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ABSTRACT
Rapid and accurate estimation of forest biomass are essential to drive
sustainable management of forests. Field-based measurements of forest
above-ground biomass (AGB) can be costly and difficult to conduct.
Multi-source remote sensing data offers the potential to improve the
accuracy of modelled AGB predictions. Here, four machine learning
methods: Random Forest (RF), Gradient Boosting Decision Tree (GBDT),
Classification and Regression Trees (CART), and Minimum Distance (MD)
were used to construct forest AGB models of Taiyue Mountain forest,
Shanxi Province, China using single and multi-sourced remote sensing
data and the Google Earth Engine platform. Results showed that the
machine learning method that most accurately predicted AGB were
GBDT and spectral index for coniferous (R2= 0.99; RMSE = 65.52 Mg/ha),
broadleaved (R2= 0.97; RMSE = 29.14 Mg/ha), and mixed-species (R2=
0.97; RMSE = 81.12 Mg/ha) forest types. Models constructed using
bivariate variable combinations that included the spectral index
improved the AGB estimation accuracy of mixed-species (R2= 0.99;
RMSE = 59.52 Mg/ha) forest types and reduced slightly the accuracy of
coniferous (R2= 0.99; RMSE = 101.46 Mg/ha) and broadleaved (R2= 0.97;
RMSE = 37.59 Mg/ha) forest AGB estimation. Overall, parameterizing
machine learning algorithms with multi-source remote sensing variables
can improve the prediction accuracy of mixed-species forests.
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KEYWORDS
Google Earth Engine; mixed
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1. Introduction

Remote sensing has great utility in the determination of forest above-ground biomass (AGB) due to
the rapid and repeatable acquisition of multi-sensor derived waveband information that correlates
with forest biomass structure. Forests cover approximately 40% of the global non-ice land area, and
their biomass accounts for about 90% of the terrestrial biomass, as such forests have an irreplaceable
role in the terrestrial carbon (C) cycle (Houghton 2005). Therefore, estimating forest AGB in the
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study of the C cycle and C stocks in terrestrial ecosystems is of high importance (Vashum and Jaya-
kumar 2012). Traditionally, the AGB of forests was determined through manually intensive collec-
tion of forest inventory data; however, the emergence of portable terrestrial light detection and
ranging (LiDAR) scanners has provided high resolution data to describe forest structure and derive
forest inventory metrics (Wulder et al. 2012), while satellite and airborne LiDAR have enabled the
estimation of forest biomass from large areas of inaccessible forest (Brovkina et al. 2017). Develop-
ments in remote sensing technology such as synthetic aperture radar (SAR) and interferometric
SAR (InSAR) have, particularly through the application of machine learning (ML) techniques, pro-
vided further opportunities to improve the accuracy of forest AGB estimates over large areas (Frolk-
ing et al. 2009; Lechner, Foody, and Boyd 2020; Luo et al. 2020). Recently, LiDAR, optical and radar
remote sensing data have been combined into multi-source datasets for research into land cover
change and forest biomass estimation (Isbaex, et al. 2021), climate change (He et al. 2023), environ-
mental pollution (Zhang et al. 2023a), and forest ecophysiology (Gamon, Wang, and Russo 2023).

The integration of multi-source remote sensing data offers huge potential to improve the predic-
tive power of ML algorithms used in data science. Hyde et al. (2007) demonstrated that the predic-
tion of forest AGB could be improved using a combination of LiDAR, SAR, and InSAR (i.e. LiDAR
+ SAR/InSAR) rather than using the three types of data individually. Indeed, spatial modelling
methods that integrate airborne LiDAR with satellite-based SAR data have been shown to provide
spatially explicit AGB estimates over large areas (Tsui et al. 2013). Vafaei et al. (2018) combined
multispectral Sentinel-2A imagery with ALOS-2 and PALSAR-2 data to estimate forest AGB
using four ML methods. The study revealed that when Sentinel-2A imagery is combined with
ALOS-2 and PALSAR-2 data, forest AGB estimates are improved over Sentinel-2A data alone,
and that the support vector regression (SVR) method yielded the highest level of accuracy. Simi-
larly, Tamiminia et al. (2022) combined optical, SAR, and airborne LiDAR data to estimate forest
AGB using multiple decision tree-based ML methods to reveal that optical and SAR data provided
the most accurate estimation of forest AGB; however, there was no significant difference between
the ML methods used. Shao, Zhang, andWang (2017) demonstrated the utility of multi-sourced for
the AGB estimation of forests by integrating optical (Landsat 8 OLI) and SAR (Sentinel-1A) expla-
natory variables to parameterize a stacked sparse autoencoder network (SSAE) and show that the
data combination outperformed SAR and optical data variables alone for forest AGB estimation
over large areas.

Most recently, the accuracy of forest AGB estimation was improved by accounting for tree
phenology and dominant tree species with the random forest (RF) method parameterized with
LiDAR and Sentinel-1 and Sentinel-2 data (Zhang et al. 2023c). Consensus in recent literature
suggests that radar and optical remote sensing data sources can improve forest AGB estimation
over optical or LiDAR data alone (Velasco Pereira et al. 2023) and opportunities remain to further
refine methodologies by evaluating a broader range of multi-source remote sensing data and ML
methods (Le Toan et al. 2011). For example, multi- or hyper-spectral data can be usefully analysed
to extract metrics that describe biophysical characteristics of vegetation, and the differences in
reflectance spectra of vegetation can also be used to identify specific species at different growth
stages (Li et al. 2012), while transformation of spectral bands using the tassel cap transformation
can be used to generate indices that are proxies for texture, frequently used to parameterize models
of forest biomass.

Machine learning methods have become prevalent in the development of forest biomass models
as they are able to reveal complicated nonlinear relationships in complex datasets (Jordan et al.
2015). Machine learning methods are widely used because of their adaptiveness, interpretability,
and sustainability, and are divided into supervised and unsupervised categories. Supervised learning
enables ML algorithms to use training datasets to reveal the relationship between input and output
data. Algorithms that require supervised learning includes decision trees, logistic regression, sup-
port vector machines, and neural networks (Mas and Flores 2008; Mountrakis, Im, and Ogole
2011; Rodríguez-Veiga et al. 2019). Whereas unsupervised learning is a data processing method
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that classifies a large sample of the subject under study through data analysis without category infor-
mation. Unsupervised classification methods include cluster analysis, principal component analysis,
and factor analysis (Olaode, Naghdy, and Todd 2014). In the ML-based assessment of forest AGB
assessment of a single tree species in northern Thailand, the RF method demonstrated higher model
accuracy compared to traditional allometric equations and other ML methods (Wongchai et al.
2022). However, Bulut (2023) recommends that multiple ML methods can be used with multiple
data sources in different environmental conditions to obtain the most accurate forest AGB
estimates.

Commonly used supervised ML methods for forest biomass models include Random Forest (RF;
Tian et al. 2017), Classification and Regression Trees (CART; Breiman, 2017 ), Gradient Boosting
Decision Tree (GBDT; Pham et al. 2020), and the MinimumDistance (MD; Yang, Liang, and Zhang
2020) method. These MLmethods commonly used to estimate forest AGB are evaluated using an R2

based on the coefficient of determination, root mean square error (RMSE), mean absolute error
(MAE), and relative error (RE) (Isbaex, et al. 2021; Han, Wan, and Li 2022).

Google Earth Engine (GEE) is a cloud platform that provides powerful tools for processing and
analysis of remotely sensed data (Lu et al. 2016). Through the GEE interface users can access more
than 50 petabytes of remote sensing data from Landsat, Sentinel, SAR, and digital elevation models
(DEM) (Gorelick et al. 2017). Data processing on the GEE platform can be conducted using Java-
script and Python APIs to access Google’s compute infrastructure for parallel processing of massive
datasets. Recently, scholars have used GEE to analyse environmental change with a focus on forest
monitoring (Tamiminia et al. 2020), to conduct large-area multi-source remote sensing-based for-
est biomass estimation (Yang et al. 2018), and to develop online visualization tools (Yan et al. 2022).

Although several studies have explored the estimation of forest AGB using multi-source remote
sensing variables (Sinha et al. 2016; Su et al. 2016; Sun et al. 2011; Zhang et al. 2020), there is cur-
rently no specific construction process to select ML methods and different combinations of remote
sensing variables (Lu 2006). Here, we use an optimal ML method to construct different forest AGB
models using single input datatypes and construct multi-source remote sensing variables for com-
parison to the optimal single variable. Multi-source remote sensing variable combinations are then
constructed according to their importance and correlation between an array of multi-source remote
sensing variables to test the optimal forest AGB model. However, to obtain accurate determination
of biomass in mixed-species forests, it is necessary to consider tree species-specific differences in
remotely sensed data. The objectives of this paper are to (i) improve the estimation of AGB in differ-
ent forest types i.e. broadleaved, coniferous, and mixed-species forests; (ii) determine the optimal
combination of remotely sensed data to improve the accuracy of forest AGB estimation using ML
approaches; and (iii) to explore the forests within the Huodong coal mine area under Taiyue Moun-
tain to validate the selected method.

