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Abstract: Land use change scenarios, and their projected impacts on biodiversity, are highly relevant
at local scales but not adequately captured by the coarse spatial resolutions of global land use models.
In this study, we used the land use allocation tool of the GLOBIO 4 model to downscale the Land
Use Harmonization v2 (LUH2) data from their original spatial resolution (0.25◦) to 100 m and 10 m
resolutions, using the country of Belgium as an example. Inputs to the tool included: (1) a reference
present-day land cover map at the high spatial resolution, (2) regional land demand projections for
three future scenarios, Sustainability (SSP1xRCP2.6), Regional Rivalry (SSP3xRCP6.0), and Fossil-
fuelled Development (SSP5xRCP8.5), and (3) raster layers representing the suitability of the grid
cells for different land use types. We further investigated the impact of using different reference
land cover maps (CORINE at 100 m resolution and ESA WorldCover at 100 m and 10 m resolutions)
on the downscaling outcomes. Comparison of downscaled current and future land use maps with
the original LUH2 dataset showed that the use of ESA WorldCover as a reference map provides
better agreement (RSR: 0.11–0.24, overall accuracy: 0.94–0.98, Kappa: 0.91–0.97) than CORINE (RSR:
0.28–0.33, overall accuracy: 0.90–0.93, Kappa: 0.90–0.91). Additionally, the validation of the present-
day downscaled maps showed a good agreement with the independent Copernicus Global Land
Service dataset. Our findings suggest that the choice of reference land cover map influences the
degree of agreement between the downscaled and the original coarse-grain land-use maps. Moreover,
the land use maps produced using our downscaling approach can provide valuable insights into the
potential impacts of land use change on biodiversity and can guide local decision-making processes
for sustainable land management and conservation efforts.

Keywords: spatial downscaling; GLOBIO land use allocation model; land use projection;
Socio-economic Pathway (SSP); Representative Concentration Pathways (RCP); scenarios

1. Introduction

Land use and land cover (LULC) change has been the primary cause of the global
loss of terrestrial biodiversity over the past century and is likely to remain a key driver
for future changes [1–3]. Land use change will also interact with the impacts of climate
change on biodiversity and ecosystem services [4]. For example, land use changes may
impair the ability of species to shift their distributions in response to climate change [5].
Land use and climate change also jointly affect ecosystem services like erosion control,
where land use change and management may either counteract or reinforce the increased
risks of landslides due to climate change [6–8]. Similarly, climate change is expected to
disrupt hydrological processes, which might be exacerbated by land use change [9]. These
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studies underscore the significance of proactive land use planning and climate change
mitigation for sustainable natural resource management and for safeguarding biodiversity
and ecosystem services [1].

The Intergovernmental Panel on Climate Change (IPCC) has encouraged the develop-
ment of global scenarios to inform climate mitigation and adaptation strategies [10]. The
Representative Concentration Pathways (RCPs) represent various climate futures based on
alternative greenhouse gas emission trajectories over the 21st century [11]. These emissions
pathways have been integrated into climate projections in the most recent phase of the
Coupled Model Intercomparison Project (CMIP6) [10]. In parallel, the climate research
community has created several Shared Socioeconomic Pathways (SSPs), representing fu-
ture societal development paths with various socioeconomic conditions and associated
land-use projections [12,13]. The SSPs can be paired with RCP-based climate projections to
investigate a variety of possibilities for climate and land use change, and they are being
utilised in a wide variety of impact modeling efforts and intercomparisons [14–16]. The
Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES)
has advised utilising the SSP-RCP framework to simulate the consequences on biodiversity
and ecosystem services since it offers a great opportunity to build bridges between the
climate, biodiversity, and ecosystem services communities [10].

Land Use Harmonisation v2 (LUH2) is a harmonised dataset of future land use
projections created in line with the SSP-RCP framework [17]. It was released for the
preparation of the IPCC Sixth Assessment Report (AR6) and as part of CMIP6 [18]. LUH2
offers a harmonised set of land-use scenarios that smoothly connects historical land-use
reconstructions with eight future projections in the format required for Earth System Models
(ESM) [17]. Various studies have explored biodiversity and ecosystem service changes
using the LUH2 data [2,3,10]. However, the LUH2 dataset has a spatial resolution of 0.25◦,
which is too coarse to meet the needs of local scale research and decision-making [17,18]
and tends to underestimate the spatial heterogeneity of land-use patterns [19]. For instance,
Li et al. [20] showed that land use products with a coarse resolution underestimate the
amount of urban land use change and do not adequately capture the spatial patterns of
urbanisation and its impact on local or regional climate. Similarly, Schaldach et al. [21]
highlight the limitations of the 5 arc-minute resolution global land product in capturing
fine-scale processes such as carbon sequestration. Hence, a set of higher-resolution land
use projections under different future scenarios are needed for localised LULC projections,
which is vital for improving impact assessments to inform management and support
decision-making [18]. For example, high-resolution LULC projections may help to inform
watershed assessments, species distribution modeling, habitat mapping, and ecosystem
services evaluation [22,23].

