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nBSTRnCT 

In recent years, multimode fiber (MMF) has emerged as a focal point in ultrathin endoscopy owing to its high-

capacity information transmission. Nevertheless, the technology’s susceptibility to external perturbances limits its 

practical applications. In this study, we employ a single MMF as both the illumination unit and imaging probe, and 
utilize this single-shot wide-field MMF imaging system to investigate the impact of LED and laser sources on anti-

perturbation capabilities. Experimental results demonstrate that, in the absence of deformations in the MMF, both 

LED and laser-based systems achieve an average Structural Similarity (SSIM) index of around 0.8 for the 

reconstructed image, utilizing advanced deep learning (DNN) techniques, with the laser-based system performing 

slightly better. However, under unknown MMF configurations post-deformation, the SSIM remains robust at 0.67 

for the LED-based system, while the laser-based system drops the average SSIM to 0.45. The results reveal that LED 

has anti-perturbation capability in single-shot wide-field MMF imaging systems. These findings indicate significant 

potential for future anti-perturbation studies in endoscopy employing MMF imaging. 

 

Medical endoscopy technology is advancing towards minimally invasive approaches, which is a crucial trend 

in the field of medical diagnosis and treatment.1 This transformative shift reduces surgical risks, shortens recovery 

times, substantially enhances the overall patient treatment experience, and improves surgical precision.2-4 Fiber optic 

imaging systems, with their remarkable flexibility and compact design, have become a focal point in exploring 

minimally invasive endoscopy.5-7 Most fiber-optic imaging systems use single-mode fibers (SMFs). Still, SMFs can 

only transmit intensity information at specific points in an image.8,9 They are typically arranged into fiber bundles 

for complete image transmission. In contrast, multimode fibers (MMFs) can carry numerous optical modes for 

encoding and transmitting images, offering size and cost-efficiency advantages.10-12 However, challenges like mode 

dispersion and coupling issues lead to the distortion of transmitted image information and the generation of random 

speckle patterns at the MMF’s output facet.13 Researchers use these speckle patterns for image information recovery, 

employing phase conjugation,14,15 transmission matrices,16-20 and deep learning.21-25 With the continuous 

development of these technologies, the high-throughput image transmission capabilities of MMFs have been 

demonstrated,26 and these technologies have also shown their potential in ultra-thin endoscopic imaging.  
Despite the significant potential of using MMFs for image transmission, the sensitivity of this system to external 

perturbance during operation poses a considerable challenge.25 Some innovative approaches to enhance the 

resistance of MMF-based systems to deformation interference have been proposed. For instance, methods such as 

metasurface reflector stacks or guide stars positioned at the distal facet of the MMF,27,28 or MMF surrounded by 

three SMFs containing fiber Bragg grating arrays14. However, these methods typically require complex optical paths 

with MMF recalibration and imaging speed limitations. Therefore, a simple method is needed to enhance the 

system’s anti-perturbation capability.  

In a recent study, Xiao’s group18 compared five different laser sources in MMF imaging systems, assessing the 

impact of light source coherence and linewidth on image reconstruction quality. They observed that the inverse 

transmission matrix (ITM) method has limited generalization capability, making it challenging to recover speckle 

patterns generated by low-coherence and wide-linewidth light sources. Although deep learning29 has been proved to 

be an effective method to reconstruct speckle patterns from low-coherence, the utilization of low-coherence light 

sources for enhancing anti-perturbation capabilities using deep learning has not been explored. Additionally, most 

MMF imaging optical systems introduce extra illumination pathways,30,31 leading to an expanded system footprint 
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and increased design costs, making them impractical for endoscopic applications.  

