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Abstract 33 

Point counts (PCs) are widely used in biodiversity surveys, but despite numerous advantages, 34 

simple PCs suffer from several problems: detectability, and therefore abundance, is unknown; 35 

systematic spatiotemporal variation in detectability yields biased inferences, and unknown survey 36 

area prevents formal density estimation and scaling-up to the landscape level. We introduce 37 

integrated distance sampling (IDS) models that combine distance sampling (DS) with simple PC or 38 

detection/nondetection (DND) data to capitalize on the strengths and mitigate the weaknesses of 39 

each data type. Key to IDS models is the view of simple PC and DND data as aggregations of latent 40 

DS surveys that observe the same underlying density process. This enables estimation of separate 41 

detection functions, along with distinct covariate effects, for all data types. Additional information 42 

from repeat or time-removal surveys, or variable survey duration, enables separate estimation of the 43 

availability and perceptibility components of detectability with DS and PC data. IDS models 44 

reconcile spatial and temporal mismatches among data sets and solve the above-mentioned 45 

problems of simple PC and DND data. To fit IDS models, we provide JAGS code and the new 46 

IDS() function in R package unmarked. Extant citizen-science data generally lack the 47 

information necessary to adjustment for detection biases, but IDS models address this shortcoming, 48 

thus greatly extending the utility and reach of these data. In addition, they enable formal density 49 

estimation in hybrid designs, which efficiently combine distance sampling with distance-free, point-50 

based PC or DND surveys. We believe that IDS models have considerable scope in ecology, 51 

management, and monitoring. 52 

 53 

Introduction 54 

Point count methods are among the most widely used and longest-standing protocols in wildlife 55 

surveys worldwide (Rosenstock et al. 2002; Darras et al. 2021). Simple point counts (PC) are brief 56 

surveys in which a stationary observer counts all individuals of some species (single species to 57 

entire communities) detected either without distance constraints or within a predefined distance 58 
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from the observer. Point count methods are logistically uncomplicated and are ubiquitous in 59 

biodiversity surveys worldwide, e.g., in the North American Breeding Bird Survey/BBS (Sauer et 60 

al. 2017), and many European national BBS or bird atlas schemes (Balmer et al. 2013). In addition, 61 

a wide range of what in essence can be conceptualized as point count methods, albeit varying from 62 

highly standardized to essentially design-free, is at the core of rapidly growing citizen-science 63 

projects such as eBird (Sullivan et al. 2009). 64 

Despite the prevalence of simple point counts, their simplicity is not without drawbacks; 65 

e.g., it is not possible to estimate true abundance or occupancy if visits to points are unreplicated 66 

(Stoudt et al. 2023). In addition, PC data are non-spatial in the sense that the area from which the 67 

detected animals are drawn is usually unknown. This prevents spatial extrapolation for rigorous 68 

estimation of regional population sizes. Similarly, integrated analysis of data from different 69 

schemes is hampered due to commonly occurring spatial mismatches. Finally, variable survey 70 

duration is very common and creates a temporal mismatch in the data thus different data points do 71 

not correspond to the same survey effort (Pacifici et al. 2019). Both greatly complicate joint 72 

analyses from multiple survey schemes that use point count methods. 73 

In planned surveys, additional information is often collected during PC surveys that permits 74 

estimation of detection probability (Nichols et al. 2009). Such extra information includes replicated 75 

counts (Royle 2004), double-observer surveys (Nichols et al. 2000), removal counts (Wyatt 2002; 76 

Dorazio et al. 2005), distance information (Marques et al. 2007; Buckland et al. 2015), or locational 77 

information from recognizable individuals which enables the fitting of spatial capture-recapture 78 

(SCR) models (Borchers & Efford 2008; Royle et al. 2014). These survey protocols permit 79 

estimation of abundance, and thus assessment of status and trends free from any bias produced by 80 

imperfect detection and by unmodelled temporal or spatial patterns in detectability (Kéry & Royle 81 

2016, 2021). While these methods produce detectability-adjusted indices of abundance, only 82 

estimates from SCR and DS are area-explicit. 83 
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Even if DS or SCR data are available, it is not clear at present how they should be used 84 

alongside, or combined with, data from simple PCs available from national BBS or bird atlas 85 

schemes. For instance, a major challenge in the joint modeling of such data types is how to address 86 

spatial or temporal mismatches (Pacifici et al. 2019); these arise when effective sampling areas are 87 

unknown and vary, and when survey durations differ (Solymos et al. 2013). Thus, it would be 88 

desirable to have formal methods for combining these different data types that build on their 89 

complementary strengths, e.g., detectability estimation, trained observers vs. large sample size, 90 

geographic breadth, etc. 91 

Here, we introduce integrated distance sampling (IDS) models that permit the combination 92 

of data from DS, simple PC, and detection/nondetection (DND) surveys. Our integrated model is 93 

based on an underlying hierarchical distance sampling model (Royle et al. 2004; Kéry & Royle 94 

2016: chapter 8) for all three data types. We conceptualize data from all three survey methods as the 95 

outcome from a (possibly latent) distance sampling protocol, i.e., where detection probability is 96 

assumed to be a function of distance from the observer. This enables us to estimate separate 97 

detection functions for each data set, which automatically reconciles any spatial mismatch among 98 

the data types and surveys. Temporal mismatches, i.e., variable survey duration, in PC data can be 99 

addressed by including an availability process in the model, which is informed by extra data such as 100 

variable survey duration, or by multi-observer, replicate or time-removal surveys (Borchers et al. 101 