Several studies have tried to downscale relatively coarse grain land use projections to
a higher spatial resolution. For example, Giuliani et al. [24] focused on the development
of high-resolution and detailed LULC maps for Switzerland. They used a combination of
the Swiss topographic base map and national LULC statistics obtained from aerial photo
interpretation to generate downscaled maps for three time periods. The spatial resolution
increased from 100 m to 25 m, and the number of land use categories increased from 29 to 62.
The method involved spatial weighting and expert system-based correspondence to ensure
accurate mapping. Hoskins et al. [19] implemented a statistical model for downscaling the
LUH2 data to provide global estimates at 30 arc-seconds (1 km) resolution for five land
use classes. To our knowledge, Schipper et al. [3] achieved the highest spatial resolution
for global land use projections by downscaling the LUH2 data to a 10 arc-seconds (300 m)
resolution using the Global biodiversity model for policy support (GLOBIO). However, their
study did not explore how local and national land use responds to global mitigation policies,
and their spatial resolution was not sufficiently fine for supporting local environmental
adaptation and decision-making.

In this study, we aimed to address these limitations by exploring the potential of
GLOBIO’s land use allocation model to downscale land use information to finer spatial
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resolutions of 100 m and 10 m, using the country of Belgium as a case study. Our specific
objective was to analyze how the choice of reference land cover map, which is one of
the key inputs for GLOBIO’s land allocation model, affects the result of the downscaling
process. Specifically, we compare three reference maps: the 10 m resolution European Space
Agency (ESA) WorldCover map, the WorldCover map resampled to a 100 m resolution,
and the pan-European CORINE land cover map at a 100 m resolution. We then use these
background maps as input to the land allocation module for downscaling coarse-grain
land use data for both the present and three future development pathways. Following
the biodiversity model intercomparison protocol [10], we used three different pairings of
SSPs and RCPs to ensure the combinations encompass a broad range of future land use
and climate change scenarios. Specifically, in the Sustainability scenario, SSP1 (moderate
land use pressure) was linked with the RCP2.6 (low level of climate change) pathway. In
the Regional Rivalry scenario, SSP3 (high land use pressure) was linked with the RCP6.0
(moderate level of climate change) pathway. Lastly, in the Fossil-fueled Development
scenario, SSP5 (moderate land use pressure) was connected to the RCP8.5 (high level of
climate change) pathway. The SSP3xRCP6.0 and SSP5xRCP8.5 combinations represent
scenarios with minor or no climate change mitigation policies. Our study provides novel
methodological insights relevant to downscaling land-use projections as well as an example
of deriving land-use projections at spatial resolutions of greater ecological relevance than
has been possible before.

2. Materials and Methods
2.1. Case Study Area

Our case study area is the country of Belgium, which is a small and highly urbanised
country in the densely populated region of Western Europe with an average population
density of circa 370 inhabitants per km2, as per the 2018 data [25,26]. Belgium was chosen
as a case study because of its diversified land use patterns, environmental variability, and
good data availability [25], making it an ideal country for downscaling land use data and
advancing our understanding of land use dynamics at the local scale. Belgium, despite its
small size, contains a lot of geographical variation. The Baltic Plain is to the north, while
the old Hercynian massifs of Central Europe lie to the south. Apart from the Ardennes
region in the southwest, the climate is warm and moist, allowing for extensive grass growth.
Arable farming is most prevalent in the central part of the country. Because most of the
country’s southern region (particularly the Hautes–Ardennes) has a harsh climate and soils
that prevent the development of arable crops, grasslands and forests are the major land
uses [2,27,28].

