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Abstract

This thesis is concerned with how to build adaptive language models of
Chinese text, which can be used in different Chinese natural language
processing (NLP) applications.

The Prediction by Partial Matching (PPM) language model has been
widely used in many NLP areas. To apply this model for Chinese, many
problems arise that originate from the language’s large alphabet. In this
thesis, the PPM-ch model is introduced first to improve the traditional
PPM model, by first using preprocessing techniques, then a frequency
sorting technique and a variation of PPM that performs no exclusions.

PPMO, a novel variant of the PPM model is then proposed. Unlike
traditional PPM models, which output an escape symbol when a novel
symbol occurs in a context model, PPMO separates the coding process

into two streams, named the orders stream and the symbols stream. This



algorithm is the first PPM variant that does not use the escape mechanism
and it achieves the best compression results.

We have also investigated Chinese Word segmentation by using our
PPM-ch and PPMO model. Although our PPMO models havenot been care-

fully crafted for segmentation usage, we still achieve satisfactory results.
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1. Introduction 2

1.1 Background & Motivation

In this information revolution age, huge amounts of information are stored
and processed electronically by the computer. The need for processing
languages using computers has never been more urgent.

Natural language processing (NLP) is a science of automatically gen-
erating and understanding natural human languages using computers.
There are many NLP research areas such as text compression, speech
recognition, word segmentation and machine translation and so on. Nor-
mally, language models will be developed for different research usages
and these models are regarded as the real essential ingredient for natural
language processing.

There are two main schemes to building models for natural language.
One is a dictionary approach; the other is a statistical approach. To evalu-
ate the performance of the models, text compression is one excellent mea-
sure. Experiments show, although the program execution speed of dictio-
nary approaches is fast, the compression rate is much worse than that of
the programs that use statistical algorithms. That is why in this thesis we
only focus on the statistical algorithms for Chinese language, as we are

interested in finding the models with the best predictive performance (as
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measured by compression codelength) as this usually correlates with bet-
ter application performance in natural language processing applications.
One technique that has achieved excellent results is Prediction by Partial
Matching model, or PPM [CW84], an adaptive statistical language model.
Unlike many static models that use dictionary algorithms, an adaptive
model is built and upgraded dynamically according to the input stream of
characters.

The Chinese language has its own characteristics that differ from that
of the English language. When processing Chinese language with tradi-
tional statistical models such as PPM [CW84], there are several drawbacks
for this algorithm:

Firstly, each English symbol requires an 8-bits ASCII character to en-
code it on the computer; that is, its alphabet size is only 256. However,
for the Chinese language, each character requires 16-bits, with an alpha-
bet size up to 65536. Traditional PPM algorithms use the smaller 256
alphabet size, and require two bytes to encode each Chinese character.
Therefore this scheme does not capture the characteristics of the larger
Chinese alphabet.

Secondly, the PPM model uses the escape mechanism to avoid sparse

data problems (see section 3.5), which needs to estimate the probability of
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an escape to a lower order model, and we have found that for Chinese this
actually lowers the prediction accurateness. Our experiments show that
this greatly reduces the overall compression rate, especially for a large
alphabet size language (i.e. Chinese).

Thirdly, the PPM execution time for the Chinese language is much
slower on average compared to English. Simply enlarging the alphabet
size for PPM algorithms significantly reduces the program execution speed
as well as the overall compression result due to the need to perform ex-

clusion.

1.2 Thesis Aims & Objective

The broad aim of this thesis is to investigate how to set up adaptive com-
puter models of Chinese text that are effective in terms of compression
performances, execution speed and memory requirements. As we have
discussed in the previous section, although existing adaptive statistical
language models based on the text compression schemes (such as PPM
algorithms [CW84]) achieve excellent results, there are several notable
drawbacks when applying for Chinese language. These drawbacks orig-
inate from the linguistic differences between Chinese and English lan-

guage, since Chinese has its own specific characteristics.
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By customizing the models for Chinese text, one would expect, signif-
icant improvements over current implementations are possible. Several
potential benefits for the Chinese language models are therefore gained,
which yields a better performance in many Chinese NLP applications such
as text compression and word segmentation.

The specific objectives of this thesis will be to seek answers to the

following questions:

e What is the best computer model for compressing Chinese text?

¢ What are the disadvantages of the existing models when they are

applied to Chinese text?

e What is the best way of dealing with the large alphabet size problem

in Chinese?

e How well do the best models perform in several natural language

processing applications?

1.3 Thesis Contributions

This thesis is concerned with adaptive models of Chinese language. The

main contribution of this thesis is proposing two new language models



1. Introduction 6

designed especially for the Chinese language. These models are named
PPMO and PPM-ch respectively. Significantly, PPMO is the first adaptive
PPM model without using the traditional PPM escape mechanism.

The objectives listed in the previous section are achieved via the devel-
opment of the PPM-ch and PPMO language models especially for Chinese
text (see chapter 4 & 5). Additionally, we show that the PPM-ch and PPMO
models work well for the Chinese word segmentation and have great po-
tential to be used in many other Chinese NLP applications such as text
categorization and text mining.

Many Chinese NLP applications can therefore make use of these algo-
rithms to potentially improve application performance. Moreover, the new
algorithm has a great potential to be applied to other languages and for
word-based English compression.

In the following, the significance of the results obtained from the in-

vestigations are described.

1. We introduce preprocessing techniques for Chinese text. Unlike the
traditional PPM model, which uses 8 bit ASCII characters to code the
16 bit Chinese text, we pre-process the Chinese characters into 16 bit

integers before encoding them. This part of the work is discussed in
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Chapter 4 and has been published in DCC2005 [WTO05].

2. For standardizing further experiments in Chinese text compression,
we have set up a standard Mandarin Chinese Corpus, which is publicly
available at http://aiia.cs.bangor.ac.uk/BMCC. This work is introduced

in Chapter 2 [WTO05].

3. We adapt the PPM model for the Chinese language, by using such tech-
niques such as character pre-processing, frequency sorting and no ex-
clusions, achieving competitive compression results for Chinese text.

This work is discussed in Chapter 4 [WTO05].

4. In Chapter 5, we introduce a new PPM variant, dubbed PPMO, which
separates the coding stream into an orders stream and symbols stream.
It achieves excellent experimental results. To our knowledge, this is the
first empirical PPM algorithm that does not use the traditional PPM es-
cape probabilities blending algorithm. It has not been reported by the
other study, which successfully used a secondary order encoding pro-
cess to process the text. This part of the work is discussed in Chapter

5 [WTO7].

5. We introduce word and tag based model for Chinese text, by using our

PPMO and PPM-ch model. Our experiments show that character-based
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PPMO still achieves the best performance. We discuss this in Chapter

7.

6. We investigate a natural language processing application — Chinese
word segmentation — that uses our new PPMO models. We discuss

this in Chapter 7.

Summary and conclusions are discussed in the final chapter along

with suggestions for future work.
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2.1 Chinese: The World’s Most Widely Spoken
Language

Chinese (/X # han yu) is a primary language which is part of the Sino-
Tibetan language family. It is the most widely spoken language in the
world. According to the Guinness World Records 2006 [Fol06], more than
1.4 billion, or one-fifth of the people in the world speak some form of
Chinese as their native language. This is mainly because China is the
most populous nation in the world.

