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1.  INTRODUCTION 

One of the biggest challenges in marine ecology 
is  understanding the mechanisms driving the re -
sponses of biological systems to environmental fluc-
tuations (Thompson et al. 2013, Kroeker et al. 2020, 
Gerhard et al. 2023). Environmental fluctuations oc -
cur at several time scales (Chave 2013) and extreme 
fluctuations have increased over the past decades. 
For instance, marine and atmospheric heatwaves of 
periods ranging from days to months have become 

more frequent, more extreme, and less coherent in 
the past 30 yr (Russo et al. 2015, Hobday et al. 2016, 
Benedetti-Cecchi 2021). Ecologists are aware that 
fluctuating environments can drive biological systems 
through mechanisms that differ from those present in 
constant environments (Levins 1968, Sæther & Engen 
2015, Denny 2019, Bernhardt et al. 2020). However, 
our mechanistic understanding of responses to envi-
ronmental fluctuations is limited because most ex -
periments use static designs, i.e. manipulating an 
environmental variable but keeping each treatment 
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ABSTRACT: A main concern in marine ecology is understanding the mechanisms driving the 
responses of biological systems to environmental fluctuations. A major issue is that each biological 
system (e.g. organism, ecosystem) experiences fluctuations according to its own intrinsic charac-
teristics. For instance, how an organism experiences a thermal fluctuation, i.e. as a long marine 
heatwave or as a mild pulse, depends on its thermal tolerance and developmental time, which can 
vary as the fluctuation is experienced. Here, a geometric approach is explored, considering the 
biological perspective. Environmental fluctuations are represented as points in a ‘space of fluctu-
ations’. The biological perspective is then defined as a coordinate frame within that space. Coor-
dinates are given by components (e.g. amplitude and time scale) characterising each environmen-
tal fluctuation, which are then transformed into biological scales, using biological traits (tolerance 
and biological time). Using simulations of organisms growing under thermal fluctuations with dif-
ferent characteristics, the present study shows how this approach (1) enables the integration of 
physiology and phenology to better interpret biological responses to fluctuating environments; (2) 
improves our understanding of the role of adaptive plasticity as a rescue effect; and (3) facilitates 
our understanding of the effects of thermal fluctuations on additional organismal traits (e.g. body 
mass). Wider applications in the context of species persistence, coexistence, biodiversity and 
ecosystem function in scenarios of extreme fluctuations are also discussed.  
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level constant over time. Results from experiments 
with static designs do not always produce accurate 
predictions of responses to fluctuating conditions. 
For instance, adaptive plasticity evolves strictly in 
fluctuating environments (Scheiner 2016); at the 
organismal level, adaptive plasticity may be triggered 
by a fluctuation after some environmental threshold 
is surpassed but not necessarily if the average con -
dition of the fluctuation is experienced. Above a 
threshold, important (or irreversible) damage may 
lead to carry-over effects (Minuti et al. 2022). At the 
population and community levels, responses to mean 
conditions differ from those to extremes (Lynch et al. 
2014). At the community level, fluctuations drive his-
torical or legacy effects associated with the time scale 
of recovery time between fluctuations (Dal Bello et al. 
2017). Storage effects and relative non-linearity are 
mechanisms sustaining species coexistence that oper-
ate strictly in fluctuating environments (Chesson 2018). 
Hence, in many cases, we cannot use the information 
provided by most static experiments even if they rep-
resent the average condition of the fluctuation. 

Experiments are needed that manipulate the com-
ponents characterising the fluctuations. Component 
fluctuations may be defined as the amplitude, aver-
age, maximum, minimum, time scale, and timing of 
a fluctuation (Jentsch et al. 2007, Gunderson et al. 
2016, Donelson et al. 2018, Giménez et al. 2022). 
In the case of noise, such components may be de -
fined as the intensity and the dominating frequency 
(Vasseur & Yodzis 2004), which have ecological 
and evolutionary consequences (Romero-Mujalli et 
al. 2021). Experiments provide mechanistic under-
standing (Benedetti-Cecchi 2003, Benedetti-Cecchi 
et al. 2006, Gunderson et al. 2016, Koussoroplis et 
al. 2017, Boyd et al. 2018, Gerhard et al. 2023) and 
are needed as a part of a wider set of methodologies 
(Dawson et al. 2011, Thompson et al. 2013, Kous-
soroplis et al. 2017). The experimental study of the 
effects of fluctu ations on biological systems brings 
both logistical and conceptual challenges (Thomp-
son et al. 2013, Giménez et al. 2021, 2022). Logisti-
cal challenges associated with the number of repli-
cations have been addressed through specific 
experimental designs (Boyd et al. 2018, Kreyling et 
al. 2018). Issues associated with teasing apart the 
role of different components characterising a fluctu-
ation have also been addressed in the case of dis-
turbance events, with intensive efforts being made 
to separate the effects of the mean and temporal 
variance of a fluctuation (Benedetti-Cecchi 2003, 
Benedetti-Cecchi et al. 2006, Ber tocci et al. 2005, 
2007, Maggi et al. 2012). 

In recent years, there has been an intensive effort 
to generate a general framework to incorporate fluc-
tuations into studies of the effects of climate change 
on organisms (Gunderson et al. 2016, Boyd et al. 
2018, Gerhard et al. 2023). Within the framework, a 
major gap is the consideration of the organismal per-
spective (Jackson et al. 2021), given by how biologi-
cal systems experience a fluctuation in relation to 
their own biological traits. The importance of study-
ing the effects of environmental fluctuations on bio-
logical traits is obvious and has been widely recog-
nised. We can, therefore, use current information on 
critical biological traits to develop a mathematical 
foundation and provide metrics to quantify fluctua-
tion components from the organismal perspective. 
For instance, recent studies have quantified the time 
scales of thermal fluctuations using biological time as 
a trait (time to metamorphosis, Giménez et al. 2022; 
generation time, Munch et al. 2023). Some important 
facts (Fig. 1) motivating this approach are as follows. 
(1) Biological time scales such as generation time (or 
time to reproduction) are central traits with direct 
impacts on fitness (Stearns 1986 chapter 6, Angilletta 
2009 chapter 6). (2) Adaptive responses, driving to 
evolutionary rescue (Chevin et al. 2010), can vary 
with time scales ranging from short-term plasticity 
(hardening) through acclimation to trans-genera-
tional plasticity and genetic adaptation (Gerken et al. 
2015, Donelson et al. 2018). (3) In ectotherms, within 
species, increased temperature results in (i) strong 
non-linear effects on biological time through changes 
in metabolic rates (Gillooly, et al. 2002, Rombough 
2003, Giménez 2011), (ii) increases in ageing rates 
(Burraco et al. 2020, Cayuela et al. 2021) and (iii) 
increases in the speed of behavioural responses 
(kinetic effects of temperature on behaviour; Abram 
et al. 2017). In ectotherms, the above changes are the 
result of increases in kinetic energy within cells and 
tissues; therefore, it is likely that changes in environ-
mental temperature also affect the time scale of 
adaptive plastic responses. Studies of the effects of 
temperature on biological time have shown that (1) 
whether multiple-stressor responses are additive or 
interactive depends on whether time is measured in 
‘clock’ vs. biological units (Giménez et al. 2022); this 
also extends to how sensitive organisms are to a 
given stressor; and (2) re-scaling the equations of 
population dynamics to biological time leads to more 
robust predictions of dynamics of ectotherms in sea-
sonal environments (Munch et al. 2023). 

