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ABSTRACT 20 

Migrating animals perform astonishing seasonal movements by orienting and navigating over 21 

thousands of kilometres with great precision. Many migratory species use cues from the sun, 22 

stars, landmarks, olfaction and the Earth’s magnetic field for this task. Among vertebrates, 23 

songbirds are the most studied taxon in magnetic-cue-related research. Despite multiple 24 

studies, we still lack a clear understanding of when, where and how magnetic cues affect the 25 
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decision-making process of birds and hence, their realised migratory behaviour in the wild. 26 

This understanding is especially important to interpret the results of laboratory experiments in 27 

an ecologically appropriate way. In this review, we summarise the current findings about the 28 

role of magnetic cues for migratory decisions in songbirds. First, we review the 29 

methodological principles for orientation and navigation research, specifically by comparing 30 

experiments on caged birds with experiments on free-flying birds. While cage experiments 31 

can show the sensory abilities of birds, studies with free-flying birds can characterise the 32 

ecological roles of magnetic cues. Second, we review the migratory stages, from stopover to 33 

endurance flight, in which songbirds use magnetic cues for their migratory decisions and 34 

incorporate this into a novel conceptual framework. While we lack studies examining whether 35 

and when magnetic cues affect orientation or navigation decisions during flight, the role of 36 

magnetic cues during stopover is relatively well studied, but mostly in the laboratory. 37 

Notably, many such studies have produced contradictory results so that understanding the 38 

biological importance of magnetic cues for decisions in free-flying songbirds is not 39 

straightforward. One potential explanation is that reproducibility of magnetic-cue experiments 40 

is low, probably because variability in the behavioural responses of birds among experiments 41 

is high. We are convinced that parts of this variability can be explained by species-specific 42 

and context-dependent reactions of birds to the study conditions and by the bird’s high 43 

flexibility in whether they include magnetic cues in a decision or not. Ultimately, this review 44 

should help researchers in the challenging field of magnetoreception to design experiments 45 

meticulously and interpret results of such studies carefully by considering the migration 46 

ecology of their focal species. 47 

 48 

Key words: bird migration, orientation, navigation, geomagnetic map, migration ecology, 49 

magnetoreception, magnetic compass. 50 

 51 
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I. INTRODUCTION  82 

Migration is a worldwide and widespread phenomenon in animals, which may travel up to 83 

tens of thousands of kilometres and connect different continents and oceans during their 84 

seasonal movements (Milner-Gulland, Fryxell & Sinclair, 2011). Migratory birds perform 85 

these movements with astonishing orientation and navigation capabilities, including returning 86 

to specific locations after a journey of several thousands of kilometres (Mouritsen, 2018). For 87 

example, pied flycatchers (Ficedula hypoleuca) return to the same forest patch in Europe, 88 

often to the same nest box, every breeding season after overwintering in the same trees in sub-89 

Saharan Africa year after year (Salewski, Bairlein & Leisler, 2002; Harvey et al., 1984). 90 

Similarly striking side fidelity has been observed in other songbird species (Salewski, Bairlein 91 

& Leisler, 2000; Price, 1981). This accuracy has fascinated people for centuries (Bairlein et 92 

al., 2014) and may be even more astonishing when considering that many songbird migrants 93 

travel at night and reach their population-specific wintering grounds without parental or social 94 

guidance during the autumnal inaugural migration. This requires an innate migratory program 95 

which determines, at its most basic, how long to migrate for and in which direction (clock-96 

and-compass orientation) (Berthold, 1991; Mouritsen & Mouritsen, 2000; Mouritsen, 1998a) 97 

and how to respond behaviourally and physiologically to variation in environmental 98 

conditions en route (Jenni & Schaub, 2003; Schmaljohann, Eikenaar & Sapir, 2022).  99 

Next to ‘orientation’, i.e. use of a compass to determine the direction of movement, 100 

migratory birds can also ‘navigate’, i.e. determine their location on a ‘map’ and use this 101 

information to decide on a compass direction towards the migratory destination (Griffin, 102 

1952). The latter includes ‘true navigation’, i.e. returning to a known location from an 103 
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unknown place (Holland, 2014). Available cues for orientation and navigation are celestial 104 

cues (star patterns, the sun’s position and the sun’s polarisation pattern), the Earth’s magnetic 105 

field, landmarks and olfactory cues (reviewed in Mouritsen, 2018). The Earth’s magnetic field 106 

provides two major information types: first, its dipolar magnetic characteristic provides 107 

information about direction for compass orientation (Fig. 1A). Second, its specific properties, 108 

namely intensity, inclination angle and declination angle, provide predictable geographical 109 

gradients around the globe, serving as map information for navigation (Fig. 1B–F). 110 

With regards to the perception and use of these magnetic cues, songbirds are the most 111 

studied taxon among vertebrates and have been key model organisms for over half a century 112 

(Merkel & Wiltschko, 1965; Emlen, 1970b). This might be explained by songbirds having 113 

several characteristics that make them especially suited for orientation and navigation 114 

research. Many songbird species, especially long-distance migrants, predominantly migrate at 115 

night and independently of other individuals (Papi & Wallraff, 1982; Newton, 2008). As most 116 

juveniles are not guided by parents, siblings or conspecifics during their first migration to the 117 

unfamiliar wintering grounds (Newton, 2008; Pulido, 2007), they provide excellent naïve 118 

experimental units for studying orientation, while the study of adults allows investigation of 119 

experienced birds with successful previous migrations. Additionally, most songbirds follow a 120 

stop-and-go strategy during migration (Åkesson & Hedenström, 2007; Delingat et al., 2006) 121 

with migratory flights during the night (Alerstam, 1990; Schmaljohann, Liechti & Bruderer, 122 

2007), and stopover periods to accumulate energy, rest and recover during the day 123 

(Schmaljohann et al., 2022). This allows researchers to separate migratory activity during the 124 

night from other activities at the stopover site during the day. Their small size further requires 125 

less space in an experimental setup, e.g. in orientation cages (Emlen & Emlen, 1966; Merkel, 126 

1958), and allows adequate caging facilities for large sample sizes. Advantageously, even 127 

under caged conditions many songbirds show key behavioural characteristics that can be 128 

directly linked to migration behaviour in the wild. Specifically, orientation behaviour in 129 
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funnel cages correlates with their vanishing bearing in free flight (Mouritsen, 1998b). Further, 130 

the amount of migratory restlessness (Zugunruhe), i.e. nocturnal movements in caged birds 131 

during migration season, predicts the actual departure motivation in the wild on a night-to-132 

night level (Eikenaar et al., 2014; Berthold, 1973) and the start of migratory restlessness 133 

correlates positively with departure timing within the night (Schmaljohann et al., 2015). 134 

Despite an extensive literature on magnetoreception in songbirds, we still lack a clear 135 

understanding of when, where and how songbirds use magnetic cues for their migratory 136 

decisions in the wild. This becomes particularly obvious when considering the low 137 

repeatability, reproducibility and replicability in magnetic-cue-related studies, which show 138 

very high variability in the birds’ behavioural responses to similar experimental manipulations 139 

