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hence promote further expansion. We quantified the 
combined effects of salinity (10–33 PSU) and tem-
perature (15–24  °C) on larval development in four 
populations of H. takanoi (two from the Baltic and 
two from the North Sea). We found substantial dif-
ferences in larval performance between the popula-
tions from the Baltic and North Seas. Larvae from the 
North Sea populations always showed higher survival 
and faster development compared with those from the 
Baltic Sea. Only weak evidence of elevated tolerance 
towards low salinity was found in the larvae from the 
Baltic Sea populations. In addition, larvae from the 
population located near the range limit showed very 
low survival under all tested salinity-temperature 
combinations and no evidence of increased toler-
ance to low salinity. There was no apparent genetic 
differentiation among the studied populations in the 

Abstract We studied the potential of a recently 
introduced species, the Asian brush-clawed crab 
(Hemigrapsus takanoi), to expand its distribution 
range further into the Baltic Sea. H. takanoi has been 
documented in the southwestern Baltic Sea since 
2014. The ability to persist and further expand into 
the Baltic Proper will depend on their potential to 
sustain all stages of their complex life cycle, includ-
ing pelagic larvae, under the Baltic Sea’s conditions. 
Range limits may be established by the tolerance to 
low salinity, which in addition may be affected by 
water temperature. A key question is whether local 
populations at the distribution limit (within the Bal-
tic Sea) show increased tolerance to low salinities and 
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mitochondrial cytochrome c oxidase subunit one 
gene (COI) implying high connectivity among the 
populations. In conclusion, the weak evidence of low 
salinity tolerance in Baltic Sea populations, and poor 
larval performance for the population located near 
the range limit, coupled with limited genetic differ-
entiation suggest that subsidies are needed for popu-
lations to persist near the range limit. Alternatively, 
ontogenetic migrations would be required to sustain 
those populations. Monitoring efforts are needed to 
elucidate the underlaying mechanisms and document 
potential future range expansions.

Keywords Hemigrapsus takanoi · Intraspecific trait 
variation · Larval performance · Multiple stressors 
and drivers · Phenotypic physiological plasticity · 
Thermal tolerance

Introduction

Human-mediated climate change (Poloczanska et  al. 
2013; García Molinos et  al. 2016; Boersma et  al. 
2016; Burrows et  al. 2019) and widespread biologi-
cal invasions (Gurevitch et al. 2011; Chan and Briski 
2017) have major impacts on marine ecosystems. 
Invasive alien species (IAS) are an important com-
ponent of global environmental change. IAS may 
cause modifications in community composition, and 
can be a major driver of local biodiversity loss (Bel-
lard et al. 2016) as well as economic loss (Haubrock 
et al. 2021a, b; Henry et al. 2023). Climate change is 
considered an important driver of the success of bio-
logical invaders in aquatic ecosystems (Sorte et  al. 
2013; Gallardo et  al. 2016); hence understanding 
the mechanisms of range expansion has become a 
priority (Gurevitch et al. 2011). The successful con-
quest of new habitats should depend fundamentally 
on ecological and evolutionary processes (Gurevitch 
et  al. 2011) driven by the physical characteristics of 
the new habitat as well as the traits and performance 
exhibited by established species which are potential 
competitors, predators or parasites.

Long term data series (e.g. Boersma et  al. 2016; 
de Amorim and Wiltshire et  al. 2023), show that 
global change in marine ecosystems affects envi-
ronmental drivers such as water temperature, salin-
ity, pH, and oxygen content (Poloczanska et  al. 
2013; García Molinos et al. 2016; Boyd et al. 2018). 

However, future fluctuations in environmental fac-
tors as a consequence of human influences will differ 
between open ocean, estuarine, and near-shore sites 
with coastal areas typically experiencing larger fluc-
tuations (Duarte 2007; Hofmann et  al. 2011). Semi-
enclosed seas such as the Baltic and North Seas are 
particularly susceptible to the effects of global change 
and are expected to be increasingly affected by ris-
ing surface temperatures and freshening by increased 
river runoff (Gräwe et al. 2013; Hiddink et al. 2015; 
Robins et  al. 2016). The Baltic Sea, for example, 
was recently dubbed a “time machine” for the future 
coastal ocean (Reusch et  al. 2018). It is character-
ised by relatively low salinity, which varies spatially 
and temporally, depending on the proximity to the 
North Sea, river inflow, freshwater runoff, precipi-
tation, and seawater inflow events through Skager-
rak and Kattegat (Lehmann et  al. 2022). Typically, 
in the Baltic Sea, the salinity decreases from west 
to east (Lehmann et  al. 2022). Therefore, consider-
ing the expected changes of salinity and temperature 
increase, organisms living in coastal habitats and 
regions of freshwater influence, will face new combi-
nations of environmental drivers. Furthermore, inter-
tidal ecosystems, e. g. in the North Sea, have already 
shown particularly pronounced and rapid changes in 
response to anthropogenic influences so that focusing 
research efforts on the study of intertidal organisms 
in general can provide new insights into the physio-
logical effects of global ocean change (Somero 2002; 
Helmuth et al. 2006a, b).

An example of a recent introduction and expansion 
in coastal-estuarine areas is given by the Asian brush-
clawed shore crab (Hemigrapsus takanoi), originated 
from southwestern Asia. H. takanoi has been reported 
in the coast of Northern Europe and is currently dis-
tributed from the English Channel to the SW Baltic 
Sea. This species is currently considered an ecologi-
cal threat in European waters, exhibiting a poten-
tially population-destabilising functional response 
towards blue mussels under Baltic Sea conditions 
(Theurich et  al. 2022) but more studies are needed 
to confirm if H. takanoi is invasive in the European 
waters. H. takanoi was first found in Europe in 1993 
on a ship’s hull in Bremerhaven, Germany (Gollasch 
1999) and the first individuals were recorded in 1994, 
in the intertidal in La Rochelle, France (Noël et  al. 
1997). In the Wadden Sea, H. takanoi was first dis-
covered in the Netherlands and later in Germany and 
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Denmark (Geburzi et  al. 2015). In the Baltic Sea, it 
was recorded from 2014 onwards, first in the south-
west (Kiel fjord) and then further east (Mecklenburg 
Bight) and north (Skagerrak and Kattegat) (Geburzi 
et al. 2015, 2020; GBIF 2022).

