

Bangor University

MASTERS BY RESEARCH

An Analysis of Wetland Habitat Restoration and Biodiversity

Martin Parsons, Alfie

Award date: 2023

Awarding institution: Bangor University

Link to publication

General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
You may not further distribute the material or use it for any profit-making activity or commercial gain
You may freely distribute the URL identifying the publication in the public portal ?

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

MASTERS BY RESEARCH THESIS

An Analysis of Wetland Habitat Restoration and Biodiversity

Alfie Martin-Parsons BSc (Hons) bsub0f@bangor.ac.uk

Declaration

I hereby declare that this thesis is the results of my own investigations, except where otherwise stated. All other sources are acknowledged by bibliographic references. This work has not previously been accepted in substance for any degree and is not being concurrently submitted in candidature for any degree unless, as agreed by the University, for approved dual awards

Yr wyf drwy hyn yn datgan mai canlyniad fy ymchwil fy hun yw'r thesis hwn, ac eithrio lle nodir ynwahanol. Caiff ffynonellau eraill eu cydnabod gan droednodiadau yn rhoi cyfeiriadau eglur. Nid ywsylwedd y gwaith hwn wedi cael ei dderbyn o'r blaen ar gyfer unrhyw radd, ac nid yw'n cael eigyflwyno ar yr un pryd mewn ymgeisiaeth am unrhyw radd oni bai ei fod, fel y cytunwyd gan yBrifysgol, am gymwysterau deuol cymeradwy

Contents

Page 2: Thesis Introduction

Page 3: Chapter 1: Wetland Habitat Restoration in the UK: A Review

Page 13: Chapter 2: A comparative study of two wet meadow sites at different stages of restoration / rewilding in Cheshire, England

Page 36: Chapter 3: Habitat and Species Analysis of the Proposed Chester Wetland Centre Prior to Restorative Actions

Page 65: Thesis Conclusion

Page 132: Acknowledgements

Abstract

Habitat restoration is the improvement of habitats to a near natural state. Biodiversity is the variety of habitats, organisms and/or genetic variation within and ecosystem. The restoration of habitats has long been seen as an effective method for restoring, improving, and maintaining biodiversity to the extent that it is often used as a measure of success of habitat restoration schemes. Wetland habitats provide multiple ecosystem services benefiting humans, nature, and the environment and are often labelled biodiversity hotspots. They are also proven to deliver ecosystem services such as flood prevention and carbon sequestration more successfully than habitats such as woodlands. However, the extent at which biodiversity is studied before and after restorative actions have taken place is often unclear within the literature considering it is used as a measure for success. Specific taxa are often chosen as measure of success, for example, birds but the effects on all organisms within a habitat or ecosystem is relatively unknown. Throughout this study we reviewed the use of biodiversity data used in "successful" wetland restoration projects. We then undertook a biodiversity comparison study two wet meadow habitats one post restorative actions and one pre-restorative actions using floral and aquatic macroinvertebrate biodiversity as indices to measure whether restoration does increase biodiversity of these taxa. This was due to lack of available date from pre-restoration of the restored wet meadow. We found the restored wet meadow habitat had a great floristic biodiversity however the habitat chosen as pre-restoration had a greater macroinvertebrate biodiversity. We then undertook a baseline study on an area which is in the design phase for a habitat restoration scheme. By doing this we collected biodiversity data across all available taxa an measured its current biodiversity. This provides a foundation for future research post restoration of this site to study the effects of the scheme have had on the biodiversity of the site, which species have newly colonised, which species have been lost and changes in population size. By conducting these studies, we can start to look at whether it is worth costing into schemes large studies such as this to truly measure success and impact on biodiversity. We aim to better improve the future understanding of the impacts that habitat restorative actions may have on biodiversity and how best to use it as an indices to measure success noting that biodiversity is more complex than simply a specific taxa increasing in species richness.

Thesis Introduction

The primary motivations of habitat restoration are to increase the area of a given habitat and to improve the quality of a preexisting habitat specifically where extensive habitat fragmentation and degradation have taken place (Miller, Hobbs 2007). Restoration of degraded habitats is now internationally recognised as a means of enhancing and improving biodiversity, species richness and ecosystem services (Peh, Balmford et al. 2014). Globally wetland habitats are arguably the most productive habitats accounting for approximately 40% of global ecosystem services, providing economic, social, cultural, and recreation resources as well as protection areas from erosion, flooding and storms, regulating atmospheric gasses, improving water quality and protecting and sustaining often vulnerable biota (Clarkson, Ausseil et al. 2013). Despite the importance of these habitats, between 50-90% of wetland habitats have been lost in Europe alone often leading to a decline in value of these habitats (Rispoli, Hambler 1999). The UK alone has seen an 80% decline in wetland habitats (Rispoli, Hambler 1999). With wet meadows particularly threatened due to drainage for agricultural use (Williams, 1993). The term wet meadow is difficult to define due to the similarity that this habitat has with other wet grasslands including but not limited to lowland fen meadows and marsh grasslands. However, some key defining features of wet meadows include extended periods of flooding often in the winter followed by short periods of inundation, flora include a variety of species including *Caltha* palustris, Filipendula ulmaria, Valeriana species, Crepis paludosa, Dacylorhiza species, Eupatorium cannabinum, Juncus species and Carex species. Historically in England there was approximately 1,200,000 ha of wet grasslands, including wet meadows, with around 220,000 ha remaining (Prach 2008). Wet meadows are important for their high diversity of plants which in turn provide a vital habitat for various species of invertebrates, birds, and mammals. The maintenance, protection and improvement of biodiversity is a central tenet of conservation partly due to the influence biodiversity has on ecosystem functions across terrestrial, freshwater, and marine systems (Hughes, et al., 2017). Biodiversity-ecosystem function relationships have a clear relevance for the design of habitat restoration efforts, however the degree in which biodiversity is incorporated into habitat restoration practice is unclear (Hughes, et al., 2017). MacArthur and MacArthur (1961) developed the habitat-heterogeneity hypothesis. They proposed that increasing the number of different habitats can lead to an increase in species diversity (MacArthur & MacArthur, 1961). Success of habitat restoration projects has long been linked with the specific goals and aims of restorative action (Kentula, 2000) whether that is to improve the habitat for specific species, flood mitigation or carbon sequestration. However due to the longtime scales and costs of restoration projects, measuring success can often be difficult and expensive due to the size of the projects and the time it would takes to conduct studies to compare the desired research objectives before and after restorative action.

Chapter 1: Wetland Habitat Restoration in the UK: A Review Introduction

Increasing the amount of habitat present in any given area is often a primary motivation for undertaking restorative actions, particularly where extensive ecosystem fragmentation and modification have taken place (Miller & Hobbs, 2007). The restoration of degraded land is internationally recognised as a means of enhancing biodiversity and ecosystem services (Peh et al. 2014). Wetlands are arguable the world's most productive and possibly valuable ecosystems, accounting for approximately 40% of global ecosystem services (Clarkson, et al., 2013) as well as providing a range of economic, social, cultural and environmental benefits (Clarkson, et al., 2013). These services include cultural, educational, and recreational resources, protecting shorelines from erosion, water quality supply, maintenance and flood mitigation, regulation of atmospheric gasses including carbon sequestration and sustaining unique and often vulnerable biota (Clarkson, et al., 2013). According to the WWT wetlands account for 3% of land coverage and are home to 10% of all species within the UK (WWT, 2021). The UK has seen an 80% decline in wetlands within the last millennium (Rispoli & Hambler, 1999) with up to a quarter of the UK once thought to be wetlands. Anthropogenic activity such as drainage to create arable land and peat cutting have largely been to blame for the direct loss of wetlands within the UK (Williams, 1993). The maintenance, protection and improvement of biodiversity is a central tenet of conservation partly due to the influence biodiversity has on ecosystem functions across terrestrial, freshwater and marine systems (Hughes, et al., 2017). Biodiversity-ecosystem function relationships have a clear relevance for the design of habitat restoration efforts, however the degree in which biodiversity is incorporated into habitat restoration practice is unclear (Hughes, et al., 2017). MacArthur and MacArthur (1961) developed the habitat-heterogeneity hypothesis. They proposed that increasing the number of different habitats can lead to an increase in species diversity (MacArthur & MacArthur, 1961). Success of habitat restoration projects has long been linked with the specific goals and aims of restorative action (Kentula, 2000) whether that is to improve the habitat for specific species, flood mitigation or carbon sequestration. However due to the long-time scales and costs of restoration projects, measuring success can often be difficult and expensive due to the size of the projects and the time it would takes to conduct studies to compare the desired research objectives before and after restorative action. A global meta-analysis, including 70 studies conducted across 14 countries was conducted to understand whether restoration enhances biodiversity and ecosystem services. They concluded that although it was context dependant restorative actions did increase overall ecosystem services supply and enhance biodiversity in restored wetlands 43% and 19% retrospectively, when compared to degraded land. However, when compared to "natural" wetlands, the ecosystem supply was not as high in restored wetlands (13% lower in restored wetlands). Restoring degraded wetlands enhanced biodiversity by 19% and did not significantly differ from that in natural wetlands. Meli et al identified several context factors that significantly affected the biodiversity and ecosystem recovery in restored wetlands, including ecosystem type, main cause of degradation, restoration action taken, and experimental design used to assess the restoration. They concluded that context needs to be considered when evaluating the effects of wetland restoration (Meli, et al., 2014). The following chapter looks

at four case studies where wetland habitat restoration has taken place and that have declared success through increased biodiversity. The following chapter outlines what the aims of the case studies were, the restorative actions undertaken, and how success has been measured. These four case studies were chosen due to the lack of available information regarding UK wetland restoration and how it increases biodiversity. This chapter aims to review the available literature which has informed the research outlined in chapters 2 and 3.

Table .1. Principal ecosystem services (ES) supplied by wetlands (Meli, et al., 2014).

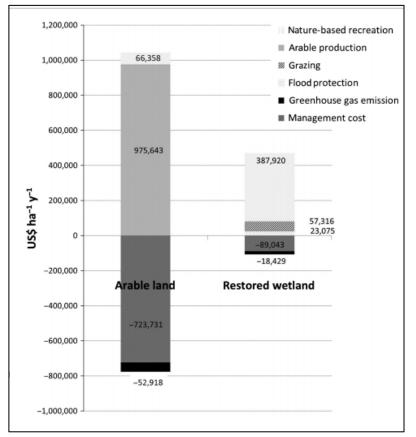
ES Type	Individual ES	Description
	Biogeochemical cycling	Maintenance of natural exchange or flux of material and energy between living and non-living components of biosphere, thereby supporting climatic and biological dynamics.
Supporting	Biotic interactions	Pollination of wild species or crops; seed dispersal; preservation and maintenance of trophic chains.
	Habitat (terrestrial)	Habitat for resident and transient terrestrial populations (refugia/nursery).
	Habitat (aquatic)	Habitat for resident and transient aquatic populations (refugia/nursery).
	Plant food/raw material	The proportion of gross primary production that can be extracted as food or raw materials.
Provisioning	Animal food/raw material	The proportion of secondary production that can be extracted as food or raw materials
	Water supply	Filtering, retention and storage of fresh water for human use (domestic, industrial, agriculture).
	Climate	Regulation of the chemical composition of the atmosphere, global temperature, and other
	regulation	biologically mediated climatic processes at global and regional levels.
	Hydrological	Regulation of natural hydrological flows, role of land cover in regulating runoff and river
	dynamics	discharge, and infiltration; groundwater recharge.
Regulating	Water quality	Retention and removal or breakdown of xenic nutrients and compounds; water purification.
	Regulation of extreme events	Capacity and integrity of ecosystem response to environmental fluctuation such as floods or storms, or to other extreme events.
	Regulation of soil fertility and erosion	Soil maintenance and formation, for both natural ecosystems and crops; sediment retention and prevention of erosion; shoreline stabilization; accumulation of organic matter.
	Regulation of invasive species,	Regulation of invasive species populations; trophic-dynamic regulations of pest populations.
	pests, and diseases	
	Cultural	Contribution by ecosystems to experiences that benefit human population directly or indirectly.
Cultural	Recreation	Provision of opportunities for recreational activities.

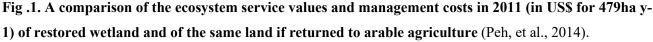
Case Studies

Four wetland restoration case studies were chosen for the restorative actions undertaken, the wetland habitat types, the varying overall aims for each project and measures of success. Wigan flashes aimed to restore reedbed habitats with reedbed specific avian fauna and specific target species being the measure of success. Wicken Fen aimed to restore degraded and arable land into fen wetland habitat using gained ecosystem services as the measure of success. Woodland Education Centre wetland restoration scheme aimed to create multiple wetland habitats and remove invasive species. Changes to floral composition and biodiversity was used to measure success of habitat creation over a 10-year period. West Sedgemoor RSPB Reserve aimed to restore previously drained peat and moorland by flooding land and managing water levels. This project used wading bird species presence and species richness as a measure for success.

Wigan Flashes - reedbed restoration

The Wigan flashes reedbed habitat restoration project aimed to increase and improve habitat for a range of target species with the main priority given to the European Bittern (*Botaurus stellaris*) due to its reed bed habitat preferences for hunting and nesting and conservation value (Tyler, et al., 1998) and sightings within the local area. Four other Reedbed birds were also used as target species albeit with less priority, these were Reed bunting, reed warbler, sedge warbler and water rail where annual data was collected on the number of singing males to monitor the abundance of the 4 target species listed throughout the restorative process. In total ten bird species including the five target species were listed as likely to benefit from restorative actions. Water voles were also identified as a species likely to benefit due to its conservation value (Carter & Bright, 2003) as well as 5 other non-avian vertebrate species likely to benefit. Data was collected for avian fauna likely to benefit from restorative action, data included species-specific requirements for nesting and for feeding. For the six non-avian fauna classified as likely to benefit, data was collected on habitat requirements and requirements for feeding. The presence, absence and population data were not presented in the paper to measure success or failure of the restorative actions through the changes in population dynamics, presence or absence of species (Champion & Ashton, 2010).




Map.1. Map of the British Isles (United Kingdom and Ireland) showing the location of the four UK wetland habitat restoration project case studies reviewed. Wigan Flashes, Greater Manchester (NW England), Wicken Fen, East Anglia (SE England), West Sedgemoor RSPB Reserve, Somerset (SW England) and Offwell Woodland and Wildlife Trust Woodland Education Centre, Devon (SW England) (Google, 2021)

Wicken Fen – Costs and Benefits of wetland ecological restoration

Major drainage in the 17th and 19th centuries of the fenland basin in East Anglia left only four areas of original undrained fen wetland, covering 7.12km², 0.18% of the original 3850 km² floodplain wetland (Peh, et al., 2014) one of these, Wicken Fen NNR, still includes undrained alkaline peats, up to four metres in depth and supports

semi-natural, biodiverse alkaline fen habitats supporting over 8000 species, many of which are rare fen specialist invertebrates (Peh, et al., 2014) Launched in 1999 by the National Trust, The Wicken Fen restoration project aimed to turn a small wetland relic of what was once vast fenlands in East Anglia into a functioning wetland to conserve biodiversity and to maintain water table levels well above the reclaimed and drained surrounding farmland. Peh et al analysed the benefits and costs of ecological restoration at Wicken fen in Cambridgeshire. They recognized that restoration of degraded land was an important part of enhancing both biodiversity and ecosystem services, but more information was needed about the costs and benefits (Peh, et al., 2014). The results from Peh et al 2014 showed that more people benefited from the Restored wetland through the creation of jobs and nature-based recreation than people would benefit from arable land (Landowners / Farmers and those they employ). The main ecosystem services that have been gained at Wicken Fen as a result of restoration are enhanced nature-based recreation, reduced GHG emissions, increased flood protection and increased grazing by domestic stock. The main service lost after restoration is arable production.

Woodland Education Centre, Devon - The Wetlands Restoration Project

Between 1988 and 1991 the Woodland Education Centre on the outskirts of Offwell, Devon, began work on the Wetland Restoration project which aimed to remove the invasive Rhododendron and to restore several freshwater aquatic habitats including ponds, lakes, wetlands, and marshes to support a wide range of plants and animals as the site is used primarily for environmental education (Woodland Education Centre, 2000). Floral surveying was conducted at the four new habitats in the summer of 1991 following the removal of Rhododendron in 1990 and completion of the project (Woodland Education Centre, 2000). In the year 2000 an in-depth ecological survey and report was published to review the ecological changes that have taken place in the 10 years since the project's completion (Corker, 2000). Surveys were predominantly botanical as the aims and goals was to clear away Rhododendron to allow the growth of new vegetation and to remove and invasive species.

West Sedgemoor RSPB Reserve, Somerset

The 560-ha RSPB reserve forms a proportion of a larger 35,000-ha former wetland complex of Somerset levels and Moors, which is recognised for its wildlife and landscape interest. Drainage of the agricultural ly fertile, peat rich soils continued up to the early 1980s resulting in the destruction of the wetland habitats causing drier conditions unsuitable for breeding and wintering birds. Between 1977 and 1987 there was a 70% decline in breeding snipe and a 55% decline in breeding Lapwing. Water-level management was proposed to re-create the suitable conditions for breeding waders and wintering waterfowl. This was achieved through the creation of a series of hydrological management blocks surrounded my embankments. This has allowed the implementation of a range of water management regimes; this includes maintaining shallow flood water in the winter to benefit feeding wintering birds. In the spring the water levels are lowered to provide areas of shallow flooding and damp soil to benefit nesting breeding (Benstead, 2000).

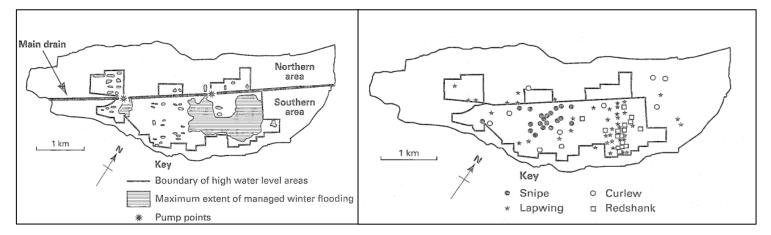


Figure 2. Left- Creation of bounded high water level areas to allow water levels on reserves to be maintained at a higher level than on surrounding intensively managed farmland (West Sedgemoor, Somerset, UK) (Benstead, 2000). Right - Distribution of breeding waders, with the highest concentration found within the hydrologically managed areas (Benstead, 2000).

In other areas of the Somerset levels and Moors, populations of wintering waterfowl and breeding waders have declined, however wader density has increased on the hydrologically managed areas of the reserve from 48 pairs in 1987 to approximately 125 pairs in 2000, of which 90% of these bred on the raised water level areas which form approximately 20% of the site (Benstead, 2000).

Before the implementation of the hydrological management, flooding was unreliable and often short in duration due to the flood water being rapidly pumped away. The reinstatement of winter flood drastically increased the number of over wintering birds (figure 4) to above 50,000 individuals. (Benstead, 2000)

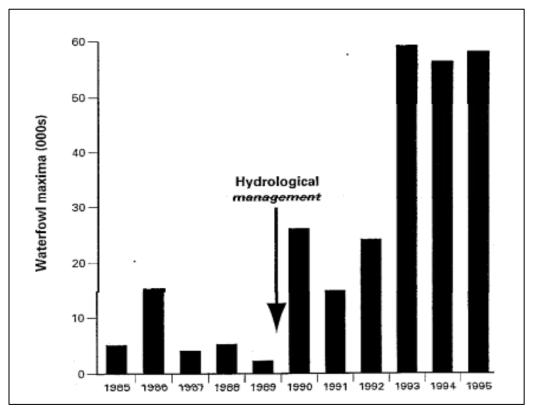


Figure 4. number of overwintering waterfowl prior to and after the implementation of hydrological management. (Benstead, 2000)

Discussion

Restoration, or the process of assisting the recovery of an ecosystem that has been degraded, damaged, or destroyed, has the potential to reverse habitat degradation, increase biodiversity, and deliver important ecosystem services (Hughes, et al., 2017). The five wetland restoration case studies reviewed, show varying aims and goals in which success of the restorative actions undertaken are measured or can be measured. This is typical of UK habitat restoration where the success of restorative action is based upon the achievement of specific aims and goals of said project (Meli, et al., 2014) improvement of habitat for the Eurasian Bittern and other target wetland bird species (Champion & Ashton, 2010) (Benstead, 2000) and the removal of Rhododendron to increase plant biodiversity (Corker, 2000). Peh et al 2014 costs and benefits analysis of the different ecosystem services takes a modelling approach due to the difficulties and variables when comparing an area of restoration with an area of arable land of equal size. That said the model shows just how beneficial restorative action is economically and socially, although it does not produce as much economically, there is also less of a financial loss when compared to the financial loss of arable land used for agriculture (Peh, et al., 2014). There is no denial in the importance of wetland restoration to increase ecosystem services and enhance biodiversity, although as there is no general measure of success that incorporates the changes in ecosystem

services and biodiversity, evaluating restorative actions is difficult and often context dependant (Meli, et al., 2014). Restorative actions increase the success of which ecosystems carry out ecosystem services including the preservation of biodiversity however it is not always possible to restore ecosystem services back to Natural levels (Meli, et al., 2014). Success is often a very subjective term to use and means different things to different people in different situations, Measuring success is difficult due to a lack of specificity of what the goals of restorative actions are (Kentula, 2000). In the context of the UK restorative actions historically and continue to be measured of the success of a specific goal however the inclusion of biodiversity and ecosystem services albeit more of headache is not impossible when assessing the success of restorative actions, especially regarding an ecosystem / habitat that has so many benefits. This should also be considered for project design when considering what the primary goals/ aims of the restorative action are and what potential secondary aims and goal can be to further improve the evidence to support the restoration of degraded wetlands. The literature on the subject of UK wetland habitat restoration is intermittent with project specifics often lacking such as the data used to analyse success and a fixed criterion to know when "Success" has been reached. In the context of the West Sedgemoor RSPB Reserve, Somerset, Success of habitat restoration and management through the means of hydrological management, was measured using the number of over wintering birds and nesting waterfowl, as the habitat was to a more natural state than it had been previously (figure 4) Measuring success based on increases in waterfowl populations at a site shows it is successful for that specific taxon, which is the specific goal of that project. However, the impact was not measured on other taxa such as macro-invertebrates or fish.

Conclusion

To conclude, A full meta-analysis of all UK wetland habitat restoration projects would be needed to create a more thorough and in-depth review of wetland habitat restoration within the UK, what drives it, its cost and benefits and the criteria set to measure the success or failure of the restorative actions used and management plans implemented to create, restore, or maintain UK wetland habitats. Through the case studies reviewed it has become apparent that there is a gap within scientific literature and experimentation to provide statistical evidence on how successful the restorative actions have been with the success often being based around specific goals e.g., to increase the habitat, to increase specific species populations. However, this does not necessarily provide evidence for the restoration of wetland habitats or contribute to creating best practice when restoring wetland habitats. It is evident that further scientific research is needed to analyse the various impacts that wetland habitat restorations have on biodiversity, soil chemistry, water quality, hydrology, and other ecosystem services such as leisure and education. This will provide the knowledge to create better action plans that are more beneficial to both the environment, the organisms that inhabit it and the people who wish to enjoy it whilst also removing the stigmas that wetland habitat have of being smelly, mosquito filled areas of little life.

References

Benstead, P., 2000. Practical Wetland Restoration: Some recent experiences of the Royal Society for the Protection of Birds. *Landscape Research*, III(25), pp. 394-398.

Carter, S. P. & Bright, P. W., 2003. Reedbeds as refuges for water voles (Arvicola terrestris) from predation by introduced mink (Mustela vison). *Biological Conservation*, III(3), pp. 371-376.

Champion, M. & Ashton, P., 2010. *Reedbed Habitat restoration at the Wigan Flashes: Restoring the Post-industrial Landscape fro Wildlife Conservation: A Case Study.* Pontypridd, International Conference of the British Land Reclamation Society, pp. 206-223.

Clarkson, B. R., Ausseil, A.-G. E. & Gerbeaux, P., 2013. WETLAND ECOSYSTEM SERVICES. *Ecosystem Services in New Zealand- Conditions and Trends*, I(1), pp. 192-202.

Corker, B., 2000. *Ofwell Wetland Surevy, Introduction.* [Online] Available at: <u>http://www.countrysideinfo.co.uk/wetland_survey/index.htm</u> [Accessed 15 March 2021].

Google, 2021. *Google Maps*. [Online] Available at: <u>https://www.google.co.uk/maps/@54.2446391,-</u> <u>1.8620947,5.71z/data=!4m3!11m2!2sjRUGEVu35DDtBsk8clvGYaTwp-TdZA!3e3</u> [Accessed 19 March 2021].

Hughes, A. R. et al., 2017. Inclusion of Biodiversity in Habitat Restoration Policy to Facilitate Ecosystem Recovery. *Conservation Letters*, III(11), pp. 1-8.

Hughes, F. M. R. et al., 2016. The challenges of integrating biodiversity and ecosystem services monitoring and evaluation at a landscape-scale wetland restoration project in the UK. *Ecology and Society*, XXI(3), pp. 1-14.

Kentula, M. E., 2000. Perspectives on setting success criteria for wetland restoration. *Ecological Engineering*, XV(3), p. 199 – 209.

Kwi-Gon, K., Hoon, L. & Dong-Hyun, L., 2011. Wetland restoration to enhance biodiversity in urban areas:. *Landscape and Ecological Engineering,* Issue 7, pp. 27-32.

MacArthur, R. H. & MacArthur, J. W., 1961. On Bird Species Diversity. Ecology, XLIII(3), p. 594.

Meli, P., Benayas, J. M. R., Balvanera, P. & Ramos, M. M., 2014. Restoration Enhances Wetland Biodiversity and Ecosystem Service Supply, but Results Are Context-Dependent: A Meta-Analysis. *PLoS ONE*, pp. 1-9.

Miller, J. R. & Hobbs, R. J., 2007. Habitat Restoration—Do We Know What We Are Doing?. *Restoration Ecology*, XV(3), pp. 382-390.

Peh, K. S.-H. et al., 2014. Benefits and costs of ecological restoration: Rapidassessment of changing ecosystem service values at a U.K.wetland. *Ecology and Evolution*, IV(20), pp. 3875-3886.

Rackham, O., 1986. The Histroy of the Countryside. London: W&N.

Rispoli, D. & Hambler, C., 1999. Attitudes to wetland restoration in Oxfordshire and Cambridshire. *International Journal of Science Education*, XXI(5), pp. 467-484.

Tyler, G. A., Smith, K. W. & Burges, D. J., 1998. Reedbed management and breeding bitterns Botaurus stellaris in the UK. *Biological Conservation*, LXXXVI(2), pp. 257-266.

Williams, M., 1993. Understanding Wetlands. In: M. Williams, ed. *Wetlands: A Threatened Landscape.* Oxford: Wiley-Blackwell, p. 25.

Woodland Education Centre, 2000. *The Wetland Restoration, Introduction*. [Online] Available at: <u>http://www.countrysideinfo.co.uk/wetland_project/introduc.htm</u> [Accessed 15 March 2021].

Woodland Education Centre, 2000. *The Wetlands Restoration Project, Wetlands Project Botanical Surveys.* [Online]

Available at: <u>http://www.countrysideinfo.co.uk/wetland_project/91surveys.htm</u> [Accessed 15 March 2021].

WWT, 2021. *Why Wetalnds? WWT*. [Online] Available at: <u>https://www.wwt.org.uk/our-work/why-wetlands</u> [Accessed 15 February 2021].

Chapter 2: <u>A comparative study of two wet meadow sites at different stages</u> of restoration / rewilding in Cheshire, England

1.0. Introduction

Between 50% to 90% of wetland ecosystems have been lost in Europe alone (Rispoli, Hambler 1999), often accompanied by a decline in the value of these ecosystems. The term Wet meadow habitat is difficult to define due to their similarity to both grassland habitats such as lowland fen meadows and wetland habitats such as marshes due to the species that in habit. However, some key defining features of wet meadows include extended periods of flooding often in the winter followed by short periods of inundation, flora include a variety of species including Caltha palustris, Filipendula ulmaria, Valeriana species, Crepis paludosa, Dacylorhiza species, Eupatorium cannabinum, Juncus species and Carex species. Wet meadow habitats are may also be defined as floodplain meadows. Wet meadow habitats, across Europe have seen a huge decline in area and quality (Prach 2008). Historically in England there was approximately 1,200,000 ha of wet grasslands, including wet meadows, with around 220,000 ha remaining (Prach 2008). Wet meadows are important for their high diversity of plants which in turn provide a vital habitat for various species of invertebrates, birds, and mammals. The restoration of degraded land has been recognised international as a way of enhancing biodiversity and of increasing the ecosystem services which they provide (Peh, Balmford et al. 2014). Often the primary motivation for undertaking restorative action is to increase the amount of habitat present. This is particularly important where extensive habitat fragmentation and modification have taken place (Clarkson, Ausseil et al. 2013) such is the case with wet meadow habitats throughout the United Kingdom. Wetland ecologists often agree that hydrology and fertility are the two most important controls of vegetation diversity. However, the composition of wetlands is influenced by a number of additional factors, of which mowing is one of the most traditional disturbance, especially in European wetlands and wet meadows of which many had been cut for hay or managed for cattle for hundreds of years (Kołos, Banaszuk 2013).

This study investigates the habitat restoration actions, where by a habitat or ecosystem is restored through the improvement of pre-existing habitat or the creation of new habitats for the specific purpose of providing habitat, either for the individual species of for the entire suite of species likely to be found in and area (Miller, Hobbs 2007) and rewilding actions, which in its most simple form means to make wild again by return land to a wilder, more natural state (Jørgensen 2015) of a wet meadow habitat have been successful in altering the species composition, diversity and water quality when compared to a marsh grassland where plans have been proposed to restore / create a wet meadow habitat to provide and area for continuous scientific research, education, preserve and increase biodiversity and mitigate flooding. We hypothesise that a wet meadow which has undergone habitat restoration/ rewilding would be more biologically diverse and species rich when measuring aquatic macro-invertebrate diversity and floristic diversity with an emphasis on wet meadow specific plant species.

1.1 Site Background

Habitat restorative actions and previous management, Chester Zoo Nature Reserve Wet meadow

Information on previous restorative actions undertaken at the Chester Zoo Nature Reserve wet meadow habitat was acquired through interviews of staff directly involved in the nature reserve. The Chester Zoo wet meadow habitat is an area of approximately 2.74 ha located in in the northeast area of the Chester Zoo nature reserve 53°13'54.4"N 2°53'16.5"W. The Chester Zoo Nature Reserve underwent extensive habitat improvement and restoration through the removal of topsoil, the creation of ponds, the altering of water ways and the introduction of native species to allow quick colonisation of the cleared areas. Although most of these habitat restorative actions occurred in areas separate to the area of interest (Figure 1). The area of interest was however sporadically grazed and mowed over the past 4 years starting in 2017 and has predominantly been left to rewild.

Proposed habitat restorative actions, Chester Wetland Centre

The proposed Chester Wetland Centre (CWC) is an area of unmanaged marsh grassland and semiimproved neutral grassland, covering an area of 5.24h in the Northwest of the Countess of Chester Country Park, 53°12'55.2"N 2°54'28.4"W, on land owned by the Land Trust. Is it situated between the Shropshire Union Canal and Finchett's Gutter, a man-made gutter for historic agricultural uses. The main aims and objectives of the CWC are to create a wet meadow habitat which will provide a range of ecosystem services including but not limited to, improving water quality, education and continuous scientific research, flood mitigation, carbon sequestration and increasing and preserving biodiversity. The current proposal intends to edit the water course through the site to reduce the speed of the flow and amount of water flowing through Finchetts Gutter during times of heavy rainfall, increasing the saturation of the site. Furthermore, the proposal looks to create a treatment reedbed further upstream to naturally treat the water with the aim of reducing the nutrient content of the water feeding the site. The proposal also looks toward management methods such grazing and mowing to manage the vegetation of the site.

2.0 Methodology

Two sites in Cheshire, England were chosen for their ecological similarity and ecological and anthropogenic pressures. The first, Chester Zoo Nature Reserve (CZNR) wet meadow habitat, indicated by the red polygon on the map shown in **Figure 1**, had previously undergone restorative actions and a management plan to maintain it. The second site, Chester Wetland Centre (CWC), indicated on the map in Figure 1 by the blue polygon, was a seasonally flooded marsh grassland used as a flood storage reserve with the proposal to create a wet meadow habitat. A Phase 1 Habitat Survey (**Figure 2**) was conducted at the CWC site to evaluate its suitability and similarity for the purpose of this study. The area was made up of two habitats a marsh grassland indicated by purple stripes over an orange shading and a semi-improved neutral grassland indicated by orange shading with "SI" over the top.

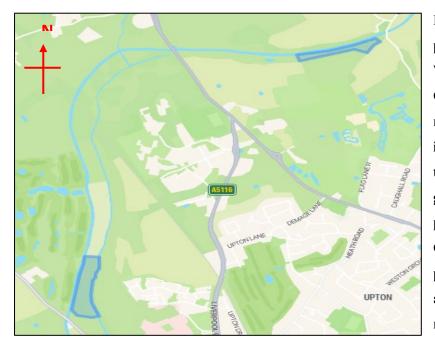


Figure 1: Locations and area polygons of the two study; Wet meadow habitat at the Chester Zoo Nature Reserve represented by the polygon in the northeast section of the map and the marsh grassland habitat at the proposed Chester Wetland Centre, represented by the polygon in the southwest area of the map and their relation to one another.

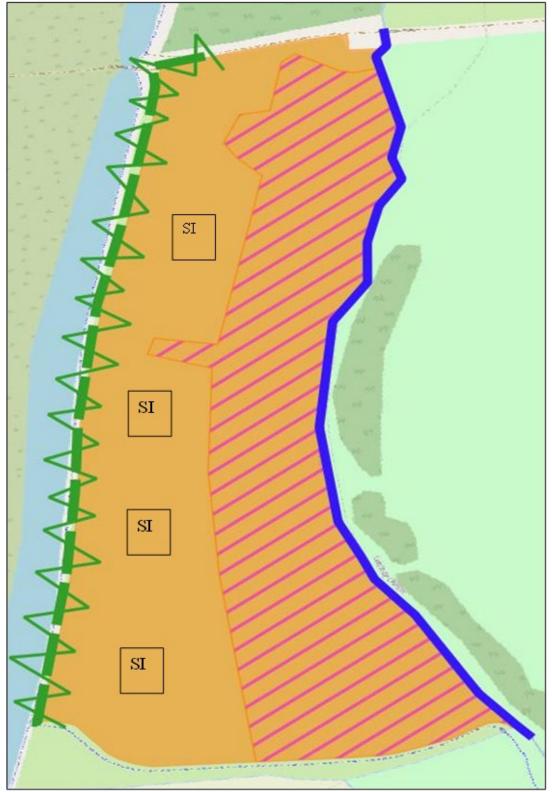


Figure 2: Phase 1 Habitat Survey map of the proposed Chester Wetland Centre demonstrating the different habitats identified prior to data collection. Orange background with SI —Semiimproved neutral grassland, orange background with purple lines – marsh grassland, Bold dark blue line – eutrophic running water and broken green line with green zig zag- defunct, native species rich hedgerow. (See appendix A for full Phase 1 Habitat Survey)

2.1 Habitat Quality

A complete wet meadow plant species list was created, see appendix, to identify those species classed as wet meadow specialist plant species. This was created by searching through various British / UK plant guides. All species which had wet meadow habitats under the habitat section of the species description were included. The UK Habitat survey and Phase 1 habitat survey data sheets were also analysed; however, the term "wet meadow" is not used, and the list of plants given for similar habitats is limited to only the most abundant species in that habitat. This list is not extensive as there is little literature distinguishing wet meadows, wet grasslands, damp meadows, damp pastures, and floodplain meadows all of which may be used interchangeably with one another. Only species which contained wet meadow in their habitat descriptions were included. Other species could also have been included within this list as they are able to inhabit a range of habitats so more research with the inclusion of visits to other wet meadow habitats would be needed to create a more accurate list of wet meadow plant species.

2.2 Floristic Biodiversity and Benthic Macro-invertebrate Biodiversity

Data was collected on the floristic biodiversity throughout British Summer months, June to August, during times of fair weather to increase the success of species identification as most plants were in flower and the ease of surveying as the two sites were saturated but not flooded unlike the rest of year. At each site 9 transects, 40 metres long and 20 metres apart were laid out perpendicular to the gutter, at the Chester wetland centre site the transects started at the gutter, at the Chester Zoo nature reserve the transects spanned 20 metres either side of the gutter due to the positioning of the gutter and the shape of the survey area (Figure 3). One by one metre quadrats were placed every other metre on alternating sides of the transects. For each quadrat the plant species present were identified in the field using Collins Wildflower Guide 2nd edition and the National Plant Monitoring Scheme Species Identification Guide. Once identified the number of each species within the quadrats were counted. Poales (Grasses and Sedges) were estimated by counting the number of clumps / tufts where individual plants could not be distinguished from one another. A Species discovery curve (Figure 3) was used to estimate when to stop surveying. After nine transects had been conducted, the number of new species being recorded had dropped and the species discovery curve (Figure 2) had begun to plateau. Surveying could have continued with more transects to record more species however new species would only have been represented by a few individuals thus not impacting the quality of the data.

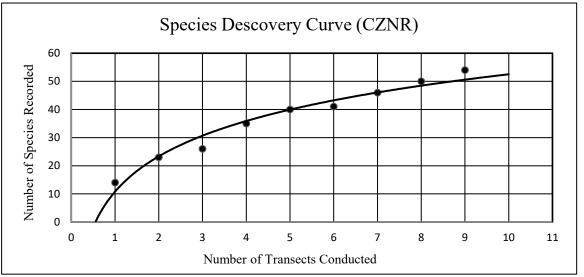


Figure 2: Floristic Species discovery curve of the Chester Zoo Nature Reserve wet meadow habitat

Figure 3: examples of the belted transect line (black line with black squares) and the kick net sampling (black circles) methods used at the proposed Chester Wetland Centre marsh grassland (top) and the Chester Zoo Nature Reserve wet meadow (bottom). Images are not to scale.

Benthic macro-invertebrate data was collected during British Summertime, June, in 2021. Four locations equally spaced out along a stretch of gutter which ran through the two sites of interest were surveyed for 30 seconds six times, totalling three minutes of surveying for each of the four locations (Figure 3) A 30cm by 30cm long handled net was passed through a 2X2m area of water in a figure of eight movement at different depths to optimise the amount of data collected. Specimens were sorted in the field into different tubs based on their taxonomic families and where possible identified to a species level. High resolution macro photographs and electronic microscope photographs were taken to identify species away from the field reducing the need to remove specimens from the sites as this would have void permissions. Data was collected on the number of each species present for calculating the biodiversity indices and the organisms' taxonomic families for calculating the Biological Members Working Party (BMWP) Scores and Average Score Per Taxa (ASTP) to be used as an indication to the level of pollution in the two stretches of Finchetts gutter which feed the two sites of interest (Mandaville 2002, Advances in Water Pollution Control. 1990, Hawkes 1998).