[e.g. compare Cochran, Mouritsen & Wikelski (2004) with Chernetsov et al. (2011); 140 

Chernetsov et al. (2017) with Chernetsov et al. (2020); or Fransson et al. (2001) with Bulte et 141 

al. (2017)]. One reason for the high variability might lie in the fact that behavioural decisions 142 

of songbirds are based on a complex interplay of intrinsic (e.g. age, energy stores) and 143 

extrinsic (e.g. wind conditions, time of season) factors (Müller et al., 2016; Schmaljohann et 144 

al., 2022; Jenni & Schaub, 2003). Considering the decision-making processes of the birds and 145 

how they might differ depending on the migration ecology of the species could help to design 146 

more meaningful experiments and thus increase the probability of obtaining more repeatable, 147 

reproducible and replicable results. We therefore encourage researchers of magnetoreception 148 

and readers of the animal orientation and navigation literature to consider the migratory 149 

ecology of the study species when exploring how songbirds use magnetic cues for their 150 

migratory decisions. 151 

The first objective of this review is to summarise the methodological approaches for 152 

assessing magnetic-cue-related hypotheses in migratory songbirds and evaluate their 153 

contribution to understanding these processes in the wild. Our second objective is to review 154 

the specific roles of magnetic cues in the context of migration ecology by focussing on the 155 
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decision-making processes of songbirds in the wild. For this, we summarise how birds might 156 

perceive directional compass information and geographical map information. We then provide 157 

a conceptual framework investigating how magnetic cues might affect migratory decisions 158 

from stopovers to active migratory flight towards their destination. Additionally, we provide 159 

as supporting information (Table S1) a comprehensive list of the primary literature for each 160 

magnetic-cue-related hypothesis. Finally, we hope that our conceptual framework will be an 161 

important step to proper evaluation of the findings of future cage and free-flight studies in the 162 

field of magnetoreception in an ecological context. 163 

 164 

II. METHODOLOGICAL APPROACHES  165 

To study the significance of magnetic cues for orientation- and navigation-related hypotheses 166 

in migratory songbirds, most experimental approaches follow a common structure 167 

incorporating two steps. The first step involves a manipulation altering the information 168 

provided by a magnetic cue that the bird might access (Fig. 2A). In the second step, the 169 

response of the bird to this manipulation is recorded, often in restricted environments, i.e. 170 

cage experiments, but also in free flight (Fig. 2B). Table S1 provides a list of magnetic-cue-171 

related orientation and navigation hypotheses for migratory songbirds. 172 

 173 

(1) Manipulation of perceived magnetic information 174 

An altered magnetic information perception for the bird can be achieved either by (a) 175 

manipulating the cue itself, or by (b) manipulating the (hypothesised) biological sensor for 176 

magnetic perception (Fig. 2A).  177 

 178 

(a) Magnetic cue manipulation  179 

Strategically selected study sites and times can provide natural ‘near-experimental’ 180 

setups to study magnetic orientation and navigation behaviour, e.g. natural magnetic 181 
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anomalies caused by magnetic minerals in the Earth’s crust (Alerstam, 1987; Skiles, 1985) or 182 

weather events (Able, 1982a). As the Earth’s magnetic field varies constantly with patterns 183 

occurring on a scale from decades (secular variation) to days (Bloxham & Gubbins, 1985), 184 

one can also use this natural variation for correlative studies (Benitez-Paez et al., 2021; Wynn 185 

et al., 2020, 2022a,b).  186 

Besides natural changes in the magnetic field, its three major components (Fig. 1) can 187 

be changed artificially: (1) intensity (Fig. 1B); (2) inclination (e.g. Wiltschko et al., 1993; Fig. 188 

1C, D), including the (horizontal) direction of field lines (e.g. Cochran et al., 2004; Fig. 1A; 189 

see Section III); and (3) declination (e.g. Chernetsov et al., 2017, 2020; Fig. 1E, F). The 190 

magnetic field can also be cancelled out, i.e. true-zero magnetic fields (Mouritsen, 1998b), or 191 

constantly moved, providing a non-specific magnetic stimulus (Elbers et al., 2017). Further, 192 

one can imitate the magnetic field of other locations by specifically changing the components 193 

of the magnetic field, which is called ‘virtual (magnetic) displacement’. Virtual magnetic 194 

displacement can be applied either instantaneously (Kishkinev et al., 2015) or continuously 195 

over several days/weeks, simulating a slow migration through space (Fransson et al., 2001; 196 

Bulte et al., 2017). Nevertheless, care should be taken to select a magnetically unequivocal 197 

virtual location, as certain combinations of magnetic properties may be repeated across the 198 

globe (Schneider et al., 2023). Helmholtz-coils (e.g. in Wiltschko, 1968) and three-199 

dimensional Merritt-coils (Merritt, Purcell & Stroink, 1983) are used most frequently, but 200 

other coil arrangements (e.g. Alldred & Scollar 4-Coil, Lee-Whiting 4-Coil, Rubens 5-Coil) 201 

have been used as well (Kirschvink, 1992). As the magnetic field is only manipulated in a 202 

restricted space within the coil system (usually <1 m³), birds have to be caged. 203 

Alongside virtual displacement, actual physical displacement has been used for 204 

decades for navigational studies (e.g. Perdeck, 1958; Thorup et al., 2007; Holland et al., 2009; 205 

Mewaldt, Cowley & Won, 1973; Mewaldt, 1964; Chernetsov, Kishkinev & Mouritsen, 206 

2008b). With a physical displacement, the magnetic cues also change, but interpretations of 207 
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behavioural responses related to the location change must be made carefully, as other cues, 208 

such as landscape and odour, will likely alter as well. During transportation, the birds may 209 

experience a gradual shift in the magnetic cues or other environmental conditions, such as 210 

timing of sunrise and sunset events. If they consider these shifts, they may gradually adjust 211 

their behaviour to the new conditions, so that the effects of the displacement might be less 212 

than expected.  213 

The most non-specific method to manipulate the perceived magnetic field for a bird is 214 

by attaching magnets to the bird. This method was first applied to pigeons (e.g. Larkin & 215 

Keeton, 1976; Keeton, 1971), and later to seabirds (e.g. Mouritsen et al., 2003; Massa et al., 216 

1991), but only recently to songbirds (Packmor et al., 2021).  217 

Further conclusions about the use of the magnetic field by birds can be drawn from 218 

manipulation of other cues that are hypothesised to interact with and complement magnetic 219 

cues, such as location of sunset (e.g. Moore, 1985), polarisation pattern (e.g. Muheim, Phillips 220 

& Åkesson, 2006b; Schmaljohann et al., 2013b), and stellar cues (e.g. Mouritsen & Larsen, 221 

