
 

 

 

P
R

IF
Y

S
G

O
L

 B
A

N
G

O
R

 /
 B

A
N

G
O

R
 U

N
IV

E
R

S
IT

Y
 

 

Estimating the abundance of benthic invertebrates from trap-catch data

Hiddink, Jan Geert; Coleman, Matt; Brouwer, Stephen; Bloor, Isobel; Jenkins,
Stuart

ICES Journal of Marine Science

DOI:
10.1093/icesjms/fsad178

Published: 01/01/2024

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA):
Hiddink, J. G., Coleman, M., Brouwer, S., Bloor, I., & Jenkins, S. (2024). Estimating the
abundance of benthic invertebrates from trap-catch data. ICES Journal of Marine Science, 81(1),
86-96. https://doi.org/10.1093/icesjms/fsad178

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or
other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal
requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private
study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to
the work immediately and investigate your claim.

 28. Apr. 2024

https://doi.org/10.1093/icesjms/fsad178
https://research.bangor.ac.uk/portal/en/researchoutputs/estimating-the-abundance-of-benthic-invertebrates-from-trapcatch-data(4972e216-7b95-4e97-93d2-6ac99fc7edd5).html
https://research.bangor.ac.uk/portal/en/researchers/jan-geert-hiddink(cea4df09-6b52-4449-a3ed-44f9d9b54dd1).html
https://research.bangor.ac.uk/portal/en/researchers/matt-coleman(67726c98-af3e-4c19-859e-e6cf30a506db).html
https://research.bangor.ac.uk/portal/en/researchers/isobel-bloor(cf432892-9cdd-4710-9f0b-dc5b7f8d06bc).html
https://research.bangor.ac.uk/portal/en/researchers/stuart-jenkins(266218d3-59ab-4717-9338-fb7598a56f4c).html
https://research.bangor.ac.uk/portal/en/researchoutputs/estimating-the-abundance-of-benthic-invertebrates-from-trapcatch-data(4972e216-7b95-4e97-93d2-6ac99fc7edd5).html
https://research.bangor.ac.uk/portal/en/researchoutputs/estimating-the-abundance-of-benthic-invertebrates-from-trapcatch-data(4972e216-7b95-4e97-93d2-6ac99fc7edd5).html
https://doi.org/10.1093/icesjms/fsad178


1 
 

Estimating the abundance of benthic invertebrates from trap-catch data 1 

 2 

Jan Geert Hiddink1 3 

Matt Coleman1 4 

Stephen Brouwer2 5 

Isobel Bloor1 6 

Stuart Jenkins1 7 

 8 

1. School of Ocean Sciences, Bangor University, United Kingdom, j.hiddink@bangor.ac.uk 9 

2. Saggitus Environmental Science Limited, New Zealand  10 

 11 

Short running title: Analysis of trap-distance experiments 12 

 13 

IJMS  14 

mailto:j.hiddink@bangor.ac.uk


2 
 

Abstract  15 

Trap fisheries targeting invertebrates are economically important but many of the target species lack 16 

stock assessments.  One reason for this is the difficulty of estimating density. One important means 17 

by which density can be estimated uses the catch rates of baited traps that are spaced at different 18 

distances.  With declining spacing, the sphere of attraction will increasingly overlap, leading to 19 

reductions in catches, allowing for the estimation of the density that is catchable by traps on the 20 

seabed.  Here we review the analytical methods adopted across a range of studies and find that no 21 

consensus on robust methods exists. We propose an analytical method that assumes the trapping 22 

area is circular and that the chance of catching an individual declines linearly with distance from the 23 

trap. We apply this method to estimate the density and the trapping radius of crabs and gastropods 24 

from real and simulated datasets. The method estimated a trapping radius of between 4 and 86 25 

metres, and densities that are up to 2.5 times less and 13 times greater than estimates provided in 26 

the original sources, illustrating the sensitivity to methodology. In conclusion, we provide and test a 27 

standardized method to estimate the density of benthic invertebrates.  28 

 29 

Keywords: stock assessment, Cancer pagurus, Buccinum undatum, pot, creel, static fishing gear  30 

 31 

  32 
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Introduction 33 

Trap, pot and creel fisheries targeting crustaceans and gastropods are economically important 34 

worldwide, with growth of wild capture crustacean fisheries outpacing all other major species groups 35 

since 1990.   Global landings have nearly doubled from 4.4% of total landed biomass to 7.8%  and they 36 

account for 21.3% of global marine fisheries value (Boenish et al. 2022). The socio-economic 37 

importance of wild capture crustacean and gastropod fisheries is further evident at local scales. For 38 

example, in the UK whelk Buccinum undatum, brown crab Cancer pagurus and European lobster 39 

Hommarus gammarus landings are worth ~£77Million annually at the first point of sale (Marine 40 

Management Organisation 2022). However, many of the target species of these fisheries, including 41 

those in the UK, are still classed as data deficient. Globally, in 2016 only 12% of crustacean stocks were 42 

managed using biomass reference points (Boenish et al. 2022), limiting the ability to maximize food 43 

production while minimizing environmental impacts (Emmerson et al. 2022; Hilborn et al. 2020; Lart 44 

2019).  In the European union, managers are predominantly reliant on fisheries dependent data to 45 

assess stock status in trap fisheries (ICES 2021; Marine Institue and Bord Iascaigh Mhara 2022; 46 

Mesquita et al. 2023) despite recognition of the potential limitations of such approaches in  provision 47 

of management advice (Emmerson et al. 2022; Maunder and Piner 2014). Fisheries independent 48 

approaches to determining stock abundance for crustaceans and gastropods are relatively limited. In 49 

using traps to generate estimates of stock abundance one of the key pieces of information that is 50 

currently missing is understanding of the area of the sea floor fished.  51 

 52 

Traps are usually baited and deployed on a line with multiple traps spaced at regular intervals, and 53 

left on the seabed for one or more days (called the soak time).  During this time, crustaceans and 54 

gastropods (and sometimes fish) will detect the plume of bait and start moving towards the trap, and 55 

some of those that reach the trap will enter. The area of seafloor that is effectively sampled by a trap 56 

is, however, poorly understood. Bait plume detection will depend on the bait type, habitat complexity 57 

(Tremblay and Smith 2001), currents (Lees et al. 2018; Moore et al. 1991) and target species 58 

sensitivity, while distance moved in relation to soak time depends on behaviour and movement speed 59 

of the target species (Himmelman 1988; Lees et al. 2018; Van Tamelen 2001).  The probability of 60 

capture has been shown to be influenced by numerous environmental and biotic factors such as intra- 61 

and inter-species interaction (Skerritt et al. 2020), seasonality and  temperature (Emmerson et al. 62 

2022), reproductive state (Skinner and Hill 1987) and fishers’ targeting behaviour and associated local 63 

ecological knowledge (Pantin et al. 2015).  This means that the size of the trapping area is likely to 64 

depend on the species, location and fishing operations.  65 

 66 

Estimates of the area from which commercial crustaceans are caught have primarily been undertaken 67 

using telemetry, with these estimates  derived  through the recording of behavioural responses before 68 

and after baited trap deployment (Homarus americanus - Watson III et al. (2009); Homarus gammarus 69 

-  Lees et al. (2018); Cancer pagurus - Skajaa et al. (1998)). The use of such technology, though useful, 70 

requires: a) a significant number of individuals to be tracked; b) a suitable sized sampling area to 71 

encompass home ranges; and c) significant financial cost. Furthermore, studies are heavily reliant on 72 

subjective assessment of behavioural responses to bait.  There is an overall lack of standardisation in 73 

describing bait detection behaviours.  For example, some studies used change in angle of movement 74 

(Lees et al. 2018; Watson III et al. 2009), while others used changes in walking speed (Skajaa et al. 75 

1998), to infer bait detection. 76 
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 77 

Given that traps are generally deployed at regular intervals along lines, there is clear potential for the 78 

area over which traps attract target species to overlap, resulting in adjacent traps ‘competing’ (Arena 79 

et al. 1994).  This is confirmed through observations that catch rates are often highest at the ends of 80 

lines (Bell et al. 2001); given trap spacing close enough to allow overlap of trapping areas, end of line 81 

traps are competing with only one other trap, while mid-line traps are competing with two other traps. 82 

The overlap in the trapping area between closely-spaced traps is potentially large, and therefore it can 83 

be assumed that with increasing spacing, catch rates increase up to the point where trapping areas no 84 

longer overlap and catch rates stabilize (Aedo and Arancibia 2003; Arena et al. 1994; Skud 1978). This 85 

means that trap-by-trap catch data from traps that are spaced at different distances, or end vs. mid-86 

line traps, contains information on both the size of the attraction area and the density of the target 87 

species. The analysis of catch rates at different trap spacing can therefore potentially be used to 88 

estimate density. However, such methods are rarely used in the assessment of the abundance of 89 

benthic invertebrates and when they are used, they have not been used consistently. 90 

 91 

Here we review the analytical methods used in a range of trap-spacing experiments to estimate the 92 

density of invertebrates that can be caught by traps. Based on this, we propose a standardized 93 

terminology and operationalise a method that has only a few assumptions, and test this method on 94 

new and existing data.  95 

 96 

Review of methods and terminology 97 

The basis for the use of trap-spacing experiments originates in the work initially undertaken by Eggers 98 

et al. (1982) in which teleost fish abundance was estimated using traps/hooks at different spacing, 99 

with the theoretical methodology associated with using overlapping trapping areas developed and 100 

refined by Arena et al (1994). This methodology forms the basis on which current research and its 101 

application to commercial trap fisheries are based. Our comprehensive search identified 7 published 102 

studies that develop theory (Arena et al. 1994; Bell et al. 2001) and/or apply it (Aedo and Arancibia 103 

2003; Brouwer and Wichman 2020; Cores et al. 2019; Gros and Santarelli 1986). Table 1 gives an 104 

overview of the terminology used and the assumptions for each of these studies. The main differences 105 

among studies are found in the terminology used, the assumed shape of the trapping area, the 106 

probability of capture as a function of the distance from the trap, and if/how the interaction of the 2D 107 

nature of the trapping area with the probability of capture is captured mathematically.  108 

