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Abstract

Point counts (PCs) are widely used in biodiversity surveys but, despite numer-

ous advantages, simple PCs suffer from several problems: detectability, and

therefore abundance, is unknown; systematic spatiotemporal variation in

detectability yields biased inferences, and unknown survey area prevents for-

mal density estimation and scaling-up to the landscape level. We introduce

integrated distance sampling (IDS) models that combine distance sampling

(DS) with simple PC or detection/nondetection (DND) data to capitalize on

the strengths and mitigate the weaknesses of each data type. Key to IDS

models is the view of simple PC and DND data as aggregations of latent DS

surveys that observe the same underlying density process. This enables the

estimation of separate detection functions, along with distinct covariate effects,

for all data types. Additional information from repeat or time-removal surveys,

or variable survey duration, enables the separate estimation of the availability

and perceptibility components of detectability with DS and PC data. IDS

models reconcile spatial and temporal mismatches among data sets and solve

the above-mentioned problems of simple PC and DND data. To fit IDS models,

we provide JAGS code and the new “IDS()” function in the R package

unmarked. Extant citizen-science data generally lack the information neces-

sary to adjust for detection biases, but IDS models address this shortcoming,

thus greatly extending the utility and reach of these data. In addition, they

enable formal density estimation in hybrid designs, which efficiently combine

DS with distance-free, point-based PC or DND surveys. We believe that IDS

models have considerable scope in ecology, management, and monitoring.
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INTRODUCTION

Point count methods are among the most widely used and
longest-standing protocols in wildlife surveys worldwide
(Darras et al., 2021; Rosenstock et al., 2002). Simple
point counts (PC) are brief surveys in which a stationary
observer counts all individuals of some species (single
species to entire communities) detected either without
distance constraints or within a predefined distance
from the observer. Point count methods are logistically
uncomplicated and are ubiquitous in biodiversity sur-
veys worldwide, for example, in the North American
Breeding Bird Survey/BBS (Sauer et al., 2017), and many
European national BBS or bird atlas schemes (Balmer
et al., 2013). In addition, a wide range of what in essence
can be conceptualized as PC methods, albeit varying
from highly standardized to essentially design free, is at
the core of rapidly growing citizen-science projects such
as eBird (Sullivan et al., 2009).

Despite the prevalence of simple PCs, their simplicity
is not without drawbacks, for example, it is not possible
to estimate true abundance or occupancy if visits to
points are unreplicated (Stoudt et al., 2023). In addition,
PC data are nonspatial in the sense that the area from
which the detected animals are drawn is usually
unknown. This prevents spatial extrapolation for rigorous
estimation of regional population sizes. Similarly, inte-
grated analysis of data from different schemes is ham-
pered due to commonly occurring spatial mismatches.
Finally, variable survey duration is very common and
creates a temporal mismatch in the data; thus, different
data points do not correspond to the same survey effort
(Pacifici et al., 2019). Both greatly complicate joint ana-
lyses from multiple survey schemes that use PC methods.

In planned surveys, additional information is often
collected during PC surveys that permit the estimation
of detection probability (Nichols et al., 2009). Such extra
information includes replicated counts (Royle, 2004),
double-observer surveys (Nichols et al., 2000), removal
counts (Dorazio et al., 2005; Wyatt, 2002), distance infor-
mation (Buckland et al., 2015; Marques et al., 2007), or
locational information from recognizable individuals
that enables the fitting of spatial capture–recapture
(SCR) models (Borchers & Efford, 2008; Royle et al., 2014).
These survey protocols permit the estimation of abun-
dance, and thus the assessment of status and trends free
from any bias produced by imperfect detection and by
unmodelled temporal or spatial patterns in detectability
(Kéry & Royle, 2016, 2021). However, while these methods
produce detectability-adjusted indices of abundance, only
estimates from SCR and DS are area explicit.

Even if DS or SCR data are available, it is not clear at
present how they should be used alongside or combined

with data from simple PCs available from national BBS
or bird atlas schemes. For instance, a major challenge in
the joint modeling of such data types is how to address
spatial or temporal mismatches (Pacifici et al., 2019);
these arise when effective sampling areas are unknown
and vary, and when survey durations differ (S�olymos
et al., 2013). Thus, it would be desirable to have formal
methods for combining these different data types that
build on their complementary strengths, for example,
detectability estimation, trained observers versus large
sample size, and geographic breadth, to name just a few.

Here, we introduce IDS models that permit the com-
bination of data from DS, simple PC, and detection/
nondetection (DND) surveys. Our integrated model is
based on an underlying hierarchical DS model for all
three data types (Kéry & Royle, 2016: chapter 8; Royle
et al., 2004). We conceptualize data from all three survey
methods as the outcome from a (possibly latent) DS pro-
tocol, that is, where detection probability is assumed to
be a function of distance from the observer. This enables
us to estimate separate detection functions for each data
set, which automatically reconciles any spatial mismatch
among the data types and surveys. Temporal mis-
matches, that is, variable survey duration, in PC data
can be addressed by including an availability process in
the model, which is informed by extra data such as vari-
able survey duration, or by multi-observer, replicate or
time-removal surveys (Amundson et al., 2014; Borchers
et al., 1998; Diefenbach et al., 2007; S�olymos et al., 2013).
These extra data allow for the separation of the availability
and perceptibility components of detection probability
(Hostetter et al., 2019; Marsh & Sinclair, 1989; Nichols
et al., 2009; Péron & Garel, 2019).

