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Abstract 18 

Plant invasion markedly alters carbon and nitrogen cycles, and possibly influences the emission of 19 

greenhouse gases from wetlands in different climatic zones. In this study, data pertaining to 207 20 

paired observational cases from studies on global ecosystems were retrieved for evaluating the 21 

effect of non-native plant invasion on the emission of CH4 and N2O from tropical/sub-tropical (TS) 22 

and temperate (TE) wetlands. The mean CH4 emission rate from TS wetlands increased 23 

significantly from 337 to 577 kg CH4 ha–1 yr–1 in sites populated with native and invasive plants, 24 

respectively, while that of TE wetlands increased from 211 to 299 kg CH4 ha–1 yr–1 in sites 25 

populated with native and non-native plants, respectively. The increase in CH4 emissions in 26 

invaded sites was possibly attributed to the increases in plant biomass, soil organic carbon (SOC), 27 

and soil moisture (SM). Plant invasion did not affect the emission of N2O from TS wetlands, but 28 

reduced the emission of N2O from TE wetlands, and this was primarily attributed to the depletion 29 

of NH4
+ and NO3

- in soils and the lower soil temperature in temperate regions. Plant invasion 30 

increased the global net CH4 emissions from natural wetlands by 10.54 Tg CH4 yr1, which varied 31 

across different climatic zones. The net increase in CH4 emissions was 9.97 and 0.57 Tg CH4 yr1 in 32 

TS and TE wetlands, respectively. Our finding not only highlights that plant invasion exhibited 33 

strong stimulation effect on CH4 emission in TS wetland and suppression effect on N2O emission in 34 

TE wetland but also improves our current understanding of major controlling factors, which is vital 35 

to producing curving mechanisms.  36 

 37 
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 39 

1. Introduction 40 

Natural wetlands are a major contributor to carbon sequestration, and it is estimated that they play a 41 

crucial role in atmospheric CO2 fixation (Schlesinger and Bernhardt, 2013). However, wetlands are 42 

the largest source of CH4 worldwide, and contribute 100 to 231 Tg CH4 annually (IPCC, 2007; 43 

IPCC, 2013). The proportion of CH4 emitted from the northern, temperate, and tropical wetlands is 44 

estimated to be 34%, 5%, and 60%, respectively (Wang et al., 1996). Cao et al. (1996) reported 45 

that the annual emission of CH4 from natural wetlands is 92 Tg CH4, of which the tropical wetlands 46 

release 51.4 Tg CH4. Bartlett and Harriss (1993) estimated that the global CH4 emission of wetlands 47 

is 109 Tg CH4 yr‒1, and tropical and temperate wetlands account for 61% and 5% of the total 48 

emission, respectively. Previous studies have reported that the CH4 fluxes of tropical wetlands are 49 

generally higher than those of temperate wetlands (Frank and Hein, 2021), which is possibly 50 

attributed to the warmer conditions and longer growth season in tropical regions (Hendriks et al., 51 

2007; Jungkunst and Fiedler, 2007). The natural wetlands are presently under immense pressure 52 

with a dramatic increase in global consumption and the proliferation of invasive plants (Pegg et al., 53 

2022), which represents a major global challenge in natural ecosystems with the potential to 54 

significantly modify greenhouse gas (GHG) emissions (Mantoani et al., 2021).  55 

Numerous previous studies have found that plant invasion alters CH4 and N2O emissions in 56 

natural ecosystems (Cheng et al., 2007; Gao et al., 2019; Qiu, 2015; Yao et al., 2023). Yuan et al. 57 
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(2015) reported that the invasion of Spartina alterniflora increased the emission of CH4 in a coastal 58 

salt marsh in China by 57–505%. The introduction of Phragmites australis into a temperate tidal 59 

marsh in Korea populated by the native Suaeda japonica increased the emission of CH4 by up to 60 

2000% (Kim et al., 2020). Another study reported that the invasion of Typha × glauca in a 61 

temperate coastal marsh in USA increased the emission of CH4 by more than 50-fold compared to 62 

that induced by the native species, Carex stricta (Lawrence et al., 2017). Gao et al. (2019) showed 63 

that the invasion of S. alterniflora in the mangrove wetlands of China increased the emission of 64 

N2O by 2500%. However, Grand and Gaidos (2010) observed that the emission of CH4 from a 65 

tropical wetland in USA did not increase following plant invasion, and similar observations were 66 

reported by Jiang et al. (2009) in a sub-tropical wetland in China. Additionally, some studies have 67 

reported that the invasion of plant species reduced the emission of CH4 and N2O in tropical and 68 

sub-tropical wetlands (Sheng et al., 2021; Yin et al., 2015; Zhang et al., 2018). Bezabih et al. (2022) 69 

estimated that plant invasion increased CH4 emissions in wetland ecosystems by 68% and N2O 70 

emissions in grassland ecosystems by 78%. A recent meta-analysis by Yao et al. (2023) found that 71 

plant invasion in natural ecosystems enhanced CH4 and N2O emissions by 94.6% and 27.3%, 72 

respectively. As for regions, the net increase in CH4 emissions from S. apetala invaded mangrove 73 

wetland in Hainan Island, China, was 0.04 Tg CH4 yr−1 and accounts for 2.5% of the global 74 

mangrove wetland CH4 emission (1.6 Tg yr−1) (He et al., 2019). Gao et al. (2019) estimated that the 75 

total N2O emission from invasive Spartina alterniflora wetlands in China covering 55181 ha was 76 
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approximately 0.06 Tg N2O yr−1, and accounts for 0.60% of the global N2O emission (9.6–10.8 Tg 77 

