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Abstract
Predictive	models	can	improve	the	efficiency	of	wildlife	management	by	guiding	actions	
at	 the	 local,	 landscape	and	 regional	 scales.	 In	 recent	decades,	 a	 vast	 range	of	mod-
elling	 techniques	have	been	developed	 to	predict	 species	distributions	and	patterns	
of	population	spread.	However,	data	limitations	often	constrain	the	precision	and	bio-
logical	realism	of	models,	which	make	them	less	useful	for	supporting	decision-making.	
Complex	models	can	also	be	challenging	to	evaluate,	and	the	results	are	often	difficult	
to	interpret	for	wildlife	management	practitioners.	There	is	therefore	a	need	to	develop	
techniques	that	are	appropriately	robust,	but	also	accessible	to	a	range	of	end	users.	
We	 developed	 a	 hybrid	 species	 distribution	model	 that	 utilises	 commonly	 available	
presence-only	distribution	data	and	minimal	demographic	 information	to	predict	 the	
spread	of	roe	deer	(Capreolus caprelous)	in	Great	Britain.	We	take	a	novel	approach	to	
representing	the	environment	in	the	model	by	constraining	the	size	of	habitat	patches	
to	the	home-range	area	of	an	individual.	Population	dynamics	are	then	simplified	to	a	
set	of	generic	rules	describing	patch	occupancy.	The	model	is	constructed	and	evalu-
ated	using	data	from	a	populated	region	(England	and	Scotland)	and	applied	to	predict	
regional-scale	patterns	of	spread	in	a	novel	region	(Wales).	It	is	used	to	forecast	the	rela-
tive	timing	of	colonisation	events	and	identify	important	areas	for	targeted	surveillance	
and	management.	The	study	demonstrates	the	utility	of	presence-only	data	for	predict-
ing	the	spread	of	animal	species	and	describes	a	method	of	reducing	model	complexity	
while	 retaining	 important	environmental	detail	and	biological	 realism.	Our	modelling	
approach	provides	a	much-needed	opportunity	for	users	without	specialist	expertise	in	
computer	coding	to	leverage	limited	data	and	make	robust,	easily	interpretable	predic-
tions	of	spread	to	inform	proactive	population	management.
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1  |  INTRODUC TION

Understanding	 how	 characteristics	 of	 the	 environment	 influence	
species	distributions	 is	a	 fundamental	aim	of	 spatial	ecology	 (Elith	
&	 Leathwick,	 2009;	 Skidmore	 et	 al.,	 2011).	 Many	 terrestrial	 ani-
mal	 populations	 have	 altered	 their	 geographic	 ranges	 in	 response	
to	 human	 activities	 (e.g.	 habitat	 modification,	 Wilson,	 Davies,	
et al., 2009;	Wilson,	Dormontt,	et	al.,	2009) and anthropogenic cli-
mate	change	 (e.g.	Dawe	&	Boutin,	2016).	Shifts	 in	animal	distribu-
tions	 lead	 to	 novel	 biotic	 and	 abiotic	 interactions	 that	may	 affect	
ecosystem	health	and	functioning	(Pacifici	et	al.,	2020; Pessarrodona 
et al., 2019).	Forecasting	changes	 in	species	distributions	and	pre-
dicting	the	relative	timing	of	colonisation	events	is	therefore	essen-
tial	 for	 effective	 conservation	 planning	 (Aben	 et	 al.,	2016;	 Battini	
et al., 2019;	Fordham	et	al.,	2013).	Reliable	predictions	can	be	used	
to	distribute	resources	for	surveillance	and	management	efficiently	
to	vulnerable	habitats	and	landscape	features	that	benefit	expansion	
(e.g.	habitat	corridors,	Akashi	et	al.,	2016;	Bottrill	et	al.,	2008;	Tilman	
et al., 2017).

Species–environment	 relationships	 are	 commonly	 investigated	
using	 correlative	 species	 distribution	 models,	 which	 empirically	
relate	 species	 distributions	 to	 environmental	 variables,	 such	 as	
precipitation	 or	 land	 use	 (Elith	&	 Leathwick,	2009).	 For	 range-ex-
panding	species,	correlative	models	can	provide	robust	predictions	
of	 the	 spatial	 distribution	of	 suitable	habitats	 in	novel	 areas	 (Elith	
et al., 2010; Lake et al., 2020).	However,	the	probability	and	timing	
of	population	spread	are	likely	to	be	influenced	by	a	range	of	other	
factors,	 such	as	demography,	physiology,	dispersal	and	species	 in-
teractions	(Dormann	et	al.,	2012).	Mechanistic	models	can	be	used	
to	 simulate	 these	 underlying	 ecological	 processes	 and	 investigate	
the	functional	relationships	between	them	and	species	distributions	
(Kearney	 &	 Porter,	 2009; McLane et al., 2011;	 Wallentin,	 2017). 
Combining	 correlative	 and	mechanistic	models	 (i.e.	 as	 in	 ‘coupled’	
or	 ‘hybrid’	models,	 ‘hybrid’	models	hereafter)	 improves	the	realism	
of	predictions	and	offers	a	powerful	tool	for	predicting	changes	in	
distribution	over	 time	 (Buckley	et	al.,	2010;	Dormann	et	al.,	2012; 
Fordham	et	al.,	2013).	Hybrid	models	can	be	 implemented	using	a	
range	of	tools,	such	as	MigClim	(Engler	et	al.,	2012),	KISSMig	(Nobis	
&	Normand,	2014)	and	demoniche	 (Nenzén	et	al.,	2012).	Typically,	
the	 output	 from	a	 correlative	model	 (e.g.	 a	 raster	map)	 is	 used	 to	
represent	 the	 environment	 in	 simulations	 of	 population	 dynamics	
and	dispersal.	This	allows	key	parameters	of	simulations	 (e.g.	 local	
carrying	 capacity)	 to	 be	 constrained	 by	 features	 of	 the	 modelled	
environment	 (e.g.	 habitat	 suitability,	Dormann	 et	 al.,	2012;	 Singer	
et al., 2018).

Environmental	 representation	 and	 model	 structure	 are	 im-
portant	 factors	 that	 influence	 the	 realism,	 data	 requirements	
and	complexity	of	hybrid	models.	Simulations	are	often	based	on	
the	representation	of	species	as	automata	that	populate	a	raster	
grid	 of	 regular	 cells	 (‘grid-based’	 models	 hereafter,	 Keshtkar	 &	
Voigt, 2016; Louca et al., 2015).	Grid-based	models	 are	 concep-
tually	simple,	generally	require	minimal	data	to	parameterise	and	
are	 computationally	efficient	 to	 implement	 (Bian,	2003; McLane 

et al., 2011).	Although	logistically	convenient,	they	are	usually	best	
suited	 to	modelling	plant	 species	 (Aben	et	al.,	2016;	Bian,	2007; 
Vuilleumier	 &	 Metzger,	 2006).	 The	 fixed	 cell	 size	 of	 the	 raster	
grid	implies	that	ecological	processes,	such	as	survival,	reproduc-
tion,	 emigration	and	dispersal,	 occur	 at	 the	 same	scale,	which	 is	
unrealistic	 for	 most	 animal	 species	 (Bocedi,	 Zurell,	 et	 al.,	 2014; 
Vuilleumier	&	Metzger,	2006;	Wallentin,	2017). Representing the 
environment	 as	 continuous	 space	 is	 also	 unsuitable	 for	 species	
that	 show	a	preference	 for	discrete	habitat	 features	 (e.g.	wood-
lands,	Bian,	2003; McLane et al., 2011).

Alternatively,	 landscapes	may	be	represented	as	a	network	of	
patches	 (‘patch-based’	 models	 hereafter).	 Generalising	 the	 con-
tinuous	 raster	 grid	 produced	 by	 a	 correlative	model	 into	 a	 land-
scape	of	patches	typically	requires	the	application	of	a	suitability	
threshold.	Neighbouring	 cells	with	 suitability	 values	 at	 or	 above	
this threshold are then aggregated to delineate discrete patches 
of	suitable	habitat	embedded	 in	a	matrix	of	 less	hospitable	envi-
ronments	 (Berec,	2002;	 Bian,	2003).	 Patch-based	models	 there-
fore	 offer	 a	more	 realistic	 representation	 of	 the	 environment	 as	
the	units	of	 the	 landscape	 (patches)	 reflect	 the	geometry,	 distri-
bution	and	composition	of	natural	 features	 (Holland	et	al.,	2007; 
Vuilleumier	&	Metzger,	2006).	Patches	also	facilitate	modelling	at	
multiple	spatial	scales.	For	example,	fine-scale	movement	between	
patches	during	dispersal	may	be	simulated	as	a	correlated	random	
walk	(e.g.	Bocedi,	Zurell,	et	al.,	2014) using high-resolution raster 
maps.	Population	dynamics	may	be	simulated	at	the	local	scale	of	
the	patch	and	patterns	of	population	spread	emerge	at	 the	 land-
scape	or	regional	scale	(Austin	&	Van	Niel,	2011;	Bocedi,	Palmer,	
et al., 2014;	Wallentin,	2017).	However,	the	requirements	of	mod-
elling	population	dynamics	can	affect	how	patch-based	landscapes	
are	 represented,	 as	 patches	 typically	 need	 to	 be	 large	 enough	
to	 accommodate	 multiple	 individuals	 (Berec,	 2002; Cavanaugh 
et al., 2014).	Applying	a	size	threshold	eliminates	patches	that	are	
unable	to	sustain	a	sub-population,	but	these	may	form	a	network	
of	suitable	habitats	that	contributes	to	the	viability	and	spread	of	
the	 total	 population	 (Fahrig,	2020;	 Tulloch,	Barnes,	 et	 al.,	2016). 
Therefore,	 inaccurate	 representation	 of	 the	 environment	 at	 the	
landscape	 scale	 can	 affect	model	 predictions	 at	 the	 broader	 re-
gional	scale	(Bian,	2007;	Bocedi	et	al.,	2012).

