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A B S T R A C T   

In an effort to contribute a quantitative, objective and real-time tool to proactively and precisely 
manage the factors underlying and exacerbating operational risks, this pre-registered study ex
ecutes the empirical methodology approved in the associated pre-registered report (Cornwell 
et al., 2023). The application of the Bayesian network-based approach to an Australian insurance 
company shows that integrating a financial institution’s loss and operational data in this way can 
effectively model the probability of an operational loss event within its interconnected opera
tional risk environment. Further insights and efficiencies are gained by modelling multiple 
operational loss events together, rather than in isolation. A novel two-module framework derived 
specifically for causal factors analysis from the resulting operational risk model helps to highlight 
the relative importance of causal factors, their collective effects and critical thresholds requiring 
proactivity. These insights derived from the framework are expected to be strategically valuable 
in helping an organisation design intentional and targeted controls for and monitoring of oper
ational risks. Given existing knowledge of the improvements quantitative risk management tools 
make to risk management effectiveness and subsequently firm value, the enhanced risk man
agement and the operational efficiencies this tool seeks to afford should ultimately contribute to 
driving financial performance and firm value.   

1. Introduction 

The omnipresence of operational risks across all business units within financial institutions (FIs) is resulting in substantial financial 
losses, reputational damage and adversity for customers and employees, albeit direct or indirect (e.g., Operational Riskdata eXchange 
Association, 2022). The complexity and rate of change of operational risks is not waning, so it is the effectiveness of FIs’ operational 
risk management (ORM) practices that must improve to maintain a safe and sustainable financial system for society. It is well un
derstood that proactive, preventative management from the root cause is most effective. Yet most existing ORM tools in FIs are 
reactive, relying on manual reviews of past incidents and infrequent, point-in-time qualitative risk and control self-assessments. This 
study is motivated by this discrepancy within ORM between the underlying risks’ dynamics and monitoring, as well as previous studies 
demonstrating the positive relationship between quantitative risk management tools, risk management effectiveness and firm value 
creation (Braumann, 2018; González et al., 2022; Huang et al., 2020). Please refer back to the companion pre-registered report 
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=

Integrating a FI’s loss and internal operational data to model the probability of an operational loss event 
provides a platform for quantitative causal factors analysis.

Modelling multiple operational loss events, rather than in isolation (as in H1), will enhance quantitative 
operational risk causal factors analysis.

(caption on next page) 
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(Cornwell et al., 2023, p. 6) for the full review and discussion on these empirical relationships underlying this study. To address this 
puzzle, the study provides a novel application of Bayesian networks (BNs) for an interpretable and data-driven approach to causal 
factors analysis (CFA) for operational risks. 

Our method’s feasibility and value in gaining an improved understanding of an FI’s operational risk causal factors are demonstrated 
in a real-world application with data from an Australian insurance company. In doing so, the following two hypotheses are 
investigated. 

H1. : Integrating a FI’s loss and internal operational data to model the probability of an operational loss event provides a platform for 
quantitative CFA. 

H2. : Modelling multiple operational loss events, rather than in isolation (as in H1), will enhance quantitative operational risk CFA. 

The analysis investigating these hypotheses leads to the contribution of a novel two-module framework of metrics and analyses 
specifically for CFA from an operational risk BN model. Based on prior literature (e.g., Braumann, 2018; Huang et al., 2020), the 
insights gained are expected to be strategically valuable for a FI’s ORM practices. They aim to aid the design of smart controls and 
monitoring processes that could more efficiently allocate limited resources and more closely align to risk appetite and the overall 
operational and strategic objectives. 

This paper constitutes Phase 4 of the PBFJ pre-registration publication process (Faff, 2022), executing the study outlined in our 
approved pre-registered “Engagement & Impact” report (Cornwell et al., 2023). Please refer to Cornwell et al. (2023) pre-registered 
report for the full background and motivation of the study. As per Faff (2022) guidelines, the remainder of this paper is structured as 
follows. The next section (Section 2) provides a summary of the empirical design fully detailed in the pre-registered report. Section 3 
outlines the results from the empirical analysis, followed by a discussion of the results (Section 4) and concludes with the study’s key 
contributions to research and practice (Section 5). 

2. Pre-registered report articulation 

In executing this study, the method outlined in the approved pre-registered report (Cornwell et al., 2023) was followed. Refer to the 
pre-registered report for full details on the hypothesis development, data and method. As a summary, Fig. 1 visualises the empirical 
design from data collection to hypothesis evaluation. The orange boxes note the specific design choices made and implemented 
throughout the execution of the study. 

The data provided by an Australian insurance company relates to the occurrences of 19 different types of incidents of non- 
compliance over a 2.5 year period. As planned in Cornwell et al., 2023, exploratory data analysis (EDA) and discussions with the 
insurance company’s executives led to the selection of three incident types that have a sufficient frequency of occurrence in the data set 
and are also of strategic importance to the company. The three selected for analysis in this study are:  

• ‘Incorrect Product Information’ (IPI) – providing customers with incorrect or incomplete information about products, services and 
processes;  

• ‘Failure to Follow Legislative Requirements – Other’ (FTFLRo) – failing to read the relevant legislated scripting accurately and at 
the appropriate time, not relating to call recording or payment card industry data security standards; and  

• ‘Failure to Follow Legislative Requirements – Call Recording’ (FTFLRcr) – failing to read the relevant legislated scripting accurately 
and at the appropriate time, relating to call recording. 

