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Abstract
Predictive models can improve the efficiency of wildlife management by guiding actions 
at the local, landscape and regional scales. In recent decades, a vast range of mod-
elling techniques have been developed to predict species distributions and patterns 
of population spread. However, data limitations often constrain the precision and bio-
logical realism of models, which make them less useful for supporting decision-making. 
Complex models can also be challenging to evaluate, and the results are often difficult 
to interpret for wildlife management practitioners. There is therefore a need to develop 
techniques that are appropriately robust, but also accessible to a range of end users. 
We developed a hybrid species distribution model that utilises commonly available 
presence-only distribution data and minimal demographic information to predict the 
spread of roe deer (Capreolus caprelous) in Great Britain. We take a novel approach to 
representing the environment in the model by constraining the size of habitat patches 
to the home-range area of an individual. Population dynamics are then simplified to a 
set of generic rules describing patch occupancy. The model is constructed and evalu-
ated using data from a populated region (England and Scotland) and applied to predict 
regional-scale patterns of spread in a novel region (Wales). It is used to forecast the rela-
tive timing of colonisation events and identify important areas for targeted surveillance 
and management. The study demonstrates the utility of presence-only data for predict-
ing the spread of animal species and describes a method of reducing model complexity 
while retaining important environmental detail and biological realism. Our modelling 
approach provides a much-needed opportunity for users without specialist expertise in 
computer coding to leverage limited data and make robust, easily interpretable predic-
tions of spread to inform proactive population management.
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1  |  INTRODUC TION

Understanding how characteristics of the environment influence 
species distributions is a fundamental aim of spatial ecology (Elith 
& Leathwick,  2009; Skidmore et  al.,  2011). Many terrestrial ani-
mal populations have altered their geographic ranges in response 
to human activities (e.g. habitat modification, Wilson, Davies, 
et al., 2009; Wilson, Dormontt, et al., 2009) and anthropogenic cli-
mate change (e.g. Dawe & Boutin, 2016). Shifts in animal distribu-
tions lead to novel biotic and abiotic interactions that may affect 
ecosystem health and functioning (Pacifici et al., 2020; Pessarrodona 
et al., 2019). Forecasting changes in species distributions and pre-
dicting the relative timing of colonisation events is therefore essen-
tial for effective conservation planning (Aben et  al., 2016; Battini 
et al., 2019; Fordham et al., 2013). Reliable predictions can be used 
to distribute resources for surveillance and management efficiently 
to vulnerable habitats and landscape features that benefit expansion 
(e.g. habitat corridors, Akashi et al., 2016; Bottrill et al., 2008; Tilman 
et al., 2017).

Species–environment relationships are commonly investigated 
using correlative species distribution models, which empirically 
relate species distributions to environmental variables, such as 
precipitation or land use (Elith & Leathwick, 2009). For range-ex-
panding species, correlative models can provide robust predictions 
of the spatial distribution of suitable habitats in novel areas (Elith 
et al., 2010; Lake et al., 2020). However, the probability and timing 
of population spread are likely to be influenced by a range of other 
factors, such as demography, physiology, dispersal and species in-
teractions (Dormann et al., 2012). Mechanistic models can be used 
to simulate these underlying ecological processes and investigate 
the functional relationships between them and species distributions 
(Kearney & Porter,  2009; McLane et  al.,  2011; Wallentin,  2017). 
Combining correlative and mechanistic models (i.e. as in ‘coupled’ 
or ‘hybrid’ models, ‘hybrid’ models hereafter) improves the realism 
of predictions and offers a powerful tool for predicting changes in 
distribution over time (Buckley et al., 2010; Dormann et al., 2012; 
Fordham et al., 2013). Hybrid models can be implemented using a 
range of tools, such as MigClim (Engler et al., 2012), KISSMig (Nobis 
& Normand, 2014) and demoniche (Nenzén et al., 2012). Typically, 
the output from a correlative model (e.g. a raster map) is used to 
represent the environment in simulations of population dynamics 
and dispersal. This allows key parameters of simulations (e.g. local 
carrying capacity) to be constrained by features of the modelled 
environment (e.g. habitat suitability, Dormann et  al., 2012; Singer 
et al., 2018).

Environmental representation and model structure are im-
portant factors that influence the realism, data requirements 
and complexity of hybrid models. Simulations are often based on 
the representation of species as automata that populate a raster 
grid of regular cells (‘grid-based’ models hereafter, Keshtkar & 
Voigt, 2016; Louca et  al., 2015). Grid-based models are concep-
tually simple, generally require minimal data to parameterise and 
are computationally efficient to implement (Bian, 2003; McLane 

et al., 2011). Although logistically convenient, they are usually best 
suited to modelling plant species (Aben et al., 2016; Bian, 2007; 
Vuilleumier & Metzger,  2006). The fixed cell size of the raster 
grid implies that ecological processes, such as survival, reproduc-
tion, emigration and dispersal, occur at the same scale, which is 
unrealistic for most animal species (Bocedi, Zurell, et  al.,  2014; 
Vuilleumier & Metzger, 2006; Wallentin, 2017). Representing the 
environment as continuous space is also unsuitable for species 
that show a preference for discrete habitat features (e.g. wood-
lands, Bian, 2003; McLane et al., 2011).

Alternatively, landscapes may be represented as a network of 
patches (‘patch-based’ models hereafter). Generalising the con-
tinuous raster grid produced by a correlative model into a land-
scape of patches typically requires the application of a suitability 
threshold. Neighbouring cells with suitability values at or above 
this threshold are then aggregated to delineate discrete patches 
of suitable habitat embedded in a matrix of less hospitable envi-
ronments (Berec, 2002; Bian, 2003). Patch-based models there-
fore offer a more realistic representation of the environment as 
the units of the landscape (patches) reflect the geometry, distri-
bution and composition of natural features (Holland et al., 2007; 
Vuilleumier & Metzger, 2006). Patches also facilitate modelling at 
multiple spatial scales. For example, fine-scale movement between 
patches during dispersal may be simulated as a correlated random 
walk (e.g. Bocedi, Zurell, et al., 2014) using high-resolution raster 
maps. Population dynamics may be simulated at the local scale of 
the patch and patterns of population spread emerge at the land-
scape or regional scale (Austin & Van Niel, 2011; Bocedi, Palmer, 
et al., 2014; Wallentin, 2017). However, the requirements of mod-
elling population dynamics can affect how patch-based landscapes 
are represented, as patches typically need to be large enough 
to accommodate multiple individuals (Berec,  2002; Cavanaugh 
et al., 2014). Applying a size threshold eliminates patches that are 
unable to sustain a sub-population, but these may form a network 
of suitable habitats that contributes to the viability and spread of 
the total population (Fahrig, 2020; Tulloch, Barnes, et  al., 2016). 
Therefore, inaccurate representation of the environment at the 
landscape scale can affect model predictions at the broader re-
gional scale (Bian, 2007; Bocedi et al., 2012).