1998, Diefenbach et al. 2007, Solymos et al. 2013; Amundson et al. 2014). These extra data allow 102 

for separation of the availability and perceptibility components of detection probability (Marsh & 103 

Sinclair 1989; Nichols et al. 2009, Hostetter et al. 2019, Péron & Garel 2019). 104 

Key to our IDS models is the view of PC and DND data as aggregations, or summaries, of 105 

latent DS survey data, with identical density, and possibly availability, processes as regular DS 106 

surveys. Hence, we view PC and DND data types as DS counts where distance information is 107 

unavailable. As we will show, the key assumption of a shared density and availability process 108 

permits estimation of separate detection functions, along with different parameters linking these 109 
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functions to covariates, for all three data types. Estimation of separate detection functions, when 110 

needed, can accommodate any systematic differences between survey schemes. Combining PC and 111 

DND data with the more information-rich DS data enables estimation of detection probability and 112 

makes the resulting abundance estimates area-explicit: effective survey areas for PC and DND 113 

surveys become estimable, and population density is estimated with improved precision. Thus, IDS 114 

models can reconcile all discrepancies, including spatial and temporal mismatches, among these 115 

extremely widespread data types. 116 

In this article, we begin by formally describing IDS models. We then use simulation to 117 

demonstrate identifiability of our model when separate detection functions are estimated for each 118 

data type, including separate parameters for detection function covariates. Next, we explore the 119 

effects of adding variable amounts of the more information-rich but "expensive" DS surveys to a 120 

larger sample of the less information-rich but "cheaper" PC data. Following that, for a model 121 

combining DS and PC data, we demonstrate the identifiability of availability in addition to 122 

perceptibility, provided that surveys vary in duration; this is one of the types of extra information 123 

which enable availability to be estimated separately from perceptibility (e.g., Solymos et al. 2013). 124 

Finally, we showcase IDS models with the Oregon 2020 Project (Robinson et al. 2020) as a case 125 

study. As part of the case study, we demonstrate the ability of IDS models to allow for different 126 

magnitudes of heterogeneity in the detection functions estimated for different portions of the data 127 

(Oedekoven et al. 2015). Such accommodation of intricate, survey-specific features of the 128 

observation process may be particularly important when reconciling data from heterogeneous 129 

survey protocols in a single integrated model. 130 

We have implemented a range of IDS models in the new fitting function IDS() in the R 131 

package unmarked (Fiske & Chandler 2011, Kellner et al. 2023), to permit user-friendly model 132 

fitting by maximum likelihood, and we provide BUGS code for Bayesian inference using JAGS 133 

(Plummer 2003). We believe that IDS models have a large scope of application for exploiting PC 134 
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and DND data in a more rigorous and synthetic manner, and to obtain less biased and larger-scale 135 

inferences about abundance and density, particularly for large citizen-science data sets. 136 

 137 

Integrated Distance Sampling (IDS) models 138 

We develop joint likelihoods, i.e., integrated models (Besbeas et al. 2002; Miller et al. 2019; Kéry 139 

& Royle 2021: chapter 10; Schaub & Kéry 2022), for the following data types, which we assume to 140 

observe the same density and availability processes. We note that i  indexes different sites across 141 

data types. Our current models assume closure and the absence of any temporal replicates at a site, 142 

but relaxation of both assumptions will be the subject of future work. 143 

(1) Distance-sampling (DS) data 
,

ds

i jy , possibly with truncation distance ds

ib  and survey duration ds

it , 144 

where j indexes J distance classes, and where ,. ,

1

J
ds ds

i i j

j

y y
=

=  denotes the total count per site. 145 

(2) Simple point counts (PC) pc

iy  with duration pc

it , with or without a truncation distance pc

ib , as 146 

produced by many national BBS or bird atlas schemes. 147 

(3) Detection/nondetection (DND) data dnd

iy , indicating the observed presence or absence of a 148 

species during a point-location survey of duration dnd

it  out to an optional truncation distance dnd

ib149 

, as they are similarly produced by countless biological surveys. 150 

For joint inference about density, first, for the DS data we adopt a hierarchical distance sampling 151 

(HDS) model (Royle et al. 2004) represented by ~ ( )i i iN Poisson A  and 152 

,.~ ( , )ds

i i i iy Binomial N p . Completing the HDS model, the site-specific vector of distance-class 153 

counts has a multinomial distribution with cell probabilities computed by integrating the distance 154 

function over the prescribed intervals (see Kéry and Royle 2021). 
iN  and 

,.iy  are, respectively, the 155 

latent abundance and observed total count at site i , with survey area 
iA  and density 

i , while 156 

availability ( ) and perceptibility ( dsp ) are the two components of detection probability (Marsh & 157 

Sinclair 1989; Nichols et al. 2009). Perceptibility will primarily be a function of distance and is 158 
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estimated from distance data by integrating out to distance 
ib  a suitable detection function such as a 159 

half-normal with scale parameter  . Truncation distance 
ib  defines the survey area, which for a 160 

point count survey with perfect detection is 2

i iA b= . This is a key advantage of DS methods: that it 161 

associates 
iN  with a well-defined area. It makes abundance estimates in a DS protocol area-explicit, 162 

in contrast to most abundance estimation protocols other than SCR (Borchers & Efford 2008; Royle 163 

et al. 2014). For songbirds, the availability probability   will be mainly a function of singing rates 164 