In general, all varieties or dialects of Chinese are tonal and analytic.
However, spoken Chinese shows a high level of internal diversity. Regional
variation between different variants is comparable in many respects to the
Romance language family; many variants of spoken Chinese are different
enough to be mutually incomprehensible [DeF84].

Depending on different classification schemes, there are six to twelve
main regional groups of Chinese, of which the most populous is Mandarin
(% pi tong htia c. 800 million), followed by Wu (% wti ¢. 90 million),
and Cantonese (% ytie; c. 70 million).

The standardized spoken Chinese, or Standard Mandarin (I 1 iifi pa

tong hua [HiE guo yu EiE haa yi), is based on the Beijing dialect, a mem-
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ber of the Mandarin group. Standard Mandarin is the official language of
the People’s Republic of China and the Republic of China on Taiwan, as
well as one of four official languages of Singapore (together with English,
Malay, and Tamil). Standard Mandarin Chinese is one of the six official
languages of the United Nations (alongside English, Arabic, French, Rus-
sian, and Spanish). Spoken in the form of Standard Cantonese, Chinese
is one of the official languages of Hong Kong (together with English) and

of Macaw (together with Portuguese).

Position Language Script used Speakers Major Spoken region
(millions)
1 Mandarin Chinese Characters 1051  People's Republic China

(Mainland China,
Hongkong, Macau)
Republic of China(Taiwan)

2 English Latin 508 USA, UK, Australia,
Canada, New Zealand

3 Hindi Devanagari 497 North & Central India

4 Spanish Latin 392 The Americas,Spain

5 Russian Cyrillic 277 Russia,Central Asia

6 Arabic Arabic 246 Middle East, Arabia

North & Southern Africa

T Bengali Bengali 211 Bangladesh, Eastern India

8 Portuguese Latin 191 Brazil, Portugal

9 Malay, Indonesian Latin 159 Indonesia, Malaysia

10 French Latin 129 France, Canada

Tab. 2.1: The 10 most widely spoken languages in the world.

The data in Table 2.1 shows those languages that are spoken by the
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most people in the world[Soy05]. Mandarin, a chief dialect of China with
over one billions speakers, is the world’s most wildly spoken language.
English is the second most widely spoken language in the world after
Mandarin.

The majority of Chinese speakers live in eastern and southern Asian
areas, such as the People’s Republic of China (Mainland China, Hong
Kong, Macau) and Republic of China (Taiwan and nearby islands). There
are also many Chinese communities in Western Asia, the Americas, Africa,

Europe and Pacific.

2.2 Chinese Characters: Written Language for
Chinese

Chinese characters are one of the oldest surviving writing systems, and its
history can be traced back into at least 3,200 years ago [Wil86]. Archaeol-
ogists have also found various Neolithic scripts in China, which date back
as early as the 7th millennium BC, and these scripts are normally re-
garded as the genesis of the Chinese characters. Various Asian countries
such as Japanese, Korean, and Vietnamese adopt Chinese characters as
part of their own written languages.

A Chinese character is a logogram and is normally categorized into
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3 different types according to its character making mechanism: picto-
graphic character(% J; ¥ xiongxingzi), logical aggregate character(& &7
huiyizi) and pictophonetic character(J£ /= xing-shéngzi).

About four percent of Chinese characters are pictographic characters,
which have originated from individual pictograms. Most Character char-
acters are pictophonetic, which means the character contains two parts:
one indicating a general category of meaning and the other representing
the sound or pronunciation of this character. Some other characters are
logical aggregates, which are characters combined from multiple parts in-
dicative of meaning [Wil86].

In the Chinese writing system, each individual single-syllable mor-
pheme corresponds to a single character. Some of these single-syllable
morphemes can stand alone as individual words, but most words in the
modern spoken Chinese varieties are in fact multisyllabic, consisting of
more than one morpheme, usually two, but there can be three or more.
Although Chinese language shows a great diversity in the spoken lan-
guage, different Chinese people with different dialects can still use the
same written language to communicate without any problems.

“Square-Block Characters” (77 Ht % fangkuaizi) is normally used to il-

lustrate a Chinese character because in written Chinese a character made
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up of multiple parts compacts these parts together in order to maintain a
uniform size and shape.

The actual structure of many Chinese characters varies in different
cultures. Since 1956, P.R. China (Mainland China) uses simplified char-
acters as its written language; however traditional Chinese characters are

still used in Taiwan and Hong Kong areas.

2.3 Chinese Encoding Method

The Chinese language employs Chinese characters ({7 hanzi) as its writ-
ten language. Each character represents a morpheme (a meaningful unit
of language), as well as one syllable. The written language can thus be
termed a morpheme-syllabic script.

Mainly, there are three Chinese coding standards to represent Chinese
Characters in the computer - GB2312-80 and Bigb as mentioned, and
Unicode.

For computers, Chinese characters are usually encoded by using a
more specific character set such as GB2312-80 or Bigh, which maps be-
tween numbers and Chinese characters. This is comparable with the 7-bit
ASCII character set used for English, the major difference being that the

Chinese character set is much larger than that of the English’s. (~ 8,000
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compared to 128.)

2.3.1 GB2312-80 and GBK Coding Standard

The GB2312-80 standard font was published in 1981 by the Standard-
ization Adminstration of the People’s Republic of China. It is a national
standard encoding character set for Simplified Chinese and used in Main-
land China and Singapore. GB2312-80 includes 7,445 Simplified Chinese
characters and symbols. Every Chinese character or symbol is repre-

sented by 2 bytes and each byte is from 0xAO to OXFE in the ASCII table.

010203.... 94

01
Part 1:

682 graphic symbols
15
16

Part 2:
3755 most frequently used characters

55
54

Part 3:
3008 second most frequently used
characters

87
88

Part 4.

Fig. 2.1: Chinese GB2312-80 Coding table
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Figure 2.1 shows the GB2312-80 character set. It has 94 rows (high
byte) and 94 columns (low byte), which is divided into four parts. Part
one includes 682 graphic symbols, part two contains 3,755 Simplified
Chinese characters sorted by usage frequency in Chinese text. Part three
has 3,008 characters which is sorted by their stroke count in Chinese
language. Part four is a user-defined characters for the further extension.

The GBK standard font is an extension of GB2312-80 which has 20,902
Chinese characters and symbols. It is upward compatible with the GB

2312-80 standard.

2.3.2 Big5 Coding Standard

The Big5 standard font was defined by the Institute for Information In-
dustry of Taiwan (Republic of China) in 1984 and mainly used in Taiwan
and Hong Kong regions as a character encoding set for Traditional Chi-
nese characters. It contains 13,868 Traditional Chinese characters and
symbols. Every character is also encoded by 2 bytes, the coding range is
from OxA1l to 0x9 for the first byte, and from 0x40 to Ox7E as well as from
OxA1l to OxFE for the second byte.