2001).  222 

 223 

(b) Magnetic sensor manipulation  224 

Instead of manipulating the cues, manipulations can also take place on the level of the 225 

biological (magnetic) sensor (Fig. 2B). Currently, there are three sensor types proposed: (1) 226 

the radical-pair-based mechanism in the eye (Hore & Mouritsen, 2016); (2) a magnetic-227 

particle-based mechanism (Wiltschko et al., 2006), likely located in the upper beak and 228 

innervated by the ophthalmic branch of the trigeminal nerve (Beason & Semm, 1996; Heyers 229 

et al., 2010; Kishkinev et al., 2013); and (3) a magnetoreceptor in the inner ear, either based 230 

on magnetite (Wu & Dickman, 2011; but see Malkemper et al., 2019) or on electromagnetic 231 

induction (Nimpf et al., 2019; Jungerman & Rosenblum, 1980). Electromagnetic induction 232 

was first described for aquatic animals (Lohmann & Johnsen, 2000; Paulin, 1995) and was 233 
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recently suggested to be the basis of a magnetic compass and/or map sense in pigeons (Nimpf 234 

& Keays, 2022). Experimental proof for a role of electromagnetic induction in songbird 235 

navigation is currently lacking, hence we focus herein on the first two mechanisms.  236 

Formerly, it was assumed that there is a clear functional separation of the two sensors 237 

proposed for songbirds: the radical-pair-based sensor in the eye provides compass 238 

information, i.e. magnetic direction, and the magnetic-particle-based sensor in the upper beak 239 

provides geomagnetic map information, i.e. magnetic location (see Section III). However, 240 

recent findings question this strict separation, as the radical-pair-based sensor might 241 

contribute to the geomagnetic map by providing information on declination (Chernetsov et 242 

al., 2017) and/or inclination (Fig. 1C–F). 243 

The radical-pair-based mechanism has been experimentally disturbed by 244 

electromagnetic radiation in the ~0.1 to ~100 MHz frequency range (e.g. Leberecht et al., 245 

2023; see Table S1 for more references) or by inactivating the putatively corresponding brain 246 

region, named Cluster N (Zapka et al., 2009). Manipulation of the putative magnetic-particle-247 

based mechanism has been attempted either by nerve section or anaesthesia of the trigeminal 248 

nerve to disable neuronal transmission (Kishkinev et al., 2013; Beason & Semm, 1996) or by 249 

modifying the mechanism by remagnetisation of the assumed magnetic particles using 250 

magnetic pulses (Holland & Helm, 2013; see Table S1 for more references, e.g. Wiltschko et 251 

al., 1994; Karwinkel et al., 2022a).  252 

A general problem with disrupting the hypothesised magnetic sensors is that some 253 

manipulations, like surgery, electromagnetic radiation exposure or magnetic pulsing, affect 254 

the whole organism. Therefore, such manipulations can potentially impact multiple non-target 255 

areas of the body, such as other sensory organs or even physiological traits, both of which 256 

could unintentionally cause the observed behaviour. For such manipulations, convincing 257 

sham, i.e. control, groups are difficult to achieve, as they do not necessarily impact non-target 258 

traits to the same extent as the treatment manipulation. In particular when birds show 259 
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disorientation after manipulation, it is difficult to assign this with certainty to an effect on 260 

magnetic navigation/orientation behaviour, rather than to a non-magnetic-cue related 261 

unspecific effect, as indicated in other species groups. For example, a magnetic pulse was 262 

found to alter gene expression in rainbow trout (Oncorhynchus mykiss) (Fitak et al., 2017). 263 

Furthermore, the effects of low-level electromagnetic radiation appear to be more complex in 264 

other species groups (e.g. murine rodents, turtles, newts) than reflected in the songbird 265 

literature. There it alters the direction, rather than only increase the scatter in directional 266 

responses. Additionally, the directional response in the laboratory in the non-songbird taxa 267 

seems to be dependent on the similarity of the electromagnetic environment to the natural, i.e. 268 

capture, location (Landler et al., 2015; Phillips et al., 2022; J.B. Phillips, personal 269 

communication). These examples outside the songbird literature highlight that magnetic 270 

treatments may lead to unintended and unexpected responses of the study animal and that we, 271 

consequently, must always question critically whether alternative reasons may explain the 272 

results of a study. 273 

 274 

(2) Recording the bird’s behavioural response 275 

The second part of the methodological approaches involves measurements of the 276 

birds’ behavioural responses to the manipulations described above, from which conclusions 277 

about their use of the magnetic field can be drawn. In general, these studies can be divided 278 

into two categories: (a) experiments with caged birds, often performed in laboratory 279 

environments and (b) experiments with free-flying birds in their natural environment (Fig. 2B, 280 

Table S1).  281 

 282 

(a) Recording behaviour in caged environments 283 

In captive birds, responses regarding orientation and navigation abilities are typically 284 

tested in small funnel-shaped orientation arenas called Emlen-funnels (Emlen & Emlen, 1966) 285 
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(Fig. 2B). During the night in the migration period birds hop in a preferred direction in these 286 

circular funnel arenas, leaving footprints and/or scratches on the inclined funnel wall that are 287 

assumed to reflect their preferred migratory direction. Although other methods (e.g. 288 

videotaping with automated image analysis; use of electric signals triggered when a bird 289 

perches in different positions in a cage) have been developed to record the bird’s preferred 290 

direction digitally (Merkel & Fromme, 1958; Mouritsen et al., 2004; Mouritsen & Larsen, 291 

2001; Muheim et al., 2014), many researchers still prefer to record manually the scratches on 292 

paper produced by the bird on the funnel wall, and this method remained unchanged for 293 

decades (e.g. Emlen & Emlen, 1966; Leberecht et al., 2023). One reason for this is that 294 

electrical devices emit electromagnetic radiation that could disrupt the magnetic compass in 295 

songbirds (Engels et al., 2014), perhaps making it impossible to study magnetic responses of 296 

birds using electronic methods.  297 

Other migratory traits studied less frequently in relation to the Earth’s magnetic field 298 

in caged birds include migratory restlessness (Zugunruhe; the amount of nocturnal movement) 299 

(Bulte et al., 2017) and physiological responses such as accumulation of energy (Bulte et al., 300 

2017; Fransson et al., 2001; Kullberg et al., 2007) or hormone responses (Henshaw et al., 301 

2009).  302 

 303 

(b) Recording behaviour in free flight 304 

 Behavioural responses to manipulations can be also recorded in free flight (Fig. 2B), 305 

but one has to consider carefully the temporal resolution of the method used. For example, 306 

ring recoveries can provide sufficient behavioural data to answer research questions, but often 307 

require long study periods (usually >10 years) and large sample sizes (Perdeck, 1958; Wynn 308 

et al., 2020, 2022b). For an immediate response, i.e. within a day of treatment, a simple 309 

method is to observe visually the vanishing bearings of migratory songbirds at night by 310 

attaching a light stick to the bird and tracking its flight direction using binoculars. The spatial 311 
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resolution of this method is limited to about 0.7–2 km (Mouritsen, 1998b; Dierschke & 312 

Delingat, 2003). Radio tracking can substantially extend this range to ~ 5–20 km, with 313 

researchers manually tracking radio-tagged birds with handheld antennas over time (Holland, 314 