(Solymos et al. 2013), which cannot be estimated from distance data alone. Hence, conventional 165 

distance sampling requires either the assumption of perfect detection at distance 0 or else 166 

acceptance that inferences will be restricted to the available part of a population only (Buckland et 167 

al. 2015). However, availability becomes estimable in a DS model if certain extra information is 168 

collected, e.g., from multiple observers (Borchers et al. 1998), replicated surveys (Chandler et al. 169 

2011), time-removal (Farnsworth et al. 2002), or from variable survey duration, as we will show. 170 

Second, for the PC data we adopt a variant of the binomial N-mixture model (Royle 2004), 171 

represented by ~ ( )pc

i i iN Poisson A   and ~ ( , )pc

i i i iy Binomial N p . Simple PCs are neither area-172 

explicit nor can detection probability be estimated without temporal replication (Stoudt et al. 2023). 173 

This precludes estimation of survey area 
pcA , availability pc , and perceptibility pcp . However, 174 

we show how use of PC data alongside regular DS data in an IDS model renders estimable both 175 

pcA  and pcp , again via the estimation of the parameters of a suitable detection function. 176 

Conceptualizing simple PC data as the outcome from latent DS surveys lets us estimate separate 177 

detection functions, along with distinct effects of covariates, for both DS and PC data when they are 178 

used as part of an IDS model. Integration of these detection functions over unlimited distance or out 179 

to some chosen truncation distance yields the average detection probability 
pc

ip  for a PC survey at 180 

site i  and moreover defines survey area 
pcA . This lets PC surveys contribute information towards 181 

estimation of density  . This model represents a complete, model-based reconciliation of the 182 

spatial mismatch between DS and PC data. In addition, variable survey duration pct  or other extra 183 
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information mentioned above may render estimable availability   and thus additionally reconciles 184 

temporal mismatches among DS and PC surveys as well. 185 

Third, for DND data we adopt a variant of the Royle-Nichols (2003) model. Here, the 186 

observed DND data are assumed to follow a Bernoulli distribution with a success probability that 187 

depends on both local abundance and parameters of the detection process: 188 

~ (1 (1 ) )iNdnd

i iy Bernoulli p− − , where 
iy  denotes a binary DND datum at site i  and the other 189 

quantities are analogous to the above definitions. As for the PC data, single-visit DND data without 190 

any extra information won't normally permit parameter estimation under this model, but we will 191 

show how using DND data alongside DS data as part of an IDS model will render identifiable 192 

survey area dnd

iA  and detection probability dnd

ip . As for an IDS model with PC data the observation 193 

model for DND data can be adjusted for imperfect availability by assuming for the DND datum at 194 

each site i  1 2| , ,..., ~ (1 ( (1 )))
i

i

N dnd

i N p i jj
y p p p Bernoulli E p− − , where 

pE  denotes the 195 

expectation and j  is an index for the 1... ij N=  individuals present. When detection of individuals 196 

is independent, this simplifies to ~ (1 (1 ) )iNdnd dnd

i i iy Bernoulli p− − . However, we have found 197 

availability estimates in a model with DND data to be extremely variable to the extent of being 198 

useless (unpublished analyses). This needs further study, but for now we include in the IDS models 199 

in our paper either DND data or estimation of availability, but currently not both at the same time. 200 

Likewise, the unmarked function IDS() does not allow estimation of availability in an IDS 201 

model that includes DND data. 202 

Our current IDS models always require that some DS data are available and they assume 203 

population closure and that all data types observe identical abundance and availability processes. 204 

Hence, abundance and, if modelled explicitly (for DS and PC data), availability parameters are 205 

shared in a joint likelihood, while detection parameters can be either shared or made specific to 206 

each data type. We will show that this enables IDS models to obtain separate intercept and slope 207 

estimates in the detection function, and therefore of survey area A , density   and detection 208 
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probability p , from unreplicated, simple PC or DND data, when these are used as part of an IDS 209 

model. If PC data are the result of surveys with variable duration, an availability process may also 210 

be added in the IDS model. For songbirds, Solymos et al. (2013) express availability as a function 211 

of singing (or more generally, activity) rate   and of survey duration t as 1 exp( )i i it = − − . We 212 

will show how we can also estimate availability in an IDS model combining DS and PC data, 213 

provided that survey duration is variable and sample size sufficiently large. We note that we 214 

envision a "hiding behaviour" mechanism underlying imperfect availability (Kéry & Royle 2011: 215 

section 2.4). 216 

To summarize, for regular DS data we specify likelihood dsL  (Royle et al. 2004), for PC 217 

data pcL (Royle 2004), and for DND data dndL  (Royle & Nichols 2003). Importantly, for both PC 218 

and DND data, we assume a latent DS observation process protocol and estimate detection 219 

probability p  by integration of a detection function with parameters that become estimable in an 220 

IDS model. Under independence among data sets, i.e., when at most a negligible portion of sites 221 

appears in more than one data set, we define the following joint likelihoods for three variants of an 222 