Currently, there are limited tools available to implement concep-
tually simple hybrid models (e.g. KISSMig, Nobis & Normand, 2014) 
that utilise patch-based environments. Parameterising hybrid mod-
els and achieving a balance between complexity and biological re-
alism can also be challenging. Estimating patterns of colonisation 
and extinction through explicit simulation of population dynamics 
typically requires detailed demographic information, such as sur-
vival rates, fecundity, carrying capacity, emigration rates and sex ra-
tios, which are unavailable for many species (Dormann et al., 2012; 
Kearney & Porter,  2009; Thuiller et  al.,  2013). Interpreting such 
complex models presents a further challenge for wildlife managers 
as they generally cannot be evaluated using conventional statisti-
cal methods (O'Sullivan et al., 2016; Wallentin, 2017). For practical 
applications, there is a need for less data-intensive models that are 
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biologically realistic but also simple enough to be interpreted and 
used effectively (Addison et al., 2013; Tulloch, Sutcliffe, et al., 2016).

The expansion of the roe deer (Capreolus capreolus) population 
in Wales, UK provides a good example of a wildlife management 
scenario that can be informed by predictive modelling. Although 
native to Britain, the numbers and geographic range of roe deer 
have expanded rapidly over recent decades due to reduced persecu-
tion, afforestation and the absence of natural predators (Apollonio 
et al., 2010; Linnell et al., 2020; Ward, 2005). While expansion may 
be seen as a conservation success, the potential effects of roe deer 
on sensitive habitats (e.g. ancient woodland) are a cause for con-
cern (Gill & Morgan,  2010; Linnell et  al.,  2020). Browsing by roe 
deer has been shown to impede tree growth (Bergquist et al., 2009; 
Kay, 1993) and natural regeneration (Cutini et al., 2011; Petersson 
et  al.,  2019), reduce ground flora biodiversity (Kirkby,  2001) and 
quality of woodland habitat for bird species (Gill & Fuller, 2007) as 
well as cause damage to agricultural crops (Kjøstvedt et al., 1998; 
Putman, 1986). Roe deer are abundant throughout most of England 
and Scotland and are beginning to recolonize parts of Wales (Croft 
et al., 2019; Ward, 2005). Predictions of population spread in Wales 
are needed to guide surveillance and inform proactive mitigation 
efforts.

We aim to address this need by developing a hybrid species 
distribution model that can be parameterised and evaluated using 
data commonly available to wildlife management practitioners. We 
demonstrate our approach using opportunistically collected pres-
ence-only distribution data for roe deer in mainland Great Britain. 
Records of species occurrences in a populated region (England and 
Scotland) are used to produce a habitat suitability map from a cor-
relative species distribution model. This map is then generalised to 
represent the environment in a hybrid model as a landscape of small 
patches, based on the home-range area of an individual (an ‘individ-
ual-sized patch’). Basic demographic and dispersal information are 
used in simulations to predict regional-scale patterns of population 
spread as a function of the size, quality and connectivity of individ-
ual-sized patches. The hybrid model is first evaluated using observa-
tions of historical distribution change in England and Scotland and 
then applied to predict the population spread of roe deer in a novel 
region, Wales.

To be an effective tool for management, it was important that 
our model outputs were easily interpretable by practitioners and 
produced at a fine enough spatial resolution to identify potentially 
vulnerable landscape features (e.g. individual woodlands). Achieving 
temporal accuracy was considered less critical, as predicting the 
relative timing of colonisation events (e.g. region X is likely to be 
colonised before region Y) would be sufficient to set management 
priorities (e.g. targeted surveillance in region X). The objectives 
were to (1) evaluate the efficacy of representing the environment as 
a landscape of individual-sized patches to predict patterns of pop-
ulation spread, (2) test different methods of generalising a habitat 
suitability map into individual-sized patches, (3) predict the suitabil-
ity of habitat and potential future range of the roe deer population 
in Wales and (4) predict the relative timing of colonisation events 

for roe deer in Wales, assuming the population realises its potential 
range.

2  |  METHODS

2.1  |  Study area

The study area covered mainland Great Britain (218,819 km2), di-
vided into two regions: England and Scotland (198,569 km2), where 
roe deer populations are well established and Wales (20,250 km2), 
where numbers are much lower (Figure 1). Evaluation of the hybrid 
models was achieved using occurrence data from an area within the 
England and Scotland region where the expansion of roe deer has 
been observed from 1960 to 2016, defined as the historic area of 
expansion (HAE, 60,349 km2, Figure 1).

2.2  |  Modelling approach

Our method consisted of five steps: (Step 1) habitat suitability was 
estimated from a populated region (England and Scotland) using a 
correlative species distribution model, (Step 2) the resultant habitat 
suitability map (HSM) was generalised into a landscape of individual-
sized patches to represent the environment in a hybrid model, (Step 

F I G U R E  1 Map of the study area (mainland Great Britain) 
showing the boundaries of the two regions defined for the analyses 
and the historic area of expansion (HAE) within the England and 
Scotland region that was used for evaluation of the hybrid models.
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3) demographic parameters were simplified to simulate patch occu-
pancy for multiple time steps, (Step 4) model evaluation was per-
formed using historic distribution data and (Step 5) the model was 
applied to a novel region (Wales). Predictions of population spread 
were based on simulations made using a mechanistic modelling plat-
form, RangeShifter (Bocedi, Palmer, et al., 2014). RangeShifter was 
chosen because it is versatile, freely available and does not require 
any expertise in computer coding to parameterise. Furthermore, it is 
possible in RangeShifter to incorporate environmental information 
using multiple independent layers that describe: patch geometry and 
distribution, patch quality/composition and landscape-associated 
costs of moving between patches (Bocedi, Palmer, et al., 2014). In 
our approach, these layers were derived from the correlative model, 
as described in the following sections.