2. Material and methods

2.1. Study area

Huodong Mining District (36°30′0′′N112°24′0′′E) is a national mining district within Jinzhong coal
area, one of the 14 large coal regions in China delineated in the National Mineral Resources Plan
(2016–2020). The mining area is a temperate continental climate, with four distinct seasons and a
large temperature difference between day and night. The mean annual temperature is 9.2°C. The
mean annual precipitation is 564.1 mm. It is located in the west of Qinshui Coalfield in Shanxi Pro-
vince and covers an area of 4110 km2 with a total coal resource of 36.6 billion tons. Huodong
mining area is not only rich in mineral resources but also has the largest national Forest Park,
Taiyue Mountain Forest Park, in Shanxi province. Taiyue Mountain Forest is a species-diverse for-
est with 233 species of woody plants belonging to 44 families and 99 genera: 62 families and more
than 500 species of herbaceous plants. The forest total area exceeds 60,000 hectares and is
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comprised of northern China’s main forest species: Larix principis-rupprechtii, Cunninghamia lan-
ceolata, Pinus tabuliformis with Quercus wutaishanica, Populus spp., Acacia locust, Betula platy-
phylla. An overview map of the study area is shown in Figure 1.

2.2. Data collection and processing

2.2.1. Data collection
Selection of 128 (30 m × 30 m) forest sample plots (128 mixed, 91 broadleaved, 37 coniferous,) was
conducted with the GEE platform using high spatial resolution images to obtain the coordinates of
the centre point of each forest sample plot (Figure 2). A total of 128 forest sample plots were sur-
veyed between 1st and 23rd August 2022 using a combination of traditional forest mensuration
measurements and mobile LiDAR (LiBackpack DGC50) with a relative accuracy of 3 cm, absolute
accuracy of 5 cm, scanning frequency of 600,000 points/sec. During the measurement process, the
surveyors manually measured diameter at breast height (DBH) and height (H) of all living trees.
The ABG of each tree species was estimated using a regional tree species-specific allometric
equation (Table 1) (Fang and Wang 2001). All remote sensing data were sourced from datasets
available in the GEE cloud platform (https://developers.google.com/earth-engine/datasets/), with
the exception of Landsat 8 Level 2, Collection 2, Tier 1 optical data for each 30 m × 30 m forest
sample plot Topographic data were obtained from NASA SRTM Digital Elevation, and SAR data

Figure 1. Map of the study area in the southeastern of Shanxi Province, China. The red line box is Huodong mining district, the
green area is the Taiyue Mountain forest, Black and purple points are the coniferous and broadleaved forest sampling sites,
respectively.

Table 1. Allometric equations for estimating the forest species in the study area.

Tree Species Allometric Equation

Larix principis-rupprechtii AGB = 0.2387114(D2H)0.6784

Cunninghamia lanceolata AGB = 0.00849(D2H)1.10723

Populus spp. AGB = 0.07363(D2H)0.7745

Pinus tabuliformis AGB = 0.14187(D2H)0.8728

Robinia pseudoacacia AGB = 0.02583(D2H)0.6841

Quercus wutaishanica AGB = 0.04930(D2H)0.8514

Note: AGB is the above-ground biomass (kg), D is the diameter (cm) at breast height (1.3 m), H is the height of the tree (m).
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were Global PALSAR-2/PALSAR yearly mosaic, and the specific data parameters are shown in
Table 2.

2.2.2. Data processing
LiDAR generated 3D cloud point data collected in field for each forest sample plot was preprocessed
using the LiDAR360 software (GreenValley International, Zhongguancun Software Park, Haidian).
The processes involved forest sample screening and clipping, point cloud data thinning and denoiz-
ing, ground point cloud segmentation, point cloud normalization and single wood parameter stat-
istics. Finally, the tree height and diameter of single trees in all forest plots were counted separately
to obtain the forest biomass of the whole plot.

Processing of the Landsat 8, SAR, and DEM datasets involved filtering to extract the specific
study area and removing clouds using a cloud bit mask. Multiple sources of remote sensing vari-
ables were selected from specified bands of different image collections to obtain the information
shown in Table 3.

Figure 2. Forest sample plot survey (a) single tree diameter at breast height measurement using a diameter at breast height
ruler; (b) scanning the forest sample plot using a backpack LiDAR; (c) single tree height measurement using a height gauge;
(d) measuring the extent of the forest sample plot using a measuring rope.

Table 2. Remote sensing image collection.

Name Earth Engine Snippet Acquisition Date Processing Level

Landsat 8 LANDSAT/LC08/C02/T1_L2 "2022-06-01","2022-08-31" Level 2
DEM USGS/SRTMGL1_003 "2000-02-11" V3
SAR JAXA/ALOS/PALSAR/YEARLY/SAR "2020-01-01","2021-01-01" 2.1
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2.3. Experimental design

Most of the scientific literature does not explain how to select appropriate variables to develop and
evaluate forest AGB models. Based on this knowledge, we designed this experiment to construct
forest AGB models using a combination of multi-source remote sensing variables and then com-
pared the accuracy of different variable combinations on forest AGB models to more scientifically
follow the optimal combination of single variables and reveal which combination of variables had
the best fit.

Four experiments were conducted to assess the utility of different variable combinations and
their accuracy in estimating forest AGB: (i) single variable; (ii) multi-source variable combinations;
(iii) variable importance; and (iv) Pearson correlation coefficient. The four ML methods (RF,
CART, GBDT and MD) used in this study were evaluated with n = 500 decision tree parameters.
Each model was analysed by assessing the following four indicators: R2, RMSE, MAE, and RE. A
flowchart that details the satellite-image processing and the generation of forest AGB models
using ML is shown in Figure 3.

For model training and validation of the model AGB estimates, the location of each of the 128
forest sample plots was identified using a handheld GNSS receiver (CHC® LT500T, iGage Mapping
Corporation, Salt Lake City, USA), and a field-based forest inventory survey conducted.

2.4. Machine learning methods

Four decision tree ML methods (RF, CART, GBDT and MD) were selected from the ML methods
available in the GEE platform to construct a forest biomass model.

2.4.1. Random forest
Random forest is an integration-based decision tree approach (Cutler, et al. 2012) that is commonly
used for classification, regression, and other tasks (Breiman 2001). It improves the prediction per-
formance by integrating multiple decision trees, each constructed by random subsampling and ran-
dom feature selection. The random forest approach takes a self-service sampling method (bootstrap
sampling), in which k samples are randomly selected from the original dataset to form a collection of
subsamples, which can increase the randomness and diversity of the training set and reduce the
phenomenon of overfitting. Multiple bootstrap samples are randomly and repeatedly sampled from
the training dataset, and then a decision tree is constructed for each bootstrap sample. Finally, the
regression results of all decision trees are averaged to obtain the prediction results (Speiser et al. 2019).

2.4.2. Classification and regression tree
Classification and regression tree is a decision tree classification and regression method (Loh 2008).
The CART algorithm recursively constructs a decision tree by binary slicing of sample features,

Table 3. Specific parameters of the random forest (RF), classification and regression tree (CART), gradient boosting decision tree
(GBDT), minimum distance (MD) machine learning methods.

Parameter RF CART GBDT MD

numberOfTrees 500 – 500 –
variablesPerSplit 14 – – –
minLeafPopulation 1 1 – –
bagFraction 0.5 – – –
maxNodes no limit no limit no limit –
seed 0 – 0 –
shrinkage – – 0.005 –
samplingRate – – 0.7 –
loss – – LeastAbsoluteDeviation –
metric – – – euclidean
kNearest – – – 1
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where each leaf node represents a decision outcome (Loh 2011). For classification problems, the leaf
nodes of the decision tree correspond to a category; for regression problems, the leaf nodes of the
decision tree correspond to a value. The CART algorithm generates interpretable decision trees
with low computational effort and fast training but may produce overfitting for high-dimensional
data (Gómez et al. 2012).

2.4.3. Gradient boosting decision tree
The GBDT algorithm is implemented to model and predict data by integrating multiple decision
trees where in each iteration step, a decision tree is used to fit the residuals of the current data
(Friedman 2001). Eventually, the predictions of multiple decision trees are weighted and averaged
to obtain the final model predictions (Pham et al. 2020). The advantages of the GBDT method are
that it can effectively handle many types of data (e.g. numerical, subtypes, and sequential) and can
automatically select important features and handle missing data. In addition, the method has a
strong generalization capability to handle large-scale datasets and yields good performance in
most cases (Li et al. 2020).