3.0 Data Analysis and Statistical Considerations

Simpsons Diversity Index (D)

The analysis methods used for this study were chosen due to their popularity within the scientific literature with the Shannon-Weiner diversity index and the Simpsons diversity index often being used together. The similarity coefficients were chosen as they provide two pieces of similarity information, the first, Sorensen's coefficient, provides a numerical value between 0 and 1 looking at the overlap of species in two sites. The second similarity coefficient used, Jaccard's provides a percentage value for the % of species in common.

Floristic diversity and benthic aquatic macro-invertebrate diversity were calculated using Simpson's diversity index (D)

$$\mathbf{D} = 1 - \frac{\Sigma n(n-1)}{N(N-1)}$$

Where N is the total number of organisms and n is the total number of each species present. This index places more weight on common/ dominant species and little weight on rare species with only one or two individuals present in the data. Results of the Simpsons diversity indices range between 0 (complete homogeneity or no diversity) and 1 (complete heterogeneity or complete diversity)(Mandaville 2002, Izsák, Papp 2000).

Shannon-Weiner Biodiversity Index (H)

Floristic diversity and benthic aquatic macro-invertebrate diversity were calculated using the Shannon-Weiner Index (H).

$$H = -\sum_{i=1}^{s} \left(\frac{n_i}{N}\right) \log_2\left(\frac{n_i}{N}\right)$$

Where S is the total number of species in the sample, N the total number of individuals in each sample and n the total number of individuals of each species. A value of 0 would imply complete homogeneity or no species diversity. A larger value indicates greater diversity. This measure takes into consideration rarer species (Species represented by 1 or a few individuals in the overall data set) (Jhingran, Ahmad et al. 1989).

Hutchinson t-test

The Hutchinson t-test was used to analyse statistical significance of the Shannon Diversity Index with a p value =>0.05 accepted for statistical significance (Hutcheson 1970). The Hutcheson t-test was developed as a method to compare the diversity of two community samples using the Shannon diversity index (Hutcheson 1970)..

$$t\frac{H_a - H_b}{\sqrt{S^2 H_a + S^2 H b}}$$

In the formula H represents the Shannon diversity index for each of the two samples (subscripted a and b). The bottom of the formula refers to the variance of each of the samples.

Community Similarity: Sorenson's and Jaccard community similarity coefficient

Sorenson's Coefficient was used to measure the floristic community similarity between the CZNR wet meadow and CWC marsh grassland. Where C is the Number of species two communities have in common and S1 being the number of species found at Site 1 and S2 the number of species found at site 2. Results are between 1 and 0 with 1 being a complete overlap or similarity in species found at each site and 0 being no similarity whatsoever (Sala, Oesterheld et al. 1986, Goodall 1978).

$$Cc = \frac{2C}{S1 + S2}$$

Jaccard community similarity coefficient was used to measure the floristic similarity of the CZNR wet meadow and the CWC marsh grassland. Where X is the number of species recorded at CZNR and Y is the number of species recorded at CWC. The number of species in common at the two sites was divided by the total number of species found at both sites. The figure generated from Jaccard community similarity coefficient was multiplied by 100 as this gave it a % of species in common between the two sites (McKinney 2004, Real 1999).

$$J=\frac{|X\cap Y|}{|X\cup Y|}$$

Water Pollution

The BMWP score and ASTP was used to gain an immediate in field evaluation of the pollution levels of the water feeding the two sites (Hawkes 1998) using benthic macro-invertebrates as indicators of levels of water pollution. Each taxonomic family is scored between 1 and 10 depending on their tolerance to pollutants, 1 being the most tolerable to pollutants and 10 having no to little tolerance to pollutants. The sum of each family's tolerance score equals the BMWP Score for that section of waterway. The higher the score the less polluted the water (**Table 1**).

Table 1: Interpretation of the Biological Members Working Party (BMWP) scores, description of
scores and interpretation of scores.

BMWP Score	Water Quality Category	Interpretation
0-10	Very Poor	Heavily Polluted
11-40	Poor	Polluted / Impacted
41-70	Moderate	Moderately Polluted /
		Impacted
71-100	Good	Clean / Slightly Impacted
>100	Very Good	Unpolluted/ Unimpacted

The Average Score Per Taxa (ASTP) was calculated by dividing the BMWP Score by the number of scoring taxonomic families (Mandaville 2002).

4.0 Results

4.1 Floristic diversity and community similarity

The results of the Sorenson's Coefficient and Jaccard Coefficient represented in table 2 show that there is a mid to low floristic community similarity in the two study sites.

Table 2: Result of the Sorenson's Coefficient (CC) and Jaccard similarity coefficient (J) of floristic community similarity of the Chester Zoo (CZ) wet meadow and Chester Wetland Centre (CWC) marsh grassland.

NumberofspeciesatCWC	Number of species at CZ	Total number of species at both sites	Number Species in Common	CC	J	Interpretation
44	54	78	20	0.41	25.64%	Low

The result of the Sorenson's coefficient shows that there is a mid to low community similarity CC=0.41, a figure of 0.5 would indicate that half the surveyed species at the two study sites are the same, a figure of 0.0 would indicate no community similarity and a figure of 1.0 would indicate complete community similarity. The results of Jaccard community similarity coefficient, J=25.64%, indicates that there is a low % of floristic species in common at the two study sites as 0% would indicate

no community similarity and 100% would indicate complete community similarity. The Jaccard coefficient arguable provides more information than Sorenson's coefficient, whether this is due to sample size would have to be further investigated. The two sites had a total of 20 species in common. With the CZ wet meadow being more species rich with 54 plant species recorded compared to 44 species recorded at the CWC marsh grassland.

The results represented below in table 3 show that there is no difference in the diversity of the two sites of interest when using the Simpson's Index, **D=0.91**. Although both sites have relatively high levels of floristic diversity with a figure closer to 1 indicating complete heterogeneity.

Table 3: Results of the Simpson's (D) and Shannon's (H) Diversity Index for floristic biodiversity at the Chester Zoo wet meadow and proposed Chester Wetland Centre marsh grassland.

Location	Simpson's Diversity Index (D)	Shannon's Diversity Index (H)
Chester Zoo Wet Meadow	0.91	2.90
Proposed Chester Wetland Centre Marsh Grassland	0.91	2.81

The Shannon's index was used as it considers rarer species unlike the Simpson's Index which excludes species represented by only one or a small number of individuals. The Simpson's Index gives more weight to dominant or more common species. The result of the Shannon Index shows that the Chester Zoo wet meadow habitat is more diverse, H=2.90, than the proposed Chester Wetland Centre marsh grassland habitat, H=2.81, albeit by only by 0.09.

Table 4: Comparison of the proportion (%) of and richness of wet meadow specialist species found at the Chester Zoo Nature Reserve (CZNR) and Chester Wetland Centre (CWC) between the months of June and August 2021.

Location	Floristic species	No. of wet	% Of wet	% Of overall
	richness	meadow	meadow	sampled
		specialist species	specialist plant	population that
			species within	are wet meadow
			the population	specialist species
CZ wet	54	6	11.11%	14.47%
meadows	57	0	11.11 /0	14.47 /0
CWC marsh	44	3	6.82%	4.17%
grassland		5	0.02 /0	7.1770

A total of 54 for different plant species were identified at the CZNR wet meadow habitat. With **11.11%** (6 species) of species found at the site being identified as wet meadow specialist species. These 6 species make up **14.47%** of the total sample population at the CZNR wet meadow. 44 plant species were identified at the CWC with **6.82%** (3 species) identified as wet meadow specialist species. These 3 species make up **4.17%** of the sampled population at the CWC. The CZNR wet meadow habitat supports more wet meadow specialist species than the CWC with the wet meadow specialist species making up a higher percentage of the overall sampled population.

A Hutcheson t-test was conducted to analyse if there was a statistical significance between the two Shannon Diversity index (H) results.

Table 5: Results of the Hutcheson t-test (t) for significance (p), where df is the degrees of freedom and crit is the critical value. E1 refers to the Chester Zoo wet meadow habitat and E2 refers to the proposed Chester Wetland Centre current marsh grassland habitat.

Site:	E1	E2
Total	3783	2782
Richness	54	44
Н	2.90	2.81
S ² _H	0.000353	0.000466
t	2.963822	
df	6043	
Crit	1.960357	
р	0.00305	
CI	0.037594	0.043194

The results of the Hutchinson t-test show a significant difference in biodiversity using the Shannon diversity index where the p value is >0.05. There is a significant difference in biodiversity p=0.003 with the Chester Zoo Nature reserve wet meadow habitat having a significantly greater biodiversity than the proposed Chester Wetland Centre current marsh grassland.

4.2 Benthic macro-invertebrate Biodiversity and water quality indicators

4.2.a Benthic macro-invertebrate biodiversity

The results from the two diversity indices used, Simpsons Diversity index and Shannon's Diversity Index, show that the proposed Chester Wetland Centre has a greater diversity of benthic invertebrates **D=0.88**, **H=2.13** than the Chester Zoo Nature Reserve, **D=0.83**, **H=1.95**. the Shannon index gives more weight to species richness and considers species represented by one or a few individuals meaning that the data is influenced by all species present and not just the most abundant species.

Table 6: Results of the Simpsons (D) and Shannon's Diversity (H) Index for Benthic Invertebrate biodiversity of the two sections of Finchetts Gutter which flow through the Chester Zoo Nature Reserve wet meadow habitat and proposed Chester Wetland Centre marsh grassland habitat.

Location	Simpson's Diversity Index (D)	Shannon's Diversity Index (H)
Chester Zoo Wet meadow	0.83	1.95
Proposed Chester Wetland Centre Marsh Grassland	0.88	2.13

4.2.b. BMWP and ASTP indices for benthic invertebrate as indicators water pollution levels

The values represented in **table 7** from the calculation of the BMWP Scores and ASTP values shows that both sites are moderately polluted with BMWP scores of **47** (CWC marsh grassland) and **53** (CZNR wet meadow) and ASTP values of **4.7** (CWC) and **5.3** (CZNR). The section of Finchetts Gutter at the CWC is more polluted than the section found at the CZNR wet meadow although both sections of the gutter surveyed show moderate levels of pollution.

Table 7: A comparison of Biological Members Working Party (BMWP) scores, Average Score per Taxa (ASPT) values of the benthic macro-invertebrate families found in the Chester wetland centre (CWC) and Chester Zoo Nature Reserve (CZNR) sections of Finchetts Gutter and interpretation of figures.

CWC Gutter		CZ Gutter		
Family	BMWP Score	Family	BMWP Score	
Sphaeriidae	3	Asellidae	3	
Sialidae	4	Coenagrionidae	6	
Erpobdellidae	3	Corixidae	5	
Physidae	3	Dytiscidae	5	
Limnephilidae	7	Hydrophilidae	5	
Calopterygidae	8	Libellulidae	8	
Coenagrionidae	6	Lymnaeidae	6	
Asellidae	3	Lymnephilidae	7	
Acroloxidae	6	Naucoridae	5	
Baetidae	4	Planorbidea	3	
Total BMWP Score	47	Total BMWP Score	53	
No. of scoring taxa	10	No. of scoring taxa	10	
ASTP	4.7	ASTP	5.3	
Level of pollution	Moderate	Level of pollution	Moderate	

4. Discussion

Success of habitat restoration varies from project to project depending on the overall aims and planned outcomes of the restorative outcomes used. An area that has already undergone habitat restorative actions, the CZNR wet meadow was compared to an area where wet meadow restorative actions were planned but had yet to be undertaken. Differences in Floristic Biodiversity, community similarity, presence of wet meadow specific plant species, benthic macro-invertebrate biodiversity and water quality were all analysed to measure whether a restored habitat was more biologically diverse. Linking back to our hypothesis that a wet meadow habitat which has undergone habitat restoration/ rewilding would be more biologically diverse and species rich when measuring aquatic macro-invertebrate diversity and floristic diversity with an emphasis on wet meadow specific plant species compared to that of a marsh grassland habitat chosen for this study were ecologically similar, both were wetland habitats and faced similar ecological pressures both past and present. The restored wet meadow habitat at the CZNR was more species rich, N=54, than the marsh grassland at the CWC, N=44.

We cannot say that the restorative actions and habitat management methods at the CZ wet meadow habitat have been successful in creating a more biodiverse and species rich habitat as no data was present for this site from before restorative actions and management methods were used. However, from the data collected and analysed we can say that the CZ wet meadow habitat is more species rich and biologically diverse than the CWC marsh grassland with the assumption that restoration and management actions have played a part in this. Species richness is often the measure used to evaluate the success of habitat restoration projects (Ruiz-Jaen, Mitchell Aide 2005), presuming that more species present, equals a "better" habitat. Species diversity is one of the three mayor ecosystem attributes used to assess restoration success: (1) Diversity, (2) Vegetation Structure, and (3) ecological process(Ruiz-Jaen, Mitchell Aide 2005).

To further understand the effects of habitat restoration on biodiversity, Shannon and Simpson diversity indices were used to measure the floristic biodiversity and benthic macro-invertebrate biodiversity of the two study sites. When comparing the floristic biodiversity, the results of the Shannon diversity index showed that the restored wet meadow habitat at the CZNR was more diverse, **H=2.90**, compared to the CWC, **H=2.81**. There was a significant difference in biodiversity between the two sites **p=0.003** which supports our hypothesis that a restored wet meadow habitat has greater biodiversity. When comparing the results of the Simpsons index there was no difference in floristic biodiversity, **CZNR D=0.91**, **CWC D=0.91** respectively. Vegetation structure was also tested although simplified to community similarity and the presence of wet meadow specialist species. We defined wet meadows using the Collins Wildflower Guide 2nd edition. The Sorenson's and Jaccard community similarity coefficients were used

to measure the similarity of floristic species at the two sites. Both sites had 20 species in common. Although there was a relatively low community similarity between these two sites, CC=0.41 and J=20.41%, where a value of C=1.0 and J=100% showing complete community similarity (Mandaville 2002, Goodall 1978, McKinney 2004, Real 1999, Sala, Oesterheld et al. 1986). To further test the vegetation structure of the wet meadow habitat compared to the marsh grassland habitat the number of wet meadow specialist plant species were counted and the percentage of wet meadow plant species richness was calculated as well as the proportion of wet meadow plant species in the overall sampled population (Table 3). The CZNR meadow habitat had 6 species identified as wet meadow specialist species compared to the 3 species identified at the CWC. Wet meadow specialist plant species made up 11.11% of the overall floristic species richness of the CZNR wet meadow habitat compared to 6.82% of the CWC species richness. There was approximately a 10% difference in the proportion of wet meadow specialist plant species that make up the overall sampled population. At the CZNR wet meadow habitat, 14.47% of the overall sampled population is made up of specialist wet meadow plant species compared to 4.17% of wet meadow specialist plant species that make up the overall sampled population of the CWC. A greater richness and proportion of wet meadow specialist plant species indicates that the restorative actions and habitat management methods have (1) created a wet meadow habitat and (2) provided a suitable habitat in which wet meadow specialist plant species can grow and colonise. However, the site at the Chester Zoo nature reserve has a relatively low proportion of wet meadow specialist plant species, it may not be in the best condition due to the low number of wet meadow specialist plant species present and how little they make up of the overall floristic community, this could be due to several different stressors including management or lack of management. There was no available data for any management process that may have occurred at the CWC marsh grassland and non-had occurred over the 11 months that surveying had been undertaken at the site. The grassland habitat that joins to the marsh grassland (Figure 2 Phase 1 Habitat Survey Map) showed visible evidence of mowing at some point in time, although to what extent and for how long was not known and no evidence of mowing was visible in the marsh grassland habitat. Grassland management through grazing or mowing is known to alter the composition of vegetation with intermediate levels of disturbance assumed to increase floristic species richness and reduce the dominance of more competitive species (Steffan-Dewenter, Leschke 2003) this is further confirmed by the CZNR wet meadow habitat being more species rich, biologically diverse and with a greater species richness and density of wet meadow specialist plant species recorded albeit by only a small amount, where we know grazing or mowing methods have taken place to maintain the habitat albeit sporadically. Whether a more continuous practice of mowing or grazing practice rather than a more sporadic practice yielded an even greater difference in species richness or diversity for this site is not known. However, previous studies have found grazing management practices have changed the floristic species composition (Smith, Rushton 1994) and have increased the floristic biodiversity (Dostálek, Frantík 2008).

Across most European countries, biodiversity in grassland habitats is endangered by two opposite trends: Intensification of practices such as those within the agricultural industry and abandonment, where restoration practices are not followed up by continuous management and maintenance. Both have led to a reduction in plant species number (Plantureux, Peeters et al. 2005). Further methods of restoration have found a combination of diaspore transfer, the movement of hay / cuttings from a species rich or more diverse habitat to an area undergoing restorative action, topsoil removal and re-wetting have been successful in restoring wet meadow habitats with topsoil removal accelerating nutrient impoverishment and creating more favourable conditions for seedling recruitment (RW.ERROR -Unable to find reference:doc:619395488f08a97cd1884c38). Alterations to streams including plugging, the creation of ponds and the altering and/ or creation of channels has been closely linked with increasing the height of the water table and re-wetting areas of meadow and increasing the habitat suitability and improving the composition and cover of riparian vegetation (Hammersmark, Dobrowski et al. 2010). However, the majority of studies that have assessed the restorative methods used for wet meadow habitat restoration have come out of the Netherlands with UK based wet meadow habitat restorations being poorly documented within the scientific. Continuous management of restored wet meadow habitats through grazing and mowing as previously discussed is key to restoring and protecting the biodiversity. This is often agreed as the most effective method of management of semi-natural nonforest plant communities (Kołos, Banaszuk 2013).

Benthic macro-invertebrates were used as an indicator to the levels of pollution in the water courses running through the two sites as the water feeding a wetland has an impact on the plant species found throughout the habitat as wetland plant species have adapted to inhabit nutrient poor soils (Scholz 2016). The Biological Members Working Party (BMWP) Score and Average Score per taxon (ASPT) use benthic macro-invertebrates as an indicator to the level of pollution in a water course by giving each taxonomic family a numerical value based on their tolerance to pollutants (see appendix)(Hawkes 1998). The results of the BMWP score and ASPT (Table 6) show that both sections of Finchetts gutter were moderately polluted however the section of Finchetts gutter flowing through the CWC was more polluted than the section which runs through part of the CZNR (CWC BMWP= 47, CZNR **BMWP=53**). The ASPT uses the sum of all families scored divided by the number of scoring taxonomic families (Hawkes 1998). On average the CZNR section of Finchetts gutter has a higher average tolerance score ASPT=5.3 than that of the section of Finchetts gutter running through the CWC, ASTP=4.7. The diversity of benthic macro-invertebrates present at the two sites was analysed using the Shannon diversity index and the Simpson's diversity index (Jhingran, Ahmad et al. 1989). The section of gutter running through the CZNR wet meadow had little difference in benthic macro-invertebrate diversity than the section flowing through the CWC marsh grassland when using Simpson's index **D=0.83** and **D=0.88** respectively. The section running through CWC marsh grassland is slightly more diverse. When using the Shannon index which includes rarer species the diversity of benthic macroinvertebrates is greater in the section of Finchetts gutter flowing through the CWC marsh-grassland habitat, H=2.13 when compared to that of the section flowing through CZNR wet meadow H=1.95 (Table 5). The level of pollutants in Finchetts gutter at the two sites of interest does not appear to impact the diversity of benthic-macro invertebrates as the section of Finchetts gutter flowing through the CWC marsh grassland is slightly more polluted but more biologically diverse than that of the section flowing through the CZNR wet meadow. Although not included in this study the level of vegetation cover of the sampled areas of the two sections of Finchetts gutter surveyed was noted and is included in the appendix. The section which runs through the CZNR wet meadow habitat had approximately >80% of vegetation within the sections sampled. This potentially impacted the results as the section of Finchetts gutter at the CZNR was hard to survey due to the large amounts of vegetation which gave the benthic macro-invertebrates more areas to take cover or vegetation to cling on to.

6.0 Conclusions

The results of this study clearly show a significance in biodiversity between a restored wet meadow habitat at the Chester Zoo Nature Reserve and a marsh grassland habitat where habitat restoration has been proposed to create a wet meadow habitat at the proposed Chester Wetland Centre. With the aforementioned, also showing a difference in species richness. From the results outlined and discussed in this paper we can say that habitat restoration has been successful in creating a more biologically diverse and species rich habitat define whether the habitat restoration / rewilding attempts have been successful in the creation of a wet meadow habitat. The two sections of Finchetts Gutter surveyed show a minimal difference in organic pollutants with both sections of Finchetts Gutter having moderate levels of organic pollutants having a knock on effect on the surrounding habitats in creating nutrient rich/ fertile habitats, where wetland habitats ideally are nutrient poor which is why one of the main aims of the proposed Chester Wetland Centre is to create a treatment wetland to remove pollutants from the water entering the section identified for the creation of a wet meadow habitat. This study proved a good baseline for the project and the need to improve the quality of the water entering the study site. The section of Finchetts Gutter at the Chester Wetland Centre had a lower BMWP score and ASPT than the section running through the Chester Zoo wet meadow. However, this did not impact biodiversity and instead did the inverse with the Chester Wetland Centre section of Finchetts Gutter having a great diversity of benthic macro-invertebrates than the section flowing through the Chester Zoo wet meadow habitat.

Further study is needed to explore the effects that other restorative actions and combinations of restorative methods have had on biodiversity within wet meadow habitat restorations however this is often difficult due to the extended time periods and funding often needed to undertake these types of studies and the lack of available data pre restorative actions and post restorative actions to analyse the success have habitat restoration and rewilding projects.

For the purposes of this study, to recommend management and restorative techniques based on the findings outlined and discussed throughout this paper, we support first and foremost the improvement of water quality through the creation of a treatment reedbed as already proposed, we also further recommend the "re-wiggling" of the water course to slow the movement of water and to provide a better habitat for aquatic vegetation to grow thus encouraging and providing suitable habitat for aquatic macro-invertebrates. We also recommend the introduction of mowing and dispore transfer to gradually reduce the nutrient levels in the marsh grassland and to allow less competitive species to grow, with dispore transfer from other wet meadow site introducing more desired plant species. To further manage this site in the future we recommend the introduction of grazing cattle as mowing would be limited if the desired effects of creating a more saturated habitat are achieved.

7.0 Reference

Advances In Water Pollution Control. 1990. In: P.F. Cooper and B.C. Findlater, Eds, Constructed Wetlands in Water Pollution Control. Pergamon, pp. Ii.

A. Hawkes, H., 1998. Origin And Development of The Biological Monitoring Working Party Score System. Water Research, 32(3), pp. 964-968.

Abdullahi, S.N., 2018. Water Quality Assessment in Rimin Gado Dam, Kano – Nigeria Using Macroinvertebrate Fauna. 3, pp. 129-136.

Aguilera, A., Cid, A., Regueiro, B.J., Prieto, J.M. And Noya, M., 1999. Intestinal Myiasis Caused by Eristalis Tenax. Journal Of Clinical Microbiology, 37(9), pp. 3082.

Armitage, P.D., Moss, D., Wright, J.F. And Furse, M.T., 1983. The Performance of a New Biological Water Quality Score System Based on Macroinvertebrates Over a Wide Range of Unpolluted Running-Water Sites. Water Research, 17(3), pp. 333-347.

Barr, Britt, Sparks and Churchward, 1995. Hedgerow Management and Wildlife. A Review of Research on The Effects of Hedgerow Management and Adjacent Land on Biodiversity. Defra.

Baumann, K., Keune, J., Wolters, V. And Jauker, F., 2021. Distribution And Pollination Services of Wild Bees and Hoverflies Along an Altitudinal Gradient in Mountain Hay Meadows. Ecology And Evolution, 11(16), pp. 11345-11351.

Bedford, B., Walbridge, M. And Aldous, A., 1999. Patterns In Nutrient Availability and Plant Diversity of Temperate North American Wetlands. Ecology, 80, pp. 2151-2169.

Bibby, C.J., Burgess, N.D., Hillis, D.M., Hill, D.A. And Mustoe, S., 2000. Bird Census Techniques. Elsevier.

Brig, Biodiversity Reporting, and Information Group, 2007. Report On the Species and Habitat Review. Uk Standing Committee.

Brua, R.B., Culp, J.M. And Benoy, G.A., 2011. Comparison Of Benthic Macroinvertebrate Communities by Two Methods: Kick- And U-Net Sampling. Hydrobiologia, 658(1), pp. 293-302. Buckland, S.T., Marsden, S.J. And Green, R.E., 2008. Estimating Bird Abundance: Making Methods Work. Bird Conservation International, 18(S1), pp. S91-S108.

Clarkson, B.R., Ausseil, A.E. And Gerbeaux, P., 2013. Wetland Ecosystem Services. Ecosystem Services In New Zealand: Conditions And Trends.Manaaki Whenua Press, Lincoln, pp. 192-202.

Donath, T.W., Bissels, S., Hölzel, N. And Otte, A., 2007. Large Scale Application of Diaspore Transfer with Plant Material in Restoration Practice–Impact of Seed and Microsite Limitation. Biological Conservation, 138(1-2), pp. 224-234.

Dostálek, J. And Frantík, T., 2008. Dry Grassland Plant Diversity Conservation Using Low-Intensity Sheep and Goat Grazing Management: Case Study in Prague (Czech Republic). Biodiversity And Conservation, 17(6), pp. 1439-1454.

Goodall, D.W., 1978. Sample Similarity and Species Correlation. Ordination Of Plant Communities. Springer, pp. 99-149.

Gørtz, P., 1998. Effects Of Stream Restoration on The Macroinvertebrate Community in The River Esrom, Denmark. Aquatic Conservation: Marine and Freshwater Ecosystems, 8(1), pp. 115-130.

Grootjans, A.P., Bakker, J.P., Jansen, A. And Kemmers, R.H., 2002. Restoration Of Brook Valley Meadows in The Netherlands. Hydrobiologia, 478(1), pp. 149-170.

Grootjans, A.P. And Verbeek, S.K., 2002. A Conceptual Model of European Wet Meadow Restoration. Ecological Restoration, 20(1), pp. 6-9.

Hammersmark, C.T., Dobrowski, S.Z., Rains, M.C. And Mount, J.F., 2010. Simulated Effects of Stream Restoration on The Distribution of Wet-Meadow Vegetation. Restoration Ecology, 18(6), pp. 882-893.

Hawkes, H.A., 1998. Origin And Development of The Biological Monitoring Working Party Score System. Water Research, 32(3), pp. 964-968.

Hinsley, S.A. And Bellamy, P.E., 2000. The Influence of Hedge Structure, Management and Landscape Context on The Value of Hedgerows to Birds: A Review. Journal Of Environmental Management, 60(1), pp. 33-49.

Hölzel, N. And Otte, A., 2003. Restoration Of a Species-Rich Flood Meadow by Topsoil Removal and Diaspore Transfer with Plant Material. Applied Vegetation Science, 6(2), pp. 131-140.

Hughes, A.R., Grabowski, J.H., Leslie, H.M., Scyphers, S. And Williams, S.L., 2018. Inclusion Of Biodiversity in Habitat Restoration Policy to Facilitate Ecosystem Recovery. Conservation Letters, 11(3), pp. E12419.

Hutcheson, K., 1970. A Test for Comparing Diversities Based on The Shannon Formula. Journal Of Theoretical Biology, 29(1), pp. 151-154.

Izsák, J. And Papp, L., 2000. A Link Between Ecological Diversity Indices and Measures of Biodiversity. Ecological Modelling, 130(1-3), pp. 151-156.

Jhingran, V.G., Ahmad, S.H. And Singh, A.K., 1989. Application Of Shannon–Wiener Index as A Measure of Pollution of River Ganga at Patna, Bihar, India. Current Science, pp. 717-720.

Jørgensen, D., 2015. Rethinking Rewilding. Geoforum, 65, pp. 482-488.

Kail, J., Brabec, K., Poppe, M. And Januschke, K., 2015. The Effect of River Restoration on Fish, Macroinvertebrates and Aquatic Macrophytes: A Meta-Analysis. Ecological Indicators, 58, pp. 311-321.

Klimkowska, A., Van Diggelen, R., Bakker, J.P. And Grootjans, A.P., 2007. Wet Meadow Restoration in Western Europe: A Quantitative Assessment of The Effectiveness of Several Techniques. Biological Conservation, 140(3), pp. 318-328.

Kołos, A. And Banaszuk, P., 2013. Mowing As a Tool for Wet Meadows Restoration: Effect of Long-Term Management on Species Richness and Composition of Sedge-Dominated Wetland. Ecological Engineering, 55, pp. 23-28.

Laurila, A. And Kujasalo, J., 1999. Habitat Duration, Predation Risk and Phenotypic Plasticity in Common Frog (Rana Temporaria) Tadpoles. Journal Of Animal Ecology, 68(6), pp. 1123-1132.

Mandaville, S.M., 2002. Benthic Macroinvertebrates in Freshwaters: Taxa Tolerance Values, Metrics, And Protocols. Citeseer.

Mandi, L., Houhoum, B., Asmama, S. And Schwartzbrod, J., 1996. Wastewater Treatment by Reed Beds: An Experimental Approach. Water Research, 30(9), pp. 2009-2016.

Martin-Parsons, A., 2022. A Comparative Study of Two Wet Meadow Sites at Different Stages of Restoration / Rewilding In Cheshire, England.

Mckinney, M.L., 2004. Measuring Floristic Homogenization by Non-Native Plants in North America. Global Ecology and Biogeography, 13(1), pp. 47-53.

Meli, P., Rey Benayas, J.M., Balvanera, P. And Martínez Ramos, M., 2014. Restoration Enhances Wetland Biodiversity and Ecosystem Service Supply, But Results Are Context-Dependent: A Meta-Analysis. Plos One, 9(4), pp. E93507.

Miller, J.R. And Hobbs, R.J., 2007. Habitat Restoration—Do We Know What We're Doing? Restoration Ecology, 15(3), pp. 382-390.

Moroń, D., Szentgyörgyi, H., Wantuch, M., Celary, W., Westphal, C., Settele, J. And Woyciechowski, M., 2008. Diversity Of Wild Bees in Wet Meadows: Implications for Conservation. Wetlands, 28(4), pp. 975-983.

Mortimer, S.R., Hollier, J.A. And Brown, V.K., 1998. Interactions Between Plant and Insect Diversity in The Restoration of Lowland Calcareous Grasslands in Southern Britain. Applied Vegetation Science, 1(1), pp. 101-114.

Ojija, F. And Laizer, H., 2016. Macro Invertebrates as Bio Indicators of Water Quality in Nzovwe Stream, In Mbeya, Tanzania. International Journal of Scientific and Technology Research, 5(6), pp. 211-222.

Ormerod, S.J., 1991. Pre-Migratory and Migratory Movements of Swallows Hirundo Rustica in Britain and Ireland. Null, 38(3), pp. 170-178.

Palmer, M.A., Menninger, H.L. And Bernhardt, E., 2010. River Restoration, Habitat Heterogeneity and Biodiversity: A Failure of Theory or Practice? Freshwater Biology, 55, pp. 205-222.

Peh, K.S., Balmford, A., Field, R.H., Lamb, A., Birch, J.C., Bradbury, R.B., Brown, C., Butchart, S.H., Lester, M. And Morrison, R., 2014. Benefits And Costs of Ecological Restoration: Rapid Assessment of Changing Ecosystem Service Values at A Uk Wetland. Ecology And Evolution, 4(20), pp. 3875-3886.

Plantureux, S., Peeters, A. And Mccracken, D., 2005. Biodiversity In Intensive Grasslands: Effect of Management, Improvement and Challenges. Agronomy Research, 3(2), pp. 153-164.

Prach, K., 2008. Vegetation Changes in A Wet Meadow Complex During the Past Half-Century. Folia Geobotanica, 43(2), pp. 119-130.

Reading, C.J. And Clarke, R.T., 1983. Male Breeding Behaviour and Mate Acquisition in The Common Toad, Bufo Bufo. Journal Of Zoology, 201(2), pp. 237-246.

Real, R., 1999. Tables Of Significant Values of Jaccard's Index of Similarity. Miscel· Lania Zoologica, pp. 29-40.

Rispoli, D. And Hambler, C., 1999. Attitudes To Wetland Restoration in Oxfordshire and Cambridgeshire, Uk. International Journal of Science Education, 21(5), pp. 467-484.

Ruiz-Jaen, M.C. And Mitchell Aide, T., 2005. Restoration Success: How Is It Being Measured? Restoration Ecology, 13(3), pp. 569-577.

Sala, O.E., Oesterheld, M., León, R. And Soriano, A., 1986. Grazing Effects Upon Plant Community Structure in Subhumid Grasslands of Argentina. Vegetatio, 67(1), pp. 27-32.

Schmiede, R., Otte, A. And Donath, T.W., 2012. Enhancing Plant Biodiversity in Species-Poor Grassland Through Plant Material Transfer – The Impact of Sward Disturbance. Applied Vegetation Science, 15(2), pp. 290-298.

Scholz, M., 2016. Chapter 20 - Constructed Wetlands. In: M. Scholz, Ed, Wetlands for Water Pollution Control (Second Edition). Elsevier, pp. 137-155.

Sengl, P., Magnes, M., Weitenthaler, K., Wagner, V., Erdős, L. And Berg, C., 2017. Restoration Of Lowland Meadows in Austria: A Comparison of Five Techniques. Basic And Applied Ecology, 24, pp. 19-29.

Smith, R.S. And Rushton, S.P., 1994. The Effects of Grazing Management on The Vegetation of Mesotrophic (Meadow) Grassland in Northern England. Journal Of Applied Ecology, pp. 13-24.

Steffan-Dewenter, I. And Leschke, K., 2003. Effects Of Habitat Management on Vegetation and Above-Ground Nesting Bees and Wasps of Orchard Meadows in Central Europe. Biodiversity & Conservation, 12(9), pp. 1953-1968.

Sutherland, W.J., 2006. Ecological Census Techniques: A Handbook. Cambridge: Cambridge University Press.

Verhagen, R., Klooker, J., Bakker, J.P. And Van Diggelen, R., 2001. Restoration Success of Low-Production Plant Communities on Former Agricultural Soils After Top-Soil Removal. Applied Vegetation Science, 4(1), pp. 75-82.

Wassen, M.J., Venterink, H.O., Lapshina, E.D. And Tanneberger, F., 2005. Endangered Plants Persist Under Phosphorus Limitation. Nature, 437(7058), pp. 547-550.

Zeybek, M., Kalyoncu, H., Karakas, B. And Özgül, S., 2014. The Use of Bmwp and Aspt Indices for Evaluation Of Water Quality According To

Macroinvertebrates In Değirmendere Stream (Isparta, Turkey). Turkish Journal of Zoology, (38), pp. 603-613.

Pondnet, 2021. Pondnet Guidance: How To Survey Ponds For Aquatic Macroinvertebrate Famalies, Fresh Water Habitats Trust: Fresh Water Habitats Trust.

Uk Grid Reference Finder, 2021. Uk Grid Reference Finder. [Online] Available At:

https://gridreferencefinder.com/#&shapes=%7b%22type%22%3a%22featurecollection%22%2c%22fe atures%22%3a%5b%7b%22type%22%3a%22feature%22%2c%22properties%22%3a%7b%7d%2c% 22geometry%22%3a%7b%22type%22%3a%22polygon%22%2c%22coordinates%22%3a%5b%5b% 5b-2.90819%2c53. [Accessed 5 october 2021]

8.0 Appendices

UK Wet Meadow plant list

Family	Common Name	Scientific Name
Fabaceae	Greater Birdsfoot Trefoil	Lotus pedunculatus
Ranunculaceae	Marsh Marigold	Caltha palustris
Caryophyllacaea	Ragged Robin	Silene flos-cuculi
	Great Horsetail	Equisetum telmateia
Equisetaceae	Water Horsetail	Equisetum fluviatile
	Marsh Horsetail	Equisetum palustre
Marsileaceae	Clover Fern	Marsilea quadrifolia
Marsheaceae	Monk's-Hood	Aconitum napellus
Domumouloopoo	Common Meadow-rue	Thalictrum flavum
Ranunculaceae	water Chickweed	Myosoton aquaticum
	Common Bistort	Persicaria bisorta
Delverser	Tasteless Water Pepper	Persicaria mitis
Polygonaceae	Northern Dock	Rumex longifolius
	Clustered Dock	Rumex conglomeratus
Hypericaceae	Square Stalked St. John's Wort	Hypericum tetrapterum
Brassicaceae	Cuckoo flower/ Lady's Smock	Cardemine pratensis
Parnassiacaea	Grass-of-parnassus	Parnassia palustris
	Meadowsweet	Filipendula ulmaria
Rosaceae	Water Avens	Geum rivale
Rosaceae	Great Burnet	Sanguisorba officinalis
	Smooth Lady's-mantle	Alchemilla glabra
Hydrocotylaceae	Marsh Pennywort	Hydrocotyle vulgaris
	Tubular Water-dropwort	Oenanthe fistulosa
Apiaceae	Parseley Water-dropwort	Oenanthe lachenalii
	Wild Angelica	Angelica sylvestris
Lamiaceae	Skullcap	Scutellaria galericulata
Lamaceae	Water Mint	Mentha aquatica
	Brooklime	Veronica beccabunga
Veronicaceae	Blue Water-speedwell	Veronica anagallis-aquatica
Veromedeede	Pink Water-speedwell	Veronica catenata
	Marsh Speedwell	Veronica scutellata
Orobanchaceae	Marsh Lousewort / Red-rattle	Pedicularis palustris
Caprifoliaceae	Marsh Valerian	Valerian dioica
Globulariaceae	Devils-bit Scabious	Succisa pratensis
	Meadow Thistle	Cirsium dissectum
	Marsh Hawk's beard	Crepis paludosa
	Common Fleabane	Pulicaria dysenterica
Asteraceae	Sneezewort	Achillea ptarmica
	Marsh Fleawort	Senecio congestus
	Marsh Ragwort	Senecio aquaticus
	Butterbur	Petasites hybridus

	Trifid Bur-marigold	Bidens tripartita
Juncaginaceae	Marsh Arrow Grass	Triglochin pallustris
	Round-fruited Rush	Juncus Compressus
Junaceae	Blunt-flowered Rush	Juncus subnodulosus
Junaceae	Hard Rush	Juncus inflexus
	Soft Rush	Juncus Effusus
	Common Spike-rush	Eleocharis palustris
	False Fox Sedge	Carex otrubae
	True Fox Sedge	Carex vulpina
	Brown Sedge	Carex disticha
Cyperaceae	Bladder Sedge	Carex vesicaria
	Distant Sedge	Carex distans
	Downy-fruited Sedge	Carex filiformis
	Common Sedge	Carex nigra
	Flea Sedge	Carex pulicaris
	Meadow Fescue	Schedonorus (=Festuca) pratensis
	Floating Sweet Grass	Glyceria fluitans
Poaceae	Meadow Foxtail	Alopecurus pratensis
Poaceae	Orange Foxtail	Alopecurus aequalis
	Timothy	Phleum pratense
	Smooth Brome	Bromus racemosus
Nartheciaceae	Meadow Saffron	Colchicum autumnale
Alliaceae	Summer Snowflake	Leucojum aestivum
	Early March-orchid	Dactylorhiza incarnata
Orchidaceae	Southern Marsh-rochid	Dactylorhiza praetermissa
	Nothern Marsh-orchid	Dactylorhiza purpurella

<u>Chapter 3: Species and Biodiversity Analysis of the Proposed Chester</u> <u>Wetland Centre</u> Contents

1.0 Introduction

- 1.1 Site Background
- 1.2 Phase 1 Habitat Survey

2.0 Methods

- 2.1 Water Quality Analysis
- 2.2 Biodiversity Analysis

3.0 Results

- **3.1 Water Quality Results**
- 3.2 Biodiversity and Species Analysis
- 4.0 Discussion
- **5.0** Conclusion
- 6.0 References
- 7.0 Appendix

1.0 Introduction

Wetland habitats, as a whole, are valuable habitats due to how biologically diverse, they are and the numerous ecosystem services they provide to humans (Meli, Rey Benayas et al. 2014). Up to a quarter of the British Isles is thought to have once been some sort of wetland habitat of which 80% has now been lost leaving the remaining wetland habitats in a degraded state (Rispoli, Hambler 1999) and left existing as biogeographical "islands". In recent years there has been greater call for the improvement of habitat restorative techniques often with a focus on improving or increasing biodiversity (Miller, Hobbs 2007, Peh, Balmford et al. 2014, Ruiz-Jaen, Mitchell Aide 2005). Maintaining biodiversity has been a central tenant of conservation, with biodiversity influencing ecosystem function. Biodiversity-Ecosystem function relationships have a clear relevance to the design and success of habitat restoration projects (Hughes, Grabowski et al. 2018). However, studies often have limited data of the biodiversity of sites pre-restoration and often focus on specific taxa or target species with comparisons done with sites that are similar to pre or post restorative actions and not the site its self. (Gørtz 1998, Kail, Brabec et al. 2015, Klimkowska, Van Diggelen et al. 2007, Meli, Rey Benayas et al. 2014, Moroń, Szentgyörgyi et al. 2008, Sengl, Magnes et al. 2017). We understand that we do not live in an idyllic world where financial and time constraints do not impact the ability of scientific study or the delivery of conservation projects. however, this study outlines the availability of data and ecological information collected for a site prerestoration with the aim that this will be used to further improve the research of this specific habitat restoration projects, whilst also making recommendations for the techniques used based on the scientific knowledge.