 109 

A variety of terms and definitions have been used to define the area from which animals were trapped 110 

(Table 1).  Bell et al. (2001) defined the trapping area as the area within which the probability of 111 

capture of an individual during the deployment time of the trap is greater than zero. Other definitions 112 

were more ambiguous, such as the ‘Attraction area’, ‘Effective capture field’, and ‘Effective fishing 113 

area’. The effective fishing area is a purely notional area containing as many animals as were trapped, 114 

and is the product of the trapping area and the average capture probability within this area. The 115 

attraction area is more complex to understand because it defines the area of chemical influence of 116 

the bait rather than the area from which animals are caught. 117 

 118 

The horizontal shape of the area from which animals were assumed to be caught was either circular 119 

or elliptical (Table 1). The mathematics and statistics are more straightforward for circular areas 120 
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(which require the estimation of only the radius, which is two fewer parameters than ellipses for which 121 

the elongation and direction also need to be estimated). In reality, none of the studies estimated these 122 

last two parameters and instead fixed them based on assumption about the direction and strength of 123 

the tidal currents (e.g. Gros and Santarelli 1986). None of these papers evaluated if the added 124 

complexity was worthwhile, and it seems unlikely that any statistical models would be able to estimate 125 

these extra parameters unless experiments using multiple lines of traps in many different directions 126 

are carried out. To date, such experiments have not been undertaken.  127 

 128 

The studies treated the probability of capture as a function of the distance from the trap quite 129 

differently. Some studies assumed a constant probability of capture up to a knife-edge distance, where 130 

the probability dropped to zero (Arena et al. 1994; Brouwer and Wichman 2020; Gros and Santarelli 131 

1986). Other studies used exponential (Aedo and Arancibia 2003; Bell et al. 2001; Cores et al. 2019) or 132 

linear (Bell et al. 2001) declines in capture probability. Although the mathematics for a constant 133 

probability are most straightforward, it is unlikely that this assumption holds true in reality 134 

(Himmelman 1988), although a simulation by Bell et al. (2001) suggests that such a pattern can result 135 

from highly directional movements of mobile animals when the plume detection itself shows a knife-136 

edge response, or through long soak times. Exponential and linear declines with distance seem more 137 

plausible for most target species (although the long tail of an exponential decline is unlikely to be 138 

accurate), and can be mathematically described using only two parameters (one defining the density 139 

of the target species and one defining the rate of decline (exponential) or the radius of the trapping 140 

area (linear).  141 

 142 

Combining the shape of the trapping area with the probability of capture results in a 3-dimensional 143 

shape, i.e. a cone in the case of a circular trapping area and a linear decline, Figure 1). The volume of 144 

this 3D shape is equivalent to the total catch in a trap (this shape is unrelated to whether a species 145 

uses their habitat in 3D (e.g. pelagic fish) or 2D (e.g. a gastropod), but relates only to how the 146 

probability of capture declines with distance). This assumption underpins the work by Bell et al. (2001) 147 

and Gros and Santarelli (1986). However, two of the studies did not take account of the 3D nature of 148 

this shape (Aedo and Arancibia 2003; Cores et al. 2019), and instead solved the mathematics based 149 

on a 1D probability-distance relationship alone, and will therefore have obtained incorrect estimates.  150 

Some of the studies fitted statistical models where the parameters have no theoretical meaning, i.e. 151 

the model provides a fit to the data but does not estimate the parameters we are interested in (the 152 

trapping area or the density (e.g. Arena et al. 1994; Brouwer and Wichman 2020)).  These parameters 153 

are then estimated indirectly from these fits in another step. Such an indirect estimation of 154 

parameters is less elegant but not necessarily invalid. 155 

 156 

This brief review shows that the terminology used is inconsistent among existing studies and that no 157 

consensus on robust methods exists. Some of the published methods based on empirical data may be 158 

hard to replicate, have logical flaws, or require estimation of many parameters from noisy data. In 159 

addition, some assumptions are difficult to justify, or models used are too complex to fit on noisy data. 160 

In our opinion the theoretical study by Bell et al. (2001) is the most  robust yet simple approach for 161 

application to real datasets, and we operationalise a proposed method based on the principles 162 

presented in their work.  163 

 164 



6 
 

Description of chosen method, justification of assumptions 165 

The review above suggests that using an assumption of a circular trapping area and a linearly declining 166 

capture probability may be a reasonable trade-off between capturing the complexity of the 167 

catch~spacing relationships vs. having enough data to estimate all parameters in the chosen 168 

relationships.   We evaluate the validity of these assumptions in the rest of this paper. These 169 

assumptions have the advantage that this results in a mathematical framework that can be analytically 170 

solved, and meaningful parameters can be estimated statistically. This framework requires the 171 

following parameters: 172 

• Trapping radius: r. The radius from the trap within which the probability of capture of an 173 

individual during the deployment time of the trap is greater than zero. 174 

• Trapping area: A = π r2 175 

• Density of the target species: H.  176 

• Capture probability for animals at the trap: P. This value is likely to be <1 in all fisheries 177 

including trap fisheries as not all animals that are next to the trap will enter it.  178 

• Probability of capture at distance x from the trap: px. This is assumed to decline linearly with 179 

distance from the trap, from px=0 = P directly at the trap, to px≥ r = 0. 180 

• The density catchable by traps: h =  H P. This is the density of catchable animals on the ground, 181 

which is the density corrected for the fact that not all animals present in an area have the 182 

inclination to enter the trap even when right next to it (P<1).  It is the measure of abundance 183 

we are interested in estimating here. This density of animals could theoretically be caught 184 

within the trapping area if px did not decrease with distance from the trap. The catchable 185 

density directly correlates to the catches if traps are not competing with each other, and is 186 

equivalent to the integration of pxH over A.   187 

• Half the distance between traps in the experiment: d 188 

When thinking about this in 1D for non-competing traps, the catch coming from a particular distance 189 

x equals H px. 190 

 191 

The key assumptions of this framework are that: 192 

1) Catch rates decrease linearly with distance from the trap. 193 

We found three studies that were suitable to evaluate the validity of this assumption. Himmelman 194 

(1988) released a large number of tagged whelks Buccinum undatum at 6 distances from a baited trap 195 

(refreshed every 24 hours) and recorded their recovery in the trap over a period of 15 days.  Using the 196 

full period leads to an exponential decline in catch rates with distance, but using a period of 48 hours, 197 

which is a much more realistic period of soak time in most coastal fisheries, leads to a linear decline 198 

in capture probability (Figure 2).  Observations of marked snow crabs Chionoecetes opilio (Brethes et 199 

al. 1985) and brown crab Cancer pagurus (Ungfors 2008) show similar patterns that do not clearly 200 

deviate from a linear decline. It is worth noting that each of these studies does show large variations 201 

that could justify other shapes (concave and convex curves), but such shapes would not allow a 202 

mathematical solution of the equations.  203 

2) The area from which animals are attracted is circular. 204 

3) The importance of current on the shape and area of attraction of baited traps or hooks has 205 

been identified by numerous studies (Lees et al. 2018; Olsen and Laevastu 1983; Taylor et al. 206 

2013; Wilson and Smith 1984).  The area of attraction is indicative of the direction and 207 

strength of the prevailing currents during a full tidal cycle, resulting in a shape that is not 208 
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predictable or uniform (Himmelman 1988; Lapointe and Sainte-Marie 1992). The area of 209 

attraction has been estimated by a number of different shapes, described by either a circle 210 

(Bell et al. 2001), rectangle (Melville-Smith 1986) or an ellipse (Gros and Santarelli 1986). In 211 

locations of less intense tidal current flow, the area of attraction might average out as circular 212 

over the course of the tidal cycle, even if it is not circular at any given point in time. Given the 213 

complexity of bait plume dispersal and lack of current data we therefore assume that circular 214 

is a good assumption for convenience and mathematical solvability. Catch from overlapping 215 

trapping areas are divided equally between traps.  216 

We assume that animals in an area where trapping areas overlap will move towards the closest trap.   217 

4) The likelihood of traps capturing the target species is not affected by the presence of 218 

previously caught animals in a trap. 219 

Trap saturation caused predominantly by inter- and intraspecific interactions is known to affect 220 

catches in trap fisheries (Fogarty and Addison 1997). For example Emmerson et al (2022) showed that 221 

interaction with European lobster Homarus gammarus led to a reduction in catch rates of targeted 222 

brown crab Cancer pagurus while Rayner and McGaw (2019) documented that trap saturation by non-223 

target invasive green crab Carcinus maenas had a negative impact on American lobster Homarus 224 

americanus catches. Trap saturation seems to be particularly common in lobster fisheries (e.g. Clark 225 

et al. 2018; Watson and Jury 2013) which can result in a lack of a correlation between lobster catches 226 

and lobster abundance (Courchene and Stokesbury 2011; Watson and Jury 2013).  227 

 228 

Despite these observations, intra- and interspecific interactions are highly variable across species, and 229 

hence for simplicity we have chosen to assume that over the soak time chosen, traps continue to 230 

accumulate the target species.   231 

 232 

Following from these assumptions, the catch in a single trap is equal to the volume of a cone, which is 233 

defined by a circular base defined by the trapping area A, and a height defined by the density that is 234 

catchable by traps h.  The density h is the absolute density of animals on the seabed H multiplied by 235 

the probability P (px=0) that an animal at the trap will enter it.  The use of a cone shape is driven by the 236 

assumption of a linear decline in the probability of capture with distance from the trap (Figure 2). The 237 

total volume of this cone equals: 238 

 239 

Cone volume = (1/3) × π × r² × h        (equation 1) 240 

 241 

where r is the radius of the cone and h is the density catchable by traps that we are interested in 242 

estimating, and the height of the cone. 243 

 244 

The interference between two adjacent traps (i.e. reduction in catch) can be quantified as the volume 245 

of the two cones that overlap. If d is half the distance between the two traps (i.e. the distance from 246 

the centre of the cone to the centre of the area of overlap), then the overlapping volume equals 247 