All three incidents relate to requirements under various regulation and state and national legislation, including the Corporations 
Act, Fair Trading Act and Australian Securities and Investments Commission (ASIC) Act, and thus if breached can lead to severe 
financial, licensing or reputational penalties for the company. 

A total of 15 discrete variables are used to model the three different incidents. They consist of:  

• 10 operational factors from the original data set, encompassing organisational structure, social or people and technical system 
factors (CallType, Country, Department, Group, Tenure, RemunerationType, Experience_callcentre, Experience_insurance, Education, 
Gender);  

• a control for time (Period), also provided in the sample;  
• an indicator for the number of co-occurrences of incidents in a call, generated from the data provided (Cooccurrence); and  
• three generated variables about each advisor’s incident history, including the number of previous incidents (Recurrence_number), 

the length of time since the most recent incident (if any) (Recurrence_time) and the type of past incidents (Recurrence_type). 

The 10 operational factors and control were selected from the initial variable screening process of all 31 operational factors in the 
data set (Appendix A1), as per the pre-registered report. Highly correlated variables were removed in this process, as well as ensuring 
the variables included relate to information that would be available and known before an incident’s occurrence and thus could be 
proactively manipulated or controlled. Breiman (2003) random forest variable importance-based variable selection process, as 

Fig. 1. Overview of empirical design of study.  
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planned in the pre-registered report, was not needed since the initial variable screening sufficiently reduced the number of variables. 
Appendices A1 and A2 detail the discretisation and scaling conducted (i.e., reducing the number of categories to improve model 
reliability and computational complexity) for the operational factors and generated variables, respectively. 

Four BNs are fit to evaluate the hypotheses – a single-risk BN for each incident of non-compliance selected (BN1-BN3) and one 
multi-risk BN modelling all three incidents together (BN4). In the BN fitting process, 5000 trained BNs are averaged, substantially more 
than the target of a minimum of 100 in the pre-registered report given the availability of powerful computing resources, which 
represents a great improvement on prior BN averaging methodologies implemented in the data-driven ORM literature. Consistent with 
the pre-registered report and as depicted in Fig. 1, the three single-risk BNs are used to evaluate “if, by applying the proposed BN 
methodology, a reasonable causal model that measures risk as a continuous probability can feasibly be built for a single operational 
loss event…[and] how [it] can be used for CFA” (H1) (Cornwell et al., 2023, p. 9). The single-risk BNs are then compared with BN4 
using several metrics and analyses to evaluate “if and how the flows of influence change by taking a systems approach, or indeed what 
efficiencies in understanding the effect of causal factors on loss events can be gained” (H2) (Cornwell et al., 2023, p. 9). 

3. Empirical analysis 

3.1. Sample descriptive statistics 

From January 2019 to June 2021 inclusive, there are data on 13,562 audited calls relating to 531 advisors. Across these, a total of 
1039 incidents relating to the three types under investigation were identified, which occur reasonably uniformly over the 2.5 year 
period. IPI are the most common incident among these, although only occur in approximately 4% of calls audited. FTFLRo and FTFLRcr 
occur approximately half as frequently, although in similar frequencies to each other (Table 1). 

Multiple types of incidents can co-occur in a single call. This happens in 18% of calls that have at least one incident (Cooccurrence). 
Among the three types of incidents of interest, the two relating to failing to follow legislative requirements most commonly co-occur 
(Table 2). 

Approximately 80% of calls involve advisors who have previously had at least one incident of non-compliance (Recurrence_number), 
regardless of if a call has a current incident associated with it. This suggests that an advisor’s past incident experience alone is not 
necessarily representative of an increased likelihood of future incidents. 

The calls in this sample predominantly relate to selling new or renewing existing insurance policies (Department), including vehicle, 
building and contents, business liability or third party and other general insurance products (CallType) (Fig. 2). In terms of the 
characteristics of advisors, gender is fairly balanced. The median tenure is approximately two years, with the distribution of advisors 
with a tenure less than two years relatively uniformly distributed (Tenure). Most advisors in the sample are renumerated on a 
performance-linked variable basis, rather than fixed salary (RemunerationType). The typical experience profile of an advisor in this 
sample is a person with at most a high school or graduate certificate or diploma level of education (Education) and no previous call 
centre (Experience_callcentre) nor insurance experience (Experience_insurance). 

3.2. Main confirmatory analysis (pre-registered) 

This section presents the results from the four BN models outlined in the pre-registered report (BN1-BN4 in Fig. 1). Figs. 3 to 6 
illustrate the structures learnt from the data for these BNs, and the BN structure formulae encoding these graphs are available upon 
request. 