2.2.1  |  Step 1. Estimating habitat suitability

Habitat suitability was estimated using a Maximum Entropy (MaxEnt) 
model implemented with the ‘dismo’ package (Hijmans et al., 2017) 
in R (R Core Development Team, 2019). The model was trained and 
tested with environmental and roe deer occurrence data from the 
populated England and Scotland regions (MaxEnt version 3.4.0; 
Phillips et al., 2017).

Occurrence data
Data on roe deer sightings were taken for the period 1953–2016 
from the National Biodiversity Network Gateway (www.​nbnat​
las.​org) and regional wildlife trusts in Wales (Appendix  S1) during 
December 2016. These were characteristic of presence-only data 
as they were collected from a range of sources (e.g. the general pub-
lic) and the sampling effort was indeterminable. Only occurrence 
records with a locational precision of 100 m were considered for 
analysis (England and Scotland, n = 3843). The records from Wales 
(n = 37) were used for the evaluation of model performance in the 
Wales region only.

Environmental data
Environmental data were obtained for variables relating to land 
cover (UK Centre for Ecology and Hydrology's Land Cover Map 
2015; www.​ceh.​ac.​uk/​servi​ces/​land-​cover​-​map-​2015, 25 m resolu-
tion), roads (Ordnance Survey (OS) Meridian™ 2; www.​ordna​ncesu​
rvey.​co.​uk, 10 m resolution), terrain (OS Terrain 50, 50 m resolution) 
and climate (Worldclim version 1; http://​www.​world​clim.​org/​, 1 km 
resolution). Environmental data were resampled to 100 m cell rasters 
to predict habitat suitability at a fine resolution, which was neces-
sary for delineating irregularly shaped individual-sized patches in the 
subsequent hybrid model (Appendix S1). The final model included 
six variables that were selected from a candidate list of 33 variables 
through a stepwise process of a priori selection, collinearity analysis 
and complexity optimisation (Appendix S1). These comprised three 
distance metrics: distance to nearest woodland (woodland distance), 
non-woodland forage (forage distance) and urban areas (urban 

distance) as well as two variables based on the proportion of land 
cover within a 500 m radius (woodland cover and forage cover) and 
a categorical variable for land cover type (land cover, Appendix S1). 
Roe deer are known to occasionally occupy small green spaces in 
predominantly urban areas (Ciach & Fröhlich, 2019). Therefore, we 
used both categorical and proportional variables to include land 
cover information at the location where the species was recorded as 
well as the proportion of land cover within the local vicinity.

MaxEnt model parameterisation and validation
A fishnet grid of 10 × 10 km cells was created for each region. 
Background points for the development and validation of the 
MaxEnt model were only created within cells that intersected 
presence locations (England and Scotland; n = 908, Wales; n = 32, 
Appendix S1). The MaxEnt default of 10,000 background points was 
used for Wales (3.4 points/km2) and 100,000 points were used for 
England and Scotland (1.2 points/km2). Linear, quadratic, hinge and 
product feature classes were used as well as the default value of 1.0 
for the regularisation multiplier (Appendix S1).

An n−1 cross-validation technique was used to validate the 
MaxEnt model and to compare predictive performance between the 
populated and novel regions. The n−1 method trains a model on all 
data points (England and Scotland: n = 3843; Wales: n = 37) but one, 
then evaluates the model on that point and repeats until all points 
have been evaluated (Cawley & Talbot, 2003; Hijmans, 2012). Model 
performance was estimated based on the ability to correctly rank 
presences in the test data set higher than background points, as 
given by the mean area under the receiver-operating-characteris-
tic curve (AUC). The AUC is a standard measure of goodness of fit 
that yields a value between 0.5 and 1, where 0.5 suggests the model 
performs no better than random and 1 indicates perfect prediction 
(Pearce & Ferrier, 2000). Values above 0.7 are generally considered 
an indication of good model fit (Hijmans, 2012). The use of the AUC 
metric to evaluate the performance of correlative models has been 
criticised (Jiménez-Valverde,  2012; Lobo et  al.,  2008). However, 
we feel that its use in this study was appropriate as it facilitated a 
direct comparison of performance with previous studies (Acevedo 
et al., 2010; Croft et al., 2017, 2019) that were carried out for the 
same species and over the same spatial extent. Variable importance 
was assessed using a jackknife test, which measured the increase in 
regularised training gain when each variable was used in isolation 
and the decrease in gain when the variable was excluded from the 
full model (Phillips & Dudík, 2008). The relative contribution of each 
variable to the model was also estimated based on permutation im-
portance, which is one of the metrics reported in the MaxEnt model 
output (Hijmans et al., 2017; Phillips & Dudík, 2008).

2.2.2  |  Step 2. Generalising the habitat 
suitability map

There is currently no consensus on the most effective method 
of delineating patches from a habitat suitability map (HSM). 
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We therefore evaluated four methods: (1) Grid, (2) Voronoi, (3) 
Contiguity and (4) Voronoi-Contiguity (Vor-Con) within the Historic 
Area of Expansion (HAE, Figure 1). The same key steps were used 
in each method: definition of patch boundaries (P), summarisation 
of the cell values within patches (S) and the application of a suita-
bility threshold to eliminate patches or cells considered unsuitable 
(T, Figure 2). Applying a suitability threshold is required to convert 
cells of the HSM from continuous (i.e. low to high suitability) to 
binary (i.e. suitable/not suitable) values for patch delineation. A 
value of 0.56 was chosen as it maximised the sum of sensitivity 
and specificity in the MaxEnt model (Liu et al., 2005, 2016). The 
home range area of roe deer was assumed to be 0.06–1.5 km2 with 
an approximate average of 1 km2 (Coulon et  al., 2008; Le Corre 
et al., 2008; Martin et al., 2018). Roe deer are generally solitary, 
males are territorial and both sexes demonstrate high home-range 
fidelity (José & Lovari,  2010; Linnell & Andersen,  1998; Lovari 
et al., 2017). We therefore chose to delineate patches based on the 
home range area because it is biologically meaningful and appro-
priate for identifying relevant landscape features for management 
(e.g. individual woodlands).