2010; Schmaljohann et al., 2013b) and space (Cochran et al., 2004; Holland et al., 2009). In 315 

recent years, automated radio-receiving arrays (e.g. Smolinsky et al., 2013; Müller et al., 316 

2018; Brown & Taylor, 2017) advanced this technique by excluding observer biases inherent 317 

in manual tracking and integrating single radio-receiving stations to continental-wide 318 

networks (Taylor et al., 2017). The lightest available radio tags are only 0.13 g and provide 319 

signals for a few weeks with a time resolution of a few seconds. Recent advances in satellite 320 

tracking techniques allow recording the behaviour of migrating birds at a higher spatial 321 

resolution, but even the lightest tags are at present too heavy for most songbird species 322 

(McKinnon & Love, 2018; Bridge et al., 2011) and therefore satellite tags tend to be used for 323 

non-passerine orientation and navigation research (e.g. Wikelski et al., 2015; Mouritsen et al., 324 

2003; Gagliardo et al., 2013; Thorup et al., 2020).  325 

Data from a wide spatial range derived from radio-receiving networks and satellite 326 

tracking is valuable because vanishing bearings of free-flying birds for the first few 327 

kilometres must be interpreted carefully, as the initial direction does not necessarily represent 328 

the preferred migratory direction (Brown & Taylor, 2015; Sjöberg & Nilsson, 2015). 329 

Vanishing bearings may also reflect movements within a stopover landscape (Schmaljohann 330 

& Eikenaar, 2017; Taylor et al., 2011), depend on energy stores and weather conditions 331 

(Schmaljohann & Naef-Daenzer, 2011) or might simply reflect escape behaviour after 332 

handling.  333 

Species that may breed or winter in the vicinity of the experimental site may already 334 

be at their migratory destination. In this case, their behaviour, including vanishing bearing, are 335 

not necessarily related to orientation or navigation. Therefore, researchers using vanishing 336 

bearings must ensure that experimental birds are still on active migration, do not perform 337 
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landscape movements and have not reached their migratory destination. Comparison with 338 

known species- or population-specific routes from ring recoveries (Spina et al., 2022) can 339 

increase confidence in the validity of vanishing bearings.  340 

Besides tracking directional responses, other behavioural responses, such as the day-341 

to-day and within-the-night departure decisions (Müller et al., 2016), could also be affected 342 

by experimental manipulations but are often not considered in orientation and navigation 343 

studies. 344 

Other methods to monitor the flight directions of free-flying nocturnal migrants 345 

include radar (e.g. Nievergelt, Liechti & Bruderer, 1999), infrared-cameras (e.g. Mirzaei et 346 

al., 2012) and the moon-watching method (Liechti, Bruderer & Paproth, 1995; Liechti, 2001), 347 

but these are not suited to observing individuals after an experimental manipulation. Such 348 

observation methods therefore require ‘near-experimental’ designs by using natural variation 349 

of environmental cues, such as magnetic anomalies (Alerstam, 1987), ecological barriers 350 

(Fortin, Liechti & Bruderer, 1999) or specific landmarks, such as mountain ridges (Liechti et 351 

al., 1996; Hilgerloh, Weinbecker & Zehtindjiev, 2006), different timings within the year 352 

(Zehtindjiev & Liechti, 2003) or natural variation in cloud cover (Able, 1982a).  353 

 354 

(c) Comparison of caged versus free-flight experiments  355 

In comparison with free-flight experiments, cage experiments have the advantage that 356 

the surrounding environment can be controlled for confounding effects, enabling a causal link 357 

to the experimental manipulation. A disadvantage is that the caged environment is highly 358 

unnatural in many respects (restricted space, feeding conditions, intensity of natural radiation, 359 

light, etc.), which might reduce the bird’s motivation or even its ability to show natural 360 

behaviour. Further, the experimental manipulation of environmental cues in laboratories, 361 

especially of landscape or celestial cues, might not be sufficiently realistic to elicit natural 362 

behaviour. Consequently, results obtained in the laboratory do not necessarily reflect 363 
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responses to the same treatment in the wild, where other cues than the manipulated one are 364 

available. For example, birds might ignore a manipulated magnetic cue when other important 365 

cues for their decision are present. Thus, the assumption that results obtained in artificial 366 

environments predict birds’ behaviour in the wild is not inevitably correct and should be made 367 

with caution (see Table S1 for contrasting results). Therefore, any hypotheses generated in the 368 

laboratory should be re-examined with free-flying birds to assess their ecological relevance. 369 

When researchers temporarily house wild-caught migratory birds for either cage-based 370 

or free-flight experiments upon release, they need to consider how the feeding conditions may 371 

have changed from the natural to the artificial environment. On the one hand, birds with low 372 

levels of fuel (body fat) that continue to lose body mass during stopovers (i.e. are in low-373 

quality food conditions), will continue to exhibit migratory restlessness the next night and 374 

continue migration. By contrast, birds that gain fuel during stopovers (i.e. are in high-quality 375 

food conditions, e.g. with ad libitum food), may suppress restlessness until they have 376 

replenished their fuel levels. Thus, a counterintuitive suppression of migratory motivation of 377 

apparently fat birds might be misinterpreted as an effect of the experimental manipulation. 378 

Therefore, in cage studies, an interplay of food availability, changes in food availability and 379 

the current energy stores of an individual bird is likely to affect its decision-making process 380 

significantly (Biebach, 1985; Biebach, Friedrich & Heine, 1986; Klinner et al., 2020; 381 

Gwinner, Schwabl & Schwabl-Benzinger, 1988). Further, birds that show little restlessness, 382 

i.e. little migratory motivation, but move for instance within an Emlen funnel in a certain 383 

direction could be misinterpreted as intending to migrate in that direction, even though they 384 

have a low probability of resuming migration towards the seasonally appropriate destination 385 

(Eikenaar et al., 2014). While in many studies the activity of the birds needs to exceed a 386 

certain level before their orientation is taken into account (Leberecht et al., 2023), any 387 

decrease in migratory restlessness and related behaviour could be wrongly interpreted if the 388 

ecology of the individual bird is not taken into account. 389 
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Studying free-flying songbirds comes with several limitations. First, it is difficult to 390 

manipulate the birds during flight because the low body mass of many songbird species 391 

(< 100 g) restricts the total mass of devices for manipulation and tracking to a maximum of 3–392 

5 g (Casper, 2009). Manipulations involving changes to the polarisation pattern 393 

(Schmaljohann et al., 2013b; Muheim et al., 2006b), exposure to electromagnetic radiation 394 

(Schwarze et al., 2016a; Engels et al., 2014) or the properties of the magnetic field 395 