(Rajpoot 2016): 248 

 249 

𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑣𝑜𝑙𝑢𝑚𝑒 =  
ℎ

3𝑟
[𝑟3 𝑐𝑜𝑠−1 (

𝑑

𝑟
) − 2𝑟𝑑√𝑟2 − 𝑑2 +  𝑑3𝑙𝑜𝑔 (

𝑟+√𝑟2−𝑑2

𝑑
)]   (equation 2) 250 

 251 
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If d > r, there is no overlap between the two cones and the Overlapping volume = 0. The catch of a 252 

trap that is competing with n traps with overlapping trapping areas (n = 1 at the end of a line, and n = 253 

2 in the middle of a line) is therefore: 254 

 255 

Catch = Cone volume – n Overlapping volume      (equation 3) 256 

 257 

 258 

When fishing at close trap spacings, or where attraction areas are large, interactions may extend 259 

beyond just adjacent traps (i.e. the overlaps may themselves be overlapping), but given that we 260 

assume that all animals move to the closest trap, this does not affect our estimates of h and r. 261 

 262 

The relationship between the catch and d can therefore be statistically fitted on data by equation 3 263 

using a non-linear ordinary least-squares regression, which assumes a Gaussian error distribution, 264 

which provides estimates of the parameters of interest, catchable density h and trapping radius r. 265 

Even though a Poisson error distribution may have been more appropriate for the count data that 266 

underly the catch rates, a non-linear ordinary least-squares regression does not allow other error 267 

structures than Gaussian. Given that the distribution of the residuals did not deviate from a normal 268 

distribution on visual inspection, using non-linear ordinary least-squares regression seems 269 

appropriate here. R code using both non-linear regression and Bayesian statistics and an example 270 

dataset are provided in the Supplementary Material of this paper. The non-linear regression is more 271 

straightforward to use and is recommended for users that are not familiar with Rstan (Stan 272 

Development Team 2020).  273 

 274 

Estimation of catchable density h and trapping radius r for 8 studies  275 

We collated 6 studies that carried out trap-spacing experiments (Aedo and Arancibia 2003; Brouwer 276 

and Wichman 2020; Cores et al. 2019; Gros and Santarelli 1986; Sinoda and Kobayasi 1969; Williams 277 

and Hill 1982), one study that simulated a trap-spacing experiment (Bell et al 2001), and we carried 278 

out one new experiment on Cancer pagurus in the Isle of Man (Table S1). The methods for this new 279 

experiment are described in the Supplementary Material.  Seven of these datasets were for 280 

crustaceans (of which one was simulated) and one for a gastropod. For the simulation study in Bell et 281 

al. (2001), we used the simulation for ‘crabs’, and the scenario where other traps are ignored if the 282 

crab is not caught in the first trap they encounter, because this simulation most closely matched our 283 

assumption of a lack of trap saturation.  284 

 285 

The non-linear regression was successfully fitted, and provided estimates of the catchable density of 286 

crabs and gastropods, for all-but-one of the datasets (Table 2, Figure 3). Where applicable Figure 3 fits 287 

two separate curves, one in grey for traps at the end of the line and one in black for traps in the middle 288 

of a line. The end of line curves have a catch rate that is half the maximum catch rate when d = 0 (i.e. 289 

the theoretical situation when traps are in the same location) because half the trapping area overlaps 290 

with the next trap (each trap catches half as much as it would as without the competing trap).  The 291 

mid-line curves have a catch rate of 0 at d = 0, because their trapping area fully overlaps with the 292 

trapping area of the adjacent traps and the catch is therefore theoretically shared between an infinite 293 

number of traps that are in the same location. The plots only show data points for end of line traps 294 

and for mid-line traps where the distance to both adjacent traps was equal (as it is hard to visualize 295 
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mixed distances on the x axis), but all data points were used for fitting the curves. All estimates of h 296 

and r were significantly different from zero, except for the studies that had only 3 and 5 data points 297 

respectively (Cores et al. 2019; Williams and Hill 1982). One dataset showed a decrease in catch with 298 

trap spacing and failed to fit the model (Sinoda and Kobayasi 1969). Some of the datasets show 299 

relatively tight fits, while for others there is a lot of remaining variation around the fitted curves. 300 

Visually, the model fit for the study on whelks by Gros and Santarelli (1986) does not look convincing 301 

because there are very few traps that were spaced at a distance where d < r and it is therefore difficult 302 

to judge if initial part of the curve matches the observations.  303 

 304 

The method estimates a trapping radius (the radius of the area within which the probability of capture 305 

of an individual is greater than zero) of between 4 and 86 metres for the real crustaceans and whelks. 306 

The method estimated a catchable density (the product of the density and the probability of capture 307 

for animals right next to the trap) between 15.3 individuals per 100 m-2 for Portumnus latipes, 0.052 308 

individuals per 100 m-2 for Cancer pagurus to 0.043 individuals per 100 m-2 for Scylla serata. These 309 

estimates of h are between 0.4 to 13 times relative to the estimates provided in the original sources, 310 

which illustrates that these estimates are highly sensitive to the method used (Table 2). Although the 311 

studies on Cancer porter (Aedo and Arancibia 2003) and Portumnus latipes (Cores et al. 2019) reported 312 

that they used the same analytical technique, our estimate of h using their data  was 0.41 times that 313 

of Aedo and Arancibia (2003), but 5.88 times that of Cores et al. (2019).  This differing divergence from 314 

original estimates suggests that they did not in fact use the same analysis and points to the lack of 315 

clarity across studies in general. 316 

 317 

In the simulated dataset from Bell et al. (2001) the density H of crabs on the seabed and probability 318 

of capture P were defined, and this dataset therefore allowed an evaluation of how precisely our 319 

method estimates the catchable density h = H x P. The density H of crabs in the simulation was 320 

0.078/100 m2, while P = 0.5, which means that the real catchable density h = 0.039 / 100 m2. Our 321 

model estimated h = 0.061 / 100 m2 (95% confidence interval 0.048 to 0.075 / 100 m2) and therefore 322 

overestimated h by a factor 1.57. The overestimate is related to the violation of the assumption of a 323 

linear decline in the probability of capture px with distance in the simulation. The way the model was 324 

set up by Bell et al (2001) dictates that virtually all crabs that were within 100m of a trap were caught 325 

during the soak time regardless of their initial distance from the trap, and hardly any from further 326 

away.  Therefore, p did not start to decline until d > 100m (a pattern that is not supported by empirical 327 

observations of marked animal capture (Brethes et al. 1985; Himmelman 1988; Ungfors 2008)). It is 328 

therefore not surprising we overestimated h. The overestimate is relatively modest though for such a 329 

major violation of our assumption. 330 

 331 

The estimates of h and r generated using the nls function in the stats packages in R (R Core Team 2021) 332 

(Table 2) were fairly similar to the estimates generated using rstan (Stan Development Team 2020) 333 

(Table S2). 334 

 335 

The effect of the shape of the attraction area 336 

In our analysis we assume a circular attraction area and a linearly declining capture probability with 337 

distance. Although the empirical evidence to support these assumptions is not strong, this model 338 

could be solved mathematically, and as a result could directly estimate the parameters h and r for 339 
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most datasets and fitted them well. Although other shapes are plausible (e.g. an exponential decline 340 

in px with distance, elliptical trapping areas), they would make it much more difficult to mathematically 341 

solve the equations and estimate the parameters. This would introduce several further parameters to 342 

estimate, which would be difficult on the datasets that only have a few data points.  343 

 344 

To test the effect of more elliptical attraction areas on the estimate of the density h, we simulated the 345 

catches of pairs of traps spaced at different distances (1 to 150 m), where ‘crabs’ were seeded 346 

randomly in space at a density of 0.03125 m-2, and where the probability of capture px declines linearly 347 

with distance from px=0 = 1 to px=50 = 0 for crabs that are inside the ellipse. We estimated h for attraction 348 

areas that ranged from perfectly circular to extremely elliptical, expressed by the eccentricity ranging 349 

from 0 to 0.99. Figure 4 shows that the estimate of density h is not biased by the shape of the trapping 350 

area until the shape parameter is > 0.85 (which represents ellipses that are about 3 times as long as 351 

wide), above which point the density is increasingly underestimated. We therefore consider our 352 

choice of a circular attraction area a reasonable trade-off between capturing the complexity of the 353 

relationship versus the ability to usefully estimate the desired parameters.  354 

 355 

 356 

Discussion  357 

 358 

The methods and analyses presented in this paper show that trap-spacing experiments can be used 359 

to estimate both the trapping area and the density of benthic fauna that is catchable in traps. Our 360 

comparison of the outputs from our analysis with the outputs in the original papers show that the 361 

estimates of the catchable density h and the trapping area are highly sensitive to assumptions and 362 

analytical method used.  It is therefore important to use analytical methods that are both ecologically 363 

and mathematically plausible. The large variety in terminology that has been used to describe the area 364 

from which animals are caught or attracted has also been confusing this field of study. We therefore 365 

propose a standardized set of terms, assumptions and parameters that have clear ecological meaning, 366 

and link them to a mathematical framework that formalises these. 367 

 368 

The method that we used failed to estimate h and r for one of the datasets where catch rates did not 369 

increase with distance, and the estimates h and/or r were not significant for two of the other studies 370 

where only a few datapoints could be extracted. This is unsurprising and illustrates the limitations of 371 

this (and any other) approaches in fitting curves on too few data points (i.e. fitting a 2 parameter curve 372 

through 3-5 points is always going to be challenging). 373 

 374 

Based on our analysis, we make these recommendations for carrying out trap-spacing experiments: 375 

1) The traps that are spaced closest to each other need to be close enough to each other to 376 

interfere with each other’s catches. If they are not, it will be difficult to estimate the trapping 377 

area r, and because r and catchable density h are interdependent in the analysis, estimation 378 

of h will also be problematic. 379 

2) For the traps that are furthest apart, d needs to be much larger than r to allow a robust 380 

estimate of the trapping area and maximum catch rates.  381 
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3) Mixed distances between traps should be avoided because this makes fitting the curves 382 

harder for the statistical algorithms. Having traps at the end of lines that only have one 383 

neighbour is useful (and unavoidable). 384 

4) Shorter soak times are better, because they avoid trap saturation and are more likely to lead 385 

to a linear decline in px with distance. This is particularly important in lobster fisheries, where 386 

trap saturation seems to be prevalent than in other fisheries (Clark et al. 2018; Watson and 387 