Similar to the GB2312-80 coding standard, the Bigb character set is

divided into seven parts including some spaces reserved for user-defined



2. Chinese Language Overview 17

characters. All the characters are sorted by their usage frequency.
2.3.3 Unicode Coding Standard

The Unicode coding standard was defined by the International Organiza-
tion for Standardization (ISO) in 1991, and allows text and symbols from
all of the writing systems of the world to be consistently represented and
manipulated by computers.

This encoding character has defined 20,902 CJK (Chinese, Japanese
and Korean) characters. It is a superset of the characters in GB2312-80
and Big5. The advantage of using this standard is that you can display
Simplified Chinese characters, Traditional Chinese characters, Korean
characters and Japanese characters on the same Web page. No other
encoding standards is able to support that at the moment. However, the
Unicode coding standard is still not widely being used in different coun-

tries.

2.4 Chinese Language Corpora

A corpus (plural corpora) is a body “of natural language material (whole
texts, sample from texts, or sometimes unconnected sentences), which are

stored in machine-readable form” [Tea98]. Statistical natural language
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processing uses corpora to do statistical analysis, checking occurrences
or validating linguistic rules on specific domains.

In this section, we first review several Chinese language corpora, then
introduce our Bangor Mandarin Chinese Corpus, an experimental corpus

that will be used in the experiments of this thesis.
2.4.1 The Lancaster Corpus of Mandarin Chinese

The Lancaster Corpus of Mandarin Chinese (LCMC) is a publicly avail-
able balanced corpus of Mandarin Chinese, which was built up by Tony
McEnery and Richard Xiao from Lancaster University in the United King-
dom. A balanced corpus includes a range of the different text types of the
language, with their proportions of the corpus reflecting, in some more-
or-less principled way, their levels of use in the language community at
large.

LCMC contains 15 different text categories. The corpus comprises
Mandarin Chinese text published in Mainland China, including newspa-
pers, books, and also text from the Xinhua News Agency.

Words in the LCMC have been have been encoded into Unicode, tagged
and stored in the XML files. For our experimental usage, we have made

some changes and formatted the files as several normal flat text files.
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Further discussion of this is provided in section 2.4.4.

2.4.2 PH Mandarin Corpus

The Chinese PH Corpus is a Mandarin Chinese corpus originally con-
structed by Guo Jin [Jin93]. It is not a balanced corpus because the
source of this corpus is only news text from the Xinhua news agency,
which was written between January 1990 and March 1991.

The corpus is encoded by the GB2312-80 coding standard. Hocken-
maier and Brew produced a cleaned up segmented version of it [HB98].
The corpus contains 2,447,719 words and 3,753,291 characters, 492,875
of which are paragraph delimiters. The corpus is freely downloadable

(ftp:/ /ftp.cogsci.ed.ac.uk/pub/chinese/).

2.4.3 Text Retreival Conference Mandarin Corpus

The TREC (Text REtreival Conference) Mandarin Corpus [Rog00] is avail-
able from the Linguistic Data Consortium (LDC), which is an open con-
sortium of universities, companies and government research laboratories.
The catalogue number is LDC2000T52 with ISBN 1-58563-178-7. These
documents were used for the Chinese task in the Text Retrieval Confer-
ence (TREC) 5 and 6 and consist of approximately 170 megabytes of ar-

ticles drawn from the Xinhua News agency as well as the People’s Daily
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newspaper (Rogers 2000). The text is GB2312-80 encoded Mandarin Chi-
nese.

The collection of text was gathered by LDC, and then adapted by the
National Institute of Standards and Technology (NIST) for use in the TREC

Mandarin evaluation program.
2.4.4 Bangor Mandarin Chinese Corpus

In order to standardize future text compression experimental results in
our thesis, we have reformed the above corpora and included them with a
corpus named Bangor Mandarin Chinese Corpus (or BMCC) which we have
set up for experimental usage. It can be downloaded from the following In-
ternet address: http://www.informatics.bangor.ac.uk/~wjt/AlIA/BMCC/BMCC. htm.
According to the file size, the whole corpus is divided into two sub cor-
pora. One is called the Small Bangor Mandarin Chinese Corpus or SBMCC,
the other is the Large Bangor Mandarin Chinese Corpus or LBMCC.
SBMCC contains all files under 800 KB. As shows in table 2.2, we
select some news, novels, and fictional articles. We also include a bal-
anced Mandarin Chinese Corpus named LCMC [MXO04], which is con-
structed by the Linguistics Department of Lancaster University and can

be obtained from http://bowland-files.lancs.ac.uk/corplang/leme/. It contains 15
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Name Category Size
Small Bangor Mandarin Chinese Corpus (bytes)

Chinese newsl  Political News from XinHua news agency 15,371
Chinese news2  Sport News from XinHua news agency 26,195
Chinese articlel Article about military affairs from Internet 19,245
Chinese article2 Article about computer from Internet 38,724
Chinese article3 Article about arts from Internet 80,760
Chinese bookl  Novel by Lu Xun 53,706
Chinese book2  Novel by Qian Zhongshu 436,656
LCMC-A Press: reportage 271,035
LCMC-B Press: editorials 170,469
LCMC-C Press: reviews 112,681
LCMC-D Religion 103,031
LCMC-E Skills, trades and hobbies 218,473
LCMC-F Popular lore 266,226
LCMC-G Biographies and essays 452,511
LCMC-H Miscellaneous: reports and official documents 208,035
LCMC-J Science: academic prose 509,095
LCMC-K General fiction 159,118
LCMC-L Mystery and detective fiction 137,743
LCMC-M Science fiction 35,159
LCMC-N Adventure and martial arts fiction 155,897
LCMC-P Romantic fiction 273,109
LCMC-R Humour 49,289

Tab. 2.2: Small Bangor Mandarin Chinese Corpus.

different text categories. The corpus comprises Mandarin Chinese text

published in Mainland China, including newspapers, books, and also text

from the Xinhua News Agency. All the text is segmented by space ac-

cording to the Chinese word as judged by a native speaker, but for the

purposes of our experimental corpus, we have removed these spaces. We
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have also removed the XML tags that accompany the LCMC files.

Name Category Size
Large Bangor Mandarin Chinese Corpus (bytes)
TRECI1 Text Retrieval Conference test data 818,786
TREC2 Text Retrieval Conference test data 1,348,941
TREC3 Text Retrieval Conference test data 1,171,931
TREC4 Text Retrieval Conference test data 1,034,517
TRECbH Text Retrieval Conference test data 1,478,840
Chinese Bible Bible, Chinese version data 2,032,066
PH1 Part of PH Corpus 3,259,284
PH2 Part of PH Corpus 3,466,810
PH Corpus PH Corpus 7,506,581

Tab. 2.3: Large Bangor Mandarin Chinese Corpus.