Grid
The Grid method effectively resampled the HSM at a coarser resolu-
tion. A fishnet grid of 1 km2 cells was created for the extent of the 
HSM and the mean value of HSM cells within grid cells was calcu-
lated. Grid cells with a mean suitability below the threshold were 
removed (Figure 2, row Grid).

Voronoi
The Voronoi method used polygons to define patch bounda-
ries, which were irregular polygons based on Voronoi tessella-
tions (Holland et al., 2007). Point features were distributed across 
the extent of the HSM at an approximate density of 1 point/km2 
(n = 60,350). Studies have shown that roe deer home ranges gener-
ally decrease with increasing population density and habitat qual-
ity (Kjellander et al., 2004; Saïd et al., 2009). To reflect this, points 
were distributed according to the probability distribution described 
by the HSM, which biased their location towards more suitable habi-
tat (‘Create Spatially Balanced Points’ tool in ArcGIS, ESRI ArcMap 
Version 10.4.1). Therefore, point-density increased and patch-size 
decreased in relation to habitat suitability. A minimum distance of 
150 m between points was used, which equalled the approximate 
radius of the lower limit of the home-range area (0.06 km2). Voronoi 
polygons were created to define the geometry of patches (‘Create 
Thiessen Polygons’ tool in ArcGIS, ESRI ArcMap Version 10.4.1). 
Polygons were converted from a vector to a raster and then back to 
a vector to ensure patch boundaries aligned with cells of the HSM. 
The mean value of cells within patches was calculated and patches 
with a mean suitability below the threshold were removed (Figure 2, 
row Voronoi).

Contiguity
HSM cells with suitability values below the threshold were removed. 
Suitable cells that neighboured other suitable cells in any of the eight 
cardinal directions were considered part of the same patch (Figure 2, 

F I G U R E  2 Stages of habitat suitability map (HSM) generalisation. Rows represent four generalisation methods used: Grid, Voronoi, 
Contiguity and Voronoi-Contiguity (Vor-Con). Columns denote stages in the generalisation process (see text for details). Common to 
all methods are stages (1) the original HSM, (5) the mean suitability of patches and (6) unique identifiers assigned to each patch. Key 
characteristics of the generalised map include (P) the definition of patch boundaries, (S) the summarisation of cell values within patches 
(i.e. calculating mean suitability) and (T) application of a suitability threshold to convert the HSM from continuous (i.e. low to high) to 
binary (i.e. suitable/not suitable) values. These characteristics may be defined at different developmental stages depending on the 
generalisation method used. Grey panels indicate the absence of a stage and are included for a more intuitive comparison of results at similar 
developmental stages across the four methods. Row Vor-Con, column 3: red patches were divided using Voronoi polygons and green patches 
were unmodified.
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6 of 18  |     BARTON et al.

panel c). Patches smaller than the lower limit of the home-range area 
(0.06 km2) were removed and the mean value of cells within the 
remaining patches was calculated (Figure  2, row Contiguity). This 
method produced patches that were larger than the upper limit of 
the home-range area (1.5 km2). It was presented to demonstrate the 
importance of patch size in the case study and to illustrate the con-
ceptual basis of the Vor-Con method.

Voronoi-Contiguity (Vor-Con)
The Vor-Con method included stages of both the Voronoi and 
Contiguity methods. Patches were created using the Contiguity 
method and grouped into the following classes based on the ob-
served limits of the home-range area: small (<0.06 km2), medium 
(0.06–1 km2) and large (>1 km2). Small patches were removed and 
medium patches were not modified. Large patches were divided into 
smaller patches using Voronoi polygons following the same proce-
dure as the Voronoi method. Point features were created at an ap-
proximate density of 1 point per km2 (n = 11,146). The points were 
distributed according to the probability distribution described by the 
HSM, using only the cells within the boundaries of large patches. 
Voronoi polygons were created and converted from a vector to a 
raster and then back to a vector to ensure patch boundaries aligned 
with cells of the HSM. The mean value of cells within patches was 
calculated (Figure 2, row Vor-Con).

Suitability values in the generalised maps (Figure  2, column 5) 
were scaled by multiplying by 100 and rounding to integers as a for-
matting requirement of the RangeShifter software. Patches were 
also assigned a unique identification number (Figure 2, column 6).

2.2.3  |  Step 3. Simulating patch occupancy

Parameterising the hybrid model
The RangeShifter platform was designed to use extensive demo-
graphic information (survival rates, fecundity, maximum age, etc.) 
to simulate range expansions as a function of stochastic interac-
tions between individuals and the environment (Bocedi, Palmer, 
et al., 2014). However, in this study, we simplified the modelling of 
population dynamics in RangeShifter to reduce data requirements. 
Demographic parameters were standardised and constrained by 
density dependence acting at the patch level so that emigration 
and immigration rates were dependent on patch size and quality. 
Regional-scale patterns of population spread therefore emerged 
solely as a function of the size, quality and connectivity of individ-
ual-sized patches.

Simplifying population dynamics
The hybrid model was structured as follows: (i) occupied patches 
produced a number of dispersers proportional to patch size and 
quality, (ii) dispersers interacted with the landscape to transfer be-
tween patches and (iii) dispersers settled in patches occupied below 
carrying capacity. This was implemented in RangeShifter as an asex-
ual stage-structured population model based on a Leslie transition 

matrix (Bocedi, Palmer, et al., 2014). Three stage classes were con-
sidered: juveniles (<1 year old), dispersers (1 year old) and adults 
(≥2 years old). All surviving individuals develop to the next stage 
class and only adults are able to reproduce. The following transition 
matrix (derived from Bocedi, Palmer, et al., 2014) was applied:

where fecundity Φ and the survival probabilities of juveniles Sj, dis-
perses Sy and adults Sa were set to a standardised value of 1. The max-
imum age of adults was set to 1000, so that occupied patches were 
likely to remain occupied throughout the simulation (i.e. the probabil-
ity of local population extinction was close to 0). Density dependence 
acted on survival and fecundity and was implemented in RangeShifter 
as an exponential decay:

where xi is a parameter for survival or fecundity, xi,0 is the maximum 
value of the parameter at low densities, b is the strength of density de-
pendence and Nt is the total number of individuals in the local population 
at time t (derived from Bocedi, Palmer, et al., 2014, RangeShifter user 
manual). The strength of density dependence coefficient, 1/b, was also 
set to a standardised value of 1.0. Habitat suitability was assumed to be 
constant during the simulation period and linearly related to carrying ca-
pacity. Using standardised parameter values (Table 1) and incorporating 
density dependence in the hybrid model established a relatively simple 
set of rules for determining patch occupancy. The model assumes that 
over time more dispersers are likely to emerge from, and settle in, larger, 
more suitable patches than smaller, less suitable patches.