As in many marine invertebrates, larval stages of 
H. takanoi are likely to play a central role in the pro-
cess of invasion, as a contributor of the propagule 
pressure (Johnston et  al. 2009). This is highlighted 
by the fact that larvae of H. takanoi have been found 
in ballast water of ships in the Arctic archipelago of 
Svalbard (Ware et  al. 2016). Populations of sea bot-
tom (= benthic) marine invertebrates, such as H. taka-
noi, are considered “open” in the sense that they are 
structured as a series of local populations of adult 
stages connected through larval dispersal (Caley et al. 
1996; Armsworth 2002). Larvae play a central role 
in population connectivity and recovery from dis-
turbance (Cowen et  al. 2006; Giménez et  al. 2020); 
yet, larval stages are more sensitive to variations in 
environmental conditions than adults are. Hence, in 
scenarios of environmental change, larvae may rep-
resent a bottleneck for population persistence (Sorte 
et  al. 2010, 2018; Pandori and Sorte 2019). Theory 
predicts that at distribution limits, narrow ranges of 
larval tolerance may result in populations not being 
self-sustaining and instead being subsidised by 
human-mediated dispersal or natural dispersal on 
years when conditions are appropriate (Dauphinais 
et al. 2018; Giménez et al. 2020). A central point for 
the establishment of H. takanoi concerns the capac-
ity of the early stages to tolerate thermal and salin-
ity conditions and hence develop self-sustaining 
populations across the North-Baltic Sea gradient. 
We currently have information on the larval toler-
ance to temperature and salinity for two populations 
of H. takanoi (Japan: Mingkid et al. 2006; Kiel fjord, 
SW Baltic Sea: Nour et  al. 2021, 2022). However, 
recent studies have highlighted important variability 
in environmental tolerance among invertebrate larvae 
from different females (Durrant et  al. 2013; Apple-
baum et  al. 2014; Spitzner et  al. 2019) and among 
populations distributed over environmental gradients 
(Sanford et al. 2006; Nasrolahi et al. 2012; Baldanzi 
et  al. 2018; Šargač et al. 2021). In particular, for H. 
takanoi, the current data on the lower limit of salin-
ity tolerance (15 PSU) does not match the observed 
distribution of local adult populations: large numbers 
of adult crabs are found in areas of the Baltic Sea 

characterised by salinities below the known larval 
tolerance limit (Fig. 1a), e.g. Kiel fjord (salinity ~ 15 
PSU) or Neustadt (salinity ~ 10 PSU) (Geburzi et  al. 
2020; Nour et  al. 2020). Prior research only exam-
ined salinity tolerance at a single temperature (24 °C, 
Mingkid et  al. 2006, 20  °C, Nour et  al. 2021) or at 
two temperatures (19 and 23  °C, Nour et  al. 2022) 
but ignored the interactive effects of temperature and 
salinity. Multiple-driver studies in the native crab 
Carcinus maenas showed interactive effects of salin-
ity and temperature where negative effects of low 
salinity on survival are mitigated at high temperatures 
(abbreviated as TMLS) (Spitzner et al. 2019; Šargač 
et al. 2021; Torres et al. 2021a). To account for inter-
active effects and future warming scenarios, in this 
work, we used a mechanistic approach (sensu Boyd 
et al. 2018) to assess the response to low salinity in 
a multiple-driver set-up. In addition, there seems to 
be a high level of genetic diversity within populations 
of H. takanoi from both the North and Baltic Seas 
(Geburzi et al. 2020) that could be reflected in vari-
ability in responses to temperature and salinity among 
larvae from different females. Henceforth, it is essen-
tial to quantify larval performance in larvae from dif-
ferent females and populations located both at and 
away from the edge of the distribution range, as well 
as quantifying the genetic differentiation among those 
specific populations.

Therefore, we carried out a multi-population 
study of H. takanoi, by focusing on populations of 
the North Sea and SW Baltic Sea. To assess poten-
tial local adaptations to low salinity we included a 
population located near the distribution limit in the 
Baltic Sea (Neustadt) and the first established Baltic 
Sea population (Kiel) (Fig.  1a). We compared those 
to two North Sea island populations (Helgoland and 
Sylt) that are exposed to seawater conditions year-
round. We quantified the larval responses to tempera-
ture and salinity and determined the genetic structure 
of the populations under study. The experiments on 
larval responses aimed at: (1) Determining the combi-
nation of temperature and salinity regimes that allows 
for larval survival and development. (2) Quantifying 
interactive effects of the temperature and salinity, at 
thermal ranges that are also expected from future cli-
mate change. The quantification of genetic variability 
may be an indicator of the degree of differentiation 
between the populations under study. Specifically, 
genetic homogeneity in concert with differences in 
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larval performance would suggest either maternal 
effects or rapid local adaptation across the introduced 
range.

Materials and methods

Female collection and maintenance, larval rearing

Ovigerous females of Hemigrapsus takanoi (aver-
age carapace widths: Helgoland 14.4 ± 0.4  mm, 
Sylt 14.8 ± 1.7  mm, Kiel 14.6 ± 1.0  mm, Neustadt 
18.0 ± 1.5  mm) were collected from four locations 
of the North and Baltic Seas coastal areas during 
summer (July 2021) in the middle of one reproduc-
tive period (Fig.  1a). During low tide, ovigerous 
females from the North Sea were collected by hand 
in the intertidal, from under rocks, small boulders, 
and mussel beds at the islands of Helgoland and Sylt 
(seawater conditions: 33 PSU). Ovigerous females 

from the Baltic Sea (Kiel and Neustadt) were col-
lected by scraping the fouling communities in and 
close to marinas using a scraping scoop (mesh size 
0.5  mm). Females were found in water depths of 
1–2 m in clumps of blue mussel (Mytilus edulis) on 
the floor on fine sediment or on artificial walls e.g. of 
floating pontoons and waterside promenades in Bal-
tic Sea water (Kiel: 15 PSU and Neustadt: 9.5 PSU). 
After collection, females (from Sylt, Kiel, and Neu-
stadt) were transported to the laboratory on Helgo-
land (Alfred-Wegener-Institut, Helmholtz-Zentrum 
für Polar- und Meeresforschung, Biologische Anstalt 
Helgoland) in individual 1 L-containers filled with 
500 ml water from the collection site. The individual 
containers were placed inside Coleman® coolers to 
ensure temperature stability during transport. Earlier 
studies showed that transport stress is negligible with 
this procedure (Šargač et  al. 2021, 2022), thus no 
transport stress was simulated for animals collected 
on Helgoland.