2.2. LUH2 Data

The Land Use Harmonisation dataset version 2 (LUH2) is a global time series of past,
present, and future land use at 0.25◦, spanning 850–2300 [17]. It includes estimates of
historical land-use change (850–2015) and future projections (2015–2300) that were gener-
ated by integrating and harmonising land-use history with future projections from various
integrative assessment models (IAMs) [10,28–30]. The dataset describes the proportional
cover in each 0.25◦ grid cell of twelve land-use categories: forested primary land (primf),
non-forested primary land (primn), potentially forested secondary land (secdf), potentially
non-forested secondary land (secdn), managed pasture (pastr), rangeland (range), urban
land (urban), c3 annual crops (c3ann), c3 perennial crops (c3per), c4 annual crops (c4ann),
c4 perennial crops (c4per), c3 nitrogen-fixing crops (c3nfx). LUH2 has a greater spatial
resolution than the first-generation LUH1 (0.25◦ vs. 0.50◦), and more detailed land-use
transitions (12 vs. 5 potential land-use classes) [17]. With annual time steps, LUH2 supports
over 100 possible transitions per grid cell per year (e.g., crop rotations, shifting cultivation,
agricultural changes, wood harvest) and numerous agricultural management layers (e.g.,
irrigation, synthetic nitrogen fertilizer, biofuel crops) [10,17]. Primary and secondary nat-
ural vegetation are divided into forest and non-forest sub-types, pasture is divided into
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managed pasture and rangeland, and cropland is divided into multiple crop functional
types (C3 annual, C3 perennial, C4 annual, C4 perennial, and N fixing crops) [10]. We
selected this dataset for two reasons: (1) it is the most complete data in terms of time-series
and scenarios of climate change [17] and offers a new harmonised set of land-use scenarios
that smoothly connects historical land-use reconstructions with eight future projections,
and (2) it has been used widely by IPBES in support of its global and regional assessments
of biodiversity and ecosystem service change [31].

2.3. GLOBIO Land-Use Downscaling Tool

We downscaled the LUH2 data with the land-use downscaling module included in the
GLOBIO modelling framework [3]. The GLOBIO model is hosted and maintained by PBL
Netherlands Environmental Assessment Agency and is intended to inform and support
policymakers by quantifying global human impacts on biodiversity and ecosystems [3,32].
The current version of the GLOBIO model, version 4, includes a land-use allocation module
capable of downscaling (or spatially allocating) low-resolution land use data (regional
totals or ‘claims’) to a high-resolution discrete land use map. The allocation algorithm
can use user-defined land use classes and their corresponding regional totals, or “claims”,
represented in surface area per region per land-use class. The regional totals of each land
use class are spatially allocated based on an overall ‘suitability layer’ for that class (Figure 1).
Claims can be obtained from national or regional statistics or from IAMs that estimate land
demand based on socioeconomic development [3] and must be expressed as area (km2).
The allocation algorithm prioritizes candidate grid cells according to their suitability values
and allocates the claims of each land use type in each region, starting from the cells with the
highest suitability, until the total claim is allocated. During allocation, a predefined order
is followed, where urban land takes precedence over cropland [33] and cropland, in turn,
takes precedence over pasture [34]. If multiple cells have the same suitability, the allocation
is conducted randomly. Forestry and pasture are allocated thereafter, such that forestry
is allocated within remaining forest areas, and grazing typically takes place in areas not
productive enough for crops [34]. The cells that are not allocated to any land use class are
assigned the land cover type retrieved from a so-called background map [3]. If the land
claim allocated in a given scenario–year is smaller than the claim allocated in the preceding
scenario–year, the least suitable cells are abandoned and assigned to secondary vegetation.
As inputs, the downscaling module requires a layer with the boundaries of the region (s),
a reference land cover map at the desired spatial resolution (10 m and 100 m in our case),
map layers quantifying the suitability of each grid cell for each land-use type and a map of
non-allocatable areas, each also at the desired resolution, and the areas (‘claims’) of each
land use type (Figure 1).
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based on suitability layers for each land use type, thereby accounting for non-allocatable areas (e.g.,
water). The resulting land use map is combined with a reference land cover map to result in a
downscaled LULC product.

2.4. Input Data Preparation
2.4.1. Reference Land Cover Maps

For the downscaling of the LUH2 dataset, we employed three different background
maps to guide the spatial downscaling process, which enabled us to compare the impact
of the source and spatial resolution of the reference map on the result. At the highest
resolution (10 m), we used the European Space Agency (ESA) WorldCover map for the
year 2020 [35]. This product provides a global land cover map at 10 m resolution based
on Sentinel-1 and Sentinel-2 satellite data. The classification system of ESA WorldCover
is different from LUH2, with 12 land use classes in the LUH2 datasets and 11 land use
classes in ESA WorldCover (Table 1 and Figure 2). At a 100 m resolution, we used the
Coordination of Information on the Environment (CORINE) Land Cover 2018 data as the
reference map. The classification system of CORINE is more detailed compared to LUH2,
with 12 land use classes in the LUH2 datasets and 44 land use classes in CORINE (Table 1
and Figure 3). We obtained a third reference map by upscaling the ESA WorldCover map
to 100 m, which is the same resolution as the CORINE land cover map. In our upscaling
process, we employed the majority rule approach. This means that we assigned to each
larger cell the value of the most prevalent LULC class from the smaller cells within it, thus
capturing the dominant LULC class.

Table 1. Overview of LULC classes in LUH2, CORINE, and ESA WorldCover and their reclassification
in the downscaled land-use maps.