IDS model: 1IDS ds pcL L L=   (which we call model IDS1) and 2IDS ds dndL L L=   (model IDS2) 223 

for the combinations of DS with PC or DND data, and 
3IDS ds pc dndL L L L=    (model IDS3) for 224 

the full three-way combination. These likelihoods can be maximized numerically to obtain MLEs, 225 

or we can place priors on their parameters and use MCMC methods to obtain Bayesian posterior 226 

inferences. See Appendix S1 for a conceptual outline of IDS models and of how they conceptualize 227 

PC and DND data as the outcome of a latent distance sampling observation process. 228 

 229 

Tests and demonstrations of IDS models with simulated and real data 230 

Simulation 1: Identifiability of separate observation process parameters in IDS1 and IDS2 231 

To demonstrate identifiability of the IDS models, we analyzed simulated data sets and estimated 232 

parameters for separate detection functions in an IDS model with either DS + PC data or DS + 233 
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DND data, i.e., in the IDS1 and IDS2 case. We used function simHDS() in the R package 234 

AHMbook to simulate two data sets with DS data from 250 sites, and PC or DND data from another 235 

1000 sites. To obtain PC data, we first generated DS data, and then discarded all distance 236 

information, just retaining one count per site, and to produce DND data we additionally quantized 237 

the resulting counts. Mean density was kept constant at 1, following our assumption of a shared 238 

density process. The scale parameter   in the half-normal detection function was set at 100 m for 239 

the DS data and was varied randomly between 10 and 130 m for the PC and DND data sets. Thus, 240 

the key criterion for identifiability of our models was how well estimates of   matched their true 241 

values in the data simulation. In the submodel for the DS data sets, we chose a truncation distance 242 

of 200 m. In this simulation we aimed to establish the identifiability of the new models in their 243 

simplest form only. That is, we implicitly assumed availability to be 1 and did not use any 244 

covariates in either density or detection. We used JAGS (Plummer 2003) to fit IDS1 or IDS2 to 245 

1000 data sets each. 246 

In Simulation 1B (Appendix S2: Section S1) we extended our investigations of parameter 247 

identifiability and estimator performance with model IDS1. We varied all of the following four 248 

settings independently according to a response-surface design: average density, detection function 249 

scale for both DS and PC data, and the DS truncation distance. We again used JAGS for model 250 

fitting. 251 

Simulation 2: Identifiability with distinct covariate effects in the observation model 252 

We conducted two sets of simulations to answer the following related questions: (i) Does the IDS 253 

model allow DS and PC detection to have different covariate relationships in the detection function? 254 

(ii) Are relationships still identifiable if the same covariates are related to both detection and 255 

density? We answered these questions by simulating data sets with DS and PC data from 200 and 256 

1000 sites, respectively. Density was governed by an intercept of 1 on the natural scale and an 257 

effect of 1 of one covariate ("habitat"). The half-normal detection function   had an intercept of 258 

100 and 150 m on the natural scale for DS and PC data, respectively. In a first analysis we used 259 
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simHDS() to simulate 1000 data sets with these specifications, and where the half-normal 260 

detection function  , on the log-scale, was affected by another covariate "wind" by independently 261 

drawing two random numbers from a Uniform(-0.5, 0.5) distribution, one for the DS data and the 262 

other for the PC data. In the second analysis, we used a modified version of function simHDS() to 263 

simulate another 1000 data sets with the same specifications as above, except that now we 264 

generated log-scale effects of the same covariate as for density (i.e., "habitat") by independently 265 

drawing two U(-0.5, 0.5) random numbers for the DS and PC data sets as their coefficients. We 266 

used the new IDS() function in R package unmarked to fit the data-generating model. We 267 

discarded numerical failures, which we conservatively identified by standard errors that were either 268 

NA or >5, or by MLEs that were >10 times their true values. 269 

Simulation 3: How many DS sites are required to obtain adequate estimates of density? 270 

We simulated 1000 data sets with PC data from 200 sites, to which we added DS data from 1–100 271 

sites in six mixing ratios. Density was governed by an intercept of 1 on the natural scale, with one 272 

habitat covariate with coefficient 1. The detection function   was 70 m in the PC and 100 m in the 273 

DS data, and we chose a truncation distance of 200 m in the latter. We generated a total of 6000 274 

data sets (1000 for each level of the mixing ratio factor) and fit the IDS1 model using function 275 

IDS(), discarding numerical failures based on the same criteria as in Simulation 2. 276 

Simulation 4: How well can availability be estimated in an IDS model? 277 

We simulated 1000 data sets that resembled our case study below: each had DS data from 3000 278 

sites, and PC data from either 1000, 3000, or 6000 sites. DS survey duration was kept constant at 5 279 

min, but was varied between 3 and 30 min in PC surveys, with a strong right skew, as found in the 280 

case study data. Density was governed by an intercept of 1 on the natural scale and with a habitat 281 

covariate with coefficient 1, detection function   was 70 m in the PC and 100 m in the DS data, 282 

with a truncation distance of 200 m in the latter. The average singing rates per site varied between 283 

0.1 and 2, corresponding to a probability of 0.1–0.86 to sing at least once over a 5 min interval. We 284 

fit IDS1 using the IDS() function and discarded numerical failures as in Simulation 2. 285 
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Case study: American Robins in the Oregon 2020 Project 286 

We used the IDS1 model to estimate population density of American Robin (Turdus migratorius) in 287 

