS High					

Comparison: other vs 'ICS Medium+LABA'						
Treatment	(Random Effects Model)	OR 95%-CI				
ICS Medium+LABA ICS Low ICS Medium ICS High ICS Low+LABA ICS High+LABA ICS+LTRA LTRA ICS+Theophylline Placebo		1.00 1.74 [1.07; 2.82] 1.31 [0.98; 1.76] 1.09 [0.52; 2.29] 1.41 [0.92; 2.16] 1.47 [0.68; 3.16] 2.15 [0.76; 6.10] 5.70 [1.25; 26.08] - 2.33 [0.12; 46.71] 3.91 [2.11; 7.25]				
	0.1 0.5 1 2 10					

	0.1 0.0		10	
Favour othe	r treatment	t Favour	ICS Med	dium+LABA

Treatment	Comparison: other vs 'ICS+LTF (Random Effects Model)	RA' OR	95%-CI		
ICS+LTRA ICS Low ICS Medium ICS High ICS Low+LABA ICS Medium+LABA ICS High+LABA LTRA ICS+Theophylline Placebo	A	1.00 0.81 0.61 0.51 0.66 0.47 0.68 2.65 [- 1.09 [1.82	[0.29; 2.29] [0.22; 1.68] [0.15; 1.71] [0.24; 1.81] [0.16; 1.32] [0.20; 2.34] 0.45; 15.69] 0.07; 18.03] [0.60; 5.54]		
Favour other treatment Favour ICS+LTRA					

			Comp	Comparison: other vs 'ICS High+LABA'				
lodel)	OR	95%-CI	Treatment	(Random Effects Model)	OR	95%-CI		
-	1.00 1.74 [1 1.31 [0 1.09 [0 1.41 [0 2.15 [0 5.70 [1 2.33 [0 3.91 [2	1.07; 2.82] 0.98; 1.76] 0.92; 2.29] 0.92; 2.16] 0.68; 3.16] 0.76; 6.10] .25; 26.08] .12; 46.71] 2.11; 7.25]	ICS High+LABA ICS Low ICS Medium ICS High ICS Low+LABA ICS Medium+LABA ICS+LTRA LTRA ICS+Theophylline Placebo		1.00 1.19 0.89 0.74 0.96 0.68 1.46 3.88 - 1.59 2.66	[0.55; 2.56] [0.42; 1.90] [0.45; 1.23] [0.45; 2.02] [0.32; 1.46] [0.43; 5.00] [0.76; 19.89] [0.07; 34.08] [1.11; 6.35]		
10 ur ICS Me	dium+L/	٩ΒΑ	Favour of	0.1 0.5 1 2 10 her treatment Favour ICS H	igh+LA	ВА		

Treatment	Comparison: other vs 'LTRA' (Random Effects Model)	OR	95%-CI
LTRA ICS Low ICS Medium ICS High ICS Low+LABA ICS Medium+LABA ICS High+LABA ICS+LTRA ICS+Theophylline Placebo		1.00 0.31 0.23 0.19 0.25 0.18 0.26 0.38 0.41 0.69	$\begin{matrix} [0.07; & 1.29] \\ [0.05; & 1.04] \\ [0.04; & 0.97] \\ [0.06; & 1.09] \\ [0.04; & 0.80] \\ [0.05; & 1.32] \\ [0.05; & 2.23] \\ [0.01; & 11.36] \\ [0.15; & 3.09] \end{matrix}$
-			

Favour other treatment Favour LTRA

Quantifying heterogeneity / inconsistency: $tau^2 = 0$; tau = 0; $I^2 = 0\%$ [0.0%; 33.5%]

Tests of heterogeneity (within designs) and inconsistency (between designs):

Total - Q = 42.88, d.f. = 47, p-value = 0.6436

Within designs -Q = 16.34, d.f. = 22, p-value = 0.7986

Between designs – Q = 26.54, d.f. = 25, p-value = 0.3791

Figure S5. Network plot and rankings for the fixed effect network meta-analysis (ICS grouped when combined with LABA) for exacerbations – Analysis B1

A, Network plot

B, Posterior treatment rankings from fitted NMA model. Rank median (point), IQR (bold line), 95% interval (thin line). Lower rank is better.

C, Rank probability plots from fitted NMA model.

Figure S6. Network plot and rankings for the fixed effect network meta-analysis (ICS stratified when combined with LABA) for asthma control – Analysis A2

A, Posterior treatment rankings from fitted NMA model. Rank median (point), IQR (bold line), 95% interval (thin line). Lower rank is better.

B, Rank probability plots from fitted NMA model.

Figure S7 (parts 1 to 3). Asthma Control frequentist fixed effect network meta-analysis (OR, 95% Cr) with IPD (Analysis A2: 16 trials, 3027 participants, 2453 events)

Favour LTRA Favour other treatment
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
11 12	
12	
17	
14	
12	
10	
1/	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	

Treatment	Comparison: other vs 'Placebo (Common Effects Model)	o' OR	95%-CI
Placebo ICS Low ICS Medium ICS High ICS Low+LABA ICS Medium+LABA ICS High+LABA ICS+LTRA LTRA	0.1 0.5 1 2 10	1.00 1.37 1.58 1.14 1.50 1.68 2.14 - 2.39 0.33	[0.73; 2.56] [0.67; 3.75] [0.48; 2.73] [0.75; 3.01] [0.70; 3.99] [0.86; 5.33] [0.35; 16.39] [0.06; 1.69]

The probability of having good/total asthma control was modelled.

OR: odds ratio; CI: confidence interval; IPD: individual participant data; ICS: inhaled corticosteroid; LABA: Long-Acting β_2 -Agonist; LTRA: Leukotriene Receptor Antagonist

Quantifying heterogeneity / inconsistency: tau $^2 = 0.0834$; tau = 0.2887; I $^2 = 16\%$ [0.0%; 49.6%].

Tests of heterogeneity (within designs) and inconsistency (between designs):

Total - Q = 25.00, d.f. = 21, p-value = 0.2471Within designs - Q = 0.66, d.f. = 3, p-value = 0.8832

Between designs – Q = 24.34, d.f. = 18, p-value = 0.1441

Figure S8. Network plot and rankings for the fixed effect network meta-analysis (ICS grouped when combined with LABA) for asthma control – Analysis B2

A, Network plot

B, Posterior treatment rankings from fitted NMA model. Rank median (point), IQR (bold line), 95% interval (thin line). Lower rank is better.

C, Rank probability plots from fitted NMA model.

Figure S9. Network plot and rankings for the random-effects network meta-analysis (individual compounds) for asthma control – Analysis C2

A, Network plot

FP FF FF+VI 1.00 0.75 0.50 0.25 0.00 FP+MONTELUKAST FP+SAL FP+VI 1.00 Lopability 0.50 2 2 0.25 0.00 3 4 MONTELUKAST Placebo 1.00 0.75 0.50 0.25 0.00 4 5 Rank C, Rank probability plots from fitted NMA model.

