

Microbial community succession in soil is mainly driven by carbon and nitrogen contents rather than phosphorus and sulphur contents

Tang, Sheng; Ma, Qingxu; Marsden, Kara; Chadwick, Dave; Luo, Yu; Kuzyakov, Yakov; Wu, Lianghuan; Jones, Davey L.

Soil Biology and Biochemistry

DOI: 10.1016/j.soilbio.2023.109019

Published: 01/05/2023

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Tang, S., Ma, Q., Marsden, K., Chadwick, D., Luo, Y., Kuzyakov, Y., Wu, L., & Jones, D. L. (2023). Microbial community succession in soil is mainly driven by carbon and nitrogen contents rather than phosphorus and sulphur contents. Soil Biology and Biochemistry, 180, Article 109019. https://doi.org/10.1016/j.soilbio.2023.109019

Hawliau Cyffredinol / General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- · You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal ?

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

1	Microbial community succession in soil is mainly driven by carbon and
2	nitrogen contents rather than phosphorus and sulphur contents
3	
4	Sheng Tang ^{a,b,c} • Qingxu Ma ^{a,b,c*} • Karina A. Marsden ^b • David R. Chadwick ^b • Yu
5	Luo ^{a,c} • Yakov Kuzyakov ^{d,e,f} • Lianghuan Wu ^{a,c} • Davey L. Jones ^{b,g}
6	
7	^a Ministry of Education Key Lab of Environmental Remediation and Ecosystem
8	Health, College of Environmental and Resource Sciences, Zhejiang University,
9	Hangzhou, 310058, China
10	^b School of Natural Sciences, Bangor University, Gwynedd, LL57 2UW, UK
11	^c Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment,
12	College of Environmental and Resource Sciences, Zhejiang University, Hangzhou,
13	310058, China
14	^d Department of Soil Science of Temperate Ecosystems, University of Göttingen,
15	37077 Göttingen, Germany
16	^e Peoples' Friendship University of Russia (RUDN University), 117198 Moscow,
17	Russian Federation
18	^f Institute of Environmental Sciences, Kazan Federal University, 420049 Kazan,
19	Russia
20	^g Food Futures Institute, Murdoch University, Murdoch, WA 6105, Australia
21	
22	* Corresponding authors: Qingxu Ma
23	<i>E-mail address</i> : <u>qxma@zju.edu.cn</u>

25 Abstract

26	Organic manure is widely applied in agricultural systems to improve soil nutrient
27	cycling and other physicochemical properties. However, the biotic and abiotic
28	mechanisms that drive C, N, P, and S cycling following manure application are not
29	completely understood. In this study, soil samples were collected from long-term
30	experimental plots that had been amended with farmyard manure or mineral fertilisers
31	since 1964. Isotope labelling with ¹⁵ N, ³³ P, and ³⁵ S; metagenomics; and high-
32	throughput sequencing were used to reveal the relationships between C, N, P, and S
33	dynamics and microbial community composition and functions depending on
34	fertilisation. A clear niche differentiation was observed between bacteria and fungi
35	under mineral and manure regimes. A network analysis showed that long-term manure
36	application reduced the complexity and stability of soil microbial network.
37	Furthermore, a variation partitioning analysis based on redundancy analysis indicated
38	that microbial community variation was mainly driven by soil Cand N contents.
39	Dissolved organic C was the most important factor regulating microbial community
40	structure. Soil C and N contents explained 43.5% of bacterial and 37.9% of fungal
41	community variations. In contrast, soil P and S contents explained 29.9% of bacterial
42	and 20.3% of fungal community variations. Long-term manure application increased
43	the abundance of most functional genes related to C, N, P, and S cycling. This led to
44	increased C and N cycling rates under manure application, which provided sufficient
45	substrates for microbial growth. Partial least squares path modelling indicated that soil

46	physicochemical properties, especially dissolved organic carbon, directly influenced
47	C and S cycling, whereas the N and P cycles were indirectly affected by the changes
48	in microbial community composition. These results provide a new perspective on both
49	direct and indirect effects of organic manure and inorganic fertilisers on the soil
50	nutrient cycling processes mediated by soil microbial community.
51	
52	Keywords: Manure, Nutrient cycling, Microbial community, Functional genes, Co-
53	occurrence network
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	

1 Introduction

70	Microorganisms drive soil biogeochemical cycles (Jiao et al., 2021). Various
71	factors such as temperature (Li et al., 2021b), precipitation (de Vries et al., 2018), and
72	soil physicochemical properties (Rousk et al., 2010) have been shown to considerably
73	affect the soil microbiota and, thus, microbe-driven nutrient cycling (Wang et al.,
74	2021). Soil nutrient content can also influence microbial community diversity and
75	composition (Eo and Park, 2016; Dai et al., 2020; Tang et al., 2022). For instance, soil
76	with high nutrient content favours copiotrophic taxa, whereas oligotrophic
77	microorganisms are better adapted to nutrient-deficient soils (Fierer and Jackson,
78	2006; Fierer et al., 2007). In addition, soil nutrients bioavailability not only altered
79	microbial community but also its function expression in nutrient cycling. For
80	example, when the soil C/N or C/S value was high due to manure application, the
81	mineralization process driven by microorganisms will be accelerated to maintain
82	microbial stoichiometry (Ma et al., 2021a).
83	Microorganisms are not only influenced by environmental factors but also by
84	microbial community interactions, which ultimately affect microbe-driven nutrient
85	cycling (Jiang et al., 2018; Ma et al., 2018). Therefore, elucidating the stability and
86	complexity of the relationships among microorganisms is necessary for attaining a
87	complete understanding of microbial ecology and for the implementation of
88	sustainable agricultural production strategies. Microbial networks are widely applied
89	to reveal the relationships among microorganisms (Deng et al., 2012; de Vries et al.,

90	2018). Co-occurrence networks allow the evaluation of microbial response to
91	environmental change. Previous studies found that the interactions among
92	microorganisms in networks are influenced by fertiliser regimes (Gu et al., 2019) and
93	climate change, including elevated CO2 levels (Zhou et al., 2011), increased
94	temperatures (Yuan et al., 2021), and increased drought frequency (de Vries et al.,
95	2018). A recent study found that soil fungal richness regulates the soil bacterial
96	community assembly, with stochastic assembly processes decreasing along with an
97	increase in fungal richness (Jiao et al., 2022). Co-occurrence networks also allow the
98	assessment of the functional potential of agricultural ecosystems. Recently, Shi et al.
99	(2020) demonstrated that the functional potential of agricultural ecosystems is highly
100	associated with the abundance of kinless hubs (taxa within highly connected
101	networks) in a network. However, the response of microbial networks to long-term
102	manure application and the relationship between soil nutrient cycling and microbial
103	network response have rarely been reported.
104	The cycling of C, N, P, and S is strongly associated with agricultural production
105	and ecosystem functions (Ma et al., 2020a; Ma et al., 2020b; Ma et al., 2021a).
106	Fertilisation can influence nutrient cycles directly, through the addition of substrates
107	or products of cycling processes, or indirectly, by altering the soil environment and
108	microbial community (Fan et al., 2019; Dai et al., 2020). For instance, long-term P
109	inputs increase microbial P fixation, while long-term N inputs reduce P mineralisation
110	(Dai et al., 2020). N-fixation rates decrease under long-term fertilisation, and the
111	application of N fertilisers accelerates potential nitrification rates (Yao et al., 2016;

112	Fan et al., 2019). Mineralisation of organic C is supressed by mineral fertiliser
113	amendment, but this suppression can be alleviated by partial substitution of mineral
114	fertilisers with green manure (Xu et al., 2021). Furthermore, simultaneous long-term
115	use of N fertilisers and manure increases the mineralisation of organic S (Knights et
116	al., 2001). Most studies have investigated the links between element cycling rates and
117	microbial function focusing solely on one element. However, the C, N, P, and S
118	cycles are interconnected, and whether fertiliser application has the same effect on the
119	cycling of various elements and microbial function remains unknown. Various studies
120	have investigated the soil C and N cycles, whereas studies on the P and S cycles are
121	relatively limited (Malik et al., 2018; Dai et al., 2020; Li et al., 2021a; Yu et al.,
122	2021). Previous studies used enzyme activity and functional genes related to the P and
123	S cycles to represent soil P and S processes (Dai et al., 2020; Yu et al., 2021).
124	However, inconsistent relationships have been reported between functional genes and
125	their related soil processes (Graham et al., 2014; Bier et al., 2015; Rocca et al., 2015);
126	these relationships depend on soil physicochemical properties, cycling elements, and
127	climatic factors (Moran et al., 2013; Rocca et al., 2015; Tosi et al., 2020).
128	Fertilisers can considerably affect microbial communities by directly increasing
129	nutrient availability and indirectly changing the aboveground plant growth and soil
130	chemical properties such as pH and electrical conductivity (EC) (Rousk et al., 2010;
131	Yang et al., 2019; Liu et al., 2021). The application of inorganic or organic (manure)
132	fertilisers alone is not favourable to crop growth, because inorganic fertilisers will
133	lead to environmental risk and decline of microbial diversity, whereas, manure