Figure 3. Flowchart for satellite-image processing and the generation of forest above-ground biomass (AGB) models based on
machine learning (ML) methods. Among the six variable types obtained during the data processing, the feature variable synthetic
aperture radar (SAR) was derived from the ALOS-2 PALSAR data. Spectral bands, spectral indices, Kauth-Thomas (K-T), and grey
level co-occurrence matrix (GLCM) all originate from Landsat 8 SR images. Terrain variables were derived from the NASA’s shuttle
radar topography mission (SRTM).
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2.4.4. Minimum distance
The MD method is a classic classification method that classifies samples into different categories by
measuring the distance between them (Wolfowitz 1957). The method assumes that there is a varia-
bility in distance between the sets of samples of different categories, i.e. the distance between the sets
of samples of different categories is farther and the distance between samples of the same category is
closer. The basic idea of the shortest distance method is that for a new sample, the distance between
it and the sample of each category is calculated, and then it is placed in the category with the closest
distance to it (Mahdianpari et al. 2020). Euclidean distance or Manhattan distance is usually used to
measure the distance between samples. In this paper, Euclidean distance is used as a parameter for
analysis by default. The advantage of the shortest distance method is its simplicity and ease of use, as
well as the fact that it does not require complex prior training and conditioning of the samples.
However, it also has some disadvantages, such as sensitivity to outliers and poor performance on
unbalanced datasets (Shaharum et al. 2020).

2.4.5. Model parameter
The specific parameters of the four machine learning methods used in this paper are shown in Table
3. The RF and GBDT methods have six parameters each, while the CART and MD methods have
two parameters each. For a specific parameter explanation, please see the GEE developer documen-
tation available at https://developers.google.com/earth-engine/apidocs.

2.5. Biomass model variable

Biomass model variables involved in the construction were divided into six categories, which are the
spectral bands of Landsat images, spectral indices, topographic factors, tassel-cap transform
(Kauth-Thomas), grey level co-occurrent matrix (GLCM), and SAR factors, where the texture fea-
ture variable consist of 18 components, all of which are applied to SR_B2-B7 bands, respectively,
and all of the total number of multi-source variables is 156, as shown in Table 4. The specific abbre-
viated noun explanation is provided in Supplementary.

Spectral bands refer to the electromagnetic waves collected at different wavelengths by satellite
sensors during the process of acquiring remote sensing images. Different spectral bands have vary-
ing reflectivity characteristics for different features. Therefore, extracting different spectral bands in
remote sensing images can be utilized to describe and differentiate features. The B2-B7 bands in the
Landsat SR data were selected as the spectral band variable.

The spectral index is one of the most important variables for the estimation of forest AGB,
especially the vegetation index, which is calculated by analysing vegetation reflection or radiation

Table 4. Biomass model single variable.

Type of variable Specific variable factors number

Landsat bands Blue(SR_B2), Green(SR_B3), Red(SR_B4), NIR(SR_B5), SWIR1(SR_B6), SWIR2 (SR_B7) 6
Spectral index NDVI, GNDVI, BNDVI, NDWI, NDWI1, MNDWI, NDMI, NDSI, SIPI, RECl, EVI, EVI2, SR, LAI, GVI, RVI,

GRVI, DVI, SAVI, OSAVI, ARVI, VARI, SLAVI, NBR, NDGI, GCVI, GRNDVI, GBNDVI, RBNDVI, RGRI
30

Terrain Elevation, Slope, Aspect, Hillshade 4
Tassel Cap
Transform

Brightness, Greenness, Wetness, TCD(Tasseled Cap Angle), TCA(Tasseled Cap Distance) 5

GLCM ASM(Angular Second Moment), CONTRAST(Contrast), CORR(Correlation), VAR(Variance), IDM
(Inverse Difference Moment), SAVG(Sum Average), SVAR(Sum Variance), SENT(Sum Entropy),
ENT(Entropy), DVAR(Difference variance), DENT(Difference entropy), IMCORR1(Information
Measure of Corr. 1), IMCORR2(Information Measure of Corr. 2), MAXCORR(Max Corr.
Coefficient), DISS(Dissimilarity), INERTIA(Inertia), SHADE(Cluster Shade), PROM(Cluster
prominence)

18

SAR HH(Horizontal transmit/Horizontal receive polarization), HV(Horizontal transmit/Vertical receive
polarization)

2
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data and can provide information on vegetation growth status, chlorophyll content, and vegetation
cover (Zeng, et al. 2022 ). We selected 30 spectral indices as one of the remote sensing variables to
participate in the construction of biomass models. Supplementary Table B details all the spectral
indices and their abbreviations used in this paper.

Terrain variables play an important role in estimating forest biomass. Elevation can affect the
climate and soil conditions, and therefore, the growth of forests. Slope, aspect, and hillshade can
influence microclimate, rates of soil erosion and water distribution, thereby influencing forest
growth and biomass accumulation.

Spectral transformation is the process of converting raw remote-sensing image data into a differ-
ent representation space. Its purpose is to extract the features of different objects in the image for
classification, target detection, change detection, and other applications. Spectral transformation is
the process of converting raw remote-sensing image data to another kind of representation space.
In this paper, the five variables in the K-T transformation were selected as the spectral transform-
ation variables.

GLCM is a common texture analysis method based on the second-order combined con-
ditional probability density of the image. It calculates the spatial relationship between different
grey levels in the image. Using remote sensing images to monitor forest textural features can cap-
ture detailed features within the forest. Through image processing and classification of remote
sensing images, various forest types and structural features can be accurately identified. The
extraction of the texture features in this paper was performed using the glcmTexture() function
in the GEE platform.

The SAR data can be used to estimate the height, density, and volume of vegetation by measuring
the radio waves reflected by the vegetation. The HH and HV (polarization backscattering coeffi-
cient) bands in the ALOS-2 PALSAR data were selected as the SAR variables for constructing
the forest AGB model.

2.6. Model evaluation

2.6.1. Training and validation datasets
To train and validate the model the 128 plots comprised of coniferous, broadleaved, and mixed
species forest were allocated into training (70%) and validation (30%) datasets. The number of
training and validation of the forest sample points for each tree species are shown in Table 5.

2.6.2. Feature importance analysis
Analysis of variable importance using GEE was conducted to determine the magnitude and predic-
tive contribution of optimal variables to the prediction of forest AGB (Zhang et al. 2019; Zhao et
al. 2022), this analysis method can be used to inform variable selection, model optimization, and
interpretation of model prediction results (Li et al. 2019). Variable importance analysis is a process
of determining the importance between all multi-source remote sensing variables and the measured
biomass (Menze et al. 2009). The biomass of forest sample points is used as training data, and all
feature variables as input properties are input into classifiers, such as RF, as classifier attributes. The
importance of each feature’s relationship with forest AGB was determined using the explain() func-
tion in GEE. RF, CART, and GBDT are provided in the developed APP included in this paper (Sec-
tion 4.3) for variable importance analysis.

Table 5. Training and validation sample points for different tree species.

Forest Type Training Points Validation Points Total

Coniferous 25 12 37
Broadleaved 63 28 91
Mixed 89 39 128
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2.6.3. Feature correlation
Pearson correlation coefficient (Equation (1)) was used to assess the degree of linear correlation
between all multi-source remote sensing variables and the field measurements of forest AGB,
which were then ranked from highest to lowest.

r =
∑n
i=1

(xi − �x)(yi − �y)�������������∑n
i=1

(xi − �x)
2

√ �������������∑n
i=1

(yi − �y)
2

√ (1)

In the above equation, xi and yi are the variables measured, �x and �y are the mean values of the pre-
dicted and measured, respectively.

2.6.4. Accuracy assessment
The accuracy of each ML model and variable combination was evaluated by validation using data
that was not included in the model-building process. Four accuracy evaluation indices: coefficient of
determination (R2; Equation (2)), root mean squared error (RMSE, Mg/ha; Equation (3)), mean
absolute error (MAE; Equation (4)) , and relative error (RE; Equation (5)) were calculated to com-
pare the predicted and observed values (Cohen et al. 2009). All of the above evaluation indices were
implemented online through the Javascript API of the GEE platform.

R2 =
∑n
i=1

( pi − �p)(ai − �a)�����������������������∑n
i=1

( pi − �p)2(ai − �a)2
√ (2)

RMSE =

�������������∑n
i=1

(pi − ai)

n

√√√√√
(3)

MAE = 1
n

∑n
i=1

| pi − ai| (4)

RE = ( pi − ai)
ai

∗100% (5)

In the above expressions, Pi is the forest AGB predicted by the ML model, ai is the measured
mangrove AGB, n is the total number of sampling plots, and �p and �a are the mean values of the
predicted and measured AGBs, respectively.

3. Results

3.1. Comparison of different methods

The performance of the four ML methods for predicting the coniferous, broadleaved, and mixed-
species forest types using a single spectral variable is shown in Table 6. Irrespective of forest type the
R2 for each of the four ML methods was consistent whilst the differences in RMSE, MAE, and RE
metrics enabled the selection of the best model. The error metrics of the GBDT method were the
smallest and the error metrics of the MD method were the largest. Overall, the error metrics of the
GBDTmethod tend to be the smallest and the error metrics of the MDmethod were the largest. The
ranked order of ML method performance by error for broadleaved forest was RF < GBDT < CART
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<MD, for coniferous forest was GBDT < RF < CART <MD, and for mixed-species forest was
CART < RF < GBDT <MD. In aggregate, the GBDT method performed best to estimate forest
AGB for both univariate and multivariate input datasets.

3.2. Single and multi-source variables model evaluation

3.2.1. Single variable biomass model construction
The results of the forest AGB models parameterized with a single remotely sensed variable for the
three forest types are shown in Table 7. Among the six different univariately constructed models,
the RMSE was larger in coniferous forest than in broadleaved and the mixed-species (undifferen-
tiated) forests. For all models with a single variable, spectral index had the highest fit and GLCM
had the lowest fit.