B, Posterior treatment rankings from fitted NMA model. Rank median (point), IQR (bold line), 95% interval (thin line). Lower rank is better.

A, Posterior treatment rankings from fitted NMA model. Rank median (point), IQR (bold line), 95% interval (thin line). Lower rank is better.

B, Rank probability plots from fitted NMA model.

Figure S11 (parts 1 to 3). FEV₁ frequentist fixed effect network meta-analysis (MD, 95% CI) with IPD and AgD (Analysis A3: 23 trials, participants)

-0.01 [-0.49; 0.48]

-0.31 [-0.57; -0.04]

 Placebo

-0.5

-1

0.5

Favour ICS High Favour other treatment

Figure S12. Network plot and rankings for the random-effects network-meta-analysis (ICS grouped when combined with LABA) for FEV₁ – Analysis B3

A, Network plot

B, Posterior treatment rankings from fitted NMA model. Rank median (point), IQR (bold line), 95% interval (thin line). Lower rank is better.

Figure S13. Network plot and rankings for the fixed effect network meta-analysis (individual compounds) for FEV₁ – Analysis C3

A, Network plot

FF+VI FP FF 1.00 0.75 0.50 0.25 0.00 FP+Montelukast FP+SAL FP+VI 1.00 Lobability 0.50 2 2 0.25 0.00 2 3 MONTELUKAST Placebo 1.00 0.75 0.50 0.25 0.00 ź 4 5 i. 4 5 Rank C, Rank probability plots from fitted NMA model.

B, Posterior treatment rankings from fitted NMA model. Rank median (point), IQR (bold line), 95% interval (thin line). Lower rank is better.

Figure S14. Oral candidiasis (ICS dose stratified)

Study	Treatme Events T	nt 1 otal	Treatm Events	ent 2 Total	Odds Ratio	OR	95%-CI
					I		
Bornatain 2015		17	0	14		0 92	10 02: 44 401
Benstein 2013	0	10	1	14		0.00	
Bleecker 2014	0	19	1	19		0.32	[0.01; 8.26]
LI 2010	1	1//	0	173		2.95	[0.12; 72.89]
Malone 2005	1	102	4	101		0.24	[0.03; 2.19]
Oliver 2016 a	0	115	2	341		0.59	[0.03; 12.34]
Pearlman 2009	0	124	1	124		0.33	[0.01; 8.20]
Scott 2005	0	100	0	99		0.99	[0.02; 50.39]
Wechsler 2019	0	33	0	53		1.60	[0.03; 82.42]
Fixed effect model		687		924	-	0.56	[0.20; 1.58]
Random effects model						0.57	[0.19; 1.76]
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0\%$	= 0, <i>p</i> = 0.9	95					
group = ICS M vs ICS L							
Murray 2010		7	0	6		0.87	[0 01· 50 15]
Fixed offect model	0	÷	0	6		0.07	[0.01, 50.15]
Pandom offects model		'		0		0.07	[0.01, 50.15]
Random effects model						0.07	[0.01; 50.15]
Heterogeneity: not applicat	Die						
group = ICS H vs ICS L+	+LABA						
Wechsler 2019	1	45	0	53		3.61	[0.14; 90.74]
Fixed effect model		45		53		3.61	[0.14; 90.74]
Random effects model						3.61	[0.14; 90.74]
Heterogeneity: not applicat	ble						
group = ICS L vs ICS M	+I ΔΒΔ						
Wechsler 2019	0	33	0	10		0.31	[0 01. 16 79]
Fixed offect model	0	33	0	10		0.31	[0.01, 10.75]
Pandom offects model		33		10		0.31	[0.01, 10.79]
Random effects model						0.31	[0.01; 16.79]
Heterogeneity: not applicat	Die						
group = ICS H vs ICS M	+LABA						
Wechsler 2019	1	45	0	10		0.71	[0.03; 18.63]
Fixed effect model		45		10		0.71	[0.03; 18.63]
Random effects model						0.71	[0.03; 18.63]
Heterogeneity: not applicat	ble						
aroun = ICS L vs ICS H							
Bernstein 2015		17	1	11		0.20	[0 01· 5 37]
Weeheler 2010	0	22	1	21		0.20	[0.01, 5.37]
	0	33	I	31		0.30	
Pixed effect model		50		42		0.25	[0.02; 2.50]
Random effects model	_ 0 0 0					0.25	[0.02; 2.49]
Heterogeneity: $T = 0\%$, τ	= 0, p = 0.8	00					
group = ICS H vs ICS H	+LABA						
Wechsler 2019	1	45	1	31		0.68	[0.04; 11.33]
Fixed effect model		45		31		0.68	[0.04; 11.33]
Random effects model						0.68	[0.04; 11.33]
Heterogeneity: not applicat	ble						
	nlacebo						
Bloocker 2014		10	0	22		2 21	10 15 00 091
Eived effect model	1	10	0	20		3 91	[0.15, 99.00]
Pixed effect model		19		23		3.01	[0.15, 99.00]
Hotorogonoity: not annline						3.01	[0.15, 99.06]
neterogeneity: not applicat	JIG .						
				((
				Favo	bur i reament 1 Favour i reatm	ent 2	

Meta-analyses with a frequentist approach (Mantel-Haenszel) based on all available comparisons. All data included (IPD and AgD where possible).

OR > 1 favours treatment 2. IPD = individual participant data; AgD = aggregate data; ICS = inhaled corticosteroids; LABA = long-acting beta-agonists;

LTRA = leukotriene receptor antagonists; L = low dose; M = medium dose; H = high dose; OR = odds ratio; CI = confidence interval.

Figure S15. Oral candidiasis (any ICS dose combined with LABA)