N2O yr−1) (IPCC, 2013).  78 

Plant invasion altered several biotic and abiotic factors, including soil properties (Stefanowicz 79 

et al., 2016; Tong et al., 2012; Xiang et al., 2015; Zhang et al., 2010; Zhou et al., 2015) and plant 80 

biomass (Su et al., 2020; Zhang et al., 2010; Zhou et al., 2015). Plant invasion can modify soil 81 

properties by increasing the deposition of litter and rhizodeposits (Liao et al., 2008; Ravichandran 82 

and Thangavelu, 2017). It has been reported that the quantity and chemical quality of litter and 83 

rhizodeposits differ among species (Chen et al., 2015; Zhu et al., 2020). Invading plants can also 84 

modify fundamental ecosystem processes, including the decomposition of organic matter and 85 

nitrogen fixation (Hawkes et al., 2005; Liao et al., 2008; Rice et al., 2004; Stefanowicz et al., 2016; 86 

Tharayil et al., 2013). Invading plants can affect the structure of vegetation by displacing the native 87 

species and altering the rates and patterns of nutrient cycling (D'Antonio and Vitousek, 1992; 88 

Ravichandran and Thangavelu, 2017), which alter the composition of soil microbes (Windham and 89 

Ehrenfeld, 2003). In turn, soil microbes are one of the key components that facilitate or inhibit plant 90 

invasion (Beckstead and Parker, 2003; Inderjit and van der Putten, 2010; van der Putten et al., 91 

2013). 92 

Plant invasion considerably increases the aboveground biomass (AGB), belowground biomass 93 

(BGB) (Lunstrum and Chen, 2014; Su et al., 2020; Zhang et al., 2010), and the diversity of soil 94 

microbes (Stefanowicz et al., 2016). A previous study by Angeloni et al. (2006) demonstrated that 95 

the invasion of the cattail species, Typha × glauca, nearly doubled the aboveground biomass (AGB) 96 
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and belowground biomass (BGB) of sites in the temperate coastal wetland of the USA compared to 97 

those of sites populated with native sedges, rushes, and bulrushes. In Yancheng Natural Reserve in 98 

China, plant carbon storage following S. alterniflora invasion was increased by 16.9 and 1.4-fold 99 

compared with native Suaeda salsa and P. australis, respectively (Zhou et al., 2015). The increase 100 

in biomass production directly increases the organic carbon input of soils in the form of exudates 101 

and root debris for methanogenesis (Christensen et al., 2002). Zhang et al. (2019) reported that the 102 

increase in the SOC of a wetland populated with S. alterniflora was 5-fold higher than that of a 103 

wetland occupied by the native S. salsa. Xu et al. (2014) and Xiang et al., (2015) estimated that the 104 

invasion of S. alterniflora increased the SOC in a coastal wetland in China by 3-fold compared to 105 

that of the native plants, S. glauca and Salix glauca, and depended on the time of invasion (Zhang et 106 

al., 2010b). The increase in SOC due to an increase in plant biomass also provides more substrates 107 

for the production of CH4 (Christensen et al., 2002; Zhao et al., 2017).  108 

Up to date, however, there has been less work on the net GHG emissions induced by plant 109 

invasion at the global climatic zone level. In this study, the emission of CH4 and N2O from natural 110 

wetlands populated by invasive and native plants in different climatic zones was evaluated at the 111 

global level based on published peer-reviewed studies. The present study aimed to evaluate the 112 

effect of the invasion of non-native plants on the emission of CH4 and N2O in different climatic 113 

zones and identify the key factors that affect the annual emission of CH4 and N2O following plant 114 

invasion in different climatic zones. The study also aimed to estimate the effects of plant invasion 115 

on the net global budgets of CH4. We hypothesized that plant invasion would more efficiently 116 
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increase CH4 emissions in tropical/sub-tropical wetlands than in temperate wetlands due to higher 117 

temperatures and a longer growth season. 118 

 119 

2. Materials and Methods  120 

2.1. Data retrieval  121 

Scientific articles and reports in the Web of Science, Google Scholar, and China National 122 

Knowledge Infrastructure, published between December 1999 and May 2022, were searched in this 123 

study. The keywords used for the literature searches were “plant invasion” OR, “invasive” AND 124 

“non-invasive”, “native” AND “non-native plant”, “exotic” AND “non-exotic” plant species, 125 

“effects” OR “impacts” on “greenhouse gases”, and “CH4” OR “N2O”. A systematic review was 126 

conducted to avoid bias during data retrieval using the criteria described hereafter. Field observation 127 

studies not involving field manipulation or experimental studies at sites populated with invasive and 128 

native plants were included. Studies in which each of the treatments included at least three 129 

replicates were included. Studies in which the period of measurement covered one or more growth 130 

seasons were included. Studies in which additional treatments, including fertilization, burning, and 131 

warming were excluded. Studies addressing the effects of expanding or colonizing native species, 132 

such as woody or shrub encroachment were excluded. The densely invaded sites were considered 133 

for studies in which a site populated with native plants was compared to sites populated with 134 

varying densities of invasive species. Lastly, if a paper included data from multiple sites, the data 135 

from each site was regarded as separate and independent. 136 
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The Web Plot Digitizer tool (version 3.11; https://automeris.io/WebPlotDigitizer) was used to 137 

extract the data presented in the figures and plots in the articles. Both manual and automatic 138 

data-extraction algorithms were used after calibration with the corresponding values from the plots 139 

and images. Alternative descriptive sources, including the global invasive species database (GISD; 140 

http://www.issg.org), were used if the study did not specify whether the plants were invasive or 141 

native to the case study area. The data pertaining to CH4 and N2O fluxes were converted to kg ha−1 142 

yr−1. Auxiliary information, including the location (longitude, LON and latitude, LAT), climatic 143 

data (annual mean air temperature, MAT and mean annual precipitation, MAP), plant biomass, 144 

plant height, and soil properties such as soil pH, SOC, total nitrogen (TN), bulk density (BD), 145 

contents of NO3
− and NH4

+, soil temperature (ST), and soil gravimetric water content (SM), were 146 

additionally obtained. The mean values, standard deviation (SD), and sample sizes of all the 147 

variables in ecosystems populated with invasive and native species were retrieved. In c cases where 148 

the articles reported the standard error (SE) of the variables instead of the SD, the SD was 149 

determined using the formula: SE ×√𝑛, where n represents the sample size. However, in case where 150 

the values of SD or SE were not reported, the SD was calculated as 1/10th of the mean (Luo et al., 151 