Currently,	there	are	limited	tools	available	to	implement	concep-
tually	simple	hybrid	models	(e.g.	KISSMig,	Nobis	&	Normand,	2014) 
that	utilise	patch-based	environments.	Parameterising	hybrid	mod-
els	and	achieving	a	balance	between	complexity	and	biological	 re-
alism	 can	 also	 be	 challenging.	 Estimating	 patterns	 of	 colonisation	
and	 extinction	 through	 explicit	 simulation	of	 population	dynamics	
typically	 requires	 detailed	 demographic	 information,	 such	 as	 sur-
vival	rates,	fecundity,	carrying	capacity,	emigration	rates	and	sex	ra-
tios,	which	are	unavailable	for	many	species	(Dormann	et	al.,	2012; 
Kearney	 &	 Porter,	 2009; Thuiller et al., 2013). Interpreting such 
complex	models	presents	a	further	challenge	for	wildlife	managers	
as	 they	 generally	 cannot	 be	 evaluated	 using	 conventional	 statisti-
cal	methods	(O'Sullivan	et	al.,	2016;	Wallentin,	2017). For practical 
applications,	there	is	a	need	for	less	data-intensive	models	that	are	
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biologically	 realistic	 but	 also	 simple	 enough	 to	be	 interpreted	 and	
used	effectively	(Addison	et	al.,	2013;	Tulloch,	Sutcliffe,	et	al.,	2016).

The	expansion	of	 the	roe	deer	 (Capreolus capreolus) population 
in	Wales,	 UK	 provides	 a	 good	 example	 of	 a	 wildlife	management	
scenario	 that	 can	 be	 informed	 by	 predictive	 modelling.	 Although	
native	 to	 Britain,	 the	 numbers	 and	 geographic	 range	 of	 roe	 deer	
have	expanded	rapidly	over	recent	decades	due	to	reduced	persecu-
tion,	afforestation	and	the	absence	of	natural	predators	(Apollonio	
et al., 2010; Linnell et al., 2020;	Ward,	2005).	While	expansion	may	
be	seen	as	a	conservation	success,	the	potential	effects	of	roe	deer	
on	 sensitive	 habitats	 (e.g.	 ancient	woodland)	 are	 a	 cause	 for	 con-
cern	 (Gill	 &	Morgan,	 2010; Linnell et al., 2020).	 Browsing	 by	 roe	
deer	has	been	shown	to	impede	tree	growth	(Bergquist	et	al.,	2009; 
Kay,	1993)	and	natural	 regeneration	 (Cutini	et	al.,	2011; Petersson 
et al., 2019),	 reduce	 ground	 flora	 biodiversity	 (Kirkby,	 2001) and 
quality	of	woodland	habitat	for	bird	species	(Gill	&	Fuller,	2007) as 
well	 as	cause	damage	 to	agricultural	 crops	 (Kjøstvedt	et	al.,	1998; 
Putman,	1986).	Roe	deer	are	abundant	throughout	most	of	England	
and	Scotland	and	are	beginning	to	recolonize	parts	of	Wales	(Croft	
et al., 2019;	Ward,	2005).	Predictions	of	population	spread	in	Wales	
are	 needed	 to	 guide	 surveillance	 and	 inform	 proactive	 mitigation	
efforts.

We	 aim	 to	 address	 this	 need	 by	 developing	 a	 hybrid	 species	
distribution	model	 that	 can	be	parameterised	and	evaluated	using	
data	commonly	available	to	wildlife	management	practitioners.	We	
demonstrate	 our	 approach	 using	 opportunistically	 collected	 pres-
ence-only	distribution	data	for	roe	deer	 in	mainland	Great	Britain.	
Records	of	species	occurrences	in	a	populated	region	(England	and	
Scotland)	are	used	to	produce	a	habitat	suitability	map	from	a	cor-
relative	species	distribution	model.	This	map	is	then	generalised	to	
represent	the	environment	in	a	hybrid	model	as	a	landscape	of	small	
patches,	based	on	the	home-range	area	of	an	individual	(an	‘individ-
ual-sized	patch’).	Basic	demographic	 and	dispersal	 information	are	
used	in	simulations	to	predict	regional-scale	patterns	of	population	
spread	as	a	function	of	the	size,	quality	and	connectivity	of	individ-
ual-sized	patches.	The	hybrid	model	is	first	evaluated	using	observa-
tions	of	historical	distribution	change	in	England	and	Scotland	and	
then	applied	to	predict	the	population	spread	of	roe	deer	in	a	novel	
region,	Wales.

To	be	an	effective	 tool	 for	management,	 it	was	 important	 that	
our	 model	 outputs	 were	 easily	 interpretable	 by	 practitioners	 and	
produced	at	a	fine	enough	spatial	resolution	to	identify	potentially	
vulnerable	landscape	features	(e.g.	individual	woodlands).	Achieving	
temporal	 accuracy	 was	 considered	 less	 critical,	 as	 predicting	 the	
relative	 timing	 of	 colonisation	 events	 (e.g.	 region	X	 is	 likely	 to	 be	
colonised	before	region	Y)	would	be	sufficient	to	set	management	
priorities	 (e.g.	 targeted	 surveillance	 in	 region	 X).	 The	 objectives	
were	to	(1)	evaluate	the	efficacy	of	representing	the	environment	as	
a	 landscape	of	 individual-sized	patches	to	predict	patterns	of	pop-
ulation	spread,	 (2)	 test	different	methods	of	generalising	a	habitat	
suitability	map	into	individual-sized	patches,	(3)	predict	the	suitabil-
ity	of	habitat	and	potential	future	range	of	the	roe	deer	population	
in	Wales	 and	 (4)	predict	 the	 relative	 timing	of	 colonisation	events	

for	roe	deer	in	Wales,	assuming	the	population	realises	its	potential	
range.

2  |  METHODS

2.1  |  Study area

The	 study	 area	 covered	mainland	 Great	 Britain	 (218,819 km2), di-
vided	into	two	regions:	England	and	Scotland	(198,569 km2), where 
roe	deer	populations	are	well	established	and	Wales	 (20,250 km2), 
where	numbers	are	much	lower	(Figure 1).	Evaluation	of	the	hybrid	
models	was	achieved	using	occurrence	data	from	an	area	within	the	
England	and	Scotland	region	where	the	expansion	of	roe	deer	has	
been	observed	from	1960	to	2016,	defined	as	the	historic	area	of	
expansion	(HAE,	60,349 km2, Figure 1).

2.2  |  Modelling approach

Our	method	consisted	of	five	steps:	(Step	1)	habitat	suitability	was	
estimated	 from	a	populated	 region	 (England	and	Scotland)	using	a	
correlative	species	distribution	model,	(Step	2)	the	resultant	habitat	
suitability	map	(HSM)	was	generalised	into	a	landscape	of	individual-
sized	patches	to	represent	the	environment	in	a	hybrid	model,	(Step	

F I G U R E  1 Map	of	the	study	area	(mainland	Great	Britain)	
showing	the	boundaries	of	the	two	regions	defined	for	the	analyses	
and	the	historic	area	of	expansion	(HAE)	within	the	England	and	
Scotland	region	that	was	used	for	evaluation	of	the	hybrid	models.

 20457758, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.10778 by B

angor U
niversity, W

iley O
nline L

ibrary on [30/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 of 18  |     BARTON et al.