Because of the nature of the fluctuations, we need 
a framework that considers biological time and addi-
tional traits as metrics of other fluctuation compo-
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nents. Hence, in the present study, I expand a previ-
ous framework, explored in Giménez et al. (2022), 
which did not consider a biological metric for the 
magnitude (e.g. intensity, amplitude, average) of an 
environmental fluctuation. A biological metric for 
fluctuation magnitude is critical, for example, to cat-
egorise a given fluctuation as an ‘extreme event’. 
This is relevant in the context of, for instance, the 
study of heatwaves, where definitions may be based 
on climatology or biology (Bailey & van de Pol 2016) 

and on different references or baselines against 
which fluctuations are compared (e.g. Hobday et al. 
2016, Jacox 2019). We also need to account for intra- 
and interspecific effects of environmental fluctua-
tions and the associated mechanisms. Within a species, 
tolerance is shaped by both adaptive (i.e. adaptive 
plasticity and genetic evolution; Donelson et al. 2018) 
and non-adaptive responses (e.g. carry-over effects 
and ‘silver spoon’ maternal effects; Pechenik 2006, 
Uller et al. 2013, Ruiz-Herrera 2017). Mechanisms 
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Fig. 1. Simulated example of responses to thermal fluctuations in a marine ectotherm developing through 12 stages. (a) A sea-
sonal thermal fluctuation and associated clock time where each of the 12 divisions on the clock represents 1 mo and the colour 
gradient represents temperature (for simplicity, XII corresponds to the day of year of peak temperature). (b) Biological time: 
the cumulative proportion of development calculated as the proportion of development to each stage, using degree days (i.e. 
a stage is completed when the cumulative temperature reaches 280°C days). Once a stage is reached, the cumulative propor-
tion resets to zero and increases until a new stage is reached. In the associated biological clock, the position of the stages 
varies depending on temperature. Hence, the division marks in the biological and clock time do not coincide. (c) Thermal fluc-
tuation as experienced by the organism, calculated as the proportion of the upper thermal range (from the optimum to the 
upper thermal tolerance limit). The pattern of fluctuation is buffered relative to the pattern in (a) because organisms acclimate 
to high temperatures over the summer. (d) An experiment in which 2 sibling crab larvae are reared at different temperatures 
for a fixed amount of clock time, after which the sibling exposed to higher temperature is developmentally older than the one  

reared at low temperature. In (d), photographs by the author
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underpinning tolerance also occur at other levels of 
organisation: populations may differ in their gene 
frequencies, which drive portfolio effects (Schindler 
et al. 2015, Šargač et al. 2022), and communities may 
differ in species composition, which drives species 
complementarity (Ca dotte 2013), all acting as com-
pensatory mechanisms. In those situations, tolerance 
should vary over time as a fluctuation is experienced. 
In synthesis, organismal experience (or that existing 
at other levels of organisation) can be quantified as 
tolerance and biological time, and this experience is 
characterised by complex dynamics which shape 
other biological responses. 

The approach proposed here (based on the idea of 
a 'space of fluctuations': SOFiA) in corporates the per-
spective of the biological system in understanding 
biological responses to fluctuations. This is based on 
the idea (borrowed from differential geometry and 
physics; see e.g. Needham 2021) that there is no 
‘absolute’ perspective to characterise a fluctuation 
and its components; instead, there are different per-
spectives from different systems (e.g. the human 
observer and an organism experiencing the fluctua-
tion). The present study is structured as follows: first, 
SOFiA is presented in a wider context, aimed at mak-
ing predictions of responses given field-observed 
environmental fluctuations. Second, the core ideas 
(space of fluctuations and coordinate frames to quan-
tify the organismal perspective) are presented. 
Third, SOFiA is explored using 3 cases at the organ-
ismal level. Fourth, a worked example of a simulated 
factorial experiment is used, manipulating fluctua-
tion components to clarify the design and data 
needed to quantify the organismal perspective. The 
emphasis is on the effects of thermal fluctuations at 
the organismal level; however, wider applications, 
on populations and ecosystems, are presented in 
Section 5.1. 

2.  METHOD CONTEXT 

The approach proposed here must be viewed as 
being integrated into a wider framework (Fig. 2) 
combining field observations, experiments and mod-
els predicting the responses of biological systems to 
multiple fluctuating environmental drivers (Denny et 
al. 2009, Dawson et al. 2011, Koussoroplis et al. 2017, 
Gerhard et al. 2023). Thermal fluctuations (e.g. a 
heatwave) are characterised by a set of components, 
e.g. time scale, amplitude, cumulative intensity, and 
rates of increase and decrease in temperature (see 
e.g. Hobday et al. 2016 for marine heatwaves). Field 

observations provide information on the range of 
fluctuation types (characterised by their components) 
that are then used to define the range of values con-
sidered in an experiment. The effects of thermal fluc-
tuations are quantified using factorial−orthogonal 
experiments, teasing apart the effect of each compo-
nent. The output of the experiment can then be used 
for predictions in the field or for parameterization of 
models (Fig. 2). Predictions in the field may be based, 
for instance, on scale transition theory, a method that 
provides estimations of average responses from mean, 
variances and covariances of environmental vari-
ables (see worked example in Section 4.4) (Chesson 
2012, Denny & Benedetti-Cecchi 2012, Dowd et al. 
2015, Koussoroplis et al. 2017). 

2.1.  Experimental designs 

The central point in SOFiA concerns the experi-
mental phase: orthogonal experiments are necessary 
to derive quantitative relationships between predic-
tors and responses and are essential for the develop-
ment of mechanistic models (Benedetti-Cecchi 2003). 
This argument is also valid when different environ-
mental variables (or fluctuation components) co-vary 
in the field. In such a case, the experiment will pro-
vide information that is relevant to the current en -
vironmental context, enable predictions of future 
scenarios where the covariation is broken (Benedetti-
Cecchi 2003, Boyd et al. 2018) and cover for re -
sponses to rare events (Kreyling et al. 2014) such as 
extreme heatwaves. One may envisage an orthogo-
nal experiment, considering fluctuation components 
as ‘fixed’ predictors (then analysed with e.g. ANOVA) 
or as continuous predictors. The latter method is 
more appropriate for the approach presented here, 
as it can be based on surface response designs (Box & 
Wilson 1951, Cottingham et al. 2005, Thompson et al. 
2013, Kreyling et al. 2014, 2018, Schweiger et al. 2016). 

Surface response designs will capture non-linear 
and non-additive responses to the fluctuation compo-
nents present in the data. Because those responses 
are common in ecology and evolution (Levins 1968, 
Ruel & Ayres 1999, Scheffer 2009, Gunderson et al. 
2016, Kroeker et al. 2020), surface response designs 
are better suited to improve ecological models than 
the ANOVA-type design (except when the predic-
tor in question is categorical). Surface response de -
signs also provide the appropriate response function 
needed in scale transition theory, developed to incor-
porate interactive and non-linear responses to envi-
ronmental fluctuations (Koussoroplis et al. 2017). 
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The main issue with surface response designs is 
the large number of experimental units needed to 
cover the predictor space defined by the fluctuation 
components. For example, consider an experiment 
with 2 components and a maximum of 90 replicate 
units; 10 replicate units per treatment combination 
would constrain the experiment to 9 locations (i.e. 3 × 
3 combinations of component values) in the predictor 
space. A potential solution is to use sequential exper-
iments covering different regions of the predictor 

space at each stage (Box & Wilson 1951); however, 
this may be problematic if replicates are likely to 
vary in time for some reason other than the experi-
mental random variation. An alternative solution is 
to either optimise the number of replicates or to use 
un-replicated designs, a technique known as ‘gradi-
ent analysis’ (Kreyling et al. 2018). For instance, at 
90 replicate units, one may define 90 locations (as a 
9  × 10 grid), allocating one unit each. Modelling 
exercises show that designs with low or no replica-
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tion but many locations outperform replicated de -
signs with fewer locations in detecting non-linear 
responses (Schweiger et al. 2016, Kreyling et al. 
2018). 

2.2.  Fluctuation components 

We need an approach that accounts for historical 
effects found at different levels of organisation. For 
instance, at the organismal level, acclimation and 
carry-over stress effects are pervasive (Giménez 2006, 
2020, Pechenik 2006, Marshall et al. 2016) and can 
drive recruitment in marine populations (Torres et al. 
2016). Historical effects are also important at the 
community level, and their evaluation requires the 
consideration of time scales explicitly in the design 
(e.g. see Dal Bello et al. 2017). 

In the approach proposed here (Fig. 2b), fluctua-
tions are characterised by an explicit time variable in 
addition to a magnitude variable (if only 2 compo-
nents are considered). The use of the time variable 
enables us to capture any historical effect in addition 
to rescaling responses in biological time (see Sec-
tion 4.4; Giménez et al. 2022). The use of a time vari-
able helps us to move away from estimations of tol-
erance based on keeping organisms at constant 
conditions or using ramp experiments that do not 
necessarily match the time scale of natural environ-
mental fluctuations (Terblanche et al. 2011, Rezende 
& Santos 2012, Gunderson et al. 2016). The choice of 
the magnitude variable depends on the situation; 
the present study focuses on amplitude to account for 
cases in  which historical responses are associated 
with threshold phenomena (e.g. acclimation being 
triggered after some temperature level is experi-
enced). In the field, time scales and amplitudes of 
fluctuations can be estimated through direct obser-
vations or from statistical models such as Fourier 
analysis or polynomial fitting. In this setup, projec-
tions or predictions (see Section 4.4) would be based 
on a response function matching the time scale of 
field-observed fluctuations. 