For the broadleaved forest type, the variable that resulted in the highest correlation between pre-
dicted and measured forest AGB was spectral index (R2= 0.97), however, the GLCM variable pro-
duced the largest error with an R2 of 0.01. RMSE, MAE, and RE errors of spectral index model are
lower than GLCMmodel. In the coniferous forest, spectral index again resulted in the highest R2 of
0.99, however, the GLCM variable produced the lowest correlation with an R2 of 0.04. Similarly, the
strongest correlation of spectral indices in mixed forests had an R2 of 0.97, while the model

Table 6. Comparison of random forest (RF), classification and regression tree (CART), gradient boosting decision tree (GBDT),
minimum distance (MD) machine learning methods to estimate forest aboveground biomass.

Forest Type Performance Indicator

Algorithm

RF CART GBDT MD

Broadleaved R2 0.69 0.69 0.69 0.69
RMSE 39.59 51.14 40.45 813.97
MAE 27.80 34.51 28.96 731.24
RE 0.68 0.83 0.71 18.73

Coniferous R2 0.71 0.71 0.71 0.71
RMSE 80.34 113.40 76.72 646.23
MAE 61.76 94.31 54.89 576.25
RE 0.23 0.40 0.20 2.88

Mixed R2 0.83 0.83 0.83 0.83
RMSE 88.67 85.63 89.13 624.61
MAE 65.89 65.11 66.46 514.01
RE 0.63 0.47 0.60 8.19

Table 7. Precision evaluation of single variable models for different tree species.

Forest Type Variables R2 RMSE (Mg/ha) MAE RE

Broadleaved Terrain 0.05 31.00 25.08 0.46
Band 0.69 40.45 28.96 0.71
Index 0.97 29.14 21.40 0.35
SAR 0.17 46.75 33.90 0.61
K-T 0.10 33.94 28.94 0.52
GLCM 0.01 30.11 24.45 0.62

Coniferous Terrain 0.11 74.24 56.64 0.25
Band 0.71 76.72 54.89 0.20
Index 0.99 65.52 50.92 0.28
SAR 0.48 82.68 68.44 0.32
K-T 0.72 104.93 95.98 0.65
GLCM 0.04 111.75 93.75 0.95

Mixed Terrain 0.01 63.99 45.83 0.70
Band 0.83 89.13 66.46 0.60
Index 0.97 81.12 51.18 0.61
SAR 0.22 64.90 47.53 0.82
K-T 0.48 76.84 52.77 0.55
GLCM 0.02 92.55 66.92 0.53
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constructed by GLCM had the lowest accuracy (R2 = 0.02). Consistency with R2 was demonstrated
in the model evaluation results for RMSE and MAE in all forest species.

The spatial distribution of forest AGB constructed using a single variable for different forest
types are shown in Figure 4. The forest AGB of coniferous and broadleaved forests in the region
differs greatly, with coniferous forests predominating and broadleaved forests having a more scat-
tered distribution, and the forest AGB of coniferous forest is higher than that of broadleaved forest.
The forest biomass distribution without distinguishing tree species (Figure 4(b)) can more clearly
distinguish the difference in forest biomass distribution in the study area.

3.2.2. Combined biomass model with multi-wavelength variables
In this experiment, 30 variable combinations were compiled in Table A (Supplementary), We
selected only variable combinations where the model accuracy (R2) of AGB estimation was > 0.5
as shown in Table 8.

Among the combinations of multi-source variables, the highest R2 (>0.96) between measured
and predicted AGB obtained for models using the GBDT method constructed with bivariate com-
bination of spectral indices with spectral bands, K-T transform, and GLCM variables (i.e. V10, V11
and V12, respectively), without distinguishing between forest types.

Models constructed by combining spectral bands with the K-T and GLCM variables had an R2 >
0.8 (mixed-species and coniferous forest types). Based on these results, models were constructed
using three, four, and five combinations of variables, but the R2 values of the models were lower
than those of the bivariate models. Among them, the model R2 values of the coniferous forest
type and mixed-species (undifferentiated) forest type in the three variable combinations showed
consistency in their estimates, but the model fit accuracy of broadleaved forest was much lower.
From the V20-V23 multi-source variable combination, it is easy to conclude that coniferous forest
outperforms the mixed-species forest in terms of fitting accuracy.

The forest distributions of different forest types have a high degree of consistency (Figure 5).
However, because of the differences in the training samples, the predicted values of the forest bio-
mass model are more stable without differentiating the tree species. The coniferous forest biomass
predictions had the greatest variation because only 37 sample data point were available, and the
coniferous biomass varied more between sample sites.

3.3. Importance analysis of importance variables

Using the importance analysis method in the GEE platform, all the multi-source remote sensing
variables were analysed separately with the forest AGB of the sample site, and the importance
results were ranked in descending order. Every five variables were stacked in turn to form a new
variable combination (Ci_1 to Ci_21) as the input variables of the forest AGB model. Because

Figure 4. Biomass distribution of single variable (spectral index) for different tree species. (a) broadleaved forest; (b) mixed-
species forest; (c) coniferous forest.
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there were only 105 variables with non-zero values in the results of the variable importance analysis,
there were only 21 variable combinations, and the model fitting accuracy results are shown in
Figure 6. From the results, it is apparent that there is no strong correlation between the fitting

Table 8. Performance comparison of variable combination used in ML to estimate forest AGB.

Variable ID Variables combination

Mixed Broadleaved Coniferous

R2 RMSE R2 RMSE R2 RMSE

V8 SAR + K-T 0.64 46.94 0.46 34.89 0.43 92.88
V10 Index + Band 0.99 59.52 0.97 37.95 0.99 101.46
V11 Index + K-T 0.98 60.54 0.99 27.68 0.99 109.39
V12 Index + GLCM 0.97 86.41 0.98 49.9 0.99 94.05
V13 Band + K-T 0.91 51.94 0.59 30.61 0.81 85.25
V14 Band + GLCM 0.94 84.21 0.28 28.2 0.82 85.05
V15 K-T + GLCM 0.64 82.21 0.01 38.65 0.46 83.37
V20 Band + Index + K-T 0.58 80.97 0.55 28.18 0.63 73.16
V22 K-T + GLCM + Index 0.65 69.57 0.32 36.6 0.81 96.98
V23 Band + GLCM + Index 0.92 55.24 0.51 26.01 0.7 78.08

Figure 5. Predicted Forest AGB distribution maps for V10, V11 and V12 variable combinations. Broadleaved forest is shown in
panels (a), (d), (f). Mixed species forest shown in panels (b), (e), (h). The coniferous forest shown in (c), (f), (i).
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accuracy of variable combinations with varying importance and the number of variables. The bio-
mass models constructed according to the combination of variable importance had low fitting accu-
racy, and the highest fitting accuracy was only R2 = 0.23 for Ci_6.

3.4. Pearson correlation analysis

Pearson correlation analysis was conducted using the RF method for all multi-source remote sen-
sing variables generating a predicted forest AGB and measured forest AGB, and the correlation
results were ranked from highest to lowest. First, the five variables with the highest correlation rank-
ing were selected as the initial group of model variables to participate in the biomass model con-
struction. Later, the combination of variables participating in the model construction was added
based on the basis of the first group of models, and the cumulative total of five variables. Thus, sep-
arately validating the resulting forest biomass prediction model after combining the correlation
analysis from high to low variables. However, there were only 150 variables with non-empty values
in the results of the variable importance analysis, there were only 30 variable combinations. A new
combination of variables (Cp_1 to Cp_30) was formed as the variables of the forest biomass model
by superimposing every five variables in turn (Figure 7). In the variable Pearson correlation analy-
sis, the forest biomass model was constructed without distinguishing between tree species in order

Figure 6. Variable importance model fit R2 results for 21 different variable combinations.
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to reduce the influence of an insufficient number of forest sample points on the results. The results
showed that the accuracy of the model fitted by the cumulative equivariant variables tended to first
decrease and then gradually increase and stabilize with an increase in the order of correlation of
variables. The forest AGB model with the highest accuracy (R2 = 0.5154) was parameterized
using the Cp_22 combination of variables (Figure 7).

4. Discussion

The objective of this study was to develop a framework for selecting ML methods and variable com-
binations to construct a forest AGB model that accurately predicts forest AGB in different forest
types. Many studies have reported superior performance of the RF method in predicting forest
AGB using remotely sensed data (Chen et al. 2018; Zhang et al. 2023b). In this paper, it was
found that the GBDT method exhibits higher forest AGB prediction accuracy, particularly when
the number of sample points in the training data are large. However, there was not a significant
difference between the RF and GBDT methods, which aligns with the findings of previous studies
(Tamiminia et al. 2022). The method and process of selecting the optimal forest AGB model used in
this study is suitable for all forest AGB modelling. Despite the study area being a mixed-species for-
est located in complex terrain it was still possible to make accurate predictions of forest AGB. By
comparing the biomass models built with different variable combinations, the results showed
that the number of variables is not directly related to the model accuracy, and in a two-variable
combination, the model precision is better than models built with combinations of three or
more variables. The forest AGBmodel built by the variable after importance and correlation screen-
ing was less accurate than the optimal single variability combination.