2								
3	Trea	atm	ent 1 -	Treatme	ent 2			
4	Study Even	ts '	Total E	vents 1	otal	Odds Ratio	OR	95%-CI
5	group = ICS vs ICS+I ABA							
6	Bernstein 2015	0	17	1	25		0.47	[0.02; 12.14]
7	Bleecker 2014	0	19	1	19		0.32	[0.01; 8.26]
8	Li 2010 Malone 2005	1	177	0	173		2.95	[0.12; 72.89]
9	Oliver 2016 a	0	115	2	341	.	0.24	[0.03; 12.34]
10	Pearlman 2009	0	124	1	124		0.33	[0.01; 8.20]
10	Scott 2005	0	100	0	99		0.99	[0.02; 50.39]
11	Fixed effect model	0	687	I	94 976		0.93	[0.04, 23.40] [0.19: 1.46]
12	Random effects model					-	0.53	[0.18; 1.57]
13	Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, ρ	= 0.	96					
14	group = ICS M vs ICS+LABA							
15	Murray 2010	0	7	0	6		0.87	[0.01; 50.15]
16	Fixed effect model		7		6		0.87	[0.01; 50.15]
17	Random effects model						0.87	[0.01; 50.15]
17	Therefogeneity. Not applicable							
10	group = ICS H vs ICS L					_		
19	Bleecker 2012	1	29	1	14		0.46	[0.03; 8.02]
20	Fixed effect model	1	43 74	0	33 47		1.00	[0.09, 57.20] [0.13: 7.64]
21	Random effects model						0.93	[0.11; 7.86]
22	Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, ρ	= 0.	47					
23	group = ICS H vs ICS M							
24	Bleecker 2012	1	29	0	13		1.42	[0.05; 37.22]
25	Fixed effect model		29		13		1.42	[0.05; 37.22]
25	Random effects model						1.42	[0.05; 37.22]
20	neterogeneity, not applicable							
27	group = ICS H vs ICS+LABA							
28	Wechsler 2019	1	45	1	94		2.11	[0.13; 34.58]
29	Random effects model		40		94		2.11	[0.13; 34.58]
30	Heterogeneity: not applicable							,
31								
32	group = ICS H vs placebo Bleecker 2012	1	29	0	13		1 42	IO 05: 37 221
33	Fixed effect model		29	Ũ	13		1.42	[0.05; 37.22]
34	Random effects model						1.42	[0.05; 37.22]
2F	Heterogeneity: not applicable							
35	group = ICS L vs ICS M							
36	Bleecker 2012	1	14	0	13		3.00	[0.11; 80.39]
37	Lotvall 2014 b	0	17 31	1	11 · 24		0.20	[0.01; 5.37]
38	Random effects model		31		24		0.79	[0.05; 11.02]
39	Heterogeneity: $I^2 = 23\%$, $\tau^2 = 0.8$	504	, p = 0.2	5				
40	man = ICC alaaaha							
41	Berger 2006	0	197	1	99 -		0.17	[0.01: 4.12]
12	Bleecker 2012	1	14	0	13		3.00	[0.11; 80.39]
42	Bleecker 2014	0	19	0	23		1.21	[0.02; 63.58]
43	Lotvall 2014 b	0	1/ 247	0	18 153		1.06	[0.02; 56.24]
44	Random effects model		241		155		0.83	[0.14; 4.94]
45	Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, p	= 0.	66					
46	group = ICS Mive placebo							
47	Bleecker 2012	0	13	0	13		1.00	[0.02: 54.16]
48	Lotvall 2014 b	1	11	0	18		- 5.29	[0.20; 141.74]
49	Fixed effect model		24		31		2.77	[0.25; 31.09]
50	Random effects model Heterogeneity: $J^2 = 0\% r^2 = 0$ n	= 0	53				2.70	[0.21; 34.13]
50		0.						
51	group = ICS+LABA vs placeb	0		-		_		10.45
52	Bieecker 2014	1	19 19	0	23		3.81 3.81	[U.15; 99.08]
53	Random effects model		13		20		3.81	[0.15; 99.08]
54	Heterogeneity: not applicable					· · · · · · · · · · · · · · · · · · ·		
55					0		0	
56					Favo	our Treament 1 Favour Treatn	nent 2	
57								

Meta-analyses with a frequentist approach (Mantel-Haenszel) based on all available comparisons. All data included (IPD and AgD where possible).
OR > 1 favours treatment 2. IPD = individual participant data; AgD = aggregate data; ICS = inhaled corticosteroids; LABA = long-acting beta-agonists;
LTRA = leukotriene receptor antagonists; L = low dose; M = medium dose; H = high dose; OR = odds ratio; CI = confidence interval.

Figure S16. Cardiac disorders (ICS dose grouped)

3		Troatn	nont 1	Treatn	ont 2				
4 5	Study	Events	Total	Events	Total	Odds Ratio	OR		95%-CI
6	aroup = ICS L vs ICS+L	ABA				I			
7	Bateman 2014	0	102	1	111	x	0.36	[0.01:	8.921
8	Li 2010	13	177	9	173		1.44	[0.60]	3.471
9	Fixed effect model		279		284	-	1.29	[0.56;	2.96]
10	Random effects model					-	1.31	[0.56;	3.06]
10	Heterogeneity: $I^2 = 0\%$, τ^2	= 0, <i>p</i> = 0	0.41						
17									
12	group = ICS M vs ICS+L	.ABA							
15	De Blic 2009	2	153	0	150		4.97	[0.24;	104.33]
14	Stempel 2016 a	2	813	0	818		5.04	[0.24;	105.21]
15	Fixed effect model		966		968		5.01	[0.58;	42.99]
16	Random effects model	_ 0 /					5.01	[0.58;	42.99]
17	Heterogeneity: $I^{-} = 0\%$, τ^{-}	= 0, <i>p</i> = 0).99						
18	aroun - ICS H vs ICS I								
19	Bleecker 2012	0	29	1	14		0 15	[0 01·	3 001
20	Fixed effect model	0	29		14		0.15	[0.01,	3 991
21	Random effects model		20		14		0.15	[0.01.	3 991
22	Heterogeneity: not applicat	ole					0.10	[0.01,	0.00]
23									
24	group = ICS H vs ICS M								
25	Bleecker 2012	0	29	2	13		0.08	[0.00;	1.75]
25	Fixed effect model		29		13		0.08	[0.00;	1.75
20	Random effects model						0.08	[0.00;	1.75]
27	Heterogeneity: not applicat	ole						•	-
28									
29	group = ICS H vs placel	bo							
30	Bleecker 2012	0	29	0	13		0.46	[0.01;	24.31]
31	Fixed effect model		29		13		0.46	[0.01;	24.31]
32	Random effects model						0.46	[0.01;	24.31]
33	Heterogeneity: not applicat	ole							
34									
35	group = ICS L vs ICS M			0	10		0.00	10 44	00.001
36	Bleecker 2012	1	14	0	13	-	3.00	[0.11;	80.39]
27	Lotvall 2014 b	0	1/	0	11		0.66	[0.01;	35.52]
27	Pixed effect model		31		24		1.70	[0.15;	19.20]
38	Hotorogonoity: $l^2 = 0\% = r^2$	-0	56				1.02	[0.13;	20.55]
39	Theterogeneity. $T = 0.70, t$	- 0, <i>μ</i> - (5.50						
40	group = ICS L vs placet	00							
41	Bleecker 2012	1	14	0	13		3.00	[0.11;	80.39]
42	Lotvall 2014 b	0	17	1	18		0.33	[0.01;	8.76]
43	Oliver 2016 b	1	253	0	65		0.78	[0.03;	19.32]
44	Fixed effect model		284		96		0.93	[0.17;	5.20]
45	Random effects model						0.91	[0.14;	5.99]
46	Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0\%$	= 0, <i>p</i> = 0	0.64						
47									
48	group = ICS M vs place	bo							
49	Bleecker 2012	0	13	0	13		1.00	[0.02;	54.16]
50	Lotvall 2014 b	0	11	1	18		0.51	[0.02;	13.56]
50	Fixed effect model		24		31		0.66	[0.05;	7.92]
51	Random effects model	0					0.67	[0.05;	8.43]
52	Heterogeneity: $I^{-} = 0\%$, τ^{-}	= 0, p = (J.80						
53						0.01 0.1 1 10 100			
54					F ault	0.01 0.1 1 10 100	ont 0		
55					Favo	our rreament i Favour i reatmo	ent 2		

Meta-analysis with a frequentist approach (Mantel-Haenszel) based on all available comparisons. All data included (IPD only).