Fig. 1  a Map of the collection sites (yellow triangles) for the 
four tested populations on Helgoland and Sylt (North Sea), and 
Kiel and Neustadt (Baltic Sea); blue points represent presence 
data from GBIF.org (GBIF 2022). b Experimental design to 
study the responses of larvae of H. takanoi from four different 
populations to different salinity and temperature conditions. 

Larvae of H.takanoi were reared from hatching to megalopa at 
four different temperatures: 15, 18, 21, and 24 °C, represented 
in the picture from light red (15 °C) to darker red (24 °C) and 
5 salinities: 10, 15, 20, 25, 33 PSU represented by the borders 
from grey (10 PSU) to dark blue (33 PSU). Larvae were reared 
in 5 replicates of 10 individuals each
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In the laboratory, females were kept until hatch-
ing at 18  °C in individual 5 L-aquaria in natural 
UV-treated water at salinities corresponding to those 
at their respective sampling site: Helgoland & Sylt 
(33 PSU), Kiel (15 PSU) and Neustadt (10 PSU) 
and a 12:12  h light–dark cycle. Females were fed 
with shrimps (Crangon crangon) twice per week; 
water was changed daily to ensure high water qual-
ity at hatching. To minimise the effects of the field 
embryonic environment, we only used larvae that 
hatched later than 5 days after collection. In addition, 
to minimise the effect of the laboratory embryonic 
environment (i.e. maintenance time of females in the 
laboratory) we only used larvae that hatched within 
35  days of collection (most of the females released 
larvae after 10–20  days). Variations in incubation 
time would not affect our results with regards to the 
combined effects of temperature and salinity because 
of the orthogonal nature of the experiment. How-
ever, such variation could drive population effects. 
Hence, for every combination of temperature and 
salinity, we checked through Pearson correlations if 
incubation time explained variations in performance 
of larvae from different females and populations (i.e. 
survival, duration of development, and growth rates: 
Figs. S1–S4). Most correlations were not significant 
and explained a very low percentage of variation in 
larval performance (exceptions: three cases, Figs. S1 
and S4). Instead, we found important variations in 
larval performance for females releasing larvae after 
similar incubation times as well as small variations 
among larvae released after different incubation times 
(e.g. Fig. S1). Hence, we did not consider incubation 
time as a response variable any further. In addition, 
as a part of the design, we maintained all females at 
the salinity and temperature conditions measured at 
the time of collection at the habitat of origin (Fig. 1). 
Both maintenance of the females and larval rear-
ing were performed following standard rearing tech-
niques (Torres et al. 2021b).

Freshly hatched larvae from each female were 
assigned randomly to one of 20 treatments. The 
experimental design consisted of a factorial design 
based on the combination of 4 temperatures: 15, 18, 
21, and 24  °C and 5 salinities: 10, 15, 20, 25, and 
33 PSU (Fig.  1b). The chosen salinities range from 
the salinity found in Neustadt (10 PSU) to that found 
in Helgoland and Sylt (33 PSU). The chosen tem-
peratures cover the range of temperatures typical for 

summer and those expected due to warming (Bel-
kin 2009; Gräwe et al. 2013; Reusch et al. 2018; de 
Amorim and Wiltshire et al. 2023).

Survival and duration of development, dry mass, 
carbon and nitrogen content, and growth rates were 
assessed after exposure to the experimental condi-
tions mentioned above. Each treatment consisted of 
five replicates (60 ml glass-beakers): ten larvae were 
randomly allocated to each replicate beaker. Experi-
ments were repeated with larvae originated from 13 
different females (i.e., Sylt: 4, Helgoland: 3, Kiel: 3, 
and Neustadt: 3). The position of the experimental 
vials was changed within each temperature-controlled 
room after each daily water change.

Larval rearing was performed in four temperature-
controlled rooms (± 1  °C); the rooms are part of an 
array of temperature-controlled rooms of the same 
size at the Marine Station of Helgoland, constructed 
with identical materials, temperature regulation sys-
tems, similar type of shelves and lighting conditions 
(set to a 12:12  h light–dark cycle) that ensure iden-
tical rearing conditions to avoid confounding effects. 
Natural seawater was UV-treated, filtered (2 µm mesh 
size), and aerated seawater was used for the experi-
ments. Experimental salinities were obtained by dilut-
ing seawater with appropriate amounts of tap water. 
Water and food (freshly hatched Artemia sp. nauplii 
ad  libitum, Great Salt Lake Artemia) were changed 
daily. During the daily water change, dead larvae and 
moults were discarded and the larval stage of survi-
vors was determined.

Elemental analysis

We quantified dry mass and elemental composi-
tion (i.e., carbon and nitrogen content) for freshly 
hatched zoea I and freshly moulted megalopa. For 
each experiment (i.e., for larvae from each female of 
origin), we sampled 3 replicates of 50 zoea I, as well 
as all the obtained megalopa. Furthermore, freshly 
hatched zoea I originated from additional females 
were also sampled (giving the following total number 
of females: Helgoland: 6; Sylt: 6; Kiel: 6; Neustadt: 
4). During sampling, larvae were rinsed with dis-
tilled water, gently blotted dry with tissue (Kimtech® 
delicate task wipes), placed in a pre-weighted tin 
cartridge and stored at − 20  °C for further analysis. 
To quantify the dry mass, samples were freeze-dried 
for 48 h (Christ Alpha 1–4 freeze-drier) and weighed 



 J. P. Geißel et al.

1 3
Vol:. (1234567890)

using a microbalance (Cubis ® MCA2.75S-2SOO-
M Sartorius Lab Instruments GmbH & Co. KG). 
Carbon and nitrogen content were determined using 
an elemental analyzer (Vario MICRO cube CHNS 
analyser, Elementar Analysensysteme). In decapod 
crustaceans, carbon content is considered a proxy for 
lipids reserves, while nitrogen is the proxy for protein 
content (Dawirs 1986; Dawirs et al. 1986; Anger and 
Harms 1990).