(Mouritsen, 1998b) have so far not been applied in free flight. Consequently, to study the 396 

birds’ behavioural responses to these manipulations in free flight, it is currently only feasible 397 

to manipulate the birds on the ground and then release them. As the points in time at which 398 

songbirds make their decision to resume migration from stopover and to determine their flight 399 

direction remain unclear, it is not straightforward to determine when to manipulate the birds 400 

optimally to potentially affect their migration decisions. There is correlative evidence for one 401 

night-migratory songbird species, the northern wheatear (Oenanthe oenanthe), suggesting that 402 

the departure decision is made at least several hours before sunset (Eikenaar et al., 2020b), 403 

but this might vary among species dependent on their specific migration ecology. This timing 404 

issue can be overcome by using long-lasting or permanent manipulations of free-flying birds, 405 

such as magnetic pulsing (with effects found up to 10 days; e.g. Holland & Helm, 2013), 406 

attaching magnets (lasting days to weeks, depending on attachment; Packmor et al., 2021) or 407 

nerve sections (probably permanent; Kishkinev et al., 2013). However, such permanent 408 

manipulations pose an ethical challenge and the low recapture probability of wild birds on 409 

migration makes it almost impossible to reverse the manipulation after the end of the 410 

experiment.  411 

 412 

III. MAGNETIC CUES IN SONGBIRD MIGRATION ECOLOGY  413 

(1) Perception of directional information 414 
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The magnetic field of the Earth roughly resembles the magnetic field of a bar magnet centred 415 

in the axis between the poles (Skiles, 1985) (Fig. 1A). This arrangement provides directional 416 

magnetic characteristics for orientation on the Earth’s surface. The horizontal (parallel to the 417 

Earth’s surface) component of the magnetic field line can be used for orientation, as it always 418 

points towards one magnetic pole. The human-made compass is based on this polarity 419 

characteristic of the magnetic field, whereas birds use an inclination compass. They compare 420 

the magnetic vector, i.e. the axial direction of the magnetic field line in space, with the gravity 421 

vector (orthogonal to Earth’s surface) to determine a poleward and equatorward direction 422 

(Wiltschko & Wiltschko, 1972). Inclination, defined as angle of the intersection between the 423 

magnetic field lines and the Earth’s surface (Fig. 1C), varies between 90° at the magnetic 424 

poles and 0° at the magnetic equator (Skiles, 1985) (Fig. 1D). In contrast to the horizontal 425 

compass, i.e. human-made compass, the inclination compass does not discriminate between 426 

north and south but instead provides information about polewards and equatorwards 427 

directions. It was shown that songbirds can use inclination angles for orientation up to 85–87° 428 

(Åkesson et al., 2001; Lefeldt et al., 2015) and down to at least 5° (Schwarze et al., 2016b), 429 

meaning that the magnetic compass is not functional in the close vicinity of the magnetic 430 

poles (inclination angle 90°) and the magnetic equator (inclination angle 0°), respectively.  431 

Alongside the magnetic field, other cues have also been shown to provide directional 432 

information: the sun or its skylight polarisation pattern (Able & Able, 1993; Muheim et al., 433 

2006b; Phillips & Moore, 1992), sunrise and sunset direction (Moore, 1987b; Schmidt-434 

Koenig, 1990) and the positions of the stars (Emlen, 1970a; Wagner & Sauer, 1957; 435 

McLaren, Schmaljohann & Blasius, 2022) (Fig. 3A), but not the moon (Moore, 1987a). 436 

Notably, songbirds seem to use the different compass systems flexibly and switch between 437 

them depending on their availability, as shown by compass redundancy in experiments with 438 

caged birds (Mouritsen, 1998b; Sandberg, Uttosson & Pettersson, 1991; Packmor et al., 2021) 439 

(Table S1). Observations from free-flying birds that orient appropriately even when certain 440 
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cues are not available, e.g. during overcast skies or at magnetic anomalies, also suggest 441 

redundancy of the star and magnetic compass in the wild (Alerstam, 1987; Griffin, 1973; 442 

Able, 1982a) (Table S1).  443 

The relative importance of the different directional compass cues, their hierarchy and 444 

calibration, and their use in the wild is still subject to debate. For the magnetic compass, three 445 

hypotheses for compass calibration have been proposed: (1) the magnetic compass is 446 

calibrated by sunset cues; (2) the magnetic compass is calibrated by polarisation cues; and 447 

(3) the star compass is calibrated by the magnetic compass (Table S1). Notably, cue-conflict 448 

experiments have revealed contrasting results under free-flight conditions (Schmaljohann et 449 

al., 2013b; Sandberg et al., 2000; Cochran et al., 2004; Chernetsov et al., 2011; Sjöberg & 450 

Muheim, 2016) and cage experiments where compass cues were meticulously controlled for 451 

(Muheim et al., 2006b; Sjöberg & Muheim, 2016; Moore, 1985; Phillips & Moore, 1992) 452 

(Table S1). The topic of cue hierarchy and compass calibration is intensively discussed in 453 

Sjöberg & Muheim (2016), Pakhomov & Chernetsov (2020) and Liu & Chernetsov (2012). 454 

Here, we briefly summarise the two contrasting opinions: Sjöberg & Muheim (2016) present a 455 

structured flow chart for daily decisions of cue integration during migration devised to explain 456 

the contradictory results of the cue-conflict experiments under different conditions. By 457 

contrast, Pakhomov & Chernetsov (2020) and Liu & Chernetsov (2012) stress the natural high 458 

variability of cue integration of birds and do not try to propose a consensus concept.  459 

 460 

(2) Perception of geographical location 461 

In addition to directional information where information for a bearing is obtained 462 

independent of the actual location, the arrangement of the Earth’s magnetic field can also 463 

provide positional information. This is possible due to its parameters changing in a 464 

predictable way over most parts of the globe (Fig. 1). They are commonly referred to as 465 

‘geomagnetic map cues’ (but with inconsistent use in the literature) and we refer to this term 466 
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herein when positional rather than directional information from the Earth’s magnetic field is 467 

discussed, whether in one or two dimensions.  468 

The intensity of the magnetic field shows a gradient from the equator towards the 469 

poles (Fig. 1B) (Skiles, 1985) and can therefore be used for latitude determination. Due to 470 

natural fluctuations in magnetic intensity, the accuracy of this component for navigation of 471 

fast-moving animals is limited to 10–30 km (Mouritsen, 2018). Magnetic inclination also 472 

shows a gradient from the equator to the poles (Skiles, 1985) and thus can provide latitudinal 473 

information for most parts of the world (Fig. 1D). Consequently, magnetic inclination might 474 

provide two sources of information for migrating songbirds: (1) as an orientation, i.e. 475 

compass, cue (see Section III.1), and (2) as a navigation, i.e. positional, cue. While there is 476 

evidence for the use of inclination (Wiltschko & Wiltschko, 1992; Wynn et al., 2022b) as a 477 

geomagnetic map cue, convincing evidence for the biological importance of magnetic 478 

intensity for songbird navigation, similar to that shown for sea turtles (Lohmann & Lohmann, 479 

1996), is currently lacking. Notably, as magnetic navigation might be easier when isolines are 480 

orthogonal, a bi-coordinate map of magnetic intensity and inclination for position 481 

determination may be less useful for navigation in many parts of the world (compare Fig. 1B 482 

and 1D) (Schneider et al., 2023; Boström, Åkesson & Alerstam, 2012a; Wynn et al., 2022 483 

a,b). 484 

The third spatial component of the magnetic field is declination, which describes the 485 

angular deviation between magnetic and geographical North at a specific location (Fig. 1E). 486 