Key to our IDS models is the view of PC and DND data
as aggregations, or summaries, of latent DS survey data,
with identical density, and possibly availability, processes
as regular DS surveys. Hence, we view PC and DND data
types as if they were DS counts where distance informa-
tion is unavailable. As we will show, the key assumption
of a shared density and availability process permits estima-
tion of separate detection functions, along with different
parameters linking these functions to covariates, for all
three data types. Estimation of separate detection func-
tions, when needed, can accommodate any systematic dif-
ferences between survey schemes. Combining PC and
DND data with the more information-rich DS data enables
the estimation of detection probability and makes the
resulting abundance estimates area explicit: effective survey
areas for PC and DND surveys become estimable, and pop-
ulation density is estimated with improved precision. Thus,
IDS models can reconcile all discrepancies, including
spatial and temporal mismatches, among these extremely
widespread data types.
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In this article, we begin by formally describing IDS
models. We then use simulation to demonstrate the
identifiability of our model when separate detection func-
tions are estimated for each data type, including separate
parameters for detection function covariates. Next,
we explore the effects of adding variable amounts of
the more information-rich but “expensive” DS surveys
to a larger sample of the less information-rich but
“cheaper” PC data. Following that, for a model combin-
ing DS and PC data, we demonstrate the identifiability of
availability in addition to perceptibility, provided that sur-
veys vary in duration; this is one of the types of extra infor-
mation that enable availability to be estimated separately
from perceptibility (e.g., S�olymos et al., 2013). Finally, we
showcase IDS models with the Oregon 2020 Project
(Robinson et al., 2020) as a case study. As part of the case
study, we demonstrate the ability of IDS models to allow
for different magnitudes of heterogeneity in the detection
functions estimated for different portions of the data
(Oedekoven et al., 2015). Such accommodation of intricate,
survey-specific features of the observation process may be
particularly important when reconciling data from hetero-
geneous survey protocols in a single integrated model.

We have implemented a range of IDS models in the
new fitting function “IDS()” in the R package unmarked
(Fiske & Chandler, 2011; Kellner et al., 2023), to permit
user-friendly model fitting by maximum likelihood, and we
provide BUGS code for Bayesian inference using JAGS
(Plummer, 2003). We believe that IDS models have consid-
erable scope of application for exploiting PC and DND data
in a more rigorous and synthetic manner, and to obtain
less biased and larger-scale inferences about abundance
and density, particularly for large citizen-science data sets.

INTEGRATED DISTANCE
SAMPLING (IDS) MODELS

We develop joint likelihoods, that is, integrated
models (Besbeas et al., 2002; Miller et al., 2019; Kéry &
Royle, 2021: chapter 10; Schaub & Kéry, 2022), for the
following data types, which we assume to observe
the same density and availability processes. We note that
i indexes different sites across data types. Our current
models assume closure and the absence of any temporal
replicates at a site, but the relaxation of both assumptions
will be the subject of future work:

1. Distance sampling (DS) data ydsi,j , possibly with trunca-
tion distance bdsi and survey duration tdsi , where j indexes

J distance classes, and where ydsi,: ¼
PJ
j¼1

ydsi,j denotes the

total count per site.

2. Simple point counts (PC) ypci with duration tpci , with or
without a truncation distance bpci , as produced by
many national BBS or bird atlas schemes.

3. Detection/nondetection (DND) data ydndi , indicating
the observed presence or absence of a species during a
point-location survey of duration tdndi out to an
optional truncation distance bdndi , as they are similarly
produced by countless biological surveys.

For joint inference about density, first, for the DS data
we adopt a hierarchical distance sampling (HDS) model
(Royle et al., 2004) represented by Ni �Poisson Aiλið Þ and
yi,: �Binomial Ni,θipdsi

� �
. Completing the HDS model, the

site-specific vector of distance-class counts has a multino-
mial distribution with cell probabilities computed by
integrating the distance function over the prescribed
intervals; see Kéry and Royle (2016). Ni and yi,: are,
respectively, the latent abundance and observed total
count at site i, with survey area Ai and density λi, while
availability (θ) and perceptibility (pds) are the two compo-
nents of detection probability (Marsh & Sinclair, 1989;
Nichols et al., 2009). Perceptibility will primarily be a
function of distance and is estimated from distance data
by integrating out to distance bi a suitable detection
function such as a half-normal with scale parameter σ.
Truncation distance bi defines the survey area, which for
a PC survey with perfect detection is Ai ¼ πb2i . This is a
key advantage of DS methods: they associate Ni with a
well defined area. It makes abundance estimates in a DS
protocol area explicit, in contrast with most abundance esti-
mation protocols other than SCR (Borchers & Efford, 2008;
Royle et al., 2014). For songbirds, the availability probability
θ will be mainly a function of singing rates (S�olymos
et al., 2013), which cannot be estimated from distance
data alone. Hence, conventional DS requires either the
assumption of perfect detection at a distance 0 or else accep-
tance that inferences will be restricted to the available part
of a population only (Buckland et al., 2015). However,
availability becomes estimable in a DS model if certain
extra information is collected, for example, from multiple
observers (Borchers et al., 1998), replicated surveys
(Chandler et al., 2011), time-removal (Farnsworth et al.,
2002), or from variable survey duration, as we will show.

