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“Habitarunt di quoque silvas . . . nobis placeant ante omnia silvae.” 

“Even the Gods dwelled in the woods . . . For us, the woods shall be our greatest 

delight.” 

Virgil, Eclogue Ⅱ. 
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ABSTRACT 

 

This work has focused on the application of remote sensing to continuous cover forestry 

(CCF), primarily within Britain, with the intent to identify new methods of inventory, 

monitoring and biomass quantification. CCF is a silvicultural approach with a focus on 

sustainability through which forest stands, often of varied species composition, are 

manipulated to create irregular stand structures through practices of partial harvesting in a 

manner that retains constant forest cover of a site and allows for natural regeneration. 

Owing to the great differences between CCF and traditional approaches of forestry, in which 

even-aged monocultures are maintained, the traditional methods of assessment, such as 

productivity (yield class) calculations, are less applicable. There is a need to identify new 

methods of inventory, biomass estimation and stand monitoring for use in operational 

forestry and research environments and remote sensing has been identified as a potential 

tool to meet this need. The hypotheses of this work relate to the ways in which remote 

sensing can overcome the challenges posed by the complexity introduced by the adoption of 

CCF and the aims of this work relate to demonstrating methods for working with remote 

sensing and CCF. This work addresses multiple different approaches to remote sensing; 

aerial laser scanning (ALS), ground-based laser scanning (TLS and MLS), and 

photogrammetry.  

The first part of this work reviews the extent of existing research that addresses the 

application of remote sensing in CCF and considers the transferability of remote sensing 

methodologies from other complex forest ecosystems to CCF.  
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Following from this, is a summation of contributions made towards a greater effort within 

the European Cooperation in Science and Technology to collate information on forestry-

specific ground-based point cloud processing solutions and their functions, presented as a 

brief review of tools. The intent of the work and the greater effort it contributes to is to 

improve accessibility to and promote democratisation of such tools for forestry researchers 

and professionals. 

This work then moves onto remote sensing in complex forest systems demonstrating how 

ALS timeseries data can be used for detecting disturbance directly and the importance of 

remote sensing for modelling the structural traits of a forest ecosystem. This chapter finds 

that maps of change in LiDAR metric descriptors of forest structure can be used to detect 

selective logging activities and visualise stand growth over time. An attempt to develop a 

more accurate model for AGB using three forest structural metrics was made, however the 

results indicated no improvement over an existing, widely adopted, single variable model. 

Following on from the exploration of ground-based point cloud processing tools, an 

exploration of how well three of these tools can be employed to replicate and expand upon 

existing traditional inventory methodologies in complex CCF stands and ancient forest. We 

compare plot level distributions of stem diameters extracted from point clouds against those 

from field data. This work demonstrates that it is currently possible to use TLS as an 

alternative means of inventory data collection to traditional, manual measurements, though 

this is subject to the correct processing methods and data quality. 

Finally, this work closes with a discussion of how this work is justified in light of the ongoing 

climate crisis, how this work addresses the needs for remote sensing research in CCF, 

shortcomings, and future directions for work.  
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CHAPTER 1  

Introduction and Objectives 

1.1 Introduction 

1.1.1 Context 

The phrase ‘production forests’, forests grown and managed for timber production, conjures 

images of even-aged stands of a single tree species planted into evenly spaced rows; far from 

the image imagined by most considering a natural forest. Natural forests hosting a range of 

species of different sizes and ages, growing in a random arrangement, are largely considered 

to be more aesthetically appealing than the plantations of production forests. Intuitively to 

most, a more diverse and more varied forest structure provides greater environmental 

benefits than even-aged monocultures. The ecosystem services provided by more diverse 

forest structures and species compositions have been shown to include improved diversity 

of habitat provision, and greater resistance to pathogens and changes in environmental and 

climatic conditions [1-3].  

Harvesting approaches to production forests, such as clear-felling, are traditionally also 

considered less aesthetically pleasing than partial or selective harvesting systems which 

leave some trees in situ to continue to provide ecosystem services and grow. As with the 

comparison between production and natural forests, the more aesthetically pleasing partial 

harvesting approach provides a greater number of ecosystem services, and in this case 

reduces the impact of timber production on the environment through reduced soil erosion, 

loss of habitats, and windthrow in surrounding stands, relative to clear felled sites [4-7]. 
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Given the strongly negative aesthetic appearance associated with traditional forestry, 

rendering the forestry sector an easy target for environmental campaigning and activism, 

governments and their forestry bodies are eager to promote silvicultural approaches which 

give forests more natural appearances. Since 2004, in the UK, there have been standards in 

place from the government and certifications under the UK Woodland Assurance Standard, 

which certifies all nationally owned forests and much private forest, to promote sustainable 

management activities. These national standards for sustainable forest management are 

reassessed approximately 5 years with the latest editions published in 2017 [8,9] and are 

intended to ensure forests are managed to provide improved community and ecosystem 

services without significantly sacrificing timber production. The standards broadly outline 

silvicultural practices which all fall within the definition of continuous cover forestry, CCF; 

a management approach in which forest stands, often of varied species composition, are 

manipulated to create irregular stand structures through practices of partial harvesting in a 

manner that retains constant forest cover of a site and allows for natural regeneration [10] 

(see 2.2.1). 