Dispersal
Dispersal between patches was modelled as three discrete phases 
of emigration, transfer and settlement. All juveniles that survived 
and developed into dispersers, emigrated from their natal patch. 
Movement during the transfer phase was modelled at the finer 
scale (0.01 km2) of the scaled HSM using the embedded Stochastic 
Movement Simulator (SMS). The SMS simulated movement as a 
series of discrete nearest-neighbour steps across a cost surface, 
similar to the Least Cost Path (Bocedi, Palmer, et al., 2014; Palmer 
et al., 2011). The cost surface was derived by inverting the scaled 
HSM using the formula: 100 – values of the scaled HSM (‘Raster 
calculator’ tool in ArcGIS, ESRI ArcMap Version 10.4.1), which 
assumed movement costs were inversely related to habitat suit-
ability. Dispersers would therefore be less likely to move through 
low-quality habitat.

The transfer phase was influenced by parameters describing the 
maximum number of steps, the perceptual range (PR) of the species 
and their tendency to follow a correlated random walk, defined as 
directional persistence (DP, Table 1). The perceptual range was es-
timated to be 400 m from habitat selection studies based on global 

⎡
⎢
⎢
⎢
⎢
⎣

0 0 Φ

Sj 0 0

0 Sy Sa

⎤
⎥
⎥
⎥
⎥
⎦

,

(1)xi = xi,0 ∗ e
−bNt ,
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    |  7 of 18BARTON et al.

positioning system (GPS) telemetry data (Coulon et  al.,  2008). A 
value of five was used for directional persistence simulating a mod-
erate tendency for the animal to follow correlated paths within the 
landscape. Dispersers could move a maximum of 200 steps which 
equates to a Euclidean distance of 20 km (Debeffe et  al.,  2013; 
Wahlström & Liberg, 1995).

Estimating patch occupancy
Distribution data from 1960 to 2016 within the HAE (Figure  3) 
were divided into five 10-year periods (1960–2009) and one 7-year 
period (2010–2016), described as Observed Timesteps (ObsTS1-
ObsTS6). Simulations were initialized with the species occupying 
patches within a 10 km radius buffer around the centre of the 
observed range at ObsTS1 (Figure 3; see Appendix S2 for initiali-
zation parameters). A total of 10 simulations were run for a suffi-
cient time to achieve complete occupation of all available patches, 
which was estimated from preliminary trials. In each simulation, 
patch occupancy (1 = occupied, 0 = not occupied) was estimated at 
six regular time intervals, defined as Simulated Timesteps (SimTS1-
SimTS6). Mean patch occupancy at each SimTS was calculated as 
the mean occupancy from the 10 simulations. A threshold value for 
mean patch occupancy of 0.7 was applied (i.e. patches predicted 
to be occupied in 7 out of 10 simulations were considered occu-
pied). Application of a threshold was necessary to convert mean 
patch occupancy from continuous (i.e. 0 to 1) to binary (i.e. 0 = not 
occupied, 1 = occupied) values. Cells of the 10 × 10 km grid that in-
tersected occupied patches defined the simulated species range 
at each SimTS.

2.2.4  |  Step 4. Model evaluation

Performance of the hybrid models was assessed based on the abil-
ity to recreate observed patterns of historic population spread. 
A 10 × 10 km grid of regular cells was created for the HAE, which 
defined the regional scale of model evaluation. Minimum convex 
polygons (Meyer et  al., 2017) were constructed around presences 
at each timestep in ArcGIS (ESRI ArcMap Version 10.4.1). Grid cells 
that intersected polygons were used to define the observed species 
range (ObsRange, Figure  3a). Although convenient, this method is 
prone to overestimating the species range by including areas of un-
suitable habitat (Burgman & Fox, 2003). We therefore also identified 
presence locations within the observed range for a more compre-
hensive evaluation of model performance. Grid cells within the spe-
cies range at each timestep that intersected presences were defined 
as ‘ObsPresences’ (Figure 3b).

Model performance was assessed by comparing the simulated 
species range to ObsRange and ObsPresences at matching time-
steps (e.g. SimTS1/ObsTS1) and calculating the True Skill Statistic 
(TSS, Allouche et al., 2006), which is the sum of model sensitivity (the 
proportion of predicted presences that were correct), and specificity 
(the proportion of predicted absences that were correct), minus one. 
The TSS ranges from −1 to 1, and good predictive performance is in-
dicated by values >0.4 (Allouche et al., 2006; Eskildsen et al., 2013; 
Landis & Koch, 1977). Overall model performance was based on the 
mean of the TSS values from the six timesteps for ObsRange and 
ObsPresences. Finally, a sensitivity analysis was performed to assess 
the impact of the three user-defined parameters (perceptual range, 

TA B L E  1 Summary of parameters used in the RangeShifter (Bocedi, Palmer, et al., 2014) model.

Model parameter Symbol Estimate

Population dynamics Strength of density dependence coefficient (1/b) 1.0

Stage classes (minimum age) Juveniles (0)
Dispersers (1)
Adults (2)

Maximum age (years) 1000

Probability of reproduction 1.0

Fecunditya Ф 1.0

Survival ratesa

Juveniles Sj 1.0

Dispersers Sy 1.0

Adults Sa 1.0

Dispersal Emigration probability Dy 1.0

Movement parameters

Perceptual range PR 400 m

Directional persistence DP 5

Settlement probability

Slope (α) Ps −100

Inflexion point (β) 1.0

Maximum number of steps (Euclidean distance) 200

aParameters constrained by density dependence.
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8 of 18  |     BARTON et al.

directional persistence and maximum number of steps, varied by 
±10%) on the simulated species ranges.