The three single-risk BNs fit share similar dependence structures (Table 3). Each incident of non-compliance is directly influenced 
by Cooccurrence and indirectly influenced by Department. Across BN1, BN2 and BN3, there are slight discrepancies in the arcs that 
connect operational factors as highlighted in Fig. 7. The differences between BN1 and BN2 generally persist in BN3, such that the BN2 
and BN3 structures bear even greater resemblance (Fig. 7(b-c)). This is likely due to the high co-occurrence rate of both failure to 
follow legislative requirements incidents (Table 2) and thus similar operational risk profile. 

When all three incidents are modelled together in a single BN (BN4), the network becomes less dense (Table 3). The dependence 
structure between the operational factors changes more substantially, despite overall commonalities, as evident in Appendix B 
comparing the models’ parent-child node structures. The flows of influence to each incident in BN4 are consistent with those in the 
single-risk BNs, although extends two levels of parents beyond Department, originating from Education (Education → Group → 
Department → Coocurrence → Incident). Additionally, however, FTFLRo is found to directly influence both IPI and FTFLRcr. 

Table 4 reports the prediction accuracy measures based on Youden’s threshold for the incidents in each BN model. Youden’s index 
is used to select the optimal threshold value to be used as the predicted probability cut-off point for classifying an instance as an 

Table 1 
Frequency of incidents of non-compliance.  

Incident Type Frequency Percentage of Calls Audited 

IPI 549 4.05% 
FTFLRo 277 2.04% 
FTFLRcr 213 1.57% 
Total 1039   

N. Cornwell et al.                                                                                                                                                                                                      
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incident or non-incident (Youden, 1950). It adjusts the cut-off point to account for the highly imbalanced sample (i.e., mass of non- 
incidents compared to incidents (Table 1)), improving the models’ sensitivity to correctly predicting incidents (recall prediction ac
curacy). It results in 100% recall of all incidents from all models. Balancing this with the models’ performance in correctly predicting 
non-incidents (specificity), BN4 consistently outperforms the single-risk BNs across all incident types albeit marginally, as measured by 
the G-mean. This marginal outperformance is also reflected in the overall out-of-sample prediction accuracy measures, with BN4 
providing correct predictions for IPI incidents approximately 86% of the time and approximately 83% of the time for both types of 
failing to follow legislative requirements. 

All four BNs take less than two hours to train their final BN (i.e., step (4) in the model fitting process detailed in Fig. 1 of Section 2) 
using a Ubuntu 20.04 LTS Focal virtual machine with specifications 32 vCPUs, 64GB RAM and 30GB disk (ARDC Nectar Research 
Cloud, 2020). There is no substantial difference in the computation time for the single-risk versus multi-risk BN, despite BN4 having 
two extra nodes. 

Several typical (Koller and Friedman, 2009; Scutari, 2010) as well as some novel analyses and inferences are conducted on the BNs 
learnt in attempt to support operational risk CFA. They are presented in a novel two-module framework, consisting of (1) analyses of 
the network structure and (2) probabilistic inference queries, with specific analyses and metrics within each. Four main types of in
sights about the mechanisms of operational risks in FIs result – (i) the collection of factors that influence the probability of operational 

Table 2 
Frequency of incidents of non-compliance co-occurring in a single call.  

Occurrence of Incidents in a Single Call Co-occurrence Frequency 

IPI FTFLRo FTFLRcr 

✓ ✓  19 
✓  ✓ 14  

✓ ✓ 128 
✓ ✓ ✓ 8  

Fig. 2. Descriptive statistics summary of operational factors.  
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loss events, (ii) their relative importance, (iii) compound effects and (iv) the settings or thresholds of factors at which the probability of 
an incident changes substantially. Table 5 outlines the analyses mapped to their associated operational risk insights. The analyses are 
conducted across all BNs, however only the results from BN4 are reported for brevity since it is the same principle for BN1 to BN3. 

In BN4, we can be most confident in the presence and direction of the following arcs learnt from the data available:  

• Department → Cooccurrence (4.54 × 10− 28);  
• FTFRRo → IPI (7.34 × 10− 29); and  
• Experience_callcentre → Recurrence_type (1.99 × 10− 32). 

Table 6 summarises the NAFfe and NATe metrics for BN4. The result NAFfe = 2 for FTFLRo incidents suggests that these incidents 
are likely to influence the occurrence of other incident types, and thus have a risk contagion effect. On the contrary, the result NATe =
2 for both IPI and FTFLRcr indicate these incidents commonly occur with, or are likely to result from the occurrence of, another 
incident. Reviewing the BN structure as earlier, we identify that the other incident is FTFLRo. Furthermore, from the NAFfe metrics, it 
appears that the group which an advisor works in (Group), followed by an advisor’s level of education (Education), widely influence the 
operational environment. 

The sensitivity analyses of operational loss events’ conditional probabilities to changes in a single operational factor indicate that 
the factors have different levels of influence on the risk level, relative to their baseline unconditional probability. Summarising the 
mean and variance of the relative sensitivities for each operational factor offers a general understanding of the most influential factors, 
according to the BN learnt. As an example from BN4’s sensitivity analysis for the IPI incident node, the variance in the incident 
conditional probabilities for each different value of Group relative to the incident’s unconditional probability (i.e., pconditional − pun

conditional) is 0.0188% with an average change from the unconditional incident probability of 0.6796%. The analysis suggests Cooc
currence most substantially impacts all incidents. Group, Department, Recurrence_type and Period are also in the top five most influential 
operational factors for each incident type, as measured by the variance of the relative change in the incident probabilities. 