Jury 2013)  388 

5) A critical issue to consider is that the efficiency of traps (just like all forms of fishing gear 389 

whether used commercially or in scientific sampling) will always be lower than 100%, i.e. P<1.  390 

In order to estimate actual densities of target species on the seabed, that is estimate the 391 

absolute density H from the catchable density h, an estimate of P is required.  Mark-recapture 392 

experiments are probably the most effective means of achieving this (e.g. Ungfors et al. 2007).   393 

 394 

In our model we implicitly assume that the area from which animals could be arriving increases 395 

quadratically with the distance from the trap (based on the trapping area being circular), while the 396 

probability of capture declines linearly. This means that most of the animals caught will arrive from an 397 

intermediate distance from the trap (Figure 5). As the time at which animals arrive in a trap is likely to 398 

correlate to the distance they travelled to reach the trap, monitoring the arrival time at traps using 399 

cameras or frequent trap lifts may be useful as a way of testing the assumption about how the 400 

probability of capture relates to distance.  401 

 402 

The failure of the model fitting for Chionocetes japonicus because catches declined with trap spacing 403 

(Figure 3H) may be interesting in its own right. The observed pattern could imply non-independent 404 

trap entry probabilities through an aggregation response, which doesn’t satisfy the assumptions of 405 

our model. Similarly, antagonistic interactions between individual crustaceans (e.g. Homarus 406 

gammarus, (Bennett 1974))  could result in lower trap entry probabilities than expected at higher 407 

lobster densities, and underestimate r and h. 408 

 409 

Uncertainty remains regarding the importance of the shape of the attraction area and the 410 

relationship between the distance from the trap and probability of capture on the accuracy of the 411 

density estimate. Future studies could use further simulations to evaluate how different attraction 412 

area ellipse shapes and ellipse directions, and the variation in the directions of such ellipses over the 413 

tidal cycle, affect the relationship between the catches and density estimates in trap-spacing 414 

experiments. Further simulations should also evaluate the effect of different relationships between 415 

the probability of capture and the distance from the trap, besides the linear relationship assumed 416 

here. If such simulations show that such variations cause strong biases in the estimated densities, 417 

further fieldwork will be needed to more precisely determine the actual shape of these relationship, 418 

and further development of the mathematical framework may be needed.  419 

 420 

Implications for trap spacing and soak time in commercial fishing operations. 421 

 422 

The continued use of fleets using closely spaced traps such as those used in the British Isles for 423 

targeting C. pagurus may be inefficient. Currently, the spacing between traps in the commercial brown 424 

crab fishery in the Isle of Man is 18 - 27m. Our estimates (reported in detail in Supplementary material) 425 

show this spacing achieves catch rates at only 20 to 30% of the maximum possible per trap, which 426 
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would be obtained at a trap spacing of 171.6m (2 x r, 95% CI: 88.5 - 252.2m). Obtaining these higher 427 

catch rates using such a large trap spacing would require the use of much longer mainlines.  The open 428 

access nature of the fishery means there high competition between vessesl, with  limited ground and 429 

therefore vessles may need to deploy all their pots over a smaller area due to a lack of available 430 

suitable ground. Increasing trap spacing could potentially increase catch rates. However, there would 431 

be operational implications because while the catch per trap could go up substantially, the catch per 432 

unit of line would decline by almost 50%. Lower catch per trap may therefore be outweighed by higher 433 

overall catch per unit of ‘fishing effort’, as lower trap catch rates may be offset by the ability to lift 434 

more traps, leading to an overall higher catch per fishing day. However, if ground availability and the 435 

length of the mainline that can be deployed are not a limiting factor, this presents the opportunity to 436 

reduce trap numbers whilst maintaining the desired overall catch. Wider trap spacing could reduce 437 

ecosystem impacts related to seabed abrasion (Gall et al. 2020) and reduce bait use, and could reduce 438 

costs and CO2 emissions (but could increase the entanglement of marine mammals). In regions where 439 

trap limits are imposed this presents the opportunity to maintain the viability of the fishery by 440 

developing single trap deployment zones, e.g. coinciding with priority marine features or limited 441 

gear/limited access areas.  442 

 443 

Changes in trap spacing to maximise efficiency could add to technology creep in trap fisheries with 444 

important implications for pressure on stocks and the use of long term fisheries dependent data in 445 

management. Technology creep is poorly understood in trap fisheries, but is recognised to significantly 446 

influence catch rates and efficiency.  Kleiven et al. (2022) demonstrated how slight changes in gear 447 

design in static gear can affect the catch composition available to the fishery. This was demonstrated 448 

by comparing the catch efficiency and catch composition of traditional wooden traps from 1928 to 449 

modern semi-synthetic traps in the Norwegian H. gammarus fishery. That study established that since 450 

1928, traps have been fitted with incrementally larger entrance eyes, multi-chamber designs and 451 

longer lasting manufactured material. These small changes alter the efficiency of traps and have been 452 

highlighted as potential contributors to the stock collapse in Norway by potentially masking stock 453 

decline by keeping catch rates high (Erisman et al. 2011). Such an instance of unaccounted technical 454 

creep was recorded in Pacific halibut fisheries, with shifts to wider longline hook spacing resulting in 455 

misleading CPUE trends (Skud 1978).  This is of concern owing to the declines recorded in both the Isle 456 

of Man Cancer pagurus fisheries (Bangor University, 2021) and those  around the UK (Mesquita et al. 457 

2021).  458 

 459 

Conclusions 460 

We provide and test a standardized method that is widely applicable to estimate the catchable density 461 

of benthic invertebrates. We provide code and example data that will allow more extensive use of this 462 

underused method for estimating the catchable density of benthic invertebrates. This work highlights 463 

the importance of recording trap spacing in fishery dependent surveys given that it affects the CPUE, 464 

and may allow retrospective CPUE standardisation.  Further work is needed, however, to better 465 

understand the effect of trap spacing on catch efficiency relative to seasonal fluctuations in catch rates 466 

and different soak times (Monnahan and Stewart 2018). Although we applied this method to trap 467 

fisheries, it has been shown to be applicable to hook spacing in longline fisheries, where catch of 468 

Pacific halibut increase with increasing hook spacing (Skud 1978). However, the estimate of density 469 

may be harder to interpret in such fisheries on highly mobile target species, and much larger spacing 470 

is likely to be necessary to achieve a good estimate of the distance at which hooks stop interfering.  471 
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Tables 

 

Table 1. Terminology and assumptions of previous studies and models used for estimating ‘catchable density’ using trap spacing experiments. 

Study Terminology used Shape of 

attraction 

area  

Probability of capture as 

a function of the 

distance from the trap 

Weaknesses  

(Arena et al. 

1994) 

Area of influence – not defined explicitly.  Circular Constant, i.e. assuming 

no decline with distance. 

A decline with distance is 

mentioned in the paper 

but not implemented 

mathematically. 

Simplifies the mathematics to fit a 

curve with parameters that have no 

theoretical meaning. Does not take 

account of the decreasing catches 

with distance.  

Gros and 

Santarelli 

(1986) 

Effective capture field - the area within which every whelk 

present can detect the bait for a sufficient period of time 

to enable it to travel to the place where the bait is located, 

which is included within the area of chemical influence.  

Ellipse 

 

Constant, i.e. assuming 

no decline with distance, 

assuming homogeneous 

capture probabilities 

within the Effective 

capture field 

Assumption of ellipsoid adds in two 

more parameters to estimate. In 

reality, these can only be estimated 

if multiple experiments with lines in 

different directions are carried out.  

Aedo and 

Arancibia 

(2003)  & 

Cores et al. 

(2019) 

Attraction area - the area of chemical influence of the bait 

Effective fishing area - notional area containing as many 

animals as were trapped. 

Circular Negative exponential 

decline, which is 

converted to knife-edge 

distance, estimated as 

the distance from which 

half of the catch comes.  

Does not correct for the 2D nature 

of a circle when modelling the 

probability of capture. Fits a curve 

with parameters that have no 

theoretical meaning. Arbitrary 

definition of the attraction area. 

Brouwer and 

Wichman 

(2020) 

Effective Fishing Area - The area around the trap that is 

close enough for individuals to find and detect the bait 

plume and to reach the trap during the soak time. 

Circular Constant, i.e. assuming 

no decline with distance, 

assuming homogeneous 

capture probabilities 

within the whole 

Effective Fishing Area. 

No statistical model fitted. Effective 

Fishing Area assumed to be the area 

within the bait plume.  
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Bell et al. 

(2001) 

The trapping area - the area within which the probability 

of capture of an individual during the deployment time of 

the trap is greater than zero. 

The effective area fished, which is a purely notional area 

containing as many animals as were trapped. Effective area 

fished is a compound of two quantities: the trapping area 

and the overall average capture probability within this 

area.  

Capture probability – in reality the product of density and 

capture probability 

Flexible: 

Circular or 

ellipse 

Flexible: Linear, 

exponential or other 

The mathematics presented are not 

fully developed and too complex to 

apply to in situ data. 
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Table 2.  Comparison of the estimated catchable density from the original sources and the non-linear model fitted here, plus the trapping radius estimated here. p-values 

indicate whether a value was significantly different from zero.  