1.1. Statement of Aims Proposal to Create a Wet Meadow habitat at the proposed Chester Wetland Centre and Disclaimer.

The Chester Wetland Centre is a multi-organisational project which aims to create and restore wetland habitats along the catchment of Finchetts Gutter. Plans have been proposed for the creation of a reedbed habitat further upstream to improve the quality of water entering the various restored habitats (Mandi, Houhoum et al. 1996), the improved management of a wet woodland habitat and the creation of a wet meadow habitat (at the site of study). The overall aims of this large project are to mitigate flooding, improve water quality, increase, and improve wetland habitats for carbon sequestration, improve biodiversity within and around the project site and to create and area for environmental education and continuous research. Information on the specific plans proposed for this project is limited with in this study as, at the time of writing, the plans had not been made publicly. This study takes into consideration the overall aims and goals of the Chester Wetland Centre project, however, makes its own recommendations based on the findings of this study, separate to the ecological information collected by Binnies, the consultancy firm which created the proposed plan, our hope is that the information collected throughout this study will aid in the execution of this plan with the recommendations we've made.

1.2. Phase 1 Habitat Survey

A Phase 1 Habitat Survey was conducted prior to data collection to identify what habitats were present at the proposed Chester Wetland Centre study site. The Phase 1 Habitat Survey identified two grassland habitats, a semi-improved neutral grassland indicated in Figure 1 by a block orange background with the letter code SI over laying it and a marsh grassland represented by a block orange background with purple lines overlaying it. A eutrophic running water habitat (indicated by the dark blue line) and a native, species rich hedgerow indicated by presented in **Figure 1**. During the Study Phase 1 Habitat Surveys and reports were gradually being phased out and replaced with UK Hab Surveys. We continued to use the Phase 1 Habitat Survey as this is recognised throughout the UK and has been used for a long period of time within ecological reports. Whereas the UK Hab survey is relatively new. the full Phase 1 Habitat survey and report is included in Appendix A.

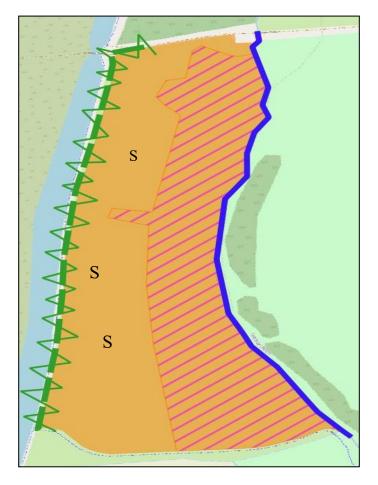


Figure 1: A Phase 1 Habitat Survey Map of the proposed Chester Wetland Centre. Where a dashed green line with a green zigzag over lay indicates a native species rich defunct hedgerow, the dark blue line indicates eutrophic running water, the orange block with SI overlay indicates a semi improved neutral grassland and the orange block with purple lines indicates a marsh grassland.

2.0 Methods

A combination of data collection methods outlined and escribed below in Table 1 were utilised to collect the maximum available ecological data at the proposed Chester Wetland Centre over a period of 11 months spanning all four seasons starting in October 2020 and ending in August 2021. Data was collected between 06:00 and 21:00 GMT. There was primary focus on species present and richness to gain an understanding of how diverse the site was prior to restorative actions beginning.

Data was collected on the number of individuals seen, the habitat/s they were present in, date and time of day, the sex and life stage where possible, and any extra information including morphological differences within species and behavioural observations including but not limited to nesting, breeding, foraging/ hunting, feeding to understand how species use the study site.

Recorded species were cross referenced with the UK Biodiversity Action Plan to further identify any species which may require more protection thus inhibiting or increasing the progress of the proposed habitat restorative

actions. Recorded specie's UK conservation status were also noted where possible to identify species that are more under threat or require greater conservation, again potentially inhibiting or increasing the progress of the proposed habitat restorative actions.

methodImage: Image:	
including fixed in the marsh grassland habitat and 5 in the semi-improved invertebr	
and random incutation grassiand. The quadratis were seattered and at various plants, t	
distances away from the water course and the two habitats. Over mammal	-
100 50X50cm quadrats were placed/ thrown at random. For	-
both types of quadrats used the different species found were	
identified and counted. For grasses and sedges, the number of	
clumps / tufts were counted where individual plants could not	
be (Sutherland 2006).	
Refugia 5 Black, corrugated, sheets of rubber 50x50cm were placed Reptiles,	,
scattered throughout the semi-improved grassland habitat. No amphibia	ans,
refugia were placed in the marsh grassland as it was prone to terrestria	
flooding. All species found beneath or on top of the refugia were invertebr	rates
identified and counted these were checked once a week over the	
course of five months (Sutherland 2006).	
Transects Transects were conducted both parallel to and perpendicular to Terrestriction	
	rates, birds,
	amphibians,
netting) counted. For birds a 20m radius was used. For plants each plant mammal	is,
touching the transect was identified, 1X1metre quadrats ere also	
placed every other metre on alternating sides of the transect to	
create a belted transect. The same method for quadrats was used.	
Where a sweep net was used, the net was passed through the vegetation for two metres. The contents were then removed,	
identified, and counted for each two-metre section of the line	
transect. Invalid source specified.Invalid source specified.	
Fixed Radius Each position was sampled for 10 seconds recording the number Terrestri	al
	rates, birds,
used where all individuals with in the 50m radius during the 10 mammal	
seconds were counted. For mammals a 20m radius was used and	
for terrestrial invertebrates a 2m radius was used. A 10 second	
timer was used to avoid recounting the same individuals	
(Sutherland 2006, Bibby, Burgess et al. 2000, Buckland,	
Marsden et al. 2008).	
Kiele Net A 20X20 and not may need a dama to the sector in	
Kick Net A 30X30cm net was passed through the water in a figure of Aquatic	rates, fish,

apart along the stretch of gutter running through the research

Table 1: Methods used for collecting ecological data at the proposed Chester Wetland Centre over a
period of 11 months covering all four seasons.

amphibians.

site. Each location was sampled for a total of 3 minutes(Zeybek, Kalyoncu et al. 2014, Ojija, Laizer 2016, Brua, Culp et al. 2011). This was predominantly used to collect data for the water quality analysis however the data was used to gain a general understanding of the species present and how they use the habitat.Birds, mammals, terrestrialEvidenceofThe evidence left behind by species was used for presence fo a species (tracks, pellets, latrines. burrows and other forms of evidence were collected, photographed, and analysed to decipher which species they were from. This was useful in understanding the presence of species that were harder to survey due to their times of activityBirds, mammals, species they galls)
2011). This was predominantly used to collect data for the water quality analysis however the data was used to gain a general understanding of the species present and how they use the habitat.EvidenceofThe evidence left behind by species was used for presence fo a species (tracks, species without physically seeing it. Faeces, tracks, nests, latrines. burrows and other forms of evidence were collected, photographed, and analysed to decipher which species they were from. This was useful in understanding the presence ofBirds, mammals, terrestrial invertebrates (E.g., galls)
equality analysis however the data was used to gain a general understanding of the species present and how they use the habitat.equality analysis however the data was used to gain a general understanding of the species present and how they use the habitat.EvidenceofThe evidence left behind by species was used for presence fo a species (tracks, species without physically seeing it. Faeces, tracks, nests, latrines, pellets, photographed, and analysed to decipher which species they were from. This was useful in understanding the presence ofBirds, mammals, terrestrial
Inderstanding of the species present and how they use the habitat.Inderstanding of the species present and how they use the habitat.EvidenceofThe evidence left behind by species was used for presence fo a species (tracks, species without physically seeing it. Faeces, tracks, nests, latrines, pellets, photographed, and analysed to decipher which species they were from. This was useful in understanding the presence ofBirds, mammals, terrestrial invertebrates (E.g., galls)
habitat.habitat.EvidenceofThe evidence left behind by species was used for presence fo a species (tracks, species without physically seeing it. Faeces, tracks, nests, latrines, pellets, photographed, and analysed to decipher which species they were from. This was useful in understanding the presence ofBirds, mammals, terrestrial invertebrates (E.g., galls)
EvidenceofThe evidence left behind by species was used for presence fo aBirds, mammals,species(tracks,species without physically seeing it. Faeces, tracks, nests,Birds, iterrestriallatrines,pellets,latrines. burrows and other forms of evidence were collected,invertebrates (E.g.,nests)photographed, and analysed to decipher which species theygalls)
species latrines, nests)(tracks, pellets, pellets, photographed, and analysed to decipher which species they were from. This was useful in understanding the presence ofterrestrial invertebrates (E.g., galls)
latrines, nests)pellets, latrines. burrows and other forms of evidence were collected, photographed, and analysed to decipher which species they were from. This was useful in understanding the presence ofinvertebrates (E.g., galls)
nests) photographed, and analysed to decipher which species they galls) were from. This was useful in understanding the presence of
were from. This was useful in understanding the presence of
species that were harder to survey due to their times of activity
species that were harder to survey due to their times of derivity
or where specific licenses and agreements were needed to
survey and had not been obtained.
Citizen Science A project was created on iNaturalist with a polygon that All taxa
Applications, encompassed the proposed Chester Wetland Centre. All wildlife
iNaturalist recording made on the platform were included into the data once
they had been verified and approved and the species confirmed
or corrected. This allowed any member of the public to make
observations of wildlife observed at the proposed Chester
Wetland Centre and to contribute to ongoing scientific research.
Whilst also aiding the researcher with providing more data no
matter how big or small the contribution Invalid source
specified.

2.1 Water Quality Analysis using Biological Members Working Party (BMWP) Scores and Average Score per Taxon (ASPT).

The section of Finchetts gutter which flows through the proposed Chester Wetland Centre was surveyed for the presence of benthic macro-invertebrate. The surveyed stretch of water was sampled every 20 metres with a D shaped net passed through the water at different depths for 30 seconds 6 times, twice for each depth, bed, middle and surface(Brua, Culp et al. 2011, Ojija, Laizer 2016, Zeybek, Kalyoncu et al. 2014). Surveying took place during late spring in the month of May. Organisms were identified to a taxonomic family level in the field and where needed a small electronic microscope was used. Families and their tolerance to organic pollution to analyse the water quality using the Biological Members Working Part Score (BMWP Score) and Average Score per Taxa (ASPT) **Invalid source specified.**. The BMWP gives a score to each taxonomic family based on their tolerance to organic pollution. A greater score and the presence of less tolerable benthic macro-invertebrate families indicated a higher quality of water and less presence of organic pollutants (A. Hawkes 1998). The ASPT is the BMWP score divided by the number of scoring families (Armitage, Moss et al. 1983). The surveyed stretch of water was sampled every 20 metres with a D shaped net passed through the water at different depths for 30 seconds 6 times, twice for each depth, bed, middle and surface. Surveying took place during late spring in the month of May.

 Table 2: Interpretation of the Biological Members Working Party (BMWP) Scores, category, and interpretation of results Invalid source specified..

BMWP Score	Category	Interpretation		
0-10	Very Poor	Heavily Polluted		
11-40	Poor	Polluted/ Impacted		
41-70	Moderate	Moderately Impacted		
71-100	Good	Clean/ Slightly Impacted		
>100	Very Good	Unpolluted/ Unimpacted		

2.2 Biodiversity Analysis

Shannon-Weiner Biodiversity Index (H)

The biodiversity of the two main habitat types, Semi-improve neutral grassland and marsh grassland, was calculated using the Shannon-Weiner Index (H).

$$H = -\sum_{i=1}^{s} \left(\frac{n_i}{N}\right) \log_2\left(\frac{n_i}{N}\right)$$

Where S is the total number of species in the sample, N the total number of individuals in each sample and n the total number of individuals of each species. The result of the Shannon-Weiner indices is the inverse of Simpson's Diversity indices. A value of 0 would imply complete homogeneity or no species diversity. A larger value indicates greater diversity. This measure takes into consideration rarer species (Species represented by 1 or a few individuals in the overall data set) **Invalid source specified.**

3.0 Results

3.1 Water Quality Analysis

An analysis of Finchetts gutter was conducted using macro-aquatic invertebrates as biological indicators of organic pollution with the method for this practice outlined in Table 1 of the methods section. To analyse the quality of the water in Finchetts Gutter, the Biological Members Working Party (BMWP) Index and Average Score per Taxa (ASPT) were used.

Table 3: Results of the water quality analysis of Finchett's Gutter which runs through the proposed Chester Wetland Centre using the Biological Members Working Party (BMWP) Score and Average Score Per Taxa (ASPT) using benthic macro-invertebrates as indicators to water quality from their tolerance to organic pollutants.

Family	Species	BMWP Score
Acroloxidae	Lake Limpet	6
Asellidae	Two-spotted Water-slater	3
Baetidae	Mayflies	4
Calopterygidae	Jewel-winged Damselflies	8
Coenagrionidae	Narrow winged Damselflies	6
Erpobdellidae	Leeches	3
Gammaridae	Amphipod (Shrimp)	6
Limnephilidae	Northern Caddisfly	7
Physidae	Acute Bladder Snails	3
Sialidae	Alderflies	4
Sphaeriidae	Pea Mussel	3
Hydrosychidea	Net Spinning caddisfly	5
	BMWP	58
	ASPT	4.83
	Shannon-Weiner Diversity Index (H)	2.13

The Biological Members Working Party (BMWP) Score gives benthic macro-invertebrate families a numerical value depending on their tolerance to organic pollutants with 10 being the highest score meaning they have little tolerance to organic pollutants and 1 meaning they have a high tolerance to organic pollutants present. The BMWP Score for the section of Finchett's Gutter which runs through the proposed Chester Wetland Centre was 58 which is interpretated as moderately polluted which can be interpreted as having a moderate impact on the species found within the water course. the ASPT score provides and average score across all benthic macroinvertebrate families present, on average the benthic-macro invertebrate families recorded have and ASPT=4.83 this shows on average the tolerance to organic pollutants from the species found is quite high with those species able to live in more polluted waters. A higher ASPT value would suggest 1) the water is less polluted and 2) the tolerance to organic pollutants of the species found is lower and therefore possibly more at risk of population decline/ local extinction due to increased amounts of organic pollutants. The BMWP score and ASPT value provide a foundation for potential changes to be made to improve the water quality which supplies the proposed Chester Wetland Centre thus improving habitat quality. The Shannon-Wiener diversity index was used to evaluate the diversity of macro-invertebrate families with in Finchetts Gutter, results of the diversity index were promising, H=2.13, where 12 aquatic macro-invertebrate families were present within Finchetts Gutter. A value of H=0 would indicate complete homogeneity or no diversity. The higher the H value the greater the diversity.

3.2 Biodiversity and Species Analysis

Biodiversity comparison of the two main habitat types at the proposed Chester Wetland Centre

The results of the Shannon Diversity index indicated in the table below show a clear difference in how biodiverse each of the two habitats tested are. All available taxa that were identified in the two habitats were included in the analysis to get a clear understanding of the overall biodiversity of the habitats rather than just using a specific taxon.

Table 4: Results of the Shannon-Wiener diversity index of the two largest habitat types, semi-improved neutral grassland (B2.2), and marsh grassland (B5), of the proposed Chester Wetland Centre prior to restorative actions.

Habitat Type	Shannon-Wiener Diversity Index (H)			
Semi-improved Neutral Grassland (B2.2)	3.80			
Marsh Grassland (B5)	3.28			
Entire study site including the 4-habitat typed	3.85			
present				

All taxa recorded and identified from the data collection methods outlined in table 1 were included with in the Shannon diversity index to gain a full understanding of how biologically diverse the two habitats were in comparison to one another as well as the overall biodiversity of the study site. The semi-improved neutral grassland (B2.2) is a more biologically diverse habitat, H=3.80, compared to the marsh grassland (B5), H=3.28. The marsh grassland habitat is the main area of focus at the study site for where habitat restorative actions have been proposed for the creation of a wet meadow habitat. A lower biodiversity value for this habitat supports a potential need for habitat restoration to be undertaken as wetland habitats are often classed as very biodiverse habitats often referred to as biodiversity hotspots. However, with the semi-improved neutral grassland having a higher biodiversity value care needs to be taken to prevent loss of biodiversity and loss of habitat, and for further improvements and management techniques to be undertaken. The overall biodiversity of the site includes all species recorded throughout the study from all four habitats identified in the Phase 1 Habitat survey and report (appendix 1). From the Shannon diversity calculation, the overall site biodiversity, H=3.85, is relatively low when we compare this to the biodiversity of the two largest habitats identified at the site (table 3). This figure alone provides little information regarding the species present and the species-habitat functions and relationships. This figure however can be used in future studies of this site to compare how the overall site biodiversity changes over time post restorative actions and using different management techniques to maintain the site and habitats within it.

Species Analysis

To make the large amount of data collected for this study easier to understand and analyse each taxonomic class was given a colour code, shown in the figure below, this made is easier to see how each taxonomic class contributed to the overall species richness of the project site See Appendix B for an example of the way data was stored. Throughout the 11-month data collection period 283 different species were identified at the proposed Chester Wetland Centre. These comprised of seventeen different taxonomic classes, 65 different taxonomic orders and 211 different taxonomic families.

Represented in Figure 2 below, Insects, Class Insecta, was the most species rich taxonomic class making up 38.6% of overall species richness of the proposed Chester Wetland Centre with 110 species out of 285 species recorded in total. The other five most represented taxonomic classes present at the proposed Chester Wetland Centre were Magnoliopsida (flowering plants), 75 species making up 26.32% of species richness, Aves (birds), 29 species making up 10.18% of overall species richness, Arachnids (Spiders, mites and harvestmen) 19 species making up 6.67% of overall species richness, Liliopsida (Grasses, rushes and sedges) 17 species making up 5.96% of overall species and Gastropods (Slugs and snails) 11 species making up 3.86% of overall species richness. A total of 17 different taxonomic classes were identified at the proposed Chester Wetland Centre, less represented taxonomic classes which were represented by only a few species include Bivalves (mussels and clams), Actinopterygii (ray-finned fish), Amphibia (frogs, toads, and newts), Lecanoromycetes (Lichens), Entognatha (springtails. dipluran and proturan), Malacostraca (woodlice and shrimps), Diplopoda (millipedes and centipedes), Bryopsida (mosses), Agaricomycetes (fungi), Mammalia (mammals), Clitellata (worms and leeches) these taxa each make up >2% of overall species richness.

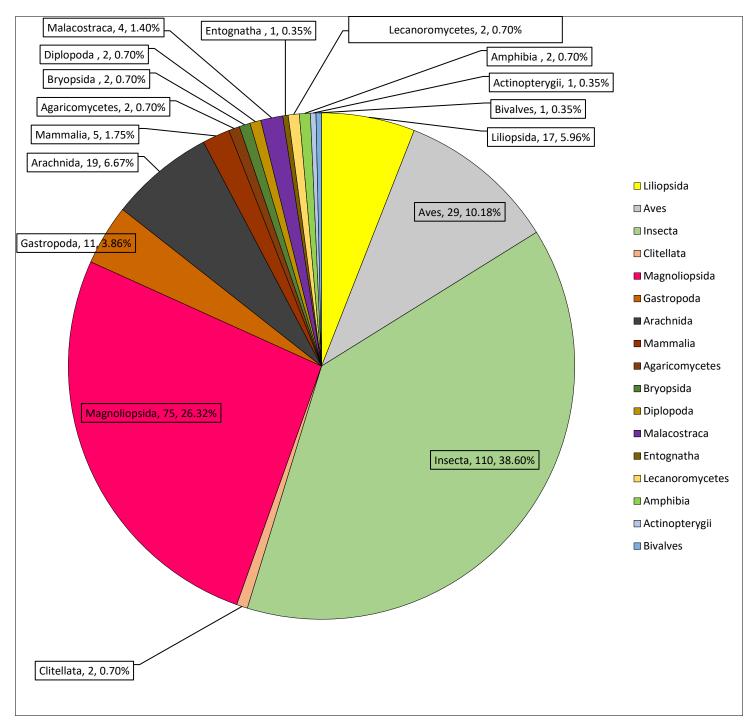


Figure 2: The number of different species per taxonomic class and the proportion they make up of the overall species richness of the proposed Chester Wetland Centre site across all four habitat types identified after and 11-month period of surveying throughout all four seasons.

This is not to say that these taxonomic classes are limited to or only represented by a few species as some species would have missed during the data collection period due to the size of the site, inaccessibility to areas of the site during different times of year due to seasonal flooding in winter and denser vegetation during summer, difficulty in identification and a lack of resources including powerful microscopes, the primary use of in field identification to avoid euthanising specimens for identification, lack of experience identifying more cryptic taxa

and the natural history of species including subterranean or aquatic lifestyles, nocturnal activity, etc. The total number of individuals recorded during the data collection period was 7,486 specimens across all taxa. Due to the data collection methods used, plants (Magnoliopsida and Liliopsida) were the most represented of taxa in the data base. An overview of the data set can be view in appendix 2.

A Review of Species Present at the Proposed Chester Wetland Centre Study Site

Species of importance were categorised as those covered by the UK Biodiversity Action Plan and Section 41: Species of Principal Importance in England, Natural Environment and Rural Communities (NERC) Act 2006 Invalid source specified.

Five species were identified as being UK Biodiversity Action Plan (BAP) priority species **Invalid source specified.** The five species identified as UK BAP species were Common Toad (*Bufo bufo*), White Ermine Moth (*Spilosoma lubricipeda*), Common Bullfinch (*Pyrrhula pyrrhula subsp. pileate*), Song Thrush (*Turdus philomelos*) and Reed Bunting (*Emberiza schoeniclus*).

All 5 species previously included in the UK BAP were also included in Section 41: Species of principle importance in England with the inclusion of one more species identified at the Chester Wetland Centre, Dunnock (*Prunella modularis subsp. occidentalis*).

Birds

Of the numerous taxa that were included in the data set, one such taxa, Aves (Birds) are often used to look at the quality of habitat and are often used as a target class to analyse success or failure of habitat restoration sites. Within this taxa, 29 species were identified and recorded at the study site, with some identified as year-round residence and others migrating to the study site. The avian residence of the proposed Chester Wetland Centre inhabits a range of habitats outlined in the table below and fit into different conservation categories, providing support for the importance of research and projects such as this.

Table 5: The 29 species of bird present at the proposed Chester Wetland Centre with their UK conservation status using the RSPB traffic light system of Green, Amber, and Red depending on the species conservation priority **Invalid source specified.** their residency at the site, whether they are nesting and their preferred habitat types.

Common Name	Scientific	UK Conservation	Residency	Nesting	Preferred habitat/s
	Name	Status			
Carrion Crow	Corvus corone	Green	Year round	N	All kinds of open areas inc. farmland, upland moors, and suburbs.
Common Buzzard	Buteo buteo	Green	Year round	N	Wooded farmland, hills, moors, near crags and forests.

Common Kestrel	Falco	Amber	Year	N	Cities to remote
	tinnunculus		round		mountains; common around woodlands, heaths, and farmland
Common Pheasant	Phasianus colchicus	Green / Introduced (Naturalised)	Year round	N	Found widely in varied habitats, very mixed countryside, in arable fields, woods, reedbeds, heaths and moorland edges.
Common Snipe	Gallinago gallinago	Green	Wintering	N	Wet marshes and boggy heaths, freshwater marshes with shallow water and soft mud.
Dunnock	Prunella modularis	Amber	Year round	N	Heaths and moors with low dense scrub, exposed coastal areas, higher forest, bushy garden, ornamental flower beds, and parks
Eurasian Black Bird	Turdus merula	Green	Year round	Y	Woods, gardens, parks, farmland with tall hedges, woodlands with rotting leaf litter on the ground.
Eurasian Blue Tit	Cyanistes caeruleus	Green	Year round	N	Woods of all kinds, parks, gardens, and bushy places.
Common Bullfinch	Pyrrhula pyrrhula subsp. pileata	Amber	Year round	N	Woodland, farmland with hedges, thickets, parks, gardens with thick shrubs.
Eurasian Coot	Fulica atra	Green	Year round	N	Lakes, flooded pitswithmarginalvegetationoroverhangingbranches.
Eurasian Jay	Garrulus glandarius	Green	Year round	N	Parks with extensive lawns, various woodlands, and large gardens.
Eurasian Magpie	Pica pica	Green	Year round	Y	Farmland with hedges, edges of woodlands, towns, and parks.

Eurasian Moorhen	Gallinula	Green	Year	N	Ditches, rivers, ponds,
	chloropus		round		lakes, and reservoirs of all kinds.
Eurasian Wren	Troglodytes troglodytes	Green	Year round	Y	Anywhere from open clifftops and heaths to broadleaved and coniferous woodland, parks, gardens, and hedges.
European Robin	Erithacus rubecula	Green	Year round	Y	All kinds of forest especially more open woodland, as well as bushy heaths, in gardens with hedges, and shrubberies and in town parks.
European Stonechat	Saxicola rubicola	Green	Year round	Y	Open places with gorse, heather, and bushes, on heaths or above coastal cliffs, and dunes.
Gold Finch	Carduelis carduelis	Green	Year round	N	Likes weedy places with tall, seed-bearing flowers such as thistles and teasles; also, alders and larch.
Great Tit	Parus major	Green	Year round	N	Mixed woodlands, parks, and gardens.
Long-Tailed Tit	Aegithalos caudata	Green	Year round	N	Mixed or deciduous woods with bushy undergrowth, scrub, and tall old hedgerows.
Mallard	Anas platyrhynchos	Amber	Year round	N	Towns, to remote moorland, near almost any type of water.
Pied Wagtail	Motacilla alba	Green	Year round	N	Varied habitats often near water and in built up areas.
Reed Bunting	Emberiza schoeniclus	Amber	Year round	N	 Wet places with reeds, sedges, rushes, willow thickets, and the fringes of lakes and rivers, also drier heathy slopes and heathland bogs.

Sedge Warbler	Acrocephalus schoenobaenus	Green	Year round	N	In reeds from narrow ditches to extensive
					reedbeds, and
					associated wetland
					vegetation, such as
					sedge and reedmace,
					more rarely in nettles,
					willowherb, and other rank growth.
Song Thrush	Turdus	Red	Year	Y	Broad-leaved
Song Thrush	philomelos	Teed	round		woodland, parks,
	P				farmland with trees
					and hedges gardens,
					parks with lawns and
					shrubberies.
Swallow	Hirundo	Green	Migrant	N	Often near water,
	rustica				feeding over grassy or
					cultivated river
					valleys, open space, or
					rich farmland with
Teal	Anas crecca	Amber	Year	N	hedgerows. Fresh water marshes
Tear	Anus creecu	Amoer	round		and wet moors and
			Tound		heaths, including high
					moorland pools.
White Throat	Sylvia	Green	Migrant	N	In bushy, dry, and
	communis				heathy places with
					low, thorny scrub,
					dense herbs, such as
					nettles, hedges,
Weed D'	Cale and	C	V	N	thickets.
Wood Pigeon	Columba	Green	Year	N	Woodland and parkland with trees,
	palumbus		round		town parks, and big
					gardens.
Grey Heron	Ardea cinerea	Amber	Year	N	Both freshwater and
			round		slat water habitats,
					from salt marsh to
					rocky coasts to floods
					and fishponds.

One species of bird recorded; Song Thrush (Turdus philomelos) was identified as being categorised as red according to the RSPB. This is the most critical group with species on this list requiring urgent conservation action and priority. 7 of the 29 species of birds recorded at the proposed Chester Wetland Centre were identified as being part of the Amber List. The other 21 species of bird recorded at the Chester Wetland Centre were

identified as being on the Green List, this is the least critical of the groups and is made up of species which regularly occur within the UK and do not meet any of the above criteria Invalid source specified.. Of the 29 species of bird recorded at the CWC 25 species were observed residing all year round. The three species which were not deemed as resident due to not residing at the site all year round were the Common Snipe (Gallinago gallinago), this species was observed at the site between late November to late January. Swallow (Hirundo rustica) this species was seen only once during a visit to the sight in late September with approximately 20 individuals flying around the sight, presumed to be feeding. The occurrence at the site at the time of year they were recorded coincides with when this species begins its yearly migration away for the UK (Ormerod 1991). The third species classed as migrator was the Whitethroat (Sylvia communis), this species was observed on a few occasions between June and July. One owl pellet was found during the data collection period, although this could not be attributed to a specific species, however it does inform us that the site is used by at least one species of owl. Of the 29 species of bird recorded, 8 species were identified as wetland species: Common Snipe, Eurasian Coot, Eurasian Moorhen, Mallard, Reed Bunting, Sedge Warbler, Teal, and Grey Heron. Other species listed in Table 5 are also able to inhabit wetland habitats or use them for feeding. Five species of bird were identified as nesting (Y) at the proposed Chester Wetland Centre, where N, meant no nest were identified for that species although does not mean that they are not nesting it just means during the data collection period no nests were identified. All nest were found within the defunct, native species rich hedgerow habitat.

Herpetofauna

Two species of Amphibian were identified at the CWC, predominantly located in the marsh grassland habitat, these species were the Common Toad (*Bufo bufo*) and the Common Frog (*Rana temporaria*). All individuals identified were adults with no evidence of breeding or spawning, potentially due to not having the correct habitat requirements to breed or spawn as both species require ponds to spawn (Laurila, Kujasalo 1999, Reading, Clarke 1983). No species of reptile were recorded as being present at the site during the data collection period.

Mammals

Five species of mammal were recorded at the CWC site, these included Red Fox (*Vulpes vulpes*), Field Vole (*Mictrotus agrestis*), Common Shrew (*Sorex Araneus*), European Mole (*Talpa europaea*) and European Rabbit (*Oryctolagus cuniculus*). All species recorded are native and categorised as Least Concern (LC) on the IUCN red list. The European Mole undergoes population management at the request of the Environment Agency to prevent damage to the flood prevention bund.

Arachnids

19 species of arachnid were recorded, including 16 species of spider (Aranea), 1 species of mite (Trombidiformes) and 2 species of what are commonly known as harvestmen / daddy long legs (Opiliones). Of the 16 species of spider recorded 15 were identified as common, locally common, or widespread. 1 species of spider identified as *Alopecosa barbipes* was identified as a rare species of spider. 6 of the 16 species recorded were identified as preferring wetland or damp habitats,

Flora

92 species of plant were recorded across the four habitat types present at the proposed Chester Wetland Centre. 84 species of plant were identified to a species level, 35 species were identified as preferring wetland habitats this included 3 species identified as wet meadow specific species. 34 species of plant were identified as preferring fertile/ nutrient rich habitats, this included 4 species of plants preferring fertile / nutrient rich wetland habitats. 4009 individual plants were recorded over the 11-month data collection period across all four seasons. Wetland plants (1012 individuals recorded) accounted for 25.24% of species recorded. Plants preferring fertile/ nutrient rich soils (1138 individual) accounted for 28.39% of the recorded plant population. Plants which preferred wetland / damp nutrient rich/ fertile habitats accounted for 34.27% of the overall recorded plant population. In total 62.66% of the overall recorded plant population prefer nutrient rich/ fertile habitats in which to grow. The remain 37.34% of recorded plant species were identified as being able to inhabit a variety of habitats with varying soil types.

Insects

110 species of insect, across 11 different orders, were recorded at the Chester Wetland Centre over the 11-month data collection period. Of these 110 species, 20 species were identified as specifically inhabiting wetland habitats with many more species recorded favouring a variety of habitats including wetlands. Three families (Coenagrionidae, Libellulidae, Calopterygidae) from the Class Odonata, Dragonflies and Damselflies, were recorded at the study site, this included 1 species of Dragonfly, Four-spotted Chaser (*Libellula quadrimaculata*) and one species of Damselfly (*Ischnura elegans*) which were recorded as adults. Those recorded from the family Coenagrionidae (Narrow-winged Damselflies) could not be identified to a genus or species level as they were recorded in their larval stage. Species recorded from the Family Calopterygidae were further identified as being part of the Calopteryx Genus (Jewel-wing Damselflies), like those identified as part of the Calopterygidae Family, further identification was not possible due to these species being recorded in their larval stage.

Data collected for the BMWP Scoring of Finchett's gutter (Table 6) identified six insect families in their larval stages within the water course, these were Baetidae (Mayflies), Calopterygidae (Jewel-winged Damselflies), Coenagrionidae (Narrow winged Damselflies), Limnephilidae (Northern Caddisfly), Sialidae (Alderflies), Hydrosychidea (Net Spinning caddisfly).

21 species of Lepidoptera (Butterflies and Moths) were recorded at the study site. This included 18 species in their adult form and 4 species in their larval form although 2 species could not be correctly identified at a species level.

Seven species of Bee were recorded at the study site, including one species of bee that was observed as nesting, Tawny Mining Bee (Andrena fulva), the other 6 species were all identified from their drones and were recorded whilst foraging.

From 110 species of insect recorded, 22 species were identified as preferring wetland, wet grassland, damp, or boggy habitats.

Eristalis tenax was identified as preferring habitats fed by water polluted with organic materials further indicating that the marsh grassland habitat is nutrient rich. Although insects were the most species rich of the taxonomic families as previously discussed, they only accounted for 4.7% of the overall recorded population. This is not to say there is a low number of insects, albeit a possibility, it more so shows the methods used for this study had a biased towards plant communities and populations.

Parasites

Four parasites were identified and recorded at the study site: Oak marble gall wasp (*Andricus kollari*), Oak artichoke gall wasp (*Andricus fecundator*), Velvet mite (Family Trombidiidae) and Probiscis less Leech (*Erpobdella*).

The larvae of the Oak marble gall wasp (*Andricus kollari*) and the Oak artichoke gall wasp (*Andricus fecundator*) live in galls in sessile and common oak trees. The galls form once the female wasp deposits and egg at the base of a leaf stem.

Velvet Mite, Family Trombidiidae, although not all of the adults of most of the species of this taxonomic family are parasitic, many of the first instars are parasites of invertebrates.

Probiscis less Leech (*Erpobdella*), although not all species of this genus are parasites many are parasites of aquatic invertebrates, fish, and waterfowl.

4.0 Discussion

Biodiversity

A total of 282 species were identified at the Chester Wetland Centre including yearlong residents and migratory/ temporary residents. The 11-month data collection period created an extensive list of the species present with data including the time of year they were recorded, the number of each species recorded, the habitats they were recorded in, conservation status, specific legislation they are protected by/ included in and where possible the sex, age, and extra behavioural notes to identify how each species was using the site e.g., nesting, breeding, hunting/foraging (See Appendix C). This extensive list was used to provide a bigger picture approach to understand the needs of the species recorded and to make habitat restorative recommendations to improve the habitat for specific taxa and species thus we hypothesis will increase biodiversity.

In this study we compared the two largest habitats present at the proposed Chester Wetland Centre, they were both very close in regards to proximity and were both grassland habitats however they differed from one another as one was a marsh grassland that flooded in the winter whilst the other was a semi-improved neutral grassland that was situation on slightly higher ground, thus being (a) a reason for the two types of habitats present and (b) and a difference in the level of moisture retained in the soil. A total of 1951 individual specimens were recorded in habitat B2.2 (semi-improved neutral grassland habitat) whereas 5145 individual specimens were recorded in habitat B5 (marsh grassland habitat), despite the higher number of individual specimens recorded in habitat B2.2 had a higher biodiversity value, H=3.80 compared to habitat B5, H=3.28. The marsh grassland also acts as a flood water storage zone for Finchetts Gutter, a eutrophic, canalised stream which feeds the study site,

causing a nutrient rich habitat. This is further indicated by the presence of large numbers of Common Nettle (Urtica dioica) which is found on fertile or enriched soil types Invalid source specified. 234 Common Nettle plants were recorded in the semi-improved neutral grassland compared to 513 Common Nettle plants recorded in the marsh grassland (Table 5) suggesting a more nutrient rich / fertile soil and habitat and a potential causation for lack of wetland specific plants which preferring nutrient poor soils (Bedford, Walbridge et al. 1999). This is further supported by 528 specimens of Great willowherb (Epilobium hirsutum) plants recorded in habitat B5 compared to 59 Great willowherb (Epilobium hirsutum) specimens recorded in habitat B2.2. Great Willowherb (*Epilobium hirsutum*) grow on predominantly wet, fertile soils **Invalid source specified.** The presence of large numbers of this plant species further indicates to the marsh grassland being a nutrient rich habitat. Habitat B2.2 was predominantly on higher ground; this is possibly the causation for the numbers of nutrient rich preferring plants being lower. 139 different species across multiple taxa were recorded from habitat B5 compared to 188 different species recorded in habitat B2.2 making the semi-improved neutral grassland a more species rich and biodiverse habitat. Other species indicating less favourable soil conditions included Large Bindweed (Calystegia silvatica) which can often be found inhabiting waste ground and is an introduced species Invalid source specified., Orange Balsam (Impatiens capensis) and the highly invasive Himalayan / Indian Balsam (Impatiens glandulifera). Both these species of Impatiens grow in wet nutrient rich habitats Invalid source specified. and were absent in the semi-improved neutral grassland habitat. They are also invasive/ non-native species to the UK. Approximately 20 species of pollinating insect including 6 species of Bees including the Tawny Mining Bee (Andrena fulva) which had been identified as having approximately one nest at the study site, were present during data collection. The site is attractive to pollinating insects due to the large number of flowering plants, 49 species, found throughout across the four habitat types present over the 11-month data period collection period. Using data collected from the four habitat types present at the proposed Chester Wetland Centre, the overall biodiversity of the site was H=3.85. On its own this figure provides us with little information without comparing it to other H values, a lower H value does tell us that there is a low level of biodiversity, and a high H value tells us that there is high biodiversity at the study site. However, the overall biodiversity of the site was calculated to provide information for future research and to set an example for what can be achieved when we analyse all species present and their populations.