Second, for the PC data, we adopt a variant of the
binomial N-mixture model (Royle, 2004), represented by
Ni �Poisson Apc

i λi
� �

and yi �Binomial Ni,θip
pc
i

� �
. Simple

PCs are neither area explicit, nor can detection probabil-
ity be estimated without temporal replication (Stoudt
et al., 2023). This precludes estimation of survey area Apc,
availability θpc, and perceptibility ppc. However, we show
how the use of PC data alongside regular DS data in an
IDS model renders estimable both Apc and ppc, again via
the estimation of the parameters of a suitable detection
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function. Conceptualizing simple PC data as the outcome
from latent DS surveys lets us estimate separate detection
functions, along with distinct effects of covariates, for
both DS and PC data when they are used as part of an
IDS model. Integration of these detection functions over
an unlimited distance or out to the chosen truncation dis-
tance yields the average detection probability ppci for a PC
survey at site i and moreover defines survey area Apc.
This lets PC surveys contribute information toward an
estimation of density λ. This model represents a com-
plete, model-based reconciliation of the spatial mismatch
between DS and PC data. In addition, variable survey
duration tpc or other extra information mentioned above
may render estimable availability θ and thus additionally
reconcile temporal mismatches among DS and PC sur-
veys as well.

Third, for DND data we adopt a variant of the
Royle and Nichols (2003) model. Here, the observed
DND data are assumed to follow a Bernoulli distribu-
tion with a success probability that depends on both
local abundance and parameters of the detection pro-
cess: yi �Bernoulli 1− 1− pdndi

� �Ni
� �

, where yi denotes
a binary DND datum at site i and the other quantities are
analogous to the above definitions. As for the PC data,
single-visit DND data without any extra information will
not normally permit parameter estimation under this
model, but we will see how using DND data alongside DS
data as part of an IDS model will render identifiable both
survey area Adnd

i and detection probability pdndi . As for an
IDS model with PC data the observation model for DND
data can be adjusted for imperfect availability by assum-
ing for the DND datum at each site i, yi j p1,p2,…,pNi

�
Bernoulli 1−Ep

QNi
j 1− θdndi pj
� �� �� �

, where Ep denotes
the expectation and j is an index for the j¼ 1…Ni individuals
present. When detection of individuals is independent,
this simplifies to yi �Bernoulli 1− 1− θdndi pdndi

� �Ni
� �

.
However, we have found availability estimates in a model
with DND data to be extremely variable to the extent of
being useless (unpublished analyses). This needs further
study, but for now we include in the IDS models in our
paper either DND data or estimation of availability, but
not both at the same time. Likewise, the unmarked
function “IDS()” does not allow estimation of availabil-
ity in an IDS model that includes DND data.

Our current IDS models always require that some DS
data are available, and they assume population closure and
that all data types observe identical abundance and avail-
ability processes. Hence, abundance and, if modeled explic-
itly (for DS and PC data), availability parameters are
shared in a joint likelihood, while detection parameters
can be either shared or made specific to each data type. We
will show that this enables IDS models to obtain separate
intercept and slope estimates in the detection function, and
therefore of survey area A, density λ and detection

probability p, from unreplicated, simple PC or DND data,
when these are used as part of an IDS model. If PC data
are the result of surveys with variable duration, an avail-
ability process may also be added to the IDS model. For
songbirds, S�olymos et al. (2013) express availability as a
function of singing (or, more generally, activity) rate ϕ
and of survey duration t as θi ¼ 1− exp − tiϕið Þ. We will
show how we can also estimate availability in an IDS
model combining DS and PC data, provided that survey
duration is variable and the sample size sufficiently large.
We note that we envision a “hiding behavior” mecha-
nism underlying imperfect availability (Kéry &
Royle, 2021: section 2.4).

To summarize, for regular DS data we specify likeli-
hood Lds (Royle et al., 2004), for PC data Lpc(Royle, 2004),
and for DND data Ldnd (Royle & Nichols, 2003).
Importantly, for both PC and DND data, we assume a
latent DS observation process protocol and estimate
detection probability p by integration of a detection func-
tion with parameters that become estimable in an IDS
model. Under independence among data sets, that is,
when at most a negligible portion of sites appears in
more than one data set, we define the following joint
likelihoods for three variants of an IDS model:
LIDS1 ¼ Lds × Lpc (which we call model IDS1) and
LIDS2 ¼ Lds × Ldnd (model IDS2) for the combinations of
DS with PC or DND data, and LIDS3 ¼ Lds ×Lpc × Ldnd

(model IDS3) for the full three-way combination. These
likelihoods can be maximized numerically to obtain
MLEs, or we can place priors on their parameters and
use MCMC methods to obtain Bayesian posterior infer-
ences. See Appendix S1 for a conceptual outline of IDS
models and of how they conceptualize PC and DND data
as the outcome of a latent DS observation process.