In this study, we validate the feasibility of using an incoherent light source, LED, in single-shot wide-field 

MMF imaging systems, and a laser-based system is also studied for comparison. Two image reconstruction methods, 

namely Principal Component Analysis-based Inverse Transmission Matrix (PCA-ITM) and Deep Neural Networks 

(DNN), are used to process the two acquired signal patterns (laser-speckles and LED-patterns). The experimental 

results show that the DNN method exhibits excellent image recovery for the LED-based single-shot wide-field MMF 

imaging system. The system’s resistance to deformations in the MMF improves significantly. This work 

demonstrates that LED as a light source for single MMF endoscopy systems holds great potential for practical 

biomedical applications. 

Figure. 1(a) illustrates our MMF imaging system. It incorporates the critical components of the optical system, 

the signal patterns acquisition process, and the fiber deformation procedure. The endoscopic probe employs a MMF 

(NA: 0.22, core diameter: 200 μm), responsible for illuminating the Digital Micromirror Device (DMD) and 

collecting signals to a CMOS camera. The laser light source used is a semiconductor laser (λ=488nm, Δλ=4nm), and 

the LED is a blue light source with a similar central wavelength placed behind a filter (λ=488nm, Δλ=20nm). Their 

spectra are shown in Fig. 1(b). Both light sources undergo beam shaping, and in the experiment, only one light source 

is applied at a time. Moreover, the experimental conditions were maintained to stabilize temperature, humidity, and 

ambient light.  

The ground truth datasets (10,000 images each from MNIST32 and Fashion-MNIST33) are projected to the DMD 

and coupled into the MMF. The MMF is fixed on a manual stage for adjusting fiber deformation, and the CMOS 

camera captures signal patterns under each illumination condition. Figure. 1(c) illustrates the captured signal patterns, 

where laser-speckles exhibit higher contrast, while LED-patterns are more uniform. It is attributed to the incoherent 

nature of LED light, where the field formed at the MMF output is the intensity summation of individual light modes 

without generating speckle patterns due to interference. To analyze the anti-perturbation capability of the two 

illumination systems, we move the manual stage at 1 mm intervals and collect 20 sets of signal patterns with different 

MMF configurations as a test dataset.  

 

Fig. 1. Experimental setup schematic. (a) Schematic diagram of the optical system, with the top left corner illustrating 

the process of fiber deformation; (b) Relative spectral diagrams of laser and LED; (c) Signal patterns captured by 

the CMOS camera. Detailed parameters of the experiments can be found in S1 of the supplementary material. 

In this study, we employ two image reconstruction methods. The first one is the PCA-ITM method, the detailed 

process of which can be found in S2 of the supplementary materials or previous related work.34 The PCA-ITM 

method exhibits superior imaging quality and has lower computational costs. However, its generalization capability 

may be insufficient, making it challenging to achieve image reconstruction for unknown speckle patterns. The other 

is the DNN method, as illustrated in Fig. 2. We adopt a cascaded U-Net architecture commonly applied in image 



segmentation and reconstruction tasks.35 The role of the second shallow U-net is to perform secondary encoding, 

enabling the extraction of additional feature information from the images. The key parameter settings are as follows: 

the CMOS-captured color images are converted to grayscale and fed into the input layer with an image size of 

224224 pixels. The encoder consists of multiple convolutional layers with a 33 pixels kernel size for extracting 

features from the input image. The final convolutional layer outputs a single-channel image with a 2828 pixels size. 

We choose the Adam optimizer and continuously adjust the learning rate during training. The loss function used is 

mean square error (MSE). The batch size for each training iteration is 8, and the maximum training epoch is formed 

to 60. This study evaluates image reconstruction performance using structural similarity (SSIM) and peak signal-to-

noise ratio (PSNR) parameters, quantifying the structural resemblance between the reconstructed image and the 

ground truth. SSIM comprehensively considers the structural features of an image, while PSNR focuses more on 

numerical variations, making it more effective for precision evaluation. Detailed information on these parameters is 

presented in S2.4 of the supplementary materials. 

 

Fig. 2. Neural network for image reconstruction. ReLU, rectified linear unit; BN, batch normalization. 