The semi-improved neutral grassland had undergone some historic management, with evidence suggesting limited or sporadic mowing whereas the marsh grassland habitat had not undergone any known management or improvements and there was no indication towards it. An old concrete trough was present at the site which indicates at some point a farmer had used the area to graze cattle although this had not occurred for more than a minimum of 10 years after interviewing residents and those involved within the park where the research site is now situated. Water quality analysis (Table 6) and the large presence and dominance of plant species preferring nutrient rich habitats, outlined in the discussion indicate the presence of large amounts of organic pollutants causing a nutrient rich and more monoculture habitat, causing potential explanation for a lower level of biodiversity.

Flora

Four habitat types were identified during the Phase 1 Habitat Survey conducted prior to data collection, these included a defunct, native species rich hedgerow, a eutrophic canalized stream, a semi-improved neutral grassland, and a marsh grassland (fig 1). One of the long-term goals of the proposed Chester Wetland Centre Project is to create a wet meadow habitat with improved biodiversity. From the results outlined above and from the preliminary Phase 1 Habitat survey, the flora present at the survey site is synonymous with nutrient rich/ fertile soils with many of the wetland floral species preferring marsh habitats. As previously discussed, the marsh grassland has a lower biodiversity value, H=3.28 (this included all available taxa within this habitat) when compared to the semi-improved neutral grassland H=3.80. In this section we discuss previous studies on how best to develop the marsh grassland into a wet meadow habitat with a focus on techniques to increase/ improve biodiversity. A combination of restorative techniques to tackle the issues outlined throughout this study are needed to improve habitat suitability for species thus improving the biodiversity of the site. The restoration of Finchetts gutter, a channelized agricultural stream, by "re-wiggling"/ modification of the channel through the site to improve water retention in the study area would be beneficial to the floral species at the site as this method of stream restoration increases the depth of the water table and improves the suitability of habitat for wet meadow species with the assumption that this will also increase wet meadow floristic biodiversity (Hammersmark, Dobrowski et al. 2010). Re-wetting, (increasing water table depth) has for many years been the main form of wet meadow restoration (Grootjans, Verbeek 2002) although the success of this restorative action in improving species richness has not been significant enough to declare if this method is successful. With the literature cited in this article rarely looking into other ecological stressors such was water quality. As previously discussed there was a large number of nutrient rich soil preferring plants present at the study site which in relation to the water quality analysis discussed later on in this study, the creation of treatment reedbeds further upstream would reduce the amount of organic pollutants being fed into the study site (Mandi, Houhoum et al. 1996) thus reducing the nutrient levels as this is considered to be essential for the successful restoration of wet meadow habitats (Klimkowska, Van Diggelen et al. 2007). Other projects and methods of wet meadow restoration have used topsoil removal, with the removal of 20cm of soil considered most effective. This reduces the nutrient levels in the soil more rapidly than mowing or through the creation of a treatment reed bed (Klimkowska, Van Diggelen et al. 2007). The removal of nutrient rich soil, tall vegetation and the seed bank of competitive weed species results in better establishment of lower competitive target species (Klimkowska, Van Diggelen et al. 2007, Verhagen, Klooker et al. 2001). The use of dispore transfer, the spreading of hay and seeds from another site has been observed to be effective when combined with other methods such as topsoil removal (Klimkowska, Van Diggelen et al. 2007) however the success is also dependant on the site where the hay material has been collected from as it may differ from the number of viable seeds and the types of plants species present at the site where the hay material is retrieved from (Klimkowska, Van Diggelen et al. 2007). However, mowing as a tool for wet meadow restoration and management has been successful in increasing biodiversity and species richness in a short space of time. The results of A. Kołos, & P. Banaszuk 16-year study found that mowing once a year increase species richness and diversity in a relatively short space of time (Kołos, Banaszuk 2013).

During the data collection period 29 species of bird were recorded at the proposed Chester wetland centre, this included one species that was categorised as red, four species categorised as amber and the remaining species all categorised as green according to the RSPB's conservation categories Invalid source specified. As previously discussed above, four species of bird are included in section 41: Species or Principal Importance of the Natural Environment and Rural Communities (NERC) Act 2006 Invalid source specified.. All nests of species identified as nesting were found within the defunct, native species rich hedgerow. There is a correlation between the size (width and height) of a hedgerow and the number of tree species found within the hedgerow and an increase in bird species richness (Hinsley, Bellamy 2000). However, the continued management and restoration of the defunct, native species rich hedgerow is needed to achieve the goal of increasing species richness and biodiversity. Management and restoration actions include but are not limited to the following, which have been successful in previous studies in achieving the desired goals of increased species richness and biodiversity; (Hinsley, Bellamy 2000) (i) More Habitat, an increase in habitat size especially an increase of hedgerow width to a preferable size of 2m allows coverage and protection for birds using the hedgerow for protection, nesting, and foraging. Where possible combining the hedgerow habitat with other surrounding habitats has been seen to increase bird species richness and biodiversity (Hinsley, Bellamy 2000, Barr, Britt et al. 1995). (ii) Hedgerow structural types, having a variation in heights and the number of trees dispersed withing the hedgerow to encourage certain types of birds depending on their habitat preferences (Barr, Britt et al. 1995, Hinsley, Bellamy 2000)(iii) Hedgerow trimming, timing hedgerows in rotation so that not all the hedgerows are cut each year. This management metho combined with (ii) provides a range of hedgerow type and size within a given locality. Timing of cutting should be left until late winter to avoid removing supplies of fruit and seed before the winter. Avoid cutting of hedgerows during the breeding season approximately March to August in the UK. Avoidance of overuse of a flail cutter and the removal of too much material during trimming (Hinsley, Bellamy 2000, Barr, Britt et al. 1995). (iv) Maintenance of good vegetive coverage in the hedge bottom and improved vegetive species richness and biodiversity to attract more insect for insectivorous birds and the preventing of over mowing/ grazing this area of the hedgerow habitat (Hinsley, Bellamy 2000, Barr, Britt et al. 1995). (v) Hedgerow restoration and the creation of new hedgerows should have a primary consideration for the bird species liable to be present in the location concerned. In cases where gappy hedges might be best converted to rows of bushes interspersed with grass/flowers/seedy weeds and sometimes a grass bank with grass, flowers and seed sources might be better than woody hedgerow plants (Hinsley, Bellamy 2000, Barr, Britt et al. 1995).

Insects

Insects were the most species rich of the recorded taxonomic families despite being less represented in the database of species found at the proposed Chester Wetland Centre. Insects are important as they are often used

an indicator for habitat health especially plants thus making them an important factor in evaluating success regarding restoration (Mortimer, Hollier et al. 1998). Of the 108 species of insect identified, 7 species were bees. Bees play an important role in maintaining plant species diversity. Restored wet meadow habitats have a higher diversity of bee species than less intensively managed grasslands (Moroń, Szentgyörgyi et al. 2008). Alongside the 7 species of bee. 6 species of hoverfly and drone fly, Syrphidae, were also identified with these species also performing an important role in pollination (Baumann, Keune et al. 2021). Increase in pollination success positively correlates with bee and hoverfly diversity and available habitat size (Baumann, Keune et al. 2021). Restoration/ creation of the wet meadow habitat would not only increase the habitat size but also increase the diversity and species richness of bee and hoverfly species, thus increasing the pollination success, colonisation, species diversity, and species richness of plant species post restorative actions.

Insects are also a valuable food source to various other species including birds, mammals, amphibians, fish, and other invertebrates such as arachnids. Restoring habitats with a focus on increasing insect diversity will provide a valuable resource for a variety of other species.

The presence of *Eristalis tenax* further indicates that the marsh grassland is nutrient rich as this species prefers wet habitats heavily polluted by organic materials (Aguilera, Cid et al. 1999). Further indications to how nutrient rich the marsh grassland habitats are outlined below in the water quality analysis using aquatic macro-invertebrates and their tolerances to organic pollutants in water bodies.

Water Quality Analysis

Water quality was analysed using the Biological Members Working Party (BMWP) index and Average Score per taxa (ASPT) use aquatic macro-invertebrates as an indication of fresh water habitat quality by evaluating the tolerance of aquatic macro-invertebrate families to organic pollutants using a numerical value as these are a key part in the recycling and decomposition of organic materials and are a major food source to many birds and fish (Zeybek, Kalyoncu et al. 2014, A. Hawkes 1998). The section of Finchetts Gutter surveyed for the water quality assessment had a BMWP score of 58 categorising the stream as questionable which is interpretated as moderately polluted Invalid source specified.(Ojija, Laizer 2016). A Shannon-Weiner diversity index was also used to assess the diversity of macro-invertebrate families within Finchetts Gutter. 12 families were present within Finchetts Gutter at the time of surveying producing a diversity value H=2.13 where H=0 indicates complete homogeneity or no diversity Invalid source specified.. The diversity indices alone provide little information however for the purpose of the study and future research of the proposed Chester Wetland Centre habitat restoration project, provides a basis to evaluate the improvement or deterioration of Finchetts Gutter post restorative actions. Previous studies have used the Shannon-Weiner diversity index to support the BMWP index and ASPT values when crating a wider analysis of the condition of freshwater habitats such as streams and rivers (Abdullahi 2018). The Average Score per Taxa for the surveyed section of Finchetts Gutter was ASPT=4.83. On average the taxa recorded in Finchetts gutter have a relatively high tolerance to organic pollutants with species having a BMWP score between 4 and 5, the closer the BMWP score is to 10 the lower the tolerance to organic pollutants thus indicating a more polluted habitat as species with a lower tolerance score (7,8,9,10) would not be able to inhabit this habitat therefore increasing the need to improve the quality of the habitat by reducing the organic pollutants to encourage less tolerable species (Ojija, Laizer 2016, Zeybek, Kalyoncu et al. 2014, A. Hawkes 1998). Increased aquatic macro-invertebrate biodiversity through restoration of a waterbody is a hotly debated subject with evidence proving and disproving the hypothesis that restoring waterbodies increases/ improves aquatic macro-invertebrates where some restorative actions have no impact on aquatic macro-invertebrate biodiversity, for example gravel introduction. Analysis of success of stream restoration has been difficult as few studies contain pre-restoration data on biodiversity, with many studies using a reference site that most resembles the pre restored streams being studied (Palmer, Menninger et al. 2010). For this reason, making restoration and management recommendations is difficult with scientific evidence that both proves and disproves that habitat restoration successfully increasing aquatic macro-invertebrates. Restoration techniques can include but are not limited to introduction of gravel, introduction of large wood, boulders, and "re-wiggling" to reduce canalisation. However, the restorative actions need to also address the water quality and the sources of pollutants further upstream. The creation of a treatment reedbed further upstream could reduce organic pollutants through naturally filtering the water passing through the reedbed. With a larger reedbeds and reedbeds with a longer water retention time having more success in reducing the amount of nutrients exiting the bed than in smaller reedbeds (Mandi, Houhoum et al. 1996).

Species of interest with habitat recommendations to increase biodiversity.

This section outlines some of the species of interest which may benefit from the proposed Chester Wetland Project and whether further research and precautions are needed to prevent loss of habitat and populations for these species.

UK Biodiversity Legislation of Importance with reference to specific species

The Biodiversity Action Plan is an internationally recognised programme addressing threatened species and habitats, designed to protect and restore biological systems, this was the outcome from the 19992 Convention on Biological Diversity (CBD). The UK BAP was published in 1994 with a review of habitats and species published in 2007 with the issues addressed in Rio de Janeiro at the CBD having an end date in 2012 **Invalid source specified.** In 2012 the UK BAP was replaced by the UK Post-2010 Biodiversity Framework with a revised version published in 2018-2020 **Invalid source specified.** The UK BAP list of priority species and habitats does however remain and important source of reference. The UK BAP priority species list was replaced by Section 41: Species of Principal Importance in England, Natural Environment and Rural Communities (NERC) Act 2006 **Invalid source specified.**.

Five species that are residents of the Chester Wetland Centre were identified as being on the UK BAP list, these included Common Toad (*Bufo bufo*), White Ermine Moth (*Spilosoma lubricipeda*), Common Bullfinch (*Pyrrhula pyrrhula subsp. pileate*), Song Thrush (*Turdus philomelos*) and Reed Bunting (*Emberiza schoeniclus*). Species were included in BAP as they faced immediate effects and required immediate actions to

reduce or mitigate population loss. Bufo bufo, Pyrrhula pyhrrula subsp. Pilatea, Turdus philomelos and Emberiza schoeniclus were included in BAP as they fit into the criteria of other. Species within this criteria were included because (i) Their geographic range is very restricted AND there is evidence of species decline (BRIG, Biodiversity Reporting and Information Group 2007), (ii) There is a substantial threat to a food plant or to a highly specialised habitat, if it is impossible to predict the resulting rate of decline in the species (BRIG, Biodiversity Reporting and Information Group 2007), (iii) There is pressure from disease, if it is impossible to predict the resulting rate of decline reproductive failure, if it is impossible to predict the resulting rate of decline (BRIG, Biodiversity Reporting and Information Group 2007), (iv) For a species on the existing priority list, factors that caused the original decline are still operating or the species population has not recovered to a point where it is likely to be viable in the long term (BRIG, Biodiversity Reporting and Information Group 2007), (v) The species is declining (but does not qualify under Criterion 3, marked decline in the UK, and is a good 'indicator' species for a declining taxonomic group, a threatened habitat type or a pressing conservation issue. Pyrrhula pyhrrula subsp. pilatea and Turdus philomelos were included in the BAP as this species requires an international responsibility and there has been a moderate decline in the UK, where 25% of this species international population is found in the UK or there has been a 25% decline of the UK population of these species in the UK (BRIG, Biodiversity Reporting and Information Group 2007). Spilosoma lubricipeda was included as there has been a marked decline in the UK population of at least 50%.

In the updated list from Section 41 Species of Principle Importance all five species preciously identified at the proposed Chester Wetland Centre as being included in the UK BAP Priority Species List were also included in Section 41 Species of Principle Importance with the inclusion of one more specie, Dunnock (*Prunella modularis subsp. occidentalis*) **Invalid source specified.**

The actions outlined in the UK BAP to conserve and improve biodiversity were later updated and implemented into the Natural Environment and Rural Communities (NERC) Act 2006. This legislation focuses on seven sections to conserve biodiversity and the species outlined in Section 41, with relevant species of the proposed Chester Wetland Centre included in the corresponding section **Invalid source specified**. The six species identified at the proposed Chester Wetland Centre fall into three of the seven sections to conserve biodiversity; <u>Regional and local government</u>: (Dunnock (*Prunella modularis*), Song Thrush (*Turdus philomelos*), Common Toad (*Bufo bufo*), White Ermine (*Spilosoma lubricipeda*)), This sector includes the work undertaken by local and regional government in all its forms, such as forward/spatial planning at regional, sub-regional and local level. It includes coastal management planning, transport and minerals planning and strategic planning for economic development and climate change. It also covers the services provided by local and regional government such as sports and recreation provision and education, and the management of the associated estate, including open spaces, landscaping and built infrastructure itself. It also includes all the estate managed by social housing providers. <u>Agriculture</u>: (Reed Bunting (*Emberiza schoeniclus*), Song Thrush (*Turdus philomelos*), Common Toad (*Bufo bufo*)), This sector is aimed at agricultural land managers and those that influence the management of farmland such as food producers and retailers, National Trust, National Parks,

AONBs, Local and Regional Government and Regional Development Agencies. <u>Freshwater</u>: (Reed Bunting (*Emberiza schoeniclus*), Common Toad (*Bufo bufo*)), This sector is aimed at managers of the freshwater environment including the Environment Agency, British Waterways, the Broads Authority, water companies, Internal Drainage Boards, fisheries, and navigation managers. the four remaining sections are; <u>Land use planning</u>, <u>Forestry</u>, <u>Upland</u>, and <u>Marine however there were no species identified under section 41 as being of concern to theses remaining four section.</u>

Recommendations for habitat restorative strategies

This section further discusses and recommends strategies previously mentioned in the above to restore/ recreate the habitats identified at the Chester Wetland Centre study site and the goals of the overall Chester Wetland Centre Project. During the Writing of this study the feasibility report and environmental action plan were published by Binnies one of the partners and contractor for this project which contains some recommendations for restorative strategies to be used, which are also discussed in this section. The recommendations outlined below are based on a "prefect scenario" where financial constraints don't exist.

Recommended Wet Meadow Restorative actions.

The area intended to be recreated into a wet meadow habitat is a mixture of marsh grassland and semi-improved neutral grassland (refer to Figure 1 and section x in the appendix), this provides a good foundation to create a wet meadow habitat on already saturated soil. Previous wet meadow habitat restorations have used re-wetting as a strategy to raise the water table however this technique alone has little evidence of improving habitat quality and increasing biodiversity, however the opposite may occur with re-wetting increasing levels of nitrogen and phosphorus (Grootjans, Verbeek 2002, Grootjans, Bakker et al. 2002). High levels of phosphorus and nitrogen have been linked with a decline in species richness and loss of endangered plants (Wassen, Venterink et al. 2005). Re-wetting at the proposed Chester Wetland Centre study site can be achieve through the removal of the bund that separates the marsh grassland habitat and the Finchetts Gutter, which would allow the wet meadow to flood more easily from the overflow of Finchetts Gutter during times of heavy rainfall. Rewetting the site through modification of the Finchetts Gutter by re-channelling it through the study site will also increase the area of habitat re-wetted and thus increasing the size of the restored wet meadow habitat. Re-channelling and re-wetting are some of the strategies already included in the feasibility study report.

Alongside the rewetting of the study site, we also recommend a combined technique of topsoil removal sod transplantation and dispore transfer to restore the current grassland habitats into a wet meadow and to further manage the desired habitat should it be successful. To achieve the desired goal of a nutrient poor, wet meadow we recommend a topsoil removal depth of 30-50cm. Topsoil removal at a depth of 50cm has a seen a greater immediate reduction in nutrient levels then a top soil removal depth of 30cm (Hölzel, Otte 2003). Topsoil removal of 15-20cm, removes most the more recent seedbank of competitive species, however common, competitive species have a greater chance of re-invading (Klimkowska, Van Diggelen et al. 2007, Verhagen, Klooker et al. 2001), where as a removal depth of 50cm completely removes the recent seed bank, lowers the overall habitat closer to the water table increasing areas of prolonged standing water, creating the anoxic

conditions that prevent less desirable plant species from colonising (Klimkowska, Van Diggelen et al. 2007). Combining this with sod transplantation, whereby the topsoil of a depth of 30cm is removed from a doner site such as an already established restored wet meadow or a wet meadow in a near natural state. The sod is then placed at the site where restoration is being undertaken. This restorative technique has been shown to have the most success in forming plant communities most similar to the doner site (an already establish or near natural wet meadow, the desired goal) (Sengl, Magnes et al. 2017). Dispore transfer is the process in which the seedbank, vegetation containing seeds of wet meadow species seeds, from a wet meadow site to the restoration site. Combining topsoil removal with dispore transfer increases the number of target species including rare/ endangered species albeit only by a small amount (Donath, Bissels et al. 2007) with the quality of the host site having a significant impact on the types and number of species transferred (Klimkowska, Van Diggelen et al. 2007). Klimkowska et al's and Sengl et al's studies of various restoration techniques found that a combination of the four strategies outlined in this section were most successful in increasing plant diversity and successfully restoring wet grassland habitats e.g., salt marshes and wet meadows, projects with long-term management post restorative actions were more successful (Klimkowska, Van Diggelen et al. 2007, Sengl, Magnes et al. 2017). We recommend identifying a site with similarities to the desired habitat being created to collect material for dispore transfer. The wet meadow habitat at the Chester Zoo nature reserve has some of the target species to create a wet meadow habitat and is located close to the proposed Chester Wetland Centre, however due to a lack of management at this site and low numbers of target species (Martin-Parsons 2022) this site would not be suitable for dispore transfer. R Schmiede et al found a large number of target species had established by the third year after topsoil removal and dispore transfer this included 28 species of red list plants with over 100 species being identified post restoration (Schmiede, Otte et al. 2012).

Recommended Hedgerow Restorative Actions

We recommend the following hedgerow restorative actions to increase the number of bird species, improve habitat for nesting birds and restore the hedgerow habitat.

Increasing the available habitat, where possible including increasing the size of the hedgerow habitat to a width of approximately 2m as this has been successful in increasing coverage and protection for birds when foraging and nesting, combining the increased size of the hedgerow and improving the habitat around it increases the species richness and biodiversity with in the hedgerow (Barr, Britt et al. 1995, Hinsley, Bellamy 2000). Furthermore, we recommend varying the hight at different sections of the hedgerow to encourage a variety of life which we hope will inhabit it (Hinsley, Bellamy 2000, Barr, Britt et al. 1995). The continuous maintenance of the hedgerow will have an impact on the species found within this habitat, we recommend trimming the hedgerow to different widths and heights will provide variability in the habitat that should be sufficient in meeting the needs of the species that we are encouraging, predominantly wetland bird species including reed bunting. We recommend trimming the hedgerow in late winter to avoid removing resources such as fruits and seeds for overwintering and yearlong resident birds and to encourage more invertebrates such as insects which are also a valuable resource. Furthermore, this prevents cutting the hedgerow during the bird breeding seasons

(March to August) reducing disturbances to nests and fledglings. Avoidance of the use or overuse of a flail cutter and the removal of too much material during trimming should be considered when managing and maintaining this habitat (Hinsley, Bellamy 2000, Barr, Britt et al. 1995).

Recommended Stream Restorative Actions

For the eutrophic stream habitat, we recommend channel modification through re-meandering and channel widening to reduce the flow of water moving through this waterbody and to increase the holding time that the water is in the wider study site to provide areas for fish and amphibians to spawn. Although this strategy doesn't have a huge impact in increasing fish and macro-invertebrate biodiversity (Kail, Brabec et al. 2015, Gørtz 1998). However re-meandering the stream alongside other restorative actions outlined in Kail et al's meta-analysis of stream restoration has found that the following restorative actions increased fish and macro-invertebrate biodiversity, river margin enhancement through the removal of bunds and the management of margin vegetation, the placement of large wood and boulder in the stream and the creation of rifles were all found to have a positive impact on fish and macro-invertebrate biodiversity (Kail, Brabec et al. 2015). Therefore, we recommend these actions during the habitat restoration process. The Restorative actions conducted need to also address the water quality and the sources of pollutants further upstream. With stream restoration projects that had arable land in their catchment having lower species richness and biodiversity (Kail, Brabec et al. 2015) in regards to fish and macro-invertebrates The creation of a treatment reedbed further upstream would reduce organic pollutants from entering the study site through naturally filtering the water passing through the reedbed. Larger reedbeds and reedbeds with a longer water retention time having more success in reducing the amount of nutrients exiting the bed than in smaller reedbeds (Mandi, Houhoum et al. 1996). Furthermore restoration of streams has positively impacted the floral biodiversity and presence of desired or target species through the restoration of the water table depth that these plants need (Hammersmark, Dobrowski et al. 2010).

5.0 Conclusion

Throughout the period of this study, we have been able to create a comprehensive list of the flora and fauna that inhabits the proposed Chester Wetland Centre study. This has allowed us to investigate the natural history of each species and to understand the intrinsic relationships that they have with each other, and the habitats found at the study site. Using the scientific knowledge available from the literature referenced throughout this study and our own findings, we are able to recommend habitat restorative actions and strategies that will best benefit as many of the species found there and to increase the overall biodiversity of the site by increasing and improving the available habitat and resources, creating new habitats and reducing species competition through the removal of invasive and weedy / "less-desirable" species. This study has further analysed the biodiversity of two habitats already present to provide a foundation for the continuous research on the effects of habitat restoration on biodiversity and to provide evidence and support for the proposed Chester Wetland Centre project and other projects like this. The marsh grassland habitat, which is the main area proposed for wet meadow restoration was less biodiverse when compared to the semi-improved neutral grassland habitat that neighbours it. Providing more evidence to create/ restore this area into a wet meadow habitat. The

recommendations made throughout this paper are based on an ideal world scenario excluding time and financial constraints. However, we can conclude from the case studies referenced, that should a combination of some of the proposed restorative actions and strategies be utilised then the overall biodiversity of this site will increase.

6.0 References

a. Hawkes, H., 1998. Origin And Development of The Biological Monitoring Working Party Score System. Water Research, 32(3), pp. 964-968.

Abdullahi, S.N., 2018. Water Quality Assessment in Rimin Gado Dam, Kano – Nigeria Using Macroinvertebrate Fauna. 3, pp. 129-136.

Aguilera, A., Cid, A., Regueiro, B.J., Prieto, J.M. And Noya, M., 1999. Intestinal Myiasis Caused by Eristalis Tenax. Journal Of Clinical Microbiology, 37(9), pp. 3082.

Armitage, P.D., Moss, D., Wright, J.F. And Furse, M.T., 1983. The Performance of a New Biological Water Quality Score System Based on Macroinvertebrates Over a Wide Range of Unpolluted Running-Water Sites. Water Research, 17(3), pp. 333-347.

Barr, Britt, Sparks and Churchward, 1995. Hedgerow Management and Wildlife. A Review of Research on The Effects of Hedgerow Management and Adjacent Land on Biodiversity. Defra.

Baumann, K., Keune, J., Wolters, V. And Jauker, F., 2021. Distribution And Pollination Services of Wild Bees and Hoverflies Along an Altitudinal Gradient in Mountain Hay Meadows. Ecology And Evolution, 11(16), pp. 11345-11351.

Bedford, B., Walbridge, M. And Aldous, A., 1999. Patterns In Nutrient Availability and Plant Diversity Of Temperate North American Wetlands. Ecology, 80, pp. 2151-2169.

Bibby, C.J., Burgess, N.D., Hillis, D.M., Hill, D.A. And Mustoe, S., 2000. Bird Census Techniques. Elsevier.

Brig, Biodiversity Reporting, and Information Group, 2007. Report On the Species and Habitat Review. Uk Standing Committee.

Brua, R.B., Culp, J.M. And Benoy, G.A., 2011. Comparison Of Benthic Macroinvertebrate Communities by Two Methods: Kick- And U-Net Sampling. Hydrobiologia, 658(1), pp. 293-302.

Buckland, S.T., Marsden, S.J. And Green, R.E., 2008. Estimating Bird Abundance: Making Methods Work. Bird Conservation International, 18(S1), pp. S91-S108.

Donath, T.W., Bissels, S., Hölzel, N. And Otte, A., 2007. Large Scale Application of Diaspore Transfer with Plant Material in Restoration Practice–Impact of Seed and Microsite Limitation. Biological Conservation, 138(1-2), pp. 224-234.

Gørtz, P., 1998. Effects Of Stream Restoration on The Macroinvertebrate Community in The River Esrom, Denmark. Aquatic Conservation: Marine and Freshwater Ecosystems, 8(1), pp. 115-130.

Grootjans, A.P., Bakker, J.P., Jansen, A. And Kemmers, R.H., 2002. Restoration Of Brook Valley Meadows In The Netherlands. Hydrobiologia, 478(1), pp. 149-170.

Grootjans, A.P. And Verbeek, S.K., 2002. A Conceptual Model of European Wet Meadow Restoration. Ecological Restoration, 20(1), pp. 6-9.

Hammersmark, C.T., Dobrowski, S.Z., Rains, M.C. And Mount, J.F., 2010. Simulated Effects of Stream Restoration on The Distribution of Wet-Meadow Vegetation. Restoration Ecology, 18(6), pp. 882-893.

Hinsley, S.A. And Bellamy, P.E., 2000. The Influence of Hedge Structure, Management and Landscape Context on The Value of Hedgerows to Birds: A Review. Journal Of Environmental Management, 60(1), pp. 33-49.

Hölzel, N. And Otte, A., 2003. Restoration Of a Species-Rich Flood Meadow by Topsoil Removal and Diaspore Transfer with Plant Material. Applied Vegetation Science, 6(2), pp. 131-140.

Hughes, A.R., Grabowski, J.H., Leslie, H.M., Scyphers, S. And Williams, S.L., 2018. Inclusion Of Biodiversity in Habitat Restoration Policy to Facilitate Ecosystem Recovery. Conservation Letters, 11(3), pp. E12419.

Kail, J., Brabec, K., Poppe, M. And Januschke, K., 2015. The Effect of River Restoration on Fish, Macroinvertebrates and Aquatic Macrophytes: A Meta-Analysis. Ecological Indicators, 58, pp. 311-321.

Klimkowska, A., Van Diggelen, R., Bakker, J.P. And Grootjans, A.P., 2007. Wet Meadow Restoration In Western Europe: A Quantitative Assessment Of The Effectiveness Of Several Techniques. Biological Conservation, 140(3), pp. 318-328.

Kołos, A. And Banaszuk, P., 2013. Mowing As a Tool for Wet Meadows Restoration: Effect of Long-Term Management on Species Richness and Composition Of Sedge-Dominated Wetland. Ecological Engineering, 55, pp. 23-28.

Laurila, A. And Kujasalo, J., 1999. Habitat Duration, Predation Risk and Phenotypic Plasticity in Common Frog (Rana Temporaria) Tadpoles. Journal Of Animal Ecology, 68(6), pp. 1123-1132.

Mandi, L., Houhoum, B., Asmama, S. And Schwartzbrod, J., 1996. Wastewater Treatment by Reed Beds: An Experimental Approach. Water Research, 30(9), pp. 2009-2016.

Martin-Parsons, A., 2022. A Comparative Study of Two Wet Meadow Sites at Different Stages of Restoration / Rewilding in Cheshire, England.

Meli, P., Rey Benayas, J.M., Balvanera, P. And Martínez Ramos, M., 2014. Restoration Enhances Wetland Biodiversity and Ecosystem Service Supply, But Results Are Context-Dependent: A Meta-Analysis. Plos One, 9(4), pp. E93507.

Miller, J.R. And Hobbs, R.J., 2007. Habitat Restoration—Do We Know What We're Doing? Restoration Ecology, 15(3), pp. 382-390.

Moroń, D., Szentgyörgyi, H., Wantuch, M., Celary, W., Westphal, C., Settele, J. And Woyciechowski, M., 2008. Diversity Of Wild Bees in Wet Meadows: Implications for Conservation. Wetlands, 28(4), pp. 975-983.

Mortimer, S.R., Hollier, J.A. And Brown, V.K., 1998. Interactions Between Plant and Insect Diversity in The Restoration of Lowland Calcareous Grasslands In Southern Britain. Applied Vegetation Science, 1(1), pp. 101-114.

Ojija, F. And Laizer, H., 2016. Macro Invertebrates as Bio Indicators of Water Quality in Nzovwe Stream, In Mbeya, Tanzania. International Journal of Scientific and Technology Research, 5(6), pp. 211-222.

Ormerod, S.J., 1991. Pre-Migratory and Migratory Movements of Swallows Hirundo Rustica In Britain And Ireland. Null, 38(3), pp. 170-178.

Palmer, M.A., Menninger, H.L. And Bernhardt, E., 2010. River Restoration, Habitat Heterogeneity and Biodiversity: A Failure of Theory or Practice? Freshwater Biology, 55, pp. 205-222.

Peh, K.S., Balmford, A., Field, R.H., Lamb, A., Birch, J.C., Bradbury, R.B., Brown, C., Butchart, S.H., Lester, M. And Morrison, R., 2014. Benefits And Costs of Ecological Restoration: Rapid Assessment of Changing Ecosystem Service Values at A Uk Wetland. Ecology And Evolution, 4(20), pp. 3875-3886.

Reading, C.J. And Clarke, R.T., 1983. Male Breeding Behaviour and Mate Acquisition in The Common Toad, Bufo Bufo. Journal Of Zoology, 201(2), pp. 237-246.

Rispoli, D. And Hambler, C., 1999. Attitudes To Wetland Restoration in Oxfordshire and Cambridgeshire, Uk. International Journal of Science Education, 21(5), pp. 467-484.

Ruiz-Jaen, M.C. And Mitchell Aide, T., 2005. Restoration Success: How Is It Being Measured? Restoration Ecology, 13(3), pp. 569-577.

Schmiede, R., Otte, A. And Donath, T.W., 2012. Enhancing Plant Biodiversity in Species-Poor Grassland Through Plant Material Transfer – The Impact of Sward Disturbance. Applied Vegetation Science, 15(2), pp. 290-298.

Sengl, P., Magnes, M., Weitenthaler, K., Wagner, V., Erdős, L. And Berg, C., 2017. Restoration Of Lowland Meadows In Austria: A Comparison Of Five Techniques. Basic And Applied Ecology, 24, pp. 19-29.

Sutherland, W.J., 2006. Ecological Census Techniques: A Handbook. Cambridge: Cambridge University Press.

Verhagen, R., Klooker, J., Bakker, J.P. And Van Diggelen, R., 2001. Restoration Success of Low-Production Plant Communities on Former Agricultural Soils After Top-Soil Removal. Applied Vegetation Science, 4(1), pp. 75-82.

Wassen, M.J., Venterink, H.O., Lapshina, E.D. And Tanneberger, F., 2005. Endangered Plants Persist Under Phosphorus Limitation. Nature, 437(7058), pp. 547-550.

Zeybek, M., Kalyoncu, H., Karakas, B. And Özgül, S., 2014. The Use of BMWP And ASPT Indices for Evaluation Of Water Quality According To Macroinvertebrates In Değirmendere Stream (Isparta, Turkey). Turkish Journal of Zoology, (38), pp. 603-613.

Thesis Conclusion

This thesis as analysed and described the use of biodiversity as a measure for the success wetland habitat restoration, reviewing the use of biodiversity data as a tool, available literature from previous case studies outlined in Chapter 1. Further comparing the effect that wetland habitat restoration has on site pre and post restorative actions in Chapter 2. And finally, analysing the use of large biodiversity data sets in a current wetland restoration project, the Chester Wetland Centre, the information it can provide to support projects such as the proposed Chester Wetland Centre and the recommendations made to support high biodiversity and improve biodiversity from previous tried and tested methods in Chapter 3. We conclude that biodiversity is often used as a measure for success in wetland habitat restoration projects but that this is often limited to a few taxa or target species instead of using all available taxa at a site, potentially due to the large amount of work needed to collect a large data set. Furthermore, success is often based of comparative studies between sperate sites, which we have conducted one ourselves, however, studies rarely use data from pre-restoration and post-restoration of a study site when measuring success. This is outlined in Chapter 2: A comparative study of two wet meadow sites at different stages of restoration / rewilding in Cheshire, England. Where two sites at different stages of wet meadow habitat restoration was conducted. It supported the hypothesis that habitat restorative actions increase biodiversity however there was no available data for the established wet meadow site to compare how biodiversity and species composition changes with habitat restoration. For this purpose, a full analysis of habitat, species and biodiversity was conducted in Chapter 3, using all available taxa. We outline the amount of data and information for a site prior to habitat restorative action with the understanding that this research will be used further along the line of the restoration project to analyse how biodiversity and species composition changes and is affected throughout the habitat restoration of the proposed Chester Wetland Centre Project. Biodiversity loss and gain is currently, at the time of writing this thesis a hot topic in the overall global climate crisis. The aim of this thesis was to outline how biodiversity data could be used more effectively to assist the planning of habitat restoration projects when time is taken to collect as much available data as possible.

7.0 Appendix

Appendix A: The phase 1 Habitat Survey and report conducted prior to the undertaking of research for the purpose of this study, to identify the types of and extent of habitats at the study site.

Phase 1 Habitat Survey and Report of the Proposed Chester Wetland Centre

Contents

Executive summary

- 1 Introduction
- 2 Methodology
- 3 Baseline conditions
- 4 Discussion and Recommendations
- 5 References

Figure 1 Phase 1 Habitat Survey Map Figure 2 Permanent Quadrat Squares Map Appendix A: Target Notes Appendix B: Indicative Plant List

Executive Summary

This report is based on the finding of the phase 1 habitat survey conducted at the proposed Chester Wetland Centre at the Countess of Chester Country Park conducted by Alfie Martin-Parsons under the supervision of Dr Christian Dunn for the purpose of his MscRes project and for those involved in the project for the purpose of their undergraduate and combined degrees.

A small area owned by the land trust is the proposed location of the Chester Wetland Centre subject to planning permission. This report aims to identify potential ecological constraints to the proposal and for the purposes of scientific research to be conducted at the site.

The project site comprises of open grassland and marsh grassland with some evidence of human disturbance. It is located toward the Northwest of the Countess of Chester County Park, running parallel to the Shropshire Union canal. The habitat within the application site is of significant wildlife value as it provides potentially suitable habitat for habitat reconstruction and to house protected species.

This report recommends a number of measures for the purpose of this report, its value to training students and limit the impact on the wildlife already present. These include the maintenance of the grassland and the hedgerow already present at the site and the conservation of some of the trees located throughout the site.

1 Introduction

- 1.1.1 Alfie Martin-Parsons conducted a Phase 1 habitat survey to identify the types of and extense of habitats present, prior to conducting his master's in research study. The area of land where the Phase 1 Habitat Survey was conducted was a section of the Countess of Chester Country Park owned by the land trust which is bordered by the Shropshire Union canal and the rest of the Countess of Chester Country Park, this land is herein referred to as the project site.
- 1.1.2 The project site is located towards in the Northwest of Bach in the borough of Chester and comprises of approximately 4 ha of land, at Grid Reference SJ 39428 68987.
- 1.1.3 The aim of this study was to provide a description of the existing habitat types, to determine the existence and location of any ecologically valuable areas of this site for the purpose of soil quality, water quality and biodiversity research to be conducted at the site. No survey was conducted to identify the potential presence of protected fauna species.
- 1.1.4 The project site is the proposed location of the Chester Wetland Centre which aims to be an area of natural preservation, leisure, education, scientific research, and physical and mental wellbeing. This

site will accommodate a wetland including reedbeds, a wet meadow, improved paths and viewing platforms and environmental interpretation.