Figure 7. Variable correlation model R2 results.
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Forest AGBmodels that do not distinguish between tree species reduce the accuracy of forest AGB
estimation. Distinguishing between different tree species to construct species-specific forest AGB
models is likely to result in a more accurate assessment of forest AGB over large areas using remote
sensing. However, the construction of species-specific forest AGB models requires a large effort and
resource base to obtain forest sample plots for training and validation. In the Huodong coal mine area
under the Taiyue Mountain forest the broadleaved trees are mostly distributed at lower elevations,
leading to the sampling points being located near residential areas and a fragmented distribution
of forest sample plots, which may have led to a low overall fit of other single variables with the excep-
tion of the spectral index (Zhang et al. 2023a). In contrast, coniferous forest was mostly distributed in
sparsely populated areas at high altitudes, which makes forest inventory data collection more difficult
and explains the limited sample size available for training and validation in this study. Despite the
limitations of sample size, it was still possible to estimate coniferous forest AGB with reasonable accu-
racy because the patches of coniferous forests tend to be located in distinct patches that are not often
disturbed. However, due to the small sample size available for coniferous species, the construction of
variable importance and correlation variables may have led to instability in model fitting accuracy due
to insufficient sample points. Therefore, if MLmethods are subsequently used for biomass model con-
struction, it is recommended that sufficient sample points to be collected to allow for training and
validation activities (Yang et al, 2023 ). According to the experimental results of this paper, at least
100 sample points for a single tree species biomass model are needed.

In both univariate and multi-source variable biomass prediction models, the number of samples
determines the accuracy of the model, as shown in Figures A and B (Supplementary). Even when
no distinction is made between tree species, the prediction of the model for mixed-forest AGB
were better than those for broadleaved and coniferous forests individually. Among the different com-
binations of variables, the optimal models that were constructed with spectral indices and K-T best
predicted the AGB for broadleaved forests, whilst for coniferous and mixed forests the optimal com-
bination of variables was spectral indices, texture features, spectral indices and bands.. In particular,
the coniferous forest AGBmodel parameterized with texture features and spectral indices appeared to
compensate for the lower prediction accuracy due to the smaller training and validation sample size.

4.1. Different forest species models

The optimal ML method for estimating forest AGB in the three different forest types was not con-
sistent. Wongchai et al. (2022) reported that many studies have been conducted where different tree
species have been analysed using the same MLmethods, with the rationale that canopy information
is tree species-specific. In the present study the AGB model prediction error for the three different
forest types was ranked from high to low (i.e. coniferous forest > mixed species forest > broadleaved
forest) in both single and multi-source variables. The main reason for the higher error in coniferous
forest than broadleaved forest is that the sample points collected in broadleaved forest are mostly
concentrated near the roadside, where the most abundant tree species is poplar (Populus spp.), and
the average tree age is similar. However, the sampling data of coniferous forest are concentrated in
the higher elevation area, where there is an uneven age distribution, so the difference in sample bio-
mass data is more obvious, which leads to a higher error in broadleaved forest. As the forest inven-
tory plots were sampled in August, all experiments in this paper only considered the prediction and
evaluation of forest AGB models during the vegetation growing season, and future model tests will
be conducted for different seasons and forest species based on the available results so as to verify the
limitations and applicability of the models.

4.2. Accuracy comparison of different combinations of variables

In the ML model construction with a single variable, the optimal forest AGB variable was the spec-
tral index variable, which has been often reported (Wang et al. 2020), followed by the spectral band,
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irrespective of whether it is a broadleaved, coniferous, or mixed-species forest type with the excep-
tion of attempts to parameterize using the GLCM variable. In ML models constructed using multi-
source variables, the fitted values based on the spectral index superimposed on other variables were
better than the other variable models. The fitted values of the models constructed by equal differ-
ence series of variable importance and correlation ranking were lower than those of the single and
multi-source models constructed by spectral index variables, regardless of the number. The overall
level of model accuracy did not depend on the number of variables, in fact the forest AGB models
constructed with single variables with high fit values for multi-source variables provided the most
accurate forest AGB estimates. Explanatory variables used in AGB model construction were ana-
lysed for multicollinearity using a pairwise comparison of Pearson correlation coefficients, which
indicated a strong autocorrelation between the spectral index and the spectral band. Additionally,
there was a strong autocorrelation among the SAR HV variables. However, there was no significant
autocorrelation observed in the terrain features and GLCM variables. Therefore, incorporating the
spectral index/spectral band with other variables can effectively improve the accuracy of the forest
AGB model. This is consistent with the results of the multi-source feature variable combinations in
Section 3.2.

4.3. Biomass prediction model application

To aid visualization and interpretation, three GEE-based applications were developed, namely the
Forest Biomass and Variable Correlation Analysis Application (https://bqt2000204051.users.
earthengine.app/view/forest-agb-variables-correlation-analysis), the Forest Biomass and Variable
Importance Analysis Application (https://bqt2000204051.users.earthengine.app/view/forest-agb-
variable-importance-analysis), and the Forest Biomass Prediction Application (https://
bqt2000204051.users.earthengine.app/view/forest-aboveground-biomass-prediction) to correlate
selected multi-source remote sensing variables with the collected forest biomass and to filter the
remote sensing variables with high correlation based on correlation coefficients for biomass
modelling.

The correlation analysis results for hundreds of variables include correlation coefficients and
p-values. The Forest Biomass and Variable Importance Analysis Application performs variable
importance analysis based on multi-source remote sensing variables and forest biomass and
selects multi-source remote sensing variables for model building based on the variable impor-
tance results with the RF, CART, and GBDT ML methods are provided in the variable impor-
tance analysis. The Forest Biomass Prediction Application is based on the aforementioned
applications but extends them by permitting users to select different ML methods for biomass
model prediction using the 30 multi-source variable combinations used in this analysis by
enabling the assessment of forest AGB estimates and accuracy (i.e. R2, RMSE, MAE, and RE)
to be compared online.

5. Conclusion

In this study, four ML methods were used in the GEE cloud platform to construct forest AGB
models using single and multi-source variable combination and their performance evaluated
using variable importance values and Pearson correlation coefficients between predicted and
measured AGB values. A complete model evaluation system that included R2, RMSE, MAE, and
RE was used to determine best model to predict forest AGB. The results showed the optimal
model results were obtained using the GBDTMLmethod. The most accurate estimation of biomass
was achieved for mixed-species forests. Multisource remote sensing data andMLmethods were able
to accurately estimate forest AGB biomass enabling rapid estimation of forest productivity, stand-
ing biomass and C stocks in complex topographical landscapes.

INTERNATIONAL JOURNAL OF DIGITAL EARTH 4487

https://bqt2000204051.users.earthengine.app/view/forest-agb-variables-correlation-analysis
https://bqt2000204051.users.earthengine.app/view/forest-agb-variables-correlation-analysis
https://bqt2000204051.users.earthengine.app/view/forest-agb-variable-importance-analysis
https://bqt2000204051.users.earthengine.app/view/forest-agb-variable-importance-analysis
https://bqt2000204051.users.earthengine.app/view/forest-aboveground-biomass-prediction
https://bqt2000204051.users.earthengine.app/view/forest-aboveground-biomass-prediction


Acknowledgements

The authors sincerely thank the National Aeronautics and Space Administration (NASA) and United States Geologi-
cal Survey (USGS) for providing the Landsat and DEM data. The authors thank the Japan Aerospace Exploration
Agency (JAXA) for providing Global PALSAR-2/PALSAR Yearly Mosaic data. We would like to express our grati-
tude to Google Earth Engine for offering free cloud computing services. The authors thank the anonymous reviewers
for their valuable comments.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was support by the National Key Research and Development Program of China (Intergovernmental and
international cooperation in science, technology and innovation) under Grant Number 2022YFE0127700; Royal
Society International Exchanges 2022 Cost Share (NSFC) under Grant number IEC\NSFC\223567.

ORCID

Xingguang Yan http://orcid.org/0009-0001-8280-4568
Andrew R. Smith http://orcid.org/0000-0001-8580-278X
Jing Li http://orcid.org/0000-0001-8095-0425
Di Yang http://orcid.org/0000-0002-4010-6163

References

Breiman, Leo. 2001. “Random Forests.” Machine Learning 45 (1): 5–32. https://doi.org/10.1023/A:1010933404324
Breiman, Leo. 2017. Classification and Regression Trees. New York, USA: Routledge.
Brovkina, Olga, Jan Novotny, Emil Cienciala, Frantisek Zemek, and Radek Russ. 2017. “Mapping forest aboveground

biomass using airborne hyperspectral and LiDAR data in the mountainous conditions of Central Europe.”
Ecological Engineering 100: 219–230. http://dx.doi.org/10.1016/j.ecoleng.2016.12.004.