Population genetics analyses (DNA extraction, 
amplification, and sequencing)

We amplified and sequenced a 618-base-pair (bp) 
fragment of the mitochondrial cytochrome oxidase 
subunit I (COI) gene, using the universal prim-
ers (LCO1490 and HC02198, Folmer et  al. 1994). 
Sequences were obtained from 68 crabs (Helgoland: 
6, Sylt: 24, Kiel: 19, Neustadt: 19) that were pre-
served in 97% ethanol and stored at − 20 °C prior to 
molecular analysis. Total DNA was extracted from 
pereiopod muscle tissue using the Qiagen DNeasy® 
Blood & Tissue kit following the manufacturer’s pro-
tocol for tissue samples except for the last step where 
DNA was eluded by adding 100 µl of elution buffer 
and centrifuged at 10,000 rpm. DNA purity and con-
centration were assessed using the Nanodrop Spectro-
photometer (NanoDrop ONE ThermoFisher). DNA 
was used as a template for Polymerase chain reaction 
(PCR) amplification using PuReTaq® Ready-To-
Go™ polymerase (Cytiva). All PCRs were carried 
out in a 25 µl reaction mix containing 2 µl DNA, 1 µl 
BSA and, 2.5 µl (5 µM) of each forward and reverse 
primer. The amplifications were carried out by a 
(Mastercylcler®) Eppendorf thermocycler with a pro-
gram that consisted of 2 min at 94 °C followed by 35 
cycles of 0.5 min at 94 °C, 1 min at 50 °C and 1 min 
at 72 °C, and a final extension of 10 min at 72 °C. The 
PCR products were Sanger sequenced in forward and 
reverse direction at the Institute of Clinical Molecular 
Biology in Kiel (IKMB).

Data analysis

The response variables were cumulative survival, 
duration of development, instantaneous growth rate, 
and body mass and elemental composition at meta-
morphosis. Cumulative survival was calculated as 
the proportion of larvae surviving from hatching 

to a given life stage. To avoid situations of log(0) 
values, data were transformed using the formula 
p´ = [p(N − 1) + 0.5]/N, where N is the number of 
larvae in the respective replicate (= 10). The pro-
portion of survivors was then transformed into loga-
rithmic and logistic scales. Duration of development 
was defined as the time elapsed from hatching until 
the next stage (e.g. duration of development to the 
megalopa). Body mass (B) was determined as dry 
mass (DW), and carbon (C) and nitrogen content (N) 
in freshly hatched zoea I and freshly moulted mega-
lopa. The instantaneous growth rate was calculated as 
log(BM/BZI)/D, where  BZI is the body mass parameter 
(DW, C, or N) of the freshly hatched zoea I,  BM is 
the body mass parameter of the megalopa, and D the 
duration of development to the megalopa.

The experimental design for larval rearing was 
factorial with 3 fixed and orthogonal factors: popu-
lation (P), salinity (S), and temperature (T). Female 
of origin (F) was nested in the interaction of salinity 
and population, as a random factor. Statistical analy-
sis was carried out in R (version 4.2.2) using a back-
wards model selection approach (Zuur et  al. 2009) 
based on generalised least squares. We used the pack-
ages “nlme” (Pinheiro et al. 2019), and the functions 
“lme” and “gls”. Model selection took place in two 
steps. First, models for random terms were fitted with 
restricted maximum likelihood (REML). Second, the 
model with the best random structure was refitted 
using maximum likelihood (ML), and selection was 
carried out of the fixed structure. In both cases, model 
selection was based on the corrected Akaike informa-
tion criterion (AICc).

For survival, the best models retained all 2-way 
interactions (see “Results”). For the subsequent 
exploration of effects, we fitted quadratic models 
to the survival data instead of performing multiple 
comparisons using a post-hoc test. In particular, we 
used polynomial models to estimate the temperature 
and salinity at which survival was maximized at each 
population.

For duration of development, dry mass, elemental 
composition, and growth we needed to perform mul-
tiple separate analysis strains as not all larvae meta-
morphosed to megalopa at all factor combinations 
(e.g. we had low survival in Baltic populations) and 
the design became disconnected (Table 1). For dura-
tion of development, four separate statistical analy-
sis were carried out as follows: (1) focus on three 
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salinities (20, 25, and 33 PSU), two temperatures 
(21 and 24  °C) and three populations (Helgoland, 
Sylt, and Kiel). (2) Focus on all populations but at 
one salinity (25 PSU) and two temperatures (21 and 
24  °C). (3) focus on three salinities (20, 25, and 33 
PSU), three temperatures (18, 21, and 24  °C) but 
only for Helgoland and Sylt populations; (4) Includ-
ing all temperatures (> 15 °C), but only one salinity 
(33 PSU) and the populations from Helgoland, Sylt, 
and Kiel. Likewise, four separate analyses were con-
ducted for body mass and growth: (1) With focus 
on two salinities (20 and 25 PSU), two temperatures 
(21 and 24  °C), and three populations (Helgoland, 
Sylt, and Kiel). (2) Focus on two salinities (25 and 
33 PSU), three temperatures (18, 21, and 24 °C), and 
two populations (Sylt and Helgoland). (3) Including 
all populations but at only one salinity (25 PSU) and 
temperature (24 °C). (4) Including all populations but 
only one combination of salinity (20 PSU) and tem-
perature (21 °C).

To assess genetic differentiation, the COI 
sequences were visually inspected for sequenc-
ing mistakes, assembled, aligned, and trimmed 
using the bioinformatics software Geneious Prime 
(Ver.2020.0.3 Kearse et  al. 2012). All subsequent 
population genetic analysis were conducted in the R 

environment (R version 4.2.2; 2022). Haplotype net-
work was produced using the R packages ggplot2 
(Wickham 2016), scatterpie (Guangchuang 2022), 
and rworldmap (South 2011). Population differen-
tiation was calculated using Jost´s D and PhiST with 
the packages “adegenet” (Jombart 2008) and statis-
tical parsimony (Templeton et  al. 1992) in “pegas” 
(Paradis 2010) followed by bootstrapping with 1000 
replicates.

Results

For simplicity, we use the term “North Sea popula-
tions” for larvae obtained from Sylt and Helgoland 
and “Baltic Sea populations” for those obtained from 
Kiel and Neustadt. However, we want to emphasise 
that we do not claim that these animals represent 
the whole respective seas. Likewise, we refer to the 
animals from one sampling site as local popula-
tions without inferring that these “populations” are 
separated or distinctive in terms of connectivity or 
genetics. Readers are advised to exercise caution and 
refrain from making unwarranted generalizations 
based on these labels, as the representativeness of the 
samples may not extend to the broader characteristics 

Table 1  Hemigrapsus takanoi. Designs used in model selec-
tion procedures, considering the effects of temperature, salin-
ity, and population. Different analysis considered different 
treatment combinations because of lack of data at some com-

binations, due to larval mortality. Symbols: T: Temperature, S: 
Salinity, P: population. Temperatures are in °C and salinities 
are in PSU (omitted from the table for ease of reading)