2 Methodology

2.1 Desk Study

2.1.1 The purpose of the desk study was to compile data from different map and global imagery sources such as Ordnance survey, iNaturalist, Google maps and Google earth to look at the presence or absence of habitat types and species already recorded at the site and which may not be detectable at the time of surveying.

2.2 Phase 1 Habitat Survey

2.2.1 A Phase 1 habitat survey was undertaken with reference to the Handbook for Phase 1 Habitat Survey **Invalid source specified.** to establish the presence and distribution of habitat types within the project site.

2.2.2 A walk-over field survey of the entire site was carried out on the 5th, 6th, and 8th of October 2020 in rainy and clear conditions. The timing of the survey was outside of the optimal season for grassland habitat survey (April- September), however due to the habitat types on the project site, it was possible to identify the dominant plant species needed to classify the different habitat types by the vegetation types present and presented in the standard Phase 1 habitat survey format with habitat descriptions and a habitat map (Figure 2) with Target Notes (TN), listed in Appendix A. The timing of the survey is not considered to be a significant constraint to the survey findings.

Protected Species

2.2.3 No specific protected species survey was carried out however all species observed and identified at the project site were cross reference with the Gov.Uk website page for UK protected species **Invalid source specified.** and the British Trust for Ornithology website **Invalid source specified.** Findings are exhibited in **Table 1**. Due to the time of year and day the survey has limitations on the presence of certain species such as bats, amphibians, spring/summer flying insects and breeding birds. However, information from the local authorities is needed to find out if any of the tree species have Tree preservation Orders (TPOs) on them.

Invasive species

2.2.4 During the identification process of species observed at the project site all species were thoroughly researched to identify if any were non-native/ invasive. No invasive species were identified at the project site.

3 **Baseline Conditions**

3.1 Habitat Descriptions

3.1.1 The Phase 1 habitat survey map is shown in Figure 1. The habitat descriptions below should be read in conjunction with the survey map and TNs in Appendix A. An indicative plant species list is provided in Appendix B.

General Description

3.1.2 The project site, located on the outskirts of the Countess of Chester Country Park and is Bordered by the Shropshire Union canal, comprises of semi-improved neutral grassland and marsh grassland bordered by eutrophic flowing water and a species-poor hedgerow mixed with trees and is generally of high ecological value. Outside the project site boundary are habitats of low ecological value including open tussocky grassland habitat on historical illegal landfill and parkland.

Semi-improve Neutral Grassland

3.1.2 Chester Wetland Centre supports Tussocky, neutral grassland habitat. The grassland habitat is present on the Western side of the Project Site with an area approximately 27,227.62 m². Dominant grass species recorded during this Autumn survey are False-oat Grass (*Arrenatherum elatius*) and Cock's-foot (*Dactylis Glomerata*). The grass land is Semi-improved with some evidence of un-improved grassland however it is not managed extensively. Other dominant species observed include Creeping Thistle (*Cirsium arvense*), Hogweed (*Heracleum sphondylium*), Creeping Buttercup (*Ranunculus repens*), Common Nettle (*Urtica dioica*) and Ragwort (*Jacobaea vulgaris*). During the survey various species of invertebrate and birds were observed foraging

Marsh Grassland

3.1.3 The marsh grassland has an area of approximately 23,741.91 m² and is bordered by Finchetts Gutter, a small stream. The Weir System located in the Northeast of the Project site is controlled by the Environment Agency (EA) for flood mitigation purposes although this does not prevent the marsh grassland from flooding suggesting a higher water table in this habitat. There is little clear distinct boarder between the marsh grassland and the neutral semi-improved grassland due to the nature of marsh grassland being flooded through the Autumn and Winter months and relatively dry through the Spring and Summer Months however the presence of Soft Rush (*Juncus effusus*), Hard Rush (*Juncus inflexus*), Sharp-flowered Rush (*Juncus acutiflorus*), and other species such as Meadow Sweet (*Filipendula ulmaria*), Marsh Woundwort (*Stachys plustris*), and Common Comfrey (*Symphytum officinale*) are indicative of Marsh Grassland habitat where these species are absent in the semi-improved neutral grassland. Bird Species including Snipe (*Gallinago gallinago*) and Mallards (Anas

platyrhynchos) were observed in the marsh grassland providing further support for the classification of this habitat.

Scattered trees

3.1.4 Scattered trees are present throughout the marsh grassland habitat and comprise of two species, Grey Willow (*Salix cinerea*) and Sessile Oak (*Quercus petraea*) with the majority being immature trees or naturally occurring saplings. Bird species including Long-tailed Tits (Aegithalos caudatus) and Great Tits were observed using these trees to move across the Project site from the hedgerow to the tree line on the opposite side of Finchetts Gutter.

Native, Species Rich, Defunct Hedgerow

3.1.6 The Hedgerow that boarder the Project Site to the Western side is classed as defunct due to the large gaps withing the hedgerow. The hedgerow is dominated by Hawthorn (*Crataegus monogyna*) however is interspersed with trees including Wyche Elm (*Ulmus glabra*), Small Elm (*Ulmus mino*), Sycamore (*Acer pseudoplatanus*) and Elder (*Sambucus nigra*), as well as Blackthorn (*Prunus spinosa*), the hedgerow is also interspersed with Bramble (*Rubus fruticosus*), Sweet-brier (*Rosa rubiginosa*) and Common Ivy (*Hedera helix*). Other species found below the Hedgerow included Greater Plantain (*Plantago major*), Common Nettle (*Urtica dioica*) and Common Ragwort (*Jacobaea vulgaris*).

Running Open Water

3.1.7 Due to the time of year and rainfall prior to and during the survey, aquatic vegetation was not able to be surveyed due to the swollen state of Finchetts Gutter and difficulties accessing the water way to flooding of the marsh grassland. No Algal blooms were visible, and no water samples taken to classify the water as either eutrophic, mesotrophic or oligotrophic.

3.2 Consideration of species

Birds

3.2.1 At its current state the Project Site's only suitable habitat for nesting birds is the Hedgerow. The tussocky grassland is potentially suitable for ground nesting birds however regular dog walkers passing through may be an indication as to why no old/ disused nests were identified in the semi-improved grassland habitat. Two male Pheasants (*Phasianus colchicus*) were observed at the site on the 5th however were absent on the 6th and 8th suggesting they are not permanent residents.

3.2.2 The Project site contains suitable over winter habitat in the form of the flooded marsh grassland. This is indicated by the presence of Snipe () and Mallards () observed on all three days the survey took place.

Table 1: Bird Species Recorded at the Project Site during the Phase 1 habitat survey (October2020)

Common name	Scientific Name	Observation	Habitat Type	Protected Species
		Туре		(England)
Snipe	Gallinago gallinago	Visual	B5	N
Eurasian Magpie	Pica pica	Visual	B2.2	N
Carrion Crow	Corvus corone	Visual	B2.2	N
Reed Bunting	Emberiza schoeniclus	Visual	B2.2 / B5	N
Mallard	Anas platyrhynchos	Visual	B5	N
Eurasian Jay	Garrulus glandarius	Visual	J2.3	N
Great Tit	Parus major	Visual	B2.2 / B5	N
Cetti's Warbler	Cettia cetti	Sound	J2.3	Y
Long-tailed Tit	Aegithalos caudata	Visual	B2.2 / B5	N
European Stonechat	Saxicola rubicola	Visual	B2.2/B5	N
Eurasian Wren	Troglodytes troglodytes	Visual	J2.3	N
Common Pheasant	Phasianus colchicus	Visual	B2.2	Ν

3.2.3 These are anecdotal records only and does not constitute a bird survey. Alphanumeric codes have been used for habitat types see Appendix C. Protected species categorised as Y (Yes) and N (No) **Invalid source specified.**

Amphibians

3.2.4 The Project site provides suitable terrestrial habitats for amphibians due to the tussocks of grass providing shelter although no amphibians were observed.

3.2.5 The Aquatic habitat present provides suitable habitat for breeding and tadpole growth should the marsh grassland remain permanently flooded however the running water is too fast flowing and polluted in its current state.

Reptiles

3.2.6 The combination of tall grassland and freshwater habitats is suitable for grass snakes (*Natrix natrix*) although none were present at the time of survey.

Mammals

3.2.7 No specific mammal surveying was conducted however evidence of European moles (*Talpa europaea*) and European rabbit (*Oryctolagus cuniculus*) was recorded in the semi-improved grassland habitat. The habitat types at the project site are suitable for a range of small mammals with Eurasian Otters (*Lutra lutra*) recorded along the Shropshire Union Canal however are absent from the Project site. The habitat types are unsuitable for larger mammals including Badgers (*Meles meles*) and Deer spp.

Invertebrates

3.2.8 The project site provides suitable habitat for a large array of invertebrates including those that have aquatic life stages or that hibernate. A range of flowering and fruiting plants provides suitable food sources.

Invasive Species

3.2.9 No invasive species were recorded at the project site at the time the Phase 1 Habitat Survey was conducted however this does not mean that invasive species were not present at the site.

4 Discussion and Recommendations

4.1 Overview of Scientific Use

4.1.1 The project site will have regular surveying over the next 12 months for the purposes of postgraduate and undergraduate research looking at the flora and fauna biodiversity of the project site. Permanent quadrat squares will be placed for surveying purposes. Small holes may be dug into the project site for the purposes of taking soil samples, installing pitfalls traps and surveying subterrestrial invertebrates. The project site will be regularly walked away from the present paths for surveying purposes. All scientific surveying work will aim to have little damaging impact on the habitats and the flora and fauna found within them.

4.2 Further Survey Recommendations

4.2.1 More specific surveying will be needed to detect the presence or absence of protected species. These will be possible to identify throughout the biodiversity research conducted at the project site.

4.3 Recommendations for Habitat Retention, Protection and Re-Instatement

Scattered Trees

4.3.1 The Larger trees found at the project site provide a steppingstone for small birds moving between the hedgerow and the tree line on the opposite side of Finchetts gutter. These slightly larger trees should be maintained as they provide habitat and protection for small nesting birds as well as various species of insect.

Marsh Grassland

4.3.2 I recommend a scheme to increase the water retention in the marsh grassland to improve this habitat as it may provide ideal habitat for various species of wading bird as well as provide suitable breeding water for amphibians and small freshwater fish as well as insects with aquatic life stages.

Semi-improved Neutral Grassland

4.3.3 Strimming or grazing is recommended for this habitat to allow for growth of more meadow flowers, creating suitable habitat for a range of insects and other invertebrates which will in turn attract more small mammals, reptiles, amphibians, and birds.

Running, Open Water

4.3.4 recommendations for discovering the sources of pollution for this water way and a scheme to treat the water will greatly increase the health of the marsh grassland and the water way itself and provide suitable habitat for freshwater fish, amphibians, aquatic or wading birds and invertebrates, aquatic invertebrates and invertebrates which have aquatic life stages.

Native, Species Rich, Defunct Hedgerow

4.3.5 Recommendations on the preservation of this habitat as this is where the Cetti's Warbler (*Cettia cetti*) sound observation was recorded. This habitat provides perfect habitat for Passeriformes as well as small mammals including mice, shrews, and hedgehogs. Maintenance on this habitat should be minimal and undertaken after the breeding season. The Trees Within the hedgerow provide cover and viewpoints for birds of prey and other birds spp.

Paths and Fencing

4.3.6 Recommendations on improved paths through the project site to reduce the potential damage and erosion to the grassland habitats present at the Project Site. Improved paths will also increase accessibility of this site for visitors with mobility issues as the current grass path can get cut up and muddy in the autumn and winter month. Fences to also prevent the public from accessing areas of potential danger (Grassland Marsh) and to provide protection of ground dwelling birds from dogs, walkers, cyclists etc.

Permanent Quadrats

4.3.7 Suggestions of the positioning of permanent quadrats see Figure 2.

5 Conclusion

5.1.1 The Project site comprises of open semi-neutral grassland and marsh grassland with trees scattered throughout the Project Site, bordered by a stretch of running open water on the eastern side and a native, species rich, defunct hedgerow with trees. The project site provides suitable habitat for a range of species including the potential for protected species.

5.1.2 This report recommends several measures for the protection, maintenance, and improvement of the Project Site for the proposed Chester Wetland Centre alongside recommendations for the purposes of research and habitat improvement and re-instatement. This includes the placement of permanent quadrats, improving the marsh grassland into a permanent wetland, improving, and treating the water flowing through Finchetts gutter which feeds the marsh grassland, and the preservation of some of the trees located throughout the site and the improvement of the hedgerow which boarders the project site and provides refuge for a multitude of species.

6 References

Benstead, P., 2000. Practical Wetland Restoration: Some recent experiences of the Royal Society for the Protection of Birds. *Landscape Research*, III(25), pp. 394-398.

Carter, S. P. & Bright, P. W., 2003. Reedbeds as refuges for water voles (Arvicola terrestris) from predation by introduced mink (Mustela vison). *Biological Conservation*, III(3), pp. 371-376.

Champion, M. & Ashton, P., 2010. *Reedbed Habitat restoration at the Wigan Flashes: Restoring the Post-industrial Landscape fro Wildlife Conservation: A Case Study.* Pontypridd, International Conference of the British Land Reclamation Society, pp. 206-223.

Clarkson, B. R., Ausseil, A.-G. E. & Gerbeaux, P., 2013. WETLAND ECOSYSTEM SERVICES. *Ecosystem Services in New Zealand- Conditions and Trends*, I(1), pp. 192-202.

Corker, B., 2000. *Ofwell Wetland Surevy, Introduction*. [Online] Available at: <u>http://www.countrysideinfo.co.uk/wetland_survey/index.htm</u> [Accessed 15 March 2021].

Google, 2021. *Google Maps*. [Online] Available at: <u>https://www.google.co.uk/maps/@54.2446391,-</u> <u>1.8620947,5.71z/data=!4m3!11m2!2sjRUGEVu35DDtBsk8clvGYaTwp-TdZA!3e3</u> [Accessed 19 March 2021].

Hughes, A. R. et al., 2017. Inclusion of Biodiversity in Habitat Restoration Policy to Facilitate Ecosystem Recovery. *Conservation Letters*, III(11), pp. 1-8.

Hughes, F. M. R. et al., 2016. The challenges of integrating biodiversity and ecosystem services monitoring and evaluation at a landscape-scale wetland restoration project in the UK. *Ecology and Society*, XXI(3), pp. 1-14.

Kentula, M. E., 2000. Perspectives on setting success criteria for wetland restoration. *Ecological Engineering*, XV(3), p. 199 – 209.

Kwi-Gon, K., Hoon, L. & Dong-Hyun, L., 2011. Wetland restoration to enhance biodiversity in urban areas:. *Landscape and Ecological Engineering,* Issue 7, pp. 27-32.

MacArthur, R. H. & MacArthur, J. W., 1961. On Bird Species Diversity. Ecology, XLIII(3), p. 594.

Meli, P., Benayas, J. M. R., Balvanera, P. & Ramos, M. M., 2014. Restoration Enhances Wetland Biodiversity and Ecosystem Service Supply, but Results Are Context-Dependent: A Meta-Analysis. *PLoS ONE*, pp. 1-9.

Miller, J. R. & Hobbs, R. J., 2007. Habitat Restoration—Do We Know What We Are Doing?. *Restoration Ecology*, XV(3), pp. 382-390.

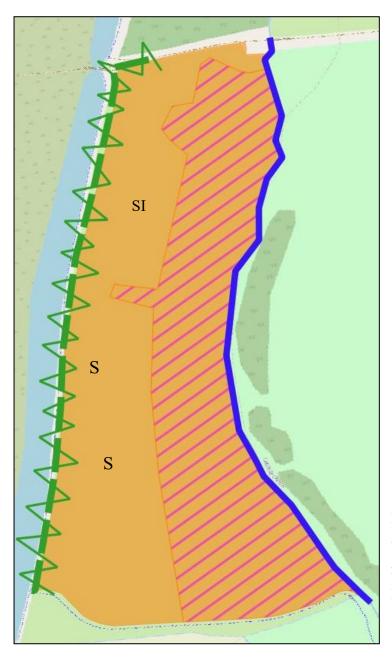
Peh, K. S.-H. et al., 2014. Benefits and costs of ecological restoration: Rapidassessment of changing ecosystem service values at a U.K.wetland. *Ecology and Evolution*, IV(20), pp. 3875-3886.

Rackham, O., 1986. The Histroy of the Countryside. London: W&N.

Rispoli, D. & Hambler, C., 1999. Attitudes to wetland restoration in Oxfordshire and Cambridshire. *International Journal of Science Education*, XXI(5), pp. 467-484.

Tyler, G. A., Smith, K. W. & Burges, D. J., 1998. Reedbed management and breeding bitterns Botaurus stellaris in the UK. *Biological Conservation*, LXXXVI(2), pp. 257-266.

Williams, M., 1993. Understanding Wetlands. In: M. Williams, ed. *Wetlands: A Threatened Landscape.* Oxford: Wiley-Blackwell, p. 25.


Woodland Education Centre, 2000. *The Wetland Restoration, Introduction*. [Online] Available at: <u>http://www.countrysideinfo.co.uk/wetland_project/introduc.htm</u> [Accessed 15 March 2021].

Woodland Education Centre, 2000. *The Wetlands Restoration Project, Wetlands Project Botanical Surveys*. [Online] Available at: <u>http://www.countrysideinfo.co.uk/wetland_project/91surveys.htm</u>

[Accessed 15 March 2021].

WWT, 2021. *Why Wetalnds? WWT*. [Online] Available at: <u>https://www.wwt.org.uk/our-work/why-wetlands</u> [Accessed 15 February 2021].

Figure 1: Phase 1 Habitat Survey Map

Figure 1 shows the size and positioning of the Different habitats present at the Project site at the proposed Chester Wetland Centre with reference to the Phase 1 Habitat Survey Handbook **Invalid source specified.**

Figure 2 Permanent Quadrats

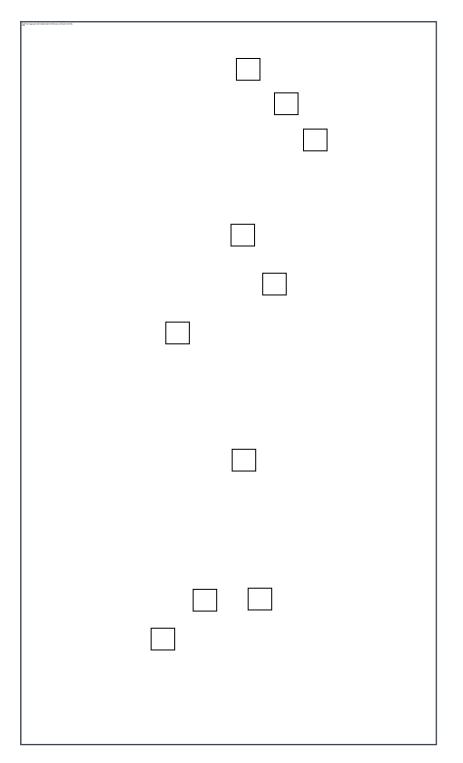


Figure 2 shows recommendations for the positions of permanent quadrats indicated by black squares. The black squares are not to scale and are enlarged to clearly show the quadrat positions on the map. Permanent quadrat positions are based on the finding in the Phase 1 habitat survey, see Figure 1, and are present in or near all habitats surveyed at the Project Site.

Appendix A: Target Notes

These TNs relate to Figure 1: Phase 1 habitat survey map.

Target note 1: large open space predominantly Tussocky grass species *Deschampsia cespitosa mixed* with *Holcus lanatus* with some meadow plants, areas of predominantly Thistles, nettles, and brambles.

Target note 2: Large open space, flooded, predominantly Juncus sp. Some marsh herbs, small copse of Sessile Oak. Lone standing Grey Willow.

Target note 3: Hedgerow, predominantly Hawthorn, defunct in areas, variety of tree species throughout. Other vegetation predominantly nettles, brambles and Rose.

Target note 4: Stretch of open water, brown colours, fast flowing and banks burst. No visible vegetation in/ on the water. Flooding marsh grassland.

Scientific name	Common Name
Complex Rubus fruticosus	European Bramble Complex
Argentina anserina	Common Silverweed
Heracleum sphondylium	Hogweed
Plantago major	Greater Plantain
Juncus effusus	Soft Rush
Salix cinerea	Grey Willow
Trifolium repens	White Clover
Stachys plustris	Marsh Woundwort
Anthriscus sylvestris	Cow Parsley
Ranunculus repens	Creeping Buttercup
Leucanthemum vulgare	Oxeye Daisy
Achillea millefolium	Yarrow
Epilobium hirsutum	Great Willowherb
Veronica chamaedrys	Germander Speedwell
Scrophularia nodosa	Common Figwort
Sonchus asper	Prickly Sow thistle
Filipendula ulmaria	Meadowsweet
Symphytum officinale	Common Comfrey
Jacobaea vulgaris	Ragwort
Arrenatherum elatius	False Oatgrass

Appendix B: Indicative Plant List

Dactylis Glomerata	Cock's-foot
Urtica dioica	Common Nettle
Cirsium arvense	Creeping Thistle
Quercus petraea	Sessile Oak
Lathyrus pratensis	Meadow Vetchling
Aegopodium podagraria	Ground-elder
Calystegia silvatica	Large bindweed
Ulex europaeus	Gorse
Rumex obtusifolius	Broad-leaved Dock
Carex limosa	Bog-sedge
Chamaenerion angustifolium	Rosebay Willowherb
Crataegus monogyna	Common Hawthorn
Ulmus minor	Small-leaved Elm
Prunus spinosa	Blackthorn
Rosa rubiginosa	Sweet brier
Acer pseudoplatanus	Sycamore
Sambucus nigra	Elder
Ulmus glabra	Wych Elm
Hedera helix	Common Ivy
Deschampsia cespitosa	Tufted Hair Grass
Juncus acutiflorus	Sharp-Flowered Rush
Juncus inflexus	Hard Rush

Appendix B

Table A: a record of the types of species found at the proposed Chester Wetland Centre, colour coded based on their taxonomic class (see Figure 2), the number of each species recorded and the Shannon diversity index formulas for calculating biodiversity.

Class	Order	Family	Genus	Scientific name	Common Name	UK Conservation Status	N	рі	l1npil	(pi) ln pi
Actinopter ygii	Cypriniform es	Cyprinidae			Minnos / Carp		1	0.000 133	- 8.926 38	- 0.001 19
Agaricomy cetes	Agaricales	Galeropsida ceae	Panaeolus	Panaeolus foenisecii	Brown Mottlegill	Common	1	0.000 133	- 8.926 38	- 0.001 19
Agaricomy cetes	Agaricales	Bolbitiacea e	Bolbitius	Bolbitius titubans	Yellow Field Cap	Common	1	0.000 133	- 8.926 38	- 0.001 19
Amphibia	Anura	Ranidae	Rana	Rana temporaria	Common Frog	Common	5	0.000 664	- 7.316 95	- 0.004 86
Amphibia	Anura	Bufonidae	Bufo	Bufo bufo	Common Toad	Common	3	0.000 399	- 7.827 77	- 0.003 12
Arachnida	Araneae	Lycosidae	Alopecosa	Alopecosa barbipes	Alopecosa barbipes	Rare	1	0.000	- 8.926 38	- 0.001 19
Arachnida	Araneae	Araneidae	Araneus		Angulate and Round- shouldered Orb weavers		1	0.000	- 8.926 38	- 0.001 19
Arachnida	Araneae	Theridiidae	Enoplogna tha	Enoplognatha ovata	Common Candy-striped Spider	Common	6	0.000	- 7.134 63	- 0.005 69

									-	-
A use allous i allo	0	Tetragnathi	Tetragnath	Teturnetherest	Common Churchele Caridan	Comment	4	0.000	8.926	0.001
Arachnida	Araneae	dae	a	Tetragnatha extensa	Common Stretch Spider	Common	1	133	38	19
								0.001	- 6.623	- 0.008
Arachnida	Araneae	Araneidae	Araneus	Araneus diadematus	European Garden Spider	Common	10	328	8	8
									-	-
					European Nursery Web			0.001	6.846	0.007
Arachnida	Araneae	Pisauridae	Pisaura	Pisaura mirabilis	Spider	Common	8	063	94	28
									-	-
								0.007	4.937	0.035
Arachnida	Araneae	Araneidae	Araneus	Araneus quadratus	Four-Spot Orb weaver	Common / declining	54	173	4	42
		Dhile due veid	Dhiledueue					0.000	-	-
Arachnida	Araneae	Philodromid ae	Philodrom us	Philodromus dispar	House Crab Spider	Common	1	0.000 133	8.926 38	0.001 19
Araciinida	Araneae	ae	us					133		- 19
								0.000	7.316	0.004
Arachnida	Araneae	Linyphiidae			Linyphiidae		5	664	95	86
									-	-
								0.000	8.926	0.001
Arachnida	Araneae	Dictynidae	Dictyna		Mesh Weavers		1	133	38	19
									-	-
		Philodromid	-	- :				0.000	8.926	0.001
Arachnida	Araneae	ae	Tibellus	Tibellus oblongus	Oblong Running Spider	locally common	1	133	38	19
		Tetragnathi	Pachygnat					0.000	- 8.926	- 0.001
Arachnida	Araneae	dae	ha	Pachygnatha clercki	Pachygnatha clercki	Widespread	1	133	38	19
								100	-	-
								0.000	8.233	0.002
Arachnida	Araneae	Theridiidae	Theridion	Theridion pictum	Painted Cobweb Weaver	locally common	2	266	24	19
									-	-
								0.000	8.926	0.001
Arachnida	Araneae	Theridiidae	Steatoda		Steatoda		1	133	38	19

								0.001	- 6.441	- 0.010
Arachnida	Araneae	Lycosidae	Paradosa		Thin Legged Wolf Spiders		12	594	48	27
Arachnida	Araneae	Cheiracanth iidae	Cheiracant hium	Cheiracanthium mildei	Yellow Sac spider		4	0.000 531	- 7.540 09	- 0.004 01
Arachnida	Opiliones	Sclerosoma tidae	Leibunum	Leibunum blackwalli	Leibunum blackwalli	common	1	0.000 133	- 8.926 38	- 0.001 19
Arachnida	Opiliones	Phalangioid ea	Oligolophu s	Oligolophus tridens	Oligolophus tridens	Common	1	0.000 133	- 8.926 38	- 0.001 19
Arachnida	Trombidifor mes	Trombidiida e			True Velvet Mites		4	0.000 531	- 7.540 09	- 0.004 01
Aves	Accipitrifor mes	Accipitridae	Buteo	Buteo buteo	Common Buzzard	Green	5	0.000 664	- 7.316 95	- 0.004 86
Aves	Anseriforme s	Anitdae	Anas	Anas platyrhynchos	Mallard	Amber	5	0.000 664	- 7.316 95	- 0.004 86
Aves	Anseriforme s	Anitdae	Anas	Anas crecca	Teal	Amber	2	0.000 266	- 8.233 24	- 0.002 19
Aves	Charadriifor mes	Scolopacida e	Gallinago	Gallinago gallinago	Common Snipe	Green	2	0.000 266	- 8.233 24	- 0.002 19
Aves	Columbifor mes	Columbidae	Columba	Columba palumbus	Wood Pigeon	Green	2	0.000 266	- 8.233 24	- 0.002 19
Aves	Falconiform es	Falconidae	Flaco	Falco tinnunculus	Common Kestrel	Amber	1	0.000 133	- 8.926 38	- 0.001 19

						introduced		0.000	- 8.233	- 0.002
Aves	Galliformes	Phasianidae	Phasianus	Phasianus colchicus	Common Pheasant	(Naturalised)	2	266	24	19
Aves	Gruiformes	Rallidae	Fulica	Fulica atra	Eurasian Coot	Green	1	0.000 133	- 8.926 38	- 0.001 19
Aves	Gruiformes	Rallidae	Gallinula	Gallinula chloropus	Eurasian Moorhen	Green	1	0.000 133	۔ 8.926 38	- 0.001 19
Aves	Grunormes	Kalliude	Guillinuiu	Guillinulu chioropus		Green	<u> </u>	155	50	19
Aves	Passeriform es	Corvidae	Corvus	Corvus corone	Carrion Crow	Green	2	0.000 266	- 8.233 24	0.002 19
Aves	Passeriform es	Prunellidae	Prunella	Prunella modularis	Dunnock	Amber	1	0.000 133	- 8.926 38	- 0.001 19
Aves	Passeriform es	Turdidae	Turdus	Turdus merula	Eurasian Black Bird	Green	5	0.000 664	- 7.316 95	- 0.004 86
Aves	Passeriform es	Paridea	Cyanistes	Cyanistes caeruleus	Eurasian Blue Tit	Green	1	0.000 133	- 8.926 38	- 0.001 19
Aves	Passeriform es	Fringillidae	Pyrrhula	Pyrrhula pyrrhula subsp. Pileata	Eurasian Bullfinch	Amber	7	0.000 93	- 6.980 47	- 0.006 49
Aves	Passeriform es	Corvidae	Garrulus	Garrulus glandarius	Eurasian Jay	Green	2	0.000 266	- 8.233 24	- 0.002 19
Aves	Passeriform es	Corvidae	Pica	Pica pica	Eurasian Magpie	Green	3	0.000 399	- 7.827 77	- 0.003 12
Aves	Passeriform es	Troglodytid ae	Troglodyte s	Troglodytes troglodytes	Eurasian Wren	Green	1	0.000 133	- 8.926 38	- 0.001 19

	Passeriform	Muscicapid						0.000	۔ 8.926	- 0.001
Aves	es	ae	Erithacus	Erithacus rubecula	European Robin	Green	1	133	38	19
Aves	Passeriform es	Muscicapid ae	Saxicola	Saxicola rubicola	European StoneChat	Green	5	0.000 664	- 7.316 95	- 0.004 86
AVES		ae	Juxicolu					004		
Aves	Passeriform es	Paridea	Parus	Parus major	Great Tit	Green	1	0.000 133	8.926 38	0.001 19
				,					-	-
	Passeriform	Aegithalida						0.000	7.134	0.005
Aves	es	е	Aegithalos	Aegithalos caudata	Long-Tailed Tit	Green	6	797	63	69
									-	-
	Passeriform	Motacillida						0.000	8.926	0.001
Aves	es	е	Motacila	Motacilla alba	Pied Wagtail	Green	1	133	38	19
	Passeriform	Enchonizido						0.000	-	-
Aves	es	Emberizida e	Emberiza	Emberiza schoeniclus	Reed Bunting	Amber	1	0.000 133	8.926 38	0.001 19
Aves		e	Linberizu			Amber		133		- 15
	Passeriform	Acrocephali	Acrocephal	Acrocephalus				0.000	8.926	0.001
Aves	es	dae	us	schoenobaenus	Sedge Warbler	Green	1	133	38	19
									-	-
	Passeriform							0.000	8.926	0.001
Aves	es	Turdidae	Turdus	Turdus philomelos	Song Thrush	Red	1	133	38	19
									-	-
	Passeriform	Hirundinida						0.002	5.930	0.015
Aves	es	е	Hirundo	Hirundo rustica	Swallow	Green	20	657	65	76
								0.000	-	-
Δυσε	Passeriform	Sylviidao	Sulvia	Sulvia communis	White Throat	Groop	1	0.000 133	8.926 38	0.001
Aves	es	Sylviidae	Sylvia	Sylvia communis		Green	1	153	58	19
	Passeriform							0.000	8.233	0.002
Aves	es	Fringillidae	Carduelis	Carduelis carduelis	Gold Finch	Green	2	266	24	19

Aves	Pelecanifor mes	Ardeidae	Ardea	Ardea cinerea	Grey Heron	Amber	1	0.000 133	- 8.926 38	- 0.001 19
Bivalves	Sphaeriida	Sphaeriidae	Pisidium	Pisidium	Pea Mussels		4	0.000 531	- 7.540 09	- 0.004 01
Bryopsida	Hypnales	Brachytheci aceae	Kindbergia	Kindbergia praelonga	Common Feather-moss	Common	10	0.001 328	- 6.623 8	- 0.008 8
Bryopsida	Hypnales	Brachytheci aceae	Brachythec ium	Brachythecium rutabulum	Rough-stalked Feather Moss	Very Common	51	0.006 775	- 4.994 56	- 0.033 84
Clitellata	Haplotaxida	Lumbricida e	Lumbricus	Lumbricus terrestris	Common Earthworm	Common	16	0.002 125	- 6.153 8	- 0.013 08
Clitellata	Arhynchobd ellida	Erpobdellid ae	Erpobdella	Erpobdella	Leech		2	0.000 266	- 8.233 24	- 0.002 19
Diplopoda	Julida	Julidae	Cylindroiul us	Cylindroiulus caeruleocinctus	Cylindroiulus caeruleocinctus		4	0.000 531	- 7.540 09	- 0.004 01
Diplopoda	Polydesmida	Polydesmid ae	polydesmu s	Polydesmus	Polydesmus (Flat backed millipedes)		12	0.001 594	- 6.441 48	- 0.010 27
Entognath a	Entomobryo morpha	Tomocerida e	Pogonogn athellus		Elongate Springtales		1	0.000 133	- 8.926 38	- 0.001 19
Gastropod a	Hygrophila	Physidae	Physa	Physa acuta	Acute Bladder Snail	common (introduced)	16	0.002 125	- 6.153 8	- 0.013 08
Gastropod a	Hygrophila	Acroloxidae	Acroloxus	Acroloxus lacustris	Lake Limpet	common	1	0.000 133	- 8.926 38	- 0.001 19

Gastropod a	Stylommato phora	Arionidae	Arion	Arion ater agg	Black Slug	Common	2	0.000 266	- 8.233 24	- 0.002 19
Gastropod a	Stylommato phora	Arionidae	Arion	Arion cirsumscriptus	Brown-banded Arion	Common	8	0.001 063	- 6.846 94	- 0.007 28
Gastropod a	Stylommato phora	Helicidae	Сераеа	Cepaea nemoralis	Brown-lipped Snail	Common	3	0.000 399	- 7.827 77	- 0.003 12
Gastropod a	Stylommato phora	Succineidea	Succinea	Succinea putris	Common European Ambersnail	Common	13	0.001 727	- 6.361 44	- 0.010 99
Gastropod a	Stylommato phora	Arionidae	Arion	Arion subfuscus	Dusky Slug	Common	2	0.000 266	- 8.233 24	- 0.002 19
Gastropod a	Stylommato phora	Hygromiida e	Monacha	Monacha cantiana	Kentish Snail	Threatened	22	0.002 922	5.835 34	0.017 05
Gastropod a	Stylommato phora	Agriolimaci dae	Deroceras	Deroceras reticulatum	Milky Slug	Common	4	0.000 531	7.540 09	0.004
Gastropod a	Stylommato phora	Agriolimaci dae	Deroceras	Deroceras	Smooth Land Slugs		1	0.000 133	8.926 38	0.001 19
Gastropod a	Stylommato phora	Helicidae	Сераеа	Cepaea hortensis	White-lipped Snail	Common	8	0.001 063	6.846 94	0.007
Insecta	Coleoptera	Coccinellida e	Propylea	Propylea quatuordecimpunctata	14-Spot Ladybird	Common	1	0.000 133	8.926 38	0.001 19
Insecta	Coleoptera	Coccinellida e	Subcoccine Ila	Subcoccinella vigintiquatuorpunctata	24-Spot Ladybird	widespread	4	0.000 531	7.540 09	0.004 01

		Coccinellida		Coccinella				0.001	- 6.623	- 0.008
Insecta	Coleoptera	e	Coccinella	septempunctata	7-spot Ladybird	Common	10	328	8	8
									-	-
								0.000	8.926	0.001
Insecta	Coleoptera	Brentidae	Apion	Apion frumentarium	Apion frumentarium	Common	1	133	38	19
									-	-
						widespread and		0.000	7.827	0.003
Insecta	Coleoptera	Cantharidae	Cantharis	Cantharis rufa	Cantharis rufa	abundant	3	399	77	12
								0.000	-	- 0.005
Insecta	Coleoptera	Elateridae	Agriotes	Agriotes	Click Beetle		6	0.000 797	7.134 63	0.005 69
insecta		Liateriuae	Agriotes	Agrioles			0	757		09
			Brassicoge					0.000	7.540	0.004
Insecta	Coleoptera	Nitidulidae	thes	Brassicogethes aeneus	Common Pollen Beetle	very common	4	531	09	01
									-	-
		Curculionid			Curculionidae (True			0.000	8.926	0.001
Insecta	Coleoptera	ае		Curculionidae	Weevils)		1	133	38	19
									-	-
		Chrysomeli	Gastrophys					0.000	8.233	0.002
Insecta	Coleoptera	dae	а	Gastrophysa viridula	Green Dock Beetle	Common	2	266	24	19
									-	-
		Curculionid	Barypeithe					0.000	8.926	0.001
Insecta	Coleoptera	ае	5	Barypeithes pellucidus	Hairy Spider weevil		1	133	38	19
		Casainalliai				internal second		0.000	-	-
lucanta	Coloontoro	Coccinellini		Llaura a nia annuidia	Llevie win Ledu Destie	introduced	1	0.000	8.926	0.001
Insecta	Coleoptera	dae	Harmonia	Harmonia axyridis	Harlequin Lady Beetle	Naturalised	1	133	38	19
		Curculionid		small green nettle		widespread and		0.000	- 7.540	- 0.004
Insecta	Coleoptera	ae	Phyllobius	weevle	Phyllobius roboretanus	abundant	4	531	09	0.004
msceta			r Hylloblus				-	551		
			Rhagonych	Rhagonycha		widespread and		0.000	8.926	0.001
Insecta	Coleoptera	Cantharidae	a	nigriventris	Rhagonycha nigriventris	abundant	1	133	38	19

									-	-
						widespread and		0.000	8.926	0.001
Insecta	Coleoptera	Cantharidae		Cantharidae	Soldier Beetles (Larvae)	abundant	1	133	38	19
									-	-
		Chrysomeli						0.000	8.926	0.001
Insecta	Coleoptera	dae	Cassida	Cassida rubiginosa	Thistle Tortoise Beetle	Common	1	133	38	19
									-	-
		Chrysomeli				widespread and		0.000	8.926	0.001
Insecta	Coleoptera	dae	Pyrrhalta	Pyrrhalta viburni	Viburnum Leaf Beetle	abundant	1	133	38	19
									-	-
								0.000	8.926	0.001
Insecta	Diptera	Syrphidae	Cheilosia	Cheilosia	Blacklets		1	133	38	19
									-	-
		Calliphorida						0.000	8.926	0.001
Insecta	Diptera	е		Calliphoridae	Blow flies		1	133	38	19
									-	-
		Calliphorida						0.000	8.926	0.001
Insecta	Diptera	е	Lucilia	Lucilia caesar	Caesar Greenbottle Fly	Common	1	133	38	19
									-	-
								0.000	7.827	0.003
Insecta	Diptera	Syrphidae	Eristalis	Eristalis tenax	Common Drone Fly	Very Common	3	399	77	12
									-	-
		Sarcophagi	Sarcophag					0.000	8.926	0.001
Insecta	Diptera	dae	а	Sarcophaga	Common Flesh Flies		1	133	38	19
									-	-
					Common red-legged robber	widespread and		0.000	6.980	0.006
Insecta	Diptera	Asilidae	Dioctria	Dioctria Rufipes	fly	locally common	7	93	47	49
									-	-
								0.000	8.926	0.001
Insecta	Diptera	Tipuloidea		Tipuloidea	Cranefly Sp		1	133	38	19
									-	-
								0.000	8.926	0.001
Insecta	Diptera	Culicidae		Culicidae	Culcidae (Mosquitos)		1	133	38	19