Study 
Units 

Original 

study  
This study 

 

 

Catchable 

density h 

(100 m-2) 

Catchable 

density h 

(100 m-2) 

p-value 

h 

Trapping 

radius r 

(m) 

p-value  

r 

Estimated 

maximum 

catch rate 

per trap 

A) Cancer pagurus, Isle of Man Numbers NA 0.052 0.041 85.8 <0.001 3.85 

B) Cancer porter (Aedo and Arancibia 

2003) 

Numbers 13.0 5.40 0.002 36.1 <0.001 73.87 

C) Portumnus latipes (Cores et al. 2019) Numbers 2.6 15.29 0.101 4.1 0.024 2.69 

D) Jasus caveorum (Brouwer and 

Wichman 2020) 

Weight 

(kg) 

Not given 0.13 0.018 54.3 <0.001 4.09 

E) Buccinum undatum (Gros and Santarelli 

1986) 

Weight 

(kg) 

0.721 9.30 0.043 4.7 <0.001 2.15 

F) Simulated crabs (Bell et al. 2001) Numbers 0.0392 0.061 <0.001 150.1 <0.001 14.47 

G) Scylla serata, (Williams and Hill 1982) Numbers Not given 0.043 0.133 54.9 0.073 1.36 

H) Chionoecetes japonicus, (Sinoda and 

Kobayasi 1969) 

Relative 

numbers 

Not given Failed to fit because catches decline with spacing 

1 Converted assuming 55 whelks per kg from (Gros and Santarelli 1986). 
2 Catchable density in the simulation.  
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Figures 

a 

b  

 
c

 
Figure 1. Trap interaction geometry. a) A 3-dimensional view of a cone with the overlapping volume 

estimated by equation 2. The height of the cone equals h, the radius of the cone equals r, while the 

slope of the cone is defined by how the capture probability px declines with distance b) Trap 

interaction geometry: circles represent overlapping trapping areas, of radius r, for four baited traps 

that are spaced at a distance of 2d; (c) overlaps of functions relating capture probability, to distance 

from trap with capture probability modelled as a linear function of distance. Catchable density right 

next to the trap equals h, the density of the target species. The overlapping probability surfaces can 

be viewed as volumes of intersection between cones in a). Figure b and c are modified from Bell et al. 

(2001). 
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 Figure 2. The cumulative catch of marked Buccinum undatum released at different distances from a 

trap, calculated from data collected by Himmelman (1988). None were caught from further than 18m 

in within 48h. The black line indicates a linear regression (R2=0.78, F1,2=12.166, p=0.073). The red point, 

where catches is zero, is not included in the regression. 
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Figure 3. The relationship between the catch per trap and the distance between traps, and the fitted 

relationship for mid-line (adjacent traps in both directions, black points and line) and end of line traps 

(adjacent trap in one direction only, grey points and line). Some datasets had traps where the distance 

to the two adjacent traps were not equal (Brouwer and Wichman 2020; Gros and Santarelli 1986), 

these are not plotted here but they are used in fitting the lines.  
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Eccentricity 
 

Figure 4. The simulated effect of the eccentricity of the attraction area (0 is circular, with values 
towards 1 approaching elongated ellipses) on the estimated density h, from a simulation. The error 
bars are 95% confidence intervals of the estimates. The horizontal grey line is the true density of 
animals in the simulated area. 
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Figure 5. Example of the distance from which catch originates for the Cancer pagurus study presented 

here. The probability of capture (blue) declines linearly with distance from the trap, but the area (red) 

increases quadratically with distance from the traps. The catch (black) is the product of these two, and 

on average caught crabs move 50m to the trap. All y-axis values here are scaled so the maximum 

equals 1.  
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Supplementary material 

 

Table S1. Summary of the trap-spacing experiments included in our analysis 

 

Study Type of trap used Experimental Design Trap spacing Soak time 

A) Cancer pagurus, Isle of Man Traditional single chamber, double 

soft eyed crab trap. Approx. 30” x 19 

x 18”. 10” soft eyes.  

Eight different trap spacing 

treatments were established 

comprising of a single line with 5 

traps, and fished over 3 separate 

24 hour periods (ie using a 24 

hour soak time between each 

haul event). When hauled the 

number of individuals per trap 

was recorded. Individuals were 

sexed and measured  

Distance between traps per 

treatment were; 15, 22.5, 

35,75,105,135.165 and 224 m 

24 hours 

B) Cancer porter (Aedo and 

Arancibia 2003) 

The Fathom Plus trap was used as 

the experimental fishing gear and 

measured 87 cm × 69 cm × 29 cm 

(length, width and depth, 

respectively), and had a high-

density polyethylene structure and 

framework, mesh openings of 4.5 

cm × 1.8 cm (length and width) and 

upward-tilted tunnels on both sides 

of the trap which lead into it 

through a semicircular opening of 

16.7 cm × 8.6 cm (length and width). 

16 fishing events were 

Conducted. Each longline had 10 

traps. There were four replicates 

per distance. 

Distances between traps were 

15.0, 22.5, 30.0 and 37.5 m. 

An average time of 26 

h per event 

C) Portumnus latipes (Cores et 

al. 2019) 

Metal Baited stakes baited with 

sardines on the beach 

Stakes were used to attract the 

crabs that were caught by hand. 

1, 2, 4, 8 and 16 m 10 minutes 



27 
 

After 10 min, each stake was 

visited and crabs found feeding 

on the bait, on the surface or 

buried beneath the bait, were 

caught by hand. This procedure 

was repeated five times during 

each of the three days of 

sampling, with a 10 min waiting 

period between each sampling, 

resulting in a total of 300 

samples. 

D) Jasus caveorum (Brouwer and 

Wichman 2020) 

Top loading cone shaped traps set 

on longlines. Traps used were 

150cm diameter at the base, 75cm 

high and 50cm diameter at the top. 

The entrance to the trap was 35cm 

in diameter and the trap was 

covered with netting of 5cm mesh. 

Each experimental fishing line 

was set with 30 traps, and the 

traps were divided into six 

groups, each group set at 

varying distances apart. Traps 

were set on a longline by the 

vessel with the instructions to 

set three lines a day, parallel to 

one another and at least 300m 

apart. 

Six groups on a single line.  

Group 1 - inter-trap distance 

20m, followed by a 40m space.  

Group 2 - inter-trap distance 

40m, followed by a 60m space. 

Group 3 - inter-trap distance 

60m, followed by a 90m space. 

Group 4 - inter-trap distance 

90m, followed by a 140m space. 

Group 5 - inter-trap distance 

140m, followed by a 190m 

space. 

Group 6 - inter-trap distance 

200m. 

24 hours 

E) Buccinum undatum (Gros and 

Santarelli 1986) 

Whelk traps containing two types 

of bait (crab and fish) 

Whelk traps spaced at different 

distances, with mostly mixed 

distances in the two directions. 

The ground line was set three 

times. 

6, 11.9, 23.8 and 

35.7 m 

24 hours 

F) Simulated crabs (Bell et al. 

2001) 

For crabs, entry probability does not 

change with increasing catch. 

Two traps spaced at different 

distances.  

1-500 m at intervals increasing 

from 15 to 120m. 

Number of time steps 

= 200. A crab can 
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Probability of capture = 0.5 when 

closer than 1m from the trap. 

Animals that approached but 

did not enter a trap ignored all 

traps in the arena for the rest of 

the simulation.  

move 1m per time 

step. If we assume 

crabs move at around 

200 m a day (Ungfors 

et al. 2007), this 

would represent 

about a 24h soak 

time. 

G) Scylla serata, (Williams and 

Hill 1982) 

Two types of traps were used in 

approximately equal numbers, 

firstly a collapsible trap 240 mm 

high made of a rectangular steel 

frame (900 x 600 mm), covered with 

38ram mesh nylon net. The second 

trap was a commercial design, it had 

a circular base of approximately 1 m 

diameter, was 300 mm high and 

made of a steel frame covered with 

wire mesh having 40 mm diameter  

openings. Both types of traps had 

two entrance funnels (minimum 

opening 200 x 80 mm) at opposite 

ends. 

Traps organised in rectangular 

grids. 

50 m spacing - 49 traps in a 7 x 7 

grid (2 replications);  

100 m spacing - 63 traps in a 7x9 

grid (8 replications);  

200m spacing -20 traps in a 5 x 4 

grid (8 replications).  

 

24 hours 

H) Chionoecetes japonicus, 

(Sinoda and Kobayasi 1969) 

The pudding-shaped trap used is 

about 80cm in diameter on the 

upper surface and about 120cm on 

the lower, and 75cm high, it has an 

opening 40cm in diameter on the 

top. Iron rods about 9-12mm in 

diameter are used for framing and 

the entrance tunnel is a cylinder of 

Lines of traps. The traps which 

were adjacent to next span and 

were set on the end of ground 

rope were omitted in this 

analysis. In our analysis 46mm 

mesh excluded to balance the 

dataset.  

13 traps were set at 33m 

intervals,  

27 traps at 50m, 

10 traps at 67m. 

Generally 24h.   
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polyethylene. Four different mesh 

sizes used (46, 90, 120, 150). 
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Table S2.  Comparison of the estimated catchable density from the original sources and the Bayesian model fitted here, plus the trapping radius estimated here.  

 

Study Units 

Catchable 

density h 

(100 m-2) h lower CI h upper CI 

Trapping 

radius r 

(m) r lower CI r upper CI 

Estimated 

maximum catch 

rate per trap 

A) Cancer pagurus, Isle of Man Numbers 0.0939 0.0419 0.2817 58.5 32.0 93.3 3.37 

B) Cancer porter (Aedo and 

Arancibia 2003) 
Numbers 

6.2179 2.8754 15.4498 32.8 19.5 51.7 69.96 

C) Portumnus latipes (Cores et al. 

2019) 
Numbers 

14.6996 5.1804 27.2348 4.2 2.8 9.0 2.68 

D) Jasus caveorum (Brouwer and 

Wichman 2020) 
Weight (kg) 

0.8925 0.0749 4.7116 18.7 7.7 75.1 3.27 

E) Buccinum undatum (Gros and 

Santarelli 1986) 
Weight (kg) 

8.6559 6.2931 9.9332 4.8 4.4 5.7 2.08 

F) Simulated crabs (Bell et al. 