3.  THE SPACE OF FLUCTUATIONS 

3.1.  Coordinate frames 

The central concept of SOFiA is that environmental 
fluctuations are characterised by a set of components 
and represented as points in a space. This multi -
dimensional space resembles the one defined in 

multivariate analyses such as principal component 
analysis (PCA; or any other extension), where the 
principal components constitute a coordinate frame 
(Legendre & Legendre 2012). The space of fluctua-
tions also has similarities with the concept of space 
state disturbance representation (Turner et al. 1993, 
Fraterrigo & Rusak 2008) but mostly with the toler-
ance landscape (Rezende et al. 2014), defined by the 
intensity and duration of a thermal stress. This con-
cept may be expanded to a higher number of envi-
ronmental variables (i.e. not only temperature), with 
a concomitant increase in the number of dimensions. 

The second important point is that the metrics used 
to characterise thermal fluctuation components (e.g. 
for a heatwave: intensity measured in °C and time in 
days) are not unique or absolute. Instead, each point 
in the space of fluctuations can be located by using 
different coordinate frames. Here, the ‘extrinsic frame’ 
is the one defined by the ‘observer’, e.g. in clock time 
and °C. Further, the ‘intrinsic frame’ is defined as 
representing how the biological system under study 
experiences the fluctuations according to its own 
traits. For that purpose, biological variables are clas-
sified into 3 types. Type 1: variables with units of 
magnitude (e.g. thermal tolerance range) or time 
(e.g. days to maturation) or that drive tolerance and 
biological time; they give rise to the intrinsic frame. 
Type 2: invariant responses; a biological re sponse 
that occurs within the tolerance range, does not drive 
tolerance or biological time and does not have units 
of time or magnitude. Type 3: biological rates or sen-
sitivities; i.e. those expressed as per unit of time or 
tolerance. The role of each variable is introduced 
below. 

As an example, the present work focuses on a study 
of the effect of thermal fluctuations on the body size 
(the invariant response) of a marine organism (e.g. 
invertebrate, fish), growing eventually to maturation. 
For the sake of the example, it is assumed that body 
size (the invariant response) does not drive tolerance 
or biological time. Biological time is the time to mat-
uration; tolerance may be defined in a wide sense, 
i.e. as the range of preferred temperatures (Gvoždík 
2018) based on the aerobic scope (Pörtner 2002), or a 
range defined from survival or knock-down temper-
atures (Tang et al. 2000). The same concepts can be 
applied to other levels of organisation; for example, 
biological time can be quantified for populations 
(generation time), communities (time scale of change 
in richness; Onti veros et al. 2021), and ecosystems 
(inverse of ratio of production/biomass). Tolerance 
can also be defined for populations (Gvoždík 2018) 
and communities (Vine brooke et al. 2004). 
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In the extrinsic frame (Fig. 2), the amplitude (m) is 
measured in °C and the time scale (t) is measured 
in clock time; e.g. in days (see Section S1, Table S1 
in Supplement 1 at www.int-res.com/articles/suppl/
m721p017_supp1.pdf for variables and constants). 
The biological time scale of a fluctuation (τ) is a unit-
less quantity, corresponding to the proportion of time 
from birth to a relevant life history event (e.g. from 
birth to maturation). The biologically scaled ampli-
tude of the fluctuation (μ) is defined as a proportion 
of the thermal tolerance range of the organism, i.e. 
the capacity of the organism to withstand environ-
mental fluctuations. 

The next element of the space of fluctuations is 
the time at which the observations are made. In 
the idealised experiment (Fig. 3a), organisms (orig-
inated in the same population) are exposed to fluc-
tuations of different amplitudes and time scales. 
All organisms are kept at the same initial tempera-
ture, exposed to the fluctuations and then re -
turned to the initial temperature before a mea-
surement of body size is taken. The time at which 
body size is measured is expressed in clock (t*) 
and biological scales (τ*). The observation times 
considered here (there may be several) occur after 
the fluctuation is experienced (Fig. 3a), i.e. t* > 
t  and τ* > τ). Observations must be done as the 
fluctuation occurs (see Section 4.4), but organisms 
must experience the full fluctuation before one can 
causally relate the response to the fluctuation time 
scale. The time course of the invariant response 
will occupy the full space of fluctuations, defined 
by the 3 axes: amplitude, time scale, and obser-
vation time (Fig. 3b). Be cause we assume that 
temperature drives developmental rates, the time 
points of observation at a fixed clock time will not 
coincide with those at a fixed biological time (e.g. 
at maturation). Therefore, observations at fixed 
clock vs. biological times will lie on different types 
of surfaces slicing the 3D space defined by the 
fluctuation components and the ob servation time. 
The in variant response, observed at a  fixed clock 
time, lies on flat 2D time slices (Fig. 3b) of the 
space of fluctuations. In contrast, the re sponse 
observed at a fixed biological time (e.g. at matura-
tion) will lie on a curved surface (Fig. 3c), with its 
shape driven by the effect of temperature on the 
developmental rate (see next paragraph). Con -
sequently, the pattern shown by the biological re -
sponse will differ between the coordinate frames 
(Fig. 3c,d). 

The next step is to define mathematical functions 
relating the components of the extrinsic frame (m, t 

and t*) with those of the intrinsic one (μ, τ and τ*). 
The functions linking the clock with the biological 
time scales are given as: τ(t,m) = t × L and τ*(t*,m) = 
t* × L where L(t,m) is the developmental rate, i.e. the 
inverse of the clock time (D) required to reach a par-
ticular biological event (e.g. days to maturation). 
Importantly, L(t,m) is a function of the environmental 
fluctuation, not of the observation time (in line with 
the above-defined assumptions) and will be the 
inverse of the pattern shown by developmental time 
(Fig. 4a). 

The biological scaled amplitude of the fluctuation, 
μ(t,m), is defined from thermal tolerance as μ = mS. 
The function μ (unitless) varies between 0 and any 
positive value and quantifies the magnitude of the 
environmental fluctuation relative to the organismal 
tolerance range. The function S is the inverse of the 
tolerance range (E; Fig. 4b), which represents how 
sensitive the biological system is to the magnitude 
of  the fluctuation. The case μ = 1 corresponds to a 
fluctuation that encompasses the full tolerance 
range, while μ → 0 corresponds to situations where 
the organism is extremely eurytopic with respect to 
m (S → 0 when m is very small with respect to the tol-
erance range). E is defined relative to some thresh-
old; for instance, the so-called ‘knockout tempera-
ture’ (Mout, i.e. the temperature at which the organism 
dies or cease any activity, or does not respond to 
stimuli). In synthesis, E is the mathematical ex -
pression of the capacity of the organism to tolerate a 
fluctuation. 

3.2.  Invariant responses 

The invariant biological response (body size; Fig. 3b) 
is a type of response that does not drive tolerance 
and it is not a rate of change with respect to any of 
the coordinate frames. The invariant response exists 
within the limits stated by the biological time and tol-
erance; i.e. there is a ‘region of existence’ within the 
space of fluctuations. This response is represented by 
a continuous and differentiable function, and the 
invariance property results in: 

                            R(t,t*,m) = r (τ,τ*,μ)                        (1) 