LUH2 CORINE ESA WorldCover Downscaled Map

Urban land

Continuous urban fabric
Discontinuous urban fabric

Industrial or commercial units
Road and rail networks and associated

land
Port areas
Airports

Mineral extraction sites
Dump site

Construction sites
Green urban areas

Sport and leisure facilities

Built-up Urban

C3 annual crop
C3 perennial crop

C4 annual crop
C4 perennial crop

C3 nitrogen-fixing crop
Non-irrigated arable land

Fruit trees and berry plantations
Complex cultivation patterns
Land principally occupied by

agriculture, with significant areas of
natural vegetation

Non-irrigated arable land
Fruit trees and berry plantations

Complex cultivation patterns
Land principally occupied by

agriculture, with significant areas of
natural vegetation

Cropland Cropland

Managed pasture
Rangeland Pasture NA Pasture
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Table 1. Cont.

LUH2 CORINE ESA WorldCover Downscaled Map

Forested primary land
Potentially forested secondary land

Non-forested primary land
Potentially non-forested secondary

land

Broad-leaved forest
Coniferous forest

Mixed forest
Moors and heathland

Transitional woodland-shrub
Natural grasslands

Beaches, dunes, sands

Tree cover
Shrubland
Grassland

Bare/sparse
vegetation

Natural

NA

Glaciers and perpetual snow
Inland marshes

Peat bogs
Salt marshes

Intertidal flats
Water courses
Water bodies

Estuaries
Sea and ocean

Open water
Herbaceous wetland Not allocatable
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2.4.2. Suitability Layers

For each of the three reference maps, we created suitability layers for four major
land-use types (urban area, cropland, pasture, and forestry; see Figure 4), following the
approach described by Schipper et al. [3]. Because spatial clustering and edge expansion
have been identified as significant factors in the growth of urban areas and croplands, we
retrieved the suitability layers for urban areas and croplands based on their proximity
to existing urban areas and croplands [36–38]. To that end, we first used the reclassified
reference land cover maps to calculate the Euclidean distance to existing urban areas or
croplands, assigned the highest suitability to existing cropland or urban area, and inverted
and normalised the distances to existing urban areas or cropland. We also set the suitability
of non-urban and non-cropland cells inside protected areas to zero based on the assumption
that urban and cropland areas within protected areas would not expand beyond what they
were in 2020 [3]. The World Database of Protected Areas (WDPA) was used to identify the
protected areas [3].

We created a pasture suitability layer based on the density of ruminant livestock
species (goats, sheep, and cattle) from the Food and Agriculture Organization (FAO)’s
gridded livestock of the world dataset (GLW; head per km2, 30 arc-seconds) [39]. Modelled
livestock densities are provided by the GLW, which are based on detailed subnational
livestock statistics and a set of predictor variables linked to climate, vegetation, topography,
and demography. To account for variances in body mass among livestock species, we
converted their densities to tropical livestock units [40] summed the units per grid and
normalised to achieve suitability values ranging from 0 to 1.

We assumed that access to wood is mostly determined by elevation, proximity to
infrastructure, and the presence of protected areas [3]. We calculated the Euclidean dis-
tance to the nearest road using road data from the Global Roads Inventory Project (GRIP)
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database [41]. To obtain suitable values between 0 and 1, we inverted and normalised
the distances and multiplied the resulting values with inverted and normalised elevation
values (retrieved from the Copernicus Land Monitoring Service). We also assumed that
no forestry activities would take place in protected areas. Therefore, we set the suitability
values for forestry inside protected areas to zero. Finally, we clipped the forestry suitability
layer to the land cover with trees and set the suitability of other cells to zero [3].
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2.4.3. Claims

We obtained claims of urban area, cropland, pasture, and forestry as the country-level
total areas of each type for each scenario-year. For the present-day situation (baseline
year 2015), we obtained urban area and cropland claims from the respective land cover
background maps (i.e., ESA WorldCover 2020, its 100 m resolution upscaled version,
and the 100 m CORINE map). Similarly, for downscaling pasture based on the CORINE
reference map we obtained present-day pasture claims from the same map. For the land
use classes that cannot be distinguished from natural land cover (pasture and forestry in
ESA WorldCover and forestry in CORINE), we obtained claims using FAO’s country-level
statistics for 2018 (for CORINE) or 2020 (for WorldCover). We defined the pasture claim as
the sum of all country-level permanent and temporary meadows and the forestry claim as
the sum of all country-level planted trees [3]. To estimate the claims for the future land-use
maps, we used the original LUH2 dataset to calculate the change in country-level total areas
of the four land-use types (urban, farmland, pasture, and forestry) between 2015 and 2050,
for each of the three SSP scenarios (Table 2). We chose 2015 as the present-day estimate
because the historical land-use forcing dataset from LUH2 is until 2015. We calculated
cropland claims as the sum of the areas of the five cropland types included in LUH2 (c3ann
+ c3per + c4ann + c4per + c3nfx), forestry claims as the sum of wood harvest from forested
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cells and non-forested cells with primary and secondary vegetation (primf harv + primn
harv + secdf harv + secdn harv), and pasture claims as the sum of pasture and rangeland
areas (Table 2). For each future scenario year, we calculated the difference in the area of
each land use type relative to 2015 (LUH2 historical dataset) and added the difference to
the present-day claims (as mentioned above), with the result being the overall claim for
2050 [3]. Thus, rather than defining the claims themselves, we used the LUH2 data to define
the change in claims. Our rationale was that the integrated assessment models underlying
LUH2 are good at representing temporal trends in land use. However, remote sensing
data and national statistics, included in our present-day land-use map, better represent the
current situation [3].