134	application alone is not sufficient to achieve high crop yields in the context of
135	intensive production systems (Chen, 2006; Garzón et al., 2011; Geisseler and Scow,
136	2014; Ji et al., 2020). The partial substitution of mineral fertiliser with manure has
137	been proposed to reduce environmental risk while maintaining crop yields (Q. Tang et
138	al., 2021; Xu et al., 2021). However, our knowledge of the effects of long-term
139	mineral fertiliser combined with different amounts of manure on soil microorganisms
140	and nutrient cycles is still relatively poor.
141	In this study, soil samples were collected from experimental plots treated since
142	1964 with mineral fertilisers or manure to investigate their effect on the soil
143	microbiota and associated C, N, P, and S cycling. The N, P, and S cycling rates were
144	determined using ¹⁵ N, ³³ P, and ³⁵ S isotope pool dilution methods, respectively, while
145	microbial community composition and function were detected using high-throughput
146	sequencing and metagenomics. The specific aims of the study were to 1) assess the
147	response and the interactions of soil microorganisms under long-term fertilisation, 2)
148	investigate the response of functional genes and soil processes to long-term manure
149	application, and 3) analyse the relationships among soil physicochemical properties,
150	soil microorganisms, functional genes, and soil processes.
151	
152	2 Material and methods

2.1 Field experiment design and soil sampling 154

The field experiment at Woburn Experimental Farm in SE England (51°59'59" N, 155

156	0°36′56″ W) (www.era.rothamsted.ac.uk/WoburnFarm) has been ongoing since 1964
157	(Mattingly. 1974). The soil texture (excluding organic matter) at the site is classified
158	as sandy loam with 80% sand, 6% silt, and 10% clay (Ma et al., 2020a). Three typical
159	fertilisation treatments were set up as follows: 1) NM: mineral fertiliser with N, P, and
160	K inputs equivalent to those of 25–50 t ha ⁻¹ y ⁻¹ of farmyard manure (FYM); 2) MM:
161	mineral fertiliser combined with medium amounts of FYM (10 t ha ⁻¹ y ⁻¹); and 3) HM:
162	mineral fertiliser combined with high amounts of FYM (25–50 t ha ⁻¹ y ⁻¹). Four
163	replicates were established for each treatment using a randomised block design,
164	wherein each replicate consisted of an 8.83 m \times 8.0 m experimental plot. In the early
165	years of the experiment, a five-course arable crop rotation involving potatoes, wheat,
166	sugar beet, barley, and oats (or beans) was conducted. From 2004, the rotation
167	included spring barley, winter beans, winter wheat, maize, and winter rye. A cover
168	crop, mustard, was grown before the spring barley and maize.
169	The HM treatment consisted of 50 t ha ⁻¹ y ⁻¹ , 50 t ha ⁻¹ y ⁻¹ , and 25 t ha ⁻¹ y ⁻¹ of FYM
170	amendment during 1966–1971, 1981–1987, and 2003–2018, respectively (28 years in
171	total) (Table 1). The mineral N, P, K, and S fertilisers were applied as nitrochalk (27%
172	N), triple superphosphate, and potassium sulphate at 83 (mean N rate over all plots),
173	20, 83, and 36 kg ha ⁻¹ y ⁻¹ , respectively, in the NM and MM treatments between 2003
174	and 2018. The HM treatments did not include additional P and K fertiliser but did
175	include similar inputs of N fertiliser since 2003. The MM treatment included the
176	application of FYM at a rate of 10 t ha ⁻¹ y ⁻¹ over a period of 16 years (2003–2018).
177	Between 1965 and 2003, an amount of mineral fertiliser equivalent to a straw input

178	$(7.5 \text{ t ha}^{-1} \text{ y}^{-1})$ was applied to the MM plots. The total nutrient input of each treatment
179	from 1996 to 2018 is listed in Table S1. A detailed description of the NM, MM, and
180	HM treatments has been provided by Ma et al. (2021b).
181	Topsoil (0-23 cm, plough layer) and subsoil (23-38 cm) samples were collected
182	by hand from four plots with each treatment, using a 2.5 cm diameter corer, in June
183	2018. Eighteen cores were collected per plot, and the soil corresponding to each
184	treatment was thoroughly mixed before being transported to the laboratory. There, it
185	was sifted with a 5 mm sieve to remove earthworms and roots. The resulting soil
186	samples were divided into two parts each. The first was stored at 4 °C in a refrigerator
187	for no more than 10 days to determine its physicochemical properties (Table S2).
188	These were measured following a previously reported procedure (Ma et al., 2020a;
189	Ma et al., 2020b; Ma et al., 2021b). The second part was stored at -80 °C and used for
190	high-throughput sequencing.
191	
192	2.2 Analysis of soil physicochemical properties
193	Soil pH and EC were determined after extraction with deionised water (soil:
194	deionised water = 1:2.5). Soil organic matter (SOM) content was measured using the
195	loss-on-ignition method. Total C and N were detected by dry combustion using a
196	CHN-2000 analyser (Leco Corp., St. Joseph, MI, USA). Soil basal respiration (BS)
197	was measured using an EGM-5 portable infrared gas analyser (PP Systems Ltd.,
198	Hitchin, UK). Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN)
199	were measured using a multi-N/C 2100S TOC-TN analyser (Analytik Jena AG, Jena,

200	Germany) after extraction with 0.5 M K_2SO_4 . NH_4^+ and NO_3^- contents were detected
201	colourimetrically using a Power Wave HT microplate spectrophotometer (BioTek
202	Instruments Inc., Winooski, VT, USA). Extractable organic N (EON) was calculated
203	by subtracting NH_4^+ and NO_3^- contents from the TDN. Soil microbial biomass C
204	(MBC), N (MBN), P (MBP), and S (MBS) were determined using the fumigation-
205	extraction method (Vance et al., 1987). MBC and MBN were calculated using a
206	conversion factor of 2.22 (Jenkinson et al., 2004), while MBP and MBS were
207	calculated using conversion factors of 2.5 and 2.86, respectively (Vong et al., 2003;
208	Spohn et al., 2016). Soil protein content was estimated by measuring the amino acids
209	(AA) produced by acid hydrolysis. Soil peptides and free AA fractions were extracted
210	with 0.5 M K_2SO_4 before passing through a 1000 MW ultrafiltration membrane with
211	an Amicon stirred cell (Merck-Milli-pore, Burlington, MA, USA). Subsequently, the
212	AA in the eluent were analysed using the fluorometric o-Phthaldialdehyde- β -
213	Mercaptoethanol method before and after acid hydrolysis (Jones et al., 2002). Soil
214	total P and total S were detected using inductively coupled plasma-optical emission
215	spectrometry (Varian 710 ES, Agilent Corp., Santa Clara, CA, USA). Soil Olsen P
216	was detected colourimetrically, the PO_4^{3-} and SO_4^{2-} contents were measured with ion
217	chromatography, using a Dionex AS14A column (930 Compact IC Flex; Metrohm
218	Ltd, Runcorn, UK). Organic P content was determined as the difference between
219	molybdate reactive-P and total P contents. Organic S content was calculated as the
220	difference between SO_4^{2-} and total S contents.

222 2.3 Analysis of soil gross production and consumption of NH_4^+ , NO_3^- , PO_4^{3-} , and 223 SO_4^{2-}

224	The gross production and consumption of NH_4^+ , NO_3^- , PO_4^{3-} , and SO_4^{2-} were
225	determined using ¹⁵ N, ³³ P, and ³⁵ S isotope pool dilution techniques, respectively
226	(Eriksen, 2005; Kellogg et al., 2006; Corre et al., 2007). For N cycle determination, 2
227	ml of 0.1 mM 20% atm 15 N-NO ₃ ⁻ or 15 N-NH ₄ ⁺ was added to 20 g of moist field soil.
228	After 3 and 24 h, the soil was extracted with 80 ml of 0.5 M K_2SO_4 (180 rpm, 30
229	min), followed by centrifugation (18,000 g, 5 min), and NO ₃ ⁻ or NH ₄ ⁺ contents were
230	determined with micro-detection colorimetric methods as described in a previous
231	study (Mariano et al., 2016; Ma et al., 2020b). To determine the P cycle rate, 1 ml
232	$Na_3^{33}PO_4$ (99 kBq ml ⁻¹) was added to 10 g of moist field soil. After 3 and 24 h of
233	cultivation at 20 °C, the soil was extracted with 40 ml of 0.5 M NaHCO ₃ (180 rpm, 30
234	min) and centrifuged (18,000 g, 5 min). The PO_4^{3-} content of the supernatant was
235	detected colourimetrically (Murphy and Riley, 1962; Ma et al., 2020a). To determine
236	the S cycle rate, 1 mL $Na_2^{35}SO_4$ (99 kBq mL ⁻¹) was added to 10 g of moist field soil.
237	After 3 and 24 h, the soil was extracted with 50 mL of 0.01 M CaCl ₂ (180 rpm, 30
238	min) and centrifuged (18,000 g, 5 min). The SO_4^{2-} content was measured by adding 1
239	M BaCl ₂ (Ma et al., 2021b). The 15 N abundance was detected by element analyser-
240	stable isotope mass spectrometry (EA-IRMS) (IsoPrime100; Isoprime Ltd., Cheadle
241	Hulme, UK). ³³ P and ³⁵ S activity were detected by Wallac 1404 scintillation counter
242	(Wallac EG & G, Milton Keynes, UK) (detailed information is shown in
243	supplementary information Section S1).