2.2.5  |  Step 5. Applying the model to a novel region

Estimates of habitat suitability in Wales were projected from the 
England and Scotland region using the same set of environmental 
variables. All values for environmental variables in the Wales re-
gion were within the limits of the England and Scotland regions. 
The projected HSM for Wales was generalised into a landscape 
of individual-sized patches using the Vor-Con method. It was also 
inverted to be used as a cost surface in the hybrid model using 
the formula described above (see ‘Dispersal’ section of Step 3). 
A 10 × 10 km grid was created for Wales. The hybrid model was 
parameterised with the same parameter set used for the popu-
lated region and initialised with the species occupying patches 
within grid cells that intersected observations of species presence 
(Appendix  S2). Patch occupancy was estimated at 10 simulated 
timesteps (SimTS1-SimTS10).

3  |  RESULTS

3.1  |  Habitat suitability

Figure 4 shows the predicted suitability of habitat for roe deer in 
England and Scotland (Figure 4a) and Wales (Figure 4c). The area 
under the receiver-operating characteristic curve (AUC) values 
from n−1 cross-validation indicated that the correlative MaxEnt 
model performed well (AUC > 0.7) in both England and Scotland 
(0.72 ± 0.26, mean ± standard deviation) and Wales (0.76 ± 0.25) 
regions. Three variables: woodland distance, land cover and wood-
land cover achieved the highest regularised training gain when iso-
lated in the jackknife test (Figure 5) and had a combined relative 
contribution of 84.5% to the full model (Table 2). Forage distance, 
forage cover and urban distance provided minimal gain (Figure 5) 
and collectively contributed 15.5% (Table 2). Results from omitting 
each variable showed that urban distance and woodland distance 
contained the most information not contained in the other vari-
ables (Figure 5).

3.2  |  Model performance in the 
historic area of expansion

All the hybrid models performed well in recreating patterns of 
population spread from the historic area of expansion (HAE), as in-
dicated by mean TSS values >0.4 when simulations were compared 
to the observed species range (ObsRange) and to the distribution 
of species presences (ObsPresences, Table  3). The observed pat-
terns of population spread in the HAE were most accurately pre-
dicted using the Vor-Con method (Table 3). The Grid and Voronoi 
methods also achieved good spatial agreement between observed 
and simulated ranges (Table  3). The Contiguity method was the 
least accurate with the lowest TSS values in all of the analyses 
(Table 3). A visual inspection of model outputs indicated that the 
Contiguity method overestimated the species range and showed 
lower-than-average sensitivity values (a higher proportion of false 
presences, Appendix S2). The performance of all models decreased 
over time (Figure 6), which was an expected result of the method 
used for model evaluation (see Section 4 and Appendix S2 for more 
information). Predictions of the species range using the highest-
performing (Vor-Con) method (Figure 7) were insensitive to varia-
tion in any of the three user-defined parameters (perceptual range, 
directional persistence and maximum number of steps, varied by 
±10%; Appendix S2).

3.3  |  Range expansion in Wales

Suitable habitat patches (suitability ≥0.56) covered approximately 
26% (5268 km2) of the total area. The population is predicted to 
spread through the centre of Wales, initially progressing from east 

F I G U R E  3 Patterns of observed roe deer (Capreolus capreolus) 
range expansion in the historic area of expansion (HAE) across six 
timesteps (ObsTS) from 1960 to 2016 used to evaluate the hybrid 
models, described as (a) ObsRange: the observed range estimated 
from minimum convex polygons created around presences and (b) 
ObsPresences: presence locations within the observed range. Inset: 
location of the HAE in Great Britain.
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    |  9 of 18BARTON et al.

to west. The range front is estimated to advance in the northern 
half of Wales towards the northeast and in the southern half of the 
country towards the southwest (Figure 8, 1–4). Once the population 
reaches the southern coastline, expansion is predicted to gradually 
continue west (Figure 8, 5–10).

4  |  DISCUSSION

We developed a hybrid species distribution model to predict re-
gional-scale patterns of population spread for an animal species 
from limited distribution and demographic data. A correlative, 

F I G U R E  4 Predicted suitability of 
habitat for roe deer (Capreolus capreolus) 
from the MaxEnt model in (a) England and 
Scotland and (c) Wales. Maps (b) and (d) 
show the locations of observed presences 
in England and Scotland (n = 3843) and 
Wales (n = 37), respectively (for data 
sources, see Appendix S1). Inset maps 
show the locations of each region in Great 
Britain.

F I G U R E  5 Importance of environmental variables to the predictions of habitat suitability derived from the best-performing MaxEnt 
model for England and Scotland assessed using a jackknife test (Elith et al., 2006).
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10 of 18  |     BARTON et al.

MaxEnt model (Phillips et al., 2017) was constructed using pres-
ence-only occurrence data for roe deer in mainland Great Britain. 
The model estimated the suitability of habitat from a populated 
region (England and Scotland) and predicted the potential future 
range of the population in a novel region (Wales). The habitat suit-
ability map was then generalised into a landscape of individual-
sized patches using a range of methods and used to represent the 
environment in a hybrid model to make dynamic predictions of 
population spread. The hybrid model was evaluated against his-
torical species distribution changes and applied to predict the spa-
tial patterns and relative timing of colonisation events of roe deer 
in Wales.

4.1  |  Habitat suitability

The results from the n−1 cross-validation showed that the 
MaxEnt model performed well in both the populated and novel 
regions. The area under the receiver operating curve (AUC) val-
ues attained in this study are similar to those reported from 
previous studies of roe deer in the UK by Acevedo et al.  (2010) 
(0.85), Croft et  al.  (2017) (0.64) and Croft et  al.  (2019) (0.9). 
Furthermore, our correlative model was validated to a spatial 
resolution (0.01 km2) that is a 100 times finer than that used by 

Croft et al.  (2017) (1 km2) and 10,000 times finer than Acevedo 
et  al.  (2010) and Croft et  al.  (2019) (100 km2). The high resolu-
tion of the output was critical to subsequent modelling stages, 
as it allowed the suitability map to be generalised into a land-
scape of patches based on the home range area of an individual 
roe deer. This captured structural details of the landscape, such 
as the size, distribution and geometry of habitat patches, that 
are important in shaping patterns of population spread (Wilson 
et  al.,  2010; Wilson, Davies, et  al.,  2009; Wilson, Dormontt, 
et al., 2009). Estimating habitat suitability also provided insights 
into the species-environment relationship that was essential in 
characterising the environment for the roe deer, a generalist 
species, whose distribution is known to be influenced by a range 
of habitat types (Croft et  al.,  2019; Jepsen & Topping,  2004; 
Kilheffer & Underwood, 2018).