The invariance property is the reason that rates are 
not considered at this stage. Rates are partial 
derivatives of the invariant response (see below) and 
their magnitude depends on the coordinate frame. 
The differentiability assumption enables us to re -
present the effect of the thermal fluctuation on the 

https://www.int-res.com/articles/suppl/m721p017_supp1.pdf
https://www.int-res.com/articles/suppl/m721p017_supp1.pdf
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response through partial derivatives with respect 
to the amplitude and period; the same idea applies to 
a general environmental fluctuation characterised by 
2 or more quantitative descriptors. Hence, the effect 

of each variable of the invariant response is defined 
as a system of partial differential equations (PDEs; 
Giménez et al. 2022), which in matrix formulation 
gives: 
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In a more compact notation, Eq. (2) may be written as 
R = Mr, where R and r are vectors of the derivatives of 
R and r, respectively; both R and r contain biological 
rates and sensitivities with respect to magnitudes 
and time scales. The matrix M transforms the rates of 
the intrinsic to the extrinsic frame; the inverse of M 
will do the reverse transformation. In Eq. (2), the third 
entry of the second row of M (in bold) is set to zero 
when the observation time varies independently of 
the time scale of the fluctuation (fixed clock observa-
tion time). In practice, t* is constrained to be longer 
than the longest fluctuation time scale used in an ex-
periment; however, within such limits, one can ob-
serve the response at any desired time. In addition, 
the first 2 entries of the last row of M (in bold) are set 
to zero because the observation time (t*, τ*) does not 
affect the biological tolerance (i.e. μ) or the biological 
time scale of the fluctuation (i.e. τ). This follows from 
the fact that we ignore (for simplicity) the timing of 
the fluctuation as a component. In a more general 
case, such timing would be an additional component, 
giving an extra dimension to the space of fluctuations. 
Working with the response and the mapping func-
tions is facilitated by 2 properties. (1) They should 
approximate continuous and differentiable func-

tions so that the terms in M and the derivatives of R 
exist. Modelling of tolerance is sometimes carried 
out through conditional functions, but the alterna-
tive is to fit appropriate smooth functions to over-
come the problem. (2) Mapping functions should be 
bijective (i.e. always in creasing or decreasing), so as 
to provide a one-to-one mapping. Such functions 
ensure the existence of direct and inverse maps, from 
each point of the extrinsic to each point of the in -
trinsic frame. Not all functions of developmental time 
are like this; some show a minimum at an extreme 
high-temperature threshold followed by a maximum 
(Shi et al. 2017). Issues as sociated with (1) and (2) can 
be solved in practice by modelling different parts of 
the space of fluctuations as separate regions. 

3.3.  Scenarios of analysis 

There are several scenarios for how the tolerance 
range and biological time drive the effect of the fluc-
tuation on the invariant response. (1) The trivial sce-
nario, in which neither E nor L are affected by the 
fluctuation traits. Both the extrinsic and intrinsic 
frames coincide, and the effect of the fluctuation on 
the body mass does not change with the coordinate 
frame. (2) A scenario in which E is not affected by the 
fluctuation traits. In such a case (discussed in Giménez 
et al. 2022), μ is proportional to m. (3) The scenario 
explored here, in which both E and L depend on 
some property of the fluctuation being experienced. 

The nature of the intrinsic frame depends on how 
biological time and tolerance are shaped by the fluc -

tuations. The present study considers 
3 cases: in Cases 1 and 2, in creased 
temperatures would result in a delete-
rious effect on performance (Niehaus 
et al. 2012). Case 1 is based on simple 
functions that help us  to visualise 
and obtain a qualitative understand-
ing of the differences be tween the 
extrinsic and intrinsic frames. Case 1 
is related to Case 2, which introduces 
empirical functions and enables a 
realistic view of the chronic negative 
effects of fluctuations. Case 3 intro-
duces adaptive plasticity, by which 
the fluctuation has positive effects on 
the tolerance range. In Cases 1 and 2, 
the re sponse ob served at a fixed clock 
time is sim ulated, whereas in Case 3, 
the time course of the response is 
simulated. 
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4.  RESULTS 

The central point in SOFiA is that the space of 
fluctuations is represented using different coordi-
nate frames, related through non-linear functions. 
It is important to clarify the 2 different types of 
representations. First, one can represent a time slice 
defined either at a fixed clock time or at a fixed 
biological time (see Fig. 3b,c). Second, for each 
time slice, one can represent 2 projections based 
respectively on the extrinsic (mt-projection) or 
intrinsic coordinates (μτ-projection). For Cases 1−3,  
time slices at fixed clock time (fixed t*) were 
focused on; this represents the simplest possible 
experiment and enables a better understanding of 
the different projections. The slice at a fixed bio-
logical time is explored in the worked example 
(Section 4.4). Given a (fixed) time slice, fluctuations 
are plotted in the upper half of a plane (Fig. 5a; 
details in Section S2 in Supplement 1), where t > 0 
(fluctuations of negative time scale do not exist). In 
addition, none of the fluctuations will occur at m = 
0 or t = 0 because such fluctuations do not exist 
either. For simplicity, it is assumed that m > 0 
because experiments usually focus on either high or 
low temperature relative to a thermal optimum, for 
which m can be conveniently rescaled to be posi-
tive. Hence, the fluctuations of interest are plotted 
in the first quadrant (Fig. 5a) and the properties 
mentioned below do not change if m is negative. 

4.1.  Case 1: hyperbolic model 

For tolerance, an inverse function E = E(t) = 1/(S0 + 
kμt) was used, with S(t) = (S0 + kμt). Here, S increases 
linearly with the time scale of the fluctuation, from a 
minimum (S0) defined as 1/Tmax; the constant kμ is a 
rate of increase. In such a case we obtain: 

                                   μ = m(S0 + kμt)                            (3) 

In addition, it is assumed that developmental time 
follows an inverse function of temperature, such 
that: 

                            τ = t(Dmin + kτ/m)–1                        (4) 

where Dmin is the asymptotic minimum developmen-
tal time achieved as m → ∞, in the absence of devel-
opmental impairments. 

The values of the intrinsic frame define a non-linear 
and non-orthogonal coordinate frame (Fig. 5b). Eqs. (3) 
& (4) define hyperbolic curves, as lines of equal τ 
(or μ) in a similar way as the straight lines in Fig. 5a 
define lines of constant m or t. Consecutive lines 
define areas of different size, with the shape of 
such areas depending on the constants (S0, Dmin, kμ, 
kτ) driving the tolerance and developmental time. 
Such lines do not meet at straight angles, reflecting 
the fact that μ and τ are not mutually independent 
variables. 
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open boundaries. (b) mt-projection with μτ-isolines given by curves (here taken from Case 1), with all parameters of Eqs. (3) 
& (4) set to = 1, except kμ = 0.1. (c) μτ-projection. The space occupied by the fluctuations is constrained to the coloured area by 
the maximum values of m and t; these represent the maxima used in a realistic experiment. Thick black curve: the upper limit 
set by the maximum value of t; straight line: the theoretical maximum. Isolines of equal body size (diagonals in a and b) form  

petal-like curves in (c) and the parabolas of (b) would give straight lines in (c)
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An alternative view of the response, highlighting 
the organismal perspective, is given by the ‘μτ-pro-
jection’ (Fig. 5c). This is analogous to the projection 
obtained from a PCA, where communities are repre-
sented as points in a space. Before the PCA is carried 
out, the original projection (an analogue to the mt-
projection here) would have species abundances as 
axes. The difference is that the PCA axes are linear 
and orthogonal, while μτ axes are curvilinear and 
non-orthogonal. Consequently, in the μτ-projection, 
the fluctuations are constrained to a triangular region 
characterised by open boundaries (coloured area in 
Fig. 5c) and the region is set by logistical and theoret-
ical limits (see Section S2). 

Provided with the projections defined above, and 
focusing on the perspective of the organism, the fol-
lowing points are highlighted: 

(1) Space of existence. The region where μ ≤ 1 and 
τ ≤ 1 defines the ‘space of existence’, i.e. where the 
response, R, exists. This is because μ > 1 implies that 
the temperature is higher than the tolerance range 
(hence the organism collapses). In addition, τ > 1 
implies that the time scale of the fluctuation is longer 
than the time to maturation; therefore, one cannot 
establish a causal relationship between biological 
time and the fluctuation time scale. In other exam-
ples, the space of existence will be set at τ ≠ 1 (see 
Section 5). 

(2) Extreme events and the biological definition of 
a heatwave. Extreme events (i.e. a fluctuation com-
promising organismal existence) are represented by 
the set of fluctuations defined by the curve μ = 1. 
Notice that such a curve defines fluctuations that dif-
fer in amplitude and clock time scale. If extreme 
events are used as a biological defini-
tion of heatwave, then such a defi -
nition would differ from that based 
on  climatology. For instance, marine 
heatwaves are defined as those ther-
mal fluctuations in which the temper-
ature exceeds a fixed threshold (the 
90th percentile of a temperature distri-
bution) for 5 or more days (Hobday et 
al. 2016). IN contrast, the definition 
arising from the μ-curves does not use 
fixed temperature and time scales. 