OR > 1 favours treatment 2. IPD = individual participant data; AgD = aggregate data; ICS = inhaled corticosteroids; LABA = long-acting beta-agonists;

LTRA = leukotriene receptor antagonists; L = low dose; M = medium dose; H = high dose; OR = odds ratio; CI = confidence interval

Figure S17. Clinically significant electrocardiogram (ECG) favorable changes (ICS dose grouped)

1	
2	
3	
4	
5	
6	
/	
a a	
1	0
1	1
1	2
1	3
1	4
1	5
1	6
1	7
1	8
1	9
2	1
2	ו ר
2	2 २
2	4
2	5
2	6
2	7
2	8
2	9
3	0
3	1
3	2
3	3
3	4 7
3	5
כ ר	7
ך א	, 8
3	9
4	0
4	1
4	2
4	3
4	4
4	5
4	6
4	7
4	ъ С
4	9 0
5	1
5	2
5	3
5	4
5	5

	Treatm	nent 1	Treatn	nent 2			
Study	Events	Total	Events	Total	Odds Ratio	OR	95%-CI
group = ICS L vs ICS+L	ABA				1		
Bateman 2014	26	102	39	111		0.63	[0.35; 1.14]
Bleecker 2014	0	19	1	18		0.30	[0.01; 7.83]
Li 2010	1	171	3	169		0.33	[0.03; 3.16]
Scott 2005	19	100	12	99		1.70	[0.78; 3.72]
Fixed effect model		392		397	+	0.85	[0.54; 1.32]
Random effects model					-	0.84	[0.40; 1.77]
Heterogeneity: $I^2 = 41\%$, τ^2	2 = 0.214	3, p = 0	0.17				
group = ICS L vs placeb	00						
Bleecker 2014	0	19	3	23		0.15	[0.01; 3.10]
Fixed effect model		19		23		0.15	[0.01; 3.10]
Random effects model						0.15	[0.01; 3.10]
Heterogeneity: not applicat	ole						
group = ICS+LABA vs p	lacebo						
Bleecker 2014	1	18	3	23		0.39	[0.04; 4.13]
Fixed effect model		18		23		0.39	[0.04; 4.13]
Random effects model						0.39	[0.04; 4.13]
Heterogeneity: not applicat	ole						-
group = ICS M vs ICS+L	ABA						
Lotvall 2014 a2	1	9	1	16		1.88	[0.10; 34.13]
Fixed effect model		9		16		1.88	[0.10; 34.13]
Random effects model						1.88	[0.10; 34.13]
Heterogeneity: not applicat	ble						
group = ICS H vs ICS+L	ABA						
O'Byrne 2014	1	7	0	3		1.62	[0.05; 51.11]
Fixed effect model		7		3		1.62	[0.05; 51.11]
Random effects model						1.62	[0.05; 51.11]
Heterogeneity: not applicat	ole						
				0	.01 0.1 1 10	100	
				Favo	our Treament 1 Favour Trea	tment 2	

Meta-analysis with a frequentist approach (Mantel-Haenszel) based on all available comparisons. All data included (IPD only). OR > 1 favours treatment 2 IPD = individual participant data; AgD = aggregate data; ICS = inhaled corticosteroids; LABA = long-acting beta-agonists; LTRA = leukotriene receptor antagonists; L = low dose; M = medium dose; H = high dose; OR = odds ratio; CI = confidence interval.

Figure S18. Clinically significant electrocardiogram (ECG) unfavorable changes (ICS dose grouped)

3								
4		Treatm	ent 1	Treatm	ent 2			
5	Study	Events	Total	Events	Total	Odds Ratio	OR	95%-CI
6	,						••••	
7	group = ICS L vs ICS+LA	BA						
8	Bateman 2014	0	102	0	111		1.09	[0.02; 55.33]
9	Bleecker 2014	0	19	2	18		0.17	[0.01; 3.78]
10	Li 2010	19	171	24	169		0.76	[0.40; 1.44]
11	Scott 2005	0	100	0	99		0.99	[0.02; 50.39]
12	Fixed effect model		392		397	-	0.71	[0.39; 1.30]
12	Random effects model					-	0.72	[0.39; 1.34]
17	Heterogeneity: $I^2 = 0\%$, $\tau^2 =$	0, p = 0	.82					
14		_						
15	group = ICS L vs placeb	•	10	0	22	-	0.00	[0.04, 4.00]
10	Bieecker 2014	0	19	Z	23		0.22	[0.01; 4.88]
17	Pixed effect model		19		23		0.22	
18	Hotorogonoity: not applicable	0					0.22	[0.01; 4.00]
19	Therefogeneity. Not applicable	e						
20	aroup = ICS+I ABA vs pl	acebo						
21	Bleecker 2014	2	18	2	23		1.31	[0 17· 10 35]
22	Fixed effect model	2	18	2	23		1.31	[0.17: 10.35]
23	Random effects model		10		20		1.31	[0.17: 10.35]
24	Heterogeneity: not applicabl	е					ner	
25	······································	-						
26	group = ICS M vs ICS+L	ABA						
27	Lotvall 2014 a2	2	9	0	16		— 11.00	[0.47; 258.41]
28	Fixed effect model		9		16		- 11.00	[0.47; 258.41]
29	Random effects model						- 11.00	[0.47; 258.41]
30	Heterogeneity: not applicabl	е						
31								
27	group = ICS H vs ICS+LA	ABA						
32	O'Byrne 2014	1	7	0	3		1.62	[0.05; 51.11]
33	Fixed effect model		7		3		1.62	[0.05; 51.11]
34	Random effects model						1.62	[0.05; 51.11]
35	Heterogeneity: not applicabl	е						
36								
37					-		0	
38					⊦av	our Treament 1 Favour Trea	tment 2	

Meta-analysis with a frequentist approach (Mantel-Haenszel) based on all available comparisons. All data included (IPD only). OR > 1 favours treatment 2. IPD = individual participant data; AgD = aggregate data; ICS = inhaled corticosteroids; LABA = long-acting beta-agonists; LTRA = leukotriene receptor antagonists; L = low dose; M = medium dose; H = high dose; OR = odds ratio; CI = confidence interval.