Bulut, Sinan. 2023. “Machine Learning Prediction of Above-Ground Biomass in Pure Calabrian Pine (Pinus Brutia
Ten.) Stands of the Mediterranean Region, Türkiye.” Ecological Informatics 74: 101951. https://doi.org/10.1016/j.
ecoinf.2022.101951

Chen, Lin, Chunying Ren, Bai Zhang, Zongming Wang, and Yanbiao Xi. 2018. “Estimation of Forest Above-Ground
Biomass by Geographically Weighted Regression and Machine Learning with Sentinel Imagery.” Forests 9 (10):
582. https://doi.org/10.3390/f9100582.

Cohen, Israel, Yiteng Huang, Jingdong Chen, Jacob Benesty, Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel
Cohen. 2009. “Pearson Correlation Coefficient.” In Noise Reduction in Speech Processing. Springer Topics in Signal
Processing. Vol. 2, 1–4. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-00296-0_5.

Cutler, Adele, D Richard Cutler, and John R Stevens. 2012. “Random forests.” In Ensemble machine learning:
Methods and applications, 157–175. New York, USA: Springer. https://doi.org/10.1007/978-1-4419-9326-7_5.

Fang, Jing-Yun, and Zhang Ming Wang. 2001. “Forest Biomass Estimation at Regional and Global Levels, with
Special Reference to China’s Forest Biomass.” Ecological Research 16 (3): 587–592. https://doi.org/10.1046/j.
1440-1703.2001.00419.x

Friedman, Jerome H. 2001. “Greedy Function Approximation: A Gradient Boosting Machine.” Annals of Statistics 29
(5): 1189–1232.

Frolking, Stephen, Michael W Palace, D. B. Clark, Jeffrey Q Chambers, H. H. Shugart, and George C Hurtt. 2009.
“Forest Disturbance and Recovery: A General Review in the Context of Spaceborne Remote Sensing of Impacts
on Aboveground Biomass and Canopy Structure.” Journal of Geophysical Research: Biogeosciences 114 (G2).

Gamon, John A, Ran Wang, and Sabrina E Russo. 2023. “Contrasting Photoprotective Responses of Forest Trees
Revealed Using PRI Light Responses Sampled with Airborne Imaging Spectrometry.” New Phytologist 238 (3):
1318–1332. https://doi.org/10.1111/nph.18754.

Gómez, Cristina, Michael A. Wulder, Fernando Montes, and José A. Delgado. 2012. “Modeling Forest Structural
Parameters in the Mediterranean Pines of Central Spain Using QuickBird-2 Imagery and Classification and
Regression Tree Analysis (CART).” Remote Sensing 4 (1): 135–159. https://doi.org/10.3390/rs4010135.

4488 X. YAN ET AL.

http://orcid.org/0009-0001-8280-4568
http://orcid.org/0000-0001-8580-278X
http://orcid.org/0000-0001-8095-0425
http://orcid.org/0000-0002-4010-6163
https://doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/j.ecoleng.2016.12.004
https://doi.org/10.1016/j.ecoinf.2022.101951
https://doi.org/10.1016/j.ecoinf.2022.101951
https://doi.org/10.3390/f9100582
https://doi.org/10.1007/978-3-642-00296-0_5
https://doi.org/10.1007/978-1-4419-9326-7_5
https://doi.org/10.1046/j.1440-1703.2001.00419.x
https://doi.org/10.1046/j.1440-1703.2001.00419.x
https://doi.org/10.1111/nph.18754
https://doi.org/10.3390/rs4010135


Gorelick, Noel, Matt Hancher, Mike Dixon, Simon Ilyushchenko, David Thau, and Rebecca Moore. 2017. “Google
Earth Engine: Planetary-Scale Geospatial Analysis for Everyone.” Remote Sensing of Environment 202: 18–27.
https://doi.org/10.1016/j.rse.2017.06.031.

Han, Haoshuang, Rongrong Wan, and Bing Li. 2022. “Estimating Forest Aboveground Biomass Using Gaofen-1
Images, Sentinel-1 Images, and Machine Learning Algorithms: A Case Study of the Dabie Mountain Region,
China.” Remote Sensing 14 (1): 176. https://doi.org/10.3390/rs14010176.

He, Kai, Chenjing Fan, Mingchuan Zhong, Fuliang Cao, Guibin Wang, and Lin Cao. 2023. “Evaluation of Habitat
Suitability for Asian Elephants in Sipsongpanna Under Climate Change by Coupling Multi-Source Remote
Sensing Products with MaxEnt Model.” Remote Sensing 15 (4): 1047. https://doi.org/10.3390/rs15041047

Houghton, R. A. 2005. “Aboveground Forest Biomass and the Global Carbon Balance.” Global Change Biology 11 (6):
945–958. https://doi.org/10.1111/j.1365-2486.2005.00955.x.

Hyde, Peter, Ross Nelson, Dan Kimes, and Elissa Levine. 2007. “Exploring LiDAR–RaDAR Synergy—Predicting
Aboveground Biomass in a Southwestern Ponderosa Pine Forest Using LiDAR, SAR and InSAR.” Remote
Sensing of Environment 106 (1): 28–38. https://doi.org/10.1016/j.rse.2006.07.017.

Isbaex, Crismeire, and Ana Margarida Coelho. 2021. “The potential of Sentinel-2 satellite images for land-cover/
land-use and forest biomass estimation: A review..” Forest Biomass-From Trees to Energy. https://doi: 10.5772/
intechopen.90324.

Jordan, Carl F. 1969. “Derivation of Leaf-Area Index from Quality of Light on the Forest Floor.” Ecology 50 (4): 663–
666. http://dx.doi.org/10.2307/1936256.

Jordan, M. I, and T. M Mitchell. 2015. “Machine learning: Trends, perspectives, and prospects.” Science 349 (6245):
255–260. http://dx.doi.org/10.1126/science.aaa8415.

Lechner, Alex M., Giles M. Foody, and Doreen S. Boyd. 2020. “Applications in Remote Sensing to Forest Ecology and
Management.” One Earth 2 (5): 405–412. https://doi.org/10.1016/j.oneear.2020.05.001.

Le Toan, T., S. Quegan, M.W.J Davidson, H. Balzter, P Paillou, K. Papathanassiou, S Plummer, etal. 2011. “The
BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle.” Remote
Sensing of Environment 115 (11): 2850–2860. http://dx.doi.org/10.1016/j.rse.2011.03.020.

Li, Yingchang, Mingyang Li, Chao Li, and Zhenzhen Liu. 2020. “Forest Aboveground Biomass Estimation Using
Landsat 8 and Sentinel-1A Data with Machine Learning Algorithms.” Scientific Reports 10 (1): 9952. https://
doi.org/10.1038/s41598-020-67024-3.

Li, Xiao, Yu Wang, Sumanta Basu, Karl Kumbier, and Bin Yu. 2019. “A Debiased MDI Feature Importance Measure
for Random Forests.” Advances in Neural Information Processing Systems 32.

Li, Deren, Changwei Wang, Yueming Hu, and Shuguang Liu. 2012. “General Review on Remote Sensing-Based
Biomass Estimation.” Geomatics and Information, Science of Wuhan University 37 (6): 631–635.

Loh, Wei-Yin. 2008. “Classification and Regression Tree Methods.” Encyclopedia of Statistics in Quality and
Reliability 1: 315–323.

Loh, Wei-Yin. 2011. “Classification and regression trees.”WIREs Data Mining and Knowledge Discovery 1 (1): 14–23.
http://dx.doi.org/10.1002/widm.v1.1.

Lu, Dengsheng. 2006. “The Potential and Challenge of Remote Sensing-Based Biomass Estimation.” International
Journal of Remote Sensing 27 (7): 1297–1328. https://doi.org/10.1080/01431160500486732.

Lu, Dengsheng, Qi Chen, Guangxing Wang, Lijuan Liu, Guiying Li, and Emilio Moran. 2016. “A Survey of Remote
Sensing-Based Aboveground Biomass Estimation Methods in Forest Ecosystems.” International Journal of Digital
Earth 9 (1): 63–105. https://doi.org/10.1080/17538947.2014.990526.

Luo, Weixue, Hyun Seok Kim, Xiuhai Zhao, Daun Ryu, Ilbin Jung, Hyunkook Cho, Nancy Harris, Sayon Ghosh,
Chunyu Zhang, and Jingjing Liang. 2020. “New Forest Biomass Carbon Stock Estimates in Northeast Asia
Based on Multisource Data.” Global Change Biology 26 (12): 7045–7066. https://doi.org/10.1111/gcb.15376

Mahdianpari, M., H. Jafarzadeh, J. E. Granger, F. Mohammadimanesh, B. Brisco, B. Salehi, S. Homayouni, and Q.
Weng. 2020. “A Large-Scale Change Monitoring of Wetlands Using Time Series Landsat Imagery on Google
Earth Engine: A Case Study in Newfoundland.” GIScience & Remote Sensing 57 (8): 1102–1124. https://doi.org/
10.1080/15481603.2020.1846948.

McFEETERS, S. K. 1996. “The use of the Normalized Difference Water Index (NDWI) in the delineation of open
water features.” International Journal of Remote Sensing 17 (7): 1425–1432. http://dx.doi.org/10.1080/
01431169608948714.