Terms Analysis 1 Analysis 2 Analysis 3 Analysis 4

Duration of development
 Included T = 21, 24

S = 20, 25, 33
P = Helgoland, Sylt, Kiel

T = 21, 24
S = 25
P = Helgoland, Sylt, Kiel, Neustadt

T = 18, 21, 24
S = 25, 33
P = Helgoland, Sylt

T = 18, 21, 24
S = 33
P = Helgoland, Sylt, Kiel

 Removed T < 21
S < 20
P = Neustadt

T < 21
S ≠ 25
P = None

T < 18
S < 20
P = Kiel, Neustadt

T < 18
S ≠ 33
P = Neustadt

 Starting model T + S + P + 
T:P + T:S + S:P + T:S:P

T + P + T:P T + S + P + 
T:P + T:S + S:P + T:S:P

T + P + T:P

Dry mass, elemental composition, and growth rate
 Included T = 21, 24

S = 20, 25
P = Helgoland, Sylt, Kiel

T = 18, 21, 24
S = 25, 33
P = Helgoland, Sylt,

T = 24
S = 25
P = All

T = 21
S = 20
P = All

 Removed T < 21
S < 20, S = 33
P = Neustadt

T < 18
S < 25
P = Kiel, Neustadt

T < 24
S ≠ 25
P = None

T ≠ 21
S ≠ 20
P = None

 Starting model T + S + P + 
T:P + T:S + S:P + T:S:P

T + S + P + 
T:P + T:S + S:P + T:S:P

P P
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of the North and Baltic Seas or the specific localities 
in question.

Larval survival, duration of development, and growth 
rates

Larvae succesfully developed to megalopa at tem-
peratures > 15  °C and salinities > 10 PSU. However, 
larval survival varied considerably among popula-
tions and it was contingent on temperature-salinity 
combinations (Fig. 2); best statistical models retained 
interactions between population, temperature, and 
salinity (Table  S1). At 15  °C, larvae failed to reach 
the megalopa stage at all salinity treatments, irrespec-
tive of female of origin or population. Low survival 
at 15  °C was found for larvae hatching from most 
females, already at the zoea II, especially at 10 PSU 
(Fig. S5). Additionally, at 10 PSU, there were no sur-
vivors to zoea III, irrespective of female of origin, 
population, and temperature (Fig. S5). Only in the 
temperatures ≥ 18  °C and salinities ≥ 15 PSU suc-
cessful development to megalopa occurred. Larvae 
from North Sea populations reared in the salinity 
range 20–33 PSU showed an increasing trend in sur-
vival towards the highest temperatures (Fig. 2), with 
quadratic models indicating a maximum survival at 

the maximum temperature tested, 24 °C (Fig. 3). This 
pattern was already observed at the zoea II and then 
exacerbated in the late zoeal stages (Fig. S5). By con-
trast, for all studied populations, survival was consist-
ently low at 10 and 15 PSU, irrespective of tempera-
ture, and at 15 °C irrespective of salinity.

When reared in the salinity range 20 – 33 PSU, 
larvae from the Baltic Sea populations had reduced 
survival (Fig. 2) compared to the North Sea popula-
tions. Importantly, in the Baltic populations, larval 
survival was consistently low at salinities 10 and 15 
PSU, which are within the salinity range experienced 
by adults in the natural habitat (i.e., SW Baltic Sea). 
Except for larvae from Kiel in the 33 PSU treatment, 
larval survival increased with temperature. Within 
the Baltic Sea, the Kiel population showed a fairly 
strong and positive response to high temperatures (21 
and 24  °C) as compared to those of Neustadt (very 
low survival, < 10%), but weaker than the one exhib-
ited by the North Sea populations (> 25%). For the 
Kiel population, survival of larvae reared at 21 and 
24 °C, had an estimated maximum at a slightly lower 
salinity (Kiel 24–25.5 PSU vs. Sylt & Helgoland 
25.5–27.5 PSU) than those of the North Sea popu-
lations (Fig.  4); the difference between those salini-
ties was small (~ 1 PSU difference between Kiel and 

Fig. 2  Hemigrapsus takanoi. Average survival from hatch-
ing to megalopa as a response to temperature and salinity dis-
criminated by population. Comparison between populations 
from the North Sea: Helgoland and Sylt (left panels) and the 
Baltic Sea: Kiel and Neustadt (right panels) by temperature 
(15, 18, 21, 24  °C) and salinity (33 PSU, orange diamonds; 

25 PSU, purple upwards triangles; 20 PSU, green circles; 15 
PSU, blue squares, 10 PSU, red downwards triangles). For the 
North Sea populations, the habitat/embryonic salinity was 33 
PSU, for Kiel 15 PSU and for Neustadt 10 PSU. Data shown 
as means ± SE for larvae produced by each female from each 
population (Helgoland: 3; Sylt: 4; Kiel: 3; Neustadt: 3)
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Fig. 3  Quadratic polynomial models fitted to survival to the 
megalopa in response to temperature (°C) for different com-
binations of salinity and population. Models with significant 
trends for quadratic terms are marked with a red arrow and 
label indicating the temperature of highest predicted survival 
by salinity and population. Blue points indicate mean observed 

survival by female. No predictions could be made for the Neu-
stadt population due to the low number of survivors and there-
fore high number of zeros in the data. For the North Sea popu-
lations, the habitat/embryonic salinity was 33 PSU, for Kiel 15 
PSU and for Neustadt 10 PSU

Fig. 4  Quadratic polynomial models fitted to survival in 
response to salinity (PSU) for different combinations of tem-
perature and population. Models with significant trends for 
quadratic terms are marked with a red arrow and label indicat-
ing the salinity of highest predicted survival by temperature 
and population. Blue points indicate mean observed survival 

by female. No predictions could be made for the Neustadt pop-
ulation due to the low number of survivors and therefore high 
number of zeros in the data. For the North Sea populations, the 
habitat/embryonic salinity was 33 PSU, for Kiel 15 PSU and 
for Neustadt 10 PSU
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Helgoland) and the survival curve was flat, showing 
that survival varied little within that range. In addi-
tion, the estimated salinity giving the maximum sur-
vival in Kiel (24–25 PSU) was much higher than the 
salinity surrounding the local population (~ 15 PSU). 
Larvae from Neustadt showed lower survival than 
those from the Kiel population already from zoea II 
(Fig. S5).

In the North Sea populations there was an impor-
tant variation in survival among larvae from differ-
ent females at conditions where survival was high 
(salinities ≥ 15 PSU, and temperatures ≥ 18  °C); 
some females produced larvae showing high survival 
at almost all conditions tested. In some treatments, 
a small percentage of larvae (< 20%), developed 
through an additional zoea VI before metamorphos-
ing to megalopa (Fig. S6, Table S2).