TESTS AND DEMONSTRATIONS OF
IDS MODELS WITH SIMULATED
AND REAL DATA

Simulation 1: Identifiability of separate
observation process parameters in IDS1
and IDS2

To demonstrate the identifiability of the IDS models, we
analyzed simulated data sets and estimated parameters
for separate detection functions in an IDS model with
either DS + PC data or DS + DND data, that is, in the
IDS1 and IDS2 cases. We used the function “simHDS()”
in the R package AHMbook to simulate two data sets with
DS data from 250 sites, and PC or DND data from another
1000 sites. To obtain PC data, we first generated DS data,
and then discarded all distance information, just retaining
one count per site, and to produce DND data we additionally
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quantized the resulting counts. Mean density was kept con-
stant at 1, following our assumption of a shared density pro-
cess. The scale parameter σ in the half-normal detection
function was set at 100m for the DS data and was varied
randomly between 10 and 130m for the PC and DND data
sets. Thus, the key criterion for identifiability of our models
was how well estimates of σ matched their true values in
the data simulation. In the submodel for the DS data sets,
we chose a truncation distance of 200m. In this simulation
we aimed to establish the identifiability of the new models
in their simplest form only. That is, we implicitly assumed
availability to be 1 and did not use any covariates in either
density or detection. We used JAGS (Plummer, 2003) to fit
IDS1 or IDS2 to 1000 data sets each.

In Simulation 1B (Appendix S2: Section S1) we
extended our investigations of parameter identifiability
and estimator performance with model IDS1. We var-
ied all of the following four settings independently
according to a response-surface design: average den-
sity, detection function scale for both DS and PC data,
and the DS truncation distance. We again used JAGS
for model fitting.

Simulation 2: Identifiability with distinct
covariate effects in the observation model

We conducted two sets of simulations to answer the fol-
lowing related questions: (1) Does the IDS model allow DS
and PC detection to have different covariate relationships
in the detection function? (2) Are relationships still identi-
fiable if the same covariates are related to both detection
and density? We answered these questions by simulating
data sets with DS and PC data from 200 and 1000 sites,
respectively. Density was governed by an intercept of 1 on
the natural scale and an effect of 1 of one covariate (“habi-
tat”). The half-normal detection function σ had an intercept
of 100 and 150m on the natural scale for DS and PC data,
respectively. In the first analysis we used “simHDS()” to
simulate 1000 data sets with these specifications, and
where the half-normal detection function σ, on the
log-scale, was affected by another covariate “wind” by
independently drawing two random numbers from a
Uniform(−0.5, 0.5) distribution, one for the DS data and
the other for the PC data. In the second analysis, we used
a modified version of function “simHDS()” to simulate
another 1000 data sets with the same specifications as
above, except that now we generated log-scale effects of
the same covariate as for density (i.e., “habitat”) by inde-
pendently drawing two U(−0.5, 0.5) random numbers for
the DS and PC data sets as their coefficients. We used the
new “IDS()” function in R package unmarked to fit the
data-generating model. We discarded numerical failures,
which we conservatively identified by standard errors that

were either NA or had an absolute value >5, or by MLEs
that were >10 times their true values.

Simulation 3: How many DS sites are
required to obtain adequate estimates of
density?

We simulated 1000 data sets with PC data from 200 sites, to
which we added DS data from 1 to 100 sites in six mixing
ratios. Density was governed by an intercept of 1 on the nat-
ural scale, with one habitat covariate with coefficient 1. The
detection function “σ” was 70m in the PC and 100m in
the DS data, and we chose a truncation distance of 200m
in the latter. We generated a total of 6000 data sets (1000
for each level of the mixing ratio factor) and fitted the
IDS1 model using function “IDS()”, discarding numeri-
cal failures based on the same criteria as in Simulation 2.

Simulation 4: How well can availability be
estimated in an IDS model?

We simulated 1000 data sets that resembled our case study
below: each had DS data from 3000 sites, and PC data from
either 1000, 3000, or 6000 sites. DS survey duration was kept
constant at 5 min, but it varied between 3 and 30 min in PC
surveys, with a strong right skew, as found in the case study
data (see below). Density was governed by an intercept of
1 on the natural scale and with a habitat covariate with
coefficient 1, detection function “σ” was 70m in the PC and
100m in the DS data, with a truncation distance of 200m in
the latter. The average singing rates per site varied between
0.1 and 2, corresponding to a probability of 0.1–0.86 to sing
at least once over a 5-min interval, that is, to be available
during a 5-min survey. We fit IDS1 using the “IDS()” func-
tion and discarded numerical failures as in Simulation 2.

Case study: American Robins in the
Oregon 2020 Project

We used the IDS1 model to estimate the population
density of American Robin (Turdus migratorius) in
Benton and Polk counties, Oregon. The 3680 km2 area
in Western Oregon is bounded on the east by the
Willamette River and its floodplain, while the western por-
tions include the Coast Range mountains. Silviculture of
coniferous forests is the dominant land use in the moun-
tains. Nearly every square kilometer contains a narrow,
lightly traveled road for timber harvest, which allows
access for bird surveys. The eastern floodplain sections
contain a mix of agricultural uses, mostly festucoid grass
seed fields and orchards, and suburban development.