3)	demographic	parameters	were	simplified	to	simulate	patch	occu-
pancy	 for	multiple	 time	 steps,	 (Step	4)	model	 evaluation	was	 per-
formed	using	historic	distribution	data	and	(Step	5)	the	model	was	
applied	to	a	novel	region	(Wales).	Predictions	of	population	spread	
were	based	on	simulations	made	using	a	mechanistic	modelling	plat-
form,	RangeShifter	(Bocedi,	Palmer,	et	al.,	2014).	RangeShifter	was	
chosen	because	it	is	versatile,	freely	available	and	does	not	require	
any	expertise	in	computer	coding	to	parameterise.	Furthermore,	it	is	
possible	 in	RangeShifter	to	 incorporate	environmental	 information	
using	multiple	independent	layers	that	describe:	patch	geometry	and	
distribution,	 patch	 quality/composition	 and	 landscape-associated	
costs	of	moving	between	patches	 (Bocedi,	Palmer,	et	al.,	2014). In 
our	approach,	these	layers	were	derived	from	the	correlative	model,	
as	described	in	the	following	sections.

2.2.1  |  Step	1.	Estimating	habitat	suitability

Habitat	suitability	was	estimated	using	a	Maximum	Entropy	(MaxEnt)	
model	implemented	with	the	‘dismo’	package	(Hijmans	et	al.,	2017) 
in	R	(R	Core	Development	Team,	2019).	The	model	was	trained	and	
tested	with	environmental	and	roe	deer	occurrence	data	from	the	
populated	 England	 and	 Scotland	 regions	 (MaxEnt	 version	 3.4.0;	
Phillips et al., 2017).

Occurrence data
Data	 on	 roe	 deer	 sightings	were	 taken	 for	 the	 period	 1953–2016	
from	 the	 National	 Biodiversity	 Network	 Gateway	 (www.	nbnat	
las. org)	 and	 regional	wildlife	 trusts	 in	Wales	 (Appendix	 S1) during 
December	 2016.	 These	were	 characteristic	 of	 presence-only	 data	
as	they	were	collected	from	a	range	of	sources	(e.g.	the	general	pub-
lic)	 and	 the	 sampling	 effort	 was	 indeterminable.	 Only	 occurrence	
records	 with	 a	 locational	 precision	 of	 100 m	 were	 considered	 for	
analysis	 (England	and	Scotland,	n = 3843).	The	records	from	Wales	
(n = 37)	were	used	for	the	evaluation	of	model	performance	 in	the	
Wales	region	only.

Environmental data
Environmental	 data	 were	 obtained	 for	 variables	 relating	 to	 land	
cover	 (UK	 Centre	 for	 Ecology	 and	 Hydrology's	 Land	 Cover	 Map	
2015;	www.	ceh.	ac.	uk/	servi	ces/	land-	cover	-	map-	2015,	 25 m	 resolu-
tion),	roads	 (Ordnance	Survey	(OS)	Meridian™	2;	www. ordna ncesu 
rvey.	co.	uk,	10 m	resolution),	terrain	(OS	Terrain	50,	50 m	resolution)	
and	climate	(Worldclim	version	1;	http://	www.	world	clim.	org/	,	1 km	
resolution).	Environmental	data	were	resampled	to	100 m	cell	rasters	
to	predict	habitat	suitability	at	a	fine	resolution,	which	was	neces-
sary	for	delineating	irregularly	shaped	individual-sized	patches	in	the	
subsequent	hybrid	model	 (Appendix	S1).	The	 final	model	 included	
six	variables	that	were	selected	from	a	candidate	list	of	33	variables	
through	a	stepwise	process	of	a	priori	selection,	collinearity	analysis	
and	complexity	optimisation	(Appendix	S1).	These	comprised	three	
distance	metrics:	distance	to	nearest	woodland	(woodland	distance),	
non-woodland	 forage	 (forage	 distance)	 and	 urban	 areas	 (urban	

distance)	as	well	as	two	variables	based	on	the	proportion	of	 land	
cover	within	a	500 m	radius	(woodland	cover	and	forage	cover)	and	
a	categorical	variable	for	land	cover	type	(land	cover,	Appendix	S1). 
Roe	deer	 are	 known	 to	occasionally	occupy	 small	 green	 spaces	 in	
predominantly	urban	areas	(Ciach	&	Fröhlich,	2019).	Therefore,	we	
used	 both	 categorical	 and	 proportional	 variables	 to	 include	 land	
cover	information	at	the	location	where	the	species	was	recorded	as	
well	as	the	proportion	of	land	cover	within	the	local	vicinity.

MaxEnt model parameterisation and validation
A	 fishnet	 grid	 of	 10 × 10 km	 cells	 was	 created	 for	 each	 region.	
Background	 points	 for	 the	 development	 and	 validation	 of	 the	
MaxEnt	 model	 were	 only	 created	 within	 cells	 that	 intersected	
presence	 locations	 (England	 and	 Scotland;	 n = 908,	Wales;	 n = 32,	
Appendix	S1).	The	MaxEnt	default	of	10,000	background	points	was	
used	for	Wales	(3.4	points/km2)	and	100,000	points	were	used	for	
England	and	Scotland	(1.2	points/km2). Linear, quadratic, hinge and 
product	feature	classes	were	used	as	well	as	the	default	value	of	1.0	
for	the	regularisation	multiplier	(Appendix	S1).

An n−1	 cross-validation	 technique	 was	 used	 to	 validate	 the	
MaxEnt	model	and	to	compare	predictive	performance	between	the	
populated and novel regions. The n−1	method	trains	a	model	on	all	
data	points	(England	and	Scotland:	n = 3843;	Wales:	n = 37)	but	one,	
then	evaluates	the	model	on	that	point	and	repeats	until	all	points	
have	been	evaluated	(Cawley	&	Talbot,	2003;	Hijmans,	2012). Model 
performance	was	estimated	based	on	 the	ability	 to	 correctly	 rank	
presences	 in	 the	 test	 data	 set	 higher	 than	 background	 points,	 as	
given	 by	 the	mean	 area	 under	 the	 receiver-operating-characteris-
tic	curve	(AUC).	The	AUC	is	a	standard	measure	of	goodness	of	fit	
that	yields	a	value	between	0.5	and	1,	where	0.5	suggests	the	model	
performs	no	better	than	random	and	1	indicates	perfect	prediction	
(Pearce	&	Ferrier,	2000).	Values	above	0.7	are	generally	considered	
an	indication	of	good	model	fit	(Hijmans,	2012).	The	use	of	the	AUC	
metric	to	evaluate	the	performance	of	correlative	models	has	been	
criticised	 (Jiménez-Valverde,	 2012;	 Lobo	 et	 al.,	 2008).	 However,	
we	feel	that	 its	use	in	this	study	was	appropriate	as	 it	facilitated	a	
direct	comparison	of	performance	with	previous	studies	 (Acevedo	
et al., 2010;	Croft	et	al.,	2017, 2019)	 that	were	carried	out	for	the	
same	species	and	over	the	same	spatial	extent.	Variable	importance	
was	assessed	using	a	jackknife	test,	which	measured	the	increase	in	
regularised	 training	gain	when	each	variable	was	used	 in	 isolation	
and	the	decrease	in	gain	when	the	variable	was	excluded	from	the	
full	model	(Phillips	&	Dudík,	2008).	The	relative	contribution	of	each	
variable	to	the	model	was	also	estimated	based	on	permutation	im-
portance,	which	is	one	of	the	metrics	reported	in	the	MaxEnt	model	
output	(Hijmans	et	al.,	2017;	Phillips	&	Dudík,	2008).

2.2.2  |  Step	2.	Generalising	the	habitat	
suitability	map

There	 is	 currently	 no	 consensus	 on	 the	 most	 effective	 method	
of	 delineating	 patches	 from	 a	 habitat	 suitability	 map	 (HSM).	
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We	 therefore	 evaluated	 four	 methods:	 (1)	 Grid,	 (2)	 Voronoi,	 (3)	
Contiguity	and	(4)	Voronoi-Contiguity	(Vor-Con)	within	the	Historic	
Area	of	Expansion	(HAE,	Figure 1).	The	same	key	steps	were	used	
in	each	method:	definition	of	patch	boundaries	(P),	summarisation	
of	the	cell	values	within	patches	(S)	and	the	application	of	a	suita-
bility	threshold	to	eliminate	patches	or	cells	considered	unsuitable	
(T,	Figure 2).	Applying	a	suitability	threshold	is	required	to	convert	
cells	 of	 the	HSM	 from	 continuous	 (i.e.	 low	 to	 high	 suitability)	 to	
binary	 (i.e.	 suitable/not	 suitable)	 values	 for	 patch	 delineation.	 A	
value	of	 0.56	was	 chosen	 as	 it	maximised	 the	 sum	of	 sensitivity	
and	specificity	 in	 the	MaxEnt	model	 (Liu	et	al.,	2005, 2016). The 
home	range	area	of	roe	deer	was	assumed	to	be	0.06–1.5 km2 with 
an	 approximate	 average	 of	 1 km2	 (Coulon	 et	 al.,	2008; Le Corre 
et al., 2008; Martin et al., 2018).	Roe	deer	are	generally	solitary,	
males	are	territorial	and	both	sexes	demonstrate	high	home-range	
fidelity	 (José	 &	 Lovari,	 2010;	 Linnell	 &	 Andersen,	 1998; Lovari 
et al., 2017).	We	therefore	chose	to	delineate	patches	based	on	the	
home	range	area	because	it	 is	biologically	meaningful	and	appro-
priate	for	identifying	relevant	landscape	features	for	management	
(e.g.	individual	woodlands).