2006). The authors of the relevant studies were contacted to obtain any useful information not 152 

published in the articles. If the authors were unable to provide the requested information, the data 153 

pertaining to soil properties were retrieved from the Harmonized World Soil Database, version 1.2 154 

(FAO, 2012), based on the geographic coordinates of the study location. Data pertaining to the 155 

atmospheric deposition of nitrogen were retrieved from global nitrogen deposition maps (Ackerman 156 
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et al., 2018). Data pertaining to the environmental factors were also extracted from published 157 

studies performed at the same experimental sites at which the CH4 and/or N2O fluxes had been 158 

measured. Data pertaining to the GHG fluxes and environmental variables were subjected to outlier 159 

detection using a simple empirical-based method in which values higher than 2 × SD or lower than 160 

the mean values were excluded (Williams and Baker, 2012). 161 

 162 

2.2. Data organization and estimation of net CH4 and N2O emissions induced by plant invasion 163 

Owing to spatial variations in the CH4 and N2O fluxes across wetland ecosystems in different 164 

climatic regions, the dataset was subcategorized into (1) tropical/sub-tropical (TS) wetlands and (2) 165 

temperate (TE) wetlands. The datasets obtained from tropical and sub-tropical regions were merged 166 

to increase the number of paired observational cases. The net emission of CH4 induced by plant 167 

invasion was estimated for each species by calculating the difference in CH4 fluxes between 168 

wetland sites populated with non-native plants and those occupied by native species. The fluxes 169 

were subsequently multiplied by the area invaded by each species. The regional and net global CH4 170 

emissions were then summed for each species based on their global distribution and geographic 171 

locations. However, net global N2O emission estimations were not included in our present 172 

estimation because of the paucity of data about the area coverage of invasive plants that were 173 

considered for N2O measurements in each region. 174 

 175 

2.3. Data analyses 176 
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The effect size of the CH4 and N2O fluxes from wetlands in different climatic regions was estimated 177 

using Hedge’s d (RRd) method. Hedge’s d is a unit-free index that ranges from −∞ to +∞ (Qiu, 178 

2015). This index weights cases according to the number of replicates, and the inverse of their 179 

variance is calculated as Xt/Xc < 0, where Xt and Xc represent the mean values of GHG fluxes 180 

from sites populated with invasive and native species, respectively (Wu et al., 2022). The index is 181 

not biased by small sample sizes or unequal variances (Koricheva et al., 2013). Large differences in 182 

the flux of GHGs between sites populated by invasive species and those occupied by native species 183 

indicate a greater effect size. Additionally, zero d-values indicate no difference, whereas positive 184 

and negative d-values indicate a general increase and decrease in the response variable, 185 

respectively, following plant invasion (Qiu, 2015). The effect of plant invasion on environmental 186 

factors was evaluated using natural logarithm-transformed response ratios (RRs). The RRs for a 187 

given case study were calculated using the following formulas: 188 

RR = ln(Xt ∕ Xc)                                                          (1) 189 

RRd = (𝑋𝑡−𝑋𝑐)  J

√(𝑁𝑡−1)𝑆𝑡2+(𝑁𝑐−1)𝑆𝑐2
𝑁𝑡+𝑁𝑐−2

                                                    (2)   190 

where Xt and Xc represent the mean values of the selected GHG fluxes or environmental variables in 191 

sites populated with invasive and native species, respectively; Nt and Nc represent the sample sizes 192 

obtained from sites populated with invasive and native species, respectively; and St and Sc represent 193 

the corresponding SDs of sites populated with invasive and native species, respectively. J is a bias 194 

correction factor that was used to remove the small sample-size bias of the standardized differences 195 

of means. The value of J was calculated using the following formula: 196 
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 𝐽 = 1 − 3
4(𝑁𝑡+𝑁𝑐−2)−1

                                                          (3). 197 

The RRs of the environmental factors, plant parameters, soil properties, and RRd of the GHG 198 

fluxes were calculated using the rma.mv function in the “metafor” package of R, version 4.2.1 199 

(Balduzzi et al, 2019). A random-effects model was preferred because it accounts for the random 200 

component of variation in effect sizes among studies besides sampling error (Castro-Díez et al., 201 

2014). The relationships of the environmental factors, plant parameters, and soil properties with the 202 

weighted RRd of CH4 and N2O fluxes following plant invasion in different climatic regions were 203 

calculated using the OriginPro 2022b software. The violin and box plots of plant biomass and CH4 204 

and N2O fluxes in response to plant invasion in wetland ecosystems across different climatic 205 

regions were prepared using OriginPro 2022b. The relative importance of the environmental factors, 206 

plant parameters, and soil properties that affect the CH4 and N2O fluxes following plant invasion 207 

was determined by random forest analysis. The Random Forest algorithm is a machine learning 208 

technique that can handle both linear and nonlinear classification and regression problems with 209 

non-parametric data. This algorithm is robust to outliers and missing values, enabling the 210 

integration of complex data from various sources in high-dimensional spaces without overfitting 211 