Table 2.3 shows Large Bangor Mandarin Chinese Corpus. It contains
all files above 800 KB. We select the Chinese Bible, and include some
TREC Corpus [Rog00] files and the PH Corpus [Jin93]. All TREC files come
from the XinHua news agency that were collected for the Text Retrieval
Conference. We have concatenated all the TREC files into a single file,
then removed all the XML tags, and selected 5 partitions from the head of

that file (these are split according to story boundaries).
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2.5 Theoretical Models For Chinese Text

In this section, we review some theoretical models for Chinese text. We
examine the characteristics of Chinese text by looking at the frequency of
Chinese characters and show how Zip’s Law can be used to predict the

number of character occurrences for a given size of Chinese text.
2.5.1 Character Frequency

Compared with 26 letter English alphabets, many non-native language
speakers might be surprised that the alphabet size of Chinese language
is more than 80,000 Chinese characters. However, today most of these
Chinese characters are rarely used; now only about 8,000 characters will

be normally used in modern communications.

Chinese Characters Coverage Rate
Most frequently used 1,000 characters ~ 90%
Most frequently used 2,500 characters 98%
Most frequently used 3,500 characters 99.5%

Tab. 2.4: The coverage rate of the most frequently used characters in Chi-
nese text.

Table 2.4 shows the coverage rate of the most frequently used char-
acters in Chinese text. Statistics show that the most frequently used

3500 characters cover 99.5% of the Chinese characters commonly used
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[AboO7].
PH Corpus Chinese Bible LCMC
characterfrequency] % [characterffrequency] % [characterfrequency] %

iG] 94052 [1.25293] 46367 [2.21709 54272 [1.30322
] 39623 |0.52784] b 20147 |0.96335 — 20901 0.50189
= 29453 (0.39236, 1R 18957 [0.90645 & 16947 0.40694
1 27622 [0.36797 I 18630 [0.89081 A 14916 |0.35817
el 25030 |0.33344] 1] 18173 |0.86896 fig 14714 |0.35332
i 24111 |0.3212 A 16415 |0.7849 1 13000 [0.31217
o3 23561 |0.31387] 12365 [0.59125 A 12652 |0.30381
it 23458 |0.3125| Al 11735 (0.56112 A7 12117 (0.29096
A 23249 10.30971 Fis 11292 (0.53994f X 9241 |0.2219
& 20634 (0.27488  HE 9810 0.46908 Ik 9169 (0.22017
X 18474 |0.2461 i) 9096 [0.43493| i 8460 [0.20315
H 17517 10.23336| A 8991 [0.42991 s 8285 |0.19895
v 15939 (0.21233 & 7951 [0.38019] L 8256 |0.19825
L 15501 |0.2065 1 7903 |0.37789 Al 8046 |0.19321
b 15023 |0.20013| ik 7878 |0.3767 s 8037 10.19299
B 14270 |0.1901 LA 7798 10.37287] N 7599 |0.18247|
X 14086 |0.18765) T 7525 (0.35982] k¢ 7185 |0.17253
1% 13574 |0.18083 AN 7524 0.35977] i 7124 |0.17107|
[ 13389 |0.17836 T 7274 10.34781 M 6910 |0.16593
Hh 13379 (0.17823 — 6898 |0.32984 6734 |0.1617

Overall 6.42029 12.56268 6.1128

Tab. 2.5: 20 most frequently used Chinese Characters from 3 Chinese
Corpora

Table 2.5 shows the 20 most frequently used Chinese Characters from

3 Chinese corpora. We select the PH corpus, Chinese Bible and LCMC

from our BMCC (see Section 2.4.4). It is clear that “fJ” (prep. of) is the

most frequently used Chinese character in all three corpora. Also, several
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characters such as “—” (num. one), “A” (noun people) also occur in all
three corpora, but compared to English, the most notable difference is
that there are a significant number of characters that only occur in one
corpus even in such a short list of 20 as here (5 in PH corpus, 8 in Chinese
Bible, 2 in LCMC).

For the Chinese Bible, the cumulative frequency of the first 20 most
frequently used characters is 12.56%. For the PH corpus and LCMC, the

20 most frequently used characters occupy 6.42% and 6.11% respectively.

2.5.2 Zipf's law

Zipf's law was first introduced by George Zipf [Zip49]. This law describes a
statistical regularity in the distribution of words used in any large text and
is normally regarded as an empirical rule for characterizing any natural
languages.

Let f be the frequency of a word in a given text, and r be the rank
of the word according to the frequency f of its occurrence. So, the most
frequently occurring word would be given the rank r = 1, the next most

frequently occurring word, » = 2 and so on. Zipfs law states that

flr) e~

i
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or, in other words

flr)xr=K

where K is a constant number.
This power law has been tested over a large volume of literature and
also different languages and is found to be accurate for words whose rank

is not too low or too high.

5+ — - — Zipf's law for PH corpus
Zipf's law for Chinese Bible
— — Zipf's law for LCMC

Log Frequence

10 100 1000
Rank

Fig. 2.2: Zipfs Law for Chinese corpora

For example, Figure 2.2 shows rank on the X-axis versus frequency on
the Y-axis, using logarithmic scales. For all three Chinese corpora, the
rank and frequency shows a linear slope within the first 1,000 Chinese

characters, which indicates Chinese language initially follows the Zipf's
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law. The rank-frequency ratio decreases much faster after the first 1,000
characters. This is because, as we mentioned in the previous Section
2.5.1, the most frequently used 1,000 characters covers 90% of the whole
corpus, but those ranked greater than 1,000 might only occur one or two

times.

2.6 Conclusion

In this chapter, we reviewed several fundamentals of Chinese language.
One of the most important differences between Chinese and English is
that the alphabet of Chinese is much larger than that of English. The
large alphabet leads to many problems for Chinese NLP. We will examine
these problems in the next few chapters.

We introduced a Chinese language corpora, named BMCC. This corpus
can be found at http://wwuw.informatics.bangor.ac.uk/~wjt/AIIA/ BMCC
/BMcC.htm. The corpus provided samples for standardizing further ex-
periments in Chinese text compression. We will use this corpus as our
experimental corpora in this thesis.

We examined two theoretical models for Chinese text in the last sec-
tion. According to the statistics, the most frequently used 3500 charac-

ters cover 99.5% of the Chinese characters commonly used and same as
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English, the Chinese language also follows the Zip'f law.
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3.1 Introduction

Natural Language Processing (NLP) is an interdisciplinary field of artifi-
cial intelligence and linguistics that uses computer models to process the
natural human languages. Normally it is named computational linguistics
from the linguistical perspective. As a subfield of applied linguistics, the
philosophical ideas of NLP are heavily influenced by the development of
the linguistics science as well as the information science.

Between 1960 and 1985, NLP was typified by a rationalist approach.
This approach is characterized by the belief that “a significant part of the
knowledge in the human mind is not derived by the senses but is fixed in
advance, presumably by genetic inheritance [MS99].” Generative linguis-
tics, introduced by Chomsky in 1957 [Cho57], became the fundamental
ideas in the rationalist linguistic community. This theory argues that the
phrase structure of a language has its own context-free grammars and
these grammars can be used to produce formal languages. Many dictio-
nary based NLP algorithms are based on this approach.

However, in reality using context free grammars to characterize all lan-
guage phenomena could be problematical because we have not only “well-

formed” language, but also “ill-formed” language. An empiricist approach
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suggests that “we can learn the complicated and extensive structure of
language by specifying an appropriate general language model, and then
inducing the values of parameters by applying statistical, pattern recog-
nition, and machine learning methods to a large amount of language use
[MS99].”