Average dry mass (DW), carbon (C) and nitrogen 
(N) content of freshly hatched zoea I varied consider-
ably among larvae originating from different females 
within each population. In general, averages fol-
lowed a trend (Fig. 5) with higher body mass in lar-
vae from Helgoland and Sylt and lowest in those from 

Neustadt, although the best models did not retain 
population as an explanatory variable.

Dry mass (Fig. 6a), carbon and nitrogen content of 
megalopa (Fig. S8) varied among populations as well 
as among temperature-salinity combinations. Dry 
mass increased with temperature and salinity with 
a maximum at 25 or 33 PSU depending on popula-
tion (interactions population by salinity, and temper-
ature by salinity were retained in the best models: 
Table  S7). When larvae from the Neustadt popula-
tion were reared at 24 °C, the dry mass of megalopa 
appeared to be slightly lower but population was not 
retained in the best model (Table S7). For carbon and 
nitrogen content, the additive term was retained in the 
model (Table S8).

Duration of development to megalopa (Fig.  6b) 
decreased with increasing temperatures (range 18 
– 24  °C; no larvae survived at 15  °C), following 
a nonlinear pattern which varied among popula-
tions. The best model retained interactions of salin-
ity by population and temperature as a main factor 
(Table S6). At 18 °C, larvae from the North Sea pop-
ulations developed in a shorter time (30-40 days) than 

Fig. 5  Hemigrapsus takanoi. Average dry mass (a), carbon (b) 
and nitrogen content (c) of freshly hatched zoea I, from four 
populations (North Sea: Helgoland and Sylt; Baltic Sea: Kiel 
and Neustadt). Symbols indicate salinity experienced during 
embryonic development (reflecting the salinity at the collection 

site): 33, orange diamonds; 15, blue squares and 10, red trian-
gles. Data shown as means ± SE for larvae produced by each 
female of each population (Helgoland: 6; Sylt: 6; Kiel: 6; Neu-
stadt: 4). For the North Sea populations, the habitat/embryonic 
salinity was 33 PSU, for Kiel 15 PSU and for Neustadt 10 PSU



Interactive responses to temperature and salinity in larvae of the Asian brush‑clawed crab…

1 3
Vol.: (0123456789)

those from the Baltic Sea populations (45–55 days). 
There was no evidence of a consistent effect of salin-
ity on duration of development (tested range: 20–33 
PSU; Table  S6). For the North Sea populations, 

duration of development was shorter in seawater 
than for the Baltic Sea (depending on temperature: 
20–37  days for North Sea and 29–50  days for the 
Baltic Sea). For larvae of the North Sea populations, 

Fig. 6  Hemigrapsus taka-
noi. Dry mass (a), duration 
of development (b), and 
instantaneous growth rate 
in terms of dry mass (c) 
from hatching to mega-
lopa. Comparison between 
populations from the North 
Sea (Helgoland and Sylt) 
and the Baltic Sea (Kiel and 
Neustadt) by temperature 
(18, 21, and 24 °C) and 
salinity (33 PSU, orange 
diamonds; 25 PSU, purple 
upwards triangles; 20 PSU, 
green circles; 15 PSU, 
blue squares). Data shown 
as means ± SE for larvae 
produced by each female of 
each population (Helgoland: 
3; Sylt: 4; Kiel: 3; Neustadt: 
3). Means based on a single 
value were removed (see 
Fig. S7 in supplementary 
materials). For the North 
Sea populations, the habitat/
embryonic salinity was 33 
PSU, for Kiel 15 PSU and 
for Neustadt 10 PSU
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there were no clear effects of salinity on duration 
of development. For the Helgoland population, the 
effect of temperature on duration of development 
was smaller than for Sylt; in addition, larvae from the 
Helgoland population developed comparably faster 
across salinities (especially in the lower tempera-
tures: Fig. 6b). In the Baltic Sea, for larvae of the Kiel 
population, lower salinity (20 and 25 PSU) caused a 
reduction in duration of development. This reduction 
was slightly stronger at 24  °C than at 21  °C but we 
did not find strong evidence in favour of retaining the 
3-way full factorial model (ΔAIC = 3: Table S6).

Instantaneous growth rate to megalopa (in terms of 
dry mass) increased with temperature for larvae from 
all populations (Fig.  6c, Table  S10). There was no 
evidence of a consistent effect of salinity or popula-
tion of origin on instantaneous growth rates; the best 
model retained the interaction between salinity and 
population (Table S10) or the three 3-way interaction 
(Helgoland and Sylt populations). We did not find 
evidence of survival rates being predictors of growth 
rates, i.e., populations with higher survival rates did 
not show higher growth rates.

There was a negative relationship between dura-
tion of development and body mass (dry mass, car-
bon and nitrogen content) of the megalopa (Fig.  7, 
Table  S11): larvae that reached the maximum dry 
mass (or reserves), did so in the shortest time (i.e., 
those reared at 24 °C). When reared at lower salini-
ties, larvae did not seem to compensate by extending 
the duration of development, in order to maintain dry 
mass; instead, larvae reached metamorphosis with 
different dry mass but at similar times across salini-
ties (Fig. 8).

Molecular analysis

We found six mitochondrial haplotypes, of which four 
are shared haplotypes and two are private haplotypes. 
Two haplotypes (H1 and H2) were present in sam-
ples from all four populations, i.e., shared between 
all populations. The haplotype H3 was found in one 
animal from Neustadt and one from Sylt and H4 was 
found in two animals from Neustadt and one from 
Helgoland, i.e., both were shared between North and 
Baltic Sea populations. Only two haplotypes were 
private for one population each (H6: Neustadt; H5: 
Sylt). No significant differences between the popula-
tions were found. Neither the PhiST nor Jost’s D did 

show significant differentiation among populations 
(Tables S12–S16).

