

Can temperate forests deliver future wood demand and climate mitigation?

Forster, Eilidh; Healey, John; Styles, David

Research Square

DOI: https://doi.org/10.21203/rs.3.rs-3681726/v1

Published: 14/12/2023

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Forster, E., Healey, J., & Styles, D. (2023). Can temperate forests deliver future wood demand and climate mitigation? *Research Square, https://doi.org/10.21203/rs.3.rs-3681726/v1.* https://doi.org/10.21203/rs.3.rs-3681726/v1

Hawliau Cyffredinol / General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

· Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Supplementary Information

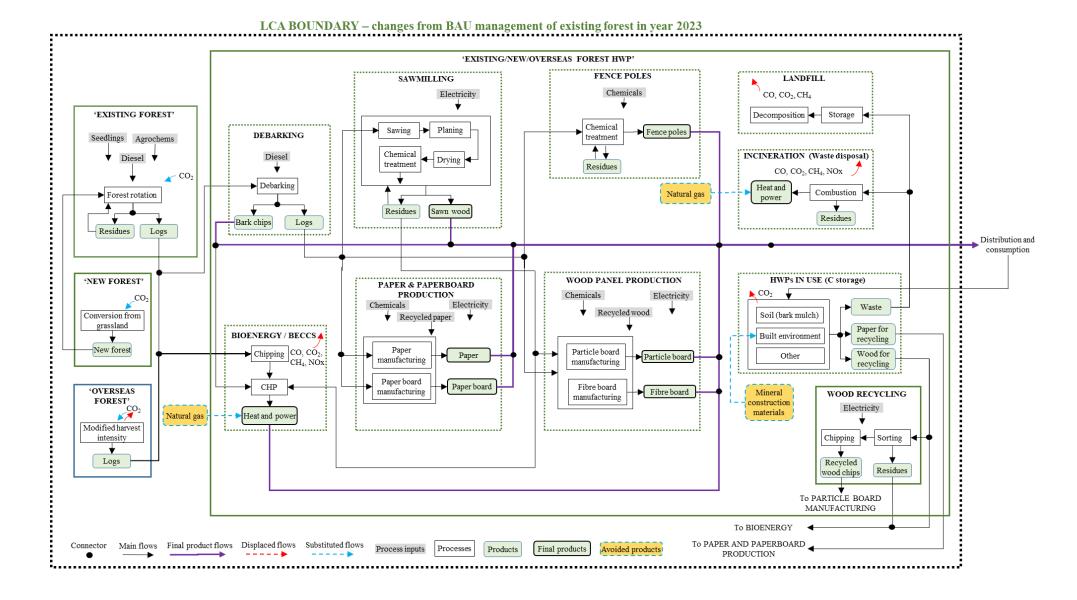
Can temperate forests deliver both future wood demand and climate-change mitigation?

Eilidh J. Forster^{*1}, David Styles^{1,2} & John R. Healey¹

¹ School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK

² School of Biological & Chemical Sciences and Ryan Institute, University of Galway, Galway, H91 TK33, Ireland

Supplementary Table 1 - Life Cycle Inventory for 'business as usual' (BAU) wood use


Inventory of key inputs and outputs for processes considered along the life cycle of forestry value chains derived from thinned forest systems over 100 years. Emissions factors (EF) and their sources are indicated. GWP is global warming potential (measured in kg CO₂e).