(Hengl et al., 2015; Guo et al., 2015). For our study, the total number of observations used to 212 

predict CH4 emissions in TS and TE wetlands was 104 and 82, respectively, while 36 and 10 213 

observations were used to predict N2O emissions in TS and TE wetlands, respectively. Any missing 214 

values for soil and environmental factors were imputed by using the nearest neighbor algorithm 215 

(Beretta and Santaniello, 2016; Troyanskaya et al., 2001; Tang and Ishwaran, 2017). Plant 216 
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characteristics, including aboveground biomass, belowground biomass, stem density, and plant 217 

height were not included in the random forest model and SEM because of data scarcity. Finally, the 218 

predictors were ranked in order of importance according to the percent increase in mean square 219 

error (%IncMSE), and negative values of %IncMSE indicated a lack of importance (Liaw and 220 

Wiener, 2002). Additionally, structural equation model (SEM) was used to assess the multivariate 221 

effects of environmental factors and soil properties on regulating the responses of CH4 and N2O 222 

fluxes to invasive plants in TS and TE wetlands. We conducted a correlation matrix, and then 223 

“lavaan” packages of R were used for SEM. Maximum likelihood estimation was used to fit the 224 

SEM, and the model was evaluated based on the modification indices and goodness of fit after 225 

stepwise exclusion of non-significant paths. Fit indices including the degree of freedom (df), 226 

chi-square, probability level (p > 0.05), comparative fit index (CFI) closer to 1.0, and root mean 227 

squared error of approximation index (RMSEA < 0.05) were used to evaluate the adequacy of the 228 

SEM (Grace et al., 2012; Schermelleh-Engel et al., 2003; Zhou et al., 2022). 229 

 230 

3. Results 231 

3.1. Effects of plant invasion on the biomass of wetland plants and soil properties 232 

Plant invasion significantly increased (p < 0.05) the AGB and BGB of the plants by 229% and 29%, 233 

respectively, in TS wetlands, and by 142% and 48%, respectively, in TE wetlands (Fig. 1). Plant 234 

invasion in TS wetlands significantly increased (p < 0.05) the SOC, TN, soil NH4
+ content, and soil 235 

moisture (SM) content by 68%, 106%, 38%, and 17%, respectively, reduced soil bulk density (BD) 236 
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and soil NO3
- content by 9% and 17%, respectively (Fig. 2). Plant invasion significantly increased 237 

(p < 0.05) the soil TN by 18%, but did not affect SOC. In contrast, plant invasion decreased soil 238 

NO3
- and NH4

+ by 114% and 76%, respectively, in TE wetlands. Additionally, plant invasion 239 

increased SM in TE wetlands by 5% but decreased BD by 9%.  240 

 241 

3.2. Effect of plant invasion on CH4 and N2O fluxes 242 

The findings revealed that plant invasion significantly increased (p < 0.05) CH4 fluxes by 62% in 243 

global wetland ecosystems (Fig. 3). The mean CH4 flux in TS wetlands populated with native plants 244 

was 337 kg CH4 ha–1 yr–1, which increased significantly by 71% to 577 kg CH4 ha–1 yr–1 following 245 

the invasion of exotic plants (Fig. 4). The invasion of non-native plants in TE wetlands increased 246 

CH4 fluxes from 211 kg CH4 ha–1 yr–1 in sites populated with native plants to 299 kg CH4 ha–1 yr–1 247 

in sites occupied by invasive species; however, the differences in CH4 fluxes were not statistically 248 

significant. In contrast, there was no apparent difference in N2O fluxes following plant invasion in 249 

TS wetlands. However, plant invasion significantly reduced N2O fluxes in TE wetlands from 1.28 250 

kg N2O ha–1 yr–1 in sites populated with native plants to 0.60 kg N2O ha–1 yr–1 in sites occupied by 251 

invasive species (Fig. 4). 252 

 253 

3.3. Factors affecting the difference in CH4 and N2O fluxes following plant invasion in different 254 

climatic zones 255 
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There was a significant positive linear relationship between the weighted response ratios (𝑅𝑅𝑑) of 256 

CH4 fluxes and nitrogen deposition (ND), the RR of SOC, the RR of TN, the RR of AGB, the RR 257 

of plant height, and the RR of SM in TS wetlands (Fig. 5). However, the 𝑅𝑅𝑑 of CH4 fluxes 258 

exhibited a negative linear relationship with the RR of soil NO3
-. The 𝑅𝑅𝑑 of N2O fluxes exhibited 259 

a significant positive linear relationship with the RR of soil pH and the RR of soil NO3
- in TS 260 

wetlands, but exhibited a negative linear relationship with the RRd of SOC and a quadratic 261 

relationship with the RR of SM. The 𝑅𝑅𝑑 of CH4 fluxes in TE wetlands also exhibited a quadratic 262 

relationship with the MAT, and RR of SM, and a negative linear relationship with the RR of ST 263 

(Fig. 6). 264 

The results of random forest analysis revealed that the RR of SM, RR of SOC, and RR of TN 265 

were the most important factors that affected the CH4 fluxes in TS wetlands (Fig. 7). The MAT, RR 266 

of SM, and RR of ST were identified as key factors that regulated the CH4 fluxes in TE wetlands 267 

following plant invasion. Our results demonstrated that the RRd of SOC, RR of NO3
-, and RR of 268 

SM were the most important factors that affected the N2O fluxes in TS wetlands. The MAT, RR of 269 

SOC, and RR of SM were identified as the most important factors that influenced the N2O fluxes in 270 

TE wetlands following plant invasion. 271 

The structural equation model (SEM) explained 50% and 46% of the variance in the RRd of 272 

CH4 fluxes in TS and TE wetland, respectively, while 61% and 83% of the variance in the RRd of 273 