Discussion

We found that survival and growth responses to tem-
perature and salinity, in larvae of Hemigrapsus taka-
noi vary substantially among populations of the North 
and Baltic Seas. Survival was particularly low in 
larvae hatching from females collected in the south-
western Baltic Sea populations (Kiel and Neustadt), 
where salinities are low. By contrast, larvae hatching 
from females from the North Sea populations gener-
ally exhibited higher survival; with larvae growing at 
higher rates and achieving higher dry mass at higher 
temperatures. The observed patterns emphasise the 
role of temperature and salinity in the dynamics of 
invasions and the importance of quantifying intraspe-
cific variation in larval performance. This is consist-
ent with findings for other non-native crustacean spe-
cies: temperatures typical of warm summers leads to 

Fig. 7  Hemigrapsus takanoi. Integrated responses of carbon 
content and duration of development of megalopae from three 
populations (Helgoland, Sylt, Kiel) reared at three tempera-
tures and four salinities. Salinities (PSU) are shown by colour 
(33: orange, 25: violet, 20: green), and temperature (°C) is 
shown as symbols (24: triangles, 21: circles, 18: squares) and 
surrounded by ellipses for easier identification. Data from Neu-
stadt are not shown due to the low number of survivors. For 
the North Sea populations, the habitat/embryonic salinity was 
33 PSU, for Kiel 15 PSU 
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higher survival, shorter duration of development, and 
increased dry mass and in some cases also higher 
reserves (Giménez et  al. 2020; Griffith et  al. 2021; 
Espinosa-Novo et  al. 2023). In many invertebrates, 
high body mass at metamorphosis may be a predic-
tor of post metamorphic performance, with larger 
individuals performing better (Pechenik 1999; Gimé-
nez 2006; Torres et  al. 2016). Furthermore, because 
faster developing larvae would settle earlier in the 
season, juveniles should experience summer tempera-
tures more frequently which could enhance juvenile 
growth. Moreover, salinity could play an important 
role considering the differences in tolerance to low 
salinities between the non-native crab H. takanoi and 
the native crab Carcinus maenas (Šargač et al. 2021) 
that coexist in the benthic habitat We divided the fol-
lowing discussion in two sections: first we discuss the 
implication and potential drivers of the observed vari-
ation in the larval performance among populations; 
second, we examine in detail the apparent mismatch 
between the larval phenotype and the environmen-
tal conditions in the Baltic Sea, near the distribution 
limit.

Larval performance: potential drivers and 
implications

Our results highlight the importance of quantify-
ing variation in performance of larvae from differ-
ent females within and among populations. Lar-
val performance varied considerably at the higher 

temperature and salinity combinations, in agreement 
with other studies on decapod crustaceans (Spitzner 
et al. 2019; Torres et al. 2020; Espinosa-Novo et al. 
2023). Furthermore, disregard of interpopulation 
variability could lead to wrong estimations of spe-
cies tolerance as shown in this study by the contrast-
ing patterns between the populations of the North and 
Baltic Seas which have also been found in the Euro-
pean shore crab (Šargač et  al. 2021). When evaluat-
ing performance of invasive species, extrapolations 
based on data obtained in native populations are risky 
and could be misleading, especially for local popula-
tions existing at the distribution limit, where subop-
timal conditions experienced by adults might impact 
larval performance. In addition, our results suggest 
that range expansions (and invasions) into low salin-
ity habitats are very challenging for species of marine 
origin, in agreement with previous studies (Ojaveer 
et al. 2010; Nasrolahi et al. 2012; Paiva et al. 2018).

An important question was whether larvae pro-
duced in Baltic Sea populations would show signs 
consistent with local adaptation to low salinity either 
through a shift in the optimum or higher degree 
of euryhalinity than those of the North Sea. Local 
adaptation would contribute to the formation of self-
sustaining populations, which increases connectiv-
ity and favours range expansion through source-sink 
dynamics (Giménez et  al. 2020). We observed a 
slight shift in the optimal salinity between popula-
tions from the North Sea and the Baltic Sea (Fig. 3 
Kiel vs. North Sea populations) and reduced duration 

Fig. 8  Hemigrapsus takanoi. Map of plotted frequencies of 
the found haplotypes in the four assessed populations: Helgo-
land and Sylt (North Sea), and Kiel and Neustadt (Baltic Sea). 
The size of the circles is relative to the sample size (Helgoland: 

n = 6; Sylt: n = 24; Kiel: n = 19; Neustadt: n = 19); colours indi-
cate the respective haplotype. The pies for Helgoland, Kiel, 
and Neustadt are offset from their coordinate to avoid over-
lap—offset is indicated by the dashed line



 J. P. Geißel et al.

1 3
Vol:. (1234567890)

of development at moderately low salinities in Kiel 
as compared to the North Sea populations. How-
ever, those shifts in the responses were contingent on 
temperatures (≥ 21 °C) that may not (yet) be experi-
enced in the Baltic Sea for sufficiently long periods. 
The response to salinity was consistent with reports 
on a native Japanese population (Mingkid et al. 2006) 
and from a previous study on the population in Kiel 
(Nour et al. 2021, 2022). In addition, our population 
genetic analysis showed no evidence of a clear sepa-
ration between the populations and several shared 
haplotypes. Although we had a restricted number of 
samples, our genetic results are consistent with those 
of Geburzi et al. (2020, 2022), based on a much larger 
sample size and on nine polymorphic microsatel-
lites. In their study, animals from Neustadt appeared 
more distinct from the North Sea populations than 
the Kiel population. Our results based on mitochon-
drial sequence data do not support this result statisti-
cally, although we did find one private haplotype in 
Neustadt and two haplotypes that were absent from 
the other investigated site in the Baltic Sea. These 
may be the signature of multiple introductions at this 
site. Multiple introductions of H. takanoi in Europe 
(Markert et  al. 2014; Makino et  al. 2018) could be 
an explanation for the surprisingly high diversity and 
lack of founder effect (Roman and Darling 2007). 
While multiple introductions are often considered 
advantageous for the success of non-native popula-
tions (i.e. they increase genetic diversity and provide 
novel substrate for adaptive evolution), the above-
mentioned differences in larval performance pro-
vide only a very weak evidence consistent with local 
adaptation. Hence, the fact that H. takanoi was only 
recorded in the Baltic Sea since 2014 (Geburzi et al. 
2015) it would be still early to find heritable physio-
logical shifts as observed in other marine crustaceans 
establishing populations in low salinity habitats (Lee 
et al. 2011). Other approaches such as high-through-
put sequencing could help us to better resolve the 
genetic structure of H. takanoi  to examine popula-
tions spanning the North and Baltic Seas.