4.2  |  Hybrid model performance

We evaluated the hybrid models and tested four methods of 
generalising the habitat suitability map from the MaxEnt model 
using historic distribution data. The approach is similar to Singer 
et  al.  (2018) but uses presence-only rather than presence/
absence data, which was simple to implement and relatively 
straightforward to interpret. The Grid and Voronoi methods per-
formed well and achieved a high level of spatial agreement be-
tween simulated and observed ranges. In both methods, patch 
geometry was pre-defined, as in traditional grid-based models 
(Bian, 2003; McLane et  al.,  2011). For the Contiguity and Vor-
Con methods, a suitability threshold was applied to the HSM as 
the first step, which retained the natural geometry of landscape 
features (Girvetz & Greco, 2007). The model based on the Vor-
Con method achieved the best performance of the four methods, 
whereas the model based on the Contiguity method showed the 
worst performance. As the only technique that did not constrain 
patches to the size of an individual home range, the poor perfor-
mance of the Contiguity method is likely due to a phenomenon 
known as the ‘mega patch problem’ (Cavanaugh et  al.,  2014). 

TA B L E  2 Relative contribution based on permutation 
importance of environmental variables in the best-performing 
MaxEnt habitat suitability model for roe deer (Capreolus capreolus) 
in England and Scotland.

Environmental variable
Relative 
contribution (%)

Woodland distance 73.8

Urban distance 11.8

Land cover 8.5

Forage cover 3.7

Woodland cover 2.2

Forage distance 0.1

Comparator Generalisation method

True skill statistic

Mean SD Min. Max.

ObsRange Grid 0.65 0.25 0.27 0.88

Voronoi 0.67 0.20 0.35 0.88

Contiguity 0.56 0.15 0.42 0.84

Vor-Con 0.74 0.11 0.58 0.87

ObsPresences Grid 0.57 0.25 0.28 0.86

Voronoi 0.57 0.24 0.28 0.86

Contiguity 0.44 0.16 0.35 0.77

Vor-Con 0.60 0.20 0.37 0.86

Note: Bold text indicates the highest-performing model. Values given are the mean, standard 
deviation (SD), minimum (Min.) and maximum (Max.) TSS scores across the six timesteps.

TA B L E  3 Evaluation results for the 
hybrid models showing the spatial 
agreement (True Skill Statistic, Allouche 
et al., 2006) between the simulated 
range and (i) the observed species range 
(ObsRange) and (ii) the distribution of 
presences within the observed range 
(ObsPresences) at six timesteps (ObsTS) 
for roe deer (Capreolus capreolus) in the 
historic area of expansion (HAE) from 
1960 to 2016.
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    |  11 of 18BARTON et al.

This issue arises because, when a patch is occupied, individuals 
within that patch are effectively omnipresent and so instanta-
neously traverse the length of the patch, which can result in an 
overestimation of spread through larger patches. This issue was 
resolved in the Vor-Con method by the division of large patches 
using Voronoi polygons. Although a variety of patch-delineation 
models are available (e.g. Cavanaugh et  al.,  2014; Girvetz & 
Greco, 2007; Kilheffer & Underwood, 2018), the methods used 
in this study were selected to minimise model complexity and 
improve the accessibility of the model to wildlife management 
practitioners (Addison et al., 2013; Guisan et al., 2013; Tulloch, 
Sutcliffe, et al., 2016).

4.3  |  Simplifying population dynamics

Our modelling approach reduced the demand for demographic data 
usually associated with parameterising a hybrid model by simplifying 

the simulation of population dynamics. Using generic rules to describe 
population dynamics is conceptually similar to a stochastic patch 
occupancy or traditional grid-based model (Bian,  2003; Hanski & 
Ovaskainen, 2003; Preisler et al., 2004). The key strength of our ap-
proach is in the more sophisticated modelling of dispersal, which was 
facilitated by the RangeShifter platform (Bocedi, Palmer, et al., 2014). 
The embedded Stochastic Movement Simulator (SMS) in RangeShifter 
enabled us to predict regional-scale patterns of population spread as a 
function of patch characteristics (i.e. the size, geometry and composi-
tion of patches) and landscape structure (i.e. the distribution and con-
nectivity of patches [Bocedi, Palmer, et al., 2014; Palmer et al., 2011]). 
The SMS provides an important advantage in modelling the range ex-
pansion of animal species, such as roe deer, with dispersal expected 
to be influenced by key properties of the landscape (e.g. land cover, 
elevation etc., Debeffe et al., 2013; Wahlström & Liberg, 1995). Our 
approach could easily be applied to predict distribution changes for a 
wide range of taxa using the same set of parameters for population 
dynamics (i.e. standardised values) and species-specific parameters 

F I G U R E  6 Results for the hybrid 
models showing the spatial agreement 
(True Skill Statistic, Allouche et al., 2006) 
between the simulated range and (a) the 
observed species range (ObsRange) and 
(b) the distribution of presences within 
the observed range (ObsPresences) 
at six timesteps (ObsTS) for roe deer 
(Capreolus capreolus) in the Historic Area 
of Expansion (HAE) from 1960 to 2016.
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12 of 18  |     BARTON et al.

for dispersal (perceptual range, directional persistence and maximum 
number of steps, see Methods section for details).