N2O fluxes in TS and TE wetlands, respectively (Fig. 8). Our SEM demonstrated that plant 274 

invasion-induced changes in soil properties and environmental factors consistently play a 275 
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significant role in CH4 and N2O fluxes in TS and TE wetlands. The SOC, SM, and TN had the 276 

greatest role in regulating the responses of CH4 fluxes to plant invasion in TS wetlands, while MAT, 277 

ST, and SM had a significant role in CH4 fluxes in TE wetlands. For N2O fluxes, soil NO3
−, SM, 278 

and SOC had the greatest impact on the response of N2O fluxes in TS wetlands, while MAT and 279 

SM had a substantial role in the response of N2O fluxes in TE wetlands. 280 

  281 

3.4. Plant invasion increased the net CH4 emission of wetlands 282 

Based on the area coverage of 15 key non-native plant species included in our datasets and their mean 283 

difference in CH4 fluxes with native plant species (Table 1), we estimated plant invasion increased 284 

the net emission of CH4 from TS and TE wetlands by 9.97 and 0.57 Tg CH4 yr‒1, respectively. The 285 

annual increase in global net CH4 emissions due to plant invasion was estimated to be 10.54 Tg 286 

CH4. 287 

 288 

4. Discussion 289 

4.1. Alterations in CH4 emission from TS wetlands following plant invasion 290 

The findings revealed that plant invasion significantly increased the annual CH4 emission of TS 291 

wetlands. Banik et al. (1993) and Das and Krishnakumar (2022) reported that the CH4 emissions of 292 

tropical wetlands with invasive exotic plants exhibit considerable variations and are higher than 293 

those of wetlands populated with native plants. Zhou et al. (2022) found that plant invasion in 294 

sub-tropical wetlands of the Yangtze River in China increased CH4 fluxes by 140–220%. The 295 
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higher CH4 fluxes of TS wetlands populated with invasive species are attributed to the following 296 

factors, which are described hereafter. 297 

Firstly, the present study revealed that the invasion of exotic plants significantly increased the 298 

SM by 17%, and the 𝑅𝑅𝑑 of CH4 emission was correlated to the RR of SM in TS wetlands. 299 

However, the increase in SM following plant invasion was contrary to the findings of previous 300 

studies, which reported that plant invasion reduces SM in a coastal grassland ecosystem in 301 

California (Ehrenfeld, 2010; Potts et al., 2008). Wolf et al. (2004) suggested that the rapid rate of 302 

evapotranspiration in invasive grasslands is responsible for the reduction in SM and is primarily 303 

attributed to the higher plant biomass and longer duration of persistence (Dar et al., 2019; Wang et 304 

al., 2015; Wolf et al., 2004). In contrast, the higher SM of water-rich wetland ecosystems following 305 

plant invasion is attributed to the much higher coverage of invasive plants, which reduces the rate of 306 

evapotranspiration (Lin et al., 2013), and increased SOC that enhances soil water holding capacities 307 

(Bu et al., 2018; Bu et al., 2019). The increase in the SM lowers the diffusivity and concentration of 308 

oxygen, which favors for the formation of anaerobic environment for CH4 production, and reduces 309 

the activity of aerobic microbes in the soils (Román et al., 2015; Rubol et al., 2013), which in turn 310 

increases the dissolved organic carbon and promotes the production of CH4 by methanogens (Liu et 311 

al., 2019a; Liu et al., 2019b). The increase in the SM also alters soil microbial community 312 

compositions and increases the copies of methanogenic mcrA genes (Rankin et al., 2018; Yao et al., 313 

2023; Zhang et al., 2018; Zhou et al., 2022), causing an increase in CH4 production rates (McLain et 314 

al., 2002; Warner et al., 2017). 315 
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Secondly, the present study revealed a significant correlation between the 𝑅𝑅𝑑 of CH4 316 

emission and the RRd of AGB. Within our dataset, AGB increased by 3.29-fold following plant 317 

invasion in TS wetlands, compared to sites populated with native species. Numerous previous 318 

studies reported that invasive plants are more prevalent in TS wetland than TE wetlands, with a 319 

rapid reproductive rate, complex root structure, and a very fast doubling capacity of plant biomass 320 

within a short period of time (Villamagna and Murphy, 2010; Hu et al., 1998; Owens et al., 1995). 321 

This is probably due to the high concentration of nutrients sourced from agricultural runoff, 322 

deforestation, insufficient wastewater treatment, and untreated sewage to wetland ecosystems 323 

(Villamagna and Murphy, 2010; Sun et al., 2021). In turn, eutrophication processes can exacerbate 324 

plant invasiveness (Sepulveda-Jauregui et al., 2018; Wassmann et al., 1992). The increase in AGB 325 

resulted in the generation of higher quantities of exudates and debris for methanogenesis (Chanton 326 

et al., 1997; Christensen et al., 2002; Repo et al., 2007). Angeloni et al. (2006) reported that the 327 

AGB and BGB at sites following the invasion of the cattail species, Typha  glauca, were nearly 328 

2-fold the AGB and BGB of sites populated by native sedges, rushes, and bulrushes. Another study 329 

demonstrated that invasive plants produce deeper roots, which enhance the distribution of root 330 

exudates to deeper layers and increase the number of microsites for the production of CH4 (von 331 

Fischer and Hedin, 2007). However, fast-growing invasive plants have lower lignin content (Arthur 332 

et al., 2012; Liao et al., 2008), and lower carbon:nitrogen and lignin:nitrogen ratios (Poulette and 333 

Arthur, 2012), which indicates that the litter produced by invasive plants tends to have fewer 334 
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recalcitrant carbon compounds and is more efficiently converted into methanogenic substrates 335 