Fig. 3. Single-risk Bayesian network model for ‘Incorrect Product Information’ (BN1)11.  
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When the sensitivities of each individual value of an operational factor are examined, for example in graphical format (Figs. 8–10), 
a more granular understanding of how each factor influences risks can be gained. For example, overall, Period has a relatively high 
variance of the relative change in incident probabilities (as mentioned above), yet the consistent variability in the incidents’ condi
tional probabilities across the periods in Fig. 8 suggests there is likely no substantial seasonal effect that needs to be managed. This 
corresponds with the results from the earlier network structure analysis (NAFfe = 0), showing Period likely has no influence on other 
operational factors and incidents. 

Several other interesting findings that could be useful for decision-making are identified when the sensitivity analyses for each 
operational factor are reviewed in detail. Take the sensitivity analysis of Tenure illustrated in Fig. 9 for example. The probability of an 
IPI incident appears to be exacerbated during an advisor’s 13 to 18 months post-commencement. By comparison, the analysis indicates 
there is a heightened risk of FTFLRcr in the first 3 months of an advisor’s tenure, and similarly throughout the first 12 months for 
FTFLRo. 

The results from these analyses need to be interpreted with care, however, as the conditional probabilities of some categories of 
operational factors are estimated from few observations, thus less confidence should be attributed to those results. For example, in 
Fig. 10, the sample size of the observations across the three Department categories with an IPI incident are 389, 152 and 8, respectively. 
While advisors in departments other than sales or retention (Department = ′Other′) appear to have a substantially higher risk profile for 
this incident, managers are cautioned in being overly confident about this finding given the small sample size of only 8 observations 
supporting it. 

For each incident of non-compliance modelled in BN4, the operational conditions under which each incident is most likely to occur 
are found to be the same, except for the number of incident co-occurrences (Cooccurrence). IPI is more likely to occur on its own than it 
is with any other type of incident (Cooccurrence = ′1 Incident′), while FTFLRo and FTFLRcr are both more likely to occur with another 

Fig. 4. Single-risk Bayesian network model for ‘Failure to Follow Legislative Requirements – Other’ (BN2)1.  

1 The grey elliptical nodes are operational factors, and the coloured rectangular nodes are various incidents of non-compliance. 
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incident (Cooccurrence = ′2 + Incidents′). This insight from BN4 is validated by the co-occurrence summary statistics presented earlier 
(Table 2), reinforcing the validity of the BN approach for CFA. 

3.3. Additional exploratory analysis (unregistered) 

Some extra modelling and analysis of interest to investigate H2 was conducted. This includes two additional multi-risk models 
(BN5-BN6 in Table 7). They model pairs of the incidents under investigation, offering further comparisons in evaluating the effect of 
modelling different subsets versus the ‘entire’ operational risk system (BN4). Given the dependence structures among the operational 
factors differ between the single-risk BNs and BN4, it is interesting to examine if such structural differences persist when combinations 
of two risks are modelled in a single network, adding to the robustness of the study. The same pre-registered model fitting and 
evaluation process was followed for BN5 and BN6, such that these models are very minor additions to the original pre-registered 
analysis. 

The graphical structures and results for these “unregistered” models are presented in Figs. 11 and 12 and Table 8. Overall, the 
results from BN5 and BN6 do not differ substantially from those of the pre-registered models. The same dependence structures between 
the incidents in BN5 and BN6 are reflected in that of BN4 when all incidents are combined. There is slight variation in the dependence 
structure among the operational factors in BN5 and BN6 as compared to BN1 to BN4 – the parent-child relationships are generally a 
combination of those in the single-risk and BN4 models (Appendix B), reflective of the combination of the types of incidents modelled. 
BN4 remains marginally superior in terms of prediction accuracy for each incident of non-compliance. BN5 and BN6, however, take 
more than double the computational time to train, further diminishing any comparative advantage of these models. 

4. Discussion 

The following discussion reviews the results with respect to the hypotheses defined in the introduction. 

Fig. 5. Single-risk Bayesian network model for ‘Failure to Follow Legislative Requirements – Call Recording’ (BN3)1.  
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4.1. Hypothesis 1 

Overall, the analysis of the three single-risk BNs (BN1-BN3) support H1. The results (from three dimensions, as explained below) 
show that applying the BN-based methodology using historical incident and operational data produces a reasonable model that 
measures operational risks as a continuous probability with respect to changes in operational causal factors. 

4.1.1. Prediction accuracy 
Each single-risk BN reasonably accurately predicts both incidents and non-incidents, indicating the models are relatively effective 

in reflecting the relationships that exist in the Australian insurance company’s operational risk environment. It should be noted that 
risk prediction is not the primary objective of the model developed, rather exploratory analysis about the casual risk relationships is the 
focus, and hence further research involving various hold-out sets would be needed to focus on improving the predictive ability of the 
models. 