Table 2. Total area (km2) of different land use types per scenario and changes (%) in the area relative
to 2015 based on the LUH2 dataset.

Land Use Type
2015 Sustainability Scenario Regional Rivalry Scenario Fossil-Fuelled

Development Scenario

Area (km2) Area (km2) Change (%) Area (km2) Change (%) Area (km2) Change (%)

Urban 3134 3635 16 3346 6 4011 28

Cropland 8601 7227 −16 10,866 26 8813 2

Pasture 5886 3137 −47 4781 −18 5886 0

Forestry 4609 5431 18 3980 −6 4375 −5

2.4.4. Non-Allocatable Areas

Areas that are expected to undergo no land use expansion are referred to as non-
allocatable areas (Table 1). A map with non-allocatable areas was constructed by dividing
the reference land cover maps into two classes: non-allocatable areas (wetlands and water;
Table 1) and allocatable areas (everything else).

2.5. Evaluation and Validation of the Downscaled Maps

After downscaling, we reclassified the resulting maps in order to facilitate comparison
with the original LUH2 data (see Table 1). The downscaled and reclassified maps include the
four major anthropogenic land-use classes and secondary vegetation. The class “secondary
vegetation” originates when anthropogenic classes that existed in 2015 are abandoned in
2050 due to a decline in demand. Further, we reclassified all the natural land-cover classes,
such as natural forest and natural grassland, into a single category labeled “natural”.

We conducted two accuracy assessments of our downscaled and reclassified land-use
maps. First, we determined how well our downscaled product matched the original LUH2
data. This evaluation covered both current and future scenarios. Next, to validate the
accuracy of the present-day downscaled maps, we assessed their degree of agreement with
the independent Copernicus Global Land Service dataset for the year 2015, which has a
spatial resolution of 100 m [42]. This validation was restricted to the urban and cropping
layers because the Copernicus Global Land Service dataset does not include forestry and
pasture as distinct land classes. To evaluate the agreement in the spatial patterns, we used
the overall accuracy and the Kappa coefficient, which are commonly used measures for
assessing the accuracy of a LULC map [43–47]. The overall accuracy (Ô) calculates the
proportion of correctly classified cells relative to the total number of pixels (Equation (1)):

Ô =
∑r

i=1 nij

N
(1)

where:

• nij represents the number of correctly classified pixels for class i
• N is the total number of pixels
• r = the number of the classes
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The Kappa coefficient (K) is computed based on the error matrix and quantifies the
level of agreement between two categorical datasets [48], as (Equation (2)):

K =
N∑r

i=1 Xii − ∑n
i=1 (Xi+·X+i

)
N2 − ∑n

i=1 (Xi+·X+i

) (2)

where:

• Xii is the number of pixels that are correctly classified
• Xi+ represents the number of pixels in a downscaled map
• X+i represents the number of pixels in a reference data
• N is the total number of pixels
• r = the number of classes
• i = the i th class

A K value of 1 represents a perfect agreement, while a value of 0 represents no agreement.
Further, we calculated the Root Mean Squared Error—observations standard deviation

ratio (RSR) between the total areas of the land use types in the downscaled maps and the
original LUH2 data (for cropland, urban, forestry, and pasture) and the Copernicus Global
Land Service data (for urban and cropland). The RSR is a well-established error index [49]
and is calculated as (Equation (3)):

RSR =
RMSE

STDEVOBS
=

[√
∑r

i=1

(
Yobs

i − Ypred
i

)2
]

[√
∑r

i=1

(
Yobs

i − Ymean
i

)2
] (3)

where:

• r: Total number of observations
• Yobs

i : Actual observed value for the i-th observation

• Ypred
i : Value predicted by the model for the i-th observation

• Ymean
i : Calculated mean of the observed values

• STDEVOBS: standard deviation of observed data

This formula calculates the RSR by first computing the Root Mean Squared Error
(RMSE), which measures the average magnitude of differences between predicted (Ypred

i )
and observed (Yobs

i ) values. Then, it divides the RMSE by the standard deviation of
observed values (using squared differences from the mean) to normalize the model’s
predictive accuracy based on the inherent variability in the observed data. Thus, RSR offers
a standardised measure to assess the alignment of model simulations with observed data,
considering the variability of the observed data. The RSR value ranges from 0, indicating
perfect model simulation with zero RMSE or residual variation, to a large positive number.
Generally, a lower RSR indicates better model performance [49].