In recent years, empiricist approaches have become more and more
popular in many engineering practical solutions. These solutions seek
methods that can work on raw text as it exists in the real word and is
sometimes named “language engineering” instead of NLP. Statistical NLP
characterize linguistic events as probabilistic phenomena, saying sen-
tences are “usual” and “unusual”. This approach has many great ad-
vantages, because they are “better at automatic learning, better at disam-
biguation, and also have a role in the science of linguistics. [MS99].”

In this thesis, our approach to processing Chinese language is based
on the empiricist approach by using statistical methods. We will focus
on how to statistical methods to set up a reasonable Chinese language
model, for the usage of Chinese NLP.

Before adopting a Statistical NLP approach for Chinese language, we
review several fundamental ideas, which are key to a statistical approach

to NLP. We first introduce the statistical language model concept in sec-
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tion 3.2, then examine the ideas of entropy, cross-entropy and perplexity
in section 3.3. Section 3.4 discusses n-gram models and Markov mod-
els. In Section 3.5 we illustrate the sparse data problem - a ubiquitous
problems in statistical language modelling, and the ways to solve this
problem. Then we discuss different variable order Markov models in Sec-
tion 3.6. Section 3.7 reviews the prediction by partial match (PPM) model,
one of the most compression-efficient algorithms used by the statistical
language modelling community. We will apply this model as a starting
point for Chinese NLP. In the last section 3.8, we examine different text

compression algorithms.
3.2 Statistical Language Model

A statistical language model assigns a probability to a discrete sequence
P(zy, - ,z,) by means of a probability distribution [PC98]. One classical
application of discrete sequence predictions is lossless compression, or
more specifically text compression; but there are numerous other appli-
cations involving sequential data, which can be directly solved based on
effective prediction of discrete sequences. Examples of such applications
are speech recognition [JBM75, BJM83], machine translation [BCP790]

and automatic spelling correction [KCG90].
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In general, comparison of different language models is made with re-
spect to prediction quality as measured by the average compression rate
of a discrete text [BYY04]. The best compression rate can be achieved by
using arithmetic coding [WNC87], which allows the encoding of messages
in the number of bits equal to its “information content”, or entropy (see
Section 3.3) with respect to a model.

So the problems of building a language model transform into a problem
of how to get the best text compression rate. The better text compression
rate you are able to achieve, the better prediction accuracy is made by the
language model, which indicates a possible better performance for other
NLP applications [BWC89].

A language model is an essential ingredient for statistical NLP. Witten

& Bell made a statement about the importance of the language model

[WB90]:

A model of a natural language text is a collection of information
that approximates the statistics and structure of the text being
modelled. The model may be very simple, e.g. an estimate of the
probability of each character; or it may be very complex, such

as the model of English language that we carry in our heads,
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with which we can spot subtle grammatical errors and spelling
mistakes. Such models are of great importance in a number
of areas, notably text compression, authorship ascription, and

language-processing programs such as spelling-checkers.
3.3 Entropy, Cross-Entropy and Perplexity

The idea of Entropy was first introduced by Claude E. Shannon in his
historical paper in 1948 [Sha48] and then became the fundamental idea
in information theory.

Entropy is a measure of the amount of order in the message. It is a
number that is small when there is a lot of order and large when there is
a lot of disorder. Ideally, the length of a message after it is encoded should
be equal to its entropy [BCW9O0].

Let p(z) be the probability of a discrete sequence and A be a alphabet

of this sequence. The value entropy E of X is given by the formula

= — Y p(z)logy plz (3.1)

€A

For example, suppose there is a sequence of text from the alphabet

(A, B, C) with the probabilities of 1, 1, 1. Then the average number of bits
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required to encode each symbol, or the average entropy is thus:

E = —p(A)logsp(A) — p(B)logap(B) — p(C)logap(C)
U U S SO S T
= 5 092,2 1 '0924 1 0934
— 1.5 bits

The entropy is “a measure of how much uncertainty is involved in the
selection of a symbol- the greater the entropy, the greater the uncertainty.
It can also be considered a measure of the information content of the mes-
sage — more probable messages convey less information than less probable
ones.[Tea98]”

For language modelling, let X = z,, 29, , x, be a sequence of symbols,
so equation 3.1 can be reformulated as:

E(X)=- Z p(z1, T2, -+, Tn) loge p(T1, 22, - -, Tp) (3.2)

ﬂ.!1;EA
and the per word entropy is:

1

T

1
EX) = . Z p(x1, X, v+ T) logo p(T1, T2, + + , Ty)- (3.3)

T;EA

If we assume that a language L is a stochastic process, then the entropy

of a language is defined as:

) 1
E(L) == 7’}1—1'00_; Z p(mlu Lo, :mn.) 10g2p(3;11$2: v 7$ﬂ-)' (34]
€A
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Normally, the true probability distribution of a language L is unknown.
However, an upper bound to F(L), or named cross entropy of a language

L is defined by:

1
E(L,M) = lim —— Zp(;rl,a:g,,--- , T ) logy m(zy, 29, -, 2p). (3.5)
e x;€A
where m(zy,x2, -+ ,z,) is the probabilities estimated by the model M.

The cross-entropy provides a measure of how well the language model
is. Lower cross entropy normally leads to better performance in applica-
tions. In another words, the closer E(L, M) is to E(L), the less inaccurate
the model is [Tea98].

Teahan achieved an average cross-entropy of English by using statis-
tical language model such as PPM (see section 3.7) of 1.48 bpc for Jane
Austen’s Emma [Tea98]. In the next several chapters, we will examine the
entropy of Chinese text by using different PPM-based models (see Section
3.7},

Another measure related to the entropy is called the perplexity. The

relationship between the perplexity and the cross entropy is:
perplexity(L, M) = 25(0M), (3.6)

As for the cross entropy, a lower perplexity indicates a more accurate

language model.
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3.4 n-gram Models and Markov Models

The problems of predicting the next symbol z,, can be stated as attempting

to estimate the probability function

p(ﬂ:«n|$‘1, e ;mn—l)
according to the previous context zy,---,z,-;. The overall probability of a
sequence X is given by:
P(X) = p(z)p(zs|zi)p(2s|z:, z2) - - - p(@nl21, -+ Zn) (3.7)
= [[pl@iler, 22, 7). (3.8)
i=1

Here, z, - ,x;_; is called the history. It is clear that a full-history
language model could be computationally expensive. One way to solve
this problem is by making the Markov assumption [Mar13], which means
the history is only equivalent to the previous n — 1 words. This history is
called the conditioning context.

For example, if we only use the single previous symbol to condition the

probability, we get a bigram model and the equation 3.7 is reduced to:

P(X) =~ H plxi|zio1). (3.9)
i=1

Similarly, a trigram model use the previous two symbols to make a



3. Statistical Natural Language Processing 38

prediction, and the equation 3.7 is reformulated as:
P(X) = [ [ pwileizs, ia). (3.10)
=1

Both the bigram model and the trigram model are a Markov Model since
they are making the Markov assumption when predicting the next word.
More generally, an n-gram model is also called an order n — 1 Markov
model. Here, we refer to vanilla Markov models as Visible Markov Models.

n-gram language models have been used in a wide range of NLP do-
mains [Che96]. For example, Bahl, Jelinek and Mercer [BJM83] first ap-
plied bigram and trigram model in their speech recognition applications.
Charniak use a n-gram model for part-of-speech tagging [CHJP93].