Grid
The	Grid	method	effectively	resampled	the	HSM	at	a	coarser	resolu-
tion.	A	fishnet	grid	of	1 km2	cells	was	created	for	the	extent	of	the	
HSM	and	the	mean	value	of	HSM	cells	within	grid	cells	was	calcu-
lated.	Grid	 cells	with	 a	mean	 suitability	 below	 the	 threshold	were	
removed	(Figure 2,	row	Grid).

Voronoi
The	 Voronoi	 method	 used	 polygons	 to	 define	 patch	 bounda-
ries,	 which	 were	 irregular	 polygons	 based	 on	 Voronoi	 tessella-
tions	 (Holland	et	al.,	2007).	Point	 features	were	distributed	across	
the	 extent	 of	 the	HSM	at	 an	 approximate	 density	 of	 1	 point/km2 
(n = 60,350).	Studies	have	shown	that	roe	deer	home	ranges	gener-
ally	decrease	with	 increasing	population	density	 and	habitat	qual-
ity	(Kjellander	et	al.,	2004;	Saïd	et	al.,	2009).	To	reflect	this,	points	
were	distributed	according	to	the	probability	distribution	described	
by	the	HSM,	which	biased	their	location	towards	more	suitable	habi-
tat	(‘Create	Spatially	Balanced	Points’	tool	in	ArcGIS,	ESRI	ArcMap	
Version	 10.4.1).	 Therefore,	 point-density	 increased	 and	 patch-size	
decreased	 in	 relation	 to	habitat	 suitability.	A	minimum	distance	of	
150 m	between	 points	was	 used,	which	 equalled	 the	 approximate	
radius	of	the	lower	limit	of	the	home-range	area	(0.06 km2). Voronoi 
polygons	were	created	to	define	the	geometry	of	patches	 (‘Create	
Thiessen	 Polygons’	 tool	 in	 ArcGIS,	 ESRI	 ArcMap	 Version	 10.4.1).	
Polygons	were	converted	from	a	vector	to	a	raster	and	then	back	to	
a	vector	to	ensure	patch	boundaries	aligned	with	cells	of	the	HSM.	
The	mean	value	of	cells	within	patches	was	calculated	and	patches	
with	a	mean	suitability	below	the	threshold	were	removed	(Figure 2, 
row Voronoi).

Contiguity
HSM	cells	with	suitability	values	below	the	threshold	were	removed.	
Suitable	cells	that	neighboured	other	suitable	cells	in	any	of	the	eight	
cardinal	directions	were	considered	part	of	the	same	patch	(Figure 2, 

F I G U R E  2 Stages	of	habitat	suitability	map	(HSM)	generalisation.	Rows	represent	four	generalisation	methods	used:	Grid,	Voronoi,	
Contiguity	and	Voronoi-Contiguity	(Vor-Con).	Columns	denote	stages	in	the	generalisation	process	(see	text	for	details).	Common	to	
all	methods	are	stages	(1)	the	original	HSM,	(5)	the	mean	suitability	of	patches	and	(6)	unique	identifiers	assigned	to	each	patch.	Key	
characteristics	of	the	generalised	map	include	(P)	the	definition	of	patch	boundaries,	(S)	the	summarisation	of	cell	values	within	patches	
(i.e.	calculating	mean	suitability)	and	(T)	application	of	a	suitability	threshold	to	convert	the	HSM	from	continuous	(i.e.	low	to	high)	to	
binary	(i.e.	suitable/not	suitable)	values.	These	characteristics	may	be	defined	at	different	developmental	stages	depending	on	the	
generalisation	method	used.	Grey	panels	indicate	the	absence	of	a	stage	and	are	included	for	a	more	intuitive	comparison	of	results	at	similar	
developmental	stages	across	the	four	methods.	Row	Vor-Con,	column	3:	red	patches	were	divided	using	Voronoi	polygons	and	green	patches	
were	unmodified.
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panel	c).	Patches	smaller	than	the	lower	limit	of	the	home-range	area	
(0.06 km2)	 were	 removed	 and	 the	 mean	 value	 of	 cells	 within	 the	
remaining	 patches	was	 calculated	 (Figure 2,	 row	 Contiguity).	 This	
method	produced	patches	that	were	 larger	than	the	upper	 limit	of	
the	home-range	area	(1.5 km2).	It	was	presented	to	demonstrate	the	
importance	of	patch	size	in	the	case	study	and	to	illustrate	the	con-
ceptual	basis	of	the	Vor-Con	method.

Voronoi-Contiguity (Vor-Con)
The	 Vor-Con	 method	 included	 stages	 of	 both	 the	 Voronoi	 and	
Contiguity	 methods.	 Patches	 were	 created	 using	 the	 Contiguity	
method	 and	 grouped	 into	 the	 following	 classes	 based	 on	 the	 ob-
served	 limits	 of	 the	 home-range	 area:	 small	 (<0.06 km2),	 medium	
(0.06–1 km2)	 and	 large	 (>1 km2).	 Small	 patches	were	 removed	 and	
medium	patches	were	not	modified.	Large	patches	were	divided	into	
smaller	patches	using	Voronoi	polygons	following	the	same	proce-
dure	as	the	Voronoi	method.	Point	features	were	created	at	an	ap-
proximate	density	of	1	point	per	km2	 (n = 11,146).	The	points	were	
distributed	according	to	the	probability	distribution	described	by	the	
HSM,	 using	 only	 the	 cells	within	 the	 boundaries	 of	 large	 patches.	
Voronoi	 polygons	were	 created	 and	 converted	 from	a	 vector	 to	 a	
raster	and	then	back	to	a	vector	to	ensure	patch	boundaries	aligned	
with	cells	of	the	HSM.	The	mean	value	of	cells	within	patches	was	
calculated	(Figure 2, row Vor-Con).

Suitability	 values	 in	 the	 generalised	maps	 (Figure 2,	 column	5)	
were	scaled	by	multiplying	by	100	and	rounding	to	integers	as	a	for-
matting	 requirement	 of	 the	 RangeShifter	 software.	 Patches	 were	
also	assigned	a	unique	identification	number	(Figure 2,	column	6).

2.2.3  |  Step	3.	Simulating	patch	occupancy

Parameterising the hybrid model
The	RangeShifter	platform	was	designed	 to	use	extensive	demo-
graphic	 information	 (survival	 rates,	 fecundity,	maximum	age,	etc.)	
to	 simulate	 range	 expansions	 as	 a	 function	of	 stochastic	 interac-
tions	 between	 individuals	 and	 the	 environment	 (Bocedi,	 Palmer,	
et al., 2014).	However,	in	this	study,	we	simplified	the	modelling	of	
population	dynamics	in	RangeShifter	to	reduce	data	requirements.	
Demographic	 parameters	 were	 standardised	 and	 constrained	 by	
density	 dependence	 acting	 at	 the	 patch	 level	 so	 that	 emigration	
and	 immigration	 rates	were	dependent	on	patch	size	and	quality.	
Regional-scale	 patterns	 of	 population	 spread	 therefore	 emerged	
solely	as	a	function	of	the	size,	quality	and	connectivity	of	individ-
ual-sized	patches.