Figure S19. Heart rate (HR) change (last visit vs baseline) (ICS dose grouped)

4 5	Study	۲ Total	Freatme Mean	ent 1 SD	T Total	reatmo Mean	ent 2 SD	Mean Difference	MD	95%-CI
6	•									
7	group = ICS L vs ICS+L	ABA								
, Q	Bleecker 2014	14	-1.40	9.0	15	2.70	10.6		-4.10	[-11.24; 3.04]
0	Li 2010	171	0.40	13.2	169	1.10	13.3		-0.70	[-3.52; 2.12]
9	Lotvall 2014 a1	4	-2.00	9.1	13	4.50	13.0		-6.50	[-17.88; 4.88]
10	Oliver 2016 a	98	0.40	11.8	294	0.30	12.5	<u>†</u>	0.10	[-2.64; 2.84]
11	Scott 2005	94	-0.50	13.1	93	-0.50	14.3		0.00	[-3.93; 3.93]
12	Pandom offects model	301			304			I	-0.50	[-2.27; 1.10]
13	Heterogeneity: $l^2 = 0\% r^2$	= 0 n	- 0 68					1	-0.50	[-2.27, 1.10]
14	Theterogeneity. 7 = 070, t	- 0, p	- 0.00							
15	group = ICS L vs place	bo								
16	Bleecker 2014	14	-1.40	9.0	21	0.60	11.5		-2.00	[-8.81: 4.81]
17	Fixed effect model	14			21				-2.00	[-8.81; 4.81]
18	Random effects model								-2.00	[-8.81; 4.81]
10	Heterogeneity: not applica	ble								
19										
20	group = ICS+LABA vs	placeb	o							
21	Bleecker 2014	15	2.70	10.6	21	0.60	11.5		2.10	[-5.18; 9.38]
22	Fixed effect model	15			21				2.10	[-5.18; 9.38]
23	Random effects model	hla							2.10	[-5.18; 9.38]
24	Heterogeneity: not applica	ble								
25	aroun - ICS M ve ICS+I									
26	l otvall 2014 a1	2ADA 8	3 10	19.8	15	5 60	159		-2 50	[-18 41: 13 41]
27	Murray 2010	5	4 20	16.5	5	3 40	7 6		0.80	[-15 12 16 72]
-, 78	Fixed effect model	13	1.20	10.0	20	0.10	1.0		-0.85	[-12.10: 10.40]
20	Random effects model								-0.85	[-12.10; 10.40]
29	Heterogeneity: $I^2 = 0\%$, τ^2	= 0, p =	= 0.77							
30										
31	group = ICS H vs ICS+L	ABA								
32	O'Byrne 2014	6	-3.20	7.7	3	0.70	19.7		-3.90	[-27.03; 19.23]
33	Fixed effect model	6			3				-3.90	[-27.03; 19.23]
34	Random effects model								-3.90	[-27.03; 19.23]
35	Heterogeneity: not applica	ble						· · · · · · · · · · · · · · · · · · ·		
36								20 10 0 10 22		
37								-20 -10 0 10 20		
38								brauycardia tachycardia		
50										

Meta-analysis with a frequentist approach (inverse variance) based on all available comparisons. All data included (IPD only).

When MD > 0, treatment 1 increases HR compared to treatment 2; when MD < 0, treatment 1 decreases HR compared to treatment 2.

IPD = individual participant data; AgD = aggregate data; ICS = inhaled corticosteroids; LABA = long-acting beta-agonists; LTRA = leukotriene receptor antagonists; L = low dose; M = medium dose; H = high dose; MD = mean difference; SD = standard deviation; CI = confidence interval.

Figure S20 (part 1). Infections and infestations (ICS dose grouped)

3		Trootm	ont 1	Trootm	ont 2			
4	Study	Evonte	Total	Evonte	Total	Odde Patio		95% CI
5	Study	Events	TOLAI	Events	ΤΟΙΔΙ	Ouus Ratio	UK	95%-CI
6	aroup = ICS vs ICS+I					1		
7	Bateman 2014	- ADA 35	102	57	111		0 4 9	10 28· 0 861
8	Bernstein 2015	3	17	3	25		1.57	[0.28, 0.00]
9	Bleecker 2014	2	19	1	19		2 12	[0.20, 0.01]
10	Lenney 2013	7	19	9	23		0.91	[0.26:3.18]
11	Li 2010	68	177	54	173	-	1.37	[0.20, 0.10] [0.88, 2.14]
12	L otvall 2014 a1	0	5	4	15		0.23	[0.00, 2.14]
13	Malone 2005	23	102	21	101		1.11	[0.57: 2.16]
14	Morice 2008	52	207	112	415	+	0.91	[0.62: 1.33]
15	Murray 2011	8	117	8	113		0.96	[0.35: 2.66]
16	Oliver 2016 a	22	115	91	341		0.65	[0.39, 1.10]
17	Pearlman 2009	12	124	13	124		0.91	[0.40: 2.09]
10	Stempel 2016 b	0	15	2	117		1.49	[0.07: 32.50]
10	Tal 2002	32	138	43	148		0.74	[0.43: 1.25]
19	Wechsler 2019	2	33	5	94		1.15	[0.21: 6.22]
20	Fixed effect model	_	1190	-	1819	•	0.87	[0.73: 1.05]
21	Random effects model					•	0.88	[0.73; 1.06]
22	Heterogeneity: $I^2 = 0\%$, τ^2	= 0, p = 0	.52					
23		-, -						
24	group = ICS M vs ICS+I	LABA						
25	De Blic 2009	66	153	59	150	÷	1.17	[0.74; 1.85]
26	Gappa 2009	30	133	30	129	- + -	0.96	[0.54; 1.71]
27	Lotvall 2014 a2	3	9	5	17		1.20	[0.21; 6.80]
28	Stempel 2016 a	2	813	7	818		0.29	[0.06; 1.38]
29	Stempel 2016 b	0	50	2	117		0.46	[0.02; 9.70]
30	Zimmerman 2004	61	101	123	201	+	0.97	[0.59; 1.58]
31	Fixed effect model		1259		1432	+	0.98	[0.75; 1.30]
32	Random effects model					+	1.00	[0.75; 1.32]
33	Heterogeneity: $I^2 = 0\%$, τ^2	= 0, p = 0	.67					
34								
35	group = ICS H vs ICS L							
36	Bleecker 2012	4	29	4	14		0.40	[0.08; 1.92]
37	Stempel 2016 b	0	40	0	15		0.38	[0.01; 20.14]
38	Wechsler 2019	4	45	2	33		1.51	[0.26; 8.79]
39	Woodcock 2014	0	6	2	7		0.17	[0.01; 4.33]
40	Fixed effect model		120		69		0.59	[0.22; 1.61]
41	Random effects model						0.59	[0.20; 1.70]
42	Heterogeneity: $I^2 = 0\%$, τ^2	= 0, <i>p</i> = 0	.58			· · · · · · · · · · · · · · · · · · ·	1	
43								
11					_ (0.01 0.1 1 10 10	00	
 15					Fav	our Treament 1 Favour Treat	ment 2	
-H-J								

Meta-analysis with a frequentist approach (Mantel-Haenszel) based on all available comparisons. All data included (IPD and AgD where possible).

OR > 1 favours treatment 2. IPD = individual participant data; AgD = aggregate data; ICS = inhaled corticosteroids; LABA = long-acting beta-agonists; LTRA = leukotriene receptor antagonists; L = low dose; M = medium dose; H = high dose; OR = odds ratio; CI = confidence interval.