3. Results
3.1. Downscaled Land-Use Maps

The downscaled land-use maps at 10 m and 100 m show roughly similar patterns in
major LULC types (Figures 5–7). Urban, agriculture, pasture, and forestry are the four main
anthropogenic land-use categories and are dominant in the west and central parts of the
country. Natural land covers are areas not occupied by these anthropogenic categories and
occur mainly in the south-east. Secondary vegetation occurs only in the maps for 2050, also
mainly in the south-east.
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3.2. Comparison of the Downscaled Maps and the Original LUH2 Data

When using the original and upscaled ESA Land Cover map as a reference, we found
a stronger alignment between our downscaled land use maps and the original LUH2 data
than when using the CORINE land cover map (Table 3). Nevertheless, the value of RSR was
well below 0.50 in all cases (Table 3), indicating a very good level of agreement between
our downscaled maps and the original LUH2 data.

Table 3. The RMSE-Observations Standard Deviation Ratio (RSR), Overall Accuracy (Ô) and Kappa
coefficient (K) values indicate the degree of agreement between the downscaled land use data and
the original LUH2 dataset, at both 10 m and 100 m resolutions across various SSP-RCP scenarios.

Scenarios RSR (RMSE-Observations Standard
Deviation Ratio) Overall Accuracy (Ô) Kappa Coefficient (K)

CORINE
Land Cover

(100 m)

ESA World
Cover

(100 m)

ESA World
Cover (10 m)

CORINE
Land Cover

(100 m)

ESA World
Cover

(100 m)

ESA World
Cover
(10 m)

CORINE
Land Cover

(100 m)

ESA World
Cover

(100 m)

ESA World
Cover
(10 m)

Present day 0.31 0.20 0.14 0.93 0.95 0.98 0. 91 0.93 0.97

Sustainability
scenario 0.33 0.24 0.17 0.92 0.94 0.97 0.90 0.91 0.96

Regional rivalry
scenario 0.28 0.17 0.11 0.92 0.94 0.97 0.90 0.92 0.96

Fossil-fuelled
development

scenario
0.33 0.21 0.15 0.93 0.96 0.98 0.91 0.93 0.97
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Our findings clearly demonstrate that as RSR values increase, there is a noticeable rise
in area mismatches (Tables 2–6). For instance, when comparing the total area of different
land use classes in our 10-meter downscaled land use maps with the lowest RSR, we
observe a close match with the original LUH2 dataset (Tables 2–4). Conversely, using the
upscaled ESA WorldCover reference map led to higher RSR values, indicating smaller
urban and cropland areas compared to the LUH2 data (Tables 2, 3 and 5). This suggests
that small patches of these land use classes may be lost in the majority-based upscaling
process. Additionally, the downscaled land use map based on CORINE exhibited the
highest RSR, revealing differences in the total area of land use classes compared to the
LUH2 dataset. Specifically, the pasture area is lower in the CORINE-derived map compared
to the original LUH2 data (Tables 2 and 6). This discrepancy can be attributed to the direct
extraction of pasture claims from the CORINE land-cover 100-m map for 2018, resulting in
a lower estimated pasture area compared to using country-level statistics from FAO. These
variations in area estimations are also evident in the reduced overall accuracy and K value
for the downscaled maps, as indicated in Table 3.

Table 4. Total area (km2) of different land use types per scenario and changes (%) in the area relative
to the present day at 10 m resolution based on ESA WorldCover 2020 as a reference map.

Land Use
Type

Present Day Sustainability Scenario
(2050)

Regional Rivalry Scenario
(2050)

Fossil-Fuelled Development
Scenario (2050)

Area (km2) Area (km2) Change (%) Area (km2) Change (%) Area (km2) Change (%)

Urban 2722 3223 18 2934 8 3599 32

Cropland 8843 7469 −15 11,108 25 9055 2

Pasture 6203 3454 −44 5098 −18 6203 0

Forestry 4560 5382 18 3931 −14 4326 −5

Table 5. Total area (km2) of different land use types per scenario and changes (%) in the area relative
to the present day at 100 m resolution based on ESA WorldCover 2020 as a reference map.