(3) From the standpoint of the organ-
isms, differences among fluctuations 
are defined by the values of μ and τ 
(not m and t ). From the extrinsic per-
spective, straight lines (i.e. the Eu -
clidean distance) should define the 
difference (= shortest distance) be -

tween any 2 fluctuations (Fig. 5a; also recall the anal-
ogy to PCA for ecological communities). However, 
from the intrinsic perspective, the shortest distance 
between any 2 fluctuations is given by the hyperbolic 
curves (Fig. 5b). Hence, whether 2 fluctuations are 
experienced by the organism as very different or 
rather similar depends on the distance along the 
hyperbolic curves. In this case, the projection in the 
μτ-plane (Fig. 5c) might give a more intuitive view of 
the differences among fluctuations from the organis-
mal perspective. 

(4) The invariant response (body size at matura-
tion) is distorted as we compare the different projec-
tions (Fig. 6). The distortion reflects important bio-
logical effects of temperature on both tolerance and 
biological time. In the simulation (see Section S3 in 
Supplement 1 for details), the invariant response is 
more sensitive to m than to t (equation in Fig. 6) but 
it becomes more sensitive to τ than to μ (compare the 
change in colour gradient in Fig. 6a vs. Fig. 6b). The 
distortion reflects the fact that the organism will 
experience the response as being different from 
what is shown by the extrinsic frame. 

Next, Case 2 uses realistic functions and highlights 
(by comparison to Case 1) properties that are robust 
to changes in the mapping functions. 

4.2.  Case 2: combining metabolic theory and 
thermal tolerance 

Case 2 considers empirically obtained functions 
for developmental time and tolerance and uses mt-
projection to focus on the region of existence and on 
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Fig. 6. A time slice of the space of fluctuations at fixed clock time (a) mt- 
projection with intrinsic coordinate frame included; (b) μτ-projection. Differ-
ent symbols in (a) represent fluctuations which are shown in (b) to highlight 
the deformation produced by the intrinsic frame. The diagrams were constructed 
within the range (0, 2) for both t and m. The mapping functions are as follows: 
Eq. (3): S0 = 1, kμ = 0.1; Eq. (4): Dmin = 1, kτ = 1. The response was modelled as  

R = 100 × exp(−0.4m − 0.8t)
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the definition of extreme events. Developmental time 
is defined in the metabolic theory of ecology of 
Brown et al. (2004) such that: 

                                                                  (5) 

where m is the temperature (in °C), Lmax is the 
inverse of the asymptotic minimum of develop -
mental time and A is the ratio of activation energy 
(0.64 eV, 1.025 × 10–19 J) and the Boltzmann constant 
(8.617 × 10−5 eV K−1, 1.381 × 10–23 J K–1). 

The effect of the fluctuation is modelled follow-
ing work on thermal death times (Bigelow 1921, 
Urban 1994, Tang et al. 2000, Rezende et al. 2014, 
Jørgensen et al. 2019). Those studies show that 
responses to temperature can be modelled with 2 
separate functions: (1) a thermal range charac-
terised by  moderately high (or low) temperatures, 
where survival is independent of the exposure time. 
Re sponses in this range are equivalent to those cov-
ered in Giménez et al. (2022), where μ is propor-
tional to m because E would not vary with time. (2) 
Beyond a  thermal threshold, E decreases linearly 
with the logarithm of exposure time. I focus on this 
range,, assuming that the tolerance range is propor-

tional to the logarithm of the time scale of the fluc-
tuation. Here, E(t) depends on the knockout tem-
perature (i.e. Mout) according to the equation Mout = 
Mcrit − zε1 log(tε2). Here, Mcrit is the knockout tem-
perature corresponding to a unit of clock time (t = 
1), z is the sensitivity of Mout to the change in log(t). 
In addition, ε1 and ε2 are proportionality constants 
(= 1) and are no longer considered. By setting Emax = 
Mcrit − M0 (maximum tolerance range with respect 
to  the optimal temperature, M0), we obtain: E(t)  = 
Emax − zlog(t). In such a case, the biological magnitude 
in the intrinsic frame (μ) is given by the equation: 

                                                                  (6) 

As in Case 1, the lines at μ = 0 and τ = 0 are open 
boundaries, and the lines of constant μ or τ are 
curves, representing a non-orthogonal reference 
frame that will also deform any invariant response 
(further similarities discussed in Section S4 in Sup-
plement 1). In the mt-projection, values of μ (heat 
maps in Fig. 7) capture the general pattern observed 
by studying thermal death times, i.e. low-amplitude 
but long-period fluctuations can be as bad as high-
amplitude short-period ones. 
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Case 2, based on empirical models, again gives a 
definition of an extreme event as in Case 1, where 
the critical temperature defining the heatwave 
(here represented as m) depends on the clock time 
scale of the thermal fluctuation (Fig. 7); here, the 
position of the curve μ =1 depends on log(t). In addi-
tion, the set of extreme fluctuations and the region 
of existence depends on the thermal sensitivity (z) 
and the maximum tolerance range (Emax). At high z 
and narrow Emax (Fig. 7a), the region of existence is 
constrained to fluctuations that are shorter than the 
time to maturation (τ = 1). In the simulation, there is 
only a narrow region (t > 30 in Fig. 7a) where the 
curve of the extreme fluctuations (μ = 1) is located 
to the right of the curve of τ = 1. This indicates that 
extreme fluctuations occur at time scales longer 
than the time to maturation. At other combinations 
(Fig. 7b−d), such a region expands; for instance, for 
z = 1 and Emax = 35, most of the extreme fluctuations 
occur at time scales that are longer than time to 
maturation (Fig. 7d). 

It is important to note that the interpretation of the 
isolines μ = 1 and τ = 1 depends on the specific case. 
For example, it may not be possible to quantify tol-
erance beyond maturation, i.e. in the region located 
to the right where τ > 1 (the maximum time scale 
covered in the experiment). Likewise, in the region 
where μ > 1, developmental time cannot be quanti-
fied. However, tolerance may be quantified in the 
region where τ > 1 in the case of e.g. a multigenera-
tional study where the biological time is defined as 
generation time. In an example of organisms grow-
ing to metamorphosis (instead of maturation), sce-
narios in which the curve μ = 1 is located to the 
right of τ = 1 would indicate that reaching a critical 
life history stage (e.g. metamorphosis) has the poten-
tial to ‘rescue’ the organism (or population) from the 
consequences of an extreme fluctuation. For species 
experiencing metamorphosis and habitat shifts, 
thermal conditions before the shift may not be the 
same as in the post-shift habitat. Alternatively, organ-
isms may experience shifts in their capacity to toler-
ate in creased temperatures, for instance in associa-
tion with metamorphosis: larval stages are usually 
more sensitive than juveniles and adults (Pandori & 
Sorte 2019). In both cases, reaching metamorphosis 
would be analogous to reaching a thermal refuge. 
In semelparous species, reaching maturation and 
reproduction (τ = 1) is central, but post-reproductive 
life (τ > 1) is of no relevance for fitness. In any case, 
SOFiA captures important aspects of ontogeny, 
physiology and phenology as drivers of responses to 
extreme events. 

4.3.  Case 3: role of adaptive plasticity 

In the above cases, tolerance depended only on the 
time scale of the fluctuation. However, the presence 
of adaptive plasticity should (within limits; DeWitt et 
al. 1998) either shift or expand the tolerance range 
(Angilletta 2009 chapter 5, Seebacher et al. 2014, 
Salachan & Sørensen 2022) in response to the (ther-
mal) fluctuation. We can visualise the rescue effect of 
adaptive plasticity as an expansion of the space of 
existence in the mt-representation (see below). 

Plasticity involves 3 main steps (Windig et al. 2004): 
(1) a cue is converted to a signal (e.g. hormones; 
Duffy et al. 2002) that (2) triggers a change in the 
phenotype, which results in (3) a change in its perfor-
mance (= tolerance). Those steps lead to a latency 
period (Laubach et al. 2022) between the moment 
when an environmental cue is detected and when 
the phenotype is functional. The latency period 
varies according to the type of plasticity, from short 
(hardening; Hoffmann et al. 2003) through develop-
mental (Salachan & Sørensen 2017) to transgenera-
tional plasticity (Donelson et al. 2018). The relation-
ship between the latency period and the time scale of 
the fluctuation may range between 2 extremes. At 
one extreme, the fluctuation may be perceived as 
a  short-term pulse with respect to such a period 
(Manenti et al. 2018), while at the opposite extreme, 
the fluctuation is perceived as a long period wave. 
In  the first case, the tolerance range depends on 
whether the organisms (or the parents) experienced 
a previous fluctuation. In such a case, we may define 
the acclimation state of an organism as Ei(t), which 
will shift from E1(t) to E2(t) after a fluctuation is expe-
rienced. One may model such a change of state as a 
change in the parameters defining the equations of 
Case 2 (see Section 4.2). 