245 2.3 Soil DNA extraction and sequencing of bacteria and fungi

246	DNA was extracted from soil subsamples (0.5 g, stored at -80 °C) using the
247	FastDNA SPIN kit (MP Biomedicals, Irvine, CA, USA) following the manufacturer's
248	instructions. A NanoDrop ND-1000 UV-Vis spectrophotometer (NanoDrop
249	Technologies, Wilmington, DE, USA) was then used to determine the concentration
250	and quality of the extracted DNA. Primers 515F-806R (Caporaso et al., 2011) for
251	bacteria and ITS1F-ITS2 (Gardes and Bruns, 1993) for fungi were selected for
252	amplification. The sequencing of polymerase chain reaction products was performed
253	using the Illumina Novaseq platform. Bacterial and fungal sequence data were
254	processed using an in-house pipeline (Feng et al., 2017). The same operational
255	taxonomic units (OTUs) were clustered with 97% similarity. Annotation of taxonomic
256	data for representative sequences of bacteria and fungi was performed using the
257	SILVA (Quast et al., 2013) and UNITE (Nilsson et al., 2019) databases, respectively.
258	
259	2.4 Shotgun metagenomic sequencing
260	Sequencing of the metagenomic DNA shotgun was performed using the Illumina

261 HiSeq 2500 platform (Illumina, Inc., San Diego, CA, USA). For this, ~5.0 Gbp

262 paired-end reads (150 bp in length) were produced after contaminant and quality

263 filtering. The cleaned sequences were de novo assembled into contigs using the

264 Megahit assembler (Zhu et al., 2019). The selected contigs were uploaded to and

annotated by the Integrated Microbial Genomes pipeline to derive abundance tables

266	for genes based on the KEGG database (Kanehisa et al., 2015). Functional genes
267	related to the C, N, P, and S cycles were selected for subsequent analyses. Detailed
268	analysis methods for the shotgun metagenomic sequencing have been previously
269	provided by Ma et al. (2020a).
270	
271	2.5 Network analysis
272	A microbial network was constructed to reveal the complex microbiome
273	interactions. Each fertilisation treatment consisted of eight replicates of topsoil and
274	subsoil samples. The top 200 abundant bacterial OTUs and top 200 fungal OTUs were
275	selected to avoid spurious correlations; these accounted for 54% and 80% of bacterial
276	and fungal abundance, respectively (Zheng et al., 2021). A Molecular Ecological
277	Network Analyses Pipeline was applied to construct a microbial network based on the
278	random matrix theory (Deng et al., 2012). When the cut-off value was 0.93, the p-
279	values of the Chi-square test for the three treated networks were all greater than 0.05.
280	To make the networks of the three treatments comparable, we chose 0.93 as the cut-
281	off value for each treatment. The network was visualized using Gephi
282	(<u>http://gephi.github.io/</u>). Subsequently, connectivity within a module (<i>Zi</i>) and among
283	modules (Pi), which were calculated using the 'igraph' package in R, were applied to
284	classify the nodes into peripherals ($Zi < 2.5$ and $Pi < 0.62$), connectors ($Zi < 2.5$ and
285	Pi > 0.62), module hubs ($Zi > 2.5$ and $Pi < 0.62$), and network hubs ($Zi > 2.5$ and $Pi > 0.62$), and network hubs ($Zi > 2.5$ and $Pi > 0.62$), and network hubs ($Zi > 2.5$ and $Pi > 0.62$).
286	0.62) (Guimerà and Nunes Amaral, 2005). Zi and Pi were calculated following
287	equations (1) and (2), respectively.

288
$$Zi = \frac{Ki - \overline{Ksi}}{\sigma_{Ksi}}$$
(1)

where *Ki* is the number of edges between node *i* and other nodes in module *Si*, $\overline{K}si$ is the average *K* value of all nodes in module *Si* (*K* is the number of connections between this node and other nodes in *Si*), and σ_{Ksi} is the standard deviation of the *K* values of all nodes in module *Si*.

293
$$Pi = 1 - \sum_{S=1}^{N_M} \left(\frac{Kis}{Ki}\right)^2$$
(2)

where *Ki* is the degree of node *i*, *M* represents modules, and N_M is the number of modules in the network. If the edges associated with a node are evenly distributed in all modules, the *Pi* value of the node is close to 1; if all the edges related to a node are in the module to which it belongs, the *Pi* value of the node is 0 (Guimerà and Nunes Amaral, 2005).

299

300 2.6 Statistical analysis

301	All statistical analyses were performed using R (version 3.4.3). The Shapiro-
302	Wilk test was used to assess normality before testing for significance, and the
303	homogeneity of variance was analysed with an F-test. Differences in soil
304	characteristics between the treatments were analysed with a one-way analysis of
305	variance and least significant difference tests ($p < 0.05$). Permutational multivariate
306	analysis of variance was used to test the significance of changes in the microbial
307	community under the fertilisation treatments. The differences in microbial
308	communities under the fertilisation treatments were analysed with non-metric
309	multidimensional scaling (NMDS), performed with the 'vegan' package in R, based

310	on Bray–Curtis dissimilarity. Variation partitioning analysis (VPA) based on
311	redundancy analysis and Mantel's test were implemented using the 'vegan' package in
312	R to investigate the contribution of soil C, N, P, and S to the microbial community
313	variation and the drivers of soil functional gene abundance, respectively. Pearson
314	correlation test was carried out to investigate the relationships between the alpha and
315	beta diversities of the microbiome and soil physicochemical properties. The
316	'pheatmap' package in R was used to generate heatmaps of soil functional genes and
317	processes. Random forest analysis was performed using the 'randomForest' package
318	in R. The partial least squares path model (PLS-PM) based on the 'plspm' package in
319	R was also applied to evaluate the relationships among soil physicochemical
320	properties, microbial community, functional genes, and soil processes. A bootstrap
321	method (1,000 iterations) was used to validate the estimates of the path coefficients
322	and the coefficients of determination (\mathbb{R}^2). Finally, the goodness-of-fit index was used
323	to evaluate the overall predictive performance of the model.
324	
325	3 Results
326	
327	3.1 Microbial alpha diversity under long-term manure fertilisation
328	The Shannon and Chao1 indices were used to reflect the response of microbial
329	alpha diversity to long-term manure application. The Chao1 index accounts for

- 330 species richness and reflects rare species change, whereas the Shannon index reflects
- both evenness and abundance of species (Shannon, 1948; Chao, 1984). Compared to

332	NM application, long-term HM application significantly ($p < 0.05$) increased the
333	bacterial Shannon index but had no significant effect ($p > 0.05$) on fungal Shannon
334	index (Fig. 1A and 1C). Overall, microbial Shannon index significantly decreased (p
335	< 0.05) with increasing soil depth. The bacterial Chao1 index showed no significant
336	differences ($p > 0.05$) to the fertilisation regime and soil depth (Fig. 1B). HM
337	application significantly ($p < 0.05$) increased the fungal Chao1 index of the subsoil
338	(Fig. 1D). The bacterial Shannon index was significantly ($p < 0.05$) increased in soils
339	with high N, SOM, and SO ₄ ²⁻ contents (Fig. 1E). However, the fungal Shannon index
340	was independent of $(p > 0.05)$ soil physicochemical properties (Fig. 1E).
341	
342	3.2 Microbial community succession under long-term manure fertilisation
343	Long-term manure application reduced the relative abundance of Proteobacteria
344	and favoured the growth of Firmicutes (Fig. S1A). Correspondingly, the relative
345	abundance of Proteobacteria decreased with increasing soil nutrient contents (Fig.
346	S1C), while the relative abundance of Actinobacteria and Firmicutes increased (Fig.
347	S1C). Ascomycota accounted for more than 60% of the total fungal population (Fig.
348	S1B). Basidiomycota growth was supressed by manure application, and it decreased
349	with soil nutrient content (Fig. S1D). NMDS results further suggested that the effects
350	of fertilisation treatments on microbial community structure were not significant ($p >$
351	0.05) (Fig. 2A and 2B). The HM treatment significantly ($p < 0.05$) reduced bacterial
352	β -diversity, whereas it had no significant ($p > 0.05$) effect on fungal β -diversity (Fig.
353	2D and 2E). Soil C and N contents explained 43.5% of bacterial and 37.9% of fungal

community variations. In contrast, soil P and S contents explained 29.9% of bacterial
and 20.3% of fungal community variations (Fig. 2C). Random forest analysis results
suggested that microbial community succession was most highly associated with
DOC and was more strongly influenced by soil C and N contents than by P and S
contents (Fig. 2F and 2G).

359

3.3 Response of soil functional gene abundance to long-term manure application 360 In general, long-term manure application led to enrichment in the functional 361 genes involved in C, N, P, and S cycling (Fig. 3). However, the relative abundance of 362 methane oxidation and nitrification genes was reduced under the HM treatment. High 363 manure application rates stimulated soil C and N cycling rates (Fig. S2). Regarding 364 soil P cycling, the PO₄³⁻ production (mineralisation) and consumption 365 (immobilisation) rates in topsoil were highest under the HM treatment. In the case of 366 the subsoil, MM application led to the highest PO_4^{3-} production and consumption 367 rates among all treatments (Fig S2). SO_4^{2-} consumption was highest under MM 368 fertilisation, while SO₄²⁻ production increased in the topsoil but decreased in the 369 subsoil as manure application rate increased. The soil CO₂ respiration rate 370 significantly (p < 0.001) increased with SOM content (Fig S3). NH₄⁺ production and 371 consumption significantly (p < 0.001) increased with soil NO₃⁻ content. NO₃⁻ 372 production significantly (p < 0.05) increased with soil NH₄⁺ content. In contrast to 373 those in C and N cycling, the PO₄³⁻ production rate significantly (p < 0.01) decreased 374 with increasing organic P content, whereas the SO_4^{2-} production rate was independent 375

(p > 0.05) of soil organic S content.