(Chanda et al., 2016).  336 

Thirdly, the present study revealed that the 𝑅𝑅𝑑 of CH4 emission in TS wetlands was 337 

correlated to the RRd of SOC. The SOC increased by 68% on average in TS wetlands populated 338 

with invasive species. Gao et al. (2012) also reported that the increase in SOC in the tidal salt 339 

marshes of China is attributed to the well-developed rhizomes and increased BGB of the invasive 340 

species, S. anglica and S. alterniflora. Interestingly, Liu et al. (2019) found that even though they 341 

both have similar BGB, S. alterniflora can release more labile organic carbon in the rhizosphere 342 

than P. australis. In this study, we are unable to identify whether the increase in SOC was primarily 343 

attributed to the litters, rhizomes, or exudates of the invasive plants, and further studies are 344 

necessary in this regard. Yuan et al. (2015) reported that the rate of carbon sequestration in 345 

marshlands populated with S. alterniflora was 3.16 Mg C ha1 yr1 in the top 100 cm of the soil, 346 

which was 2.63 and 8.78-fold higher than that of marshlands populated with the native plants, S. 347 

salsa and P. australis, respectively. Liu et al. (2022) and Xia et al. (2021) observed that the increase 348 

in SM and net photosynthetic rate following the invasion of S. alterniflora in marshlands favored 349 

the accumulation of SOC. Previous studies have reported that the increase in SOC in TS wetlands 350 

accelerates the formation of an anaerobic environment and induces the generation of substrates for 351 

methanogenic archaea (Ajwang et al., 2021; Were et al., 2021; Zhao et al., 2017). Previous studies 352 

on a sulfate-rich salt marsh reported that an increase in the SOC following plant invasion also 353 

increased the abundance of methanogenic archaea and caused a shift in the dominant methanogens 354 
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from the acetotrophic Methanosaetaceae in the bare tidal mudflat to Methanosarcinaceae that utilize 355 

methylated amines, which was possibly attributed to an increase in the concentration of 356 

trimethylamine (Yuan et al., 2014; Yuan et al., 2019).  357 

Fourthly, the present study demonstrated that the 𝑅𝑅𝑑 of CH4 emission correlated with the 358 

RR of plant height, and this finding was consistent with the results obtained in studies by Ding et al. 359 

(1999), Zhou et al. (2016), and Qi et al. (2021). In this study, the height of the invasive plants in TS 360 

wetlands was 1.84 times higher than that of the native plants. In general, the tiller number and leaf 361 

area increased with an increase in plant height, which increased the formation of aerenchyma and 362 

the release of CH4 into the atmosphere (Bansal et al., 2020; Granse et al., 2022; Schimel, 1995; 363 

Struik et al., 2022). The results of these studies agree with the aforementioned finding of the present 364 

study, which revealed that the deeper roots of invasive plants are more efficient in releasing the CH4 365 

produced in the deeper soil layers of wetlands. 366 

Fifthly, the present study revealed that the 𝑅𝑅𝑑 of CH4 emission in TS wetlands was 367 

positively associated with the ND, and peak CH4 emission was determined to be approximately 15 368 

kg N ha−1 yr−1. It has been reported that the deposition of nitrogen improves plant growth and litter 369 

quality by increasing the nitrogen availability of the soil (Iversen et al., 2010; Liao et al., 2008), and 370 

stimulates microbial reproduction (Bai et al., 2010; Chen et al., 2011; Le Quéré et al., 2009; 371 

Thomas et al., 2012; Treseder, 2008). This in turn enhances the conversion of residues into SOC 372 

and substrates for the utilization of methanogens by better optimizing microbial stoichiometries 373 

(Brown et al., 2014). In this study, the growth of invasive plants was found to be more effectively 374 
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stimulated by the ND, and this could be attributed to the increase in the root biomass of invasive 375 

plants, which resulted in the uptake of nitrogen from the deeper layers of the soil where the roots of 376 

native species are unable to reach (Luo et al., 2006). Additionally, it has been reported that an 377 

increase in microbial biomass can increase net nitrogen bio-fixation and the accumulation of 378 

nitrogen in soils (Knops et al., 2002).  379 

 380 

4.2. Response of CH4 emissions to plant invasion in TE wetlands 381 

Unexpectedly, the present study revealed that plant invasion did not increase the emission of CH4 382 

from TE wetlands. As discussed above,  or AGB although plant invasion also increased plant 383 

biomass in TE wetlands, however the increase rate was far lower than that in the TS wetland (142% 384 

vs. 229% for AGB). Previous studies have shown that differences in plant size, leaf area allocation, 385 

shoot allocation and growth rate between invasive plants and native plants in TS regions are larger 386 

than those in TE regions (Van Kleunen et al., 2010). In the present study, it is likely that the 387 

reduced soil inorganic N availability in invaded sites as well as short growth season in the temperate 388 

region limits invasive plant growth. The study further revealed that increased plant biomass did not 389 

alter the SOC of TE wetlands. These findings indicated that plant invasion did not effectively 390 

increase the availability of substrates for methanogens. The results demonstrated that the significant 391 

increase in the ABG and BGB was not correlated with the apparent lack of changes in the SOC 392 

following plant invasion. This could also be attributed to the fact that the relatively lower 393 

temperatures in the temperate region suppress the conversion of plant litter into SOC (Zhang et al., 394 
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2023). The meta-analysis study by Ouyang et al. (2017) demonstrated that the rate of decomposition 395 

of plant roots decreases with increasing latitudes and decreasing temperatures in saltmarsh 396 

ecosystems. A previous study revealed that the rate of mineralization of lignocellulose in S. 397 

alterniflora was positively correlated with temperature (Benner et al., 1986). The phenomenon 398 

could also be attributed to the relatively low water tables in TE wetlands such as peatlands, the 399 

levels of which generally range from 20 to >50 cm below the surface owing to low precipitation 400 