The present study focuses on the case (Fig. 8) in 
which the latency period can be much shorter than t 
so that (1) the acclimation state changes as the fluctu-
ation is experienced and (2) the fluctuation can be 
sufficiently long to alter developmental time. An exam-
ple is the acclimation to seasonal fluctuations in tem-
perature in which organisms acclimate to summer (or 
winter) conditions well in advance of the time of maxi-
mum (or minimum) temperatures. Those steps are 
modelled through functional responses, with the over-
all result that changes in the cue (temperature) are 
mapped into changes in the thermal tolerance and μ 
(Fig. 8). This simulation differs from Cases 1 and 2 in 
that here the time course of the response is modelled 
(details in Section S5 in Supplement 1). It was not the 
intention to develop a mechanistic model (see e.g. 
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Hazel et al. 1990, Buoro et al. 2012) and it must be 
emphasised that the model is intended as an illustra-
tion of how plasticity can be incorporated into SOFiA. 

The rescue effect of adaptive plasticity is shown as 
the expansion of the region of existence: the curve μ = 
1 is shifted to the right (compared to Cases 1 and 2). 
Hence, the rescue effect is manifested in the set of 
fluctuations defining extreme events. Compared to 
the previous cases, extreme events occur at high val-
ues of m. The region where the plastic response 
operates depends on 3 main steps.  

(1) The threshold response to the cue: below some 
thermal threshold (fixed to 5°C in Fig. 8 and 10°C in 
Fig. S4 in Section S5), the plastic response is not trig-
gered (m < 5°C in Fig. 8). The tolerance range is still 
wide (giving low μ values). In the model, the thresh-
old response is driven by the thermal threshold yu of 
the first functional response: 

                                                                  (7) 

where FC→S is the function converting a cue to a sig-
nal, y(x) is the temperature fluctuating through clock 
time (x) and ks is a rate constant indicating how sharp 
the triggering of the response is. 

(2) The rate of phenotypic change in response to 
temperature ƒr : 

                                                                  (8) 

where ƒrm is the maximum rate of phenotypic change 
and kr is the half-saturation constant in the model; 
the inverse of ƒrm is a time scale, defined here as the 
minimum latency period. 

This rate is the component of the second functional 
response: 

                                                                  (9) 

FS→P maps the signal to the phenotypic state (as a 
continuous variable) from an initial state, ƒsp1 (before 
the signal activates the response), up to an upper 
threshold = ƒsp2, remaining constant thereafter. Be -
cause Eq. (9) has an asymptotic maximum (ƒrm), the 
rate of phenotypic change is constrained; as a conse-
quence, if the time scale of the fluctuation is suffi-
ciently short, there is no sufficient time for the plastic 
response to reach its maximum value. Hence, plastic-
ity operates on the μ values at intermediate values or 
m and t (at moderately high m). 
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Fig. 8. Case 3, adaptive plasticity: a time slice of the space of fluctuations at a fixed clock time showing a heatmap of μ. Differ-
ent panels (a−d) show μ for different values of maximum tolerance range (E2 = 25 and E2 = 40) expanded from a value of E2 = 
20 before the fluctuation is experienced. Inset values correspond to the maximum rate of phenotypic change (ƒrm) as driven by 
temperature (equations in Section S5 in Supplement 1). In all panels, the signal activation threshold was at 5°C; this is best  

noted at E2 = 40 and rmax = 0.05. Continuous lines: constant τ-values; dashed lines: constant μ-values
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(3) The maximum thermal tolerance range, defined 
in the third functional response of the model FC→S, 
which maps the phenotype to the thermal tolerance. 
This function is linear between the lower (= E1) and 
the upper tolerance range (= E2) and defines the 
region of existence in Fig. 8. 

4.4.  Worked example 

The worked example (Fig. 9; details in Section S6 
in Supplement 1 and data files in Supplement 2 
at  www.int-res.com/articles/suppl/m721p017_supp2
.xlsx) represents an experiment aimed at (1) quanti-
fying the effect of the magnitude and time scale of 
thermal fluctuations on the body size of a marine ecto -
therm and (2) estimating the average body mass, given 
a set of fluctuations of varying magnitude and time 
scale. The example represents experiments taking 
place over several weeks to a few months, which cor-
responds to those carried out with short-lived organ-
isms (e.g. copepods) or a specific life phase of a 
long-lived species (e.g. larvae). Biological time is ref-
erenced up to maturation (copepods) or metamor-
phosis (fish or invertebrate larvae). In both cases, 
temperature has a strong effect on developmental 
time (copepods, Guerrero et al. 1994, McLaren 1995; 
marine larvae, O’Connor et al. 2007); hence, the 
functions mapping the time coordinates are impor-
tant. For example, within species, increased temper-
ature can reduce larval developmental time by 50% 
over the tolerance range, which can span 10−15°C 
(but varies among species; O’Connor et al. 2007). 
Increases of only 3°C can result in important reduc-
tions in developmental time towards the lower sector 
of the thermal tolerance range. For example, in one 
of the best-studied crustaceans, the shore crab Car -
cinus maenas, an increase in temperature of 3°C 
reduces the larval developmental time (to megalopa 
or first crab stage) by 25−35% within the range 
12−18°C, corresponding to summer temperatures in 
the distribution range (Dawirs 1985, DeRivera et al. 
2007, Šargač et al. 2022). The functions mapping 
time coordinates become more important at that sec-
tor, especially under long fluctuation time scales. At 
the upper sector of the thermal tolerance range, bio-
logical time is affected little by temperature; how-
ever, at that sector, the functions mapping from the 
extrinsic to the intrinsic magnitude coordinates should 
be come important if tolerance depends on the time 
scale of the fluctuation. 

The experiment follows a gradient design (Krey -
ling et al. 2018) with 10 levels of thermal magnitude 
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Fig. 9. Worked example. Simulation of an experiment quan-
tifying the role of magnitude and time scale of thermal fluc-
tuations on body size (colour heatmap) of a marine organism 
at maturation. (a) mt-projection of the observed response at 
a fixed clock time (t* = 70 d). (b) Fitted curves and body 
size at the same fixed clock time as in (a). (c) mt-projection 
of the fitted response at maturation. The projections in (a) 
and (b) correspond to a flat time slice (see Fig. 3); the μ = 1 
curve is the black line delimiting the white area (i.e. no data 
at μ > 1). The curve of the time at maturation, τ* = 1, is given 
as a continuous blue line; dashed blue line corresponds 
to the curve of τ = 1 (fluctuation with time scales of the mat-
uration time). The curves of τ* and τ differ because they are 
scaled to different time variables. Vertical dashed line: 
the  region (to the left) where maturation is reached irre-
spective of the time scale of the fluctuation; horizonal 
dashed line: an upper region where maturation can be 
reached. The heatmap in (c) lies on a curved surface (see 
Fig. 3) and it is restricted to the region of the space of fluctu-
ations enabling maturation (note axis ranges). The data (csv 
file) and procedures are given in Section S6 (Supplement 1)  

and Supplement 2 

https://www.int-res.com/articles/suppl/m721p017_supp2.xlsx
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Mar Ecol Prog Ser 721: 17–38, 2023

crossed with 9 levels of time scales, giving 90 loca-
tions (i.e. combinations of time scales and magni-
tudes) in the space of fluctuations. Organisms are 
observed every day in order to record the time at 
maturation and the time at which they reach the ther-
mal limit (i.e. they die or exhibit a predefined be -
havioural response). In the first step, non-linear 
regression models are used to obtain the equations 
giving τ, μ, size after 70 d of the experiment (R1[m, t, 
t* = 70 d]) and size at maturation (R2[m, t, τ* = 1]). For 
the second objective, the functions R1 and R2 are 
used to estimate the average response through scale 
transition theory, model simulations and the so-
called mean field approach. 