Benton and Polk counties, Oregon. The 3680 km2 area in Western Oregon is bounded on the east by 288 

the Willamette River and its floodplain, while the western portions include the Coast Range 289 

mountains. Silviculture of coniferous forest is the dominant land use in the mountains. Nearly every 290 

square kilometer contains a narrow, lightly travelled road for timber harvest, which allowed access 291 

for bird surveys. The eastern floodplain sections contain a mix of agricultural uses, mostly festucoid 292 

grass seed fields and orchards, and suburban development.  293 

DS surveys were conducted every 0.8 km along accessible roads throughout the study area, 294 

and every 200-m in an off-road grid placed over the William L. Finley National Wildlife Refuge, 295 

producing a total of 2,912 sites sampled and 2020 American Robins detected (Robinson et al. 296 

2020). DS surveys were conducted during the breeding season (April 30–July 11) from 2011 to 297 

2013 by WDR. Each survey followed the Oregon 2020 protocol (Robinson et al. 2020), which used 298 

5-minute stationary counts initiated between 30 min before sunrise and noon on days with no or 299 

little rain. All birds detected by sight or sound were recorded with an estimated distance from the 300 

observer (verified with a range finder when possible) following standard distance sampling 301 

protocols (Buckland et al. 2015). 302 

We combined DS surveys with opportunistically-gathered citizen-science PC data from the 303 

eBird database (Sullivan et al. 2009), using checklists from 2011-2017 in Benton and Polk counties. 304 

After stringent filtering (see Appendix S2: Section S2) and geographic subsampling, 1060 PCs with 305 

819 detections of American Robins were included. We strictly filtered data to include only 306 

complete checklists using stationary protocols and personal locations, conducted during the 307 

breeding season. We further filtered data to include only checklists with durations between 3–30 308 

minutes that were conducted between sunrise and seven hours after sunrise. Finally, we applied 309 

geographic subsampling to reduce the effects of highly popular sites by overlaying a 200m grid 310 
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over the study area and randomly selecting only a single checklist from each grid cell. See 311 

Appendix S2: Section S2 for eBird query details. 312 

For DS data, we selected a truncation distance bds of 300 meters. We binned the distance data 313 

into 50 m distance classes. For the analysis of PC data, an upper distance limit bpc of 500 meters was 314 

adopted, assuming that observers do not detect individuals further away than that (the 0.99 quantile 315 

in the Oregon 2020 database (Robinson et al. 2020) was 400 m). For both data types, we assumed 316 

identical parameters for annual density and availability. We modelled density   with a random 317 

intercept for year, and with quadratic terms for elevation and percentage of canopy cover in a 315 m 318 

radius around the observer location. This radius was selected as it was previously found to be the 319 

most predictive of abundance for this species of the radii considered (Hallman & Robinson 2020). 320 

For availability, we adopted the model of Solymos et al. (2013) linking availability probability with 321 

activity rate ϕ according to a Poisson point process in time, and used linear and quadratic terms for 322 

day of the year and minutes since dawn on the log activity rate. 323 

We hypothesized that the observation process in the designed DS surveys in the Oregon 324 

2020 project might differ from point count surveys recorded in eBird, even after very stringent 325 

filtering, as the distance sampling surveys conducted by a professional ornithologist might have a 326 

higher detection probability than eBird surveys conducted by citizen scientists with variable training 327 

and experience. Therefore, we allowed for different detection functions for the DS and the PC 328 

portions in our analysis by fitting separate intercepts in the half-normal detection scale  . 329 

Moreover, to accommodate possibly different levels of detection heterogeneity among sites, we 330 

specified site-specific random effects in   and allowed for a different variance in the DS and PC 331 

portions of the data (Oedekoven et al. 2015). In addition, we modeled   using the percentage of 332 

urban area and percentage of canopy cover, both in a 165 m radius around the observer location; 333 

these slope parameters were shared between DS and PC data. We computed the canopy cover 334 

covariate for a smaller radius in the detection function, as the distance that an observer can detect is 335 

impacted more heavily by nearby environmental conditions. Elevation, urban land cover, and 336 
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canopy cover were obtained from the Oregon Spatial Data Library (Oregon Spatial Data Library 337 

2017), the USGS’s National Gap Analysis Project (United States Geological Survey 2011), and 338 

Landscape Ecology, Modeling, Mapping and Analysis’s gradient nearest neighbor structure maps 339 

(LEMMA 2014), respectively. 340 

We processed data in R (R Core Team 2019) and fitted the model in JAGS, using the R 341 

package jagsUI (Kellner 2016). For all parameters, we chose vague priors; see BUGS model on 342 

Zenodo for details (Kéry et al. 2023). We assessed the model goodness-of-fit for both data portions 343 

separately using posterior predictive checks (Conn et al. 2018) with a Freeman-Tukey discrepancy 344 

measure computed for observed and expected counts for the DS and PC data (Kéry & Royle 2016). 345 

This suggested an adequate fit of the model overall: Bayesian p-values for the DS part of the model 346 

revealed slight underdispersion, while the PC part of the data indicated good model fit (Appendix 347 