There is another type of Markov models named Hidden Markov Model
(HMM) [RJ86], which differ from visible Markov models because they use a
set of unknown parameters to make a Markov assumption. The challenge
for a HMM is to determine the hidden parameters from the observable
parameters. The extracted model parameters can then be used to perform
further analysis, for example for pattern recognition applications [Rab89,

Jel90].
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3.5 The Sparse Data Problem

As we discussed in the previous section, an n-gram model must perform

the prediction task P(z,|z - - zn,—1). Since:

Pz, zy)
P(*’Ifll e mn.fl)

Py w5 » oty =
estimating good conditional probability distribution can be reduced to
having good solutions to simply estimating the unknown probability dis-
tribution of an n-gram [MS99].

Three approaches are normally used in processing n-gram language
models: estimating, smoothing and blending.

Estimating seeks to solve the problem of what probability we should
use to estimate the next word. An intuitive way to do this is based on the

relative frequencies of context observed in the previous text. A maximum

likelihood estimate (MLE) for this approach is:

C(wl; e :wn)

Pyrg(y, -+ ,2q) = T (3.11)
and
Of#1, - - , Tn)
Pur(tn|y, - Fn1) = 3.12
ALE(Tn| 21 Tp—1) Clxr, - Zn1) ( )
where C(xy, -+ ,x,) is the frequency of sequence symbols z,--- ,x, and T'

is the total number of the symbols in the training text. However, an im-
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mediate unpleasant fact for the MLE estimator is that if the conditioning
context C(xy,--- ,x,) are extremely rare, or even never actually occurs in
the previous text, zero probability is assigned by the estimator and the
language model is therefore unable to recognize these novel symbols. The
problem of how to handle rare events is referred to as the sparse data
problem, or zero frequency problem if the estimated words are unseen.
This problem is ubiquitous in statistical language modelling [Che96].

One approach to overcoming the sparse data problem is called training
— using as much data as possible to train the language model. Training is
a direct way to achieve an improvement in language model quality and it
is fundamental to all statistical language model. However, training large
amounts of data require enormous computing resources as well as storage
resources [Tea98].

Another more clever way is to build more compact and better mod-
els for the probability estimation. This process to correct the probability
estimate is called smoothing. A simply way to avoid the zero frequency
problem is to employ Laplace’s law [Lapl14] by adding one to the counts,

which is

Clxy, - ,zn)+1

C(:L'la e amn—l) (3 13]

PLAP(-’EnI:I:I-, T eivn—l) =

In 1953, Good introduced the Good-Turing estimate [Goo53], which was
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initially used for estimating the population frequencies of species and then
became the basis of many smoothing techniques [CG91]. This method
assumes that the determining frequency is binomial.

Let C(xy,--- ,z,) = r be the frequency and N, be the frequencies of the

frequency r, if r > 0

=3

Por(my,~+ y2p) = N (3.14)
where
P o= (rizlv)__]yﬁl (3.15)

If » = 0, the discount frequency r* is therefore reduced to:

_M
-5

*

r (3.16)

and

Ny
NoN

P(;T(-'Ul, Sl a-’I»'n) = (3.17)

From equation 3.16 and 3.17 we can see that the number of unseen
words N is actually unknown but a crude estimate can be determined
from the size of the vocabulary V, where:

No=V"=> N,

>0

Since } ., N, < V", then N, ~ V". For example, the Chinese language

has about 8,000 characters, so for a bigram model, V' = 8,000 and Ny =
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V2 = 6400, 0000. Comparing equation 3.17 with 3.11, we see that the Good-
Turing estimator assigns the same adjusted count r* to all the novel words
in n-gram.

By using smoothing, the estimator reserves some probability space for
each word in each context. However, this means that initial prediction will
have to rely to some extent on the zero frequency estimator rather than
on the actual data sequences being coded. Of course we can make the
context very short but that leads to poor language modelling in the long
term because little of the structure of the sequence data will be available
for making predictions [BCW90].

For n-gram models, a process to combine multiple probability esti-
mates from various different context models into a single overall probabil-
ity is called blending. One way to combine these predictions is to assign a
weight to each model and calculate the weighted sum of the probabilities.
This is usually named linear interpolation [Jel90]. For example, interpo-

lating a trigram model is formulated as:

Ri("nn'xn~21 mn—l) = /\lpl(mn) + )\QPQ(-rnkCn—]) i A3193(5571|='En—2a -'-I’n—l) (3.18)

where 0 < Ay <land ) N\ =1.

Of course the weights may be set by hand. However, there are sev-
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eral algorithms for calculating the weight. Baum introduced a forword-
backward algorithm, which estimates the weights by finding those which
maximize the probability for as training sequence [Bau72]. Katz's Back-off
algorithm allows the estimator to “back off” from a upper n-gram model to

a lower model according to the frequency counts of the context [Kat87].

3.6 Variable Order Markov Models

Variable Order Markov Models (VMM) are referred to those adaptive mod-
els that learn the probability distribution where the conditioning context
varies and an adaptive response is applied to the available statistics in
the previous data. Thus, unlike normal n-gram models, which can be
regarded as a fixed-order Markov model, VMMs provide the means for
capturing both large and small order Markov dependencies based on the
observed data [BYYO4].

There are many VMM prediction algorithms, of which the context tree
weighting (CWT) algorithms [WST95], prediction by partial matching (PPM)
algorithms [CW84] and the probabilistic suffix tree [RST96] algorithm are
the most well known in the NLP community.

Context Tree Weighting (CTW) is a lossless compression algorithm pro-

posed by Willems in 1995 [WST95]. This algorithm proposed a weight-
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ing predictor to assign a weight for every probability that gains from the
path nodes of the context tree, and then combines these probabilities into
an overall CTW probability. Further improvements have been made by
Willems and Tjalkens [WST96, TVW97].

Prediction by partial matching (PPM) is an adaptive n-gram model used
initially for text compression (see section 3.7). It was originally introduced
by Cleary and Witten [CW84] in 1984 and then Moffat made a series of
improvements and developed PPMC, which has become the benchmark
version [Mof89]. PPM has been applied to many NLP problems such as
cryptology, language identification, text correction [Tea98].

Probabilistic suffix trees (PST) [RST96] are well known in the machine
learning community. This algorithm proposes a distribute learning algo-
rithm for variable memory length Markov processes by using a Probabilis-
tic Suffix Automata (PSA).

PPM generally uses for character-based text compression and CTW
uses for binary-based compression. In this thesis, our method to com-
press the Chinese text is based on the Chinese character, we will use PPM

method to apply Chinese text compression.
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3.7 PPM: An Adaptive Variable Order Markov
Model

In this section we will review one particular algorithm for adaptive statisti-
cal modelling: the PPM text compression model. We will apply this model
to our Chinese language in chapter 4 and develop our new PPM variant in

chapter 5.
3.7.1 PPM: Prediction by Partial Match

PPM is a finite-context model because the predictions are based on a finite
number of preceding symbols. It predicts upcoming symbols by employ-
ing a suite of context models of different orders, from some pre-defined
maximum down to a default -1 model [CW84, BCW90]. If a novel sym-
bol occurs in the context, an escape probability will be assigned. PPM
achieves excellent compression rates although this model seems expen-
sive both in terms of memory and execution speed.