377	Mantel analysis indicated that functional genes involved in the C and N cycles
378	were significantly ($p < 0.05$) associated with soil EON, NH ₄ ⁺ , and MBN (Fig. S4).
379	Pearson correlation analysis further demonstrated that the functional genes involved
380	in the N cycles were more affected by soil physicochemical properties than those
381	involved in the C, P, and S cycles (Fig. S5). The relative abundance of most genes
382	involved in the N cycle increased with soil N content. Notably, the abundance of
383	functional genes significantly ($p < 0.05$) decreased with an increase in fungal α -
384	diversity (Fig. 4). However, functional gene abundance was independent ($p > 0.05$) of
385	bacterial α-diversity.
386	
387	3.4 Microbial networks under the three fertilisation regimes
388	Microbial network analysis of the two soil layers showed that the network nodes
389	were mainly composed of the phyla Ascomycota (23–26%), Proteobacteria (16–22%),
390	Actinobacteria (12–15%), Acidobacteria (10–11%), and Firmicutes (5–6%) (Fig. 5A).
391	The network nodes and links decreased with the manure application rate (Table 2).
392	Moreover, the interaction between bacteria and fungi showed the lowest positive
393	correlation ratio (87%) under the HM treatment. Compared to the NM treatment, HM
394	application produced a less complex network with low average degree (3.10) and path
395	distance (4.58) (Table 2). Furthermore, the average degree of bacteria in the networks
396	was higher than that of the fungi, except in the HM treatment (Table S3). The average
397	eigencentrality of bacteria was higher than that of fungi (Table S3). Nodes with higher

398	within-module connectivity ($Zi > 2.5$) or higher among-module connectivity ($Pi > 2.5$)
399	0.62) were identified as key taxa. $Zi > 2.5$ indicates that node <i>i</i> is highly connected
400	within a module, and these taxa may function through the exchange of energy and
401	matter within the module. $Pi > 0.62$ means that node <i>i</i> is highly connected among
402	modules, mediates inter-module interactions, and functions through the inter-module
403	exchange of energy and matter (Guimerà and Nunes Amaral, 2005; Deng et al., 2012;
404	Deng et al., 2016). Across the three networks, the identified key taxa were classified
405	as the phyla Ascomycota, Proteobacteria, and Acidobacteria (Fig. 5B and 5C). The
406	relative abundance of key taxa was also found to be highly associated with soil
407	cycling rates and functional gene abundance (Fig. S6).

409 *3.5 PLS-PM analysis*

The relationships between soil properties, the microbiome, and functional genes 410 and processes were elucidated using PLS-PM analysis (Fig. 6). Soil properties had a 411 direct positive effect (p < 0.05) on bacterial community, whereas they had a direct 412 negative effect (p < 0.05) on fungal community. Compared to bacteria, fungi were 413 more closely correlated with functional genes. In addition, soil properties had a 414 greater effect on bacteria than on fungi. The microbial community had limited effect 415 (p > 0.05) on soil C and S cycling. However, fungi had a direct negative effect (p < 0.05)416 0.05) on N cycling, and bacteria had a direct positive effect (p < 0.05) on P processes. 417 Soil properties also had direct effects (p < 0.05) on C and S cycling while indirectly (p418 < 0.05) influencing N and P cycling through the microbiome. Regarding standardised 419

420	total effects, soil properties contributed most to C and S cycling (Fig. 6E), while the N
421	and P cycles were mainly driven by fungi and bacteria, respectively. The PLS-PM
422	model explained 83%, 66%, 32%, and 44% of the variance in soil C, N, P, and S
423	processes, respectively.
424	
425	4 Discussion
426	
427	4.1 Soil microbial community succession under long-term manure application
428	Bacterial and fungal communities exhibited divergent responses to long-term
429	manure application (Figs. 1 and 2). Compared to the MM treatment, HM application
430	significantly ($p < 0.05$) increased the bacterial Shannon index and decreased the
431	fungal Shannon index. Previous studies also showed that bacterial α -diversity
432	increased, whereas fungal α -diversity first increased and then decreased, with the ratio
433	of organic substitution (Ji et al., 2018; Ji et al., 2020). Generally, the bacterial
434	Shannon index was more sensitive to fertilisation treatments than was the Chao1
435	index (Fig. 1A and 1B). The Shannon index reflects both evenness and abundance of
436	species, whereas the Chao1 index accounts for species richness and reflects rare
437	species change (Shannon, 1948; Chao, 1984). Therefore, the presence of rare species
438	of bacteria was independent of fertilisation regimes ($p > 0.05$).
439	Soil nutrients (C, N, P, and S) accounted for 73% of the variation in the bacterial
440	community and 58% of the variation in the fungal community (Fig. 2C). This
441	observation indicates that microbial community succession is mainly regulated by soil

442	nutrient content rather than soil pH which has been widely reported as one of the most
443	important factors influencing microbial communities (Fierer and Jackson, 2006;
444	Geisseler and Scow, 2014; Glassman et al., 2017). This is likely because the
445	fertilisation treatments had limited effects on soil pH in this study, and pH conditions
446	(pH = 7.1-7.5) were in a suitable range for microbial growth. Conversely, long-term
447	fertiliser application significantly ($p < 0.05$) altered soil nutrient content. Soil
448	nutrients not only directly provide nutrients for microorganisms but also play an
449	important role in electron transfer (Marschner, 2021). DOC is an active substrate and
450	is easily decomposed by microorganisms which has been demonstrated to regulate
451	nutrient cycling by altering microbial communities (Wang et al., 2021). The random
452	forest analysis results suggested that DOC was the most important factor that
453	regulated microbial community succession and was more influenced by soil C and N
454	contents than by P and S contents in this sandy soil (Fig. 2F and 2G).
455	
456	4.2 Long-term manure application upregulated the functional genes and reduced the
457	complexity of the microbial network
458	Most of the genes involved in the C, N, P, and S cycles were enriched under the
459	manure application regimes (Fig. 3). As a large amount of C enters the soil following
460	manure application, soil microorganisms govern nutrient cycle rates to maintain
461	microbial substrate stoichiometry (Luo et al., 2020; Ma et al., 2021a). We found that
462	manure application increased the abundance of N fixation genes. Furthermore, it
463	increased the soil C content, thus stimulating microbial N fixation and stabilizing the

464	microbial substrate C/N ratio (Fan et al., 2019; Schleuss et al., 2021). Moreover,
465	manure application was reported to improve soil physicochemical properties, thus
466	favouring microbial growth and functional genes expression (Gu et al., 2019; Ma et
467	al., 2020b). Compared with the relationship between the genes related to C, P, and S
468	cycles and soil nutrients, gene responsible for N cycle showed higher correlations
469	with soil nutrients (Fig. S5). In this study, the substrates or products of the processes
470	involved in the genes related to N cycle were more comprehensively measured. For
471	example, NH_4^+ and NO_3^- are important substrates or products of the N cycle process
472	(Kuypers et al., 2018). However, the specific substrates involved in C, P, and S cycles
473	were not detected in this study, so the genes related to N cycle resulted a high
474	correlation with soil nitrogen content (Fig. S5).
475	Manure application is generally considered to generate a more complex co-
476	occurrence network than that obtained with mineral fertiliser application (Ling et al.,
477	2016; Ji et al., 2020). In this study, long-term manure application reduced network
478	complexity (lower degree and density) (Table 2). Manure application increase the
479	nutrient abundance but reduced the microbial nutrient acquisition (Ji et al., 2020). In
480	contrast, NM led to enhance microbial interaction under the relatively less soil
481	nutrient content (Zhao et al., 2019; Yuan et al., 2021). The reduced average path
482	length of the network under the HM treatment indicates faster information
483	transmission, inducing a faster microbial community response to environmental
484	change (Zhou et al., 2010). Interestingly, bacteria showed a higher average degree
485	than fungi in the network constructed under the NM and MM treatments, while the

486	opposite was observed under the HM treatment (Table S3). This can be ascribed to
487	niche differentiation between bacteria and fungi. While mineral fertilisers supply
488	labile soil nutrients, which tend to favour bacterial growth, fungi tend to decompose
489	recalcitrant C released from manure (Zhao et al., 2019; Xu et al., 2021). The
490	recalcitrant C from high manure application favoured fungal growth and increased the
491	fungal degree in the network.
492	Our study showed that the key fungal taxa belonged to the phylum Ascomycota,
493	while the identified bacterial key taxa were Acidobacteria and Proteobacteria (Fig. 5).
494	Ascomycota, Acidobacteria, and Proteobacteria were also the major phyla in the
495	network, accounting for 46.4% to 54.3% of the total nodes. Previous studies have
496	reported that key taxa play a vital role in soil nutrient cycling, including SOM
497	mineralisation and N cycling (Shi et al., 2020; Zheng et al., 2021). The key taxa
498	Botu55 was classified as Rhizobiales, which plays a vital role in N fixation (Fan et al.,
499	2019). Pearson correlation analysis results also suggested that the relative abundance
500	of Botu55 was significantly ($p < 0.05$) correlated with soil C, N, and S cycling gene
501	abundance (Fig. S6).