This is not a purely magnetic cue because it relies on a geographical compass derived from 487 

other cues (e.g. celestial cues). Declination angle has a pronounced east–west gradient 488 

between approximately –20 and 20° in North America and between around –10 and 20° in 489 

Europe (Skiles, 1985) (Fig. 1F). A study in Europe suggested that reed warblers 490 

(Acrocephalus scirpaceus) use declination for navigation (Chernetsov et al., 2017), while 491 

another study failed to show this for songbirds such as the European robin (Erithacus 492 
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rubecula) and the garden warbler (Sylvia borin) (Chernetsov et al., 2020) (Table S1). 493 

Combination of declination information with magnetic intensity or inclination information 494 

could provide a reliable bi-coordinate map across much of the Earth (Wynn et al., 2022b), but 495 

whether songbirds make use of this is still unclear. 496 

Although the magnetic field is present globally, it is currently unknown whether birds 497 

use or rely on it universally. There are possibilities (and some evidence) for alternative cues 498 

from which birds might perceive information about location: for example, photoperiod 499 

(Kishkinev, Chernetsov & Mouritsen, 2010), celestial rotation (Pakhomov, Anashina & 500 

Chernetsov, 2017), olfactory cues [Holland et al., 2009; reviewed in Kishkinev (2015) and 501 

Gagliardo (2013)], infrasound (Patrick et al., 2021) and landmarks (Holland, 2003) (Fig. 3B). 502 

These cues may be used exclusively or in combination, with magnetic cues for example [see 503 

extensive review in Holland (2014) and Mouritsen (2018)]. 504 

 505 

(3) Magnetic cues during stopover  506 

During stopover, birds take on fuel, rest and recover (Linscott & Senner, 2021; 507 

Schmaljohann et al., 2022). Depending on their requirements at the stopover site, songbirds 508 

may resume migration shortly (a few hours) or several weeks after arrival (Packmor et al., 509 

2020; Schaub & Jenni, 2001a). Since birds spend more time and energy during stopovers than 510 

during migratory flights (Wikelski et al., 2003; Schmaljohann, Fox & Bairlein, 2012; Green et 511 

al., 2002; Alerstam & Lindström, 1990), variation in total stopover duration will affect total 512 

speed of migration (Schmaljohann & Both, 2017; Schmaljohann, 2018; Nilsson, Klaassen & 513 

Alerstam, 2013). Studying stopover and the parameters that affect departure and landing 514 

decisions is crucial for understanding a species’ migration ecology. In this section, we review 515 

when, where and how birds might use magnetic cues for migratory decisions in the wild. 516 

 517 

(a) Fuelling 518 
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The innate migration programme controls seasonal changes in the energy stores of 519 

migrants (Bairlein & Gwinner, 1994; Totzke & Bairlein, 1998). At stopover, the amount of 520 

energy accumulated is affected by biotic factors, such as food availability (Bayly, 2007), 521 

competition (Moore & Yong, 1991) and predation risk (Schmaljohann & Dierschke, 2005; 522 

Fransson & Weber, 1997), as well as abiotic factors, such as weather and climate (Schaub & 523 

Jenni, 2001b; Bairlein, 1993). Virtual displacement experiments showed a tight interaction 524 

between the amount of accumulated energy and virtual position on a geomagnetic map 525 

[Fransson et al., 2001; but see Bulte et al. (2017) for a counter-example; Table S1). Those 526 

experiments were conducted with naïve juvenile birds with no prior experience of the natural 527 

changes in geomagnetic map cues along their migratory route. This suggests that the innate 528 

migration programme for fuelling not only contains a temporal (circannual) component, but 529 

also a flexible/adaptable spatial component, triggered by geomagnetic map cues. Notably, the 530 

temporal component might override the effect of geomagnetic map cues on fuelling both early 531 

(Kullberg et al., 2007) and late in the season (Kullberg et al., 2003). Moreover, the altered 532 

geomagnetic map cues do not have to be coherent with cues from travelling time, as 533 

experiments with abrupt virtual magnetic displacement and stepwise virtual displacements 534 

along the route triggered the same fuelling response (Henshaw et al., 2008), suggesting the 535 

presence of inate (heritable) geomagnetic signposts for stopovers, probably similar to 536 

inherited magnetic signposts for a migratory shift (Zugknick), i.e. the abrupt change of 537 

migration direction on the route (McLaren, Schmaljohann & Blasius, 2023). 538 

Studies on free-flying birds show that birds undergo extensive fuelling in front of 539 

major ecological barriers like the Atlantic Ocean or the Sahara Desert (Dierschke, Mendel & 540 

Schmaljohann, 2005; Delingat, Bairlein & Hedenström, 2008; Bayly, Gómez & Hobson, 541 

2013; Bairlein, 1991; Odum, 1963). Thus, the natural fuelling patterns might be, at least in 542 

part, induced by geomagnetic map cues. 543 

 544 
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(b) Physiological recovery 545 

The physiological processes involved in recovery during stopover are poorly 546 

understood (Eikenaar et al., 2023, 2020c; Eikenaar, Hessler & Hegemann, 2020a; 547 

Schmaljohann et al., 2022), and even less is known about the roles of geomagnetic map cues 548 

in recovery. Speculatively, they might be important for stimulating recovery periods in 549 

preparation for ecological barrier crossings or exceptionally long migratory flights. The only 550 

study investigating links between physiological parameters and magnetic cues described a 551 

reduced adrenocortical hormone response after experiencing a virtual magnetic displacement 552 

towards an ecological barrier (Henshaw et al., 2009). A reduced adrenocortical hormone 553 

response is proposed to be a physiological adaptation to migration for preventing detrimental 554 

effects of high corticosterone hormone levels. Wild migrants, by contrast, did not show this 555 

effect during stopover at an ecological barrier (Schwabl, Bairlein & Gwinner, 1991) (Table 556 

S1). The few studies available and the variability in their results make it difficult to draw 557 

conclusions regarding the biological importance of magnetic cues for recovery. 558 

 559 

(c) Departure decisions 560 

The decision to depart from a stopover site consists of three interlinked components, 561 

which we term the ‘departure triangle’ (Fig. 3C): (i) the daily bimodal decision to depart or 562 

not to depart from the stopover site, i.e. day-to-day departure decision (reviewed in Jenni & 563 

Schaub, 2003); (ii) the departure time within the night (reviewed in Müller et al., 2016); and 564 

(iii) the departure direction from the stopover site. 565 

 566 

(i) Day-to-day departure decision 567 

The general motivation to migrate is genetically encoded in the innate migration 568 

programme (Berthold, 1973) and then modified by intrinsic and extrinsic factors (Müller et 569 

al., 2016). Bulte et al. (2017) demonstrated that a virtual geomagnetic map displacement 570 