Land Use
Type

Present Day Sustainability Scenario
(2050)

Regional Rivalry Scenario
(2050)

Fossil-Fuelled Development
Scenario (2050)

Area (km2) Area (km2) Change (%) Area (km2) Change (%) Area (km2) Change (%)

Urban 1966 2467 25 2178 11 2843 44

Cropland 5781 4407 −23 8046 39 5993 4

Pasture 5602 2853 −49 4497 −20 5602 0

Forestry 4601 5423 19 3972 −13 4216 −7

Table 6. Total area (km2) of different land use types per scenario and changes (%) in the area relative
to the present day at 100 m resolution based on CORINE 2018 as a reference map.

Land Use
Type

Present Day Sustainability Scenario Regional Rivalry Scenario Fossil-Fuelled Development
Scenario

Area (km2) Area (km2) Change (%) Area (km2) Change (%) Area (km2) Change (%)

Urban 4355 4856 11 4567 5 5232 20

Cropland 13,397 12,023 −10 15,662 17 13,609 2

Pasture 4873 2124 −56 3768 −23 4873 0

Forestry 4549 5371 18 3929 −13 4315 −5
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3.3. Independent Validation of Present-Day Downscaled Maps

The downscaled land use map based on the 10 m ESA World Cover reference map
resulted in the highest level of agreement with the Copernicus Global Land Service dataset.
The agreement was lowest when employing the CORINE-derived land cover dataset
(Table 7). Nevertheless, the high overall accuracy (≥0.90) and kappa values (≥0.74), and
the low RSR (≤0.60) indicate a good to excellent level of correspondence [49] between the
downscaled and observed land use patterns.

Table 7. Comparison of the downscaled land use maps (present-day) and the Copernicus Global
Land Service product (based on urban areas and cropland only).

Evaluation Measure Downscaled Product Based on

ESA WorldCover
(10 m)

Upscaled ESA
WorldCover (100 m)

CORINE Land
Cover (100 m)

Overall accuracy 0.95 0.92 0.90

Kappa statistic 0.87 0.81 0.74

RSR 0.34 0.46 0.60

4. Discussion
4.1. Land Use Downscaling

Numerous studies have emphasised the importance of downscaling land use infor-
mation to spatial resolutions that better capture local-scale ecological processes and land
management practices, which have significant impacts on the distribution and condition
of species and biological communities in the landscape [3,18–20,50]. To address this need,
our study has applied the GLOBIO 4 land-use allocation model to downscale coarse-grain
land-use projections from the LUH2 database to 100 m and 10 m resolutions, using the
country of Belgium as a case study. The LUH2 dataset, with its coarse geographical resolu-
tion of 0.25◦, is known to underestimate the spatial heterogeneity of land-use patterns at
local and regional scales. Several studies have highlighted this limitation [3,18,20,21]. In
our study, we have addressed this issue by employing a downscaling approach that incor-
porates fine-grained information at 100 m and 10 m resolutions. This improved resolution
is expected to provide more accurate and detailed land-use information, which in turn
can support local decision-making through more detailed environmental assessments. For
example, high-resolution discrete land use maps can be used to assess the consequences
of land use and land use change for habitat fragmentation, which is an important threat
to wildlife [22]. This information, in turn, can aid in the design of habitat fragmentation
mitigation measures. Although the GLOBIO land allocation model is not the only approach
available for downscaling land use data, it stands out because of its high flexibility. It can
be easily applied to any country or region, based on a variety of input data sources for land
use claims, while for example, the land use downscaling approach by Hoskins et al. [19] is
tailored specifically to the LUH2 data. In addition, the GLOBIO routine requires relatively
limited computing power, while for example, the downscaling approach that Giuliani
et al. [24] applied to Switzerland (a country similar in size to Belgium) required parallel
computing on a high-performance computing cluster.

4.2. Choice of Reference Land Cover Map

It is noteworthy that the downscaled maps at a 10 m resolution showed a higher re-
semblance to the original LUH2 data than the 100 m resolution downscaled maps (Table 3).
This reflects that the areas and locations of the anthropogenic LULC classes (urban, crop-
land, forestry, and pasture) are relatively similar between the 10 m downscaled LULC
map and the LUH2 data (compare Tables 2 and 4). When upscaling the original 10 m
WorldCover map to a 100 m resolution, information is lost, because only the dominant
LULC type within the larger cell is retained (i.e., small patches of different LULC within
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the larger 100 m cell are lost). As a result, there is a loss of urban, and agricultural areas
compared to the original 10 m resolution map (compare Tables 4 and 5), and the degree of
agreement with the LUH2 data drops. Similarly, the lower level of agreement between the
downscaled map based on CORINE as compared to the WorldCover map indicates that
the four anthropogenic LULC classes cover a smaller area in CORINE compared to LUH2
(as indicated in Tables 2 and 6), resulting in a reduced level of agreement between the
downscaled map and the original LUH2 data (Table 3). Our results thus indicate that the
selection of an appropriate reference land cover map influences the spatial downscaling of
coarse-grain scenario-based land use data. This result is in line with the findings reported
previously. Koubodana et al. [47] modeled land use change in Togo’s Mono River Basin
based on reference LULC maps derived from different sources, including maps from CILSS
(2 km), ESA (300 m), and Globeland (30 m). Their findings highlight that the choice of
reference land cover data has a large influence on the accuracy of the land use modeling.