									-	-
								0.000	6.980	0.006
Insecta	Diptera	Empididae	Empis	Empis	Dance Flies		7	93	47	49
									-	-
								0.000	8.233	0.002
Insecta	Diptera	Sciaridae		Sciaridae	Dark Winged Fungus Gnats		2	266	24	19
									-	-
	Distant	D'h ta atala a						0.001	6.846	0.007
Insecta	Diptera	Bibionidae	Dilopus	Dilopus	Dilophus (Fly)		8	063	94	28
								0.000	- 8.926	- 0.001
Insecta	Diptera	Tipulidae	Tipula	Tipula paludosa	European Cranefly	common	1	133	8.920 38	19
msceta		Tipullude	Приги					133	- 50	
								0.000	8.926	0.001
Insecta	Diptera	Syrphidae	Eristalis	Eristalis arbustorum	European Drone Fly	common	1	133	38	19
									-	-
						widespread and		0.000	8.926	0.001
Insecta	Diptera	Muscidae	Neomyia	Neomiya	False green bottle	abundant	1	133	38	19
									-	-
		Opomyzida						0.000	7.316	0.004
Insecta	Diptera	е	Goemyza	Goemyza	Goemyza		5	664	95	86
									-	-
		Calliphorida						0.000	7.827	0.003
Insecta	Diptera	е	Lucilia	Lucilia	Green Bottle Flies		3	399	77	12
						wideepreedered		0.000	-	-
Incocto	Diptera	Empididae	Empis	Empis tessellata		widespread and abundant	1	0.000 133	8.926 38	0.001 19
Insecta	Diptera	Emplaidae	Empis		Hanging Fly	abunuant		155	58	19
						widespread and		0.000	- 7.540	0.004
Insecta	Diptera	Bibionidae	Bibio	Bibio marci	Hawthorn Fly	abundant	4	531	09	0.004
mocetu	Dipteru	Distornade	51010					551	-	-
						widespread and		0.000	8.926	0.001
Insecta	Diptera	Syrphidae		Syrphidae	Hover Fly Sp (Black)	abundant	1	133	38	19

									_	_
						widespread and		0.000	8.926	0.001
Insecta	Diptera	Phoridae		Phoridae	Humpbacked Flies	abundant	1	133	38	19
mscetu		Thomade		Thomade				133		- 15
						widespread and		0.000	8.926	0.001
Insecta	Diptera	Syrphidae	Lejogaster	Lejogaster	Lejogaster	abundant	1	133	38	19
msceta		Syrpindae	Lejogaster			abunuant		133		15
						widespread and		0.000	8.233	0.002
Insecta	Diptera	Bibionidae	Bibio	Bibio	March Fly Sp	abundant	2	266	24	19
msceta		Dibiofilidae		01010		abunuant	2	200	- 27	15
		Sciomyzida				widespread and		0.000	7.540	0.004
Insecta	Diptera	e	Tetanocera	Tetanocera	Marsh and Snail Killing Flies	abundant	4	531	09	0.004
mscetu								551		
		Psychodida				widespread and		0.000	8.926	0.001
Insecta	Diptera	e		Psychodidae	Moth Flies	abundant	1	133	38	19
msceta							<u> </u>	133	- 50	15
						widespread and		0.000	8.926	0.001
Insecta	Diptera	Syrphidae	Orthinerva	Riponnensia Splendens	Muck Suckers	abundant	1	133	38	19
msceta		Syrpindae					<u> </u>	133	- 50	15
		Chironomid				widespread and		0.000	8.233	0.002
Insecta	Diptera	ae	Circoptus	Circoptus	Non-biting Midges	abundant	2	266	24	19
msceta							2	200	24	15
						widespread and		0.000	8.926	0.001
Insecta	Diptera	Syrphidae	Eristalis	Eristalis nemorum	Orange Spined Hover Fly	abundant	1	133	38	19
mscetu		Syrpinade	Linstans					133		- 15
						widespread and		0.000	- 8.926	0.001
Insecta	Diptera	Syrphidae	Anasimyia	Anasimyia contracta	Rat-tail Maggot Flies	abundant	1	133	38	19
msceta		Syrpindae	Anasimya				<u> </u>	133	- 50	15
		Sciomyzida	Coremacer			widespread and		0.000	8.926	0.001
Insecta	Diptera	e	a	Coremacera marginata	Seive Winged Snail Killer	abundant	1	133	38	19
msceta								133		15
						widespread and		0.000	8.926	0.001
Insecta	Diptera	Ephydridae	Hydrellia	Hydrellia	Shore Flies	abundant	1	133	38	19
insecta	Diptera	Lpinyunuae	nyureniu	nyuremu	51010111105	abundant	± .	100	- 50	15

									-	-
		Lonchopteri	Lonchopter			widespread and		0.000	8.926	0.001
Insecta	Diptera	dae	a	Lonchoptera	Spear Winged Flies	abundant	1	133	38	19
									-	-
						widespread and		0.000	7.827	0.003
Insecta	Diptera	Syrphidae	Helophilus	Helophilus pendulus	Sun Fly	abundant	3	399	77	12
									-	-
						widespread and		0.000	8.926	0.001
Insecta	Diptera	Syrphidae	Syritta	Syritta pipiens	Thick Legged Hoverfly	abundant	1	133	38	19
		Caathauhaai	Conthonbo	Conthornhouse				0.000	-	-
Insecta	Diptera	Scathophagi dae	Scathopha	Scathophaga stercoraria	Yellow Dung Fly	widespread and abundant	4	0.000 531	7.540 09	0.004 01
Insecta	Diptera	uae	ga	stercorunu		abunuant	4	221	09	01
						widespread and		0.000	- 8.926	0.001
Insecta	Diptera	Syrphidae	Myathropa	Myathropa florea	Yellow Haired Sun fly	abundant	1	133	38	19
mococa			iniyacin opu				_		-	-
	Ephemeropt					widespread and		0.000	7.134	0.005
Insecta	era			Ephemeroptera	Mayflies	abundant	6	797	63	69
									-	-
								0.001	6.361	0.010
Insecta	Hemiptera	Aphididae		Aphididae	Aphid Sp		13	727	44	99
									-	-
		Pentatomid						0.000	8.926	0.001
Insecta	Hemiptera	ае	Polomena	Palomena prasina	Green Shield Bug	Common	1	133	38	19
								0.000	-	-
luces at a	Line interes	Cercopoide		Concernsides		widespread and	2	0.000	8.233	0.002
Insecta	Hemiptera	а		Cercopoidea	Common Frog Hopper	abundant	2	266	24	19
		Rhyparochr	Scoloposte					0.001	- 6.729	- 0.008
Insecta	Hemiptera	omidae	thus	Scolopostethus	Dirt-coloured seed bugs		9	196	0.729 16	0.008
insecta	Temptera	Unitae					5	150	- 10	
			Ischnodem			Widespread		0.000	7.827	0.003
Insecta	Hemiptera	Blissidae	us	Ischnodemus sabuleti	European Chinchbug	(England)	3	399	77	12

									-	-
								0.000	7.827	0.003
Insecta	Hemiptera	Gerridae		Gerrini	Gerrini		3	399	77	12
			Lontontorn			widespread and		0.000	- 7.134	- 0.005
Insecta	Hemiptera	Miridae	Leptoptern a	Leptopterna dolabrata	Meadow Plant Bug	abundant	6	0.000 797	7.154 63	0.003 69
moceta	Tempteru	iviiridde					Ū	/ 5 /	-	-
		Aphrophori				widespread and		0.000	7.827	0.003
Insecta	Hemiptera	dae	Philaenus	Philaenus spumarius	Meadow Spittle Bug	abundant	3	399	77	12
									-	-
							2	0.000	8.233	0.002
Insecta	Hemiptera	Miridae	Notostira	Notostira elongata	Notostira elongata	Common	2	266	24	19
						widespread and		0.000	- 8.926	- 0.001
Insecta	Hemiptera	Cercopidae	Cercopis	Cercopis vulnerata	Red and Black Frog Hopper	abundant	1	133	38	19
									-	-
			Deraeocori					0.000	8.926	0.001
Insecta	Hemiptera	Miridae	S	Deraeocoris ruber	Red-spotted plant bug	common	1	133	38	19
									-	-
		Delaphacid	Stenocranu		Stenocranus major (Plant			0.000	8.926	0.001
Insecta	Hemiptera	ae	S	Stenocranus major	Hopper)	Locally common	1	133	38	19
						widespread and		0.000	- 8.926	- 0.001
Insecta	Hemiptera	Triozidae	Trioza	Trioza	Trioza	abundant	1	133	8.920 38	19
	Thempterd		111020					100	-	-
	Hymenopter							0.000	7.827	0.003
Insecta	а				Alder Spittle Bug		3	399	77	12
									-	-
	Hymenopter							0.000	8.926	0.001
Insecta	а	Andrenidae	Andrena	Andrena cineraria	Ashy Mining Bee	widespread	1	133	38	19
	Humononter			Rombus torrestric		widespread and		0.000	-	-
Insecta	Hymenopter a	Apidae	Bombus	Bombus terrestris audax	Buff-tailed Bumble Bee	widespread and abundant	4	0.000 531	7.540 09	0.004 01
insecta	a	Apluae	Dombus	uuuux	Buil-taileu Builible Bee	abunuant	4	721	09	01

									-	-
	Hymenopter							0.004	5.492	0.022
Insecta	а	Apidae	Bombus	Bombus pascuorum	Common Carder Bee	Common	31	118	4	62
									-	-
	Hymenopter	Manialaa	Manager	Manufautania	Common Milana		0	0.001	6.729	0.008
Insecta	a	Vespidae	Vespula	Vespula vulgaris	Common Wasp	common	9	196	16	04
	Hymenopter							0.000	- 8.926	0.001
Insecta	a	Vespidae	Vespula	Vespula germanica	German Wasp	Common	1	133	38	19
	<u> </u>								-	-
	Hymenopter					widespread and		0.001	6.441	0.010
Insecta	а	Formicidae	Mymirca	Mymirca	Myrmicine Ants	abundant	12	594	48	27
									-	-
	Hymenopter							0.000	8.926	0.001
Insecta	а	Cynipidae	Andricus	Andricus fecundator	Oak Artichoke Gall Wasp	Common	1	133	38	19
								0.000	-	-
Incosto	Hymenopter	Cuninidae	Andricus	Andricus kollari	Oak Mable Gall wasp	Common	16	0.002 125	6.153 8	0.013
Insecta	a	Cynipidae	Anuncus			Common	10	125	0	08
	Hymenopter					widespread and		0.000	- 8.926	0.001
Insecta	a	Apidae	Bombus	Bombus lapidarius	Red Tailed Bumble Bee	abundant	1	133	38	19
									-	-
	Hymenopter		Lsioglossu					0.000	8.926	0.001
Insecta	а	Halictidae	m	Lasioglossum fratellum	Smooth-Faced Furrow Bee	Widespread	1	133	38	19
									-	-
	Hymenopter					widespread and		0.001	6.623	0.008
Insecta	а	Apidae	Andrena	Andrena fulva	Tawny Mining bee	abundant	10	328	8	8
		T						0.000	-	-
Incosta	Hymenopter	Tenthredin		Tanthradinaidaa	Turnical Countline	widespread and	1	0.000	8.926	0.001
Insecta	а	oidea		Tenthredinoidea	Typical Sawflies	abundant	1	133	38	19
	Hymenopter					widespread and		0.000	- 8.233	0.002
Insecta	a	Apidae	Apis	Apis mellifera	Western Honeybee	abundant	2	266	24	19
inscetu	, a	Aplaac	71015	, pis menijeru	western noneybee	usunuunt	2	200	27	15

									-	-
	Hymenopter					widespread and		0.000	7.827	0.003
Insecta	а	Apidae	Bombus	Bombus lucorum	White-tailed Bumble Bee	abundant	3	399	77	12
		Nie waarde alt die			Durrah Calata d Dutta effe			0.000	-	-
lassete	Lonidontoro	Nymphalida		Numerala ali ala a	Brush Footed Butterfly		-	0.000	7.316	0.004
Insecta	Lepidoptera	е		Nymphalidae	Larvae		5	664	95	86
			Polyomma					0.000	- 8.926	- 0.001
Insecta	Lepidoptera	Lycaenidae	tus	Polyommatus icarus	Common Blue	widespread	1	133	38	19
moceta		Lycaemaac	145			Widespiedd		133	- 50	-
								0.000	7.827	0.003
Insecta	Lepidoptera	Tortricidae	Syricoris	Syricoris lacunana	Common Marble	Very common	3	399	77	12
			,	,		,			-	-
		Choreutide						0.000	8.926	0.001
Insecta	Lepidoptera	а	Anthophila	Anthophila fabriciana	Common Nettle-tap	Common	1	133	38	19
									-	-
								0.001	6.729	0.008
Insecta	Lepidoptera	Noctuidae		Noctuidae	Cutworms & Dart Moths		9	196	16	04
									-	-
		Lasiocampo						0.000	8.233	0.002
Insecta	Lepidoptera	idea	Euthrix	Euthrix potatoria	Drinker Moth	Common	2	266	24	19
									-	-
		Nymphalida					_	0.000	8.233	0.002
Insecta	Lepidoptera	е	Polygonia	Polygonia c-album	European Comma	Common	2	266	24	19
								0.000	-	-
1		Nymphalida	D and the	Describe d'iller and		C	2	0.000	8.233	0.002
Insecta	Lepidoptera	е	Pyronia	Pyronia tithonus	Gate Keeper	Common	2	266	24	19
						widespread and		0.000	- דרס ד	- 0.003
Incosta	Lonidentora	Pieridae	Dioris	Diaris nani	Green-Veined White	widespread and abundant	3	0.000 399	7.827 77	
Insecta	Lepidoptera	Pienuae	Pieris	Pieris napi		abulluant	3	399	//	12
			Helcystogr		Helcystogramma (Micro	widespread and		0.000	- 8.926	- 0.001
Insecta	Lepidoptera	Gelechiidae	amma	Helcystogramma	Moth)	abundant	1	133	8.920 38	19
insecta	Lepidoptera	Geleciniuae	annna	There's togramma	would	abunuant	1	100	50	19

									-	-
						widespread and		0.000	8.233	0.002
Insecta	Lepidoptera	Hesperiidae	Ochlodes	Ochlodes sylvanus	Large Skipper	abundant	2	266	24	19
									-	-
								0.000	7.827	0.003
Insecta	Lepidoptera	Noctuidae	Noctua	Noctua pronuba	Large Yellow underwing	Common	3	399	77	12
									-	-
						widespread and		0.000	8.926	0.001
Insecta	Lepidoptera	Tortricidae	Pammene	Pammene	Leaf Roller Moths	abundant	1	133	38	19
									-	-
		D's datas	0	Anthocharis		widespread and	4	0.000	7.540	0.004
Insecta	Lepidoptera	Pieridae	Anthocaris	cardamines	Orange Tip Butterfly	abundant	4	531	09	01
		Coordinatesiala						0.000	-	-
Incosto	Lonidontoro	Geometrida	Archiogric	Archiagric parthonias	Orango Underwing	widespread and	1	0.000	8.926	0.001
Insecta	Lepidoptera	е	Archiearis	Archiearis parthenias	Orange Underwing	abundant	1	133	38	19
								0.000	- 8.926	0.001
Insecta	Lepidoptera	Crambidae	Udea	Udea lutealis	Pale Straw Pearl	Very Common	1	133	8.920 38	19
insecta		Crambidae	0020				-	155		15
		Nymphalida				widespread and		0.000	7.540	0.004
Insecta	Lepidoptera	e	Aglais	Aglais io	Peacock Butterfly	abundant	4	531	09	0.004
moceta			rigiais					551	-	-
		Nymphalida				widespread and		0.000	8.233	0.002
Insecta	Lepidoptera	e	Vaness	Vanessa atalanta	Red Admiral	abundant	2	266	24	19
									-	_
		Nymphalida				widespread and		0.000	7.134	0.005
Insecta	Lepidoptera	e	Aglais	Aglais urticae	Small Tortoise Shell	abundant	6	797	63	69
									-	-
						widespread and		0.000	7.134	0.005
Insecta	Lepidoptera	Pieridae	Pieris	Pieris rapae	Small White	abundant	6	797	63	69
									-	-
								0.000	8.926	0.001
Insecta	Lepidoptera	Eribidae	Spilosoma	Spilosoma lubricipeda	White Ermine	Common	1	133	38	19

									-	-
					Common European Scorpion			0.000	8.233	0.002
Insecta	Mecaoptera	Panorpidae	Panorpa	Panorpa communis	Fly	Common	2	266	24	19
									-	-
	Megalopter					widespread and		0.000	8.926	0.001
Insecta	а	Sialidae	Sialis	Sialis	Sialis (Alderflies)	abundant	1	133	38	19
								0.000	-	-
Incosta	Odonata	Coenagrioni	Ischnura	lechnurg clogane	Plue tailed Demcelfly		3	0.000 399	7.827 77	0.003
Insecta	Odonata	dae	ischnura	Ischnura elegans	Blue tailed Damselfly	very common	3	399	//	12
				Libellula				0.000	- 8.926	- 0.001
Insecta	Odonata	Libellulidae	Libellula	quadrimaculata	Four Spotted Chaser	widespread	1	133	38	19
			Libendia	quadimilacanaca				100	-	-
		Calopterygi				widespread and		0.001	6.528	0.009
Insecta	Odonata	dae	Calopteryx	Calopteryx	Jewelwings	abundant	11	461	49	54
									-	-
		Coenagrioni				widespread and		0.002	5.981	0.015
Insecta	Odonata	dae		Coenagrionidae	Narrow-winged Damselflies	abundant	19	524	95	1
									-	-
						widespread and		0.000	8.926	0.001
Insecta	Orthoptera	Tetrigidae	Tetrix	Tetrix subulata	Slender Ground Hopper	abundant	1	133	38	19
									-	-
luce entre	Trick casts as	Hydropsych	Hydropsyc		Net entrying and disflet	widespread and	1	0.000	8.926	0.001
Insecta	Trichoptera	idae	he	Hydropsyche	Net-spinning caddisfly	abundant	1	133	38	19
		Limnephilid	Limnephili			widespread and		0.000	- 7.134	- 0.005
Insecta	Trichoptera	ae	nae	Limnephilinae	Northern Caddisfly	abundant	6	0.000 797	63	69
moceta	menoptera	ue	nac	Linnepininae		abandant	0	151		-
Lecanoro								0.000	8.926	0.001
mycetes	Caliciales	Physciaceae	Physcia		Rosette lychens		1	133	38	19
									-	-
Lecanoro	Teloschistal	Teloschistac						0.000	8.926	0.001
mycetes	es	eae	Xanthoria	Xanthoria parietina	Golden Shield Lichen		1	133	38	19

									-	-
		Potamoget	Potamoger	Potamogeton				0.001	6.729	0.008
Liliopsida	Alismatales	onaceae	ton	obtusifolis	Bluntleaf Pondweed		9	196	16	04
							27	0.050	-	-
Liliopsida	Paoles	Juncaceae	Juncus	Juncus effusus	Soft Rush	Common	37 9	0.050 345	2.988 85	0.150 47
	Faules	Juncaceae	Juncus			Common	9	545		- 47
								0.000	8.233	0.002
Liliopsida	Poales	Cyperaceae	Carex	Carex limosa	Bog Sedge		2	266	24	19
									-	-
								0.012	4.393	0.054
Liliopsida	Poales	Poaceae	Dactylis	Dactylis Glomerata	Cock's-foot	Ubiquitous	93	354	79	28
								0.000	- 7.316	- 0.004
Liliopsida	Poales	Poaceae	Agrostis	Agrostis capillaris	Common Bent Grass		5	0.000 664	7.316 95	0.004 86
	Toales	Toaceae	Agrostis				5	004	-	
			Arrhenathe					0.004	5.342	0.025
Liliopsida	Poales	Poaceae	rum	Arrenatherum elatius	False Oat-grass	Common	36	782	87	55
									-	-
								0.004	5.429	0.023
Liliopsida	Poales	Cyperaceae	Carex	Carex hirta	Hairy Sedge		33	384	88	8
								0.000	-	-
Liliopsida	Poales	Juncaceae	Juncus	Juncus inflexus	Hard Rush		30	0.003 985	5.525 19	0.022 02
	Toales	Juncaceae	Juncus				50	585		- 02
							10	0.013	4.311	0.057
Liliopsida	Poales	Poaceae	Alopecurus	Alopecurus geniculatus	Marsh Foxtail	Frequent	1	417	26	84
									-	-
								0.004	5.460	0.023
Liliopsida	Poales	Poaceae	Alopecurus	Alopecurus pratensis	Meadow Foxtail		32	251	65	21
							20	0.014	-	-
Lilioneide	Declas	Deserve	Dhalaria	Dhelerie en undine com	Deed Careers Crees		30	0.041	3.193	0.131
Liliopsida	Poales	Poaceae	Phalaris	Phalaris arundinacea	Reed Canary Grass		9	047	04	06

									_	_
							62	0.082	2.491	0.206
Liliopsida	Poales	Poaceae	Glyceria	Glyceria maxima	Reed Meadow Grass		3	758	84	22
Linopsida	FUdies	FUACEAE	Giyceria				5	7.50	04	
								0.001	- 6.729	0.008
Lilionsido	Dealas	Currenteres			Codeo Ce		9	196		
Liliopsida	Poales	Cyperaceae			Sedge Sp		9	196	16	04
								0.000	-	-
							70	0.009	4.649	0.044
Liliopsida	Poales	Juncaceae	Juncus	Juncus acutiflorus	Sharp-Flowered Rush		72	564	72	47
									-	-
								0.000	8.926	0.001
Liliopsida	Poales	Poaceae	Phyleum	Phleum pratense	Timothy Grass		1	133	38	19
									-	-
			Deschamp					0.005	5.212	0.028
Liliopsida	Poales	Poaceae	sia	Deschampsia cespitosa	Tufted Hair Grass		41	446	81	39
									-	-
							23	0.030	3.483	0.106
Liliopsida	Poales	Poaceae	Holcus	Holcus lanatus	Yorkshire Fog		1	685	97	91
									-	-
Magnoliop								0.000	8.926	0.001
sida	Apiales	Araliaceae	Hedera	Hedera hibernicum	Common Ivy	Common	1	133	38	19
									-	-
Magnoliop								0.007	4.865	0.037
sida	Apiales	Apiaceae	Anthriscus	Anthriscus sylvestris	Cow Parsley	Common	58	705	94	49
				,	,				_	-
Magnoliop			Aegopodiu	Aegopodium				0.001	6.441	0.010
sida	Apiales	Apiaceae	m	podagraria	Ground-elder	Common	12	594	48	27
									-	
Magnoliop				Heracleum				0.002	5.835	0.017
sida	Apiales	Apiaceae	Heracleum	sphondylium	Hogweed	Common	22	922	34	05
3100	, plaies	, ipiaceae	neracican	ophonoynann				522		
Magnoliop								0.006	5.076	0.031
sida	Apiales	Apiaceae	Angelica	Angelica sylvestris	Wild Angelica		47	243	24	69
Siud	Aplales	Aplacede	Angelicu	Angencu sylvestris	White Angenica		47	245	24	09

									-	-
Magnoliop	A		T	T				0.000	8.926	0.001
sida	Asterales	Asteraceae	Taraxacum	Taraxacum officinale	Common Dandilion		1	133	38	19
Magnoliop								0.000	- 7.540	- 0.004
sida	Asterales	Asteraceae	Artemisia	Artemisia vulgaris	Common Mugwort		4	531	09	01
									-	-
Magnoliop								0.000	7.540	0.004
sida	Asterales	Asteraceae	Jacobaea	Senecio jacobaea	Common Ragwort	Common	4	531	09	01
									-	-
Magnoliop	Astorolog	Astorogo	Clabiania	Clabiania acatum	Com Maricold			0.000	8.926	0.001
sida	Asterales	Asteraceae	Glebionis	Glebionis segetum	Corn Marigold		1	133	38	19
Magnoliop							28	0.038	- 3.259	0.125
sida	Asterales	Asteraceae	Cirsium	Cirsium arvense	Creeping Thistle	Ubiquitous	9	39	96	15
									_	-
Magnoliop			Leucanthe	Leucanthemum				0.000	8.926	0.001
sida	Asterales	Asteraceae	тит	vulgare	Oxeye Daisy	Common	1	133	38	19
									-	-
Magnoliop								0.000	8.926	0.001
sida	Asterales	Asteraceae	Sonchus	Sonchus asper	Prickly Sowthistle		1	133	38	19
Magnoliop								0.000	- 8.233	- 0.002
sida	Asterales	Asteraceae	Sonchus	Sonchus oleraceus	smooth swothistle		2	266	24	19
Magnoliop								0.000	8.926	0.001
sida	Asterales	Asteraceae	Achillea	Achillea millefolium	Yarrow	Common	1	133	385	186
									-	-
Magnoliop		Boraginoide	Symphytu					0.000	8.926	0.001
sida	Boraginales	ае	т	Symphytum officinale	Common Comfrey	Locally common	1	133	38	19
Magnalia		Devesion						0.001	-	-
Magnoliop sida	Boraginales	Boraginace ae	Myosotis	Myosotis laxa	tufted Foget Me Not		14	0.001 86	6.287 33	0.011 69
Siud	Duraginales		iviy030tis				14	80		
Magnoliop		Brassicacea						0.005	5.262	0.027
sida	Brassicales	e	Cardemine	Cardamine pratensis	Cuckoo Flower		39	181	82	26

									-	-
Magnoliop		Brassicacea						0.000	8.926	0.001
sida	Brassicales	е	Rorippa	Rorippa palustris	Marsh Yellow Cress		1	133	38	19
Magnoliop		Brassicacea						0.000	- 8.926	- 0.001
sida	Brassicales	e	Nasturtium	Nasturtium officinale	Watercress		1	133	38	19
									-	-
Magnoliop		Brassicacea		Cardamine flexuosa				0.005	5.237	0.027
sida	Brassicales	е	Cardemine		Wavy Bitter Cress	Common	40	313	51	83
									-	-
Magnoliop	Caryophyllal	Polygonace	Dorsiogria	Dersieerie emphibie	Amphibiaus Distart		14 3	0.018 996	3.963 54	0.075
sida	es	ае	Persicaria	Persicaria amphibia	Amphibious Bistort		5	990	54	29
Magnoliop	Caryophyllal	Polygonace						0.001	6.218	0.012
sida	es	ae	Rumex	Rumex obtusifolius	Broad-leaved Dock	Abundant	15	993	33	39
									-	-
Magnoliop	Caryophyllal	Caryophylla						0.000	8.926	0.001
sida	es	ceae	Stellaria		Chickweed Sp		1	133	38	19
		D ul un un un						0.000	-	-
Magnoliop sida	Caryophyllal	Polygonace	Rumex	Rumex conglomeratus	Clustered Dock		25	0.003 321	5.707 51	0.018 95
Slud	es	ae	Rumex	Rumex congiomeratus			25	521	- 10	- 95
Magnoliop	Caryophyllal	Polygonace					21	0.028	3.541	0.102
sida	es	ae	Rumex	Rumex acetosa	Common Sorrel		8	959	89	57
									-	-
Magnoliop	Caryophyllal	Polygonace					11	0.015	4.190	0.063
sida	es	ае	Rumex	Rumex crispus	Curled Dock		4	143	19	45
Magnalian	Convorbullet	Delugenees						0.002	- 6.093	- 0.013
Magnoliop sida	Caryophyllal es	Polygonace ae	Rumex		Dock Sp		17	258	6.093 17	76
5100			Rumex				1/	238	-	-
Magnoliop	Caryophyllal	Caryophylla						0.000	7.134	0.005
sida	es	ceae	Cerastium	Cerastium fontanum	Mouse-Ear Chickweed		6	797	63	69

									_	_
Magnoliop	Caryophyllal	Amaranthac						0.000	8.926	0.001
sida	es	eae	Atriplex	Atriplex prostrata	Spear-Leaved Orache		1	133	38	19
									-	-
Magnoliop	Caryophyllal	Polygonace					33	0.043	3.127	0.137
sida	es	ае	Persicaria	Persicaria hydropiper	Water Pepper		0	836	29	09
									-	-
Magnoliop		Viburnacea						0.000	7.540	0.004
sida	Dipsacales	е	Sambucus	Sambucus nigra	Elder		4	531	09	01
									-	-
Magnoliop		Balsaminac				l		0.009	4.706	0.042
sida	Ericales	eae	Impatiens	Impatiens glandulifera	Himilayan Balsam	Introduced	68	033	88	52
Magnalian		Delcaminae					17	0.022	-	- 0.085
Magnoliop sida	Ericales	Balsaminac	Impatiens	Impatiens capensis	Orange Balsam	Introduced	17 1	0.022 715	3.784 72	0.085 97
Siud	Ericales	eae	imputiens				1	/15	12	97
Magnoliop								0.000	- 7.827	0.003
sida	Fabales	Fabaceae	Ulex	Ulex europaeus	Gorse		3	399	7.027	12
5100	Tabales	Tabaccac					5		,,	- 12
Magnoliop								0.008	_	0.041
sida	Fabales	Fabaceae	Lotus	Lotus pedunculatus	Greater Bird's foot trefoil		65	634	4.752	03
									_	-
Magnoliop								0.000	7.316	0.004
sida	Fabales	Fabaceae	Vicia	Vicia hirsuta	Hairy Tare		5	664	95	86
									-	-
Magnoliop								0.000	7.316	0.004
sida	Fabales	Fabaceae	Lathyrus	Lathyrus pratensis	Meadow Vetchling		5	664	95	86
Magnoliop								0.000	8.233	0.002
sida	Fabales	Fabaceae	Trifolum	Trifolium repens	White Clover		2	266	238	187
									-	-
Magnoliop								0.002	5.981	0.015
sida	Fagales	Fagaceae	Quercus	Quercus robor	Pendunculate Oak		19	524	95	1
								0.001	-	-
Magnoliop		D. L.	Galium					0.004	5.492	0.022
sida	Gentianales	Rubiaceae	aparine	Galium aparine	Cleavers		31	118	4	62

Magnalian								0.007	-	-
Magnoliop sida	Gentianales	Rubiaceae	Galium	Galium palustre	Common Marsh-Bedstraw	Throughout	60	0.007 97	4.832 04	0.038 51
Siud	Gentianales	Kublaceae	Guilulli					57		-
Magnoliop				Galium uliginosum				0.000	7.316	0.004
sida	Gentianales	Rubiaceae	Galium	Ĵ	Fen Bedstraw	Less Common	5	664	95	86
									-	-
Magnoliop								0.000	8.926	0.001
sida	Gentianales	Rubiaceae			Madder Family		1	133	38	19
									-	-
Magnoliop sida	Geraniales	Geraniacea	Geranium	Geraium dissectum	Cut-leaved Crane's-bill	Common	2	0.000 266	8.233 24	0.002
Siua	Geraniales	е	Gerunium	Gerulum uissectum			2	200	24	19
Magnoliop		Geraniacea						0.000	8.926	0.001
sida	Geraniales	e		Geranium lucidum	Shining crane's bill	Widespread	1	133	38	19
									-	-
Magnoliop		Scrophulari	Scrophulari					0.000	7.316	0.004
sida	Lamiales	eae	а	Scrophularia nodosa	Common Figwort	Common	5	664	95	86
									-	-
Magnoliop							53	0.070	2.653	0.186
sida	Lamiales	Lamiaceae	Galeopsis	Galeopsis tetrahit	Common Hempnettle		0	404	51	82
		Diantasiasa						0.000	-	-
Magnoliop sida	Lamiales	Plantaginac eae	Veronica	Veronica chamaedrys	Germander Speedwell	Common	75	0.009 963	4.608 9	0.045 92
Siud	Latitiales		Veronica				/5	903	-	52
Magnoliop		Plantaginac						0.000	8.926	0.001
sida	Lamiales	eae	Plantago	Plantago major	Greater Plantain	Ubiquitous	1	133	38	19
									-	-
Magnoliop							39	0.051	2.957	0.153
sida	Lamiales	Lamiaceae	Lycopus	Lycopus europaeus	Gypsywort		1	939	68	62
									-	-
Magnoliop								0.000	8.926	0.001
sida	Lamiales	Lamiaceae	Stachys	Stachys plustris	Marsh Woundwort	Common	1	133	38	19

N de sus allans		Diantasiasa						0.000	-	-
Magnoliop sida	Lamiales	Plantaginac eae	Plantago	Plantago lanceolata	Ribwort Plantain		3	0.000 399	7.827 77	0.003 12
	Lamaies		Thankago					555	-	-
Magnoliop							12	0.016	4.082	0.068
sida	Lamiales	Lamiaceae	Mentha	Mentha aquatica	Water Mint		7	87	2	87
Magnoliop								0.001	- 6.441	- 0.010
sida	Malpighiales	Salicaceae	Salix	Salix cinerea	Grey Willow	Common	12	594	48	27
					,				-	-
Magnoliop							58	0.077	2.551	0.198
sida	Myrtales	Onagraceae	Epilobium	Epilobium hirsutum	Great Willowherb	Common	7	976	36	94
Magnoliop				Epilobium palustre				0.004	- 5.429	0.023
sida	Myrtales	Onagraceae	Epilobium		Marsh Willow Herb	Frequent	33	384	88	8
									-	-
Magnoliop	Dautolog	Luthrooco	Lutherune	Luthrum coliomia	Durrale Leosetrife			0.000	8.926	0.001
sida	Myrtales	Lythraceae	Lythrum	Lythrum salicaria	Purple Loosetrife		1	133	38	19
Magnoliop			Chamaene	Chamerion				0.000	8.926	0.001
sida	Myrtales	Onagraceae	rion	angustifolium	Rosebay Willowherb	Common	1	133	38	19
									-	-
Magnoliop sida	Myrtales	Onagraceae	Epilobium		Willow Herb Sp		63	0.008 369	4.783 25	0.040 03
	iviyi tales	Chagraceae	Lphoblan				03	505	-	-
Magnoliop	Ranunculale	Ranunculac	Ranunculu					0.008	4.721	0.042
sida	S	eae	5	Ranunculus repens	Creeping Buttercup	Common	67	9	69	02
Magnoliop	Ranunculale	Ranunculac						0.001	- 6.287	- 0.011
sida	S	eae	Ficaria	Ficaria verna	Lesser Celandine	Common	14	0.001 86	0.287 33	69
									-	-
Magnoliop								0.000	8.926	0.001
sida	Rosales	Rosaceae	Malus	Malus pumila	Apple		1	133	38	19

Magnalian								0.000	- 7.827	- 0.003
Magnoliop sida	Rosales	Rosaceae	Prunus	Prunus spinosa	Blackthorn		3	0.000 399	7.827	12
				,					-	-
Magnoliop							10	0.001	6.441	0.010
sida	Rosales	Rosaceae	Crataegus	Crataegus monogyna	Common Hawthorn	Common	12	594	48	27
Magnoliop							74	0.099	2.310	0.229
sida	Rosales	Urticaceae	Urtica	Urtica dioica	Common Nettle	Common	7	23	32	25
									-	-
Magnoliop sida	Rosales	Rosaceae	Potentilla	Potentilla anserina	Common Silverweed	Common	17 0	0.022 582	3.790 59	0.085 6
5100	nosaies	- Nosuceae					Ŭ	502	-	-
Magnoliop								0.000	8.926	0.001
sida	Rosales	Rosaceae	Potentilla	Potentilla reptans	Creeping Cinquefoil		1	133	38	19
Magnoliop								0.000	- 8.233	- 0.002
sida	Rosales	Rosaceae	Rosa	Complex Rosa canina	Dog Rose		2	266	24	19
									-	-
Magnoliop				Complex Rubus			10	0.001	6.361	0.010
sida	Rosales	Rosaceae	Rubus	fruticosus	European Bramble Complex	Common	13	727	44	99
Magnoliop								0.002	5.835	0.017
sida	Rosales	Rosaceae	Filipendula	Filipendula ulmaria	Meadowsweet	Common	22	922	34	05
								0.000	-	-
Magnoliop sida	Rosales	Rosaceae	Rosa		Rose Sp		1	0.000 133	8.926 38	0.001 19
5100	Rosales	Rosaceae	1050				T	155	-	-
Magnoliop								0.000	8.926	0.001
sida	Rosales	Ulmaceae	Ulmus	Ulmus minor	Small-leaved Elm		1	133	38	19
Magnolion								0.000	- 8.926	- 0.001
Magnoliop sida	Rosales	Ulmaceae	Ulmus	Ulmus glabra	Wych Elm		1	133	8.926 38	19

Magnoliop	Contradado o	Sapindacea				Introduced		0.000	- 8.233	0.002
sida	Sapindales	е	Acer	Acer pseudoplatanus	Sycamore	(Naturalised)	2	266	24	19
Magnoliop		Convolvulac				Introduced		0.010	- 4.519	0.049
sida	Solanales	eae	Calystegia	Calystegia silvatica	Large bindweed	(Invasive)	82	893	67	23
									-	-
Malacostr		Gammarida						0.000	7.134	0.005
аса	Amphipoda	е	Gammarus		Shrimp		6	797	63	69
									-	-
Malacostr								0.002	6.153	0.013
аса	Isopoda	Oniscidae	Onsicus	Oniscus asellus	Common Shiny Woodlouse		16	125	8	08
Malacostr					Common Stringd			0.000	- 7.827	- 0.003
aca	Isopoda	Philosciidae	Philoscia	Philoscia muscorum	Common Striped Woodlouse		3	399	7.827	0.003
aca	Тороца	Philoschuae	Philosetu		Woodlouse		5	399	-	12
Malacostr								0.000	7.134	0.005
aca	Isopoda	Asellidae	Asellus	Asellus aquaticus	Two-Spotted Water Slater		6	797	63	69
	·								-	-
								0.000	8.926	0.001
Mammalia	Carnivora	Canidae	Vulpes	Vulpes Vulpes	Red Fox	LC	1	133	38	19
									-	-
								0.000	8.926	0.001
Mammalia	Eulipotyphla	Soricidae	Sorex	Sorex araneus	Common Shrew		1	133	38	19
								0.000	-	-
Mammalia	Fulinotunhla	Talpidae	Talpa	Talpa europaea	European Mole	LC	3	0.000 399	7.827 77	0.003
	Eulipotyphla		Tupu				5	399		12
			Oryctolagu			introduced		0.000	8.233	0.002
Mammalia	Lagomorpha	Leporidae	s	Oryctolagus cuniculus	European Rabbit	(Naturalised)	2	266	24	19
									-	-
								0.000	7.827	0.003
Mammalia	Rodentia	Cricetidae	Myodes	Mictrotus agrestis	Field Vole	LC	3	399	77	12
							76			
							31			-3.85

Appendix C

Table B: An example of the data collected throughout this study using the Methods outlined in Table 1 of this study.