4.3 Relationships among soil physicochemical characteristics, microbiome, functional
genes, and processes

There is increasing evidence that soil microbial diversity is significantly
associated with soil multifunctionality (Jiao et al., 2021). We found that functional

507 gene abundance was independent (p > 0.05) of bacterial diversity but significantly (p

508	< 0.05) decreased with an increase in fungal diversity (Figs. 4 and 6). This is
509	inconsistent with the findings of some existing studies (Jing et al., 2015; Chen et al.,
510	2020). Compared to NM, high manure application increased functional gene
511	abundance and reduced the fungal Shannon index. A previous study also found that
512	manure incorporation reduces fungal richness by increasing extinction (Sun et al.,
513	2020). This phenomenon could be ascribed to the disparate nutrient characteristics of
514	manure and mineral fertilisers. Mineral fertilisers release fast-acting, broad-spectrum
515	nutrients, which help alleviate nutrient limitation and inter-species competition,
516	thereby favouring many fungal taxa (Sun et al., 2020). Conversely, the nutrients
517	released from manure are narrow-spectrum, favouring the growth of only specific
518	fungal species because of the differential utilisation of carbon substrates (Hanson et
519	al., 2008; Rinnan and Baath, 2009). Thus, compared to mineral fertilisers, manure
520	induces a substantial selection pressure on soil fungi.
521	Understanding the factors and pathways that influence soil nutrient processes
522	could help farmers regulate nutrient cycles by adjusting field practices and meet crop
523	nutrient demands while also reducing environmental risks. Fungi and bacteria were
524	found to be the most highly correlated with N and P processes, respectively (Fig. 6E).
525	The N processes in this study including NH_4^+/NO_3^- production and consumption
526	which involved in organic N transformation, nitrification, and denitrification; soil
527	fungi have been played a vital role in N cycling (Kuypers et al., 2018; Zhong et al.,
528	2018; Zheng et al., 2020). And the results of Figure 4 also showed the Shannon index
529	of fungi was significantly ($p < 0.01$) correlated with abundance of genes responsible

530	for N cycling. Bacteria play a vital role in soil P cycling and the regulation of P
531	availability (Dai et al., 2020; Wei et al., 2021). Based on the results, explanatory
532	models were well fitted to C and N processes which explained 83% and 66%
533	respectively, than explanatory models for P (32%) and S (44%), indicating the
534	measured soil physicochemical and microbial properties in this study were
535	inadequately explained the observed variations in P and S cycling. Soil C and N
536	cycling, including mineralisation, N fixation, nitrification, and denitrification, are
537	mainly driven by microorganisms (Kuypers et al., 2018; Naylor et al., 2020). In
538	contrast to those in the C and N cycles, both biological and physicochemical
539	processes, including sorption/desorption and precipitation/dissolution, which were not
540	covered in this study, are considered to strongly affect the P and S cycles (Yan et al.,
541	2018; Ma et al., 2021b). Manure application can improve soil fertility and structure
542	while reducing the complexity and stability of the microbial network which deserves
543	more attention.

545 4.4 Conclusions

In this study, we investigated the effects of long-term manure application on soil physicochemical characteristics, microbial communities, and nutrient cycling. The responses of P and S cycling rates to long-term manure application were decoupled with those of C and N. High manure application rates reduced the fungal Shannon index but increased the bacterial Shannon index. Manure application also reduced bacterial and fungal β -diversity. Soil C and N contents explained the microbial

552	community variation to a greater extent than did P and S contents. Functional genes
553	related to C, N, P, and S cycling were enriched under high manure application.
554	Functional gene abundance was independent of $(p > 0.05)$ bacterial α -diversity,
555	whereas it significantly ($p < 0.05$) decreased with fungal α -diversity. In addition, long-
556	term manure application reduced the complexity and stability of the microbial
557	network. Furthermore, the C and S cycles were mainly regulated by soil
558	physicochemical properties, whereas the N and P cycles depended on
559	microorganisms. Our results provide new insights into the mechanisms of C, N, P, and
560	S cycling under long-term soil fertilisation regimes.
561	
562	Acknowledgments
563	This work was supported by the National Natural Science Foundation of China
564	(32102488, 32172674); Zhejiang Provincial Natural Science Foundation of China
565	(LZ23C150002); Zhejiang Key Research and Development Program (2022C02018,
566	2023C02016). The Rothamsted Long-Term Experiments National Capability (LTE-
567	NCG) is supported by the UK Biotechnology and Biological Science Research
568	Council (BBS/E/C/000J0300) and the Lawes Agricultural Trust. We thank Andy
569	Macdonald and Steve Freeman for advice and assistance with sample collection. We
570	also thank the curators of the Electronic Rothamsted Archive (e-RA) for access to
571	data from the Rothamsted Long-Term Experiments.
570	

573 Author contributions

574	Sheng Tang:	Conceptualization.	Methodology.	Formal analysis.	Writing - C	Driginal

- 575 Draft. Lianghuan Wu: Conceptualization, Methodology, Formal analysis, Writing -
- 576 Original Draft. Qingxu Ma: Conceptualization, Methodology, Formal analysis,
- 577 Writing Original Draft. Karina A. Marsden: Conceptualization, Methodology,
- 578 Formal analysis, Writing Original Draft. David R. Chadwick: Conceptualization,
- 579 Methodology, Investigation. Yu Luo: Investigation. Yakov Kuzyakov:
- 580 Conceptualization, Writing Original Draft. Davey L. Jones: Investigation,
- 581 Conceptualization, Writing Original Draft
- 582

References:

585	Bier, R.L., Bernhardt, E.S., Boot, C.M., Graham, E.B., Hall, E.K., Lennon, J.T.,
586	Nemergut, D.R., Osborne, B.B., Ruiz-Gonzalez, C., Schimel, J.P., Waldrop, M.P.,
587	Wallenstein, M.D., 2015. Linking microbial community structure and microbial
588	processes: an empirical and conceptual overview. FEMS Microbiology Ecology
589	91, fiv113.
590	Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, C.A.,
591	Turnbaugh, P.J., Fierer, N., Knight, R., 2011. Global patterns of 16S rRNA
592	diversity at a depth of millions of sequences per sample. Proceedings of the
593	National Academy of Sciences USA 108, 4516–4522.
594	Chao, A., 1984. Nonparametric estimation of the number of classes in a population.
595	Scandinavian Journal of Statistics 11, 265–270.
596	Chen, J.H., 2006. The combined use of chemical and organic fertilizers and/or
597	biofertilizer for crop growth and soil fertility. In: Chen, Z.S., Vearasilp, T. (Eds.),
598	International Workshop on Sustained Management of the Soil-Rhizosphere
599	System for Efficient Crop Production and Fertilizer Use. Land Development
600	Department, Bangkok, pp. 1–11.
601	Chen, QL., Ding, J., Zhu, D., Hu, HW., Delgado-Baquerizo, M., Ma, YB., He, J
602	Z., Zhu, YG., 2020. Rare microbial taxa as the major drivers of ecosystem
603	multifunctionality in long-term fertilized soils. Soil Biology and Biochemistry
604	141, 107686.

605 Corre, M.D., Brumme, R., Veldkamp, E., Beese, F.O., 2007. Changes in nitrogen

606	cycling and retention processes in soils under spruce forests along a nitrogen
607	enrichment gradient in Germany. Global Change Biology 13, 1509–1527.
608	Dai, Z.M., Liu, G.F., Chen, H.H., Chen, C.R., Wang, J.K., Ai, S.Y., Wei, D., Li, D.M.,
609	Ma, B., Tang, C.X., Brookes, P.C., Xu, J.M., 2020. Long-term nutrient inputs
610	shift soil microbial functional profiles of phosphorus cycling in diverse
611	agroecosystems. The ISME Journal 14, 757–770.
612	de Vries, F.T., Griffiths, R.I., Bailey, M., Craig, H., Girlanda, M., Gweon, H.S.,
613	Hallin, S., Kaisermann, A., Keith, A.M., Kretzschmar, M., Lemanceau, P.,
614	Lumini, E., Mason, K.E., Oliver, A., Ostle, N., Prosser, J.I., Thion, C., Thomson,
615	B., Bardgett, R.D., 2018. Soil bacterial networks are less stable under drought
616	than fungal networks. Nature Communications 9, 3033.
617	Deng, Y., Jiang, Y.H., Yang, Y.F., He, Z.L., Luo, F., Zhou, J.Z., 2012. Molecular
618	ecological network analyses. BMC Bioinformatics 13, 113.
619	Deng, Y., Zhang, P., Qin, Y.J., Tu, Q.C., Yang, Y.F., He, Z.L., Schadt, C.W., Zhou,
620	J.Z., 2016. Network succession reveals the importance of competition in response
621	to emulsified vegetable oil amendment for uranium bioremediation.
622	Environmental Microbiology 18, 205–218.
623	Edmeades, D.C., 2003. The long-term effects of manures and fertilisers on soil
624	productivity and quality: a review. Nutrient Cycling in Agroecosystems 66, 165-
625	180.
626	Eo, J., Park, KC., 2016. Long-term effects of imbalanced fertilization on the
627	composition and diversity of soil bacterial community. Agriculture, Ecosystems