4.1.2. Network structure interpretation 
Generally, the interpretations of the flows of influence captured in each BN structure are reasonable and broadly consistent with 

discussions from experts from the insurance company that provided the data. For example, the direct influence on each incident type is 
Cooccurrence, which is not unexpected given the Cooccurrence variable itself is somewhat correlated with the incident occurrence 
variables (i.e., in cases where none of the 19 categories of non-compliance occur, Cooccurrence = 0 and any incidents being modelled 
will also be zero). It also supports past risk analysis (e.g., Embrechts et al., 2018; Hajakbari and Minaei-Bidgoli, 2014). Department also 
influences the probability of each incident, albeit indirectly, which is consistent with past literature (e.g., Embrechts et al., 2018; Wang 
et al., 2018), global operational risk standards (Basel Committee on Banking Supervision, 2006, p. 3) and also sensible with some 
internal knowledge of the company’s operations. Advisors in the sales and retention departments are specialists in their respective 

Fig. 6. Multi-risk Bayesian network model for ‘Incorrect Product Information’, ‘Failure to Follow Legislative Requirements – Other’ and ‘Failure to 
Follow Legislative Requirements – Call Recording’ (BN4)1. 
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areas (i.e., sales advisors only field sales related customer calls and vice versa for retention), while advisors in the other departments 
are generalists (i.e., they take calls relating to sales, retention and other customer service enquiries). Therefore, the heightened risk for 
advisors in the other departments (Fig. 10) is likely explained by the greater breadth of topics the customer calls may relate to and thus 
the advisors must be proficient in. In comparison, sales and retention advisors have a smaller subset of relevant information and 
processes to learn, and in turn a greater concentration of on-the-job practice. 

In evaluating the reasonableness of the network structure, limitations in terms of the data available for this study should be noted, 
with several important implications:  

• Relative benchmark – it is difficult to validate the ‘true’ accuracy of the network structures learnt from the data, given the complex 
nature of the problem and limitations of current qualitative root cause analysis methodologies (see Cornwell et al., 2023). A future 
study could contrast the causal outputs from the data-driven approach with that of traditional approaches, although it would defeat 
some of the advantages of data-driven approaches, surrounding identifying highly complex and potentially unknown in
terdependencies and circumventing the limitations of human biases and cognitive processing ability.  

• Data quantity – the amount of data available limits the level of confidence in the accuracy of both the presence and direction of arcs 
in the BNs, as measured by the arc strength (Section 3.2). It is, therefore, imperative that humans remain ‘in-the-loop’ when 
implementing the data-driven approach to CFA in an FI. Future work could investigate the role of a feedback loop to the BN training 
process upon review and interpretation of the model by domain experts (e.g., correcting illegitimate or erroneous dependencies or 
probability estimates that were possibly estimated from low sample sizes). 

Fig. 7. Comparison of single-risk Bayesian network structures (BN2 and BN3 compared to BN1). 
Red arcs indicate those not included in the comparison’s baseline model (BN1), and blue dashed arcs indicate those included in the baseline but 
absent from the current BN. 

Table 3 
Summary statistics of Bayesian network structures.  

Model Number of Nodes Number of Arcs Average Arcs per Node 

BN1 16 34 2.13 
BN2 16 34 2.13 
BN3 16 34 2.13 
BN4 18 32 1.78  
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Despite these limitations, the BNs’ fits and results are reasonable representations of the subset of the Australian insurance com
pany’s operational risk environment investigated, as per the main analysis in Section 3. 

4.1.3. CFA inference queries and analyses 
The two-module framework for operational risk CFA from BNs (Table 5) and the results from these metrics and analyses showcase 

the types of insights that can be extracted from a model. Many of these translate directly into proactive mitigation actions that could 
help to reduce the frequency and severity of incidents. For example, targeting operational factors identified with larger values of the 
NAFfe metric (i.e., those with more connections and so supposedly broader influence) potentially provides a more efficient and 

Table 4 
Prediction accuracy results (overall accuracy, G-mean, recall, specificity, AUC) for each Bayesian 
network based on Youden’s threshold. 

The five prediction accuracy measures for each model-incident pairing are reported together – 
overall accuracy (top-left) highlighted in orange, G-mean (top-right) highlighted in teal and recall, 
specificity and area under the curve (AUC) reported underneath respectively. 
Prediction accuracy values are bold for those that correspond to the model that has the best pre
diction performance for a given type of incident and as measured by a given accuracy measure. 
Any incident types that are not applicable to a model, and thus not predicted, are marked ‘-’ (e.g., 
BN1 only predicts IPI incidents and hence the prediction performances of the other types of in
cidents are not reported). 