S2: Table S6). We obtained posterior predictive distributions of abundance and predicted density, 348 

based on elevation and canopy cover, for each of the 3874 1-km2 grid cells in Benton and Polk 349 

counties, resulting in an abundance-based species distribution map of American Robin. We also fit 350 

a simpler variant of the model using the IDS() function in unmarked (Kellner et al. 2023) to 351 

illustrate both Bayesian and maximum likelihood inference. Code and data to replicate the case 352 

study can be found on Zenodo (Kéry et al. 2023). 353 

 354 

Results 355 

Simulation 1: Identifiability of separate observation process parameters in IDS1 and IDS2 356 

In an IDS model, separate detection functions were clearly estimable under both IDS1 (combining 357 

DS and PC data) and IDS2 (combining DS and DND data); see Fig. 1 and Appendix S2: Table S1. 358 

There was no indication of bias in either model: % relative bias was <<1% for all sigma's and <2% 359 

for the abundance estimates at sites with N>0. Credible interval (CRI) coverage was close to the 360 

nominal level of 95% for all estimators. Not surprisingly, precision was slightly lower in model 361 

IDS2 than in IDS1 (see middle of Fig. 1). In addition, simulation 1B confirmed the excellent 362 
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frequentist operating characteristics of the estimators in IDS models under an even wider range of 363 

conditions (Appendix S2: Section S1, Appendix S2: Table S2). 364 

Simulation 2: Identifiability with distinct covariate effects in the observation model  365 

In the first set of simulations, where two distinct covariates affected density and the detection 366 

function, and where the effects on the latter were distinct for the DS and PC portions of the data, we 367 

discarded 23 sets of estimates as numerical failures. The remaining 977 sets of estimates indicated 368 

that this model was identifiable and produced little or no bias (Fig. 2, left; Appendix S2: Table S3 369 

left). In the second set of simulations, where the same covariate independently affected density and 370 

the two detection functions, we discarded 66 invalid sets of estimates. The remainder again showed 371 

this model to be identifiable (Fig. 2, right; Appendix S2: Table S3 right). 372 

Simulation 3: How many DS sites are required to obtain adequate estimates of density? 373 

In our simple simulation, the IDS model showed excellent performance with as few as 20 DS sites 374 

(Fig. 2), with relative bias <1% for all estimators and CI coverage at or near nominal levels 375 

(Appendix S2: Table S4). However, the number of numerical failures increased greatly when 376 

decreasing numbers of DS data were added in the integrated model; from only 2 out of 1000 when 377 

100 DS sites added, to 85 with 20 DS sites, and to 490 out of 1000 when 1 DS site was added. 378 

Simulation 4: How well can availability be estimated in an IDS model? 379 

Sampling distributions of density estimators were all concentrated around the true value. There 380 

were long right tails, but these became more symmetrical with larger sample sizes. Singing rate (381 

) estimators were precise up to values of about 0.8, 1.3 and 1.4, respectively, for 1000, 3000 and 382 

6000 PC sites, but became very imprecise for greater values of the singing rate. Presumably, this 383 

was because overall availability reached an asymptote close to 1 when singing rates were very high, 384 

making precise estimation of   difficult (Fig. 3). Overall, there was a slight positive bias in both 385 

density and singing rates, but it declined from 14 to 10% with 1000 PC sites to 3000 and 2% with 386 

6000 sites, while CI coverage was always at nominal levels (Appendix S2: Table S5). Relative bias 387 

of the detection function scale   for both data types was always less than 1%. 388 
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Case study: American Robins in Oregon 389 

Over all surveys considered, mean survey date was June 7, and time since dawn ranged 17–519 min 390 

(mean 229). At mean date and time since dawn, availability within a one minute survey was 391 

estimated at 0.295 (95% CRI 0.133–0.795; Appendix S2: Table S6). Estimated availability peaked 392 

soon after dawn, decreased during the next five hours, then increased again, and tended to increase 393 

slightly throughout the season. Density was estimated to be highest on plots with a canopy cover of 394 

~40% and to decrease with elevation. Median estimates for density varied between 2 and 59 395 

individuals per km2. Maxima were found in the foothills where open woodlands transition from the 396 

floodplain agricultural zones into the denser forests at higher elevations, while minima were found 397 

in the most intensively harvested woodlands (Fig. 5). Over the entire study area, we estimated a 398 

population size of 92,439 American Robins (95% CRI 57,322–142,656). Interestingly, on average 399 

the estimated detection function scale ( ) was not different between the DS and PC portions of the 400 

data (parameter 'mean.sigma' in Appendix S2: Table S6). However, there was greater variability in 401 

the detection function   among surveys on eBird than for regular DS surveys conducted within the 402 

Oregon 2020 project (parameter 'sd.eps'). 403 

 404 

Discussion 405 

We discovered how simple point count (PC) or detection/nondetection (DND) data can be formally 406 

integrated in a model together with distance sampling (DS) data, to estimate separate parameters of 407 

an underlying latent DS observation process in every data type. This allows estimation of a full 408 

complement of detection probability parameters for all three data types. Moreover, integrating DS 409 

data makes abundance estimates from PC and DND data area-explicit. Thereby, IDS models 410 

achieve a formal spatial calibration of PC and point-indexed DND data, as well as a reconciliation 411 

of spatial mismatches between all three data types. Thus, IDS models solve two major problems 412 

that plague simple point count surveys producing PC or DND data: that detection probability and 413 

effective survey areas are both unknown. The key assumption of our IDS model is a shared density 414 
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process: that either density is identical among all sample locations, or that density differences can 415 

be explained by identical covariate regressions for all data types in the integrated model. These 416 