Taxanomi c Class	Taxanomi c Order	Common Name	Scientific Name	n	Date	Habitat	GPS	What 3 Words	Survey	Quadrat	Quadrat	Soil prefernce	Weather	Start	End Temp	Time of day	Life Stage	Sex	Notes
Agaric	Order				18/0	В			Ra	Ν	Ν								
omyce	Agarica	Brown	Panaeolus		5/20	2.			nd	/	/								
tes	les	Mottlegill	foenisecii	1	20	2	52.242.222		om	A	A								
Clitalla	Lloulat	Common	Lunghrieus		29/0	B	53.212839	///habit.m	NI /	N	N					Mid Aftern			
Clitella	Haplot axida	Common Earthworm	Lumbricus terrestris	1	9/20 20	2. 2	, - 2.909203	arch.pushe d	N/ A		/ A								
ta Magn	axiua	Earthworm	lerrestris	L L	29/0	B	53.216667	u	A	A N	N					oon			
oliopsi	Asteral	Smooth Sow	Sonchus		9/20	2.	-	///foil.hum	N/										
da	es	thistle	oleraceus	1	20	2.	, 2.906944	ans.lame	A	A	A	wetland							
					02/1	В				N	N								
	Gallifor	Common	Phasianus		0/20	2.	53.21292,	///spared.s	N/	/	/						Ad		
Aves	mes	Pheasant	colchicus	2	20	2	-2.908364	pring.brand	A	A	A						ult		
					03/1		53.213345			Ν	Ν								
	Passeri	European	Saxicola		0/20	В	,-	///impact.r	N/	/	/						Ad		
Aves	formes	StoneChat	rubicola	1	20	5	2.908266	ather.items	А	А	Α						ult		
			Anas		05/1	G				Ν	Ν								Yello
	Anserif		platyrhynch		0/20	2.			N/	/	/								w
Aves	ormes	Mallard	OS	1	20	1	N/A	N/A	A	Α	Α			_					Form
					05/1	В				N	N								
0	Falconi	Common	Falco	1	0/20	2.	N1 / A	NI (A	N/	/	/							M	
Aves	formes	Kestrel	tinnunculus	1	20	2	N/A	N/A	A	A	A				2			ale	
	Desser	Furacian			05/1	B	53.214282	///frama a re	NI/	N	N				3	Midde	۸d		
Aves	Passeri	Eurasian Magnio	Dica pica	1	0/20 20	2. 2	, - 2.908206	///frame.m odel.lifted	N/ A		/ A				С	Midda	Ad ult		
Aves	formes	Magpie	Pica pica	1	20	Ζ	2.908200	ouer.inted	A	A	A				C	У	uit		

					05/1	В	53.214302			Ν	Ν			6			
	Passeri	Eurasian	Troglodytes		0/20	2.	,-	///think.ne	N/	/	/			0			
Aves	formes	Wren	troglodytes	1	20	2	2.908223	cks.ports	Α	Α	Α			С			
														1			
					05/1					Ν	Ν			1			
	Passeri	European	Saxicola		0/20	В			N/	/	/			0		Ad	
Aves	formes	Stonechat	rubicola	1	20	5	N/A	N/A	А	Α	Α			С		ult	
					05/1					Ν	Ν			9	Mid		
	Passeri		Emberiza		0/20	В	53.214583	///stem.fall	N/	/	/			0	Morni		
Aves	formes	Reed Bunting	schoeniclus	1	20	5	, -2.90792	en.scared	А	А	Α			С	ng		
														1			
	Peleca				05/1	G				Ν	Ν			1			
	niform		Ardea		0/20	2.			N/	/	/			0			
Aves	es	Grey Heron	cinerea	1	20	1	N/A	N/A	А	Α	Α			С			
	Stylom				05/1	В	53.214834			N	N						
Gastro	matop				0/20	2.	,-	///frog.stor	N/	/	/						
poda	hora	Black Slug	Arion ater	1	20	2	2.908165	es.over	А	Α	Α						
	Stylom	Common			05/1	В				Ν	N						
Gastro	matop	European	Succinea		0/20	2.	53.215, -	///gates.sc	N/	/	/						
poda	hora	Amber Snail	putris	1	20	2	2.908056	an.stones	А	Α	Α						
	Stylom				05/1	J2	53.216667	///means.		N	Ν						
Gastro	matop		Monacha		0/20	.3	,-	window.boi	N/	/	/						
poda	hora	Kentish Snail	cantiana	1	20	.1	2.907222	1	А	А	Α						
	Stylom				05/1	J2	53.215703			Ν	Ν						
Gastro	matop	White Lipped	Сераеа		0/20	.3	,-	///taxi.glov	N/	1	1						
poda	hora	Snail	hortensis	1	20	.1	2.907225	es.powder	А	А	Α						
	Stylom				05/1	В	53.212778			Ν	Ν						
Gastro	matop	White Lipped	Сераеа		0/20	2.	,-	///daring.di	N/	1	1						
poda	hora	Snail	hortensis	1	20	2	2.909167	ps.linked	А	Α	Α						
					05/1	В	53.213056	///fingernai		Ν	Ν						
Liliops			Dactylis		0/20	2.	,-	ls.gently.br	N/	/	/						
ida	Poales	Cock's-foot	Glomerata	2	20	2	2.909167	ave	А	Α	Α	fertile					
					05/1	В				Ν	Ν						
Liliops		False Oat-	Arrenatheru		0/20	2.			N/	/	/						
ida	Poales	grass	m elatius	1	20	2			Α	Α	Α	varied					

					05/1					Ν	N					
Liliops			Juncus		0/20	В			N/	/	/					
ida	Poales	Soft Rush	effusus	1	20	5			А	Α	Α	wetland				
Magn					05/1	В	53.213889			Ν	Ν					
oliopsi	Asteral	Creeping	Cirsium		0/20	2.	,-	///frame.th	N/	1	1	meado				
da	es	Thistle	arvense	1	20	2	2.908889	ick.ground	А	Α	Α	w				
Magn					05/1		53.215742			Ν	Ν			Late		
oliopsi		Pendunculat	Quercus		0/20	В	,-	///cooks.sh	N/	/	1			Morni		
da	Fagales	e Oak	robor	1	20	5	2.907235	ip.calms	А	Α	Α	varied		ng		
Magn					05/1	В				Ν	Ν					
oliopsi		Pendunculat	Quercus		0/20	2.	53.21666,	///humid.d	N/	/	1			Midda		
da	Fagales	e Oak	robor	1	20	2	-2.906944	ark.poetic	А	А	Α	varied		у		
Magn					05/1	В	53.216667			Ν	Ν		4			
oliopsi	Lamiale	Ribwort	Plantago		0/20	2.	,-	///foil.hum	N/	/	1		0			
da	S	Plantain	lanceolata	1	20	2	2.906944	ans.lame	А	А	Α	fertile	С			
Magn					05/1	В	53.214444			Ν	Ν					
oliopsi	Gerani	Shining	Geranium		0/20	2.	,-	///hunter.h	N/	/	1					
da	ales	crane's bill	lucidum	1	20	2	2.908333	elps.dine	А	Α	А	fertile				
Magn					05/1	В	53.216667			Ν	Ν					
oliopsi	Boragin	tufted Forget	Myosotis		0/20	2.	,-	///foil.hum	N/	/	1	meado				
da	ales	me not	laxa	1	20	2	2.906944	ans.lame	А	Α	А	W				
Magn					05/1		53.213333			Ν	Ν					
oliopsi	Boragin	tufted Forget	Myosotis		0/20	В	,-	///money.e	N/	/	1					
da	ales	me not	laxa	2	20	5	2.908333	xams.glory	А	Α	Α	fertile				
Magn					05/1	В	53.213056			Ν	Ν					
oliopsi	Boragin	tufted Forget	Myosotis		0/20	2.	,-	///hooks.te	N/	/	/					
da	ales	me not	laxa	3	20	2	2.908333	lls.range	А	Α	Α	varied				
Magn					05/1	В				Ν	Ν					
oliopsi	Brassic		Rorippa		0/20	2.	53.215, -	///hoping.p	N/	/	/					
da	ales	water cress	palustris	1	20	2	2.908333	anel.wink	А	Α	Α	fertile				
Magn					05/1	В	53.213889			Ν	Ν					
oliopsi	Lamiale	Water	Persicaria		0/20	2.	, -	///frame.th	N/	/	/					
da	S	Pepper	hydropiper	1	20	2	2.908889	ick.ground	А	Α	Α	wetland				

Magn					05/1	В				N	N	fertile				
oliopsi	Lamiale	Water	Persicaria	2	0/20	2.	53.2125, -	///volume.	N/	17	1	and				
da	S	Pepper	hydropiper	5	20	2	2.908333	matter.flips	Á	Â	Â	wetland				
Magn			, , ,		05/1	В	53.213333			Ν	Ν		3			
oliopsi	Lamiale	Water	Persicaria		0/20	2.	,-	///roof.golf	N/	1	1		•			
da	S	Pepper	hydropiper	6	20	2	2.908889	.farmer	A	A	A	wetland	С			
Magn					05/1		53.215278			Ν	Ν	fertile	4			
oliopsi	Lamiale	Water	Persicaria		0/20	В	,-	///pillow.br	N/	1	1	and	•			
da	S	Pepper	hydropiper	1	20	5	2.907778	ain.arch	А	Α	Α	wetland	С			
Magn					05/1	В				Ν	Ν		4			
oliopsi	Lamiale	Water	Persicaria		0/20	2.	53.215, -	///gates.sc	N/	/	/		•			
da	S	Pepper	hydropiper	2	20	2	2.908056	an.stones	А	Α	Α	fertile	С			
													1			
Magn					05/1	В	53.216657			N	N		1			
oliopsi			Angelica		0/20	2.	,-	///trace.po	N/	/	/	6	•			
da	Apiales	Wild Angelica	sylvestris	1	20	2	2.907927	etic.puts	A	A	A	fertile	С			
Magn			A		05/1		53.214639			N	N					
oliopsi	A		Angelica		0/20	В	,- 	///motor.fe	N/							
da	Apiales	Wild Angelica	sylvestris	1	20	5	2.908039	tch.novel	A	A	A	wetland	0			
Magn	Lomiolo		luconus		05/1	B	52 21520		NI/	N	N /		8			
oliopsi da	Lamiale	Cupsulart	Lycopus europaeus	1	0/20 20	2. 2	53.21539 <i>,</i> -2.908082	///cracks.gl itz.tides	N/	/ A	/ A	wetland	с			
ua	S	Gypsywort	Chamaeneri	1	20	2	-2.908082	itz.tiues	A			wetianu				
Magn			on		05/1	В	53.212778			N	N			Late		
oliopsi	Myrtal	Rosebay	angustifoliu		0/20	2.	-	///daring.di	N/					Morni		
da	es	Willowherb	m	1	20	2	, 2.909167	ps.linked	A A	A	A	fertile		ng		
Magn				-	05/1	B	53.212778	politikeu		N	N			118		
oliopsi		Small-leaved	Ulmus		0/20	2.		///daring.di	N/	1	1					
da	Rosales	Elm	minor	1	20	2	2.909167	ps.linked	A	Â	Â	fertile				
					06/1	G				N	N					
	Gruifor	Eurasian	Gallinula		0/20	2.			N/	1	/					
Aves	mes	Moorhen	chloropus	1	20	1	N/A	N/A	Á	Á	Á					
					06/1	В				Ν	Ν					
	Passeri				0/20	2.			N/	/	/		1			
Aves	formes	Great Tit	Parus major	1	20	2	N/A	N/A	А	Α	Α		1			

														0			
	Stylom				06/1		53.216389			N	N			С 6			
Gastro	matop	Western			0/20	В		///lively.ca	N/					•			
poda	hora	Dusky Slug	Arion fuscus	1	20	5	, 2.906944	ses.origin	A	A	A			с			
					06/1	В	53.213889			N	N						
Insect	Coleop	Cantharis	Cantharis		0/20	2.	,-	///frame.th	N/	1	/						Nesti
а	tera	rufa	rufa	1	20	2	2.908889	ick.ground	А	А	Α						ng
					06/1					Ν	Ν						
Liliops			Dactylis		0/20	В			N/	/	/						
ida	Poales	Cock's-foot	Glomerata	1	20	5			A	Α	Α	wetland					
Magn					06/1	В				N	N				Late		
oliopsi	E I	Pendunculat	Quercus		0/20	2.	53.216389	///fuel.eve	N/						Morni		
da	Fagales	e Oak	robor	1	20	2	, -2.9075 53.216667	nt.affair	A	A	A N	varied			ng		
Magn oliopsi	Asteral	Smooth Sow	Sonchus		06/1 0/20	В 2.	53.210007	///foil.hum	N/	N							
da	es	thistle	oleraceus	1	20	2. 2	, - 2.906944	ans.lame	A	A	/ A	fertile					
Magn		thistic	Acer	-	06/1	B	2.300344	distance	~	N	N	Tertile					
oliopsi	Sapind		pseudoplat		0/20	2.	53.216389	///fuel.eve	N/	1	1	meado					
da	ales	Sycamore	anus	1	20	2	, -2.9075	nt.affair	Á	Â	Â	w					
Magn					06/1	В	53.214722			Ν	N						
oliopsi	Lamiale	Water	Persicaria		0/20	2.	,-	///homes.f	N/	/	1						
da	S	Pepper	hydropiper	9	20	2	2.908611	ake.jumps	А	Α	Α	fertile					
Magn					06/1		53.216282			Ν	Ν						
oliopsi	Myrtal	Willow Herb			0/20	В	,-	///equal.un	N/	/	/						
da	es	Sp	Epilobium	3	20	5	2.906956	der.flying	A	Α	Α	fertile					
0		European			08/1	В	53.216667	111	N1/	N	N						
Arach nida	Aranea	Garden	Araneus diadematus	1	0/20	2.	, - 2.907778	///nerve.p	N/							M	
nida	е	Spider European	ulddernatus	T	20 08/1	2 B	53.214302	ots.grows	A	A N	A N			4		ale	
Arach	Aranea	Nursery Web	Pisaura		08/1	в 2.	-	///think.ne	N/					4 。			
nida	e	Spider	mirabilis	1	20	2.	, - 2.908223	cks.ports	A	A	A			с			
maa			maoms	-	08/1	 J2	2.500225	ch3.ports		N	N						
	Passeri	European	Erithacus		0/20	.3			N/	/	/						
Aves	formes	Robin	rubecula	1	20	.1	N/A	N/A	Â	Â	Â						

Insect a Coleop a response Septempunc				Coccinella		08/1	В	53.216111			NI	NI			n		
a tera Ladybird tera 1 20 2 2,908056 sal,brass A <	Incont	Calaan	Zanat			-			/////	N1 /							
Insect Hymen Aphididae Postor OB/1 B 53.214465 ///shower. calms.grou N						•				-	/	/					
Insert a Optera Aphididae	а	tera	Ladybird	tata	1					A		-					
a optera Aphididae Aphididae 1 20 2 2.908281 ps A <						-		53.214465			N	N					
Insect a Optera optera a Aphididae Aphididae Aphididae 4 Aphididae 44 Aphididae 4 Aph	Insect	Hymen				-		,-	calms.grou	N/	/	/			0		
Insect a Hymen optera Aphididae Aphididae A Dolp (2) B 53.21430, (2) //// (2) N	а	optera	Aphididae	Aphididae	1		2	2.908281	ps	А	Α	Α			С		
a optera Aphididae Aphididae 4 5 -2.90822 cks.ports A						08/1					Ν	Ν					
Insect a Odonat a Blue-Tailed Damselfly Ischnura elegans 0 8 53.21389 , - ///frame.th (Kground N N N A A A A	Insect	Hymen				0/20	В	53.21430,	///think.ne	N/	/	/					
Insect a Odonat a Blue-Tailed Damselfly Ischnuro elegans 1 O/20 2 ,- ///frame.th ick.ground N / </td <td>а</td> <td>optera</td> <td>Aphididae</td> <td>Aphididae</td> <td>4</td> <td>20</td> <td>5</td> <td>-2.90822</td> <td>cks.ports</td> <td>А</td> <td>Α</td> <td>Α</td> <td></td> <td></td> <td></td> <td></td> <td></td>	а	optera	Aphididae	Aphididae	4	20	5	-2.90822	cks.ports	А	Α	Α					
a a Damselfly elegans 1 20 2 2.908889 ick.ground A <						08/1	В	53.213889			Ν	Ν					
Insect a Coleop tera Cantharis rufa Cantharis rufa Cantharis rufa Cantharis rufa 0/20 20 B 5 53.21430, -2.90822 ///think.ne cks.ports N A N A N A	Insect	Odonat	Blue-Tailed	Ischnura		0/20	2.	, -	///frame.th	N/	1	1					
Insect a Coleop tera Cantharis rufa Cantharis rufa Cantharis rufa Cantharis rufa 0/20 20 B 5 53.21430, -2.90822 ///think.ne cks.ports N A N A N A	а	а	Damselfly	elegans	1	-		2.908889		-	A	A					
			,								-						
a tera rufa rufa rufa rufa 1 20 5 -2.90822 cks.ports A	Insect	Coleop	Cantharis	Cantharis		-	В		///think.ne	N/	1	1					
Insect a Coleop tera Click Beetle Agriotes 1 20 2 2.908333 1 N N A					1	-		-2.90822		-	Á	Á					
Insect a Coleop tera Click Beetle Agriotes 1 20 2. ,- ///posed.le N/ / A	<u> </u>				-			53 215833							 		
a tera Click Beetle Agriotes 1 20 2 2.908333 ft.dogs A	Insect	Coleon				-		-	///nosed le	N/							
Insect a Coleop tera Coleop Click Beetle Agriotes 1 20 2 2,			Click Bootlo	Agriotes	1	-		, -		-							
Insect aColeop teraClick BeetleAgriotes10/202.,-///posed.leN///AA	a	leia		Agrioles	1				TL.UUg5	A							
ateraClick BeetleAgriotes12022.908333ft.dogsAAA <td>Incont</td> <td>Calaan</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>55.215655</td> <td></td> <td>N1 /</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Incont	Calaan				-		55.215655		N1 /							
Magn oliopsi Pendunculat e Oak Quercus robor 08/1 B Image oliopsi ///privately .scarf.pape N N N A A Varied B2.2. Image Image <thimage< th=""> <thimage< th=""></thimage<></thimage<>				A		-		,-		-		/					
oliopsi daPendunculat e OakQuercus robor0/202.53.214401.scarf.pape rN////NNN<	-	tera	Click Beetle	Agriotes	1			2.908333	•	A							
daFagalese Oakrobor1202,-2.90874rAAAAAVariedB2.2.II<											N	N					
Magn oliopsiLamiale LamialeWater PepperPersicaria hydropiper0853.215278 ()/20///proud.a ware.mirroNNNNAA									.scart.pape		/	/					
Oliopsi daLamiale SWater PepperPersicaria hydropiper0/202.,-ware.mirro ware.mirro AN//		Fagales	e Oak	robor	1				r	A			varied	B2.2.			
dasPepperhydropiper52022.908333rAAAAhedgeIII </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>53.215278</td> <td></td> <td></td> <td>Ν</td> <td>Ν</td> <td></td> <td></td> <td></td> <td></td> <td></td>								53.215278			Ν	Ν					
Magn oliopsi da Lamiale s Water Persicaria hydropiper 08/1 B 53.215278 ///proud.a ware.mirro N N A B S3.215295 C		Lamiale	Water	Persicaria				,-	ware.mirro	N/	/	/					
oliopsi daLamiale sWater PepperPersicaria hydropiper20/202.,-ware.mirro ware.mirro rN//	da	S	Pepper	hydropiper	5	20	2	2.908333	r	А	Α	Α	hedge				
da s Pepper hydropiper 2 20 2 2.908333 r A A A hedge C C Image: C	Magn					08/1	В	53.215278	///proud.a		Ν	Ν			3		
Magn oliopsi Angelica 08/1 B 53.215295 N N N Angelica 0/20 2. , - ///zips.likel N V I	oliopsi	Lamiale	Water	Persicaria	2	0/20	2.	,-	ware.mirro	N/	/	1			0		
oliopsi Angelica 0/20 2. , - ///zips.likel N/ / /	da	S	Pepper	hydropiper	2	20	2	2.908333	r	А	Α	Α	hedge		С		
oliopsi Angelica 0/20 2. , - ///zips.likel N/ / /	Magn					08/1	В	53.215295			Ν	N					
				Angelica			2.	,-	///zips.likel	N/	1	1					
	da	Apiales	Wild Angelica	sylvestris	2	20	2	2.908475	y.vest		A	Á	hedge				

Magn					12/1	В	53.214174			N	N			8			
oliopsi		Himilayan	Impatiens		0/20	2.		///castle.th	N/	7	1			•			
da	Ericales	Balsam	glandulifera	1	20	2	, 2.908806	ing.sounds	A	Á	Â	hedge		С			
			0.000000											1			
Magn					12/1	В	53.213039			Ν	N			1			
oliopsi			Angelica		0/20	2.	,-	///judge.pa	N/	1	1			•			
da	Apiales	Wild Angelica	sylvestris	1	20	2	2.909187	cket.even	А	Α	Α	hedge		с			
Magn					12/1	J2	53.216667			Ν	Ν						
oliopsi			Angelica		0/20	.3	,-	///drag.bar	N/	1	1						
da	Apiales	Wild Angelica	sylvestris	1	20	.1	2.908056	s.wizard	А	А	Α	hedge					
Magn					12/1	J2		///proven.		Ν	Ν				Late		
oliopsi			Angelica		0/20	.3	53.213741	union.forge	N/	1	1				aftern		
da	Apiales	Wild Angelica	sylvestris	1	20	.1	, -2.9091	t	А	А	Α	hedge			oon		
														1			
Magn			Acer		12/1	J2				Ν	Ν			1			
oliopsi	Sapind		pseudoplat		0/20	.3	53.216667	///drag.bar	N/	/	/			۰			
da	ales	Sycamore	anus	1	20	.1	,-2.908056	s.wizard	А	А	Α	fertile		С			
		Common			19/1		53.215556			Ν	Ν						
Bryop	Hypnal	Feather-	Kindbergia	1	0/20	В	,-	///forms.fr	N/	/	/						
sida	es	moss	praelonga	0	20	5	2.907222	ame.eaten	А	Α	Α						
					20/1	В				Ν	Ν						
	Passeri		Corvus		0/20	2.			N/	/	/						
Aves	formes	Carrion Crow	corone	1	20	2	N/A	N/A	А	Α	Α						
					20/1	J2	53.216818			Ν	Ν						
	Passeri		Prunella		0/20	.3	,-	///snail.en	N/	/	/						
Aves	formes	Dunnock	modularis	1	20	.1	2.908037	ded.rested	А	Α	Α		_				
					20/1	В	53.216676	///laptop.d		Ν	Ν						
	Passeri	Eurasian	Turdus		0/20	2.	, -	izzy.summe	N/	/	/				Midda	Ad	
Aves	formes	Black Bird	merula	1	20	2	2.907814	r	A	Α	Α				у	ult	
					20/1	J2				Ν	Ν			7			
	Passeri		Garrulus		0/20	.3			N/	/	/			0			
Aves	formes	Eurasian Jay	glandarius	1	20	.1	N/A	N/A	A	Α	Α			С			
					20/1	В	53.216667			N	N						
Insect	Coleop				0/20	2.	, -	///foil.hum	N/	/	/						
а	tera	Click Beetle	Agriotes	1	20	2	2.906944	ans.lame	А	Α	Α						

					20/1	В	53.213611			Ν	N						
Mam	Eulipot	European	Talpa		0/20	2.	,-	///loose.hu	N/	1	1						
malia	yphla	Mole	europaea	1	20	2	2.908889	rls.launch	А	Α	A						
					23/1	J2				Ν	Ν				Early		
	Passeri	Eurasian	Pyrrhula		0/20	.3	53.21489,	///calms.sa	N/	/	/				Aftern	Ad	
Aves	formes	Bullfinch	pyrrhula	7	20	.1	-2.908692	nds.driven	А	Α	Α				oon	ult	
					23/1	В	53.215002			Ν	Ν				Mid		
	Passeri	European	Saxicola		0/20	2.	,-	///round.su	N/	/	/				Aftern	Ad	
Aves	formes	Stonechat	rubicola	1	20	2	2.908647	ch.beams	А	Α	Α				oon	ult	
					23/1	В	53.215046			Ν	Ν				Mid		
	Passeri	European	Saxicola		0/20	2.	,-	///create.o	N/	/	/				Aftern	Ad	
Aves	formes	Stonechat	rubicola	1	20	2	2.908625	ath.vocal	A	A	A			_	oon	ult	
Annah		Common	Talana		26/1	В	52 24262		N1 /	N	N						
Arach nida	Aranea	Stretch	Tetragnath	1	0/20	2.	53.21362,	///vibe.fou	N/								
	е	Spider	a extensa	1	20 26/1	2 B	-2.909141 53.214444	nd.skills	A	A	A			2			
Magn oliopsi					0/20	В 2.	55.214444	///global.s	N/	N /				3			
da	Rosales	Rosa spp	Rosa	1	20	2.	, - 2.908889	hot.clash	A	/ A	A	fertile		с			
Magn	Rosaics		1050	-	26/1	2	2.500005	not.clash	~	N	N						
oliopsi	Boragin	tufted Forget	Myosotis		0/20	В	53.215278	///dish.firm	N/	7	1						
da	ales	me not	laxa	1	20	5	, -2.9075	s.remedy	A A	Á	Â	wetland					
					02/1	J2				Ν	Ν						
	Passeri	Eurasian	Turdus		1/20	.3	53.21588,	///rests.ris	N/	/	/				Midda	Ad	
Aves	formes	Black Bird	merula	5	20	.1	-2.908375	ky.trend	А	Α	Α				у	ult	
					02/1	J2				Ν	Ν						
	Passeri	European	Erithacus		1/20	.3			N/	/	/						
Aves	formes	Robin	rubecula	1	20	.1	N/A	N/A	А	Α	Α						
					02/1	В	53.214302			N	N				Mid		
	Passeri	Long-tailed	Aegithalos	_	1/20	2.	,-	///think.ne	N/	/	/				Morni		
Aves	formes	Tit	caudata	6	20	2	2.908223	cks.ports	A	A	A		_		ng		
0.000	0	European	Diagu		05/1	B	53.215043	111	N1 /	N	N						
Arach	Aranea	Nursery Web	Pisaura	1	1/20	2.	,-	///roof.curi	N/	/							
nida	е	Spider	mirabilis		20	2	2.908502	osity.saying	A	A	A						

													1				
					05/1	В	53.213056			Ν	N						
Arach	Aranea				1/20	2.	,-	///hooks.te	N/	/	/		。 「				
nida	e	Steatoda	Steatoda	1	20	2	2.908333	lls.range	A	Â	Â		с				
					05/1	В	53.214167			Ν	N						
Arach	Opilion	Oligolophus	Oligolophus		1/20	2.	, -	///acting.fl	N/	/	/						
nida	es	tridens	tridens	1	20	2	2.908611	at.agents	Á	Á	Â						
					05/1	В				Ν	N						
	Gallifor	Common	Phasianus		1/20	2.			N/	1	1					М	Feac
Aves	mes	Pheasant	colchicus	2	20	2	N/A	N/A	Á	Â	Á					ale	es
					05/1	J2				Ν	Ν						
	Passeri		Prunella		1/20	.3			N/	/	/						
Aves	formes	Dunnock	modularis	1	20	.1	N/A	N/A	A	A	A						
					05/1					Ν	Ν						
	Passeri	Eurasian Blue	Cyanistes		1/20	В			N/	/	/						
Aves	formes	Tit	caeruleus	1	20	5	N/A	N/A	Α	Α	Α						
					05/1	J2				Ν	Ν		6				
	Passeri	Eurasian			1/20	.3			N/	/	/		۰		Ad		
Aves	formes	Magpie	Pica pica	1	20	.1	N/A	N/A	А	А	Α		С		ult		
					05/1	В				Ν	Ν						
	Passeri	Eurasian			1/20	2.			N/	/	/				Ad		
Aves	formes	Magpie	Pica pica	1	20	2	N/A	N/A	А	Α	Α				ult		
													1				
					05/1	J2				Ν	Ν		1				
	Passeri				1/20	.3			N/	/	/		۰				
Aves	formes	Great tit	Parus major	2	20	.1	N/A	N/A	A	Α	Α		 С				
					05/1					Ν	N						
	Passeri	Long-tailed	Aegithalos	_	1/20	В			N/	/	/						
Aves	formes	Tit	caudata	2	20	5	N/A	N/A	A	Α	Α						
					05/1	В	53.215278	///venue.e		N	N					Fe	
Insect		Aschizan			1/20	2.	,-	ntertainer.	N/	/	/			Midda		m	
а	Diptera	Flies		1	20	2	2.908611	worry	A	A	A			ý		ale	
Magn					05/1		53.213611			N	N						
oliopsi		Spear Leaved			1/20	B	,-	///lakes.stu	N/	/	/	C					
da		Orache		1	20	5	2.908333	mp.push	A	Α	Α	fertile					

														1		
					05/1	В	53.215079			Ν	Ν			1		
Mam	Lagom	European	Oryctolagus		1/20	2.	,-	///slide.cha	N/	/	/			۰		
malia	orpha	Rabbit	cuniculus	1	20	2	2.908361	in.boots	А	Α	Α			С		
					06/1	В				Ν	Ν					
Insect		Culcidae			1/20	2.	53.21493,	///spared.o	N/	/	/					
а	Diptera	(Mosquitos)		1	20	2	-2.90873	ption.hints	А	Α	А					
					06/1	G				Ν	Ν	fertile				
Liliops			Carex		1/20	2.	53.21506,	///tour.brin		/	/	and				
ida	Poales	Bog-sedge	limosa	1	20	1	-2.907422	gs.swear	A	Α	Α	wetland				
					09/1					Ν	Ν					
Insect					1/20	В	53.21472,	///teeth.coi	N/	/	/					
а	Diptera	Alderflies	Sialis	1	20	5	-2.90778	ns.rash	А	Α	Α					
					09/1					Ν	Ν					
Liliops			Alopecurus		1/20	В			N/	/	/					
ida	Poales	Marsh Foxtail	geniculatus	1	20	5			А	Α	Α	wetland				
Magn					09/1		53.212778			Ν	Ν					
oliopsi		Common	Urtica	1	1/20	В	, -	///craft.po	N/	/	/					
da	Rosales	Nettle	dioica	1	20	5	2.907222	ol.rated	А	Α	Α	fertile				
Magn					09/1		53.214499			N	Ν					
oliopsi	Lamiale		Mentha	2	1/20	В	, -	///wisely.fo	N/	/	/					
da	S	Water Mint	aquatica	3	20	5	2.907856	am.online	А	Α	Α	wetland				
Magn					09/1	В	53.214167			Ν	Ν					
oliopsi	Lamiale	Water	Persicaria	1	1/20	2.	,-	///acting.fl	N/	/	/	meado				
da	S	Pepper	hydropiper	6	20	2	2.908611	at.agents	А	Α	Α	W				
Magn					09/1			///worth.c		Ν	Ν					
oliopsi	Lamiale	Water	Persicaria	1	1/20	В	53.213333	oach.cause	N/	/	/					
da	S	Pepper	hydropiper	0	20	5	, -2.9075	S	А	А	Α	wetland				
Magn					09/1					Ν	Ν					
oliopsi			Angelica		1/20	В	53.215278	///dish.firm	N/	/	/					
da	Apiales	Wild Angelica	sylvestris	1	20	5	, -2.9075	s.remedy	А	Α	А	wetland				
		Rough-	Brachytheci		10/1		53.216389			Ν	Ν					
Bryop	Hypnal	stalked	um		1/20	В	,-	///forms.fr	N/	/	/					
sida	es	Feather Moss	rutabulum	8	20	5	2.907222	ame.eaten	А	Α	Α					

					10/1	В				N	N					
Insect	Hymen				1/20	2.	53.21583,	///hogs.me	N/	1	1					
a	optera	Aphididae	Aphididae	4	20	2	-2.90778	ntal.caves	A A	Â	Â					
~	optera	, ipiniaraac	, pindidde		10/1	B	53.216111	- Transares		N	N			4		
Insect	Odonat	Blue-Tailed	Ischnura		1/20	2.		///movies.v	N/	1	1			•		
а	а	Damselfly	elegans	1	20	2	, 2.907778	ast.soon	A A	Â	Â			С		
Magn					10/1		53.213272			N	N					
oliopsi		Common	Urtica		1/20	В		///reform.p	N/	1	1					
da	Rosales	Nettle	dioica	9	20	5	2.907483	ays.keen	Â	Â	Â	wetland				
Agaric	Order				12/1	В		///venue.e	Ra	N	N					
omyce	Agarica	Yellow Field	Bolbitius		1/20	2.	53.215278	ntertainer.	nd	1	1					
tes	les	Сар	titubans	1	20	2	,-2.908611	worry	om	A	A					
	Charad				12/1					Ν	Ν					
	riiform	Common	Gallinago		1/20	В			N/	/	/					
Aves	es	Snipe	gallinago	1	20	5	N/A	N/A	А	Α	Α					
					12/1	J2				Ν	Ν					
	Passeri	Long-Tailed	Aegithalos		1/20	.3			N/	/	/					
Aves	formes	Tit	caudata	1	20	.1	N/A	N/A	А	Α	Α					
					12/1	В				Ν	Ν					
Insect	Coleop	Common	Brassicoget		1/20	2.	53.21500,	///round.su	N/	/	/					
а	tera	Pollen Beetle	hes aeneus	1	20	2	-2.90861	ch.beams	А	Α	Α					
														1		
Magn	<u> </u>				12/1		53.213421	1110		N	N			1		
oliopsi	Boragin	tufted Forget	Myosotis '		1/20	В	,-	///free.ope	N/	/		6		0		
da	ales	me not	laxa	1	20	5	2.908282	n.slips	A	A	A	fertile		С		
A una a la	0	Painted	Thereidien		24/1	B	53.216667	111	N1 /	N	N					
Arach	Aranea	Cobweb	Theridion	1	1/20	2.	,-	///nerve.p	N/							
nida	е	Weaver	pictum	1	20	2	2.907778	ots.grows	A	A	A					
	Decceri		Cumpistos		24/1	B			NI /	N	N					
Augs	Passeri	Eurasian Blue	Cyanistes	1	1/20	2.		N/A	N/							
Aves	formes	Tit	caeruleus Brachuthaci	1	20	2	N/A		A	Α	A					
Bruch	Huppal	Rough- stalked	Brachytheci		24/1	Р	53.216422	///Intelligib	Fix		1		Clear /			
Bryop sida	Hypnal		um		1/20	В 5	38, -	le.Splash.Tr	ed	2	m 2		Clear /			
siua	es	Feather Moss	rutabulum	4	20	5	2.9072400	im	Qu	2			wet			

									adr							
									adr at							
	Stylom				24/1	J2	53.214535		αι	N	N			8		
Gastro	matop	Chocolate			1/20	.3	,-	///knots.sli	N/	1N 7				0 0		
poda	hora	Arion	Arion rufus	1	20	.1	, 2.908332	my.media	A	/ A	A			с		
poua	пога		Anon rujus	-	20	•-	2.500552	my.media	Fix	~				C		
									ed							
	Stylom				24/1	В	53.216025		Qu		1			3		
Gastro	matop		Deroceras		1/20	2.		///Gender.	adr		m		Clear /	•		
poda	hora	Milk Slug	reticulatum	1	20	2	, 2.907805	Cakes.Rival	at	3	2		wet	С		
									Fix	-						
									ed							
					24/1		53.213372		Qu		1	fertile				
Liliops			Dactylis		1/20	В	,-	///roses.fir	adr	1	m	and	Clear /			
ida	Poales	Cock's-foot	Glomerata	1	20	5	2.907725	st.amuse	at	0	2	wetland	wet			
									Fix							
									ed							
					24/1	В	53.213453		Qu		1					
Liliops			Dactylis		1/20	2.	,-	///paying.b	adr		m		Clear /			
ida	Poales	Cock's-foot	Glomerata	6	20	2	2.908595	eard.logs	at	8	2	fertile	wet			
									Fix							
									ed							
					24/1		53.216422	///Intelligib	Qu		1					
Liliops			Alopecurus	4	1/20	В	38, -	le.Splash.Tr	adr		m		Clear /			
ida	Poales	Marsh Foxtail	geniculatus	2	20	5	2.9072400	im	at	2	2	wetland	wet			
									Fix							
									ed							
					24/1		53.215524	///encount	Qu		1					
Liliops			Alopecurus	2	1/20	В	,-	er.snail.cou	adr		m		Clear /			
ida	Poales	Marsh Foxtail	geniculatus	6	20	5	2.907175	ple	at	6	2	wetland	wet			
									Fix							
									ed							
					24/1		53.216422	///Intelligib	Qu		1					
Liliops			Juncus	1	1/20	В	38, -	le.Splash.Tr	adr		m		Clear /			
ida	Poales	Soft Rush	effusus	3	20	5	2.9072400	im	at	2	2	wetland	wet			

									Fix							
									ed							
					24/1		53.215677		Qu		1					
Liliops			Juncus	1	1/20	в	,-	///Hill.Deca	adr		m		Clear /			
ida	Poales	Soft Rush	effusus	5	20	5	, 2.907667	y.Rider	at	5	2	wetland	wet			
				-				,	Fix	-						
									ed							
					24/1		53.213461		Qu		1					
Liliops			Juncus	1	1/20	В	1, -	///spring.b	adr		m		Clear /			
ida	Poales	Soft Rush	effusus	1	20	5	2.9082532	oats.pass	at	9	2	wetland	wet			
									Fix							
									ed							
					24/1	В	53.216025		Qu		1					
Liliops			Holacus		1/20	2.	,-	///Gender.	adr		m		Clear /			
ida	Poales	Yorkshire Fog	lanatus	1	20	2	2.907805	Cakes.Rival	at	3	2	varied	wet			
									Fix							
									ed							
					24/1	В	53.215765		Qu		1					
Liliops			Holacus		1/20	2.	3, -	///diner.sla	adr		m		Clear /			
ida	Poales	Yorkshire Fog	lanatus	1	20	2	2.9082773	te.voices	at	4	2	varied	wet			
									Fix							
									ed							
					24/1		53.213372	111	Qu	4	1					
Liliops	Deelee		Holacus	1	1/20	В	,- 2.007725	///roses.fir	adr	1	m 2	wariad	Clear /			
ida	Poales	Yorkshire Fog	lanatus	1	20	5	2.907725	st.amuse	at	0	_	varied	wet			
									Fix ed							
					24/1	В	53.216653		Qu		1					
Liliops			Holacus		1/20	В 2.	9, -	///Linen.Vi	adr		m		Clear /			
ida	Poales	Yorkshire Fog	lanatus	1	20	2.	2.907784	sual.Juror	at	1	2	varied	wet			
	i Gales	Torkshire Tog	iunacas	-	20	2	2.507704	3001.50101	Fix	-		Varieu	WCL			
									ed							
					24/1	В	53.215000		Qu		1					
Liliops			Holacus	1	1/20	2.	2, -	///vivid.det	adr		m		Clear /			
ida	Poales	Yorkshire Fog	lanatus	1	20	2	2.9085147	ail.email	at	7	2	varied	wet			