2001) 
Numbers 

0.0596 0.0498 0.0710 152.2 138.7 168.1 2.08 

G) Scylla serata, (Williams and Hill 

1982) 
Numbers 

7.2104 0.0402 27.8649 4.2 2.0 60.6 1.31 
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Supplementary Code 1. Code for estimating h and r using a non-linear regression in base R. The 1 
script can be run using Supplementary data 1. 2 
 3 
################################## 4 
######### functions ############## 5 
################################## 6 
 7 
# function needs a dataframe with column names   Catch, Distance.1, Distance.2 8 
# convergence errors can usually be solved by choosing more realistic starting values for h and 9 
r 10 
  11 
estimate.h.r<- function(dataset=df,h=0.10,r=50) {     12 
 13 
  dataset$Neighbour.1=1 14 
  dataset$Neighbour.2=1 15 
  dataset$Neighbour.1[is.na(dataset$Distance.1)]=0 16 
  dataset$Neighbour.2[is.na(dataset$Distance.2)]=0 17 
   18 
  19 
dataset$Distance.1[is.na(dataset$Distance.1)]=min(c(dataset$Distance.1,dataset$Distance.2),na.20 
rm=T)  #needed to avoid errors, has no effect because value ignored in nls 21 
  22 
dataset$Distance.2[is.na(dataset$Distance.2)]=min(c(dataset$Distance.1,dataset$Distance.2),na.23 
rm=T) #needed to avoid errors, has no effect because value ignored in nls 24 
   25 
  dataset$x.1=dataset$Distance.1/2 26 
  dataset$x.2=dataset$Distance.2/2                                                              27 
                 28 
                fit.1=nls(Catch~ ifelse ((x.1 < r  & x.2 <r),  #this is not fully correct 29 
because it allows mixed with and within the r data points, but we cannot select here because we 30 
don't know r yet 31 
                     ({1/3 * pi * r^2 * h}  32 
                                           -Neighbour.1* {(h/(3*r))*{r^3 * acos(x.1/r)   -33 
2*r*x.1*sqrt(r^2-x.1^2) + x.1^3*log({r+sqrt(r^2-x.1^2)}f/x.1) }}   # to next pot 34 
                                           -Neighbour.2* {(h/(3*r))*{r^3 * acos(x.2/r)   -35 
2*r*x.2*sqrt(r^2-x.2^2) + x.2^3*log({r+sqrt(r^2-x.2^2)}/x.2) }}),  # to previous pot 36 
                     {1/3 * pi * r^2 * h}), 37 
                data=dataset, 38 
                start=list(h=h, r =  r),   39 
                algorithm = "port",control=nls.control(maxiter = 500, warnOnly = F,  printEval 40 
= F,tol = 1e-05),trace = TRUE)       41 
 42 
# fit again but now excluding data points that mix with and within the preliminary r-estimate 43 
data points, where r is based on fit.1, and starting values based on fit.1 44 
r=coefficients(fit.1)[2] #speed up things by using starting values for nls from previous fit. 45 
h=coefficients(fit.1)[1] #speed up things by using starting values for nls from previous fit. 46 
dataset=subset(dataset, ((x.1 < r) & (x.2 < r)) | ((x.1 > r)  & (x.2 > r)))  47 
 48 
subset(dataset, (x.1 < r  & x.2 < r))  49 
subset(dataset, (x.1 > r  & x.2 > r))  50 
  51 
 52 
                fit=nls(Catch~ ifelse ((x.1 < r  & x.2 <r), 53 
                     ({1/3 * pi * r^2 * h}  54 
                                           -Neighbour.1* {(h/(3*r))*{r^3 * acos(x.1/r)   -55 
2*r*x.1*sqrt(r^2-x.1^2) + x.1^3*log({r+sqrt(r^2-x.1^2)}/x.1) }}   # to next pot 56 
                                           -Neighbour.2* {(h/(3*r))*{r^3 * acos(x.2/r)   -57 
2*r*x.2*sqrt(r^2-x.2^2) + x.2^3*log({r+sqrt(r^2-x.2^2)}/x.2) }}),  # to previous pot 58 
                     {1/3 * pi * r^2 * h}), 59 
                data=dataset, 60 
                start=list(h=h, r =  r),   61 
                algorithm = "port",control=nls.control(maxiter = 5000, warnOnly = F,  printEval 62 
= F,tol = 1e-10),trace = TRUE)       63 
 64 
fit 65 
}       66 
    67 
plot.hr<- function(dataset,fit,label="A",ylab){ 68 
     69 
    h=coefficients(fit)[1] 70 
    r=coefficients(fit)[2]  71 
     72 
    dataset$x=rowMeans(cbind(dataset$Distance.1,dataset$Distance.2),na.rm=T)/2 73 
    dataset$x.1= dataset$Distance.1/2 74 
    dataset$x.2= dataset$Distance.2/2 75 
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     76 
 77 
                      78 
    79 
plot(data=dataset,Catch~x,xlim=c(0,0.55*max(dataset$Distance.1,na.rm=T)),ylim=c(0,max(dataset$80 
Catch)*1.2),xaxs="i",yaxs="i",ylab=ylab,xlab="",col="white",pch=19)           81 
#    plot(data=dataset,Catch~x,ylab="Catch",xlab="Half the distance  between pots d 82 
(m)",col="black",pch=19)           83 
    points(data=dataset,Catch~x.1,subset=is.na(dataset$Distance.2),col="grey",pch=19) 84 
    points(data=dataset,Catch~x.2,subset=is.na(dataset$Distance.1),col="grey",pch=19) 85 
     86 
    if (nrow(subset(dataset,x.1==x.2))>1)   { 87 
    points(data=dataset,subset=x.1==x.2,Catch~x,col="black",pch=19) } 88 
  89 
    dataset$Neighbour.1=1 90 
    dataset$Neighbour.2=1 91 
    dataset$Neighbour.1[is.na(dataset$Distance.1)]=0 92 
    dataset$Neighbour.2[is.na(dataset$Distance.2)]=0 93 
 94 
    mid.string=2         95 
    if ( max(rowSums(cbind(dataset$Neighbour.1,dataset$Neighbour.2)),na.rm=T)==2){        96 
       curve(expr={1/3 * pi * r^2 * h} - mid.string*{(h/(3*r))*{r^3 * acos(x/r)   -97 
2*r*x*sqrt(r^2-x^2) + x^3*log({r+sqrt(r^2-x^2)}/x) }},add=T,lwd=2,from = -1, to = 98 
max(dataset$x,na.rm=T),col="black") 99 
       lines(x=c(r,250),y=c(1/3 * pi * r^2 * h,1/3 * pi * r^2 * h),col="black",lwd=2) 100 
    } 101 
        102 
 103 
    end.string=1 104 
    if ( {sum(dataset$Neighbour.1==0) + sum(dataset$Neighbour.2==0)}>0){ 105 
        curve(expr={1/3 * pi * r^2 * h} - end.string*{(h/(3*r))*{r^3 * acos(x/r)   -106 
2*r*x*sqrt(r^2-x^2) + x^3*log({r+sqrt(r^2-x^2)}/x) }},add=T,lwd=2,from =-1, to = 107 
max(dataset$x,na.rm=T),col="grey") 108 
    lines(x=c(r,250),y=c(1/3 * pi * r^2 * h,1/3 * pi * r^2 * h),col="grey",lwd=2) 109 
    } 110 
                                      111 
     legend(legend=substitute(paste(italic(label))),"topleft",bty="n")                112 
                     113 
} 114 
 115 
stat.table<-function(fit){ 116 
    h=coefficients(fit)[1] 117 
    r=coefficients(fit)[2]  118 
    Asymptotic.distance=2*r 119 
    Catchable.Density=h 120 
    max.catch.rate={1/3 * pi * r^2 * h}  121 
    p.h=summary(fit)$parameters[1,4] 122 
    p.r=summary(fit)$parameters[2,4] 123 
 124 
c(h,p.h, r,p.r, max.catch.rate) 125 
} 126 
 127 
 128 
#################################################################### 129 
# analysis starts here 130 
#################################################################### 131 
 132 
#setwd("C:/Users/ossc06/OneDrive - Bangor University/Documents/Projects/17. IoM") 133 
setwd("C:/Users/Jan Geert Hiddink/Documents/Projects/17. IoM") 134 
IoM=read.csv("Crab Survey.csv")        135 
IoM=aggregate(data=IoM,Catch~string.position+Distance+Treatment,FUN=mean)  #it may be necessary 136 
to take the means of data points  137 
IoM=aggregate(data=IoM,Catch~string.position+Distance,FUN=mean)            #it may be necessary 138 
to take the means of data points   139 
IoM$Distance.1=IoM$Distance 140 
IoM$Distance.2=IoM$Distance 141 
IoM$Distance.2[IoM$string.position==1]=NA 142 
fit.IoM=estimate.h.r(dataset=IoM,h=4.998e-04, r=8.576e+01) 143 
 144 
windows(width=18,height=14) 145 
par(mfrow=c(1,1),xaxs="i",yaxs="i",mar=c(4,4,1,1),oma=c(2,0,0,0),tck=0.01,mgp=c(2.25,1,0)) 146 
 147 
plot.hr(dataset=IoM,fit=fit.IoM,label="A) Cancer pagurus, IoM",ylab="Mean catch per pot 148 
(numbers)") 149 
legend(legend=c("mid string","end 150 
string"),col=c("black","grey"),pch=19,"bottomright",cex=1.25,bty="n") 151 
 152 
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mtext(side=1,expression(paste("Half the distance between pots",italic(' d '),"(m)")),outer=T) 153 
 154 
stats=stat.table(fit.IoM) 155 
names(stats)=c("Density (h)","p-value h","Cone radius (r)","p-value r","Maximum catch rate") 156 
stats 157 