ECOLOGY 5 of 14
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DS surveys were conducted every 0.8 km along acces-
sible roads throughout the study area, and every 200-m
in an off-road grid placed over the William L. Finley
National Wildlife Refuge, producing a total of 2912 sites
sampled and 2020 American Robins detected (Robinson
et al., 2020). DS surveys were conducted during the
breeding season (30 April to 11 July) from 2011 to 2013
by WDR. Each survey followed the Oregon 2020 protocol
(Robinson et al., 2020), which used 5-min stationary
counts initiated between 30 min before sunrise and noon
on days with no or little rain. All birds detected by sight
or sound were recorded at an estimated distance from the
observer (verified with a range finder when possible) fol-
lowing standard DS protocols (Buckland et al., 2015).

We combined DS surveys with opportunistically gath-
ered citizen-science PC data from the eBird database
(Sullivan et al., 2009), using checklists from 2011 to 2017
in Benton and Polk counties. After stringent filtering (see
Appendix S2: Section S2) and geographic subsampling,
1060 PCs with 819 detections of American Robins were
included. We filtered data to include only complete check-
lists using stationary protocols and personal locations,
conducted during the breeding season. We further filtered
data to include only checklists with durations between
3 and 30 min that were conducted between sunrise and 7 h
after sunrise. Finally, we applied geographic subsampling
to reduce the effects of highly popular sites by overlaying a
200 m grid over the study area and randomly selecting only
a single checklist from each grid cell. See Appendix S2:
Section S2 for specific eBird query details.

For DS data, we selected a truncation distance bds of
300 m. We binned the distance data into 50 m distance clas-
ses. For the analysis of PC data, an upper distance limit bpc

of 500 m was adopted, assuming that observers do not
detect individuals further away than that (the 0.99 quantile
in the Oregon 2020 database [Robinson et al., 2020] was
400 m). For both data types, we assumed identical parame-
ters for annual density and availability. We modeled density
λ with a random intercept for year, and with quadratic
terms for elevation and percentage of canopy cover in a
315m radius around the observer location. This radius was
selected as it was previously found to be the most predictive
of abundance for this species of the radii considered
(Hallman & Robinson, 2020). For availability, we adopted
the model of S�olymos et al. (2013) linking availability proba-
bility with activity rate ϕ according to a Poisson point pro-
cess in time and used linear and quadratic terms for day of
the year and minutes since dawn on the log activity rate.

We hypothesized that the observation process in the
designed DS surveys in the Oregon 2020 Project might dif-
fer from PCs surveys recorded in eBird, even after our very
stringent filtering, as the distance sampling surveys
conducted by a professional ornithologist might have a
higher detection probability than eBird surveys conducted

by citizen scientists with variable training and experience.
Therefore, we allowed for different detection functions for
the DS and the PC portions in our analysis by fitting
separate intercepts in the half-normal detection scale σ.
Moreover, to accommodate possibly different levels of
detection heterogeneity among sites, we specified
site-specific random effects in σ and allowed for a differ-
ent variance in the DS and PC portions of the data
(Oedekoven et al., 2015). In addition, we modeled σ using
the percentage of urban area and percentage of canopy
cover, both in a 165m radius around the observer loca-
tion; these slope parameters were shared between DS and
PC data. We computed the canopy cover covariate for a
smaller radius in the detection function, as the distance
that an observer can detect is impacted more heavily by
nearby environmental conditions. Elevation, urban land
cover, and canopy cover were obtained from the Oregon
Spatial Data Library (Oregon Spatial Data Library, 2017),
the USGS’s National Gap Analysis Project (United States
Geological Survey, 2011), and Landscape Ecology, Modeling,
Mapping and Analysis’s gradient nearest neighbor structure
maps (LEMMA, 2014), respectively.

We processed data in R (R Core Team, 2019) and fitted
the model in JAGS, using the R package jagsUI

(Kellner, 2016). For all parameters, we chose vague priors;
see BUGS model on Zenodo for details (Kéry et al., 2024).
We assessed the model goodness-of-fit for both data por-
tions separately using posterior predictive checks (Conn
et al., 2018) with a Freeman–Tukey discrepancy measure
computed for observed and expected counts for the DS and
PC data (Kéry & Royle, 2016). This suggested an adequate
fit of the model overall: Bayesian p-values for the DS part of
the model revealed slight underdispersion, while the PC
part of the data indicated good model fit (Appendix S2:
Table S6). We obtained posterior predictive distributions of
abundance and predicted density, based on elevation and
canopy cover, for each of the 3874 1-km2 grid cells in
Benton and Polk counties, resulting in an abundance-based
species distribution map of American Robin. We also fitted
a simpler variant of the model using the “IDS()” function
in unmarked (Kellner et al., 2023) to illustrate both
Bayesian and maximum likelihood inference. Code and
data to replicate the case study and simulations can be
found on Zenodo (Kéry et al., 2024).