Process stage	Input/output/process	Activity data source Units		Thinned		EFs	EF source
				In	Out	GWP	1
Planting (1&2)	Tree seedlings	GH ²	Item(s)	774,012,298		0	Ecoinvent ¹
	15 tonne 360 Excavator	GH ²	hrs	464,407		65	Ecoinvent ¹
	Pesticides (acetamiprip)	Industry recommended	kg	25,759			Ecoinvent ¹
Forest	Harvester (diesel use)	GH ²	hrs	1,207.459		56	Ecoinvent ¹
management	Forwarder (diesel use)	GH ²	hrs	1,207,459		46	Ecoinvent ¹
	Harvested wood	CBM-CFS3 ³	m³		13,751,783		IPCC
Transport (forest to processor)	>32 t truck, EURO6	GH ²	t.km	1,909,601,142			Ecoinvent ¹
Debarking	Harvested wood	CBM ³ , GH ²	m ³	11,634,008			
	Diesel	Ecoinvent ¹	MJ	10.250,052			
	Lubricating oil	Ecoinvent ¹	kg	9,095			
	Bark chips	GH ² , FR CFs ⁵	kg	-	865,458,517	20	Ecoinvent ¹
	Debarked wood	GH ² , FR CFs ⁵	m ³		10,387,507		
Sawing	Diesel (internal transport)	Ecoinvent ¹	MJ	105,021,592	, ,		
	Electricity	Ecoinvent ¹	kWh	70,229,933			
	Lubricating oil	Ecoinvent ¹	kg	382,034			
	Debarked wood	GH ² , FR CFs ⁵	m ³	7,305,635			
	Sawnwood	JJ&S ⁴	m ³	,,505,055	4,018,099	25	Ecoinvent ¹
	Sawmill residues	JJ&S⁴	kg		1,141,285,057	25	Leonvent
Druing (of cours		Ecoinvent ¹		67 102 252	1,141,205,057		
Drying (of sawn	Electricity		kWh	67,102,253			
timber)	Sawnwood	JJ&S ⁴	m³	4,018,099			
		Assume no loss in	2			20	- · · · · · ·
	Sawnwood - dried (u=20%)	volume during	m³		4,018,099	29	Ecoinvent ¹
		drying					
Planing	Electricity	Ecoinvent ¹	kWh	34,840,025			
	Sawnwood (carcassing) dried (u=20%)	JJ&S ⁴	m³	4,018,099			
	Sawnwood (carcassing) planed	Vol loss accounted	m³		4,018,099	35	Ecoinvent ¹
	carrier (carcasonig, planea	for in 'sawing'			1,020,000	00	200
	Sawmill residues	JJ&S ⁴	kg		1,141,285,057		
Chemical	Electricity	Ecoinvent ¹	kWh	708,223			
treatment	Wood preservative	Ecoinvent ¹	kg	991,511,510			
	Sawnwood (fencing) dried (u=20%)	JJ&S ⁴	kg	688,296,981			
	Debarked wood (fence poles)	GH ² ,FR CFs ⁵	kg	303,214,529			
	Preserved wood	No vol. change	kg		991,511,510	0	Ecoinvent ¹
Particle board	Electricity	Ecoinvent ¹	kWh	345,191,890	, ,	-	
production	Heat	Ecoinvent ¹	MJ	4,050,362,146			
production	Resin	Ecoinvent ¹	kg	169,276,792			
	Debarked wood (chip)	GH ²	kg	596,750,357			
	Sawmill residues	JJ&S⁴	∿в kg	700,595,575			
	Recycled wood	FC report	∧g kg	1,108,766			
	Particle board	FR CFs ⁵	кg m ³	1,100,700	3,415,000	262	Ecoinvent ¹
Fibre board	Electricity	Ecoinvent ¹	kWh	685,822,000	5,413,000	202	LCONVENT
	•						
production	Heat	Ecoinvent ¹	MJ	4,757,462,000			
	Debarked wood (chip)	GH ² FR CFs ⁹	kg ka	596,750,357			
	Sawmill residues		kg	647,847,106	4 270 000	~~	F
	Fibre board	JJ&S ⁴ , GH ² , FR CFs ⁵	m ³	74 6 7 6 7 7 7	1,370,000	98	Ecoinvent ¹
Woodchip	Electricity	Ecoinvent ¹	kWh	71,358,404			
production (for	Lubricating oil	Ecoinvent ¹	kg	5,642			
biomass energy)	Harvested wood - 'fuel'	GH ²	kg	765,829,625			
	Recycled wood - 'biomass'	FC	kg	2,000,000,000			
	Wood chips	GH ²	kg, dry		2,765,829,625	0	Ecoinvent ¹
Biomass energy	Electricity		_				

Process stage	Input/output/process	Activity data source Units		Thinned		EFs	EF source
				In	Out	GWP	,
	Wood chips	GH ²	Kg, dr	y 2,765,829,625			Conversion biogenic C to CO ₂ eq
	Heat	Ecoinvent ¹	MJ		52,550,762,866	6 0	Ecoinvent
Avoided fossil fuels	Electricity generation (natural gas, high pressure)	Ecoinvent ¹	m³	3,146,931,268			Ecoinvent ¹
Avoided construction materials	140 mm concrete block and mortar wall replaced by timber frame wall	BRE ⁶	m²	18,779		37	Ecoinvent ¹

Supplementary Fig. 1 – Lifecycle assessment system boundary (modified from Forster et al. (2021)⁷).

We calculate the GWP impact of system changes from year 0 'baseline' BAU existing forest value chain, due to shifts in forest management and area to meet projected wood demand increases. 'Overseas' land-use change refers to changes to harvest intensity from tropical and boreal forests to make up marginal demand shortfalls from temperate forests. See Figure 1 and Table 1 in the main article for further details of modelled scenarios.

Supplementary References

- 1. Wernet, G. et al. The ecoinvent database version 3 (part I): overview and methodology. *Int. J. Life Cycle Assess.* **21**, 1218–1230 (2016).
- 2. Gresham House. Forest production data. (2018).
- Kull, S. J., Northern Forestry Centre (Canada) & Canada. Natural Resources Canada. Operational-scale carbon budget model of the Canadian forest sector (CBM-CFS3) : version 1.2, user's guide. (2016).
- 4. James Jones & Sons. Sawmill production data provided from personal correspondence. (2019).
- 5. Matthews, R. W., Jenkins, T. A. R., Mackie, E. D. & Dick, E. C. Forest Yield: A handbook on forest growth and yield tables for British forestry. (2016).
- 6. BRE. IMPACT database v5 (accessed via etool LCA software). (2018).
- Forster, E.J., Healey, J.R., Dymond, C., Styles, D. Commercial afforestation can deliver effective climate change mitigation under multiple decarbonisation pathways. *Nature Communications* 12, 3831 (2021). https://doi.org/10.1038/s41467-021-24084-x