- 628 & Environment 231, 176–182.
- 629 Eriksen, J., 2005. Gross sulphur mineralisation-immobilisation turnover in soil
- amended with plant residues. Soil Biology & Biochemistry 37, 2216–2224.
- 631 Fan, K.K., Delgado-Baquerizo, M., Guo, X.S., Wang, D.Z., Wu, Y.Y., Zhu, M., Yu,
- 632 W., Yao, H.Y., Zhu, Y.G., Chu, H.Y., 2019. Suppressed N fixation and diazotrophs
- after four decades of fertilization. Microbiome 7, 143.
- 634 Feng, K., Zhang, Z.J., Cai, W.W., Liu, W.Z., Xu, M.Y., Yin, H.Q., Wang, A.J., He,
- 635 Z.L., Deng, Y., 2017. Biodiversity and species competition regulate the resilience
- of microbial biofilm community. Molecular Ecology 26, 6170–6182.
- 637 Fierer, N., Bradford, M.A., Jackson, R.B., 2007. Toward an ecological classification
- 638 of soil bacteria. Ecology 88, 1354–1364.
- 639 Fierer, N., Jackson, R.B., 2006. The diversity and biogeography of soil bacterial
- 640 communities. Proceedings of the National Academy of Sciences USA 103, 626–
- 641631.
- 642 Gardes, M., Bruns, T.D., 1993. ITS primers with enhanced specificity for
- basidiomycetes application to the identification of mycorrhizae and rusts.
- 644 Molecular Ecology 2, 113–118.
- 645 Geisseler, D., Scow, K.M., 2014. Long-term effects of mineral fertilizers on soil
- 646 microorganisms A review. Soil Biology and Biochemistry 75, 54–63.
- Glassman, S.I., Wang, I.J., Bruns, T.D., 2017. Environmental filtering by pH and soil
- nutrients drives community assembly in fungi at fine spatial scales. Molecular
- 649 Ecology 26, 6960–6973.

650	Graham, E.B., Wieder, W.R., Leff, J.W., Weintraub, S.R., Townsend, A.R., Cleveland,
651	C.C., Philippot, L., Nemergut, D.R., 2014. Do we need to understand microbial
652	communities to predict ecosystem function? A comparison of statistical models of
653	nitrogen cycling processes. Soil Biology and Biochemistry 68, 279–282.
654	Gu, S.S., Hu, Q.L., Cheng, Y.Q., Bai, L.Y., Liu, Z.H., Xiao, W.J., Gong, Z.H., Wu,
655	Y.N., Feng, K., Deng, Y., Tan, L., 2019. Application of organic fertilizer improves
656	microbial community diversity and alters microbial network structure in tea
657	(Camellia sinensis) plantation soils. Soil and Tillage Research 195, 104356.
658	Guimerà, R., Nunes Amaral, L.A., 2005. Functional cartography of complex
659	metabolic networks. Nature 433, 895–900.
660	Hanson, C.A., Allison, S.D., Bradford, M.A., Wallenstein, M.D., Treseder, K.K.,
661	2008. Fungal taxa target different carbon sources in forest soil. Ecosystems 11,
662	1157–1167.
663	Jenkinson, D.S., Brookes, P.C., Powlson, D.S., 2004. Measuring soil microbial
664	biomass. Soil Biology and Biochemistry 36, 5–7.
665	Ji, L., Ni, K., Wu, Z.D., Zhang, J.W., Yi, X.Y., Yang, X.D., Ling, N., You, Z.M., Guo,
666	S.W., Ruan, J.Y., 2020. Effect of organic substitution rates on soil quality and
667	fungal community composition in a tea plantation with long-term fertilization.
668	Biology and Fertility of Soils 56, 633–646.
669	Ji, L., Wu, Z., You, Z., Yi, X., Ni, K., Guo, S., Ruan, J., 2018. Effects of organic
670	substitution for synthetic N fertilizer on soil bacterial diversity and community
671	composition: A 10-year field trial in a tea plantation. Agriculture, Ecosystems &

672 Environment 268, 124–132.

673	Jiang, Y.L.	, Lei, Y.B.	, Yang,	Y., Kor	pelainen,	H., 1	Niinemets,	U., Li,	C.Y.,	2018.
010	······	,,	·,		p • • • • • • • • • • • • • • • • • • •			···,,	<i>—</i> ,	

- 674 Divergent assemblage patterns and driving forces for bacterial and fungal
- 675 communities along a glacier forefield chronosequence. Soil Biology and
- 676 Biochemistry 118, 207–216.
- Jiao, S., Chu, H., Zhang, B., Wei, X., Chen, W., Wei, G., 2022. Linking soil fungi to
 bacterial community assembly in arid ecosystems. iMeta 1, e2.
- Jiao, S., Peng, Z., Qi, J., Gao, J., Wei, G., 2021. Linking bacterial-fungal relationships
- to microbial diversity and soil nutrient cycling. mSystems 6, e01052-20.
- Jing, X., Sanders, N.J., Shi, Y., Chu, H.Y., Classen, A.T., Zhao, K., Chen, L.T., Shi, Y.,
- Jiang, Y.X., He, J.S., 2015. The links between ecosystem multifunctionality and
- above- and belowground biodiversity are mediated by climate. Nature
- 684 Communications 6, 8159.
- Jones, D.L., Owen, A.G., Farrar, J.F., 2002. Simple method to enable the high
- resolution determination of total free amino acids in soil solutions and soil

extracts. Soil Biology and Biochemistry 34, 1893–1902.

- 688 Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., Tanabe, M., 2015. KEGG as
- a reference resource for gene and protein annotation. Nucleic Acids Research 44,
- 690 D457–D462.
- 691 Kellogg, L.E., Bridgham, S.D., Lopez-Hernandez, D., 2006. A comparison of four
- 692 methods of measuring gross phosphorus mineralization. Soil Science Society of
- 693 America Journal 70, 1349–1358.

694	Knights, J.S., Zhao, F.J., McGrath, S.P., Magan, N., 2001. Long-term effects of land
695	use and fertiliser treatments on sulphur transformations in soils from the
696	Broadbalk experiment. Soil Biology and Biochemistry 33, 1797–1804.
697	Kuypers, M.M.M., Marchant, H.K., Kartal, B., 2018. The microbial nitrogen-cycling
698	network. Nature Reviews Microbiology 16, 263–276.
699	Li, B.B., Roley, S.S., Duncan, D.S., Guo, J.R., Quensen, J.F., Yu, H.Q., Tiedje, J.M.,
700	2021. Long-term excess nitrogen fertilizer increases sensitivity of soil microbial
701	community to seasonal change revealed by ecological network and metagenome
702	analyses. Soil Biology and Biochemistry 160, 108349.
703	Li, H., Yang, S., Semenov, M.V., Yao, F., Ye, J., Bu, R.C., Ma, R., Lin, J.J.,
704	Kurganova, I., Wang, X.G., Deng, Y., Kravchenko, I., Jiang, Y., Kuzyakov, Y.,
705	2021. Temperature sensitivity of SOM decomposition is linked with a K-selected
706	microbial community. Global Change Biology 27, 2763–2779.
707	Ling, N., Zhu, C., Xue, C., Chen, H., Duan, Y.H., Peng, C., Guo, S.W., Shen, Q.R.,
708	2016. Insight into how organic amendments can shape the soil microbiome in
709	long-term field experiments as revealed by network analysis. Soil Biology and
710	Biochemistry 99, 137–149.
711	Liu, W.X., Liu, L.L., Yang, X., Deng, M.F., Wang, Z., Wang, P.D., Yang, S., Li, P.,
712	Peng, Z.Y., Yang, L., Jiang, L., 2021. Long-term nitrogen input alters plant and
713	soil bacterial, but not fungal beta diversity in a semiarid grassland. Global
714	Change Biology 27, 3939–3950.

715 Luo, G.W., Xue, C., Jiang, Q.H., Xiao, Y., Zhang, F.G., Guo, S.W., Shen, Q.R., Ling,

716	N., 2020. Soil carbon, nitrogen, and phosphorus cycling microbial populations
717	and their resistance to global change depend on soil C:N:P stoichiometry.
718	mSystems 5, e00162-20.
719	Luo, J., Liu, Y., Tao, Q., Hou, Q., Wu, K., Song, Y., Liu, Y., Guo, X., Li, J., Hashmi,
720	M.L.U.R., Liang, Y., Li, T., 2019. Successive phytoextraction alters ammonia
721	oxidation and associated microbial communities in heavy metal contaminated
722	agricultural soils. Science of the Total Environment 664, 616-625.
723	Ma, B., Zhao, K.K., Lv, X.F., Su, W.Q., Dai, Z.M., Gilbert, J.A., Brookes, P.C., Faust,
724	K., Xu, J.M., 2018. Genetic correlation network prediction of forest soil
725	microbial functional organization. The ISME Journal 12, 2492–2505.
726	Ma, Q., Kuzyakov, Y., Pan, W., Tang, S., Chadwick, D.R., Wen, Y., Hill, P.W.,
727	Macdonald, A., Ge, T., Si, L., Wu, L., Jones, D.L., 2021a. Substrate control of
728	sulphur utilisation and microbial stoichiometry in soil: Results of ¹³ C, ¹⁵ N, ¹⁴ C,
729	and ³⁵ S quad labelling. The ISME Journal 15, 3148–3158.
730	Ma, Q., Tang, S., Pan, W., Zhou, J., Chadwick, D.R., Hill, P.W., Wu, L., Jones, D.L.,
731	2021b. Effects of farmyard manure on soil S cycling: substrate level exploration
732	of high- and low-molecular weight organic S decomposition. Soil Biology and
733	Biochemistry 160, 108359.
734	Ma, Q., Wen, Y., Ma, J., Macdonald, A., Hill, P.W., Chadwick, D.R., Wu, L., Jones,
735	D.L., 2020a. Long-term farmyard manure application affects soil organic
736	phosphorus cycling: A combined metagenomic and P-33/C-14 labelling study.
737	Soil Biology and Biochemistry 149, 107959.