Simplifying population dynamics
The	 hybrid	model	was	 structured	 as	 follows:	 (i)	 occupied	 patches	
produced	 a	 number	 of	 dispersers	 proportional	 to	 patch	 size	 and	
quality,	(ii)	dispersers	interacted	with	the	landscape	to	transfer	be-
tween	patches	and	(iii)	dispersers	settled	in	patches	occupied	below	
carrying	capacity.	This	was	implemented	in	RangeShifter	as	an	asex-
ual	stage-structured	population	model	based	on	a	Leslie	transition	

matrix	(Bocedi,	Palmer,	et	al.,	2014). Three stage classes were con-
sidered:	 juveniles	 (<1 year	 old),	 dispersers	 (1	 year	 old)	 and	 adults	
(≥2 years	 old).	 All	 surviving	 individuals	 develop	 to	 the	 next	 stage	
class	and	only	adults	are	able	to	reproduce.	The	following	transition	
matrix	(derived	from	Bocedi,	Palmer,	et	al.,	2014) was applied:

where	 fecundity	Φ	 and	 the	 survival	probabilities	of	 juveniles	Sj, dis-
perses Sy and adults Sa	were	set	to	a	standardised	value	of	1.	The	max-
imum	age	of	adults	was	set	to	1000,	so	that	occupied	patches	were	
likely	to	remain	occupied	throughout	the	simulation	(i.e.	the	probabil-
ity	of	local	population	extinction	was	close	to	0).	Density	dependence	
acted	on	survival	and	fecundity	and	was	implemented	in	RangeShifter	
as	an	exponential	decay:

where xi	 is	a	parameter	 for	survival	or	 fecundity,	xi,0	 is	 the	maximum	
value	of	the	parameter	at	low	densities,	b	is	the	strength	of	density	de-
pendence and Nt	is	the	total	number	of	individuals	in	the	local	population	
at	time	t	 (derived	from	Bocedi,	Palmer,	et	al.,	2014,	RangeShifter	user	
manual).	The	strength	of	density	dependence	coefficient,	1/b, was also 
set	to	a	standardised	value	of	1.0.	Habitat	suitability	was	assumed	to	be	
constant	during	the	simulation	period	and	linearly	related	to	carrying	ca-
pacity.	Using	standardised	parameter	values	(Table 1) and incorporating 
density	dependence	in	the	hybrid	model	established	a	relatively	simple	
set	of	rules	for	determining	patch	occupancy.	The	model	assumes	that	
over	time	more	dispersers	are	likely	to	emerge	from,	and	settle	in,	larger,	
more	suitable	patches	than	smaller,	less	suitable	patches.

Dispersal
Dispersal	between	patches	was	modelled	as	three	discrete	phases	
of	emigration,	transfer	and	settlement.	All	 juveniles	that	survived	
and	 developed	 into	 dispersers,	 emigrated	 from	 their	 natal	 patch.	
Movement	 during	 the	 transfer	 phase	 was	 modelled	 at	 the	 finer	
scale	(0.01 km2)	of	the	scaled	HSM	using	the	embedded	Stochastic	
Movement	 Simulator	 (SMS).	 The	 SMS	 simulated	 movement	 as	 a	
series	 of	 discrete	 nearest-neighbour	 steps	 across	 a	 cost	 surface,	
similar	to	the	Least	Cost	Path	(Bocedi,	Palmer,	et	al.,	2014;	Palmer	
et al., 2011).	The	cost	surface	was	derived	by	inverting	the	scaled	
HSM	 using	 the	 formula:	 100 – values of the scaled HSM	 (‘Raster	
calculator’	 tool	 in	 ArcGIS,	 ESRI	 ArcMap	 Version	 10.4.1),	 which	
assumed	movement	 costs	 were	 inversely	 related	 to	 habitat	 suit-
ability.	Dispersers	would	therefore	be	less	likely	to	move	through	
low-quality	habitat.

The	transfer	phase	was	influenced	by	parameters	describing	the	
maximum	number	of	steps,	the	perceptual	range	(PR)	of	the	species	
and	their	tendency	to	follow	a	correlated	random	walk,	defined	as	
directional	persistence	(DP,	Table 1). The perceptual range was es-
timated	to	be	400 m	from	habitat	selection	studies	based	on	global	

⎡
⎢
⎢
⎢
⎢
⎣

0 0 Φ

Sj 0 0

0 Sy Sa

⎤
⎥
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,

(1)xi = xi,0 ∗ e
−bNt ,
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    |  7 of 18BARTON et al.

positioning	 system	 (GPS)	 telemetry	 data	 (Coulon	 et	 al.,	 2008). A 
value	of	five	was	used	for	directional	persistence	simulating	a	mod-
erate	tendency	for	the	animal	to	follow	correlated	paths	within	the	
landscape.	Dispersers	could	move	a	maximum	of	200	steps	which	
equates	 to	 a	 Euclidean	 distance	 of	 20 km	 (Debeffe	 et	 al.,	 2013; 
Wahlström	&	Liberg,	1995).

Estimating patch occupancy
Distribution	 data	 from	 1960	 to	 2016	 within	 the	 HAE	 (Figure 3) 
were	divided	into	five	10-year	periods	(1960–2009)	and	one	7-year	
period	 (2010–2016),	 described	 as	Observed	 Timesteps	 (ObsTS1-
ObsTS6).	 Simulations	were	 initialized	with	 the	 species	occupying	
patches	 within	 a	 10 km	 radius	 buffer	 around	 the	 centre	 of	 the	
observed	range	at	ObsTS1	(Figure 3;	see	Appendix	S2	for	initiali-
zation	parameters).	A	total	of	10	simulations	were	run	for	a	suffi-
cient	time	to	achieve	complete	occupation	of	all	available	patches,	
which	was	 estimated	 from	 preliminary	 trials.	 In	 each	 simulation,	
patch	occupancy	(1 = occupied,	0 = not	occupied)	was	estimated	at	
six	regular	time	intervals,	defined	as	Simulated	Timesteps	(SimTS1-
SimTS6).	Mean	patch	occupancy	at	each	SimTS	was	calculated	as	
the	mean	occupancy	from	the	10	simulations.	A	threshold	value	for	
mean	patch	occupancy	of	0.7	was	applied	 (i.e.	patches	predicted	
to	be	occupied	 in	7	out	of	10	simulations	were	considered	occu-
pied).	Application	of	a	 threshold	was	necessary	 to	convert	mean	
patch	occupancy	from	continuous	(i.e.	0	to	1)	to	binary	(i.e.	0 = not	
occupied,	1 = occupied)	values.	Cells	of	the	10 × 10 km	grid	that	in-
tersected	 occupied	 patches	 defined	 the	 simulated	 species	 range	
at	each	SimTS.

2.2.4  |  Step	4.	Model	evaluation

Performance	of	the	hybrid	models	was	assessed	based	on	the	abil-
ity	 to	 recreate	 observed	 patterns	 of	 historic	 population	 spread.	
A	 10 × 10 km	 grid	 of	 regular	 cells	was	 created	 for	 the	HAE,	which	
defined	 the	 regional	 scale	 of	 model	 evaluation.	 Minimum	 convex	
polygons	 (Meyer	et	 al.,	2017) were constructed around presences 
at	each	timestep	in	ArcGIS	(ESRI	ArcMap	Version	10.4.1).	Grid	cells	
that	intersected	polygons	were	used	to	define	the	observed	species	
range	 (ObsRange,	Figure 3a).	Although	 convenient,	 this	method	 is	
prone	to	overestimating	the	species	range	by	including	areas	of	un-
suitable	habitat	(Burgman	&	Fox,	2003).	We	therefore	also	identified	
presence	 locations	within	 the	observed	 range	 for	a	more	compre-
hensive	evaluation	of	model	performance.	Grid	cells	within	the	spe-
cies	range	at	each	timestep	that	intersected	presences	were	defined	
as	‘ObsPresences’	(Figure 3b).

Model	 performance	was	 assessed	by	 comparing	 the	 simulated	
species	 range	 to	 ObsRange	 and	 ObsPresences	 at	 matching	 time-
steps	 (e.g.	 SimTS1/ObsTS1)	 and	 calculating	 the	 True	 Skill	 Statistic	
(TSS,	Allouche	et	al.,	2006),	which	is	the	sum	of	model	sensitivity	(the	
proportion	of	predicted	presences	that	were	correct),	and	specificity	
(the	proportion	of	predicted	absences	that	were	correct),	minus	one.	
The	TSS	ranges	from	−1	to	1,	and	good	predictive	performance	is	in-
dicated	by	values	>0.4	(Allouche	et	al.,	2006; Eskildsen et al., 2013; 
Landis	&	Koch,	1977).	Overall	model	performance	was	based	on	the	
mean	of	 the	TSS	values	 from	 the	 six	 timesteps	 for	ObsRange	and	
ObsPresences.	Finally,	a	sensitivity	analysis	was	performed	to	assess	
the	impact	of	the	three	user-defined	parameters	(perceptual	range,	

TA B L E  1 Summary	of	parameters	used	in	the	RangeShifter	(Bocedi,	Palmer,	et	al.,	2014)	model.

Model parameter Symbol Estimate

Population	dynamics Strength	of	density	dependence	coefficient	(1/b) 1.0

Stage	classes	(minimum	age) Juveniles	(0)
Dispersers	(1)
Adults	(2)

Maximum	age	(years) 1000

Probability	of	reproduction 1.0

Fecunditya Ф 1.0

Survival	ratesa

Juveniles Sj 1.0

Dispersers Sy 1.0

Adults Sa 1.0

Dispersal Emigration	probability Dy 1.0

Movement	parameters

Perceptual range PR 400 m

Directional persistence DP 5

Settlement	probability

Slope	(α) Ps −100

Inflexion	point	(β) 1.0

Maximum	number	of	steps	(Euclidean	distance) 200

aParameters	constrained	by	density	dependence.
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8 of 18  |     BARTON et al.

directional	 persistence	 and	 maximum	 number	 of	 steps,	 varied	 by	
±10%)	on	the	simulated	species	ranges.