 158 
# The expected output using Supplementary data 1 using nls.  159 
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Supplementary Code 2. Code for estimating h and r using a Bayesian statistics in rstan. The script 160 
can be run using Supplementary data 1. 161 
 162 
require(rstan) 163 
require(rethinking) 164 
 165 
################################## 166 
######### functions ############## 167 
################################## 168 
 169 
# The first function fits the Bayesian model using rstan 170 
# function needs a dataframe with column names   Catch, Distance.1, Distance.2 171 
# convergence errors can usually be solved by choosing more realistic starting values for h and 172 
r 173 
  174 
Bayesian.estimate.h.r<- function(dataset=df,prior.h=c(10^-6,0.20),prior.r=c(1,200)) {     175 
dataset$Neighbour.1=1 176 
dataset$Neighbour.2=1 177 
dataset$Neighbour.1[is.na(dataset$Distance.1)]=0 178 
dataset$Neighbour.2[is.na(dataset$Distance.2)]=0 179 
 180 
dataset$Distance.1[is.na(dataset$Distance.1)]=min(c(dataset$Distance.1,dataset$Distance.2),na.181 
rm=T)  #needed to avoid errors, has no effect because value ignored in nls 182 
dataset$Distance.2[is.na(dataset$Distance.2)]=min(c(dataset$Distance.1,dataset$Distance.2),na.183 
rm=T) #needed to avoid errors, has no effect because value ignored in nls 184 
 185 
dataset$x.1=dataset$Distance.1/2 186 
dataset$x.2=dataset$Distance.2/2      187 
 188 
dataset$x1=  dataset$x.1    189 
 190 
#dataset=subset(dataset,x1<150)        191 
 192 
Catch=dataset$Catch 193 
x1 =  dataset$x.1 194 
Neighbour1 =  dataset$Neighbour.1 195 
Neighbour2 =  dataset$Neighbour.2 196 
 197 
data_list <- list( 198 
  Catch = Catch, 199 
  x1 =  x1, 200 
  N = length(Catch), 201 
  Neighbour1=Neighbour1, 202 
  Neighbour2=Neighbour2, 203 
  priorh =  prior.h    , 204 
  priorr =  prior.r     205 
) 206 
 207 
 208 
model_conditional<- '  209 
 210 
data{ 211 
       int<lower=1> N; 212 
       vector[N] Catch; 213 
       vector[N] x1; 214 
       vector[N] Neighbour1; 215 
       vector[N] Neighbour2; 216 
       vector[2] priorh; 217 
       vector[2] priorr; 218 
       } 219 
    220 
parameters{ 221 
       real<lower=1e-06,upper=0.2> h; 222 
       real<lower=.1,upper=300> r; 223 
       real<lower=0> sigma;} 224 
 225 
model{ 226 
       vector[N] mu; 227 
       sigma ~ exponential( 1 ); 228 
       r ~ uniform(priorr[1],priorr[2] ); 229 
       h ~ uniform( priorh[1],priorh[2] ); 230 
        231 
       for ( i in 1:N ){ 232 
           if (x1[i] < r) { 233 
       mu[i] = (pi() * r^2 * h)/3   234 
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       - (Neighbour1[i] * ((h/(3 * r)) * (r^3 * acos(x1[i]/r) - 2 * r * x1[i] * sqrt(r^2 - 235 
x1[i]^2) + x1[i]^3 * log((r + sqrt(r^2 - x1[i]^2))/x1[i])))) -  236 
        (Neighbour2[i] * ((h/(3 * r)) * (r^3 * acos(x1[i]/r) - 2 * r * x1[i] * sqrt(r^2 - 237 
x1[i]^2) + x1[i]^3 * log((r + sqrt(r^2 - x1[i]^2))/x1[i])))) 238 
       ;  239 
       } else {mu[i] = ((pi() * r^2 * h)/3) ;}  240 
        241 
       mu[i] = log(mu[i]);}    242 
       Catch ~ lognormal( mu , sigma );} 243 
        244 
generated quantities{ 245 
       vector[N] log_lik; 246 
       vector[N] mu; 247 
       248 
       for ( i in 1:N ){ 249 
           if (x1[i] < r) { 250 
       mu[i] = (pi() * r^2 * h)/3 - ((h/(3 * r)) * (r^3 * acos(x1[i]/r) - 2 * r * x1[i] * 251 
sqrt(r^2 - x1[i]^2) + x1[i]^3 * log((r +                        sqrt(r^2 - x1[i]^2))/x1[i])));  252 
       } else {mu[i] = ((pi() * r^2 * h)/3) ;}  253 
       mu[i] = log(mu[i]);  254 
    } 255 
    256 
for ( i in 1:N ) log_lik[i] = lognormal_lpdf( Catch[i] | mu[i] , sigma ); 257 
}        258 
    259 
' 260 
    261 
fit <- stan(model_code = model_conditional,  262 
                     data = data_list)                     263 
fit 264 
 265 
}       266 
 267 
#################################################################### 268 
### this second function plots that data and the fitted relationship  269 
#################################################################### 270 
    271 
plot.hr<- function(dataset,fit,label="A",ylab){ 272 
 273 
post <- extract.samples(fit) 274 
h=median(post$h) 275 
r=median(post$r)  276 
     277 
    dataset$x=rowMeans(cbind(dataset$Distance.1,dataset$Distance.2),na.rm=T)/2 278 
    dataset$x.1= dataset$Distance.1/2 279 
    dataset$x.2= dataset$Distance.2/2 280 
 281 
                      282 
    283 
plot(data=dataset,Catch~x,xlim=c(0,0.55*max(dataset$Distance.1,na.rm=T)),ylim=c(0,max(dataset$284 
Catch)*1.2),xaxs="i",yaxs="i",ylab=ylab,xlab="",col="white",pch=19)           285 
#    plot(data=dataset,Catch~x,ylab="Catch",xlab="Half the distance  between pots d 286 
(m)",col="black",pch=19)           287 
    points(data=dataset,Catch~x.1,subset=is.na(dataset$Distance.2),col="grey",pch=19) 288 
    points(data=dataset,Catch~x.2,subset=is.na(dataset$Distance.1),col="grey",pch=19) 289 
         290 
    if (nrow(subset(dataset,x.1==x.2))>1)   { 291 
    points(data=dataset,subset=x.1==x.2,Catch~x,col="black",pch=19) } 292 
  293 
    dataset$Neighbour.1=1 294 
    dataset$Neighbour.2=1 295 
    dataset$Neighbour.1[is.na(dataset$Distance.1)]=0 296 
    dataset$Neighbour.2[is.na(dataset$Distance.2)]=0 297 
 298 
    mid.string=2         299 
    if ( max(rowSums(cbind(dataset$Neighbour.1,dataset$Neighbour.2)),na.rm=T)==2){        300 
       curve(expr={1/3 * pi * r^2 * h} - mid.string*{(h/(3*r))*{r^3 * acos(x/r)   -301 
2*r*x*sqrt(r^2-x^2) + x^3*log({r+sqrt(r^2-x^2)}/x) }},add=T,lwd=2,from = -1, to = 302 
max(dataset$x,na.rm=T),col="black") 303 
       lines(x=c(r,250),y=c(1/3 * pi * r^2 * h,1/3 * pi * r^2 * h),col="black",lwd=2) 304 
    } 305 
        306 
 307 
    end.string=1 308 
    if ( {sum(dataset$Neighbour.1==0) + sum(dataset$Neighbour.2==0)}>0){ 309 
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        curve(expr={1/3 * pi * r^2 * h} - end.string*{(h/(3*r))*{r^3 * acos(x/r)   -310 
2*r*x*sqrt(r^2-x^2) + x^3*log({r+sqrt(r^2-x^2)}/x) }},add=T,lwd=2,from =-1, to = 311 
max(dataset$x,na.rm=T),col="grey") 312 
    lines(x=c(r,250),y=c(1/3 * pi * r^2 * h,1/3 * pi * r^2 * h),col="grey",lwd=2) 313 
    } 314 
                                      315 
     legend(legend=substitute(paste(italic(label))),"topleft",bty="n")                316 
  317 
 318 
 319 
                     320 
} 321 
 322 
#################################################################### 323 
# this function makes a table of the estimated parameter values 324 
#################################################################### 325 
 326 
stat.table<-function(fit){ 327 
 328 
post <- extract.samples(fit) 329 
h=median(post$h) 330 
r=median(post$r)  331 
 332 
h.ci=quantile(post$h,c(0.025,0.975)) 333 
r.ci=quantile(post$r,c(0.025,0.975)) 334 
  335 
    Asymptotic.distance=2*r 336 
    Catchable.Density=h 337 
    max.catch.rate={1/3 * pi * r^2 * h}  338 
 339 
 340 
c(h, h.ci,r, r.ci,max.catch.rate) 341 
} 342 
 343 
 344 
#################################################################### 345 
# analysis starts here 346 
#################################################################### 347 
 348 
#### IoM Cancer pagurus #### 349 
#setwd("C:/Users/ossc06/OneDrive - Bangor University/Documents/Projects/17. IoM") 350 
setwd("C:/Users/Jan Geert Hiddink/Documents/Projects/17. IoM") 351 
IoM=read.csv("Crab Survey.csv")        352 
IoM=aggregate(data=IoM,Catch~string.position+Distance+Treatment,FUN=mean)  #it may be necessary 353 
to take the means of data points  354 
IoM=aggregate(data=IoM,Catch~string.position+Distance,FUN=mean)            #it may be necessary 355 
to take the means of data points   356 
IoM$Distance.1=IoM$Distance 357 
IoM$Distance.2=IoM$Distance 358 
IoM$Distance.2[IoM$string.position==1]=NA 359 
fit.IoM=Bayesian.estimate.h.r(dataset=IoM,prior.h=c(0.00001,0.05),prior.r=c(10,200)) #priors 360 
need to be chosen to fit the dataset 361 
 362 
##diagnostics 363 
pairs(fit.IoM,pars=c("sigma","h","r")) 364 
traceplot(fit.IoM, pars=c("sigma","h","r")) 365 
 366 
windows(width=18,height=14) 367 
par(mfrow=c(1,1),xaxs="i",yaxs="i",mar=c(4,4,1,1),oma=c(2,0,0,0),tck=0.01,mgp=c(2.25,1,0)) 368 
 369 
plot.hr(dataset=IoM,fit=fit.IoM,label="A) Cancer pagurus, IoM",ylab="Mean catch per pot 370 
(numbers)") 371 
mtext(side=1,expression(paste("Half the distance between traps",italic(' d '),"(m)")),outer=T) 372 
legend(legend=c("mid string","end 373 
string"),col=c("black","grey"),pch=19,"bottomright",cex=1.25,bty="n") 374 
 375 
# run this is you want to plot a sample of the possible lines you can expect 376 
#post=extract(fit.IoM) 377 
#alpha=0.005 378 
#mid.string.col=adjustcolor( "black",alpha.f = alpha) 379 
#end.string.col=adjustcolor( "blue",alpha.f = alpha) 380 
#for (x in 1:length(post$r)){ 381 
#  h=post$h[x] 382 
#  r=post$r[x] 383 
#  curve(expr={1/3 * pi * r^2 * h} - 1*{(h/(3*r))*{r^3 * acos(x/r)   -2*r*x*sqrt(r^2-x^2) + 384 
x^3*log({r+sqrt(r^2-x^2)}/x) }},add=T,lwd=2,from =-1, to = r ,col=end.string.col) 385 
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#    curve(expr={1/3 * pi * r^2 * h} - 2*{(h/(3*r))*{r^3 * acos(x/r)   -2*r*x*sqrt(r^2-x^2) + 386 
x^3*log({r+sqrt(r^2-x^2)}/x) }},add=T,lwd=2,from =-1, to = r,col=mid.string.col) 387 
#    lines(x=c(r,250),y=c(1/3 * pi * r^2 * h,1/3 * pi * r^2 * h),col=mid.string.col,lwd=2) 388 
#    lines(x=c(r,250),y=c(1/3 * pi * r^2 * h,1/3 * pi * r^2 * h),col=end.string.col,lwd=2) 389 
#} 390 
# 391 
 392 
 393 
stat.table(fit.IoM) 394 
names(stats)=c("Density (h)","h lower CI","h upper CI","Cone radius (r)","r lower CI","r upper 395 
CI","Maximum catch rate") 396 
stats 397 
 398 
 399 
 400 
  401 
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 402 