The constraint on the number of times size can be 
observed reproduces a realistic experiment in which 
animals die beyond the region of existence and mea-
surements of body size are too invasive to be per-
formed more than twice, or where there are logistical 
constraints. With some caveats (see next paragraph), 
the example may also be taken as a case study of a 
species monoculture (e.g. macroalgal or mussel bed) 
or natural community that is recovering after a dis-
turbance event, in which the biological variables are 
generation time (or the inverse of species replace-
ment rate), tolerance (or species richness) and bio -
mass (or some ecosystem service). 

In the worked example, the curves μ = 1 and τ = 1 
cross each other as expected if some of the fluctua-
tions enable maturation but others kill organisms 
before reaching maturity. In other situations, such 
curves may not cross but the experiment will still 
provide valuable information. If all animals reach 
maturity, the experiment will quantify the depen-
dence on body size on the time coordinate frame. If, 
by contrast, thermal thresholds are reached before 
maturation, the experiment would provide informa-
tion about the region of existence and identify the set 
of fluctuations defined as extreme (i.e. the set de -
fined by the curve μ = 1). 

The importance of the mapping function is given 
by the following points. First, the function τ*(m, t, t*), 
which maps coordinates of observation time, shows 
that responses differ considerably depending on 
whether we quantify size at maturation or at a given 
clock time. The difference is shown in Fig. 9 (contrast 
Fig. 9a,b vs. Fig. 9c) and in the estimated body size 
given an average heatwave (Table 1; compare R1 vs. 
R2). Second, the function μ(m, t) quantifies the effect 
of the time scale of the fluctuation on thermal toler-
ance; it predicts which heatwaves would result in 
system collapse. This is illustrated in Fig. 9b as the 
white area, which corresponds to heatwaves with 

combinations of magnitudes and time scales (m and t 
coordinates) giving μ(m, t) > 1. Third, the combina-
tion of the abovementioned functions predicts the set 
of heatwaves that still enable animals to be ‘rescued’ 
by achieving maturity (or metamorphosis). This is 
illustrated in Fig. 9b as the portion of the curve τ*= 1 
lying at the left of the curve μ = 1 (i.e. not in the white 
area). Fourth, the combination of μ(m, t) and τ(m, t) 
predicts the set of fluctuations that are not tolerated 
and are characterised by a time scale equal to the 
time to maturation (or to metamorphosis). This is 
illustrated in Fig. 9b with the curve τ = 1 (dashed line) 
lying at the right of the curve μ = 1, if m > 5; the por-
tion lying to the left of the curve μ = 1 is predicted to 
occur if larvae experience fluctuations of time scales 
larger than 50 d. 

In interpreting R1 and R2 (Fig. 9b,c), one must recall 
that such functions are on different surfaces that cut 
the volume representing the time course of the in -
variant response (Fig. 3). The difference between R1 
and R2 (Fig. 9b,c) is shown by modelling the average 
response (Table 1) to a set of fluctuations (Fig. 9c), but 
in both R1 and R2, the mean field approach underesti-
mates the average response compared to simulations 
from the model or applying scale transition theory. 

5.  DISCUSSION 

This work presents a geometric approach (SOFiA) 
to understanding biological responses to temperature 
(or other environmental fluctuations) from the per-
spective of organisms. This approach expresses the 
organismal perspective as a coordinate frame within 
a space defined by fluctuation components and the 
times at which observations are made in an experi-
ment. Using temperature as an example, it is shown 
how this approach integrates our current knowledge 
about the effects of environmental variables on 
organisms. We know that temperature has a strong 
non-linear effect on biological time (McLaren 1995, 
Gillooly et al. 2002), that thermal tolerance decreases 
non-linearly with exposure time (Rezende et al. 2014) 
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                                                    R1                                R2 
 
Mean field                                11.95                           14.12 
Scale transition                        11.92                           14.03 
Simulation                                11.92                           14.03

Table 1. Estimated body size (in arbitrary units) at t* = 70 d 
(R1) and at maturation (R2) based on mean field approach,  

scale transition theory and model simulation
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and that adaptive plasticity has a characteristic time 
course (Windig et al. 2004). The organismal perspec-
tive is obtained from the relationship between differ-
ent types of biological traits: (1) traits driving toler-
ance and biological time provide the metric for the 
biological scaled magnitude and time of a fluctua-
tion; (2) there are traits, called invariant responses, 
that respond to tolerance and biological time; and (3) 
traits defined by rates are identified as those with a 
magnitude that depends on the reference frame. In 
addition, the geometric approach presented here 
highlights the importance of considering the frame 
used to scale the time at which observations are made 
because of its consequences in the observed in -
variant response. The result is the capacity to quan-
tify biological responses in different frames, which 
should lead to a better mechanistic understanding; in 
addition, the approach presented here can provide 
predictions for field conditions (through e.g. scale 
transition theory, as shown in Section 4.4). 

A main feature of SOFiA is the mathematical for-
malism, represented by a set of functions and PDEs. 
One may argue that this is merely a formalizing 
exercise, only providing more precision. However, 
the mathematical formalism is central to identifing 
counter-intuitive results that arise from interactive 
effects and non-linearities. A similar approach has 
helped to identify the conditions where interactive 
effects, occurring at a level of organisation (e.g. indi-
viduals), are not mapped into a higher level of organ-
isation (population; DeLaender 2018). Likewise, the 
mathematics of scale transition theory (Denny & 
Benedetti-Cecchi 2012) are needed to determine 
when (and to what extent) the average of the biolog-
ical response does not match the response to the 
average temperature. In all those cases, quantitative 
predictions are not those expected from intuition. 
The approach presented here deals with non-lineari-
ties and interactive responses to the predictors (as 
above), and non-linear transformations between dif-
ferent frames. For example, the solutions of PDEs can 
help us to identify scenarios when the type of multi-
ple driver response depends on the metrics of time 
(see Section 4.4, Fig. 9 and Giménez et al. 2022). 
Given only 2 components of a single fluctuation 
(magnitude and time scale), we can still rely on 2D 
graphical representations for a better understanding 
of a response that depends on the coordinate frames, 
as illustrated in Fig. 3 (i.e. the response on different 
surfaces). However, in cases of 2 or more fluctuations 
(e.g. temperature plus a second environmental vari-
able), the responses will lie on higher dimensional 
surfaces and intuition will be of limited help. It 

seems that, as the field progresses, the stronger 
mathematical emphasis will constitute an important 
guide to navigate through the complexity of high 
dimensional phenomena, interactive effects and non-
linearities. Hence, the mathematical analysis used 
here may be considered an additional step in the pro-
cesses summarised in Fig. 2, helping with the design 
and interpretation of experiments as well as the 
application scale transition. 

SOFiA incorporates the biological perspective, 
defined by the time scale and the capacity of organ-
isms and other biological systems to cope with envi-
ronmental fluctuations. The first important concept is 
the ‘region of existence’, defined from fixed values of 
μ and τ (both set to 1 in the example). This is an 
important point in light of discussions concerning the 
definition of heatwaves (Bailey & van de Pol 2016, 
Hobday et al. 2016, Jacox 2019). From a biological 
standpoint, heatwaves would be defined as the set of 
extreme fluctuations (characterised by μ = 1) that 
depend on the time scale of the fluctuation. Many 
studies have shown that tolerance to a given stressor 
scales with the inverse of the logarithm of the time of 
exposure (revision in Rezende et al. 2014). Such a 
biological definition would incorporate the rescue 
effect produced by adaptive plasticity. Simulations in 
Case 3 highlight the importance of time delays in the 
expression of the plastic response in determining the 
set of extreme fluctuations. 

The starting point in SOFiA was to consider fluctu-
ations as a collection of components (as in Hobday et 
al. 2016) and define fluctuations as objects existing in 
a hypervolume in the same way that ecologists define 
elements in the ecological niche (Blonder 2018) or 
characterise communities (e.g. Legendre & Legendre 
2012). At the organismal level, the space of fluctua-
tions has connections with the concept of tolerance 
landscape (Rezende et al. 2014) where the response 
is tolerance, existing within a space defined by the 
magnitude and time scale of exposure to a particular 
stressor. At the species level, there are connections 
with the Hutchinson view of the niche (i.e. where 
resources or environmental variables define the 
axes), but adding time variables and meeting the 
needs of incorporating phenology into the concept of 
the niche (see Ponti & Sannolo 2022). In addition, for 
both cases, the main contribution of SOFiA is the 
quantification of the perspective of organisms through 
additional reference frames. 