									Fix							
									ed							
Magn					24/1	В	53.215765		Qu		1					
oliopsi	Lamiale	Common	Galeopsis	1	1/20	2.	3, -	///diner.sla	adr		m		Clear /			
da	S	Hemp-Nettle	tetrahit	2	20	2	2.9082773	te.voices	at	4	2	fertile	wet			
0.0	<u> </u>			_		_			Fix							
									ed							
Magn					24/1	В	53.216653		Qu		1					
oliopsi	Lamiale	Common	Galeopsis		, 1/20	2.	9, -	///Linen.Vi	adr		m		Clear /			
da	S	Hemp-Nettle	tetrahit	4	20	2	2.907784	sual.Juror	at	1	2	fertile	wet			
									Fix							
									ed							
Magn					24/1	В	53.215000		Qu		1					
oliopsi	Lamiale	Common	Galeopsis		1/20	2.	2, -	///vivid.det	adr		m		Clear /			
da	S	Hemp-Nettle	tetrahit	3	20	2	2.9085147	ail.email	at	7	2	fertile	wet			
									Fix							
									ed							
Magn					24/1	В	53.213453		Qu		1					
oliopsi	Lamiale	Common	Galeopsis		1/20	2.	,-	///paying.b	adr		m		Clear /			
da	S	Hemp-Nettle	tetrahit	9	20	2	2.908595	eard.logs	at	8	2	fertile	wet			
									Fix							
									ed							
Magn					24/1		53.216422	///Intelligib	Qu		1					
oliopsi	Lamiale	Common	Galeopsis	2	1/20	В	38, -	le.Splash.Tr	adr		m		Clear /			
da	S	Hemp-Nettle	tetrahit	4	20	5	2.9072400	im	at	2	2	fertile	wet			
									Fix							
									ed							
Magn					24/1		53.215677		Qu		1					
oliopsi	Lamiale	Common	Galeopsis		1/20	В	,-	///Hill.Deca	adr		m		Clear /			
da	S	Hemp-Nettle	tetrahit	4	20	5	2.907667	y.Rider	at	5	2	fertile	wet			
									Fix							
							50.040.000		ed							
Magn		Comment	1 Intian		24/1		53.216422	///Intelligib	Qu		1					
oliopsi	Dural	Common	Urtica	1	1/20	B	38, -	le.Splash.Tr	adr	2	m 2		Clear /			
da	Rosales	Nettle	dioica		20	5	2.9072400	im	at	2	2	wetland	wet			

									Fix								
									ed								
Magn					24/1	В	53.216653		Qu		1						
oliopsi	Asteral	Common	Senecio		1/20	2.	9, -	///Linen.Vi	adr		m		Clear /				
da	es	Ragwort	jacobaea	1	20	2.	2.907784	sual.Juror	at	1	2	fertile	wet				
		Ragwort	Jucobucu	-	20	2	2.507704	3001.50101	Fix	-			WCC				
									ed								
Magn					24/1	В	53.215765		Qu		1						
oliopsi	Asteral	Common	Senecio		1/20	2.	3, -	///diner.sla	adr		m		Clear /				
da	es	Ragwort	jacobaea	1	20	2	2.9082773	te.voices	at	4	2	fertile	wet				
									Fix								
									ed								
Magn					24/1	В	53.213453		Qu		1						
oliopsi	Asteral	Common	Senecio		1/20	2.		///paying.b	adr		m		Clear /				
da	es	Ragwort	jacobaea	1	20	2	2.908595	eard.logs	at	8	2	fertile	wet				
								<u> </u>	Fix								
									ed								
Magn					24/1	В	53.216653		Qu		1			4			
oliopsi	Asteral	Creeping	Cirsium		1/20	2.	9, -	///Linen.Vi	adr		m	meado	Clear /	•			
da	es	Thistle	arvense	3	20	2	2.907784	sual.Juror	at	1	2	w	wet	С			
Magn					24/1		53.213398			Ν	Ν						
oliopsi	Asteral	Creeping	Cirsium		1/20	В	,-	///poet.stu	N/	/	/				Midda		
da	es	Thistle	arvense	1	20	5	2.907649	d.jukebox	А	Α	Α	wetland			у		
									Fix								
									ed								
Magn					24/1		53.213461		Qu		1						
oliopsi	Caryop		Rumex		1/20	В	1, -	///spring.b	adr		m		Clear /				
da	hyllales	Curled Dock	crispus	1	20	5	2.9082532	oats.pass	at	9	2	fertile	wet				
									Fix								
									ed								
Magn					24/1	В	53.216653		Qu		1						
oliopsi	Caryop		Rumex		1/20	2.	9, -	///Linen.Vi	adr		m		Clear /				
da	hyllales	Curled Dock	crispus	1	20	2	2.907784	sual.Juror	at	1	2	varied	wet				

									Fix								
									ed								
Magn					24/1		53.216422	///Intelligib	Qu		1						
oliopsi	Caryop		Rumex		1/20	В	38, -	le.Splash.Tr	adr		m	meado	Clear /				
da	hyllales	Curled Dock	crispus	4	20	5	2.9072400	im	at	2	2	w	wet				
									Fix								
									ed								
Magn					24/1	В	53.215765		Qu		1						
oliopsi		Orange	Impatiens		1/20	2.	3, -	///diner.sla	adr		m		Clear /				
da	Ericales	Balsam	capensis	1	20	2	2.9082773	te.voices	at	4	2	fertile	wet				
									Fix								
									ed								
Magn					24/1	В	53.215000		Qu		1			8			
oliopsi		Orange	Impatiens		1/20	2.	2, -	///vivid.det	adr		m		Clear /	0			
da	Ericales	Balsam	capensis	2	20	2	2.9085147	ail.email	at	7	2	fertile	wet	С			
									Fix								
					2.44	_	52 242 452		ed								
Magn		C	Constant In the		24/1	В	53.213453		Qu		1				N Children		
oliopsi	Lamiale	Common	Scrophulari		1/20	2.	,- 2.000505	///paying.b	adr	0	m 2		Clear /		Midda		
da	S	Figwort	a nodosa	2	20	2	2.908595	eard.logs	at	8	-	varied	wet		У		
									Fix								
Magn					24/1		53.215677		ed Qu		1						
oliopsi	Asteral	Common	Senecio		1/20	В	,-	///Hill.Deca	adr		m		Clear /				
da	es	Ragwort	jacobaea	1	20	5	, - 2.907667	y.Rider	at	5	2	fertile	wet				
uu		Magwort	Jucobucu	-	20		2.507007	y.Huci	Fix	5		Tertile	WCC				
									ed								
Magn					24/1		53.216422	///Intelligib	Qu		1	fertile					
oliopsi	Lamiale	Germander	Veronica		1/20	В	38, -	le.Splash.Tr	adr		m	and	Clear /				
da	S	Speedwell	chamaedrys	1	20	5	2.9072400	im	at	2	2	wetland	wet				
									Fix								
									ed								
Magn					24/1	В	53.216653		Qu		1						
oliopsi	Lamiale		Lycopus		1/20	2.	9, -	///Linen.Vi	adr		m		Clear /				
da	S	Gypsywort	europaeus	1	20	2	2.907784	sual.Juror	at	1	2	wetland	wet				

									Fix									
									ed									
Magn			Heracleum		24/1	В	53.215000		Qu		1	fertile						
oliopsi			sphondyliu		1/20	2.	2, -	///vivid.det	adr	_	m	and	Clear /					
da	Apiales	Hogweed	m	2	20	2	2.9085147	ail.email	at	7	2	wetland	wet					
									Fix									
					24/4	_	52 242452		ed			C. M.						
Magn			Heracleum		24/1	B	53.213453		Qu		1	fertile	Clear					
oliopsi	Anialos	Hogwood	sphondyliu	1	1/20 20	2. 2	, - 2.908595	///paying.b	adr at	0	m 2	and wetland	Clear /					
da	Apiales	Hogweed	m	1	20	2	2.908595	eard.logs	at Fix	8		wettand	wet					
									ed									
Magn			Heracleum		24/1		53.215677		Qu		1	fertile						
oliopsi			sphondyliu		1/20	В	,-	///Hill.Deca	adr		m	and	Clear /					
da	Apiales	Hogweed	m	1	20	5	2.907667	y.Rider	at	5	2	wetland	wet					
									Fix									
									ed									
Magn			Heracleum		24/1		53.215524	///encount	Qu		1	fertile						
oliopsi			sphondyliu		1/20	В	,-	er.snail.cou	adr		m	and	Clear /					
da	Apiales	Hogweed	m	1	20	5	2.907175	ple	at	6	2	wetland	wet					
									Fix									
									ed			6						
Magn			Heracleum		24/1	_	53.213461		Qu		1	fertile						
oliopsi	Anialos	Hogwood	sphondyliu	1	1/20 20	В 5	1, - 2.9082532	///spring.b	adr at	9	m 2	and wetland	Clear / wet					
da	Apiales	Hogweed	m	L	20		2.9062552	oats.pass	at Fix	9		wettand	wei					
									ed						1			
					24/1	В	53.215765		Qu		1				1			
Mam	Lagom	European	Oryctolagus		1/20	2.	3, -	///diner.sla	adr		m		Clear /		1			
malia	orpha	Rabbit	cuniculus	1	20	2	2.9082773	te.voices	at	4	2		wet		с			
									Fix									
									ed									
					27/1	В	53.216653		Qu		2			4				
Clitella	Haplot	Common	Lumbricus		1/20	2.	9, -	///linen.vis	adr		m			٥		Midda		
ta	axida	Earthworm	terrestris	4	20	2	2.907784	ual.juror	at	1	2		Cloudy	С		У		

									Fix								
									ed								
					27/1	В	53.216653		Qu		2		4				
Diplop	Polydes	Polydesmus			1/20	2.	9, -	///linen.vis	adr		m		o		Midda		
oda	mida	sp	Polydesmus	5	20	2	2.907784	ual.juror	at	1	2	Cloudy	С		у		
									Fix								
									ed								
	Stylom		Arion		27/1	В	53.216653		Qu		2		4			Juv	
Gastro	matop	Brown-	circumscript		1/20	2.	9, -	///linen.vis	adr		m		0		Midda	enil	
poda	hora	banded Arion	us	5	20	2	2.907784	ual.juror	at	1	2	Cloudy	С		у	е	
									Fix								
									ed					1			
	Stylom				27/1	В	53.216653		Qu		2		4	8			
Gastro	matop	Brown-	Сераеа		1/20	2.	9, -	///linen.vis	adr		m		0	0	Midda	Ad	
poda	hora	Lipped Snail	nemoralis	1	20	2	2.907784	ual.juror	at	1	2	Cloudy	С	С	У	ult	
									Fix								
					27/4	_	52.246652		ed					1		N	
Centre	Stylom	Chanalata			27/1	В	53.216653		Qu		2		4	8	N 4: al al a	Ne	
Gastro	matop	Chocolate	Anionantic	1	1/20	2. 2	9, -	///linen.vis	adr	1	m 2	Claudu		0	Midda	on	
poda	hora	Arion	Arion rufus	1	20	2	2.907784	ual.juror	at Fix	1		Cloudy	С	С	У	ate	
									ed								
	Stylom				27/1	В	53.216653		Qu		2		4				
Gastro	matop	White Lipped	Сераеа		1/20	2.	9, -	///linen.vis	adr		m		о 0		Midda	Ad	
poda	hora	Snail	hortensis	1	20	2	2.907784	ual.juror	at	1	2	Cloudy	с		v	ult	
						_			Fix						,		
									ed								
					27/1	В	53.216653		Qu		2		4				
Insect	Hymen				1/20	2.	9, -	///linen.vis	adr		m		0		Midda	Lar	
а	optera	Aphididae	Aphididae	3	20	2	2.907784	ual.juror	at	1	2	Cloudy	С		у	va	
									Fix								
									ed								
					27/1	В	53.216653		Qu		2		4				
Insect	Coleop				1/20	2.	9, -	///linen.vis	adr		m		0		Midda	Lar	
а	tera	Click Beetle	Agriotes	1	20	2	2.907784	ual.juror	at	1	2	Cloudy	C		У	va	

									Fix									
									ed									
					27/1	В	53.216653		Qu		2			4				
Liliops			Holacus		1/20	2.	9, -	///linen.vis	adr		m			4 0		Midda		
ida	Poales	Vorkshire Fog		1	20	2. 2	9, - 2.907784			1	2	wariad	Claudy	с				
	Poales	Yorkshire Fog	<u>lanatus</u>	1	20	<u> </u>	2.907784	ual.juror	at Fix	1		varied	Cloudy	C		у		
					27/4	_	52.246652		ed		2							
Magn					27/1	В	53.216653		Qu		2			4 。				
oliopsi	Lamiale	Common	Galeopsis		1/20	2.	9, -	///linen.vis	adr		m 2	6				Midda		
da	S	Hemp-Nettle	tetrahit	1	20	2	2.907784	ual.juror	at	1	2	fertile	Cloudy	С		У		ļ
									Fix									
									ed									
Magn					27/1	В	53.216653		Qu		2			4	4			
oliopsi	Asteral	Creeping	Cirsium		1/20	2.	9, -	///linen.vis	adr		m	meado		•	0	Midda		
da	es	Thistle	arvense	1	20	2	2.907784	ual.juror	at	1	2	W	Cloudy	С	С	у		
									Fix									
									ed									
Magn					27/1	В	53.216653		Qu		2			4				
oliopsi	Caryop		Rumex		1/20	2.	9, -	///linen.vis	adr		m			•		Midda		
da	hyllales	Curled Dock	crispus	1	20	2	2.907784	ual.juror	at	1	2	varied	Cloudy	С		у		
									Fix									
									ed									
Magn					27/1	В	53.216653		Qu		2			4				
oliopsi		Common	Potentilla		1/20	2.	9, -	///linen.vis	adr		m			•		Midda		
da	Rosales	Silverweed	anserina	1	20	2	2.907784	ual.juror	at	1	2	fertile	Cloudy	С		v		
									Fix				,					
									ed									
Magn					27/1	В	53.216653		Qu		2			4				
oliopsi	Lamiale		Lycopus	1	1/20	2.	9, -	///linen.vis	adr		m			•		Midda		
da	S	Gypsywort	europaeus	4	20	2	2.907784	ual.juror	at	1	2	wetland	Cloudy	С		v		
			Caropacas										<u></u>		1			
					27/1		53.212993			Ν	Ν				1			
Mam	Rodent		Myodes			В	,-	///flood.ph	N/	1	1				•			
		Bank Vole		1		5	2.908041			Á	Â				С			
Mam malia	Rodent ia	Bank Vole	Myodes glareolus	1	1/20 20		, - 2.908041	///flood.ph otos.game	N/ A	/ A	/ A							

					04/1	В	53.215833			Ν	Ν		Cloud	4				
Insect	Coleop	Cantharis	Cantharis		2/20	2.	,-	///tooth.tr	N/	/	/		and light	•		Morni	Gal	
а	tera	rufa	rufa	1	20	2	, 2.908056	unk.hurls	A A	Á	Á		rain	С		ng	1	
-					04/1		53.215630			N	N		Cloud	4				
Insect		Ceasar green	Lucilia		2/20	В	,-	///exams.it	N/	1	1		and light	0		Morni	Gal	
а	Diptera	bottle fly	caesar	1	20	5	2.907626	ems.areas	Á	Â	Â		rain	С		ng	1	
					04/1	В	53.216074			Ν	N		Cloud	4				
Insect		Circopotus			2/20	2.	,-	///crib.han	N/	/	/		and light	0		Morni	Gal	
а	Diptera	(Mosquito)		1	20	2	2.907550	gs.scouts	A	A	A		rain	С		ng	ls	
		-			04/1	В	53.215820			Ν	Ν		Cloud	4				
Insect		Circopotus			2/20	2.	, -	///yard.sca	N/	/	/		and light	٥		Morni	Gal	
а	Diptera	(Mosquito)		1	20	2	2.097737	r.coach	А	А	А		rain	C		ng	1	
Magn					04/1	J2	53.213633			Ν	Ν		Cloud	4				
oliopsi			Anthriscus		2/20	.3	,-	///vibe.fou	N/	/	/		and light	٥		Morni		
da	Apiales	Cow Parsley	sylvestris	7	20	.1	2.909123	nd.skills	А	Α	А	fertile	rain	С		ng		
Magn					04/1	J2	53.213667			Ν	Ν		Cloud	4				
oliopsi			Anthriscus		2/20	.3	,-	///dollar.wi	N/	/	/		and light	0		Morni		
da	Apiales	Cow Parsley	sylvestris	4	20	.1	2.909124	ns.trendy	А	А	А	fertile	rain	С		ng		
Magn					04/1	В	53.216223			Ν	Ν		Cloud	4				
oliopsi			Anthriscus		2/20	2.	,-	///slim.hon	N/	/	/		and light	•		Morni	Sap	
da	Apiales	Cow Parsley	sylvestris	1	20	2	2.907527	est.comical	А	Α	А	fertile	rain	С		ng	ling	
Magn					04/1	В	53.216665			Ν	Ν		Cloud	4				
oliopsi	Asteral	Creeping	Cirsium		2/20	2.	,-	///bricks.so	N/	/	/		and light	0		Morni		
da	es	Thistle	arvense	2	20	2	2.907076	ck.goat	A	А	А	fertile	rain	C		ng		
Magn					04/1	В	53.216662	///sentenc		Ν	N		Cloud	4				
oliopsi	Asteral	Creeping	Cirsium		2/20	2.	1, -	es.bugs.dai	N/	/	1		and light	°		Morni		
da	es	Thistle	arvense	1	20	2	2.9070348	ry	A	Α	A	fertile	rain	С		ng		
Magn					04/1	В	53.216624			N	N		Cloud	4				
oliopsi	Asteral	Creeping	Cirsium		2/20	2.	0, -	///cares.sal	N/	/	/		and light	°		Morni		
da	es	Thistle	arvense	1	20	2	2.9070231	ad.race	A	Α	Α	fertile	rain	C		ng		
Magn					04/1		53.216496			N	N		Cloud	4	6			
oliopsi	Asteral	Creeping	Cirsium		2/20	В	7, -	///stores.z	N/	/	/		and light	Ů	0	Morni		
da	es	Thistle	arvense	2	20	5	2.9070992	ones.forgot	A	Α	Α	fertile	rain	C	C	ng		

Magn					04/1		53.216378			N	Ν		Cloud	4	9			
oliopsi	Asteral	Creeping	Cirsium		2/20	В	8, -	///woven.r	N/	1	1		and light	•	0	Morni		
da	es	Thistle	arvense	7	20	5	2.9069822	elate.acting	A	A	A	fertile	rain	С	С	ng		
Magn					04/1		53.216285	<u> </u>		N	Ν		Cloud	4	9	Ū		
oliopsi	Asteral	Creeping	Cirsium		2/20	В	5, -	///hints.kn	N/	/	/		and light	o	o	Morni		
da	es	Thistle	arvense	4	20	5	2.9071381	ots.making	А	Α	Α	fertile	rain	С	С	ng		
Magn					04/1		53.216439			Ν	Ν		Cloud	4	9			
oliopsi	Asteral	Creeping	Cirsium		2/20	В	1, -	///item.lea	N/	1	1		and light	0	0	Morni		
da	es	Thistle	arvense	4	20	5	2.9073506	der.alien	А	Α	Α	fertile	rain	С	С	ng		
Magn					04/1		53.215987			Ν	Ν		Cloud	4	9			
oliopsi	Asteral	Creeping	Cirsium	2	2/20	В	,-	///spicy.tea	N/	/	/		and light	0	0	Morni	Sap	
da	es	Thistle	arvense	2	20	5	2.907306	ch.itself	А	Α	Α	fertile	rain	С	С	ng	ling	
Magn					04/1		53.215630			Ν	Ν		Cloud	4	9			
oliopsi	Asteral	Creeping	Cirsium		2/20	В	,-	///exams.it	N/	/	/		and light	0	0	Morni		
da	es	Thistle	arvense	2	20	5	2.907626	ems.areas	А	Α	Α	fertile	rain	С	С	ng		
Magn					04/1	В	53.216637			Ν	Ν		Cloud	4	8			
oliopsi	Asteral	Creeping	Cirsium		2/20	2.	8, -	///brush.je	N/	/	/		and light	0	0	Morni		
da	es	Thistle	arvense	1	20	2	2.9069912	ts.potato	А	Α	Α	fertile	rain	С	С	ng		
Magn					04/1	В	53.216495			Ν	Ν		Cloud	4	8			
oliopsi	Asteral	Creeping	Cirsium		2/20	2.	5, -	///chairs.tr	N/	/	/		and light	0	0	Morni	Sap	
da	es	Thistle	arvense	3	20	2	2.9075836	ucks.belly	А	Α	Α	fertile	rain	С	С	ng	ling	
Magn					04/1	В	53.216193			Ν	Ν		Cloud	4	8			
oliopsi	Asteral	Creeping	Cirsium	1	2/20	2.	7, -	///bubble.h	N/	/	/		and light	0	0	Morni	Sap	
da	es	Thistle	arvense	2	20	2	2.9076135	ood.jokes	A	Α	Α	fertile	rain	C	С	ng	ling	
Magn					04/1	В	53.216257			N	N		Cloud	4	8			
oliopsi	Asteral	Creeping	Cirsium		2/20	2.	,-	///stored.	N/	/	/		and light	Ô	Ô	Morni	Sap	
da	es	Thistle	arvense	3	20	2	2.907688	milk.riders	A	Α	Α	fertile	rain	C	С	ng	ling	
					04/1		52.216280						Cloud		1			
Magn	Actorel	Creasing	Circium		04/1	B	53.216380	1115 and and	NI /	N	N		Cloud	4	1	D.4 o mai	Con	
oliopsi	Asteral	Creeping	Cirsium	2	2/20	2.	,-	///fuel.eve	N/			fortilo	and light		•	Morni	Sap	
da	es	Thistle	arvense	2	20	2	2.907510	nt.affair	A	A	A	fertile	rain	C	С 1	ng	ling	
Magn					04/1	В	53.216167			N	N		Cloud	4				
oliopsi	Asteral	Creeping	Cirsium		2/20	2.		///author.t	N/		1		and light	•	↓ ↓ ₀	Morni		
da	es	Thistle	arvense	3	2/20	2.	, 2.907358	rash.armed	A	A		fertile	rain	С	C	ng		
uu	0	inistic	urvense	1.2	20	2	2.307330	rasmanneu	A				Tan			יי 8יי		

															1			
Magn					04/1	В	53.216074			Ν	Ν		Cloud	4	1			
oliopsi	Asteral	Creeping	Cirsium		2/20	2.	,-	///crib.han	N/	/	1		and light	۰	•	Morni		
da	es	Thistle	arvense	1	20	2	2.907550	gs.scouts	А	Α	Α	fertile	rain	С	С	ng		
															1			
Magn					04/1	В	53.216039			Ν	Ν		Cloud	4	1			
oliopsi	Asteral	Creeping	Cirsium		2/20	2.	,-	///envy.out	N/	/	/		and light	٥	•	Morni	Sap	
da	es	Thistle	arvense	2	20	2	2.907705	fit.brief	А	Α	Α	fertile	rain	С	С	ng	ling	
Magn					04/1	В	53.215870			Ν	Ν		Cloud	4				
oliopsi	Asteral	Creeping	Cirsium		2/20	2.	,-	///spicy.ma	N/	/	/		and light	٥		Morni		
da	es	Thistle	arvense	1	20	2	2.907625	king.tested	А	Α	Α	fertile	rain	С		ng		
Magn					04/1	В	53.215820			Ν	Ν		Cloud	4				
oliopsi	Asteral	Creeping	Cirsium		2/20	2.	,-	///yard.sca	N/	/	1		and light	•		Morni	Sap	
da	es	Thistle	arvense	5	20	2	2.907737	r.coach	А	Α	Α	fertile	rain	С		ng	ling	
Magn					04/1	В	53.215728			Ν	Ν		Cloud	4				
oliopsi	Asteral	Creeping	Cirsium		2/20	2.	,-	///item.pro	N/	/	1		and light	٥		Morni	Sap	
da	es	Thistle	arvense	2	20	2	2.907732	ps.doll	А	Α	Α	fertile	rain	С		ng	ling	
Magn					04/1	В	53.215658			Ν	Ν		Cloud	4				
oliopsi	Asteral	Creeping	Cirsium		2/20	2.	,-	///oven.call	N/	/	1		and light	۰		Morni	Sap	
da	es	Thistle	arvense	4	20	2	2.907799	.lock	А	Α	Α	fertile	rain	С		ng	ling	
Magn					04/1	В	53.215575			Ν	Ν		Cloud	4				
oliopsi	Asteral	Creeping	Cirsium		2/20	2.	,-	///burst.abl	N/	/	1		and light	۰		Morni	Sap	
da	es	Thistle	arvense	1	20	2	2.907794	e.relay	А	Α	Α	fertile	rain	С		ng	ling	
Magn		European	Complex		04/1	В	53.215046			Ν	Ν		Cloud	4				
oliopsi		Bramble	Rubus		2/20	2.	,-	///themes.	N/	1	1		and light	٥		Morni		
da	Rosales	Complex	fruticosus	5	20	2	2.908068	work.bucks	А	Α	Α	wetland	rain	С		ng		
Magn		European	Complex		04/1	В	53.215032			Ν	Ν		Cloud	4				
oliopsi		Bramble	Rubus		2/20	2.	,-	///grit.call.l	N/	/	1		and light	۰		Morni		
da	Rosales	Complex	fruticosus	1	20	2	2.908410	egend	А	Α	Α	wetland	rain	С		ng		
Magn		European	Complex		04/1	В	53.214886	///heads.al		Ν	Ν		Cloud	4				
oliopsi		Bramble	Rubus		2/20	2.	,-	most.rene	N/	1	1		and light	۰		Morni		
da	Rosales	Complex	fruticosus	2	20	2	2.908473	w	А	Α	Α	wetland	rain	С		ng		
Magn			Galium		04/1	В	53.214841			Ν	Ν		Cloud	4				
oliopsi	Gentia				2/20	2.	,-	///quench.j	N/	1	1		and light	۰		Morni		
da	nales	Fen Bedstraw	uliginosum	5	20	2	2.908619	acket.spell	А	Α	Α	wetland	rain	С		ng		

Magn					04/1		53.214320			N	N		Cloud	4				
oliopsi	Lamiale	Germander	Veronica	2	2/20	В	,-	///slam.puz	N/	1	1		and light	•		Morni		
da	S	Speedwell	chamaedrys	7	20	5	2.907992	zle.create	A	A	A	wetland	rain	С		ng		
Magn					04/1		53.213713			Ν	Ν		Cloud	4				
oliopsi	Lamiale	Germander	Veronica	4	2/20	В	,-	///icons.an	N/	/	1		and light	۰		Morni		
da	S	Speedwell	chamaedrys	7	20	5	2.908161	kle.boat	A	A	A	wetland	rain	С		ng		
Magn					04/1	J2	53.213067	///taking.w		Ν	Ν		Cloud	4				
oliopsi					2/20	.3	,-	orker.riche	N/	/	1		and light	0		Morni		
da	Fabales	Hairy Tare	Vicia hirsuta	1	20	.1	2.909315	S	А	Α	Α	hedge	rain	С		ng		
Magn					04/1		53.216296	///catch.co		Ν	Ν		Cloud	4				
oliopsi		Orange	Impatiens		2/20	В	1, -	uches.pipe	N/	/	1		and light	۰		Morni		
da	Ericales	Balsam	capensis	3	20	5	2.9071810	S	А	А	Α		rain	С		ng		
Magn					04/1	J2	53.213203			Ν	Ν		Cloud	4				
oliopsi		Orange	Impatiens		2/20	.3	,-	///text.ton	N/	/	/		and light	٥		Morni		
da	Ericales	Balsam	capensis	2	20	.1	2.909283	e.bugs	А	Α	Α	hedge	rain	С		ng		
															1			
Magn			_		04/1		53.216273			N	N				1			
oliopsi			Angelica		2/20	В	,-	///frogs.silv	N/	/	/				•			
da	Apiales	Wild Angelica	sylvestris	2	20	5	2.907202	er.point	A	Α	Α	hedge			С			
Magn		European	Complex		04/1	В	53.214847			N	N		Cloud	4				
oliopsi	_	Bramble	Rubus		2/20	2.	,-	///wink.gra	N/	/	/		and light	•		Morni		
da	Rosales	Complex	fruticosus	1	20	2	2.908509	ce.bikes	A	Α	A	wetland	rain	C		ng		
Magn			Heracleum		04/1	J2	53.213583			N	N		Cloud	4	9			
oliopsi			sphondyliu		2/20	.3	,-	///stage.fu	N/	/	/		and light	•	0	Morni		
da	Apiales	Hogweed	m	1	20	.1	2.909131	zzy.alone	A	A	A	hedge	rain	C	C	ng		
Magn			Heracleum		04/1	В	53.215112			N	N		Cloud	4	7 °			
oliopsi			sphondyliu		2/20	2.	,-	///late.map	N/	/	/		and light			Morni		
da	Apiales	Hogweed	т	6	20	2	2.908475	le.tent	A	Α	Α	hedge	rain	C	С	ng		
									Fix									
		Common			07/6		50.046055		ed									
A		Candy-	_		07/1		53.216025		Qu		2		Complet	3				
Arach	Aranea	Striped	Enoplognat		2/20	В	,-	///gender.c	adr		m 2		e cloud			Morni		
nida	е	Spider	ha ovata	1	20	5	2.907805	akes.rival	at	3	2		cover	C		ng		

Arach nida	Aranea	European Nursery Web Spider	Pisaura mirabilis	3	07/1 2/20 20	B 5	53.216025 , - 2.907805	///gender.c akes.rival	Fix ed Qu adr at	3	2 m 2	Complet e cloud cover	3 ° C	Morni ng		
Aves	Passeri formes	European Robin	Erithacus	1	07/1 2/20 20	B 2. 2	53.215765 3, - 2.9082773	///diner.sla te.voices	Fix ed Qu adr at	4	2 m 2	Complet e cloud cover	3 ° C	Morni		
Bryop sida	Hypnal es	Rough- stalked Feather Moss	Brachytheci um rutabulum	6	07/1 2/20 20	B 5	53.216423 8, - 2.9072400	///intelligib le.splash.tri m	Fix ed Qu adr at	2	2 m 2	Complet e cloud cover	3 ° C	Morni		
Bryop sida	Hypnal es	Rough- stalked Feather Moss	Brachytheci um rutabulum	1	07/1 2/20 20	B 5	53.216025 , - 2.907805	///gender.c akes.rival	Fix ed Qu adr at	3	2 m 2	Complet e cloud cover	3 ° C	Morni		
Clitella ta	Haplot axida	Common Earthworm	Lumbricus terrestris	2	07/1 2/20 20	B 2. 2	53.215765 3, - 2.9082773	///diner.sla te.voices	Fix ed Qu adr at	4	2 m 2	Complet e cloud cover	3 ° C	Morni		
Clitella ta	Haplot axida	Common Earthworm	Lumbricus terrestris	5	07/1 2/20 20	B 5	53.216025 , - 2.907805	///gender.c akes.rival	Fix ed Qu adr at	3	2 m 2	Complet e cloud cover	3 ° C	Morni		
Diplop oda	Julida	Cylindroiulus caeruleocinct us	Cylindroiulu s caeruleocin ctus	2	07/1 2/20 20	B 5	53.216025 , - 2.907805	///gender.c akes.rival	Fix ed Qu adr at	3	2 m 2	Complet e cloud cover	3 ° C	Morni		

									Fix								
									ed								
					07/1		53.216025		Qu		2	Complet	3				
Diplop	Polydes	Polydesmus			2/20	В	,-	///gender.c	adr		m	e cloud	•		Morni		
oda	mida	sp	Polydesmus	3	2/20	5	, 2.907805	akes.rival	at	3	2	cover	с		ng		
000	inida	<u> </u>	Toryacsinas		20	5	2.507805	arcs.rivar	Fix	5					118		
									ed								
					07/1	В	53.215765		Qu		2	Complet	3				
Diplop	Polydes	Polydesmus			2/20	2.	3, -	///diner.sla	adr		m	e cloud	0		Morni		
oda	mida	sp	Polydesmus	1	20	2	2.9082773	te.voices	at	4	2	cover	С		ng		
				_		_			Fix	-							
									ed								
	Stylom		Arion		07/1	В	53.215765		Qu		2	Complet	3				
Gastro	matop	Brown-	circumscript		2/20	2.	3, -	///diner.sla	adr		m	e cloud	0		Morni		
poda	hora	banded Arion	us	1	20	2	2.9082773	te.voices	at	4	2	cover	С		ng		
									Fix						Ŭ		
									ed								
	Stylom				07/1		53.216025		Qu		2	Complet	3				
Gastro	matop	Brown-	Сераеа		2/20	В	,-	///gender.c	adr		m	e cloud	o		Morni		
poda	hora	Lipped Snail	nemoralis	1	20	5	2.907805	akes.rival	at	3	2	cover	С		ng		
									Fix								
									ed								
	Stylom				07/1	В	53.215765		Qu		2	Complet	3				
Gastro	matop		Monacha		2/20	2.	3, -	///diner.sla	adr		m	e cloud	0		Morni		
poda	hora	Kentish Snail	cantiana	2	20	2	2.9082773	te.voices	at	4	2	cover	С		ng		
									Fix								
									ed								
	Stylom				07/1		53.216025		Qu		2	Complet	3	7			
Gastro	matop		Monacha		2/20	В	,-	///gender.c	adr		m	e cloud	0	0	Morni		
poda	hora	Kentish Snail	cantiana	1	20	5	2.907805	akes.rival	at	3	2	cover	С	С	ng		
									Fix								
									ed								
	Stylom				07/1		53.216025		Qu		2	Complet	3	8			
Gastro	matop		Deroceras		2/20	B	,-	///gender.c	adr		m 2	e cloud		°	Morni		
poda	hora	Milk Slug	reticulatum	1	20	5	2.907805	akes.rival	at	3	2	cover	C	C	ng		

									Fix								
									ed								
	Stylom				07/1	В	53.215765		Qu		2		Complet	3			
Gastro	matop		Deroceras		2/20	2.	3, -	///diner.sla	adr		m		e cloud	•	Morni		
poda	hora	Milk Slug	reticulatum	1	20	2	2.9082773	te.voices	at	4	2		cover	C	ng		
									Fix								
	Chulom				07/1		53.216025		ed		2		Complet	2			
Gastro	Stylom matop	White Lipped	Сераеа		07/1 2/20	В	,-	///gender.c	Qu adr		2 m		Complet e cloud	3	Morni		
poda	hora	Snail	hortensis	1	2/20	5	, - 2.907805	akes.rival	at	3	2		cover	с	ng		
pouu	nord	Shah	1101 (2115)5	-		<u> </u>	2.507005	unces.invui	Fix	5					118		
									ed								
	Stylom				07/1	В	53.215765		Qu		2		Complet	3			
Gastro	matop	White Lipped	Сераеа		2/20	2.	3, -	///diner.sla	adr		m		e cloud	۰	Morni		
poda	hora	Snail	hortensis	2	20	2	2.9082773	te.voices	at	4	2		cover	С	ng		
									Fix								
					07/4				ed				.				
lineset	Coloon				07/1	-	53.216025	///	Qu		2		Complet e cloud	3			
Insect a	Coleop tera	Click Beetle	Agriotes	1	2/20 20	В 5	, - 2.907805	///gender.c akes.rival	adr at	3	m 2		cover	с	Morni ng		
a	tera	Click Deetle	Agriotes	-	20	5	2.307803	akes.iivai	Fix	5			COVEI		пg		
									ed								
					07/1		53.216025		Qu		2		Complet	3			
Insect	Hymen	Common	Bombus	2	2/20	В	,-	///gender.c	adr		m		e cloud	0	Morni		
а	optera	Carder Bee	pascuorum	9	20	5	2.907805	akes.rival	at	3	2		cover	С	ng		
									Fix								
									ed								
1.11			Desets		07/1	-	53.216423	///intelligib	Qu		2		Complet	3 °			
Liliops ida	Poales	Cock's-foot	Dactylis Glomerata	2	2/20 20	В 5	8, - 2.9072400	le.splash.tri	adr	2	m 2	wetland	e cloud	C	Morni		
lua	Poales		Giomerata	2	20	5	2.9072400	m	at Fix	Z		wetland	cover	C	ng		
									ed								
					07/1		53.216423	///intelligib	Qu		2		Complet	3			
Liliops			Juncus	2	2/20	В	8, -	le.splash.tri	adr		m		e cloud	0	Morni		
ida	Poales	Soft Rush	effusus	1	20	5	2.9072400	m	at	2	2	wetland	cover	С	ng		

									Fix									
									ed									
					07/1		53.216025		Qu		2		Complet	3	6			
Liliops			Holacus		2/20	В	,-	///gender.c	adr		m		e cloud	٥	0	Morni		
ida	Poales	Yorkshire Fog	lanatus	1	20	5	2.907805	akes.rival	at	3	2	varied	cover	С	С	ng		
									Fix									
									ed						-			
					07/1	В	53.215765		Qu		2		Complet	3	1			
Liliops			Holacus		2/20	2.	3, -	///diner.sla	adr		m		e cloud	٥	0	Morni		
ida	Poales	Yorkshire Fog	lanatus	1	20	2	2.9082773	te.voices	at	4	2	varied	cover	С	С	ng		

Acknowledgements

I would first and foremostly like to thank my thesis supervisor Dr Christian Dunn who without him taking a chance on me and providing me with this incredible opportunity I would not be here.

I would like to thank my Partner, Emily and my Mum and Dad who have had to endure my obsession with wildlife and wetlands. Especially Emily who has also had endure the muddy and wet clothes and boots.

Finally, I would like to thank the friends of the Countess of Chester Country Park who have supported me through out this journey and facilitated my research, with a special mention to Andy and Morag Scargill for all their support and the odd bacon butty.