Table 5 
Framework for operational risk causal factor analyses from Bayesian networks. 
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widespread mechanism to control the operational risk environment. 
Similarly, analysing the sensitivity of the operational loss conditional probabilities to different values of each operational factor 

seeks to highlight factors that most greatly influence the probability of an incident (i.e., valuable levers to pull), as well as particular 
operational settings that increase or decrease the incident’s probability the most (i.e., which direction to pull the levers for the desired 
outcome). This information is likely valuable to managers of FIs in developing proactive mitigation strategies that target problem areas 
to reduce the likelihood, and ultimately frequency, of non-compliance (Aven and Flage, 2020; Peters et al., 2018). This may include 
training by design or advisor rotations by design, meaning advisors’ training or rotation schedules are intentionally planned to proactively 
pre-empt foreseen issues. For example, the finding that IPI incidents and incidents relating to failing to follow legislative requirements 
have different high risk tenure profiles (Fig. 9) would suggest more comprehensive training on the process and importance of following 
legislative requirements for new advisors is needed; however, to address the heightened risk of an IPI incident for advisors with tenure 
between 13 and 18 months, greater oversight and perhaps a specific refresher training around the 12 month anniversary should be 
implemented. As mentioned, vigilance is needed when interpreting and making decisions based on the sensitivity analysis since some 
results may be inferred from small sample sizes. Future research should investigate adjusting the model and visualisations to account 
for this and to ensure the end user is appropriately informed of such cases. 

Furthermore, the MAP assignment identified for each operational loss event in a BN outlines the features of the most probable 
highest risk scenario based on the data. This information could be used by an organisation to implement targeted monitoring or offer 
additional guidance and support to advisors of a certain high risk profile, seeking to optimise the allocation of finite resources to where 
there is greatest risk or differential from risk appetite (KPMG US and The Risk Management Association, 2018). 

It is interesting to note the commonalities and differences of the influential relationships and factors identified from the various BN 
CFA analyses and metrics. Summarising these results as in Table 9 for BN4 not only highlights the importance of operational factors 
that are frequently identified as influential across the analyses (e.g., Cooccurrence, Department and Group), but also highlights factors 
that are identified as influential by a single analysis or metric (e.g., Period or Tenure). Let us also reflect for a moment on the results 
presented for Period and Tenure in Section 3.2. In the sensitivity analysis summary, Period was indicated to be highly influential, yet the 
detailed graphical depiction of the sensitivity analysis told a different story. In comparison, Tenure was only recognised as an important 
operational factor to manipulate from the detailed sensitivity analysis graph. Clearly, all analyses in the multi-faceted framework are 
needed to pinpoint different effects of different strategic value for risk managers. 

Moreover, while the network structure metrics, NAFfe and NATe, directly support the graphical depictions of a BN structure, and 
thus may seem superfluous, they are useful in focussing attention to key operational factors that warrant more detailed review. These 
simple and easy to rank metrics are expected to be particularly valuable when a larger remit of an FI’s operational risk environment is 
modelled, which may result in extremely large and complex BN structures. 

Overall, the suite of inference queries and analyses derived for BNs enables the models to be used for CFA, which should ultimately 
help to inform the intentional and targeted design of controls and mitigation. In light of past empirical analyses showing the financial 
and operational enhancements of effective risk management which is often supported by quantitative tools (Braumann, 2018; 
González et al., 2022; Huang et al., 2020), such smart control design and monitoring should facilitate closer alignment to a FI’s risk 
appetite and achievement of overall operational and strategic goals with a more efficient allocation of resources. 

Table 6 
NAFfe and NATe network structure analysis results for BN4.  

Node NAFfe NATe 

Incident FTFLRo 2 1 
IPI 0 2 
FTFLRcr 0 2 

Operational Factor Group 6 – 
Education 4 – 
Country 3 – 
Gender 3 – 
Cooccurrence 3 – 
Department 2 – 
RemunerationType 2 – 
Experience_callcentre 2 – 
Recurrence_number 2 – 
CallType 1 – 
Tenure 1 – 
Recurrence_type 1 – 
Period 0 – 
Experience_insurance 0 – 
Recurrence_time 0 – 

Any analyses that are not applicable to a node are marked ‘-’ (e.g., NATe is only calculated for loss event nodes, and hence is not 
applicable for operational factors). 
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Fig. 8. Sensitivity analysis of incident probabilities in BN4 conditional on different Period.  
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Fig. 9. Sensitivity analysis of incident probabilities in BN4 conditional on different Tenure.  
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Fig. 10. Sensitivity analysis of incident probabilities in BN4 conditional on different Department.  
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4.2. Hypothesis 2 

The main comparative analysis between the single-risk (BN1-BN3) and multi-risk (BN4) BNs supports H2, and the “unregistered” 
analysis across BN5 and BN6 compared to BN4 reinforces this. Socio-technical systems theory (Rasmussen, 1997) holds for the BN- 
based CFA approach presented. Modelling multiple operational loss events together, and in fact larger collections rather than 
smaller subsets, is more advantageous than modelling each risk in isolation, gaining both an enhanced understanding and practical 
efficiencies. 

4.2.1. CFA inference queries and analyses 
Given the structural similarities across each single-risk BN, modelling all incident types in the single model brings about efficiencies 

and a greater understanding about the operational risk environment as a whole. For example, Cooccurrence is a parent of (i.e., directly 

Table 7 
Summary of incidents of non-compliance modelled in each Bayesian network.  

Model Incidents of Non-compliance Modelled 

IPI FTFLRo FTFLRcr 

BN1 ✓   
BN2  ✓  
BN3   ✓ 
BN4 ✓ ✓ ✓ 
BN5* ✓ ✓  
BN6*  ✓ ✓  

* “Unregistered” models fit for supplementary exploratory analysis in the evaluation of H2. 