Menze, Bjoern H, B Michael Kelm, Ralf Masuch, Uwe Himmelreich, Peter Bachert, Wolfgang Petrich, and Fred A
Hamprecht. 2009. “A comparison of random forest and its Gini importance with standard chemometric methods
for the feature selection and classification of spectral data.” BMC Bioinformatics 10 (1): 1157. http://dx.doi.org/10.
1186/1471-2105-10-213.

Mountrakis, Giorgos, Jungho Im, and Caesar Ogole. 2011. “Support Vector Machines in Remote Sensing: A Review.”
ISPRS Journal of Photogrammetry and Remote Sensing 66 (3): 247–259. https://doi.org/10.1016/j.isprsjprs.2010.11.
001.

Olaode, Abass, Golshah Naghdy, and Catherine Todd. 2014. “Unsupervised Classification of Images: A Review.”
International Journal of Image Processing 8 (5): 325–342. https://doi.org/10.1016/j.isprsjprs.2010.11.001.

INTERNATIONAL JOURNAL OF DIGITAL EARTH 4489

https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.3390/rs14010176
https://doi.org/10.3390/rs15041047
https://doi.org/10.1111/j.1365-2486.2005.00955.x
https://doi.org/10.1016/j.rse.2006.07.017
https://doi: 10.5772/intechopen.90324
https://doi: 10.5772/intechopen.90324
http://dx.doi.org/10.2307/1936256
http://dx.doi.org/10.1126/science.aaa8415
https://doi.org/10.1016/j.oneear.2020.05.001
http://dx.doi.org/10.1016/j.rse.2011.03.020
https://doi.org/10.1038/s41598-020-67024-3
https://doi.org/10.1038/s41598-020-67024-3
http://dx.doi.org/10.1002/widm.v1.1
https://doi.org/10.1080/01431160500486732
https://doi.org/10.1080/17538947.2014.990526
https://doi.org/10.1111/gcb.15376
https://doi.org/10.1080/15481603.2020.1846948
https://doi.org/10.1080/15481603.2020.1846948
http://dx.doi.org/10.1080/01431169608948714
http://dx.doi.org/10.1080/01431169608948714
http://dx.doi.org/10.1186/1471-2105-10-213
http://dx.doi.org/10.1186/1471-2105-10-213
https://doi.org/10.1016/j.isprsjprs.2010.11.001
https://doi.org/10.1016/j.isprsjprs.2010.11.001
https://doi.org/10.1016/j.isprsjprs.2010.11.001


Pham, Tien Dat, Nga Nhu Le, Nam Thang Ha, Luong Viet Nguyen, Junshi Xia, Naoto Yokoya, Tu Trong To, Hong
Xuan Trinh, Lap Quoc Kieu, and Wataru Takeuchi. 2020. “Estimating Mangrove Above-Ground Biomass Using
Extreme Gradient Boosting Decision Trees Algorithm with Fused Sentinel-2 and ALOS-2 PALSAR-2 Data in Can
Gio Biosphere Reserve, Vietnam.” Remote Sensing 12: 777. https://doi.org/10.3390/rs12050777.

Rahman, MMahmudur, and Josaphat Tetuko Sri Sumantyo. 2013. “Retrieval of Tropical Forest Biomass Information
from ALOS PALSAR Data.” Geocarto International 28 (5): 382–403. https://doi.org/10.1080/10106049.2012.
710652.

Rodríguez-Veiga, Pedro, Shaun Quegan, Joao Carreiras, Henrik J. Persson, Johan E. S. Fransson, Agata Hoscilo,
Dariusz Ziółkowski, et al. 2019. “Forest Biomass Retrieval Approaches from Earth Observation in Different
Biomes.” International Journal of Applied Earth Observation and Geoinformation 77: 53–68. https://doi.org/10.
1016/j.jag.2018.12.008.

Shaharum, Nur Shafira Nisa, Helmi Zulhaidi Mohd Shafri, Wan Azlina Wan Ab Karim Ghani, Sheila Samsatli,
Mohammed Mustafa Abdulrahman Al-Habshi, and Badronnisa Yusuf. 2020. “Oil Palm Mapping Over
Peninsular Malaysia Using Google Earth Engine and Machine Learning Algorithms.” Remote Sensing
Applications: Society and Environment 17: 100287. https://doi.org/10.1016/j.rsase.2020.100287.

Shao, Zhenfeng, Linjing Zhang, and Lei Wang. 2017. “Stacked Sparse Autoencoder Modeling Using the Synergy of
Airborne LiDAR and Satellite Optical and SAR Data to Map Forest Above-Ground Biomass.” IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing 10 (12): 5569–5582. https://doi.org/10.1109/
JSTARS.2017.2748341.

Sinha, Suman, C Jeganathan, L K Sharma, M S Nathawat, Anup K Das, and Shiv Mohan. 2016. “Developing synergy
regression models with space-borne ALOS PALSAR and Landsat TM sensors for retrieving tropical forest bio-
mass.” Journal of Earth System Science 125 (4): 725–735. http://dx.doi.org/10.1007/s12040-016-0692-z.

Speiser, Jaime Lynn, Michael E Miller, Janet Tooze, and Edward Ip. 2019. “A Comparison of Random Forest Variable
Selection Methods for Classification Prediction Modeling.” Expert Systems with Applications 134: 93–101. https://
doi.org/10.1016/j.eswa.2019.05.028.

Su, Yanjun, Qinghua Guo, Baolin Xue, Tianyu Hu, Otto Alvarez, Shengli Tao, and Jingyun Fang. 2016. “Spatial dis-
tribution of forest aboveground biomass in China: Estimation through combination of spaceborne lidar, optical
imagery, and forest inventory data.” Remote Sensing of Environment 173: 187–199. http://dx.doi.org/10.1016/j.rse.
2015.12.002.

Sun, Guoqing, K. Jon Ranson, Z Guo, Z. Zhang, P Montesano, and D. Kimes. 2011. “Forest biomass mapping from
lidar and radar synergies.” Remote Sensing of Environment 115 (11): 2906–2916. http://dx.doi.org/10.1016/j.rse.
2011.03.021.

Tamiminia, Haifa, Bahram Salehi, Masoud Mahdianpari, Colin M Beier, Lucas Johnson, Daniel B Phoenix, and
Michael Mahoney. 2022. “Decision Tree-Based Machine Learning Models for Above-Ground Biomass
Estimation Using Multi-Source Remote Sensing Data and Object-Based Image Analysis.” Geocarto
International 37 (26): 12763–12791. https://doi.org/10.1080/10106049.2022.2071475.

Tamiminia, Haifa, Bahram Salehi, Masoud Mahdianpari, Lindi Quackenbush, Sarina Adeli, and Brian Brisco. 2020.
“Google Earth Engine for geo-big Data Applications: A Meta-Analysis and Systematic Review.” ISPRS Journal of
Photogrammetry and Remote Sensing 164: 152–170. https://doi.org/10.1016/j.isprsjprs.2020.04.001.

Tian, Xin, Min Yan, Christiaan van der Tol, Zengyuan Li, Zhongbo Su, Erxue Chen, Xin Li, et al. 2017. “Modeling
Forest Above-Ground Biomass Dynamics Using Multi-Source Data and Incorporated Models: A Case Study Over
the Qilian Mountains.” Agricultural and Forest Meteorology 246: 1–14. https://doi.org/10.1016/j.agrformet.2017.
05.026.

Tsui, Olivier W, Nicholas C Coops, Michael AWulder, and Peter LMarshall. 2013. “Integrating Airborne LiDAR and
Space-Borne Radar via Multivariate Kriging to Estimate Above-Ground Biomass.” Remote Sensing of Environment
139: 340–352. https://doi.org/10.1016/j.rse.2013.08.012.

Vafaei, Sasan, Javad Soosani, Kamran Adeli, Hadi Fadaei, Hamed Naghavi, Tien Dat Pham, and Dieu Tien Bui. 2018.
“Improving Accuracy Estimation of Forest Aboveground Biomass Based on Incorporation of ALOS-2 PALSAR-2
and Sentinel-2A Imagery and Machine Learning: A Case Study of the Hyrcanian Forest Area (Iran).” Remote
Sensing 10 (2): 172. https://doi.org/10.3390/rs10020172

Vashum, Kuimi T, and S. Jayakumar. 2012. “Methods to Estimate Above-Ground Biomass and Carbon Stock in
Natural Forests-a Review.” Journal of Ecosystem & Ecography 2 (4): 1–7.

Velasco Pereira, Edward A, María A Varo Martínez, Francisco J Ruiz Gómez, and Rafael M Navarro-Cerrillo. 2023.
“Temporal Changes in Mediterranean Pine Forest Biomass Using Synergy Models of ALOS PALSAR-Sentinel 1-
Landsat 8 Sensors.” Remote Sensing 15 (13): 3430. https://doi.org/10.3390/rs15133430.