738	Ma, Q., Wen, Y., Wang, D.Y., Sun, X.D., Hill, P.W., Macdonald, A., Chadwick, D.R.,
739	Wu, L.H., Jones, D.L., 2020b. Farmyard manure applications stimulate soil
740	carbon and nitrogen cycling by boosting microbial biomass rather than changing
741	its community composition. Soil Biology and Biochemistry 144, 107760.
742	Malik, A.A., Puissant, J., Buckeridge, K.M., Goodall, T., Jehmlich, N., Chowdhury,
743	S., Gweon, H.S., Peyton, J.M., Mason, K.E., van Agtmaal, M., Blaud, A., Clark,
744	I.M., Whitaker, J., Pywell, R.F., Ostle, N., Gleixner, G., Griffiths, R.I., 2018.
745	Land use driven change in soil pH affects microbial carbon cycling processes.
746	Nature Communications 9, 3591.
747	Mariano, E., Jones, D.L., Hill, P.W., Trivelin, P.C.O., 2016. Mineralisation and
748	sorption of dissolved organic nitrogen compounds in litter and soil from
749	sugarcane fields. Soil Biology and Biochemistry 103, 522-532.
750	Moran, M.A., Satinsky, B., Gifford, S.M., Luo, H., Rivers, A., Chan, LK., Meng, J.,
751	Durham, B.P., Shen, C., Varaljay, V.A., Smith, C.B., Yager, P.L., Hopkinson,
752	B.M., 2013. Sizing up metatranscriptomics. The ISME Journal 7, 237–243.
753	Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination
754	of phosphate in natural waters. Analytica Chimica Acta 27, 31–36.
755	Marschner, P., 2021. Processes in submerged soils - linking redox potential, soil
756	organic matter turnover and plants to nutrient cycling. Plant and Soil 464, 1–12.
757	Naylor, D., Sadler, N., Bhattacharjee, A., Graham, E.B., Anderton, C.R., McClure, R.,
758	Lipton, M., Hofmockel, K.S., Jansson, J.K., 2020. Soil microbiomes under
759	climate change and implications for carbon cycling. In: Gadgil, A., Tomich, T.P.

- (Eds.), Annual Review of Environment and Resources, Vol 45. Annual Reviews, 760 Palo Alto, pp. 29–59. 761 762 Nilsson, R.H., Larsson, K.H., Taylor, A.F.S., Bengtsson-Palme, J., Jeppesen, T.S., Schigel, D., Kennedy, P., Picard, K., Glockner, F.O., Tedersoo, L., Saar, I., 763 764 Koljalg, U., Abarenkov, K., 2019. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. 765 Nucleic Acids Research 47, D259–D264. 766 Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., 767 768 Glockner, F.O., 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research 41, 769 D590-D596. 770 771 Rinnan, R., Baath, E., 2009. Differential utilization of carbon substrates by bacteria and fungi in Tundra soil. Applied Environmental Microbiology 75, 3611–3620. 772 Rocca, J.D., Hall, E.K., Lennon, J.T., Evans, S.E., Waldrop, M.P., Cotner, J.B., 773 774 Nemergut, D.R., Graham, E.B., Wallenstein, M.D., 2015. Relationships between protein-encoding gene abundance and corresponding process are commonly 775 assumed yet rarely observed. The ISME Journal 9, 1693–1699. 776 Rousk, J., Baath, E., Brookes, P.C., Lauber, C.L., Lozupone, C., Caporaso, J.G., 777 778 Knight, R., Fierer, N., 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal 4, 1340–1351. 779 Schleuss, P.M., Widdig, M., Biederman, L.A., Borer, E.T., Crawley, M.J., Kirkman, 780 K.P., Seabloom, E.W., Wragg, P.D., Spohn, M., 2021. Microbial substrate 781
 - 36

- stoichiometry governs nutrient effects on nitrogen cycling in grassland soils. Soil
 Biology and Biochemistry 155, 108168.
- Shannon, C.E., 1948. A mathematical theory of communication. The Bell System
 Technical Journal 27, 379–423.
- 786 Shi, Y., Delgado-Baquerizo, M., Li, Y.T., Yang, Y.F., Zhu, Y.G., Penuelas, J., Chu,
- 787 H.Y., 2020. Abundance of kinless hubs within soil microbial networks are
- associated with high functional potential in agricultural ecosystems. Environment
 International 142, 105869.
- Spohn, M., Pötsch, E.M., Eichorst, S.A., Woebken, D., Wanek, W., Richter, A., 2016.
- 791 Soil microbial carbon use efficiency and biomass turnover in a long-term
- fertilization experiment in a temperate grassland. Soil Biology and Biochemistry97, 168–175.
- Sun, R.B., Chen, Y., Han, W.X., Dong, W.X., Zhang, Y.M., Hu, C.S., Liu, B.B., Wang,
- F.H., 2020. Different contribution of species sorting and exogenous species
- immigration from manure to soil fungal diversity and community assemblage
- ⁷⁹⁷ under long-term fertilization. Soil Biology and Biochemistry 151, 108049.
- Tang, Q., Cotton, A., Wei, Z., Xia, Y., Daniell, T., Yan, X., 2021. How does partial
- substitution of chemical fertiliser with organic forms increase sustainability of
 agricultural production? Science of the Total Environment 803, 149933.
- Tang, S., Ma, Q., Luo, J., Xie, Y., Hashmi, M.L.U.R., Pan, W., Zheng, N., Liu, M.,
- 802 Wu, L., 2021. The inhibition effect of tea polyphenols on soil nitrification is
- greater than denitrification in tea garden soil. Science of the Total Environment

804 778, 146328.

- 805 Tang, S., Zhou, J., Pan, W., Tang, R., Ma, Q., Xu, M., Qi, T., Ma, Z., Fu, H., Wu, L.,
- 806 2022. Impact of N application rate on tea (*Camellia sinensis*) growth and soil
- bacterial and fungi communities. Plant and Soil 475, 343–359.
- 808 Tosi, M., Brown, S., Machado, P.V.F., Wagner-Riddle, C., Dunfield, K., 2020. Short-
- term response of soil N-cycling genes and transcripts to fertilization with
- 810 nitrification and urease inhibitors, and relationship with field-scale N₂O
- emissions. Soil Biology and Biochemistry 142, 107703.
- Vance, E.D., Brookes, P.C., Jenkinson, D.S., 1987. An extraction method for
- measuring soil microbial biomass C. Soil Biology and Biochemistry 19, 703–707.
- Vong, P.C., Dedourge, O., Lasserre-Joulin, F., Guckert, A., 2003. Immobilized-S,
- 815 microbial biomass-S and soil arylsulfatase activity in the rhizosphere soil of rape
- and barley as affected by labile substrate C and N additions. Soil Biology and
- Biochemistry 35, 1651–1661.
- 818 Wang, Q., Huang, Q., Wang, J., Khan, M.A., Guo, G., Liu, Y., Hu, S., Jin, F., Wang,
- J., Yu, Y., 2021. Dissolved organic carbon drives nutrient cycling via microbial
 community in paddy soil. Chemosphere 285, 131472.
- Wei, X.M., Hu, Y.J., Cai, G., Yao, H.Y., Ye, J., Sun, Q., Veresoglou, S.D., Li, Y.Y.,
- Zhu, Z.K., Guggenberger, G., Chen, X.B., Su, Y.R., Li, Y., Wu, J.S., Ge, T.D.,
- 2021. Organic phosphorus availability shapes the diversity of *phoD*-harboring
- bacteria in agricultural soil. Soil Biology and Biochemistry 161, 108364.
- 825 Xu, P.D., Wu, J., Wang, H., Han, S., Zhu, J., Fu, Q.L., Geng, M.J., Hu, H.Q., Huang,

826	Q.Y., 2021. Long-term partial substitution of chemical fertilizer with green
827	manure regulated organic matter mineralization in paddy soil dominantly by
828	modulating organic carbon quality. Plant and Soil 468, 459–473.

- Yan, Z., Chen, S., Dari, B., Sihi, D., Chen, Q., 2018. Phosphorus transformation
- response to soil properties changes induced by manure application in a calcareous

soil. Geoderma 322, 163–171.