assumptions should be reasonable when all data types are collected randomly in the same general 417 

area, and they may also hold when data sets are from disjoint regions, provided some form of 418 

random spatial sample is achieved. However, as in perhaps all cases where different data sets are 419 

combined in a single analysis, this kind of exchangeability is a judgment call on the part of the 420 

analyst. For instance, joining data sets from two spatially-biased samples (e.g., road-side and river-421 

side counts) would not be such a good idea. 422 

We believe IDS models have a large scope of application and can facilitate use of the large 423 

amounts of currently available PC data, such as the North American BBS (Sauer et al. 2017) in 424 

more formal analyses of abundance that account for imperfect detection. They may also be applied 425 

for carefully quality-controlled eBird data (Sullivan et al. 2009), as illustrated in our case study. In 426 

the context of our simulation with a Null model without covariates, we have shown that only a 427 

relatively small amount of regular DS data was required to supplement simple PC data when used in 428 

an IDS model. Our findings agree well with related work with other types of integrated models that 429 

demonstrate the benefits of combining even small amounts of data with a higher information 430 

content with less informative, but cheaper data (Dorazio 2014, Zipkin et al. 2017, Doser et al. 431 

2021). This would suggest that the scope of inference of point count surveys may be substantially 432 

increased by adding even a relatively small number of sites where the additional distance 433 

information is collected on purpose. Although – it may well be that in 'real-life', with messy data 434 

and consequently with more complex models, (much) more of the information-rich DS data will be 435 

needed. This might be addressed with more customized simulations. 436 

In our case study we found that the perceptibility part of detection probability was not 437 

different on average between the DS data contributed by the Oregon 2020 project and the PC data 438 

obtained from eBird: the intercepts of the detection function scale parameter   were no different 439 

between these two portions of the data. However, allowing for random variation of the detection 440 
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function parameter   among surveys (i.e., among sites) and for possibly different magnitudes of 441 

that variation between the two types of data revealed greater heterogeneity among surveys in the 442 

eBird data base than among surveys in the Oregon 2020 project. This makes intuitive sense, since 443 

the consistency between surveys must have been higher in the Oregon 2020 project than in eBird: 444 

most of our DS data were produced by just one person (WDR), while the eBird data were 445 

contributed by many different observers. In addition, our case study emphasizes how careful 446 

modeling of patterns in the detection function of an IDS model can help to make data from different 447 

protocols more 'alike', by explicitly allowing for their differences in terms of the observation 448 

processes that produced them. This is a great strength of IDS models and of parametric statistical 449 

inference in general. 450 

Many survey data typically have large variation in duration (Solymos et al. 2013) and thus 451 

there is also a need for temporal mismatch among datasets to be addressed. We conceive of this as 452 

an availability process (Kendall et al. 1997, Diefenbach et al. 2007), where over time an activity 453 

such as singing puts individuals at increasing risk of being detected. Hence, survey duration is 454 

naturally informative about availability. However, this part of our model presents more challenges. 455 

With the current formulation of our IDS model, we could only estimate availability when 456 

combining DS with PC data, but not when DND data were part of the analysis (unpublished 457 

analyses), and even then only with large sample sizes. In addition, population closure is required 458 

and hence surveys should probably not be very long in duration. Moreover, this part of an IDS 459 

model has the form of a single-visit occupancy or N-mixture model (Lele et al. 2012), where 460 

estimability hinges upon a continuous, "private" covariate that affects detection, and in our case, 461 

availability. Such models are identifiable (Dorazio 2012), but they rely strongly on parametric 462 

assumptions and may lack robustness to violations of those assumptions (Stoudt et al. 2023). Our 463 

simulation 4 and the case study both showed availability to be identifiable in an IDS1 model, when 464 

extra information about the availability process (in our case, variable survey duration) was included. 465 

However, our study species was chosen specifically to be fairly common. In rarer species and 466 
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consequently smaller sample sizes, there may well be challenges when attempting to estimate 467 

availability parameters in an IDS model. When information to estimate availability is too sparse, 468 

estimates may tend towards the boundary of 1, which will cause underestimation of density. Finally, 469 

we point out that for survey duration there is a tradeoff, since variability in survey duration in the 470 

PC data is needed as the source of information about availability. On the other hand, too long 471 

survey durations may lead to violations of the closure assumption and (presumably) to an 472 

overestimate of density. This is something to keep in mind when planning to apply IDS modeling. 473 

Therefore, IDS models that estimate availability must be developed and applied with care. 474 

Future users of IDS models are advised to conduct simulations tailored to their study to gauge how 475 

well the model likely performs in their case. In addition, any extra information about availability 476 

should be incorporated in the model, such as data from multiple observers (as in mark-recapture 477 

distance sampling; Borchers et al. 1998), replicated surveys (Chandler et al. 2011), time-of-478 

detection and time-removal data (Farnsworth et al. 2005; Alldredge et al. 2007; Solymos et al. 479 