Figure S20 (part 2). Infections and infestations (ICS dose grouped)

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
10
10
19 20
20 21
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
40 ⊿7
-+7 /10
40 40
49 50
50
51
52
53
54

	Study	Treatm	ent 1	Treatm Events	ent 2	Odde Ratio	OP	95%-CI
	otady	Lventa	Total	Lventa	Total	Odds Natio	ÖK	0070-01
	group = ICS H vs ICS M					_		
	Bleecker 2012	4	29	1	13		1.92	[0.19; 19.09]
	Stempel 2016 b	0	40	0	50	*	1.25	[0.02; 64.22]
	Fixed effect model		69		63		1.74	[0.24; 12.43]
	Random effects model						1.72	[0.24; 12.52]
	Heterogeneity: $I^2 = 0\%$, $\tau^2 =$	= 0, <i>p</i> = 0	.85					
	group = ICS H vs ICS+L	ABA						
	Akpinarli 1990	0	16	0	16		1.00	[0.02; 53.46]
	O Byrne 2014	2	7	1	3		0.80	[0.04; 14.64]
	Russell 1995	7	107	7	99		0.92	[0.31: 2.72]
	Stempel 2016 b	0	40	2	117		0.57	[0.03; 12.13]
	Wechsler 2019	4	45	5	94		1.74	[0.44: 6.81]
	Fixed effect model		215		329	—	1.07	[0.50; 2.31]
	Random effects model					—	1.09	[0.50; 2.35]
1	Heterogeneity: $I^2 = 0\%$, $\tau^2 =$	= 0, <i>p</i> = 0	.94					. / .
	aroun - ICS H vs placet							
	Bloocker 2012	ло л	20	2	12		0 52	IO 10: 2 821
	Fixed offect model	4	29	3	13		0.55	[0.10, 2.02]
	Pixed effect model		29		15		0.53	
	Heterogeneity: not applicab	le					0.55	[0.10, 2.02]
1	neterogeneity. not applicat							
	group = ICS L vs ICS M							
	Bleecker 2012	4	14	1	13		4.80	[0.46; 50.16]
	Lotvall 2014 b	6	17	5	11		0.65	[0.14; 3.08]
	Shapiro 2001	29	90	34	93		0.82	[0.45; 1.52]
	Stempel 2016 b	0	15	0	50		- 3.26	[0.06; 171.09]
	Fixed effect model		136		167	+	0.93	[0.54; 1.59]
	Random effects model					+	0.91	[0.52; 1.57]
	Heterogeneity: $I^2 = 0\%$, $\tau^2 =$	= 0, <i>p</i> = 0	.46					
	group = ICS L vs placeb	0						
1	Berger 2006	43	197	25	99		0.83	[0.47: 1.45]
	Bleecker 2012	4	14		13		1.33	[0.24: 7.56]
	Bleecker 2014	2	19	3	23		0.78	[0.12; 5.26]
1	Lotvall 2014 b	6	17	5	18		1.42	[0.34; 5.94]
	Oliver 2016 b	50	253	12	65		1.09	[0.54; 2.19]
	Shapiro 2001	29	90	29	91		1.02	[0.54, 1.90]
	Fixed effect model		590		309	•	0.98	[0.70: 1.37]
	Random effects model						0.98	[0.70: 1.37]
	Heterogeneity: $I^2 = 0\% \tau^2$ =	= 0, p = 0	.97			Ĭ		,
		-, -						
					(0.01 0.1 1 10 10	D	
1					Favo	our Treament 1 Favour Treatm	nent 2	

Meta-analysis with a frequentist approach (Mantel-Haenszel) based on all available comparisons. All data included (IPD and AgD where possible). OR > 1 favours treatment 2. IPD = individual participant data; AgD = aggregate data; ICS = inhaled corticosteroids; LABA = long-acting beta-agonists; LTRA = leukotriene receptor antagonists; L = low dose; M = medium dose; H = high dose; OR = odds ratio; CI = confidence interval.

Figure S20 (part 3). Infections and infestations (ICS dose grouped)

3								
4		Treatm	ent 1	Treatm	ent 2			
5	Study	Events	Total	Events	Total	Odds Ratio	OR	95%-CI
6	,						••••	
7	group = ICS M vs place	bo						
8	Bleecker 2012	1	13	3	13 -		0.28	[0.02; 3.10]
9	Lotvall 2014 b	5	11	5	18		2.17	[0.45; 10.44]
10	Shapiro 2001	34	93	29	91		1.23	[0.67; 2.27]
11	Fixed effect model		117		122	-	1.20	[0.70; 2.08]
12	Random effects model					-	1.22	[0.70; 2.13]
13	Heterogeneity: $I^2 = 0\%$, $\tau^2 =$	= 0, <i>p</i> = 0.	38					
14								
15	group = ICS+LABA vs I	CS+LTRA	4	_				
16	Lenney 2013	9	23	7	21		1.29	[0.37; 4.42]
17	Fixed effect model		23		21		1.29	[0.37; 4.42]
18	Random effects model						1.29	[0.37; 4.42]
19	Heterogeneity: not applicat	bie						
20	aroup = CS vs $ CS+ $	трл						
21	Lenney 2013	7	19	7	21		1 17	[0.32: 4.28]
27	Fixed effect model	'	19	'	21		1.17	[0.32: 4.28]
22	Random effects model						1.17	[0.32: 4.28]
23	Heterogeneity: not applicat	ole						
27								
25	group = ICS+LABA vs p	lacebo						
20	Bleecker 2014	1	19	3	23		0.37	[0.04; 3.89]
27	Fixed effect model		19		23		0.37	[0.04; 3.89]
28	Random effects model						0.37	[0.04; 3.89]
29	Heterogeneity: not applicat	ole						
30						1 1 1 1 1		
31						0.1 0.5 1 2 10		
32					Favo	our Treament 1 Favour Trea	tment 2	
77								

Meta-analysis with a frequentist approach (Mantel-Haenszel) based on all available comparisons. All data included (IPD and AgD where possible). OR > 1 favours treatment 2. IPD = individual participant data; AgD = aggregate data; ICS = inhaled corticosteroids; LABA = long-acting beta-agonists; LTRA = leukotriene receptor antagonists; L = low dose; M = medium dose; H = high dose; OR = odds ratio; CI = confidence interval.