832 Yang, X.D., Ma, L.F., Ji, L.F., Shi, Y.Z., Yi, X.Y., Yang, Q.L., Ni, K., Ruan, J.Y., 2019.

833 Long-term nitrogen fertilization indirectly affects soil fungi community structure

by changing soil and pruned litter in a subtropical tea (*Camellia sinensis* L.)

plantation in China. Plant and Soil 444, 409–426.

836 Yao, H., Huang, S., Qiu, Q., Li, Y., Wu, L., Mi, W., Dai, F., 2016. Effects of different

837 fertilizers on the abundance and community structure of ammonia oxidizers in a

- yellow clay soil. Applied Microbiology and Biotechnology 100, 6815–6826.
- 839 Yu, X.L., Zhou, J.Y., Song, W., Xu, M.Z., He, Q., Peng, Y.S., Tian, Y., Wang, C., Shu,
- 840 L.F., Wang, S.Q., Yan, Q.Y., Liu, J.H., Tu, Q.C., He, Z.L., 2021. SCycDB: A
- 841 curated functional gene database for metagenomic profiling of sulphur cycling
- pathways. Molecular Ecology Resources 21, 924–940.
- Yuan, M.M., Guo, X., Wu, L.W., Zhang, Y., Xiao, N.J., Ning, D.L., Shi, Z., Zhou,
- X.S., Wu, L.Y., Yang, Y.F., Tiedje, J.M., Zhou, J.Z., 2021. Climate warming
- 845 enhances microbial network complexity and stability. Nature Climate Change 11,
 846 343–348.
- Zhao, Z.B., He, J.Z., Geisen, S., Han, L.L., Wang, J.T., Shen, J.P., Wei, W.X., Fang,

848	Y.T., Li, P.P., Zhang, L.M., 2019. Protist communities are more sensitive to
849	nitrogen fertilization than other microorganisms in diverse agricultural soils.
850	Microbiome 7, 33.
851	Zheng, H.P., Yang, T.J., Bao, Y.Z., He, P.P., Yang, K.M., Mei, X.L., Wei, Z., Xu, Y.C.,
852	Shen, Q.R., Banerjee, S., 2021. Network analysis and subsequent culturing reveal
853	keystone taxa involved in microbial litter decomposition dynamics. Soil Biology
854	and Biochemistry 157, 108230.
855	Zheng, N.G., Yu, Y.X., Wang, J., Chapman, S.J., Yao, H.Y., Zhang, Y.Y., 2020. The
856	conversion of subtropical forest to tea plantation changes the fungal community
857	and the contribution of fungi to N_2O production. Environmental Pollution 265,
858	115106.
859	Zhong, L., Wang, S.P., Xu, X.L., Wang, Y.F., Rui, Y.C., Zhou, X.Q., Shen, Q.H.,
860	Wang, J.Z., Jiang, L.L., Luo, C.Y., Gu, T.B., Ma, W.C., Chen, G.Y., 2018. Fungi
861	regulate the response of the N ₂ O production process to warming and grazing in a
862	Tibetan grassland. Biogeosciences 15, 4447–4457.
863	Zhou, J., Deng, Y., Luo, F., He, Z., Yang, Y., 2011. Phylogenetic molecular ecological
864	network of soil microbial communities in response to elevated CO ₂ . mBio 2,
865	e00122-11.
866	Zhou, J.Z., Deng, Y., Luo, F., He, Z.L., Tu, Q.C., Zhi, X.Y., 2010. Functional
867	molecular ecological networks. mBio 1, e00169-10.
868	Zhu, L.H., Liao, R.R., Wu, N., Zhu, G.S., Yang, C.S., 2019. Heat stress mediates
869	changes in fecal microbiome and functional pathways of laying hens. Applied

870	Microbiology and Biotechnology 103, 461–472.
871	
872	
873	
874	
875	
876	
877	
878	
879	
880	
881	
882	
883	
884	
885	
886	
887	
888	
889	
890	
891	

892	Table captions
893	Table. 1 Mineral fertiliser or farmyard manure (FYM) application of treatments. NM,
894	MM, and HM indicate zero, medium, and high rates of farmyard manure application,
895	respectively. *Mineral fertilisers equivalent to total content of N, P & K in FYM.
896	
897	Table. 2 The topological properties of networks in soils under long-term manure
898	application. NM, MM, and HM indicate zero, medium, and high rates of farmyard
899	manure application, respectively.
900	
901	
902	
903	
904	
905	
906	
907	
908	
909	
910	
911	
912	
913	

914 Figure legends

Fig. 1 Alpha diversity of bacteria (A, B) and fungi (C, D) under long-term manure 915 916 fertiliser application. Different letters above the box indicate significant differences (p < 0.05) between treatments. NM, MM, and HM indicate zero, medium, and high rates 917 918 of farmyard manure application, respectively. Topsoil: 0-23cm, Subsoil: 23-38cm. (E) 919 Pearson correlation between soil chemical properties and microbial alpha diversity. EC: electric conductivity; BS: basal respiration; SOM: soil organic matter; DOC: 920 dissolved organic carbon; AA: amino acids; MBC, MBN, MBP, and MBS: microbial 921 biomass carbon, nitrogen, phosphorus, and sulphur; EON: extractable organic N. *, p 922 < 0.05; ******, *p* < 0.01. 923

924

925 Fig. 2 Non-metric multidimensional scaling (NMDS) based on the Bray-Curtis dissimilarities of (A) bacterial and (B) fungal communities in the topsoil (0–23 cm) 926 and subsoil (23-38 cm) under long term manure application. NM, MM, and HM 927 928 indicate zero, medium, and high rates of farmyard manure application, respectively. Variation partitioning analysis based on redundancy analysis of bacterial and fungal 929 communities (C). The C pool consists of total C, SOM, DOC, protein, peptide, AA, 930 and MBC. The N pool consists of total N, EON, NO₃⁻, NH₄⁺, and MBN. The P pool 931 consists of total P, organic P, Olsen-P, PO4³⁻, and MBP. The S pool consists of total S, 932 organic S, SO₄²⁻, and MBS. Dissimilarity based on Bray-Curtis of bacteria (D) and 933 fungi (E) among different fertilisation treatments. Different letters above the boxes 934 indicate significant differences (p < 0.05) between treatments. Random forest analysis 935

936	for the determination of factors affecting bacterial (F) and fungal community (G). EC:
937	electric conductivity; BS: basal respiration; SOM: soil organic matter; DOC:
938	dissolved organic carbon; AA: amino acids; MBC, MBN, MBP, and MBS: microbial
939	biomass carbon, nitrogen, phosphorus, and sulphur; EON: extractable organic N.
940	
941	Fig. 3 Functional gene abundance under long-term manure application. The values are
942	centered and scaled by treatment. NM, MM, and HM indicate zero, medium, and high
943	rates of farmyard manure application, respectively. Topsoil: 0–23 cm, Subsoil: 23–38
944	cm. Pentose phosphate pathway ¹ : Pentose phosphate pathway (Pentose phosphate
945	cycle), Pentose phosphate pathway ² : Pentose phosphate pathway, archaea, fructose 6P
946	=> ribose 5P.
947	
948	Fig. 4 Pearson correlation analysis between functional genes abundance and fungal
949	Shannon index.
950	
951	Fig. 5 Network of co-occurring bacterial and fungal operational taxonomic units
952	(OTUs) after long-term application of manure or mineral fertilisers (A). NM, MM,
953	and HM indicate zero, medium, and high rates of farmyard manure application,

954 respectively. (B) Classification of nodes to identify keystone species within the

955 fertilisation networks. (C) The classification of key taxa identified by the microbial

956 network.

958	Fig. 6 Partial least squares path modelling (PLS-PM) analysis of the relationships
959	between soil properties, bacteria and fungi functional genes, and cycles of C (A), N
960	(B), P (C), and S (D). E: Standardized total effects of soil characters, bacteria, fungi,
961	and functional genes on soil processes. Soil properties include total C, soil organic
962	matter, and dissolved organic carbon. Bacteria: bacterial Shannon index and non-
963	metric multidimensional scaling axis 1 value. Fungi: bacterial Shannon index and
964	non-metric multidimensional scaling axis 1 value. C genes: the citrate cycle, the
965	glyoxylate cycle, the general L-amino acid transport system, and xylene degradation
966	selected from the KEGG database. N genes: the urea transport system, dissimilatory
967	nitrate reduction, assimilatory nitrate reduction, and nitrate assimilation selected from
968	the KEGG database. P genes: the pentose phosphate cycle, the reductive pentose
969	phosphate cycle, the phosphate transport system, and the pentose phosphate pathway
970	selected from the KEGG database. S genes: dermatan sulphate degradation,
971	chondroitin sulphate degradation, and keratan sulphate degradation selected from the
972	KEGG database. C processes: soil basal respiration. N processes: production and
973	consumption of NH_4^+ and NO_3^- . P processes: PO_4^{3-} production and PO_4^{3-}
974	consumption. S processes: SO_4^{2-} production and SO_4^{2-} consumption. Observed or
975	latent variables are illustrated in the box. 1,000 bootstraps were conducted to estimate
976	the path coefficients. Positive and negative effects are represented by blue and red
977	arrows, respectively. Path coefficients that were not significantly different from zero
978	are shown as grey dashed lines; * $p < 0.05$, ** $p < 0.01$, and *** $p < 0.001$. Percentages
979	above the boxes represent the explanatory power of the variables. The goodness-of-fit

980 was used to assess the model.