(Amaral and Knowles, 1994). This results in the formation of an aerobic environment near the 401 

surface of the soil, which favors the decomposition of exudates and plant litter. Zhang et al. (2023) 402 

demonstrated that the microbial necromass in invaded wetlands increases from the temperate region 403 

to the tropical region, and in tropical wetland soils, is 1.3–5.0 times greater than that in temperate 404 

wetland soils.  405 

Another possible explanation for the lack of a significant effect of plant invasion on CH4 406 

emissions in the TE wetlands might be due to the relatively lower response of the SM. In the 407 

present study, plant invasion increased SM by 17% in the TS wetland and only by 5% in TE 408 

wetland. This indicated that plant invasion did not efficiently alter the SM in the TE wetland. We 409 

also found that the response of CH4 fluxes in TE wetland was quadratically correlated with MAT, 410 

with an optimum value of approximately 10–15°C. In this meta-analysis, however, MAT in 57% of 411 

the experimental sites of TE wetlands was higher or lower than the above optimum value, which 412 

may partly weaken the response of CH4 fluxes to plant invasion. Further field measurements are 413 
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necessary for evaluating the effect of invasive plants on the emission of CH4 in TE wetlands, 414 

especially in inundated freshwater TE wetlands. 415 

 416 

4.3. Effect of plant invasion on the emission of N2O from wetlands in different climatic zones 417 

Unexpectedly, the findings of the present study demonstrated that plant invasion significantly 418 

reduced the emission of N2O from TE wetlands; however, this was not observed in TS wetlands. 419 

Several studies have previously demonstrated that the emission of N2O in wetlands populated with 420 

non-native plants is lower than that in wetlands occupied by native species (Bezabih et al., 2022; 421 

Wang et al., 2016; Yin et al., 2015; Yuan et al., 2015). This could be attributed to the fact that the 422 

concentrations of soil NO3
- in TS and TE wetlands are generally below the threshold value 423 

necessary for denitrification, which subsequently suppresses the production of N2O during 424 

denitrification (Dobbie and Smith, 2003). The present study demonstrated that plant invasion in TE 425 

wetland reduced the RRs of soil NH4
+ and NO3

- and significantly decreased the concentration of 426 

NH4
+ and NO3

− in soils by 76% and 114%, respectively, which was primarily attributed to the 427 

increased uptake of nitrogen by the invasive plants. Previous studies have demonstrated that the 428 

decrease in the production of N2O is attributed to the depletion of inorganic nitrogen in soils, 429 

especially NH4
+, following plant invasion (Yang and Silver, 2016; Zhu et al., 2013). In contrast, 430 

plant invasion increased the SM in this study, which could have accelerated the anaerobic 431 

conditions and reduced the production of N2O during denitrification in the subsurface layer of TE 432 

wetlands. Yuan et al. (2015) observed that marshland ecosystems populated by invasive S. 433 
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alterniflora adsorb atmospheric N2O primarily due to accelerated denitrification by increased SOC. 434 

Therefore, the findings of the present study suggest that plant invasion can lower the emission of 435 

N2O from TE wetlands. 436 

 437 

4.4. Plant invasion increased the net CH4 emission from wetlands 438 

The net emission of CH4 was determined based on the 15 key non-native wetland plant species in our 439 

dataset and their coverage areas. The summed coverage areas of the non-native exotic species were 440 

10.10 and 20.92 Mha in TS and TE wetlands, respectively (Table 1), and the non-native exotic plants 441 

covered a total global area of 31.02 Mha. The study by Zedler and Kercher (2005) reported that the 442 

total area of TS and TE wetlands is 743 and 536 Mha, respectively. The ratio of the area populated 443 

with invasive species to the total area was determined to be 1.36% and 3.90% for TS and TE 444 

wetlands, respectively. This finding indicated that plant invasion occurs more frequently in TE 445 

wetlands than in TS wetlands.  446 

In this study, the global net increase in the emission of CH4 from wetlands following plant 447 

invasion was estimated to be 10.54 Tg CH4 annually, and varied across different climatic regions, 448 

with the annual net increase in the emission of CH4 from TS and TE wetlands being 9.97 and 0.57 Tg 449 

CH4, respectively. Previous studies have suggested that tropical wetlands are the main source of 450 

atmospheric CH4. Seiler and Conrad (1987) estimated that tropical wetlands release 81% of the total 451 

CH4 emission of global wetlands, while Cao et al. (1996) and Masamba et al. (2015) reported that 452 

tropical wetlands contribute 56% and 50–60%, respectively, of the total global CH4 emission. The 453 
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present study indicated that plant invasion considerably increased the emission of CH4 from TS 454 

wetlands. Although the findings indicated that the invasion of exotic plants induces the emission of 455 

CH4 on a global scale, the estimates obtained herein have certain limitations, which are described 456 

hereafter. The first limitation was the scarcity of data, especially accurate data pertaining to the 457 

coverage area of the invasive plants. Therefore, the increase in the emission of CH4 following plant 458 

invasion was possibly underestimated in this study. Secondly, the differences in the sampling times 459 

and frequencies of the GHG fluxes may have affected the accuracy of the findings (Godwin et al., 460 

2013). Thirdly, the scarcity of field studies in Africa, South America, South Asia, and Southeast 461 

Asia may have skewed the results of global estimation. 462 

 463 

5. Conclusions  464 

Overall, the present study indicated that plant invasion considerably increased the emission of CH4 465 

from TS wetlands, which was primarily attributed to the increase in the AGB of plants, SOC, and 466 