23 
 

along the migration route decreased the amount of migratory restlessness expressed as birds 571 

virtually approached their migratory goal. Thus, geomagnetic map cues might be an extrinsic 572 

factor modifying the departure probability from stopover. By contrast, Henshaw et al. (2010) 573 

did not observe this pattern. As their virtual magnetic displacement was marginal compared to 574 

the total migration distance of their focal species, the lesser whitethroat (Sylvia curruca), we 575 

speculate that this displacement was too short to observe any relevant effect (Table S1). It 576 

therefore seems possible that geomagnetic map cues are used to calculate the remaining 577 

distance to the migratory destination and thereby influence migratory motivation, i.e. day-to-578 

day departure decisions. 579 

 580 

(ii) Departure timing within the night  581 

After the decision to resume migration, the next decision is when to depart within the 582 

night (Fig. 3C). Müller et al. (2016) predict that species/populations with longer remaining 583 

migration distances will depart earlier within the night and/or show less variation in timing 584 

than birds with shorter remaining distances, for which there is supporting evidence 585 

(Schmaljohann et al., 2013a). Using a similar argument to that above for location 586 

determination using geomagnetic map cues (Section III.3.c.i), we predict that geomagnetic 587 

map cues might, at least to some extent, affect departure timing within the night. To 588 

investigate experimentally whether such a causal relationship exists, one would need to 589 

disentangle the effect of geomagnetic map cues from seasonal, night length and body 590 

condition effects, among others (reviewed in Müller et al., 2016). It currently remains unclear 591 

whether and how magnetic cues influence songbird migrant decisions of when to resume 592 

migration at night. 593 

 594 

(iii) Departure direction 595 
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Songbirds can use the magnetic compass, among other systems, to detect directional 596 

information (see Section III.1). The departure direction decision in many songbird migrants 597 

will involve an interplay between the innate migration direction (Helbig, 1991; Wynn et al., 598 

2023) and the current intrinsic and extrinsic conditions, such as fuel load (Sandberg & Moore, 599 

1996; Sandberg et al., 2002; Sandberg, 2003, 1994), hormone levels (Schneider et al., 1994; 600 

Lõhmus et al., 2003), weather (Schmaljohann & Naef-Daenzer, 2011; Müller et al., 2018), 601 

and time of year (Chernetsov et al., 2008a) (Fig. 3C). In addition, experienced migrants seem 602 

to integrate their actual location within the decision-making process to determine their 603 

departure direction from stopover. Studies with physical or virtual magnetic displacement 604 

demonstrate that birds are able to correct their migratory direction to reach their intended 605 

destination, i.e. perform true navigation (Thorup et al., 2007, 2011; Kishkinev et al., 2015, 606 

2020; Chernetsov et al., 2008b; but see Kishkinev et al., 2016; Table S1). Therefore, it is 607 

generally accepted that the directional departure decisions of migration-experienced songbirds 608 

include geomagnetic map cues and involve map-based true navigation (Mouritsen, 2018; 609 

Berthold, 1996). 610 

Juveniles on their first migration mainly fail to compensate for such displacements 611 

(Thorup et al., 2007; Mouritsen & Larsen, 1998; Perdeck, 1958) (Table S1), probably because 612 

they have not yet generated a corresponding geomagnetic map and thus rely on clock-and-613 

compass orientation during inaugural migration (Mouritsen, 1998a; Mouritsen & Mouritsen, 614 

2000). Intriguingly, there is evidence that some free-flying juvenile birds [including common 615 

cuckoos (Cuculus canorus), whose migration ecology is similar to that of songbirds] were 616 

able to correct for displacements (Thorup et al., 2011; Thorup & Rabøl, 2007; Thorup et al., 617 

2020). Potential explanations for this phenomenon are that juveniles might have learned parts 618 

of the geomagnetic map beforehand by exploring their home range (Züst et al., 2023) or 619 

during transportation to the displacement location (Åkesson et al., 2005). Alternatively, they 620 

could follow a time-compensated sun-compass, which is partially self-correcting for 621 
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displacements (McLaren et al., 2022), or possess inherited magnetic map information, 622 

comparable to fish and sea turtles (Lohmann et al., 2022).  623 

The hypothesis that migration-experienced but not juvenile birds possess and use a 624 

geomagnetic map is further supported by magnetic pulse experiments. Currently, it is 625 

assumed that migratory songbirds navigate by sensing geomagnetic map cues using a 626 

magnetic-particle-based receptor. Exposing birds to a strong but brief magnetic pulse should 627 

remagnetise the magnetic particles and this would alter how the birds perceive local 628 

geomagnetic map cues, which in turn should alter the orientation direction in caged birds or 629 

departure direction in free-flying birds (Holland & Helm, 2013; see Table S1 for further 630 

references, e.g.Wiltschko et al., 1994). However, not all studies show this (Karwinkel et al., 631 

2022a,b). The observation that the orientation/departure direction of only migration-632 

experienced but not juvenile songbirds was affected by a magnetic pulse (Holland & Helm, 633 

2013; Munro et al., 1997b; Munro, Munro & Phillips, 1997a), supports the hypothesis that 634 

only in experienced birds, but not in juveniles, are geomagnetic map cues involved in the 635 

decision-making process. 636 

 637 

(4) Magnetic cues during migratory flight 638 

Investigating the role of magnetic cues during migration also requires understanding 639 

decision-making processes during the migratory endurance flight (Fig. 3C). Two crucial 640 

stages include (a) updating and maintaining the flight direction, including possible directional 641 

adjustments and (b) deciding when to interrupt the flight, i.e. the landing decision.  642 

 643 

(a) Updating and maintaining flight direction 644 

After they have departed in a specific direction, bird migrants generally maintain this 645 

direction during the endurance flight (e.g. Karwinkel et al., 2022a; Fortin et al., 1999; 646 

Bruderer & Liechti, 1998; Bruderer, 1994), but not all birds necessarily fly in the same 647 
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direction throughout the night (Sjöberg & Nilsson, 2015). Magnetic cues could play two 648 

major roles for updating and maintaining the flight direction. First, the magnetic compass 649 

could be used for direction determination in flight, as described in Section III.1. Second, 650 

geomagnetic map cues could be used to make decisions about changing their flight direction.  651 

Radar studies provide supportive evidence that magnetic cues are perceived and used 652 

during the migratory flight, as birds orient towards the seasonally appropriate direction under 653 

full overcast conditions (Able, 1982a; Griffin, 1973), although landmarks cannot be excluded 654 

as additional or alternative orientation cues. Further support that migrants regularly assess 655 

magnetic cues during flight and update their flight behaviour accordingly is provided by 656 

reports that birds change their flight altitude when passing a magnetic anomaly (Alerstam, 657 

1987).  658 

Free-flying birds change their flight direction when facing barriers depending on, 659 

among other factors, time within the night or fuel load (Nilsson & Sjöberg, 2016; Åkesson et 660 

al., 1996; Fortin et al., 1999; Bruderer & Liechti, 1998; Zehnder et al., 2002; Komenda-661 