RESULTS

Simulation 1: Identifiability of separate
observation process parameters in IDS1
and IDS2

In an IDS model, separate detection functions were
clearly estimable under both IDS1 (combining DS and
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PC data) and IDS2 (combining DS and DND data); see
Figure 1 and Appendix S2: Table S1. There was no indi-
cation of bias in either model: % relative bias was
<<1% for all sigma and <2% for the abundance esti-
mates at sites with N > 0. Credible interval (CRI) cover-
age was close to the nominal level of 95% for all
estimators. Not surprisingly, precision was slightly
lower in model IDS2 than in IDS1 (see middle of
Figure 1). In addition, Simulation 1B confirmed the
excellent frequentist operating characteristics of the

estimators in IDS models under an even wider range of
conditions (Appendix S2: Section S1, Table S2).

Simulation 2: Identifiability with distinct
covariate effects in the observation model

In the first set of simulations, where two different
covariates affected density and the detection function,
and where the effects on the latter were distinct for the

F I GURE 1 Simulation-based validation of two integrated distance sampling (IDS) models (Simulation 1). Left: Model IDS1 (=DS + PC

data), right: Model IDS2 (=DS + DND data); see main text for details. Top: estimation error in detection function sigma (σ) in the DS data

(n= 250 sites); middle: estimated (with 95% CRIs) versus true value of σ in the PC and the DND data sets (n= 1000 sites); bottom:

estimation error in the latent site-level abundances (N) in the PC and the DND data (mean/SD of simulated true abundance: 79/9). Red

denotes truth or absence of estimation error, dashed blue shows mean of estimates. Sample size in both simulations is 1000 data sets. See

also Appendix S2: Figure S1, Tables S1 and S2.

ECOLOGY 7 of 14

 19399170, 0, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecy.4292 by W

elsh A
ssem

bly G
overnm

ent, W
iley O

nline L
ibrary on [12/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



DS and PC portions of the data, we discarded 23 sets
of estimates as numerical failures. The remaining
977 sets of estimates indicated that this model was

identifiable and produced little or no bias (Figure 2,
left; Appendix S2: Table S3 left). In the second set of
simulations, where the same covariate independently

F I GURE 2 Another simulation-based validation of IDS1 combining DS and PC data (Simulation 2). Left, Simulation 2a: Sampling

distributions of intercept and slope estimates for detection function parameters with independent effects in the distance sampling (top) and the

point count (bottom) parts of the data. Right, Simulation 2b: Intercept and slope estimates for detection function parameters with independent

effects in the distance sampling (top) and the point count (bottom) parts of the data, when the same covariate also has an effect on density. Red

denotes truth, dashed blue shows mean of estimates. Sample size in both simulations is 1000 data sets. See also Appendix S2: Table S3.

8 of 14 K�ERY ET AL.

 19399170, 0, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecy.4292 by W

elsh A
ssem

bly G
overnm

ent, W
iley O

nline L
ibrary on [12/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



affected density and the two detection functions, we
discarded 66 invalid sets of estimates. The remainder
again showed this model to be identifiable (Figure 2,
right; Appendix S2: Table S3 right).

Simulation 3: How many DS sites are
required to obtain adequate estimates of
density?

In our simple simulation, the IDS model showed excel-
lent performance with as few as 20 DS sites (Figure 2),
with relative bias <1% for all estimators and CI coverage
at or near nominal levels (Appendix S2: Table S4).
However, the number of numerical failures increased
greatly when decreasing numbers of DS data were added
in the integrated model; from only 2 out of 1000 when
100 DS sites were added, to 85 with 20 DS sites, and to
490 out of 1000 when one DS site was added.

Simulation 4: How well can availability be
estimated in an IDS model?

Sampling distributions of density estimators were all con-
centrated around the true value. There were long right

tails, but these became more symmetrical with larger
sample sizes. Singing rate (ϕ) estimators were precise up
to values of approximately 0.8, 1.3, and 1.4, respectively,
for 1000, 3000, and 6000 PC sites, but became very impre-
cise for greater values of the singing rate. Presumably,
this was because overall availability reached an asymp-
tote close to 1 when singing rates were very high, making
precise estimation of ϕ difficult (Figure 3). Overall, there
was a slight positive bias in both density and singing rates
(Figure 4), but it declined from 14% to 10% with 1000 PC
sites to 3000 and then down to 2% with 6000 sites, while
CI coverage was always at nominal levels (Appendix S2:
Table S5). The relative bias of the detection function scale
σ for both data types was always less than 1%.

Case study: American robins in Oregon

Over all surveys considered, mean survey date was 7
June, and time since dawn ranged from 17 to 519 min
(mean 229). At mean date and time since dawn, availabil-
ity within a 1-min survey was estimated at 0.295
(95% CRI 0.133–0.795; Appendix S2: Table S6). Estimated
availability peaked soon after dawn, decreased during the
next 5 h, then increased again, and tended to increase
slightly throughout the season. Density was estimated to

F I GURE 3 Sampling distributions of estimators of density (intercept and slope of a continuous covariate, shared between distance sampling

[DS] and simple point count [PC] data), and of detection function sigma (“σ”) for the DS and the PC parts of the data (Simulation 2).