Maternal effects might explain the observed 
responses: for instance, females from Neustadt (pro-
ducing larvae that performed poorly under any con-
dition) may be more stressed than females from the 
other sites. The reduced dry mass, and carbon and 
nitrogen content of freshly hatched larvae, for both 
Baltic populations as compared to the North Sea 

populations may be driven by allocation of reserves 
by females and higher energy losses during embryo-
genesis. Salinity experienced by females is known 
to drive dry mass, carbon and nitrogen reserves in 
eggs and embryos, which instead affect body mass 
at hatching and larval performance (Giménez and 
Anger 2001, 2003; González-Ortegón and Giménez 
2014; Torres et  al. 2020). In addition, low salinities 
experienced during embryogenesis appear to drive 
larval performance through acclimation (Giménez 
and Anger 2003) or stress effects not associated to a 
reduction in reserves at hatching. For instance, in the 
European shore crab C. maenas, there is evidence of 
post-zygotic maternal effects whereby exposure of 
embryos to low salinity affects negatively the adap-
tive responses to low salinity (Torres et  al. 2020; 
Šargač et al. 2021).

In synthesis, we did not find clear evidence of local 
adaption to survive low salinities in larvae of H. taka-
noi, nor any evidence of population differentiation. 
Stress effects associated to low salinity during embry-
onic development could explain lower reserves and 
poor performance in larvae from the Baltic popula-
tion, especially from Neustadt.

Phenotype–environmental mismatches

Given the low performance at low salinity, it appears 
that the larval physiological phenotype does not 
match the low salinities of the Baltic Sea, except per-
haps at temperatures ≥ 21 °C. Hence, a critical point is 
whether populations of the Baltic Sea are maintained 
through subsidy from the North Sea or (in addition) 
through successful larval development in areas of the 
Baltic Sea, where salinities are higher, for example in 
deep waters (Corell et al. 2012). An initial assessment 
can be performed combining our experimental results 
with field data of temperature and salinity (Fig.  9). 
For instance, based on our experiments, moderate 
survival in the Kiel fjord is likely (salinity > 15 PSU) 
with the caveat that temperatures should be ≥ 21  °C 
for at least the 20 days needed to complete the zoeal 
development (see Fig. 6b).

In the Bay of Neustadt, and the greater Bay of 
Lübeck, survival until megalopa appears unlikely 
under the salinities on site (< 15 PSU). Because toler-
ance to low salinities (< 33 PSU) is restricted to high 
temperatures, larval success would be possible only 
if the phenological window of larval development 
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matches the windows of high temperature (in sum-
mer) and salinities are > 15 PSU. However, in the 
Bay of Neustadt, salinities higher than 15 PSU only 
occur in winter and springtime, when storms force 
North Sea water masses into the Baltic Sea (Lehmann 
et  al. 2022). Thus, currently there is a mismatch 
between the larval physiological phenotype and the 
environmental conditions at Neustadt. We therefore 
hypothesize that adults of H. takanoi at the distribu-
tion limit studied here (Mecklenburg Bight) are part 
of a (demographic) sink population (Pulliam 1988) or 
individuals perform ontogenetic migrations. In such 

a case, subsidies may occur through two nonexclu-
sive scenarios: (1) Adults from populations located at 
areas of high salinity disperse into areas of low salin-
ity. (2) Larvae or adults are introduced into areas of 
low salinity by human mediated transport, e.g. in the 
fouling community of ships and boat hulls. Alter-
natively, such populations are sustained through a 
third mechanism: (3) Export strategy (Queiroga and 
Blanton 2004): i.e., early larval stages migrate to 
(or females release larvae in) areas, characterized by 
higher salinity, where larvae develop to the mega-
lopa or juvenile stage, which then recolonize areas 

Fig. 9  a Graph showing sea surface temperature (SST) (°C) 
in black dots, sea surface salinity (SSS) in dark blue dots, and 
sea bottom salinity (SBS) (PSU) in Neustadt in light blue dots. 
Red triangles (black frame: temperature and blue frame: salin-
ity) indicate in situ measurements during our field collections. 
b Map of selected locations in the south-western Baltic Sea 

(between Kiel and Neustadt) and the corresponding annual 
sea surface salinity (PSU) fluctuations. Grey shadowed areas 
show summer periods (1st of June until 31st of August). Data 
obtained from Copernicus "Baltic Sea Physics Analysis and 
Forecast" (Generated using E.U. Copernicus Marine Service 
Information; https:// doi. org/ 10. 48670/ moi- 00010)

https://doi.org/10.48670/moi-00010
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of low salinity. Such ontogenetic migration could 
occur between Neustadt and e.g. the Fehmarn Belt 
area (Fig. 9) where salinities are higher. Larval trans-
port would depend on currents (e.g. surface currents 
from Neustadt to Fehmarn Belt: Mittelstaedt 2003); 
zoea I from H. takanoi are known to migrate from 
near-shore hatching sites to more open waters (e.g. 
in the Kiel fjord: Geburzi 2018). The elucidation of 
the actual mechanisms requires field studies quanti-
fying abundance of H. takanoi larvae along the SW 
Baltic Sea, through e.g. plankton samples or the use 
of settlement traps at selected coastal sites. For exam-
ple, a study of the spatial and temporal distribution of 
H. takanoi larvae is needed to determine if there are 
ontogenetic migrations; we should observe a progres-
sive change in the spatial distribution of the differ-
ent larval stages overtime. Additionally, the deploy-
ment of settlement traps would garner insights into 
the presence of megalopa in areas exhibiting lower 
salinity levels. Furthermore, a systematic field survey 
targeting the presence of adult specimens could shed 
light on the spatial distribution of H. takanoi through-
out the SW Baltic Sea and the likelihood of connec-
tivity among nearby populations.

Conclusions

In synthesis, our study shows a strong gradient, from 
the North Sea to the SW Baltic Sea, in the capacity of 
H. takanoi larvae to develop, and a general inability 
to survive until metamorphosis in areas where salin-
ity is lower than 15 PSU. Surviving individuals at 
low salinities showed depressed growth and reduced 
body mass at metamorphosis, which is likely to com-
promise post-metamorphic survival. There was only 
weak evidence of increased tolerance to low salini-
ties in the Baltic populations and no apparent genetic 
differentiation among the studied populations. Those 
patterns could be underpinned by constant subsidy 
from the North Sea that might hinder the establish-
ment of locally adapted larvae in the Baltic Sea. 
Based on our experiments, survival of larvae to 
megalopa is unlikely at the current summer salinities 
experienced at the population limit within the Bal-
tic Sea. Therefore, for populations to persist near the 
range limit, subsidies or complex ontogenetic migra-
tions are needed. A monitoring programme based, 
for example on sampling planktonic larvae, will be 

central to determine if populations are maintained 
by a ontogenetic migrations or through alternative 
mechanisms.
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