Wang, Dezhi, Bo Wan, Jing Liu, Yanjun Su, Qinghua Guo, Penghua Qiu, and Xincai Wu. 2020. “Estimating
Aboveground Biomass of the Mangrove Forests on Northeast Hainan Island in China Using an Upscaling
Method from Field Plots, UAV-LiDAR Data and Sentinel-2 Imagery.” International Journal of Applied Earth
Observation and Geoinformation 85: 101986. https://doi.org/10.1016/j.jag.2019.101986

Wolfowitz, Jacob. 1957. “The Minimum Distance Method.” The Annals of Mathematical Statistics 28 (1): 75–88.
https://doi.org/10.1214/aoms/1177707038

4490 X. YAN ET AL.

https://doi.org/10.3390/rs12050777
https://doi.org/10.1080/10106049.2012.710652
https://doi.org/10.1080/10106049.2012.710652
https://doi.org/10.1016/j.jag.2018.12.008
https://doi.org/10.1016/j.jag.2018.12.008
https://doi.org/10.1016/j.rsase.2020.100287
https://doi.org/10.1109/JSTARS.2017.2748341
https://doi.org/10.1109/JSTARS.2017.2748341
http://dx.doi.org/10.1007/s12040-016-0692-z
https://doi.org/10.1016/j.eswa.2019.05.028
https://doi.org/10.1016/j.eswa.2019.05.028
http://dx.doi.org/10.1016/j.rse.2015.12.002
http://dx.doi.org/10.1016/j.rse.2015.12.002
http://dx.doi.org/10.1016/j.rse.2011.03.021
http://dx.doi.org/10.1016/j.rse.2011.03.021
https://doi.org/10.1080/10106049.2022.2071475
https://doi.org/10.1016/j.isprsjprs.2020.04.001
https://doi.org/10.1016/j.agrformet.2017.05.026
https://doi.org/10.1016/j.agrformet.2017.05.026
https://doi.org/10.1016/j.rse.2013.08.012
https://doi.org/10.3390/rs10020172
https://doi.org/10.3390/rs15133430
https://doi.org/10.1016/j.jag.2019.101986
https://doi.org/10.1214/aoms/1177707038


Wongchai, Warakhom, Thossaporn Onsree, Natthida Sukkam, Anucha Promwungkwa, and Nakorn Tippayawong.
2022. “Machine Learning Models for Estimating Above Ground Biomass of Fast Growing Trees.” Expert Systems
with Applications 199: 117186. https://doi.org/10.1016/j.eswa.2022.117186

Wulder, Michael A, Joanne CWhite, Ross F Nelson, Erik Næsset, Hans Ole Ørka, Nicholas C Coops, Thomas Hilker,
Christopher W Bater, and Terje Gobakken. 2012. “Lidar Sampling for Large-Area Forest Characterization: A
Review.” Remote Sensing of Environment 121: 196–209. https://doi.org/10.1016/j.rse.2012.02.001

Yan, Xingguang, Di Yang Jing Li, Jiwei Li, Tianyue Ma, Yiting Su, Jiahao Shao, and Rui Zhang. 2022. “A Random
Forest Algorithm for Landsat Image Chromatic Aberration Restoration Based on GEE Cloud Platform—A
Case Study of Yucatán Peninsula, Mexico.” Remote Sensing 14 (20): 5154. https://doi.org/10.3390/rs14205154.

Yang, Zelong, Wenwen Li, Qi Chen, ShengWu, Shanjun Liu, and Jianya Gong. 2018. “A Scalable Cyberinfrastructure
and Cloud Computing Platform for Forest Aboveground Biomass Estimation Based on the Google Earth Engine.”
International Journal of Digital Earth 12 (9): 995–1012. https://doi.org/10.1080/17538947.2018.1494761.

Yang, Lu, Shunlin Liang, and Yuzhen Zhang. 2020. “A New Method for Generating a Global Forest Aboveground
Biomass Map from Multiple High-Level Satellite Products and Ancillary Information.” IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing 13: 2587–2597. https://doi.org/10.1109/JSTARS.2020.
2987951.

Yang, Qiuli, Chunyue Niu, Xiaoqiang Liu, Yuhao Feng, Qin Ma, Xuejing Wang, Hao Tang, and Qinghua Guo. 2023.
“Mapping high-resolution forest aboveground biomass of China using multisource remote sensing data.”
GIScience & Remote Sensing 60 (1). http://dx.doi.org/10.1080/15481603.2023.2203303.

Zeng, Yelu, Dalei Hao, Alfredo Huete, Benjamin Dechant, Joe Berry, Jing M Chen, Joanna Joiner, etal. 2022. “Optical
vegetation indices for monitoring terrestrial ecosystems globally.” Nature Reviews Earth & Environment 3 (7):
477–493. http://dx.doi.org/10.1038/s43017-022-00298-5.

Zhang, Xiang, Lexin Li, Hua Zhou, Yeqing Zhou, and Dinggang Shen. 2019. “Tensor Generalized Estimating
Equations for Longitudinal Imaging Analysis.” Statistica Sinica 29 (4): 1977.

Zhang, Yuzhen, Jun Ma, Shunlin Liang, Xisheng Li, and Manyao Li. 2020. “An Evaluation of Eight Machine Learning
Regression Algorithms for Forest Aboveground Biomass Estimation from Multiple Satellite Data Products.”
Remote Sensing 12 (24): 4015. https://doi.org/10.3390/rs12244015.

Zhang, Yuzhen, Jun Ma, Shunlin Liang, Xisheng Li, and Manyao Li. 2020. “An Evaluation of Eight Machine Learning
Regression Algorithms for Forest Aboveground Biomass Estimation from Multiple Satellite Data Products.”
Remote Sensing 12 (24): 4015. http://dx.doi.org/10.3390/rs12244015.

Zhang, Yali, Ni Wang, Yuliang Wang, and Mingshi Li. 2023a. “A new Strategy for Improving the Accuracy of Forest
Aboveground Biomass Estimates in an Alpine Region Based on Multi-Source Remote Sensing.” GIScience &
Remote Sensing 60 (1): 2163574. https://doi.org/10.1080/15481603.2022.2163574.

Zhang, Zheyuan, Jia Wang, Nina Xiong, Boyi Liang, and Zong Wang. 2023b. “Air Pollution Exposure Based on
Nighttime Light Remote Sensing and Multi-Source Geographic Data in Beijing.” Chinese Geographical Science
33 (2): 320–332. https://doi.org/10.1007/s11769-023-1339-z

Zhang, Linjing, Xiaoxue Zhang, Zhenfeng Shao, Wenhao Jiang, and Huimin Gao. 2023c. “Integrating Sentinel-1 and
2 with LiDAR Data to Estimate Aboveground Biomass of Subtropical Forests in Northeast Guangdong, China.”
International Journal of Digital Earth 16 (1): 158–182. https://doi.org/10.1080/17538947.2023.2165180.

Zhao, Yifan, Weiwei Zhu, PanpanWei, Peng Fang, Xiwang Zhang, Nana Yan, Wenjun Liu, Hao Zhao, and Qirui Wu.
2022. “Classification of Zambian grasslands using random forest feature importance selection during the optimal
phenological period.” Ecological Indicators 135: 108529. http://dx.doi.org/10.1016/j.ecolind.2021.108529.

INTERNATIONAL JOURNAL OF DIGITAL EARTH 4491

https://doi.org/10.1016/j.eswa.2022.117186
https://doi.org/10.1016/j.rse.2012.02.001
https://doi.org/10.3390/rs14205154
https://doi.org/10.1080/17538947.2018.1494761
https://doi.org/10.1109/JSTARS.2020.2987951
https://doi.org/10.1109/JSTARS.2020.2987951
http://dx.doi.org/10.1080/15481603.2023.2203303
http://dx.doi.org/10.1038/s43017-022-00298-5
https://doi.org/10.3390/rs12244015
http://dx.doi.org/10.3390/rs12244015
https://doi.org/10.1080/15481603.2022.2163574
https://doi.org/10.1007/s11769-023-1339-z
https://doi.org/10.1080/17538947.2023.2165180
http://dx.doi.org/10.1016/j.ecolind.2021.108529

	Abstract
	1. Introduction
	2. Material and methods
	2.1. Study area
	2.2. Data collection and processing
	2.2.1. Data collection
	2.2.2. Data processing

	2.3. Experimental design
	2.4. Machine learning methods
	2.4.1. Random forest
	2.4.2. Classification and regression tree
	2.4.3. Gradient boosting decision tree
	2.4.4. Minimum distance
	2.4.5. Model parameter

	2.5. Biomass model variable
	2.6. Model evaluation
	2.6.1. Training and validation datasets
	2.6.2. Feature importance analysis
	2.6.3. Feature correlation
	2.6.4. Accuracy assessment


	3. Results
	3.1. Comparison of different methods
	3.2. Single and multi-source variables model evaluation
	3.2.1. Single variable biomass model construction
	3.2.2. Combined biomass model with multi-wavelength variables

	3.3. Importance analysis of importance variables
	3.4. Pearson correlation analysis

	4. Discussion
	4.1. Different forest species models
	4.2. Accuracy comparison of different combinations of variables
	4.3. Biomass prediction model application

	5. Conclusion
	Acknowledgements
	Disclosure statement
	ORCID
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.245 841.846]
>> setpagedevice