There are several variations for PPM, such as PPMA, PPMB, PPMC,
PPMD, PPM* [CW84, Mof89, CT97, Shk02], which are mainly named ac-
cording to the escape method they employ. In a recent paper, Dmitry
Shkarin introduced PPMII, which stands for PPM with Information In-

heritance. It takes advantage of the similarity of distribution functions in
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parent and child contexts and sets the initial value of the generalized sym-
bol frequency in the child context with regard to information about this
symbol gathered in the parent context [Shk02]. PPMII achieves a good

compression rate as well as excellent compression speed.

3.7.2 PPM’s Probability Estimation and Smoothing
Mechanism

In Section 3.5, we have discussed different mechanisms to address the
sparse data problem. PPM'’s solution is to assign an escape probability for
a novel symbol, to get around the zero frequency problem. This is similar
to Katz's back-off mechanism [Kat87], which assigns the same weight for
all counts greater than 0. However, PPM models use full exclusion and
update exclusion mechanisms to assign the weight for the different order
models (we will discuss these two mechanisms in Section 3.7.3).

Normally different PPM variants are named according to their escape
methods. Several methods have been used to calculate the symbol and
escape probabilities for the context model.

Let A be a discrete alphabet consisting of |A| > 2 symbols and D be the
maximum order of the model, where d < D be the current coding order of

a model. The probability of an upcoming symbol z,., = ¢, € A depends
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on the current context sy = x,, -+ , Tp—q+1. Let cy(p) denotes the number of
times that the symbol ¢ occurs in the context s,. Let ¢, be the total number
of unique symbols that occur after the context s;. Let Ty = ¥ ¢,(¢), which

denotes the total number of times that the context s; has been.

Escape Method Escape Probability Symbol Probability

Method A =7t pp) = 22 [CW84]
Method B e=%4 plp) = 24= [CW84]
Method C e = i pp) = £ [Mof9o]
Method D g = & plp) = 2= [How93]

2Ty

Tab. 3.1: Major PPM variants for Estimating The Probabilities

Table 3.1 shows the probability estimating mechanisms of several ma-
jor PPM variants. For instance, if the context has occurred 6 times before,
with symbol « following 3 times, symbol b following 2 times and symbol ¢
following once, the escape probability e for PPMA, PPMB, PPMC and PPMD
will be 1, 2, 3, and 2 respectively.

Method A and B were introduced by Cleary and Witten [CW84] in 1984,
Method C was developed in 1990 by Moffat [Mof90] and Method D was

proposed by Howard [How93] in 1993. Experiments show the compres-

sion result by using PPMD is usually slightly better than for PPMC, but
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both methods outperform PPMA and PPMB.

Witten also introduced several other escape methods in 1991 [WB91].

Method P estimates the escape probability as:

where ¢; is the number of symbols observed exactly i times in the context
Sq.-
Method X notices that since 7} is normally very large, the approximate

escape probability can be reduced to:

It is clear when t; = 0 or t; = 1y, method P and X will break down
because the novel event probability is O or 1 in these cases. To solve this

problem, Witten combined this with the Method C to produce Method XC

as:
{ —L;;d when 0 < ¢, < Ty
e = t .
—td
o otherwise.

Moffat presented further ways to solve this problem [MSWB94| by adding

one to the counts, named Method X1:

£ 41
= ——
B+t + 1
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and

_ )
Ty+t+1

p(e)

Another variation of the PPM models is called PPM*, which make use of
unbounded length contexts for PPM. It was originally proposed by Cleary
& Teahan in 1997 [CT97]. The main idea of this algorithm is to use all
substrings of the input string to generate the prediction, rather than only
use several substrings that selected from the high order model to the
low order model to predict the next symbols as normal PPM algorithm
does. However, it requires substantially more resources, both in terms
of memory requirements and execution speed — than standard PPM, and

therefore we have concentrated on improving PPM rather than PPM* for

this thesis.
3.7.3 PPM’s Blending Mechanism

Bell, Cleary & Witten [BCW90] show that for PPM the blending probability
of symbol ¢ is given by

plp) = Z w;pi ()

f=—1

where w; and p; are the weight and probability assigned by order i context
model. To avoid zero probability, a non-zero wights are assigned to the

predictions from lower order contexts.
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The PPM model uses exclusion as its blending strategy. It combines the
predictions for all character contexts of which their length are less than or
equal to a maximum order m and uses the escape mechanism to exclude
lower order predictions from the final probability estimate. Normally a de-
fault order -1 model will be used to ensure all the symbols been assigned
a finite probability.

Let e; be the probability of an escape in order i, where —1 < i < m. The

weight w; assigned by PPM model is:

and

We, =1 — ey,

The weighted contribution of the model to the blended probability of sym-

bol ¢ is thus:

m
wipi(p) = (1 —epi(p) ] ex
k=i+1

As it was stated by Bell, Cleary & Witten [BCW90]: “the advantage
of expressing things in terms of escape probabilities is that they tend to
be more easily visualized and understood than the weights themselves,
which can become small very rapidly. We also see the the escape mecha-

nism is much more practical to implement than weighted blending.”
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Furthermore, Bell, Cleary & Witten [BCW90] introduce a Jfull exclusion
scheme to improve the PPM’s blending algorithm. This scheme indicates
that “symbols predicted by higher order context need not be predicted
by lower order ones since they will have already been encoded. These
symbols waste codespace since they can be excluded altogether from the
prediction with no effect on the outcome [Tea98].” There is some extra
computational overhead by using full exclusion because each symbol has
to be checked for exclusion.

Another improvement is called update exclusion, which is introduced
by Moffat in his PPMC algorithm [Mof90]. This algorithm states that the
count will only be updated in context levels at or above the context in
which it was successfully predicted. In another words, one count is up-
dated only if it is not predicted by any higher order context. On the aver-
age, update exclusion improves compression by 2%, and it also speeds up
the program execution time because of removing the need to update the
counts in lower context levels [BCW90].