 403 
# The expected output using Supplementary data 1 using rstan.  404 
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Supplementary data 1. The dataset for Isle of Man trap-distance experiment for Cancer pagurus 405 
    Treatment String Pot_No.   Date Distance Catch string.position 406 
1        T1_1     T1       1 05-Aug     15.0     1               1 407 
2        T2_1     T2       1 05-Aug     22.5     0               1 408 
3        T3_1     T3       1 05-Aug     35.0     1               1 409 
4        T4_1     T4       1 05-Aug     75.0     2               1 410 
5        T5_1     T5       1 05-Aug    105.0     2               1 411 
6        T6_1     T6       1 05-Aug    135.0     5               1 412 
7        T7_1     T7       1 05-Aug    165.0     2               1 413 
8        T8_1     T8       1 05-Aug    225.0     0               1 414 
9        T1_1     T1       1 06-Aug     15.0     2               1 415 
10       T2_1     T2       1 06-Aug     22.5     2               1 416 
11       T3_1     T3       1 06-Aug     35.0     3               1 417 
12       T4_1     T4       1 06-Aug     75.0     6               1 418 
13       T5_1     T5       1 06-Aug    105.0     9               1 419 
14       T6_1     T6       1 06-Aug    135.0     7               1 420 
15       T7_1     T7       1 06-Aug    165.0     6               1 421 
16       T8_1     T8       1 06-Aug    225.0     5               1 422 
17       T1_1     T1       1 07-Aug     15.0     3               1 423 
18       T2_1     T2       1 07-Aug     22.5     4               1 424 
19       T3_1     T3       1 07-Aug     35.0     1               1 425 
20       T4_1     T4       1 07-Aug     75.0     3               1 426 
21       T5_1     T5       1 07-Aug    105.0     1               1 427 
22       T6_1     T6       1 07-Aug    135.0     4               1 428 
23       T7_1     T7       1 07-Aug    165.0     4               1 429 
24       T8_1     T8       1 07-Aug    225.0     9               1 430 
25       T1_2     T1       2 05-Aug     15.0     0               2 431 
26       T2_2     T2       2 05-Aug     22.5     1               2 432 
27       T3_2     T3       2 05-Aug     35.0     1               2 433 
28       T4_2     T4       2 05-Aug     75.0     0               2 434 
29       T5_2     T5       2 05-Aug    105.0     4               2 435 
30       T6_2     T6       2 05-Aug    135.0     0               2 436 
31       T7_2     T7       2 05-Aug    165.0     1               2 437 
32       T8_2     T8       2 05-Aug    225.0     2               2 438 
33       T1_2     T1       2 06-Aug     15.0     4               2 439 
34       T2_2     T2       2 06-Aug     22.5     1               2 440 
35       T3_2     T3       2 06-Aug     35.0     3               2 441 
36       T4_2     T4       2 06-Aug     75.0     1               2 442 
37       T5_2     T5       2 06-Aug    105.0     6               2 443 
38       T6_2     T6       2 06-Aug    135.0     5               2 444 
39       T7_2     T7       2 06-Aug    165.0     6               2 445 
40       T8_2     T8       2 06-Aug    225.0     1               2 446 
41       T1_2     T1       2 07-Aug     15.0     1               2 447 
42       T2_2     T2       2 07-Aug     22.5     3               2 448 
43       T3_2     T3       2 07-Aug     35.0     3               2 449 
44       T4_2     T4       2 07-Aug     75.0     4               2 450 
45       T5_2     T5       2 07-Aug    105.0     2               2 451 
46       T6_2     T6       2 07-Aug    135.0     2               2 452 
47       T7_2     T7       2 07-Aug    165.0     6               2 453 
48       T8_2     T8       2 07-Aug    225.0     2               2 454 
49       T1_3     T1       3 05-Aug     15.0     0               2 455 
50       T2_3     T2       3 05-Aug     22.5     0               2 456 
51       T3_3     T3       3 05-Aug     35.0     1               2 457 
52       T4_3     T4       3 05-Aug     75.0     1               2 458 
53       T5_3     T5       3 05-Aug    105.0     2               2 459 
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54       T6_3     T6       3 05-Aug    135.0     1               2 460 
55       T7_3     T7       3 05-Aug    165.0     5               2 461 
56       T8_3     T8       3 05-Aug    225.0     2               2 462 
57       T1_3     T1       3 06-Aug     15.0     0               2 463 
58       T2_3     T2       3 06-Aug     22.5     3               2 464 
59       T3_3     T3       3 06-Aug     35.0     2               2 465 
60       T4_3     T4       3 06-Aug     75.0     4               2 466 
61       T5_3     T5       3 06-Aug    105.0     3               2 467 
62       T6_3     T6       3 06-Aug    135.0     4               2 468 
63       T7_3     T7       3 06-Aug    165.0    11               2 469 
64       T8_3     T8       3 06-Aug    225.0     8               2 470 
65       T1_3     T1       3 07-Aug     15.0     2               2 471 
66       T2_3     T2       3 07-Aug     22.5     1               2 472 
67       T3_3     T3       3 07-Aug     35.0     0               2 473 
68       T4_3     T4       3 07-Aug     75.0     4               2 474 
69       T5_3     T5       3 07-Aug    105.0     5               2 475 
70       T6_3     T6       3 07-Aug    135.0     2               2 476 
71       T7_3     T7       3 07-Aug    165.0     9               2 477 
72       T8_3     T8       3 07-Aug    225.0     3               2 478 
73       T1_4     T1       4 05-Aug     15.0     2               2 479 
74       T2_4     T2       4 05-Aug     22.5     0               2 480 
75       T3_4     T3       4 05-Aug     35.0     0               2 481 
76       T4_4     T4       4 05-Aug     75.0     4               2 482 
77       T5_4     T5       4 05-Aug    105.0     3               2 483 
78       T6_4     T6       4 05-Aug    135.0     1               2 484 
79       T7_4     T7       4 05-Aug    165.0     1               2 485 
80       T8_4     T8       4 05-Aug    225.0     0               2 486 
81       T1_4     T1       4 06-Aug     15.0     2               2 487 
82       T2_4     T2       4 06-Aug     22.5     0               2 488 
83       T3_4     T3       4 06-Aug     35.0     2               2 489 
84       T4_4     T4       4 06-Aug     75.0     4               2 490 
85       T5_4     T5       4 06-Aug    105.0     2               2 491 
86       T6_4     T6       4 06-Aug    135.0     4               2 492 
87       T7_4     T7       4 06-Aug    165.0     7               2 493 
88       T8_4     T8       4 06-Aug    225.0     3               2 494 
89       T1_4     T1       4 07-Aug     15.0     1               2 495 
90       T2_4     T2       4 07-Aug     22.5     0               2 496 
91       T3_4     T3       4 07-Aug     35.0     1               2 497 
92       T4_4     T4       4 07-Aug     75.0     4               2 498 
93       T5_4     T5       4 07-Aug    105.0     6               2 499 
94       T6_4     T6       4 07-Aug    135.0     5               2 500 
95       T7_4     T7       4 07-Aug    165.0     4               2 501 
96       T8_4     T8       4 07-Aug    225.0     2               2 502 
97       T1_5     T1       5 05-Aug     15.0     0               1 503 
98       T2_5     T2       5 05-Aug     22.5     0               1 504 
99       T3_5     T3       5 05-Aug     35.0     4               1 505 
100      T4_5     T4       5 05-Aug     75.0     2               1 506 
101      T5_5     T5       5 05-Aug    105.0     3               1 507 
102      T6_5     T6       5 05-Aug    135.0     1               1 508 
103      T7_5     T7       5 05-Aug    165.0     2               1 509 
104      T8_5     T8       5 05-Aug    225.0     5               1 510 
105      T1_5     T1       5 06-Aug     15.0     1               1 511 
106      T2_5     T2       5 06-Aug     22.5     0               1 512 
107      T3_5     T3       5 06-Aug     35.0     1               1 513 
108      T4_5     T4       5 06-Aug     75.0     1               1 514 
109      T5_5     T5       5 06-Aug    105.0     6               1 515 
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110      T6_5     T6       5 06-Aug    135.0     4               1 516 
111      T7_5     T7       5 06-Aug    165.0     6               1 517 
112      T8_5     T8       5 06-Aug    225.0     5               1 518 
113      T1_5     T1       5 07-Aug     15.0     0               1 519 
114      T2_5     T2       5 07-Aug     22.5     4               1 520 
115      T3_5     T3       5 07-Aug     35.0     3               1 521 
116      T4_5     T4       5 07-Aug     75.0     3               1 522 
117      T5_5     T5       5 07-Aug    105.0     5               1 523 
118      T6_5     T6       5 07-Aug    135.0     4               1 524 
119      T7_5     T7       5 07-Aug    165.0     6               1 525 
120      T8_5     T8       5 07-Aug    225.0     2               1 526 