SM. In contrast, plant invasion significantly reduced the emission of N2O from TE wetlands, which 467 

was possibly attributed to the reduction in the content of NH4
+ and NO3

- in soils. The net increase in 468 

the emission of CH4 following plant invasion was estimated to be 10.54 Tg CH4 yr‒1 in global 469 

wetland sites, with the global net increase in CH4 emissions being 9.97 and 0.57 Tg CH4 yr‒1 for TS 470 

and TE wetlands, respectively. The findings suggested that non-native plants efficiently invaded 471 

and stimulated the emission of CH4 in tropical and sub-tropical wetlands, compared to native plant 472 
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species. Thus, it seems necessary to control the invasion of non-native plants for the mitigation of 473 

CH4 emissions in TS wetlands. 474 
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Figure captions 880 

Figure 1: Violin and box plots depicting the AGB and BGB in tropical/subtropical (TS) and temperate 881 

(TS) wetlands populated with native and non-native plants. The white boxes represent the mean values. 882 

The black and white dots represent 95% confidence intervals (CIs). 883 

Figure 2. Effect of the invasion of non-native plants on soil properties and plant biomass in 884 

tropical/subtropical (TS) and temperate (TS) wetlands. The values represent the mean ± 95% CI of the 885 

weighted RRs between wetlands populated by non-native plants and those occupied by native species. 886 

The number of paired observations is depicted beside the properties, and the asterisks indicate 887 

significant differences at p < 0.05. SOC, soil organic carbon; TN, total soil nitrogen; BD, soil bulk 888 

density; NH4
+, soil NH4

+; NO3
−, soil NO3

−; pH, soil pH; and SM, soil moisture; AGB, aboveground 889 

biomass; BGB, belowground biomass; PT, plant height.  890 

Figure 3. Violin and box plots depicting the RRd of CH4 and N2O fluxes following the invasion of 891 

non-native plants in natural wetlands. The white boxes represent the mean values. The black dots 892 

represent the 95% CIs, and the numbers within the brackets represent the number of samples. 893 

Figure 4. Violin plots of the CH4 and N2O fluxes in wetlands populated by native and non-native 894 

plants. The white boxes represent the mean values. The black dots represent the 95% CIs, and the 895 

numbers within the brackets represent the number of samples. 896 

 Figure 5. Relationships between the RRd of CH4 (red triangles) and N2O (black triangles) fluxes with 897 

the climatic factors, ND, RRs of soil properties, and RRs of AGB and plant height in 898 
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tropical/subtropical (TS) wetlands following the invasion of non-native plants. MAT, mean annual air 899 

temperature; MAP, mean annual precipitation; ND, nitrogen deposition; RR-SOC, RR of soil organic 900 

carbon; RR-TN, RR of soil total nitrogen; RR-AGB, RR of aboveground biomass; RR-PT, RR of plant 901 

height; RR-pH, RR of soil pH; RR-BD, RR of soil bulk density; RR-NO3
−, RR of soil NO3

−; RR-NH4
+, 902 

RR of soil NH4
+; and RR-SM, RR of soil moisture; RR-ST, RR of soil temperature.  903 

Figure 6. Relationships between the RRd of CH4 (red triangles) and N2O (black triangles) fluxes with 904 

the climatic factors, ND, RRs of soil properties, and RRs of AGB in temperate (TE) wetlands following 905 

the invasion of exotic plants. MAT, mean annual air temperature; MAP, mean annual precipitation; 906 

ND, nitrogen deposition; RR-SOC, RR of soil organic carbon; RR-TN, RR of soil total nitrogen; 907 

RR-AGB, RR of plant aboveground biomass; RR-BD, RR of soil bulk density; RR-NO3
−, RR of soil 908 

NO3
−; RR-pH, RR of soil pH; RR-SM, RR of soil moisture; and RR-ST, RR of soil temperature. 909 

Figure 7. Identification of the main predictors of the RRd of (a) CH4 fluxes of tropical/subtropical 910 

wetlands, (b) CH4 fluxes of temperate wetlands, (c) N2O fluxes of tropical/subtropical wetlands, and 911 

(d) N2O fluxes of temperate wetlands by random forest analysis. The %IncMSE represents the 912 

importance of the main predictors, and negative values of %IncMSE indicate a lack of importance. The 913 

yellow bars depict the key predictors that significantly affected the CH4 and N2O fluxes of wetlands in 914 

different climatic zones. MAP, mean annual precipitation; MAT, mean annual air temperature; ND, N 915 

deposition; RR_SM, RR of soil moisture; RR-SOC, RR of soil organic carbon; RR_TN, RR of total 916 

nitrogen; RR-pH; RR of soil pH; RR-ST, RR of soil temperature; RR-NO3
−, RR of NO3

−; RR-BD, RR 917 

of soil bulk density.  918 
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Figure 8. Structural equation models (SEMs) showing the effects of biotic and abiotic factors on the 919 

weighted response ratios (RRd) of CH4 fluxes in (a) tropical/sub-tropical regions and (b) temperate 920 

regions, and RRd of N2O fluxes in (c) tropical/sub-tropical regions and (d) temperate regions. Dark 921 

cyan and black arrows refer to negative and positive correlations, respectively. Dotted lines denote 922 

insignificant paths (p > 0.05). Path widths are scaled proportionally to the path coefficient. *p < 0.05, 923 

**p < 0.01, ***p < 0.001. MAP, mean annual precipitation; MAT, mean annual air temperature; ND, 924 

N deposition; RR_SM, RR of soil moisture; RR-SOC, RR of soil organic carbon; RR_TN, RR of total 925 

nitrogen; RR-pH; RR of soil pH; RR-ST, RR of soil temperature; RR-NO3
−, RR of NO3

−.  926 

 927 
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Figure 1 928 
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Figure 2 930 
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Figure 3 933 
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Figure 4 
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Figure 5 939 
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Figure 6 942 
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Figure 7 945 
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Figure 8 950 
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