Figure S21 (part 1). Neurological disorders (ICS dose grouped)

3		Troatm	ont 1	Troatm	ont 2			
4	Study	Events	Total	Events	Total	Odds Ratio	OR	95%-CI
5	oludy	Lionto	lotai	Lionto	lotai	oudo huito	U.	
6	group = ICS L vs ICS+L	ABA						
7	Bateman 2014	14	102	20	111		0.72	[0.34; 1.52]
8	Bernstein 2015	0	17	6	25		0.09	[0.00; 1.63]
9	Bleecker 2014	0	19	1	19		0.32	[0.01; 8.26]
10	Lenney 2013	5	19	1	23	<u>†</u>	7.86	[0.83; 74.48]
10	Li 2010	30	1//	28	1/3		1.06	
17	Lotvall 2014 a l Malone 2005	20	0 102	20	101		2.02	
12	Murray 2011	20	117	20	113	_ <u>_</u>	1 11	[0.49, 1.97]
13	Oliver 2016 a	8	115	26	341		0.91	[0.40: 2.06]
14	Pearlman 2009	9	124	4	124	+	2.35	[0.70; 7.84]
15	Tal 2002	6	138	9	148		0.70	[0.24; 2.03]
16	Wechsler 2019	2	33	5	94		1.15	[0.21; 6.22]
17	Fixed effect model		96 8		1287	+	0.98	[0.74; 1.30]
18	Random effects model					•	0.99	[0.74; 1.33]
19	Heterogeneity: $I^2 = 0\%$, τ^2	= 0, <i>p</i> = 0	.54					
20								
21	group = 1CS M VS 1CS+L	-ABA 20	153	33	150		0.86	IO 50: 1 511
22	Ganna 2009	50	133	33 4	120	_ _	0.00	[0.50, 1.51]
23	Lotvall 2014 a2	0	9	2	17		0.33	[0.01; 7.55]
24	Martin 2020	Õ	5	1	6		0.33	[0.01: 10.11]
25	Stempel 2016 a	0	813	3	818		0.14	[0.01; 2.78]
25	Fixed effect model		1113		1120	+	0.82	[0.51; 1.32]
20	Random effects model					+	0.85	[0.52; 1.39]
27	Heterogeneity: $I^2 = 0\%$, τ^2	= 0, <i>p</i> = 0	.60					
28								
29	group = ICS H vs ICS L	0	20	0			0.04	IO 40. EO COL
30	Bleecker 2012	2	29	0	14		2.64	[0.12; 58.66]
31	Fixed effect model	5	43 74	2	33 47		1.11	[0.17, 7.03]
32	Random effects model						1.39	[0.28: 6.80]
33	Heterogeneity: $I^2 = 0\%$. τ^2	$= 0, \rho = 0$.64					[0.20, 0.00]
34	, , , , , , ,	-,,-						
35	group = ICS H vs ICS M							
36	Bleecker 2012	2	29	1	13		0.89	[0.07; 10.77]
37	Fixed effect model		29		13		0.89	[0.07; 10.77]
38	Random effects model						0.89	[0.07; 10.77]
30	Heterogeneity: not applical	ble						
40								
40	Akpinarli 1990		16	0	16		1 00	[0.02: 53.46]
41	Russell 1995	12	107	23	99		0.42	[0.20: 0.89]
42	Wechsler 2019	3	45	5	94		1.27	[0.29; 5.57]
43	Fixed effect model		168		209	-	0.53	[0.27; 1.04]
44	Random effects model					-	0.54	[0.28; 1.04]
45	Heterogeneity: $I^2 = 0\%$, τ^2	= 0, <i>p</i> = 0	.40					
46		_						
47	group = ICS H vs place	bo		•	40	_	0.45	10 44 54 701
48	Bleecker 2012	2	29	0	13		2.45	[0.11; 54.78]
49	Pixed effect model		29		13		2.45	[0.11; 54.78]
50	Heterogeneity: not applical	ble					2.40	[0.11, 04.70]
51	. storegenery. not applica							
52						0.01 0.1 1 10 100		
53					Favo	our Treament 1 Favour Treatm	nent 2	
54								
- I								

Meta-analysis with a frequentist approach (Mantel-Haenszel) based on all available comparisons. All data included (IPD and AgD where possible). OR > 1 favours treatment 2. IPD = individual participant data; AgD = aggregate data; ICS = inhaled corticosteroids; LABA = long-acting beta-agonists; LTRA = leukotriene receptor antagonists; L = low dose; M = medium dose; H = high dose; OR = odds ratio; CI = confidence interval

Figure S21 (part 2). Neurological disorders (ICS dose grouped)

3									
4	o	Treatm	ent 1	Treatm	ent 2				0 - 0 / 0
5	Study	Events	lotal	Events	Iotal	Odds Ratio	OR		95%-CI
6	aroup = ICS L vs ICS M								
7	Bleecker 2012	0	14	1	13		0.29	[0 01·	7 701
, Q	Lotvall 2014 b	2	17	2	11		0.60	[0.07:	5.031
0	Shapiro 2001	4	90	6	93		0.67	[0.18:	2.47
9	Fixed effect model		121		117		0.59	[0.21;	1.69
10	Random effects model						0.60	[0.21;	1.72
11	Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0\%$	= 0, p = 0	.89						
12									
13	group = ICS L vs place	00				_			
14	Berger 2006	17	197	14	99		0.57	[0.27;	1.22]
15	Bleecker 2012	0	14	0	13		0.93	[0.02;	50.30]
16	Bleecker 2014	0	19	2	23		0.22	[0.01;	4.88]
17	Lotvall 2014 b	2	17	1	18	•	2.27	[0.19;	27.58]
17	Oliver 2016 D Shopiro 2001	9	203	1	00		- 5.09	[0.29;	20.00
18	Fixed offect model	4	500	1	300		4.18	[0.40,	1 671
19	Random effects model		330		303		1 02	[0.31, [0.41·	2 491
20	Heterogeneity: $I^2 = 17\% \tau^2$	= 0.2415	b = 0	31		T	1.02	[0.41,	2.40]
21		0.2110	, p - 0						
22	group = ICS M vs place	bo							
23	Bleecker 2012	1	13	0	13		- 3.24	[0.12;	87.13]
24	Lotvall 2014 b	2	11	1	18		3.78	[0.30;	47.56]
25	Shapiro 2001	6	93	1	91		6.21	[0.73;	52.62]
26	Fixed effect model		117		122		4.80	[1.12;	20.60]
20	Random effects model						4.63	[1.07;	19.98]
27	Heterogeneity: $I^2 = 0\%$, τ^2	= 0, p = 0	.93						
28									
29	group = ICS L vs ICS+L		40	7	04	_	0.74	FO 4 0.	2 201
30	Lenney 2013	5	19	/	21		0.71	[0.18;	2.80]
31	Random effects model		19		21		0.71	[0.10, [0.18·	2.00]
32	Heterogeneity: not applicab	le					0.71	[0.10,	2.00]
33	neterogeneity. net applicat								
34	aroup = ICS+LABA vs l	CS+LTR	Α						
25	Lennev 2013	1	23	7	21		0.09	[0.01;	0.821
35	Fixed effect model		23		21		0.09	[0.01;	0.82
30	Random effects model						0.09	[0.01;	0.82
3/	Heterogeneity: not applicat	le							
38									
39	group = ICS+LABA vs p	lacebo		_		_			
40	Bleecker 2014	1	19	2	23		0.58	[0.05;	6.98]
41	Fixed effect model		19		23		0.58	[0.05;	6.98]
42	Random effects model						0.58	[0.05;	6.98]
43	Heterogeneity: not applicat	ne							
10	aroun = ICS+I TRA ve la	S+The	onhylli	ine					
 A E	Kondo 2006	1	39	0	36		- 2.84	[0.11	72,081
45	Fixed effect model		39	0	36		- 2.84	0.11	72.081
46	Random effects model						- 2.84	[0.11	72.081
47	Heterogeneity: not applicat	le						- /	
48					I				
49					0.0	01 0.1 1 10	100		
50					Favo	our Treament 1 Favour Treat	ment 2		