Different perspectives, including that of the ob -
server, are related through mapping functions (from 
t to τ and m to μ). We can also consider a case with 2 
different frames representing 2 different species; in 
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such a case, we can remove the reference frame of the 
human observer from the equations (see Section S7 
in Supplement 1) and project the response of the first 
species from the perspective of second one. The frame-
work can also be used to visualise biological responses 
underpinned by different mechanisms (or based on 
empirical fits) of how tolerance and biological time 
respond to a given fluctuation. For example, the com-
parison among Cases 1−3 helps us to identify proper-
ties that are contingent on the presence of plasticity 
or the adoption of a specific type of trade-off between 
critical temperature and tolerance period. In addition 
to the metabolic theory of ecology, the response of 
developmental time has been predicted from theory 
or other equations (Ahlgren 1987, Guerrero et al. 
1994, McLaren 1995, Shi et al. 2017, Quinn 2021). 

In SOFiA, the rescue effect of adaptive plasticity 
(Windig et al. 2004, Chevin et al. 2010) is expressed 
as the expansion of the region of existence (where 
effects of fluctuations on invariants are buffered). In 
the simulation, the expansion occurred at intermedi-
ate time scales because short-term thermal fluctua-
tions were not enough to sustain rapid phenotypic 
change. Expansions of the space of existence at 
shorter (or longer) time scales should be based on the 
concerted action of plastic responses operating at dif-
ferent time scales, i.e. from hardening to long-term 
acclimation (Donelson et al. 2018). Hence, the simu-
lation shows that a better understanding of the re -
sponses to fluctuations requires models of the 
‘dynamics’ of the formation of the phenotype, which 
instead will depend on the scale-dependent plastic 
response. Such models require experiments quanti-
fying how the rate of phenotypic change that is expe-
rienced by an organism is driven by temperature; 
central to such research are time-keeping mecha-
nisms (Giménez et al. 2022) and metabolic rates 
(Jackson et al. 2021). 

An important point in SOFiA is to differentiate 
between invariants (e.g. body mass) and rates (e.g. 
growth or sensitivity). Rates capture the relative 
aspect of the ‘effect’ of a fluctuation on the invariant 
because they depend on the reference frame. Hence, 
SOFiA introduces a level of ‘relativism’ in the nature 
of the responses to stressors. This is particularly im -
portant when more than one stressor is considered. 
In such a case, the type of frame (intrinsic or extrin-
sic) determines the nature of the interactive effect of 
2 stressors on an invariant response (Giménez et al. 
2022). An important example concerns the combined 
effect of increased temperature and a second envi-
ronmental variable. For instance, because tempera-
ture increases metabolic demands, increased tem-

perature can exacerbate the negative effect of food 
limitation on body reserves to metamorphosis (Torres 
& Giménez 2020). In addition, increased temperature 
can either mitigate or exacerbate the effect of re -
duced salinity on survival to metamorphosis (Torres 
et al. 2021). Importantly, because thermal fluctua-
tions drive developmental rates, the magnitude of 
body size responses can only be expressed as rela-
tive to the reference frame used to measure time. The 
relativism introduced here has implications for multi-
ple-stressor research; for instance, additive effects 
relative to clock time will become interactive in bio-
logical time (Giménez et al. 2022). Multiple-stressor 
research has been motivated by the recognition that 
climate change affects several environmental vari-
ables at a time (Gunderson et al. 2016, Boyd et al. 
2018). An important objective of this field involves 
the quantification of the frequency of occurrence of 
the different types of interactive effects and in which 
context a stressor mitigates or enhances the effect 
of  another stressor. The fact that the nature of the 
multiple-stressor effect can depend on the reference 
frame highlights the need to be clear about what 
the relevant frame is needed to address a given 
question. 

It can be argued that SOFiA is a general approach 
in the following sense. First, it can be applied in situ-
ations in which biological time and tolerance do not 
depend on the fluctuations or to more complex 
experimental designs. If biological time and tolerance 
do not depend on the fluctuation, the partial differen-
tial Eq. (2) simplifies such that the matrix M contains 
zeros in the off-diagonal entries (μ and τ become lin-
early related to m and t, respectively) and the re -
sponse is projected on 2D flat time slices (Fig. 3) at 
both clock and biological time. Second, given a sin-
gle variable (e.g. temperature), one can apply this 
approach to experiments exploring the effect of con-
secutive waves on biological variable responses by 
adding a component (to the space of fluctuations) 
quantifying the time lag between waves (called, 
respectively, l and λ in the extrinsic and intrinsic 
frames). Third, one can accommodate additional vari-
ables (e.g. food availability, salinity, pCO2) and the 
time lag among them in order to explore the effect of 
simultaneous versus sequential stressor effects (Gun-
derson et al. 2016). As the level of complexity in -
creases, the limitations are logistical; however, in 
such a case, one could use information from previous 
experiments and the mathematical formalism to deter-
mine which region of the space of fluctuations should 
be further explored through a new experiment. 
Fourth, SOFiA can be applied beyond the organis-
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mal level, if one can de fine metrics for biological 
times and tolerance (discussion below). 

A potential application concerns the species level, 
where tolerance may be defined as the thermal 
range that enables a positive population growth rate 
(Gvoždík 2018) and biological time is defined as the 
generation time. Given 2 species, we have species-
specific biological time scales (τ1, τ2) and amplitudes 
(μ1, μ2). In the mt-projection, the area where both μ1 
and μ2 are >1 are regions of extinction for both 
species. The regions where only one of them is >1 
shows the extinction of only one such species; inter-
actions such as symbiosis would be reflected as μ1 = 
μ2. Areas where any μi > 1 indicate conditions lead-
ing to environmental filtering (Kraft et al. 2015) in 
which temperature selects for species assemblages 
characterised by specific trait combinations. How the 
μi = 1 curves are positioned with respect to τi = 1 
curves will define regions where extreme fluctua-
tions are longer or shorter than the generation times. 
Theory (Romero-Mujalli et al. 2021) predicts that the 
threshold of τ = 1 is important for how adaptive plas-
ticity responds to fluctuations over long time scales. 

Portfolio effects (Schindler et al. 2015), driven by 
phenotypic plasticity and genetic diversity, buffer 
populations from environmental fluctuations. Port -
folio effects should result in patterns analogous to 
those of Fig. 8, which contrast those shown in Fig. 7. 
There are also outcomes that depend on the type of 
interaction. In the case of competition, relative non-
linearity and storage effects maintain coexistence 
under environmental fluctuations (Descamps-Julien 
& Gonzalez 2005, Chesson 2018); fluctuations of suf-
ficiently low amplitude should result in competitive 
exclusion unless fluctuation-independent mecha-
nisms operate. Fluctuation-dependent mechanisms 
may be reflected in μ-values if ‘tolerance’ is quanti-
fied considering the outcome of species interactions. 

The second case concerns biodiversity and ecosys-
tem function (García et al. 2018), in which the invari-
ant function would be biomass or the amount of habi-
tat produced by a foundation species. Examples are 
macroalgal or mussel beds and coral reefs sustaining 
function in association with its biomass or canopy. 
Increases in temperature lead to e.g. coral bleaching 
(Pratchett et al. 2008). Here, the curve τ = 1 would 
represent fluctuations occurring at the time scale of 
the species replacement (i.e. a metric of biological 
time unit at the level of community; Ontiveros et al. 
2021). Community tolerance is defined from the sen-
sitivity of species richness to changes in the time 
scale of the fluctuation. By moving along the line of 
μ = 1, we can identify the set of environmental fluctu-

ations driving extinction and collapsing the function. 
The absence of buffering mechanisms should result 
in patterns like those in Fig. 7. Buffer effects (as plas-
ticity in Fig. 8) will reflect phenotypic plasticity, port-
folio or storage effects. In addition, at this level, 
species complementarity should also operate as a 
buffer; species complementarity can sustain function 
in scenarios of increased temperature (García et al. 
2018). 

In synthesis, SOFiA could help us to advance our 
understanding and to predict the effects of environ-
mental fluctuations on biological systems. This is 
achieved through the synthesis, organisation, and 
re-interpretation of current information about the 
effects of environmental fluctuations on tolerance, 
biological time and chosen ‘invariant’ re sponses. As 
a perspective, SOFiA offers a route for future re -
search, combining mathematical analysis, simula-
tions, and experiments (manipulating fluctuation 
components), which are then integrated into a wider 
research programme. 
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