Zehnder, Liechti & Bruderer, 2002; Schmaljohann & Naef-Daenzer, 2011). Similar patterns 662 

were found in caged birds (Sandberg, 2003; Sandberg et al., 2002). Whether geomagnetic 663 

map cues play a role in recognising these barriers and thus contribute to changes in flight 664 

directions is still unknown. However, as geomagnetic map cues are involved in the 665 

determination of migratory bearings (e.g. Kishkinev et al., 2021, 2015), it seems plausible that 666 

they might also affect changes in flight direction in free flight. However, very little is known 667 

about how songbirds update and maintain flight direction during migration.  668 

 669 

(b) Landing decision 670 

For landing decisions within a migratory endurance flight, it is likely that similar extrinsic and 671 

intrinsic factors play a role as for the departure decision (Müller et al., 2016) (Fig. 3). 672 

However, since we are only just beginning to study and understand when, where and how 673 
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birds decide to land (e.g. Rüppel et al., 2023), our current knowledge on the biological 674 

importance of magnetic cues on these decisions is very limited. We speculate that 675 

geomagnetic signposts may contribute to identifying crucial stopover landscapes before 676 

crossing ecological barriers, although evidence for this hypothesis is not yet available. 677 

 678 

IV. UNSOLVED QUESTIONS 679 

Regarding the biological significance of magnetic cues for the decision-making process in 680 

songbirds, several significant knowledge gaps remain. 681 

(1) How can juvenile migratory songbirds react to (fuelling, restlessness) and correct for 682 

(direction) virtual/physical geomagnetic map displacements, although they have never 683 

experienced those conditions before? 684 

(2) How are the different compass systems (sun, polarisation pattern, stars, magnetic) 685 

calibrated and what is the hierarchy between the different compass systems (Table S1)? 686 

(3) When, where, how and how often do birds use geomagnetic map cues during stopover and 687 

flight for their migratory decisions? 688 

(4) How do birds use their compasses, including the magnetic compass, during active 689 

migratory flight? 690 

(5) Do magnetic cues play a role in the birds’ decisions to interrupt migratory endurance 691 

flights, i.e. in landing decisions?  692 

 693 

V. CONCLUSIONS 694 

(1) Magnetic cues can significantly influence the decision-making processes of songbirds 695 

during migration. The innate migratory programme provides the basis for migratory decisions, 696 

which are modulated by an interplay of intrinsic and extrinsic factors, in which magnetic cues 697 

play a role.  698 
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(2) Magnetic cues are just one of many environmental cues, e.g. weather, stopover habitat, 699 

landmarks or celestial cues, that are available to birds. We should not overestimate the 700 

importance of magnetic cues in the wild, as songbirds may use other cues for their migratory 701 

decisions.  702 

(3) Likewise, we know that in birds, redundancy may exist and several different systems may 703 

function flexibly for the same task (e.g. sun, stars, magnetic compass direction). This might 704 

explain some of the variation in results obtained following magnetic manipulations in 705 

orientation cage experiments versus free-flight tracking studies in the wild, where multiple 706 

cues are available (Table S1). 707 

(4) Cage experiment studies are useful for demonstrating the sensory capabilities of birds, as 708 

the environment can be meticulously controlled. However, we should not infer that the 709 

sensory capability of a bird in a cage equals the bird’s behaviour in the wild in an ecological 710 

context. In general, there is little evidence of magnetic disruption leading to deficits in 711 

orientation and navigation performance in field studies.  712 

(5) There is high variability and inconsistency in the results of orientation and navigation 713 

studies in general, especially when using different species or at different locations. This low 714 

level of repeatability, reproducibility and replicability might largely be attributed to high 715 

natural variability in the use of magnetic cues among birds with different migratory strategies 716 

(e.g. short-distance migrants versus long-distance migrants), species, populations, locations, 717 

individuals, and even within an individual (e.g. due to experience, health status, etc.), or to 718 

subtle differences in experimental design or experimenters. This variability and the 719 

contradictory results found in many studies make it difficult to draw general conclusions 720 

regarding how wild songbirds use magnetic cues for their migratory decisions.  721 

(6) We hope that this review encourages researchers to improve the design of future 722 

orientation and navigation experiments on all bird taxa by carefully considering the migration 723 

ecology of the focal species. Furthermore, we hope that we have illustrated how the 724 
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appropriate interpretation of orientation and navigation studies can only be made in the 725 

context of the species-specific migration ecology.  726 
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VI. SUPPORTING INFORMATION 

Additional supporting information may be found online in the Supporting Information section 

at the end of the article. 

Table S1. Overview of magnetic-cue-related orientation and navigation hypotheses for 

migratory songbirds from cage-based and free-flight studies. 

 

Figure legends 

Fig. 1. Properties of the Earth’s magnetic field. (A) The Earth’s magnetic field behaves 

roughly as if there is a bar magnet in the centre of the Earth. This results in a horizontal 
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directional component with geographic North (gN) and magnetic North (mN) almost aligned. 

This property is known to most people through the use of a classical compass. (B) The 

magnetic field intensity varies around the globe and is highest at the poles (~60 µT) and 

lowest in the equator region (~30 µT). (C, D) The inclination angle is defined as the angle at 

which the magnetic field lines cross the Earth’s surface. At the magnetic poles, the field lines 

are perpendicular to the surface (90°), whereas they are parallel at the magnetic equator (0°). 

This feature can be used by birds as a compass to identify poleward and equatorward 

directions. (E, F) The declination angle is defined as the angular difference between the 

geographic and magnetic North pole. It therefore displays the error of a magnetic compass 

compared to true geographical North at a given location. When both poles are aligned, the 

angle is 0°. Maps in B, D and F show selected isolines derived from NCEI (2019). Due to 

their projection, maps do not show the poles. 

 

Fig. 2. Graphical summary of methods used to assess magnetic-cue related hypotheses in 

songbirds. (A) Experiments generally start with the manipulation of the perceived magnetic 

cue information. This can be done by manipulating the magnetic cue itself or the 

corresponding sensory structures of the bird. (B) This experimental manipulation is then 

followed by recording the bird’s behavioural response. This can be done either in a caged 

setup or by recording the birds in free flight in the wild. See main text for detailed description 

of methods. ‘Attaching magnets’ adopted from Packmor et al. (2021); ‘section trigeminal 

nerve’ adopted from Kishkinev et al. (2013); ‘brain lesion’ adopted from Zapka et al. (2009); 

all graphics adopted with permission. 

 

Fig. 3. Schematic conceptual framework demonstrating the role of magnetic cues in the 

migration ecology of songbirds during the long-distance phase (Mouritsen 2018). Factors 

involving cues from the Earth’s magnetic field are highlighted in grey. (A) Possible factors 
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involved in perception of geographical location. (B) Possible factors involved in perception of 

directional information. See main text for further explanation. (C) Conceptual framework of 

the behaviour of a migrant following a stop-and-go strategy. The upper green box represents 

the behaviour during the stopover and decisions on the ground at the first stopover location 

(i). The lower blue box represents behaviour and decisions during the migratory flight. When 

the migrant reaches the next location (i+1), the scheme will repeat. 
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