2.2.5  |  Step	5.	Applying	the	model	to	a	novel	region

Estimates	of	habitat	suitability	in	Wales	were	projected	from	the	
England	and	Scotland	region	using	the	same	set	of	environmental	
variables.	All	values	for	environmental	variables	 in	the	Wales	re-
gion	were	within	 the	 limits	of	 the	England	and	Scotland	regions.	
The	 projected	HSM	 for	Wales	was	 generalised	 into	 a	 landscape	
of	individual-sized	patches	using	the	Vor-Con	method.	It	was	also	
inverted	 to	 be	 used	 as	 a	 cost	 surface	 in	 the	 hybrid	model	 using	
the	 formula	 described	 above	 (see	 ‘Dispersal’	 section	 of	 Step	 3).	
A	 10 × 10 km	 grid	was	 created	 for	Wales.	 The	 hybrid	model	was	
parameterised	with	 the	 same	 parameter	 set	 used	 for	 the	 popu-
lated	 region	 and	 initialised	 with	 the	 species	 occupying	 patches	
within	grid	cells	that	intersected	observations	of	species	presence	
(Appendix	 S2).	 Patch	 occupancy	 was	 estimated	 at	 10	 simulated	
timesteps	(SimTS1-SimTS10).

3  |  RESULTS

3.1  |  Habitat suitability

Figure 4	shows	the	predicted	suitability	of	habitat	for	roe	deer	in	
England	and	Scotland	(Figure 4a)	and	Wales	 (Figure 4c). The area 
under	 the	 receiver-operating	 characteristic	 curve	 (AUC)	 values	
from	 n−1	 cross-validation	 indicated	 that	 the	 correlative	 MaxEnt	
model	 performed	well	 (AUC > 0.7)	 in	 both	 England	 and	 Scotland	
(0.72 ± 0.26,	 mean ± standard	 deviation)	 and	 Wales	 (0.76 ± 0.25)	
regions.	Three	variables:	woodland	distance,	land	cover	and	wood-
land cover achieved the highest regularised training gain when iso-
lated	 in	 the	 jackknife	 test	 (Figure 5)	and	had	a	combined	 relative	
contribution	of	84.5%	to	the	full	model	(Table 2). Forage distance, 
forage	cover	and	urban	distance	provided	minimal	gain	 (Figure 5) 
and	collectively	contributed	15.5%	(Table 2).	Results	from	omitting	
each	variable	showed	that	urban	distance	and	woodland	distance	
contained	 the	most	 information	 not	 contained	 in	 the	 other	 vari-
ables	(Figure 5).

3.2  |  Model performance in the 
historic area of expansion

All	 the	 hybrid	 models	 performed	 well	 in	 recreating	 patterns	 of	
population	spread	from	the	historic	area	of	expansion	(HAE),	as	in-
dicated	by	mean	TSS	values	>0.4	when	simulations	were	compared	
to	the	observed	species	range	(ObsRange)	and	to	the	distribution	
of	 species	presences	 (ObsPresences,	Table 3).	 The	observed	pat-
terns	of	population	spread	 in	the	HAE	were	most	accurately	pre-
dicted	using	the	Vor-Con	method	(Table 3).	The	Grid	and	Voronoi	
methods	also	achieved	good	spatial	agreement	between	observed	
and	 simulated	 ranges	 (Table 3).	 The	 Contiguity	 method	 was	 the	
least	 accurate	 with	 the	 lowest	 TSS	 values	 in	 all	 of	 the	 analyses	
(Table 3).	A	visual	 inspection	of	model	outputs	 indicated	that	the	
Contiguity	method	 overestimated	 the	 species	 range	 and	 showed	
lower-than-average	sensitivity	values	(a	higher	proportion	of	false	
presences,	Appendix	S2).	The	performance	of	all	models	decreased	
over	time	(Figure 6),	which	was	an	expected	result	of	the	method	
used	for	model	evaluation	(see	Section	4	and	Appendix	S2	for	more	
information).	 Predictions	 of	 the	 species	 range	 using	 the	 highest-
performing	(Vor-Con)	method	(Figure 7) were insensitive to varia-
tion	in	any	of	the	three	user-defined	parameters	(perceptual	range,	
directional	persistence	and	maximum	number	of	 steps,	 varied	by	
±10%;	Appendix	S2).

3.3  |  Range expansion in Wales

Suitable	 habitat	 patches	 (suitability	 ≥0.56)	 covered	 approximately	
26%	 (5268 km2)	 of	 the	 total	 area.	 The	 population	 is	 predicted	 to	
spread	through	the	centre	of	Wales,	initially	progressing	from	east	

F I G U R E  3 Patterns	of	observed	roe	deer	(Capreolus capreolus) 
range	expansion	in	the	historic	area	of	expansion	(HAE)	across	six	
timesteps	(ObsTS)	from	1960	to	2016	used	to	evaluate	the	hybrid	
models,	described	as	(a)	ObsRange:	the	observed	range	estimated	
from	minimum	convex	polygons	created	around	presences	and	(b)	
ObsPresences:	presence	locations	within	the	observed	range.	Inset:	
location	of	the	HAE	in	Great	Britain.
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    |  9 of 18BARTON et al.

to	west.	 The	 range	 front	 is	 estimated	 to	 advance	 in	 the	 northern	
half	of	Wales	towards	the	northeast	and	in	the	southern	half	of	the	
country	towards	the	southwest	(Figure 8,	1–4).	Once	the	population	
reaches	the	southern	coastline,	expansion	is	predicted	to	gradually	
continue	west	(Figure 8,	5–10).

4  |  DISCUSSION

We	developed	a	hybrid	species	distribution	model	 to	predict	 re-
gional-scale	patterns	of	population	 spread	 for	 an	 animal	 species	
from	 limited	 distribution	 and	 demographic	 data.	 A	 correlative,	

F I G U R E  4 Predicted	suitability	of	
habitat	for	roe	deer	(Capreolus capreolus) 
from	the	MaxEnt	model	in	(a)	England	and	
Scotland	and	(c)	Wales.	Maps	(b)	and	(d)	
show	the	locations	of	observed	presences	
in	England	and	Scotland	(n = 3843)	and	
Wales	(n = 37),	respectively	(for	data	
sources,	see	Appendix	S1).	Inset	maps	
show	the	locations	of	each	region	in	Great	
Britain.

F I G U R E  5 Importance	of	environmental	variables	to	the	predictions	of	habitat	suitability	derived	from	the	best-performing	MaxEnt	
model	for	England	and	Scotland	assessed	using	a	jackknife	test	(Elith	et	al.,	2006).
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10 of 18  |     BARTON et al.

MaxEnt	model	 (Phillips	et	al.,	2017) was constructed using pres-
ence-only	occurrence	data	for	roe	deer	in	mainland	Great	Britain.	
The	model	 estimated	 the	 suitability	of	 habitat	 from	a	populated	
region	(England	and	Scotland)	and	predicted	the	potential	future	
range	of	the	population	in	a	novel	region	(Wales).	The	habitat	suit-
ability	map	was	 then	 generalised	 into	 a	 landscape	 of	 individual-
sized	patches	using	a	range	of	methods	and	used	to	represent	the	
environment	 in	 a	 hybrid	 model	 to	make	 dynamic	 predictions	 of	
population	 spread.	 The	hybrid	model	was	 evaluated	 against	 his-
torical	species	distribution	changes	and	applied	to	predict	the	spa-
tial	patterns	and	relative	timing	of	colonisation	events	of	roe	deer	
in	Wales.

4.1  |  Habitat suitability

The	 results	 from	 the	 n−1	 cross-validation	 showed	 that	 the	
MaxEnt	model	performed	well	 in	both	the	populated	and	novel	
regions.	The	area	under	the	receiver	operating	curve	(AUC)	val-
ues	 attained	 in	 this	 study	 are	 similar	 to	 those	 reported	 from	
previous	studies	of	roe	deer	in	the	UK	by	Acevedo	et	al.	 (2010) 
(0.85),	 Croft	 et	 al.	 (2017)	 (0.64)	 and	 Croft	 et	 al.	 (2019)	 (0.9).	
Furthermore,	 our	 correlative	 model	 was	 validated	 to	 a	 spatial	
resolution	(0.01 km2)	that	is	a	100	times	finer	than	that	used	by	

Croft	et	al.	 (2017)	 (1 km2)	and	10,000	times	finer	than	Acevedo	
et	 al.	 (2010)	 and	Croft	 et	 al.	 (2019)	 (100 km2). The high resolu-
tion	of	 the	output	was	critical	 to	subsequent	modelling	stages,	
as	 it	 allowed	 the	 suitability	map	 to	 be	 generalised	 into	 a	 land-
scape	of	patches	based	on	the	home	range	area	of	an	individual	
roe	deer.	This	captured	structural	details	of	the	landscape,	such	
as	 the	 size,	 distribution	 and	 geometry	 of	 habitat	 patches,	 that	
are	 important	 in	shaping	patterns	of	population	spread	(Wilson	
et al., 2010;	 Wilson,	 Davies,	 et	 al.,	 2009;	 Wilson,	 Dormontt,	
et al., 2009).	Estimating	habitat	suitability	also	provided	insights	
into	 the	 species-environment	 relationship	 that	was	essential	 in	
characterising	 the	 environment	 for	 the	 roe	 deer,	 a	 generalist	
species,	whose	distribution	is	known	to	be	influenced	by	a	range	
of	 habitat	 types	 (Croft	 et	 al.,	 2019;	 Jepsen	 &	 Topping,	 2004; 
Kilheffer	&	Underwood,	2018).