 

Fig. 3. Schematic diagram of image reconstruction results. The right side of the image shows the average SSIM 

and PSNR of 800 test image results under the laser and LED illumination conditions. 

We select 800 images as the test set, and the reconstructed results are presented in Fig. 3. The training loss 

curves are shown in Fig. S2 of the supplementary materials. We compare eight reconstructed images and display the 

average SSIM and PSNR of 800 test images under laser or LED illumination conditions. The PCA-ITM method 

exhibits more noise in the reconstructed images, while the DNN method produces smoother results. PCA-ITM 

recovers better image details for the laser illumination condition than DNN. This effect is more pronounced in the 

Fashion-MNIST dataset. Conversely, the DNN method excels in recovering less detailed images like “skirt” and 

“boot.” For LED-patterns, PCA-ITM yields poor reconstruction results, while the DNN method shows a significant 

advantage, with its SSIM value being very close to that using lasers as the light source. It reflects the potential of 

LED in a single MMF illumination and imaging system. 

To explore the impact of the light source on the system’s anti-perturbation ability, we collected 800 laser-

speckles and LED-patterns from test datasets across 20 MMF configurations. These images are then subjected to 

recovery using pre-trained PCA-ITM and DNN models before MMF deformation. Selected recovery results are 



presented in Fig. 4. It is apparent that PCA-ITM struggles with recovery for unknown MMF configurations, 

hindering meaningful information discernment in all test sets. In contrast, the DNN method adeptly recovers laser-

speckles or LED-patterns for unknown MMF configurations. As shown in Fig. 4, for the LED light source, the DNN 

method effectively restores unknown MMF configurations, maintaining stable and distinguishable imaging quality 

throughout the deformation process, whether digit “2” or “high-heeled shoes.” Both the MNIST dataset and Fashion-

MNIST dataset can be recovered with a fiber deformation of up to 20mm (If the range of the manual stage allows, 

image reconstruction can be performed under larger MMF deformation.). However, for the laser light source, during 

the MNIST dataset recovery, laser-speckles are challenging to discern for deformation of 5mm. However, at the 

deformation of 10mm, digit “2” contours reappear, suggesting occasional feature recovery within a specific range, 

possibly due to increased randomness from fiber deformation in laser-speckles, involving speckle boiling 

phenomena.34 For the Fashion-MNIST dataset, despite close-range MMF deformation, some outline information of 

“high-heeled shoes” from laser-speckles is recovered. The above results demonstrate that LED-patterns perform 

superiorly compared to laser-speckles. 

 

Fig. 4. Recovery of laser-speckles and LED-patterns under different MMF configurations using PCA-ITM and DNN 

Methods. 

 

Fig. 5. Average SSIM Trends of Reconstructed Images (laser-speckles and LED-patterns) under Various MMF States 

using PCA-ITM and DNN Methods. (a) MNIST Dataset, (b) Fashion-MNIST Dataset. Shadowed areas in the figure 

represent the standard deviation of the data. 

Analyzing image reconstruction under unknown MMF configurations, Fig. 5 shows the average SSIM for the 

different deformation distances. The average PSNR (see Fig. S3 of the supplementary materials) follows a similar 

trend. The average SSIM of the 800 test set images can reliably reflect the impact of fiber deformation on the image 

reconstruction capability, reducing experimental variability caused by chance. Comparing recovery results for 

MNIST and Fashion-MNIST datasets in (a) and (b), respectively, Fashion-MNIST exhibits slightly worse recovery, 

likely due to its richer details being more affected by MMF deformation. As MMF deformation increases, overall 

recovery degrades. DNN consistently outperforms PCA-ITM in average SSIM. Under the laser-based system, the 

decrease in SSIM due to the initial 1 mm MMF deformation is very pronounced, while the subsequent fiber 

deformation causes a less pronounced change in SSIM. It is also possibly due to higher randomness in laser-speckles 

changes. Consequently, within a specific range, it cannot be assumed that more significant deformations result in 



poorer quality of the recovered images. However, in the LED system, DNN shows a gentler change in average SSIM, 

with the highest overall recovery quality. The average SSIM for the LED system using the DNN method is around 

0.67, significantly higher than that in the laser-based system, which is about 0.45. The results indicate that using 

LED light sources with the DNN method can resist disturbances and significantly improve the imaging system’s 

resistance to fiber deformation interference.  