Throughout, sample size for the simple PCs is 200 and true values are indicated with dashed red lines. Each individual boxplot summarizes

between 515 and 998 data sets that resulted in valid estimates, see also Appendix S2: Table S4. Note that more variable boxplots are

indicative of higher RMSEs.
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be highest on plots with a canopy cover of ~40% and
to decrease with elevation. Median estimates for density
varied between 2 and 59 individuals per square kilometer.
Maxima were found in the foothills where open woodlands
transition from the floodplain agricultural zones into the
denser forests at higher elevations, while minima were
found in the most intensively harvested woodlands
(Figure 5). Over the entire study area, we estimated a popu-
lation size of 92,439 American Robins (95% CRI
57,322–142,656). Interestingly, on average the estimated
detection function scale (σ) was not different between the
DS and PC portions of the data (parameter “mean.sigma”
in Appendix S2: Table S6). However, there was greater
variability in the detection function “σ” among surveys
on eBird than for regular DS surveys conducted within
the Oregon 2020 Project (parameter “sd.eps”).

DISCUSSION

We discovered how simple PC or DND data can be for-
mally integrated in a model together with DS data, to
estimate separate parameters of an underlying latent DS
observation process in every data type. This allows the

estimation of a full complement of detection probability
parameters for all three data types. Moreover, integrating
DS data makes abundance estimates from PC and DND
data area explicit. Thereby, IDS models achieve a formal
spatial calibration of PC and point-indexed DND data, as
well as a reconciliation of spatial mismatches between all
three data types. Thus, IDS models solve two major prob-
lems that plague simple point count surveys producing
PC or DND data: detection probability and effective sur-
vey areas are both unknown. The key assumption of our
IDS model is a shared density process: that either density
is identical among all sample locations, or that
density differences can be explained by identical covari-
ate regressions for all data types in the integrated model.
These assumptions should be reasonable when all data
types are collected randomly in the same general area,
and they may also hold when data sets are from disjoint
regions, provided some form of random spatial sample is
achieved. However, as in perhaps all cases where differ-
ent data sets are combined in a single analysis, this kind
of exchangeability is a judgment call on the part of the
analyst. For instance, joining data sets from two spatially
biased samples (e.g., roadside and riverside counts)
would not be such a good idea.

F I GURE 4 Sampling distributions of estimators of density (lambda, λ) and of activity/singing rate (phi, ϕ) in an integrated distance

sampling model with availability fit to data from 3000 distance sampling sites, plus 1000, 3000, or 6000 PC sites added (Simulation

3, n= 930, 866, and 997 analyses that did not produce numerical failures). Red denotes truth or absence of estimation error, dashed blue

shows mean of valid estimates. See also Appendix S2: Table S5.
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We believe IDS models have a large scope of applica-
tion and can facilitate the use of the large amounts of
currently available PC data, such as the North American
BBS (Sauer et al., 2017) in more formal analyses of abun-
dance that account for imperfect detection. They may
also be applied for carefully quality-controlled eBird data
(Sullivan et al., 2009), as illustrated in our case study. In
the context of our simulation with a Null model without
covariates, we have shown that only a relatively small
number of regular DS data is required to supplement sim-
ple PC data when used in an IDS model. Our findings
agree well with related work with other types of integrated
models that demonstrate the benefits of combining even
small amounts of data with a higher information content
with less informative, but cheaper data (Dorazio, 2014;
Doser et al., 2021; Zipkin et al., 2017). This would suggest
that the scope of inference of PC surveys may be substan-
tially increased by adding even a relatively small number
of sites where the additional distance information is col-
lected on purpose. Although it may well be that in “real
life,” with messy data and consequently with more com-
plex models, (much) more of the information-rich DS data

will be needed. This should then be addressed with more
customized simulations.

In our case study we found that the perceptibility
part of detection probability was not different on aver-
age between the DS data contributed by the Oregon
2020 Project and the PC data obtained from eBird: the
intercepts of the detection function scale parameter σ
were no different between these two portions of the data.
However, allowing for random variation of the detection
function parameter σ among surveys (i.e., among sites)
and for possibly different magnitudes of that variation
between the two types of data revealed greater heteroge-
neity among surveys in the eBird database than among
surveys in the Oregon 2020 Project. This makes intuitive
sense, since the consistency between surveys must have
been higher in the Oregon 2020 Project than in eBird:
most of our DS data were produced by just one person
(WDR), while the eBird data were contributed by many
different observers. For less conspicuous species or those
that occur at higher abundances, there may be a greater
differentiation in perceptibility between structured and
citizen-science surveys, and explicitly allowing for those
differences within models may be essential (Robinson
et al., 2021). In addition, our case study emphasizes how
careful modeling of patterns in the detection function of
an IDS model can help to make data from different proto-
cols more “alike,” by explicitly allowing for their differ-
ences in terms of the observation processes that produced
them. This is a great strength of IDS models and of para-
metric statistical inference in general.