4.2  |  Hybrid model performance

We	 evaluated	 the	 hybrid	 models	 and	 tested	 four	 methods	 of	
generalising	the	habitat	suitability	map	from	the	MaxEnt	model	
using	historic	distribution	data.	The	approach	is	similar	to	Singer	
et	 al.	 (2018)	 but	 uses	 presence-only	 rather	 than	 presence/
absence	 data,	 which	 was	 simple	 to	 implement	 and	 relatively	
straightforward	to	interpret.	The	Grid	and	Voronoi	methods	per-
formed	well	 and	achieved	a	high	 level	of	 spatial	 agreement	be-
tween	 simulated	 and	 observed	 ranges.	 In	 both	methods,	 patch	
geometry	 was	 pre-defined,	 as	 in	 traditional	 grid-based	 models	
(Bian,	2003; McLane et al., 2011).	 For	 the	 Contiguity	 and	 Vor-
Con	methods,	a	suitability	threshold	was	applied	to	the	HSM	as	
the	first	step,	which	retained	the	natural	geometry	of	landscape	
features	 (Girvetz	&	Greco,	2007).	The	model	based	on	the	Vor-
Con	method	achieved	the	best	performance	of	the	four	methods,	
whereas	the	model	based	on	the	Contiguity	method	showed	the	
worst	performance.	As	the	only	technique	that	did	not	constrain	
patches	to	the	size	of	an	individual	home	range,	the	poor	perfor-
mance	of	the	Contiguity	method	 is	 likely	due	to	a	phenomenon	
known	 as	 the	 ‘mega	 patch	 problem’	 (Cavanaugh	 et	 al.,	 2014). 

TA B L E  2 Relative	contribution	based	on	permutation	
importance	of	environmental	variables	in	the	best-performing	
MaxEnt	habitat	suitability	model	for	roe	deer	(Capreolus capreolus) 
in	England	and	Scotland.

Environmental variable
Relative 
contribution (%)

Woodland	distance 73.8

Urban	distance 11.8

Land cover 8.5

Forage cover 3.7

Woodland	cover 2.2

Forage distance 0.1

Comparator Generalisation method

True skill statistic

Mean SD Min. Max.

ObsRange Grid 0.65 0.25 0.27 0.88

Voronoi 0.67 0.20 0.35 0.88

Contiguity 0.56 0.15 0.42 0.84

Vor-Con 0.74 0.11 0.58 0.87

ObsPresences Grid 0.57 0.25 0.28 0.86

Voronoi 0.57 0.24 0.28 0.86

Contiguity 0.44 0.16 0.35 0.77

Vor-Con 0.60 0.20 0.37 0.86

Note:	Bold	text	indicates	the	highest-performing	model.	Values	given	are	the	mean,	standard	
deviation	(SD),	minimum	(Min.)	and	maximum	(Max.)	TSS	scores	across	the	six	timesteps.

TA B L E  3 Evaluation	results	for	the	
hybrid	models	showing	the	spatial	
agreement	(True	Skill	Statistic,	Allouche	
et al., 2006)	between	the	simulated	
range	and	(i)	the	observed	species	range	
(ObsRange)	and	(ii)	the	distribution	of	
presences	within	the	observed	range	
(ObsPresences)	at	six	timesteps	(ObsTS)	
for	roe	deer	(Capreolus capreolus) in the 
historic	area	of	expansion	(HAE)	from	
1960 to 2016.
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    |  11 of 18BARTON et al.

This	 issue	arises	because,	when	a	patch	 is	occupied,	 individuals	
within	 that	 patch	 are	 effectively	 omnipresent	 and	 so	 instanta-
neously	traverse	the	length	of	the	patch,	which	can	result	 in	an	
overestimation	of	spread	through	larger	patches.	This	issue	was	
resolved	in	the	Vor-Con	method	by	the	division	of	large	patches	
using	Voronoi	polygons.	Although	a	variety	of	patch-delineation	
models	 are	 available	 (e.g.	 Cavanaugh	 et	 al.,	 2014;	 Girvetz	 &	
Greco,	2007;	Kilheffer	&	Underwood,	2018),	 the	methods	used	
in	 this	 study	 were	 selected	 to	 minimise	 model	 complexity	 and	
improve	 the	 accessibility	 of	 the	model	 to	wildlife	management	
practitioners	 (Addison	et	al.,	2013;	Guisan	et	al.,	2013; Tulloch, 
Sutcliffe,	et	al.,	2016).

4.3  |  Simplifying population dynamics

Our	modelling	approach	 reduced	 the	demand	 for	demographic	data	
usually	associated	with	parameterising	a	hybrid	model	by	simplifying	

the	simulation	of	population	dynamics.	Using	generic	rules	to	describe	
population	 dynamics	 is	 conceptually	 similar	 to	 a	 stochastic	 patch	
occupancy	 or	 traditional	 grid-based	 model	 (Bian,	 2003;	 Hanski	 &	
Ovaskainen, 2003; Preisler et al., 2004).	The	key	strength	of	our	ap-
proach	is	in	the	more	sophisticated	modelling	of	dispersal,	which	was	
facilitated	by	the	RangeShifter	platform	(Bocedi,	Palmer,	et	al.,	2014). 
The	embedded	Stochastic	Movement	Simulator	(SMS)	in	RangeShifter	
enabled	us	to	predict	regional-scale	patterns	of	population	spread	as	a	
function	of	patch	characteristics	(i.e.	the	size,	geometry	and	composi-
tion	of	patches)	and	landscape	structure	(i.e.	the	distribution	and	con-
nectivity	of	patches	[Bocedi,	Palmer,	et	al.,	2014;	Palmer	et	al.,	2011]). 
The	SMS	provides	an	important	advantage	in	modelling	the	range	ex-
pansion	of	animal	species,	such	as	roe	deer,	with	dispersal	expected	
to	be	 influenced	by	key	properties	of	the	 landscape	(e.g.	 land	cover,	
elevation	etc.,	Debeffe	et	al.,	2013;	Wahlström	&	Liberg,	1995). Our 
approach	could	easily	be	applied	to	predict	distribution	changes	for	a	
wide	range	of	taxa	using	the	same	set	of	parameters	for	population	
dynamics	 (i.e.	 standardised	 values)	 and	 species-specific	 parameters	

F I G U R E  6 Results	for	the	hybrid	
models	showing	the	spatial	agreement	
(True	Skill	Statistic,	Allouche	et	al.,	2006) 
between	the	simulated	range	and	(a)	the	
observed	species	range	(ObsRange)	and	
(b)	the	distribution	of	presences	within	
the	observed	range	(ObsPresences)	
at	six	timesteps	(ObsTS)	for	roe	deer	
(Capreolus capreolus)	in	the	Historic	Area	
of	Expansion	(HAE)	from	1960	to	2016.
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12 of 18  |     BARTON et al.

for	dispersal	(perceptual	range,	directional	persistence	and	maximum	
number	of	steps,	see	Methods	section	for	details).