4.3. Scenario Projections

To show how the downscaling approach can be used to obtain fine-grain future LULC
projections, we used three linked SSP-RCP scenarios for the year 2050. We note that the
LUH2 dataset is based on the outputs of global integrated assessment models, which
typically distinguish relatively large socio-economic regions that encompass multiple
countries. Hence, the land claims that we derived from LUH2 are not necessarily adequate
for Belgium. Nevertheless, the downscaled maps can be used as a first estimate of future
land-use patterns based on potential global development and climate change pathways.

The projections show a decrease in pasture areas and an expansion of urban areas
across all scenarios. This reflects the ongoing and expected future urbanisation world-
wide [51,52], which may go at the expense of agricultural and unoccupied land. This,
in turn, may have implications for food security, biodiversity, and carbon storage, and
emphasizes the need for sustainable urban planning and land management practices to
mitigate these environmental consequences [51,52].

In the Sustainability scenario, the decrease in cropland is driven by multiple factors
including reduced demand for agricultural products, resource-efficient technologies, and
reforestation efforts [3]. Conversely, in the Regional Rivalry scenario, high population
growth and limited agricultural productivity led to an increase in cropland [12,53], as well
as a reduction in pasture areas [54]. These dynamics highlight the importance of sustainable
land-use practices and the need to balance agricultural needs with other land uses. In
the Fossil-fuelled Development scenario, there is limited change in cropland and pasture
areas and considerable urban expansion. This urbanisation poses risks to natural habitats
and emphasizes the need for sustainable urban planning. The scenario’s rapid economic
development has also resulted in ecological damage and forest conversion, highlighting
the challenges of urban sprawl [18,55,56].

4.4. Implications and Outlook

Based on our study, we recognize the need for further improvements in some areas.
We used relatively simple suitability maps largely based on expert judgment. For future
work, we recommend establishing more refined suitability maps that better capture the
dependency of suitability on local environmental conditions [57]. We adopted land-use
projections from global integrated assessment models, which are not necessarily representa-
tive of a single (small) country. More representative and informative scenarios for specific
countries might be obtained based on country-specific projections of land demand. Such
scenarios may also accommodate stakeholder consultations to capture a broader range of
perspectives. Lastly, although we validated our present-day downscaled maps with the
Copernicus Global Land Service dataset, we recognise that further validation with field
observations might provide added value. Despite these limitations, our study showed
that the GLOBIO land allocation methodology can be easily applied to a specific country,
allowing for the analysis of land use patterns with appropriate local context adaptation.
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The resulting fine-grained land-use maps provide an excellent starting point for evaluating
the impacts of potential future land use change on biodiversity and ecosystem services.
The approach adopted in this study, involving the downscaling of land use and land cover
scenarios to finer resolutions, yields outcomes that provide decision-makers with insights
that help to inform biodiversity conservation and sustainable land management. In addi-
tion, these downscaled maps at high spatial resolution also promote public and stakeholder
engagement in evaluating and designing development pathways. Ultimately, this supports
and informs local decision-making processes that strive to balance ecological preservation
and developmental needs.

5. Conclusions

In this study, we applied the GLOBIO land allocation routine to downscale fractional
land use data at a resolution of 0.25◦ (approximately 25 km) to discrete land use maps at 10
and 100 m resolution based on three different reference land cover maps (ESA WorldCover
at 10 m resolution, ESA WorldCover upscaled to 100 m resolution, and CORINE land
cover at 100 m resolution). Our results indicate that the ESA WorldCover map at 10 m
resolution results in the highest degree of agreement with the original LUH2 dataset,
followed by the upscaled ESA WorldCover map and the CORINE land cover map. The
upscaling of the ESA World Cover map resulted in a loss of urban and cropland area,
hence a decrease in accuracy compared to the original ESA WorldCover map. Therefore,
while upscaling to 100 m resolution increases computational efficiency, it may come at the
cost of reduced accuracy. Overall, the selection of an accurate and reliable reference land
cover map is crucial for ensuring the quality and accuracy of downscaled land use data.
Our methodology has broader applicability, enabling the downscaling of coarse resolution
LUH2 data for various SSP-RCP scenarios, as well as different spatial scales. Downscaling
LUH2 data to a fine resolution has the potential for improving land use planning as it
provides detailed information for identifying the areas of transformation and potential
environmental impacts. Future work should include additional scenarios and incorporate
stakeholder input to enhance the understanding of land use dynamics.
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