Fig. 11. Multi-risk Bayesian network model for ‘Incorrect Product Information’ and ‘Failure to Follow Legislative Requirements – Other’ (BN5).  
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Fig. 12. Multi-risk Bayesian network model for ‘Failure to Follow Legislative Requirements – Other’ and ‘Failure to Follow Legislative Requirements 
– Call Recording’ (BN6). 

Table 8 
Results for “unregistered” Bayesian network models. 

The five prediction accuracy measures for each model-incident pairing are reported together – 
overall accuracy (top-left) highlighted in orange, G-mean (top-right) highlighted in teal and recall, 
specificity and area under the curve (AUC) reported underneath respectively. 
Any incident types that are not applicable to a model, and thus not predicted, are marked ‘-’. 

N. Cornwell et al.                                                                                                                                                                                                      



Pacific-Basin Finance Journal 79 (2023) 102011

18

influences) all incidents investigated in their respective single-risk BNs, and BN4 more clearly shows this commonality. This more 
efficient representation of the operational risk environment that the multi-risk BN yields is also reinforced by the fact that it has fewer 
arcs despite having more nodes than each single-risk BN. 

Further, when multiple incident types are modelled together, the notion of incident co-occurrence, or risk contagion, is naturally 
identified. The NAFfe metric for incident nodes clearly highlights such relationships. For example, in BN4, NAFfe = 2 for FTFLRo yet is 
zero for the other two incidents (Table 6). It captures the two most common combinations of incidents co-occurring, consistent with the 
EDA results (Table 2). Such insights gained exclusively from a multi-risk perspective mean risk managers have greater visibility of the 
likely chain of losses. In practice, this should help in:  

• prioritising mitigation efforts toward areas with extensive ripple effects expected;  
• highlighting incident types with similar causal pathways and thus potentially sensible groupings for proactively addressing root 

causes of risks; and  
• identifying likely leading indicators of connected incidents for just-in-time intervention or more targeted and thus efficient 

investigation or audit methodologies. 

Contextualising these based on the incident dependencies identified in BN4, the insurance company could:  

• indirectly reduce the likelihood of IPI and FTFLRcr incidents by focussing on mitigating FTFLRo incidents; 
• design and implement strategies to address the factors found to influence the group of incidents relating to failing to follow leg

islative requirements; and  
• use the knowledge of an occurrence of a FTFLRo incident to attentively limit the likelihood of or actively audit for a FTFLRcr 

incident. 

A multi-risk BN also appears particularly advantageous for sensitivity analysis. It allows examination of the effect of changing one 
factor across all risks simultaneously, as demonstrated in Figs. 8 to 10. This enables mitigation strategies to be designed that mindfully 
balance differences in risk profiles and reduce unintended consequences (i.e., even smarter control design and monitoring). Taking the 
earlier example of the different influences of Tenure across the three incidents investigated, the analysis indicates different actions are 
needed to target the different high-risk tenures across these incidents. 

4.2.2. Prediction accuracy 
The multi-risk BN4 is consistently the most accurate at predicting each incident type, reflective of its more realistic depiction of the 

operational risk environment. Additionally, there is no notable difference in computation time between the single-risk and multi-risk 
BN in this setting. 

Overall, the evaluation of H2 demonstrates that when implementing our BN-based approach, modelling multiple operational loss 
events as a holistic system enhances quantitative operational risk CFA. 

5. Conclusion 

To the author’s knowledge, this study is the first that provides a fully data-driven approach to analysing cause-effect relationships of 
FIs’ operational risks holistically and that does so by quantifying these relationships as continuous probabilities. The BN methodology 

Table 9 
Summary of key results from operational risk causal factor analyses for BN4. 

Influential operational factor nodes common across the causal factor analyses are colour-coded and 
the most common is bold. 
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implemented on loss and operational data offers a quantitative, objective, reproducible and virtually continuously updateable tool to 
quantify and analyse an interconnected operational risk environment. The unique framework for operational risk CFA from BNs presented 
and applied uncovers insights that are expected to be strategically valuable for risk managers. A multi-risk BN that provides a holistic view 
of multiple operational risk profiles offers a more efficient, accurate and interpretable mechanism for understanding the interdependencies 
of operational factors across risks, as well as highlighting the contagion between risks. The superiority of the multi-risk perspective, as 
compared to modelling each operational risk event in isolation, is consistent with systems theory. 

As mentioned, the study is limited by the data available from the insurance company engaged, which has several implications relating to 
the level of confidence in the models’ inferences. Thus, there is scope for future work to verify the BN-based CFA approach in other contexts 
and with a greater number of operational risks, in addition to exploring alternative techniques. The current study, however, contributes a 
much-needed benchmark of a data-driven application to the field of research for future research to compare to and improve on. 