2013, Amundson et al. 2014). Alternatively, availability parameters may be estimated from 480 

altogether different data types, such as recordings of individual singing behavior, or perhaps even 481 

taken from the literature. We note that Solymos et al. (2013) had good success with the integration 482 

of time-removal and distance sampling data, but in a simpler model that did not involve estimation 483 

of a detection function for the time-removal data. 484 

Most distance sampling models, including our IDS models, assume that survey sites are 485 

placed randomly in the study area. However, in our case study, many surveys were done along 486 

roadsides, many of which were logging roads within woodlands (Appendix S2: Section S3). We 487 

assume that American Robin distribution was unaffected by the vicinity of these roads and our 488 

observations of them being distributed well away from roads in the Finley Refuge where we 489 

sampled an off-road grid supports that assumption. Furthermore, canopy cover, one of our 490 

important environmental covariates, helps to account for the presence of roads and road size as 491 

larger or denser roads at a survey location decrease canopy cover. The use of appropriate 492 
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environmental covariates, or the intentional inclusion of off-road surveys, should be considered so 493 

that effects of roadside v. off-road counts can be evaluated. We also caution that effects of 494 

proximity to roads may not affect the distribution of all species equally. 495 

We can envision at least four major extensions to the IDS models described in this paper. 496 

First is the accommodation of survey sites included in the dataset which were sampled using 497 

multiple protocols. This induces a dependence that must be addressed in the construction of the 498 

joint likelihood. Second, IDS models could be developed for other survey geometries, such as line 499 

transects or search-encounter designs (Royle et al. 2014, Mizel et al. 2018). Third, allowing for 500 

open populations and demographic processes (Kéry & Royle, 2021: chapters 1 and 2) will be an 501 

important extension that may open up avenues for truly large-scale demographic models; see also 502 

Appendix S1. Fourth, additional data types may be incorporated in the model, such as opportunistic 503 

data conceptualized as point patterns (Farr et al. 2021), time-to-detection data (Strebel et al. 2021), 504 

aggregated counts (Schmidt et al. 2022), and data from autonomous recording units (ARUs; Doser 505 

et al. 2021). For instance, IDS models may be beneficial for ARU data by allowing estimation of 506 

the "listening range" of these devices under widely varying conditions, while additionally exploiting 507 

the information on singing rate contributed by the ARU data. 508 

In summary, we believe that IDS models can improve analyses of widely available simple 509 

PC and DND data obtained in citizen-science schemes, as well as the increasing amount of ARU 510 

data in contemporary biodiversity surveys. IDS models may serve as a keystone of the formal, 511 

model-based unification of various data types both from designed and less-designed to even design-512 

free surveys, to great mutual benefit. We find it fascinating to see how DS and simple PC or DND 513 

data both contribute two essential pieces of information towards the full IDS model: DS data 514 

contain most information about the detection function, while the heterogeneity in survey duration 515 

commonly found in simple PC/DND data enables estimation of the availability process. This neatly 516 

illustrates the fact that the future of biodiversity monitoring arguably lies in a combination of both 517 

designed surveys and carefully chosen citizen-science schemes. 518 
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Figure captions 666 

Fig. 1: Simulation-based validation of two integrated distance sampling (IDS) models (Simulation 667 

1). Left: Model IDS1 (=DS + PC data), right: Model IDS2 (=DS + DND data); see main text for 668 

details. Top: estimation error in detection function sigma ( ) in the DS data (n = 250 sites); 669 

middle: estimated (with 95% CRIs) vs. true value of   in the PC and the DND data sets (n = 1000 670 

sites); bottom: estimation error in the latent site-level abundances (N) in the PC and the DND data 671 

(mean/sd of simulated true abundance: 79/9). Red denotes truth or absence of estimation error, 672 

dashed blue shows mean of estimates. Sample size in both simulations is 1000 data sets. See also 673 

Appendix S2: Figure S1 and Tables S1-S2. 674 

Fig. 2: Another simulation-based validation of IDS1 combining DS and PC data (Simulation 2). 675 

Left: Sampling distributions of intercept and slope estimates for detection function parameters with 676 

independent effects in the distance sampling (top) and the point count (bottom) parts of the data 677 

(Simulation 2a). Right: Intercept and slope estimates for detection function parameters with 678 

independent effects in the distance sampling (top) and the point count (bottom) parts of the data, 679 

when the same covariate has also an effect on density (Simulation 2b). Red denotes truth, dashed 680 

blue shows mean of estimates. Sample size in both simulations is 1000 data sets. See also Appendix 681 

S2: Table S3. 682 

Fig. 3: Sampling distributions of estimators of density (intercept and slope of a continuous 683 

covariate, shared between distance sampling (DS) and simple point count (PC) data), and of 684 

detection function sigma ( ) for the DS and the PC parts of the data (Simulation 2). Throughout, 685 

sample size for the simple PCs is 200 and true values are indicated with dashed red lines. Each 686 

individual boxplot summarizes between 515 and 998 data sets that resulted in valid estimates, see 687 

also Appendix S2: Table S4. Note that more variable boxplots are indicative of higher RMSEs. 688 

Fig. 4: Sampling distributions of estimators of density (lambda,   ) and of activity/singing rate 689 

(phi,  ) in an IDS model with availability fit to data from 3000 DS sites, plus 1000, 3000, or 6000 690 
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PC sites added (Simulation 3, n = 930, 866, and 997 analyses that did not produce numerical 691 

failures). Red denotes truth or absence of estimation error, dashed blue shows mean of valid 692 

estimates. See also Appendix S2: Table S5. 693 

Fig. 5: Estimated density of American Robin (individuals per 1 km2) in Benton and Polk counties, 694 

Oregon, based on breeding season observation data from 2011 to 2017.   695 
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