4.4  |  Model assumptions

When interpreting the results from our study and considering our 
approach for future applications, it is important to understand the 
implications of two key assumptions that were made. Firstly, to 

simplify the modelling of population dynamics, it was necessary 
to assume that the roe deer population would inevitably spread 
and realise its potential range (i.e. expansion was certain). We feel 
that this was reasonable based on historic patterns of expansion 
in Great Britain and Europe and the biological characteristics of 
the species. The environmental conditions in Wales are similar to 
England and Scotland, where the roe deer population is widely 
distributed. The rates of annual survival and reproduction are 
also high for roe deer, so local extinctions are unlikely (Cobben 

F I G U R E  7 Predicted patterns of roe 
deer (Capreolus capreolus) range expansion 
in the historic area of expansion (HAE) 
from the highest-performing (Vor-
Con) hybrid model. Numbers indicate 
simulated timesteps from initialisation 
(0) to near-total occupation of suitable 
patches (6). The 10 × 10 cells (occupied 
cells) were compared to ObsRange and 
ObsPresences for model evaluation (see 
Section 2 for details).
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et  al.,  2009; Davis et  al.,  2016; Flajšman et  al.,  2013; Gaillard 
et al., 1993; Wäber et al., 2013). However, it should be noted that 
a wide range of additional factors may influence the likelihood 
of their expansion in Wales, such as human activity, interspecific 
interactions and climate change (Dormann et  al.,  2012; Pacifici 
et al., 2020).

Secondly, it was assumed that habitat suitability was the only 
factor driving patterns of population spread. Predictions of popu-
lation spread from the hybrid model were estimated based on the 
limited set of environmental variables used to construct the under-
lying habitat suitability map. Because the modelled environment was 
static, it failed to account for temporal variation in variables, such 
as land use and climate. Historic temporal variation may reduce the 
accuracy of the habitat suitability map as environmental conditions 

at the point of species presence may have changed since the time of 
recording. Predictions of future population spread also assume that 
the environment will remain in its current state, which may be inac-
curate. Developing methods to incorporate dynamic environments 
in models of population spread is a subject of ongoing research 
(Lecocq et al., 2019; Milanesi et al., 2020) and is a priority for future 
adaptation of the model.

Validating and assessing the performance of simulation-based 
models also presents a methodological challenge (Zurell 
et al., 2022). While our evaluation method quantified the relative 
performance of the hybrid models, comparing our results to an 
independent dataset would facilitate more robust model valida-
tion and assessment of absolute performance. Presence-absence 
species distribution data would be particularly valuable, as they 

F I G U R E  8 Predicted patterns of roe deer (Capreolus capreolus) range expansion in Wales from the (Vor-Con) hybrid model. Numbers 
indicate simulated timesteps from initialisation (0) to near-total occupation of suitable patches (10). The initial distribution of occupied 
patches was based on observed presences.
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provide a similar level of information to the model output. In 
contrast, our evaluations were made using maps derived from 
presence-only distribution data (ObsRange and ObsPresences). 
ObsRange was constructed from minimum convex polygons, 
which most likely overestimated the species range (Burgman 
& Fox, 2003). Conversely, ObsPresences represented a limited 
number of locations within the species range where obser-
vations were recorded. Therefore, model outputs were more 
likely to be penalised for under-prediction (i.e. low specificity) 
and over-prediction (i.e. low sensitivity) when compared to 
ObsRange and ObsPresences, respectively (Appendix  S2). The 
magnitude of penalisation increases at each timestep, as the ex-
tent of the predicted range becomes larger relative to the total 
area, which results in a decrease in model performance over time 
(Appendix S2).

High-quality independent presence/absence data are rarely 
available for validating dynamic models of population spread. 
However, technological advancements such as unmanned aerial 
vehicles provide novel opportunities to collect higher quality 
presence/absence distribution data across large spatial extents, 
which would facilitate more robust model validation (Anderson 
& Gaston,  2013; Baxter & Hamilton,  2018). Furthermore, high-
er-quality data would also improve the accuracy of simulating 
movement during the transfer phase of dispersal. Describing 
movement using a cost surface derived from a habitat suitability 
map assumes movement is influenced by the same environmental 
variables that drive species distributions. In reality, variables such 
as elevation and annual rainfall may have an equal effect on dis-
tributions but are likely to offer different levels of resistance to 
movement. Future studies may look to incorporate radio tracking 
or global positioning system (GPS) telemetry data to derive more 
accurate cost surfaces from observations of movement behaviour 
(Diaz et al., 2021).

4.5  |  Roe deer in Wales

Roe deer are the most widespread deer species in Europe with 
Great Britain being one of many countries where numbers are in-
creasing rapidly (Croft et al., 2019; Linnell et al., 2020; Ward, 2005). 
Restoring the population in Wales is an important conservation op-
portunity. However, it is essential that numbers are maintained at 
a level that does not place unsustainable pressure on the environ-
ment (Apollonio et al., 2010; Carpio et al., 2021). As roe deer have al-
ready started to spread from England into Wales, there is a pressing 
need to proactively develop regional- and local-scale management 
strategies. Detection at an early stage of colonisation increases the 
likelihood of successfully controlling population sizes and decreases 
the long-term costs of management (Aschim & Brook, 2019; Guisan 
et al., 2013). Physical monitoring techniques are usually geographi-
cally limited, due to the costs and logistics of fieldwork and spe-
cialist equipment. At the regional scale, our model can be used to 
prioritise areas for surveillance and guide early management actions, 

such as the engagement of landowners, construction of protective 
fencing and establishment of deer management groups. If sightings 
are recorded in a novel area, our model reveals where in the neigh-
bouring region populations are most likely to spread to. The use of 
individual-sized patches in our model further benefits local-scale 
decision-making by enabling the identification of specific parcels of 
the landscape for targeted management. As surveillance yields more 
data on the species' distribution, the model can be adapted to sup-
port long-term population management.

5  |  CONCLUSIONS

Data limitations are a key challenge in developing predictive models 
that can support local and regional-scale wildlife management strat-
egies. Often, decision-makers must allocate resources based on ex-
pert knowledge, coarse-level estimates of species distributions and 
overly simplistic models of population spread. We present a rela-
tively straightforward modelling approach that provides managers 
with a cost-effective, evidence-based tool for guiding actions and 
detecting expanding animal populations at an early stage of coloni-
sation. Our approach fills an urgent need for a dynamic model that 
can be constructed with limited data, is accessible to wildlife manag-
ers and can be adapted to suit a wide range of taxa.
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