Many survey data typically have large variations in
duration (S�olymos et al., 2013) and thus there is also a
need for temporal mismatch among datasets to be
addressed. We conceive of this as an availability process
(Diefenbach et al., 2007; Kendall et al., 1997), where over
time an activity such as singing puts individuals at increas-
ing risk of being detected. Hence, survey duration is natu-
rally informative about availability. However, this part of
our model presents more challenges. With the current for-
mulation of our IDS model, we could only estimate avail-
ability when combining DS with PC data, but not when
DND data were part of the analysis (unpublished analyses),
and even then only with large sample sizes. In addition,
population closure is required and hence surveys should
probably not be very long in duration. Moreover, this part
of an IDS model has the form of a single-visit occupancy or
N-mixture model (Lele et al., 2012), where estimability
hinges upon a continuous, “private” covariate that affects
detection, and in our case, availability. Such models are
identifiable (Dorazio, 2012), but they rely strongly on para-
metric assumptions and may lack robustness to violations
of those assumptions (Stoudt et al., 2023). Our Simulation
4 and the case study both showed availability to be

F I GURE 5 Estimated density of American Robin (individuals

per 1 km2) in Benton and Polk counties, Oregon, based on breeding

season observation data from 2011 to 2017.
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identifiable in an IDS1 model, when extra information
about the availability process (in our case, variable survey
duration) was included. However, our study species was
chosen specifically to be fairly common. In rarer species
and consequently smaller sample sizes, there may well be
challenges when attempting to estimate availability
parameters in an IDS model. When information to esti-
mate availability is too sparse, estimates may tend toward
the boundary of 1, which will cause an underestimation of
density. Finally, we point out that for survey duration
there is a trade-off, since variability in survey duration in
the PC data is needed as the source of information about
availability. Conversely, survey durations that are too long
may lead to violations of the closure assumption and (pre-
sumably) an overestimation of density. This is something
to keep in mind when planning to apply IDS modeling.

Therefore, IDS models that estimate availability must
be developed and applied with much care. Future users of
IDS models are advised to conduct simulations tailored to
their study to gauge how well the model is likely to per-
form in their case. In addition, any extra information about
availability should be incorporated into the model, such as
data from multiple observers (as in mark–recapture DS;
Borchers et al., 1998), replicated surveys (Chandler
et al., 2011), time-of-detection and time-removal data
(Alldredge et al., 2007; Amundson et al., 2014; Farnsworth
et al., 2005; S�olymos et al., 2013). Alternatively, availabil-
ity parameters may be estimated from altogether differ-
ent data types, such as recordings of individual singing
behavior, or perhaps even taken from the literature. We
note that S�olymos et al. (2013) had good success with
the integration of time-removal and DS data, but in a
simpler model that did not involve the estimation of a
detection function for the time-removal data.

Most DS models, including our IDS models, assume
that survey sites are placed randomly in the study area.
However, in our case study, many surveys were done
along roadsides, many of which were logging roads
within woodlands (Appendix S2: Section S3). We assume
that American Robin distribution was unaffected by the
vicinity of these roads and our observations of them
being distributed well away from roads in the Finley
Refuge where we sampled an off-road grid supports that
assumption. Furthermore, canopy cover, one of our
important environmental covariates, helps to account for
the presence of roads and road size as larger or denser
roads at a survey location decrease canopy cover. The use
of appropriate environmental covariates, or the intentional
inclusion of off-road surveys, should be considered so that
the effects of roadside versus off-road counts can be evalu-
ated. We also caution that the effects of proximity to roads
may not affect the distribution of all species equally.

We can envision at least four major extensions to the
IDS models described in this paper. First is the accommo-
dation of survey sites included in the dataset that were
sampled using multiple protocols. This induces a depen-
dence that must be addressed in the construction of the
joint likelihood. Second, IDS models could be developed
for other survey geometries, such as line transects or
search-encounter designs (Mizel et al., 2018; Royle
et al., 2014). Third, allowing for open populations and
demographic processes (Kéry & Royle, 2021: chapters
1 and 2) will be an important extension that may open up
avenues for truly large-scale demographic models; see
also Appendix S1. Fourth, additional data types may be
incorporated into the model, such as opportunistic data
conceptualized as point patterns (Farr et al., 2021),
time-to-detection data (Strebel et al., 2021), aggregated
counts (Schmidt et al., 2022), and data from autonomous
recording units (ARUs; Doser et al., 2021). For instance,
IDS models may be beneficial for ARU data by allowing
estimation of the “listening range” of these devices under
widely varying conditions, while additionally exploiting the
information on singing rate contributed by the ARU data.

In summary, we believe that IDS models can improve
analyses of widely available simple PC and DND data
obtained in citizen-science schemes, as well as the
increasing amount of ARU data in contemporary biodi-
versity surveys. IDS models may serve as a keystone in
the formal, model-based unification of the analysis of var-
ious data types, both from designed and less designed to
even design-free surveys, to great mutual benefit. We find
it fascinating to see how DS and simple PC or DND data
both contribute two essential pieces of information
toward the full IDS model: DS data contain most infor-
mation about the detection function, while the heteroge-
neity in survey duration commonly found in simple
PC/DND data enables estimation of the availability process.
This neatly illustrates the fact that the future of biodiversity
monitoring arguably lies in a combination of both designed
surveys and carefully chosen citizen-science schemes.
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