When using the DNN method to reconstruct images in the LED-based single-shot wide-field MMF imaging 

system, the system’s resistance to MMF deformation interference is significantly enhanced compared to the laser-

based system. This improvement may stem from various factors. Through the analysis using the transmission matrix 

theory, the illumination light generated by the LED, after transmission through the MMF, can be considered as the 

superposition of a series of output fields with different frequencies:18 
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where X is detected image amplitude.T represents the transmission matrix of the system. RY  is the vector of recovered 

image. Finding a suitable transmission matrix T that fits all images and light frequencies is challenging for the PCA-

ITM method. Therefore, this method exhibits better recovery quality for the laser, which has a narrower linewidth 

but yields less favorable results for LED.13 On the other hand, the DNN method can be more effective in extracting 

the invariant properties of the signal in MMF imaging systems.36 This approach can extract features and recover 

low-contrast LED-patterns. It also demonstrates feature extraction capabilities for speckle signals in unknown MMF 

configurations, yielding significantly better results than the PCA-ITM method. Regarding the signal patterns 

generated by laser and LED under unknown MMF configurations (see Fig. S4 of the supplementary materials). With 

fiber deformation, the laser undergoes a series of unpredictable mode coupling and phase changes in the fiber, 

resulting in a more random variation of the laser-speckles.37 In contrast, LED is almost unaffected by phase 

changes,38 making LED-patterns more stable and continuous with fiber deformation. Ultimately, when inputting the 

pre-trained recovery model, the test set of LED-patterns has a higher correlation with the training set in the pre-

trained model, resulting in better recovery results. However, a challenge in LED-based MMF imaging technology 

lies in the relatively lower contrast of its output images. As the transmitted information volume increases, the 

recovery from the intensity map collected at the fiber output becomes more challenging. Nonetheless, current 

advancements in deep learning, particularly in super-resolution techniques, hold the potential to address this issue. 

In summary, the impact of light sources on image reconstruction in single-shot wide-field MMF imaging 

systems has been comprehensively studied. PCA-ITM and DNN image reconstruction methods are employed to 

process the images obtained in the system using laser or LED as the light source. Without fiber deformation 

perturbation and using the PCA-ITM method, the performance of the laser-based system is much better than that of 

the LED-based system. However, when the DNN method is used for image reconstruction, the performance of the 

LED-based system is very close to that of the laser-based system. After considering external perturbations by 

introducing fiber deformation, the experimental results demonstrate the LED-based MMF imaging system is much 

better than the laser-based MMF imaging system for image reconstruction using the DNN method. The SSIM 

remains robust at 0.67 for the LED-based system, while the laser-based system drops the average SSIM to 0.45. This 

is due to the incoherent nature of LED, which is almost unaffected by phase changes with fiber deformation. These 

results highlight that the LED-based MMF imaging system can significantly enhance anti-perturbation capability, 

with potential application in endoscopy employing MMF imaging. From an algorithmic standpoint, integrating the 

super-resolution generative adversarial network algorithm may enhance the LED’s imaging capability for complex 

tissue images. On a methodological level, combining it with compressed sensing imaging techniques may enable the 

imaging of natural objects. Furthermore, our work can be easily integrated with other MMF imaging technologies, 

providing valuable insights into the anti-perturbation research in MMF endoscopy imaging. 

See the S7 and S8 of the supplementary materials on experimental details and results. 
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