Additionally, to fully evaluate and seek assurances on the value that the BN-based CFA approach offers as a strategic decision- 
making tool, a direct empirical comparative analysis of the causal factor findings between our posited approach, traditional quali
tative CFA approaches and other established quantitative approaches should be conducted in future research. Further, a longitudinal 
study investigating the total business and economic impacts (including the direct and indirect effects resulting from incidents miti
gated, risk management process and other operational efficiencies gained as well as the financial consequences) of this data-driven 
CFA approach in practice would also be valuable to rigorously assess its commercial value. A study by Forrester Consulting (Hall, 
2022) on the total economic impact of a digital risk tool (Dataminr’s real-time alerts of external risks) evaluates these impacts, 
comparing the benefits across five dimensions (avoiding (a) disruption, (b) reputational damage, (c) remediation costs, (d) security 
labour hire and (e) labour costs associated with alternative approaches) against the costs (setup, training and licensing). However, the 
lack of data collected surrounding the true costs and effectiveness of current risk management in organisations may pose difficulties for 
such a comparison. Certainly, the data constraints for this study did not make such an analysis viable. Beyond the scholarly contri
butions, discussions with the insurance company engaged in this study to date have aided innovative idea generation about practical 
steps for the organisation to implement based on the approach’s findings. The effectiveness of the study’s engagement and impact with 
industry will continue to emerge with time and we look forward to monitoring this, in line with the impact signals presented in 
Appendix A2 of the pre-registered report (Cornwell et al., 2023). 

More broadly, this study is expected to have enduring practical relevance to FIs in the Asia-pacific region and beyond. The BN- 
based CFA approach showcased is generic and so could be applied to other organisations. When implemented within a FI, the in
sights that follow are specific to that FI, helping inform controls and monitoring by design – the intentional and strategic design of 
mitigation activities for more proactive ORM and in a more efficient manner. If such improvements in the effectiveness of ORM and 
availability of operational capacity ensue from incorporating the approach into ORM processes, it is likely the frequency of costly 
losses in an organisation will reduce. Given the existing positive empirical relationships between quantitative risk management tools, 
risk management effectiveness and firm value, the posited approach in this study could ultimately support an uplift in financial 
performance and firm value, ceteris paribus. 

Glossary  

Term Abbreviation (if 
used) 

Definition 

Bayesian network BN Within the family of probabilistic graphical models, BNs are directed acyclic graphs that concisely capture the 
conditional probabilistic dependence structure between a set of random variables, represented as nodes 
(Nagarajan et al., 2013). 

Causal factors analysis CFA Analysis conducted in the ORM assessment process to identify the causes (direct, indirect or root causes) of 
incidents (Chapelle, 2018). 

Enterprise risk 
management 

ERM “A systematic and integrated approach to the management of the total risks [operational, financial, strategic 
and external risks] that a company faces” (Dickinson, 2001, p. 360), in comparison to traditional siloed 
approach to risk management. 

Exploratory data analysis EDA The process of conducting initial analysis and investigations on a data set to gain a thorough understanding of 
patterns and anomalies, as well as checking assumptions, before formal analysis and modelling. It often 
involves summary statistics and graphical visualisations. 

Financial institution FI An organisation relating to the service of financial products or advice, including authorised deposit-taking 
institutions (or banks), insurance companies and superannuation entities. 

Financial services FS The sector of industries relating to FIs (i.e., banking, insurance and superannuation). 
Incident data  Records of event-level incidents (also referred to as loss or risk events) that occurred during core day-to-day 

operations in an organisation, including information about their timing, type and consequences. 
Operational data  The raw data generated and collected from day-to-day business activities and processes in an organisation. 
Operational risk  “The risk of loss resulting from inadequate or failed internal processes, people and systems or from external 

events” (Basel Committee on Banking Supervision, 2006, p. 144), also referred to as non-financial risk. They 
include but are not limited to legal, regulatory, compliance, conduct, technology, data, reputational and 
change management risks (APRA, 2022). 

Operational risk 
management 

ORM A continual recurring process involving identification, assessment, mitigation, monitoring, communication 
and reporting of operational risks to avoid the occurrence of incidents or near-misses (Chapelle, 2018). 

Risk and control self- 
assessments 

RCSA The principal operational risk assessment tool for FIs to evaluate the likelihood and impact of operational risks, 
as well as assess control effectiveness (Chapelle, 2018). 

(continued on next page) 
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(continued ) 

Term Abbreviation (if 
used) 

Definition 

Risk matrix  A two-dimensional matrix (typically 4–6 square) used to rank the likelihood of risks occurring on one axis and 
the severity of their consequences on the other, leading to an overall risk rating at their intersection.  
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Appendix A. Variables 

A.1. Operational factor variables 

The following table details the 31 operational factors in the data provided by the Australian insurance company. The rows 
highlighted in blue indicate those variables selected for inclusion in the BN models (corresponding to the ‘Selected’ column). 
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A.2. Generated variables 

The following table details the additional 4 variables that were generated from the data provided by the Australian insurance 
company. The rows highlighted in blue indicate those variables selected for inclusion in the BN models (corresponding to the ‘Selected’ 
column).  

A.3. Bayesian Network Model Parent-Child Node Structures 

The following table compares the parent-child relationships across the six BN models fit. The contents of the table are the parent 
nodes for each respective child node in the header row. ‘-’ indicate incident variables not modelled in the BN, whereas blank cells 
indicate there are no parent nodes to the variable (i.e., root nodes). 
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* “Unregistered” models fit for supplementary exploratory analysis in the evaluation of H2.  
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