Meta-analysis with a frequentist approach (Mantel-Haenszel) based on all available comparisons. All data included (IPD and AgD where possible). OR > 1 favours treatment 2. IPD = individual participant data; AgD = aggregate data; ICS = inhaled corticosteroids; LABA = long-acting beta-agonists; $LTRA = leukotriene \ receptor \ antagonists; \ L = low \ dose; \ M = medium \ dose; \ H = high \ dose; \ OR = odds \ ratio; \ CI = confidence \ interval.$

Figure S22. Pneumonia (ICS dose grouped)

4		Treatm	nent 1	Treatm	nent 2			
6	Study	Events	Total	Events	Total	Odds Ratio	OR	95%-CI
7	-							
/	group = ICS L vs ICS+LA	ABA						
8	Bateman 2014	0	102	2	111		0.21	[0.01; 4.50]
9	Oliver 2016 a	0	115	1	341		0.98	[0.04; 24.29]
10	Pearlman 2009	1	124	0	124		3.02	[0.12; 74.96]
11	Stempel 2016 b	0	15	1	117		2.51	[0.10; 64.24]
12	Fixed effect model		356		693		0.91	[0.22; 3.80]
13	Random effects model						1.07	[0.22; 5.23]
14	Heterogeneity: $I^2 = 0\%$, $\tau^2 =$	= 0, p = 0	0.62					
15								
16	group = ICS M vs ICS+L	ABA						
17	Bisgaard 2006	0	106	2	235		0.44	[0.02; 9.21]
18	De Blic 2009	1	153	0	150		2.96	[0.12; 73.25]
10	Stempel 2016 a	1	813	5	818		0.20	[0.02; 1.72]
19	Stempel 2016 b	0	50	1	117		0.77	[0.03; 19.20]
20	Fixed effect model		1122		1320		0.49	[0.14; 1.68]
21	Random effects model						0.50	[0.13; 2.01]
22	Heterogeneity: $I^2 = 0\%$, $\tau^2 =$	= 0, p = 0	0.58					
23								
24	group = ICS H vs ICS L							
25	Stempel 2016 b	0	40	0	15		0.38	[0.01; 20.14]
26	Fixed effect model		40		15		0.38	[0.01; 20.14]
27	Random effects model						0.38	[0.01; 20.14]
2,	Heterogeneity: not applicab	le						
20								
29	group = ICS H vs ICS M				-	L		
30	Stempel 2016 b	0	40	0	50		1.25	[0.02; 64.22]
31	Fixed effect model		40		50		1.25	[0.02; 64.22]
32	Random effects model						1.25	[0.02; 64.22]
33	Heterogeneity: not applicab	le						
34								
35	group = ICS H vs ICS+L/	ABA	10					
36	Stempel 2016 b	0	40	1	117		0.96	[0.04; 24.01]
37	Fixed effect model		40		117		0.96	[0.04; 24.01]
38	Random effects model						0.96	[0.04; 24.01]
20	Heterogeneity: not applicab	le						
39 40	100 1							
40	group = ICS L vs ICS M	•	4.5		50		0.00	10 00 474 001
41	Stempel 2016 b	0	15	0	50		3.26	[0.06; 1/1.09]
42	Fixed effect model		15		50		3.26	[0.06; 171.09]
43	Random effects model						3.20	[0.06; 1/1.09]
44	neterogeneity: not applicab	le						
45						0.01 0.1 1 10 10	2	
46					For	CUT U.I I IU IU	Jont 2	
47					rav		ient Z	

Meta-analysis with a frequentist approach (Mantel-Haenszel) based on all available comparisons. All data included (IPD and AgD where possible). OR > 1 favours treatment 2. IPD = individual participant data; AgD = aggregate data; ICS = inhaled corticosteroids; LABA = long-acting beta-agonists; LTRA = leukotriene receptor antagonists; L = low dose; M = medium dose; H = high dose; OR = odds ratio; CI = confidence interval.

PRISMA 2020 Checklist

Section and Topic	ltem #	Checklist item	Location where item is reported
TITLE			
Title	1	Identify the report as a systematic review.	Page 1
ABSTRACT	I		
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	Page 2
	1		
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	Pages 3-4
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	Page 4
METHODS	1		
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	Pages 5-6
Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	Pages 4-5
3 Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	Supplementary methods
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	Pages 6-7
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	Page 7
5 Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	Page 6
3	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	Pages 6, 9, 16
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	Page 7
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	Page 7
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	Pages 7-8
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	Pages 7-8
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	Pages 7-8
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	Pages 7-8
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	Pages 7-8
2	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	Pages 7-8
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	NA

PRISMA 2020 Checklist

3 4	Section and Topic	ltem #	Checklist item	Location where item is reported								
5 6	Certainty assessment	15	5 Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.									
/	RESULTS											
0 9 10	Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	Page 9								
11		16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	Page 9								
12 13	Study characteristics	17	Cite each included study and present its characteristics.	Tables S3, S4								
14 15	Risk of bias in studies	18	Present assessments of risk of bias for each included study.	Pages 9-10, Table S6								
16 17 18 19 20	Results of individual studies	Sults of vidual studies 19 For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.										
21	Results of	20a	a For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.									
22 23	syntheses	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	Results section								
24		20c	Present results of all investigations of possible causes of heterogeneity among study results.	Results section								
25		20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	Results Section								
27	Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	NA								
28 29 30 31	Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	Results section (presentation of confidence intervals and credibility intervals)								
33	DISCUSSION											
34	Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	Page 13								
35	-	23b	Discuss any limitations of the evidence included in the review.	Pages 13-14								
36		23c	Discuss any limitations of the review processes used.	Pages 13-14								
3/		23d	Discuss implications of the results for practice, policy, and future research.	Page 14-15								
39	OTHER INFORMAT	ΓΙΟΝ										
40 41 42	Registration and protocol	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	Page 4 PROSPERO CRD42019127599								
43 44 45		24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	Page 4 Reference 16								

PRISMA 2020 Checklist

3	Section and Topic	ltem #	Checklist item	Location where item is reported
5		24c	Describe and explain any amendments to information provided at registration or in the protocol.	Page 12
0 7	Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	Page 16
8 9	Competing interests	26	Declare any competing interests of review authors.	Page 16
10 11 12	Availability of data, code and other materials	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	Page 16
13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	From: Page MJ, McKer	nzie JE, E	30ossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71 For more information, visit: http://www.prisma-statement.org/	. doi: 10.1136/bmj.n71
38 39				
40				
41 42				
43				
44				
45				
46 47				