In order to illustrate the traditional PPM model, we use PPMC as an

example. We use same definition as shown in the Section 3.7.2.
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Since the probability of a symbol ¢ occurring in the context s, is:

ca(p)
ta+Ty'

palp) = ca(ip) > 0.

and the probability of an escape occurring in the context s, is:

ta
ta+Ty

pa(esc) =

The overall conditional probability for any symbol ¢ is:
D
Pppyc(p) = [ H pd(esc|55)] * palip|sa).
i=d+1

To explain the operation of PPM, Table 3.2 shows the state of the
17 conditioning classes with d = 2,1,0 and —1 after the input string “-
[ f) A fE A 4 ohJa) (9 7 has been processed. Note that for PPM algo-
rithms, each symbol is usually directly encoded using arithmetic coding
[WNC87, MNW98] based on the probability suggested by the model. The
PPM encoding algorithm proceeds from the highest-order model d = 2;
if the context successfully predicts the next character ¢, the associated
probability p(¢) is used to encode it. For example, if “/2” follows the in-
put string “A [H {9 & 4 A ) the probability of 3 would be used
because a successful prediction “ff” —“;&" has been made in the order

2 model.
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Order d =2 Order d =1 Order d =0 Order d = —1
Predictions ¢4(p) pa((p) | Predictions ca(ip) pa(yp) |Predictions ca(p) pa(sp) |Predictions ca(p) pa(p)
I —fY 1 % [ 1 —é— — 5 = — A 1 ]%l—l
—esc ; - 1 % — [ 9 =
Efy - 1 ] =1 g -2 1
—esc 1 3 —esc 4 i — 1k 1 =
—| 1
I — 1 % E - 1 % —esc 6 =
—esc 1 5 —esc 1 5
fR 13 Mod 1
—esc 1 3 —esc 1 %
Bt 1 L | R 1L
—esc 1 3 —esc 1 }
P 1 4 om0
—esc 1 5 —esc 1 5
R I % o= 1 %
—esc 1 = —esc 1 5
I —f 1 %ﬁ-
—esc 1 5
[ ] — 1 %
—esc 1 s

Tab. 3.2: PPMC model after processing the string “ [E 1) = & 5 4 5 8] 1)

i
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Suppose that the character following the input string “H [E ff] # &
o 8] §9 1 is “[H”, which is not predicted by the current context “f
H1”. Consequently, an escape probability 1 would be encoded by using
the arithmetic coding algorithm and the encoding process downgrades
from order 2 to order 1 model, and the d = 1 context “#” is used. Then
the desired prediction “1” —“[H" is selected with probability . The total

= L which is 4 bits.

probability to encode the character “[H” is § x ¢+ = &,

1
2
We can improve this further if we use the “exclusion” mechanism, since

3 »

—“/&" cannot be encountered because if it did, it would have been

encoded at the order 2 context model. The probability ¢ can be used in
the current order 1 model for the character “[E” because the character
“/&"” can be excluded, which saves coding space compared to probabilities
encoded without exclusions.

If a novel character “I[:” follows the input string, the encoding process
would escape right down to the base level d = —1. In this level, all char-
acters would be encoded as a probability of IlT\ where |A| is the alphabet

size of the non-encoded symbols. For Chinese, |A| ~ 8000.
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3.8 Text Compression

3.8.1 Text Compression Theory

For text compression, the main goal is to reduce size of the encoded data
without losing any information of the original text, which means the pro-
cess is reversible, or lossless.

In 1981, Rissanen and Langdon provided the insight to characterize
the process of data compression as being separated into two steps: mod-
elling to estimate a probability of each character, and an encoding that
uses a coding algorithm to produce a compressed representation of data

in respect to the probability of each of the characters [RL81].

Prediction Prediction

Compressed
Source Text o Encdder = Text BEEsHEE Source Text

Fig. 3.1: Using a model for compression.

Figure 3.1 [BCW90] shows how a model is used in practice. The en-
coder and decoder share the same model. The encoder use the probability

which is estimated by the model to encode the source into a compressed
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representation of the data. The decoder uses the same model to estimate
the probability to decode the compressed data into the original source file.

Generally speaking, the models for the text compression can be divided
into 3 types: static, semi-adaptive and adaptive, according to the method
of estimating the probability.

The static model means a fixed model regardless of the text to be en-
coded. The encoder and decoder run the same coding algorithm accord-
ing to the identical codebooks. For instance, in Shannon-Fano coding
[Sha48], the probability of each character is fixed based on the probabil-
ity table that is pre-defined before encoding starts.

Unlike the static model, the semi-adaptive model reads the message
first and then makes up a codebook according to some criteria such as
the frequency of the symbols in the coding message, the encoder then
transmits the codebook with the coded message. A disadvantage of this
kind of model is that sending a codebook for each message can be time
consuming.

For the adaptive model, the codebook of both encoder and decoder
are updated according to the input stream of the character by using a
dynamic codebook.

Predominately, there are two different approaches to achieve an adap-
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tive model: the dictionary approach and the statistical approach.

The most well known adaptive dictionary model is the Ziv-Lempel com-
pression model, which was introduced by Ziv and Lempel [ZL77] in 1977.
The main idea of this scheme is to replace phrases with a pointer if they
have occurred earlier in the text. It uses a sliding window to define the
length of the longest match and a triple array to store the compressed
data. A series of improvements have been made and different Ziv-Lempel
coding variants were developed such as LZ78 [ZL78|, LZW [Wel84] etc.

The second approach uses statistical methods to estimate the proba-
bility for the coding algorithm. For instance, Finite-context models use the
preceding few characters to predict the next one [BCW90]. As we have
discussed in Section 3.7, Cleary and Witten’s PPM [CW84], which use
Arithmetic coding as it’s coding algorithm, is one of the best performed
lossless finite-context statistical data compression models [Tea98]. The
Dynamic Markov Model (DMC), originally described by Horspool [HC86],
is a statistical finite-state models [BCW90] that is mainly used to process
the binary input. Bell & Moffat shown DMC is actually a finite-context

model [BM89].
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3.8.2 Text Compression for Chinese

Text compression for Chinese characters is problematical because of its
large alphabet size. Today, few Chinese texts are translated into electronic
form. It is estimated that almost 70% of Chinese paper-based informa-
tion is urgently required to be transformed into electronic form [VZ98].
However, very little work has been done in the area of Chinese text com-
pression. Of the results that have been published, the researchers have
chosen to experiment with a small number of files they have collected
themselves. They have also used different compression measures to com-
pare results.

For example, Lua [Lua95] introduced a dictionary-based approach based
on minimization of sentence entropy to compress Chinese text. This al-
gorithm first built a frequency dictionary from the original text for all the
sub-strings that have 1 to 9 characters, and then used this dictionary to
compute a sentence entropy. The sub-string that contributes minimum
entropy to the sentence is retained as a code unit. The compression rate
of 6.91 bits per Chinese character (bpCc) on 14-bit Chinese characters has
been achieved for this algorithm.

Gu [Gu95, Gu05] used order 2 Markov model for Bigh encoded Chinese
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text, and achieved the compression rate of 5.424 bpCc. This approach is
similar to PPM’s scheme.

Vines and Zobel [VZ98] modified the PPM model for Chinese characters
by changing the unit of encoding from 8 bits to 16 bits, and achieved 6.2
bpCec.

Kwok-Shing Cheng and Gilbert H. Young [CYW99] introduce a word
based dictionary coding algorithm that uses both the LZW and Huffman
coding schemes. It is reported that the compression results are compara-
ble to that of the traditional PPM-based schemes.

Most recently, Ghim-Hwee Ong and Jun-Ping Ng [ONO5] announced
the compression rate of 7.925 bpCc for Dynamic Markov Compression. A
tree structure to use with Dynamic Markov Compression (DMC]) for the
compression of Chinese text files.

A problem with all these results is that different text corpora were
used to perform the testing, as well as diffe