4.4  |  Model assumptions

When	interpreting	the	results	from	our	study	and	considering	our	
approach	for	future	applications,	it	is	important	to	understand	the	
implications	 of	 two	 key	 assumptions	 that	were	made.	 Firstly,	 to	

simplify	 the	modelling	of	 population	dynamics,	 it	was	necessary	
to	 assume	 that	 the	 roe	deer	population	would	 inevitably	 spread	
and	realise	its	potential	range	(i.e.	expansion	was	certain).	We	feel	
that	this	was	reasonable	based	on	historic	patterns	of	expansion	
in	Great	Britain	 and	Europe	and	 the	biological	 characteristics	of	
the	species.	The	environmental	conditions	in	Wales	are	similar	to	
England	 and	 Scotland,	 where	 the	 roe	 deer	 population	 is	 widely	
distributed.	 The	 rates	 of	 annual	 survival	 and	 reproduction	 are	
also	 high	 for	 roe	 deer,	 so	 local	 extinctions	 are	 unlikely	 (Cobben	

F I G U R E  7 Predicted	patterns	of	roe	
deer	(Capreolus capreolus)	range	expansion	
in	the	historic	area	of	expansion	(HAE)	
from	the	highest-performing	(Vor-
Con)	hybrid	model.	Numbers	indicate	
simulated	timesteps	from	initialisation	
(0)	to	near-total	occupation	of	suitable	
patches	(6).	The	10 × 10	cells	(occupied	
cells)	were	compared	to	ObsRange	and	
ObsPresences	for	model	evaluation	(see	
Section	2	for	details).
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    |  13 of 18BARTON et al.

et al., 2009; Davis et al., 2016;	 Flajšman	 et	 al.,	 2013;	 Gaillard	
et al., 1993;	Wäber	et	al.,	2013).	However,	it	should	be	noted	that	
a	 wide	 range	 of	 additional	 factors	 may	 influence	 the	 likelihood	
of	their	expansion	in	Wales,	such	as	human	activity,	interspecific	
interactions	 and	 climate	 change	 (Dormann	 et	 al.,	 2012;	 Pacifici	
et al., 2020).

Secondly,	 it	was	 assumed	 that	 habitat	 suitability	was	 the	 only	
factor	driving	patterns	of	population	 spread.	Predictions	of	popu-
lation	spread	from	the	hybrid	model	were	estimated	based	on	the	
limited	set	of	environmental	variables	used	to	construct	the	under-
lying	habitat	suitability	map.	Because	the	modelled	environment	was	
static,	 it	 failed	 to	account	 for	 temporal	variation	 in	variables,	 such	
as	land	use	and	climate.	Historic	temporal	variation	may	reduce	the	
accuracy	of	the	habitat	suitability	map	as	environmental	conditions	

at	the	point	of	species	presence	may	have	changed	since	the	time	of	
recording.	Predictions	of	future	population	spread	also	assume	that	
the	environment	will	remain	in	its	current	state,	which	may	be	inac-
curate.	Developing	methods	to	 incorporate	dynamic	environments	
in	 models	 of	 population	 spread	 is	 a	 subject	 of	 ongoing	 research	
(Lecocq	et	al.,	2019; Milanesi et al., 2020)	and	is	a	priority	for	future	
adaptation	of	the	model.

Validating	and	assessing	the	performance	of	simulation-based	
models	 also	 presents	 a	 methodological	 challenge	 (Zurell	
et al., 2022).	While	our	evaluation	method	quantified	the	relative	
performance	of	the	hybrid	models,	comparing	our	results	to	an	
independent	dataset	would	facilitate	more	robust	model	valida-
tion	and	assessment	of	absolute	performance.	Presence-absence	
species	distribution	data	would	be	particularly	valuable,	as	they	

F I G U R E  8 Predicted	patterns	of	roe	deer	(Capreolus capreolus)	range	expansion	in	Wales	from	the	(Vor-Con)	hybrid	model.	Numbers	
indicate	simulated	timesteps	from	initialisation	(0)	to	near-total	occupation	of	suitable	patches	(10).	The	initial	distribution	of	occupied	
patches	was	based	on	observed	presences.
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14 of 18  |     BARTON et al.

provide	 a	 similar	 level	 of	 information	 to	 the	 model	 output.	 In	
contrast,	 our	 evaluations	 were	made	 using	maps	 derived	 from	
presence-only	distribution	data	 (ObsRange	and	ObsPresences).	
ObsRange	 was	 constructed	 from	 minimum	 convex	 polygons,	
which	 most	 likely	 overestimated	 the	 species	 range	 (Burgman	
&	Fox,	2003).	 Conversely,	ObsPresences	 represented	 a	 limited	
number	 of	 locations	 within	 the	 species	 range	 where	 obser-
vations	 were	 recorded.	 Therefore,	 model	 outputs	 were	 more	
likely	 to	 be	 penalised	 for	 under-prediction	 (i.e.	 low	 specificity)	
and	 over-prediction	 (i.e.	 low	 sensitivity)	 when	 compared	 to	
ObsRange	 and	 ObsPresences,	 respectively	 (Appendix	 S2). The 
magnitude	of	penalisation	increases	at	each	timestep,	as	the	ex-
tent	of	the	predicted	range	becomes	larger	relative	to	the	total	
area,	which	results	in	a	decrease	in	model	performance	over	time	
(Appendix	S2).

High-quality	 independent	 presence/absence	 data	 are	 rarely	
available	 for	 validating	 dynamic	 models	 of	 population	 spread.	
However,	 technological	 advancements	 such	 as	 unmanned	 aerial	
vehicles	 provide	 novel	 opportunities	 to	 collect	 higher	 quality	
presence/absence	 distribution	 data	 across	 large	 spatial	 extents,	
which	 would	 facilitate	 more	 robust	 model	 validation	 (Anderson	
&	 Gaston,	 2013;	 Baxter	 &	 Hamilton,	 2018).	 Furthermore,	 high-
er-quality	 data	 would	 also	 improve	 the	 accuracy	 of	 simulating	
movement	 during	 the	 transfer	 phase	 of	 dispersal.	 Describing	
movement	using	a	cost	surface	derived	from	a	habitat	suitability	
map	assumes	movement	is	influenced	by	the	same	environmental	
variables	that	drive	species	distributions.	In	reality,	variables	such	
as	elevation	and	annual	rainfall	may	have	an	equal	effect	on	dis-
tributions	but	 are	 likely	 to	offer	different	 levels	of	 resistance	 to	
movement.	Future	studies	may	look	to	incorporate	radio	tracking	
or	global	positioning	system	(GPS)	telemetry	data	to	derive	more	
accurate	cost	surfaces	from	observations	of	movement	behaviour	
(Diaz	et	al.,	2021).

4.5  |  Roe deer in Wales

Roe	 deer	 are	 the	 most	 widespread	 deer	 species	 in	 Europe	 with	
Great	Britain	being	one	of	many	countries	where	numbers	are	 in-
creasing	rapidly	(Croft	et	al.,	2019; Linnell et al., 2020;	Ward,	2005). 
Restoring	the	population	in	Wales	is	an	important	conservation	op-
portunity.	However,	 it	 is	essential	 that	numbers	are	maintained	at	
a	 level	that	does	not	place	unsustainable	pressure	on	the	environ-
ment	(Apollonio	et	al.,	2010; Carpio et al., 2021). As roe deer have al-
ready	started	to	spread	from	England	into	Wales,	there	is	a	pressing	
need	to	proactively	develop	regional-	and	 local-scale	management	
strategies.	Detection	at	an	early	stage	of	colonisation	increases	the	
likelihood	of	successfully	controlling	population	sizes	and	decreases	
the	long-term	costs	of	management	(Aschim	&	Brook,	2019;	Guisan	
et al., 2013).	Physical	monitoring	techniques	are	usually	geographi-
cally	 limited,	 due	 to	 the	 costs	 and	 logistics	 of	 fieldwork	 and	 spe-
cialist	equipment.	At	 the	 regional	 scale,	our	model	can	be	used	 to	
prioritise	areas	for	surveillance	and	guide	early	management	actions,	

such	as	the	engagement	of	landowners,	construction	of	protective	
fencing	and	establishment	of	deer	management	groups.	If	sightings	
are	recorded	in	a	novel	area,	our	model	reveals	where	in	the	neigh-
bouring	region	populations	are	most	likely	to	spread	to.	The	use	of	
individual-sized	 patches	 in	 our	 model	 further	 benefits	 local-scale	
decision-making	by	enabling	the	identification	of	specific	parcels	of	
the	landscape	for	targeted	management.	As	surveillance	yields	more	
data	on	the	species'	distribution,	the	model	can	be	adapted	to	sup-
port	long-term	population	management.

5  |  CONCLUSIONS

Data	limitations	are	a	key	challenge	in	developing	predictive	models	
that	can	support	local	and	regional-scale	wildlife	management	strat-
egies.	Often,	decision-makers	must	allocate	resources	based	on	ex-
pert	knowledge,	coarse-level	estimates	of	species	distributions	and	
overly	 simplistic	models	 of	 population	 spread.	We	 present	 a	 rela-
tively	 straightforward	modelling	approach	 that	provides	managers	
with	 a	 cost-effective,	 evidence-based	 tool	 for	 guiding	 actions	 and	
detecting	expanding	animal	populations	at	an	early	stage	of	coloni-
sation.	Our	approach	fills	an	urgent	need	for	a	dynamic	model	that	
can	be	constructed	with	limited	data,	is	accessible	to	wildlife	manag-
ers	and	can	be	adapted	to	suit	a	wide	range	of	taxa.
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