CCF is not without its drawbacks; pre-existing means of estimating the standing stock, and 

the harvestable yield or forecasting future stocks are all inapplicable to continuous cover 

systems due to the heterogeneity of the size, age, and potentially also species of the trees in 

a stand. At present there are no comprehensive and fully established methods for estimating, 

monitoring, or forecasting stocks in CCF in the UK and thus is a need to develop new 

methods of monitoring for CCF and, thus, addressing this through use of remotes sensing 

tools is the focus of this work. 
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1.1.2 Remote Sensing 

Point clouds are a three-dimensional (3D) representation of space that consists of a 

collection of individual points comprising the surfaces of objects. Each point in the cloud is 

defined by its position coordinates in the x, y, and z axes; often they also include additional 

information such as the colour or return intensity. Point clouds are typically produced 

through use of laser scanning however they can also be generated through photogrammetry. 

The data contained within a point cloud provides valuable spatial information about the 

scanned environment and when used in conjunction with other techniques, such as surface 

reconstruction algorithms. Surfaces or meshes, formed by connecting proximal points with 

such algorithms, can allow for visualization and analysis of complex structures. 

The increasing availability of high-resolution sensors and advancements in computational 

power have led to the widespread use of point clouds in various applications. They serve as 

a foundational data format for 3D modelling, visualization, simulation, and analysis, 

enabling interaction with and manipulation of real-world spatial information in a digital 

environment. 

1.1.2.1 Laser scanning 

Laser scanning, also known as LiDAR, is a remote sensing technology that uses laser pulses 

to measure distances and generate point clouds. It is a non-contact method of data collection 

that provides highly accurate and precise measurements, making it widely used in a range 

of fields including forestry. 

Laser scanners emit laser pulses in a sweeping pattern, covering a large area or field of view, 

and then detects reflected laser light as it returns to the sensor and records the time-of-flight 
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or change in phase. From this, laser scanners can calculate the distance between the scanner 

and the incident surface. This information, combined with the scanner's position and 

orientation, allows the creation of a detailed 3D representation of the scanned area. Laser 

scanners can capture millions of distance measurements per second, resulting in a dense 

point cloud. 

Laser scanners can be mounted to a range of platforms; airborne platforms such as UAVs 

[11,12] and planes [13,14] for ALS, stationary ground-based platforms such as tripods for 

TLS [15], and mobile ground-based platforms which are often handheld, or backpack 

mounted, for MLS [16,17]. A selection of the variables that can be measured and derived 

from different laser scanning platforms can be found in Table 2-1.   

As laser scanning tools allow for the generation of comprehensive and high-resolution 3-D 

models of complex structures they have naturally been applied to below-canopy forestry 

applications. In recent years, terrestrial laser scanning (TLS) has become an established 

method of monitoring forests and plants, owing to their capacity for sub-centimetre 

accuracy and precision. Occlusion by understory growth, branches, and the trunks of trees 

significantly limits the range and extent that a TLS scan can reliably model and although 

this can be overcome by taking a multi-scan approach this can be rather time consuming 

and require additional features such as highly reflective targets to serve as tie-points for co-

registration and alignment of scans [18,19]. To cover larger areas and to overcome issues 

with occlusion MLS solutions can be used. MLS use in forestry can take multiple forms, and 

there are examples of vehicle-mounted laser scanners [20] for use from tracks and roads, 

and backpack-mounted [21,22] or handheld scanners [17,23] for use in the forest stands. 
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MLS systems often consist of one or more laser scanners in combination with a positioning 

(GNSS) and/or orientation system (inertial navigation system). The density of the produced 

point cloud is strongly dependent on the movement speed and scan rate of the scanning 

platform and can produce homogeneous point clouds of similar density to TLS single scans 

when used correctly, where TLS multi-scans tend to have variable point cloud densities 

resulting in non-homogeneous point clouds when used over larger areas. [24]. 

1.2 Statement of intent and hypotheses 

This thesis examines the use of remote sensing - here referring to photogrammetry, ground-

based and aerial laser scanning – for describing and quantifying the biomass, volume, and 

structural change in CCF stands. This study is based on data from complex tropical forest in 

the Brazilian Amazon and data from three sites in the UK consisting of mixed species CCF, 

and ancient natural and semi-natural forest across Southern England. The key aims of the 

research are to investigate how remote sensing can capture and monitor disturbances in 

forest structure in continuous cover systems and monitor growth over time, and how remote 

sensing can be used to capture inventory data in CCF stands. 

1.2.1 Aims and hypotheses 

There were three key aims to this thesis and they were: 

1. To assess and review the state of remote sensing in continuous cover forestry - addressed 

in Chapters 2 and 3. 

2. To investigate how remote sensing can capture and monitor disturbances in forest 

structure in continuous cover systems and monitor growth over time - addressed in 

Chapter 5. 
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3. To investigate how remote sensing can be used to capture inventory data in CCF stands 

- addressed in Chapter 6. 

The hypotheses of the analysis chapters, Chapters 5 and 6, were linked to aims 2 and 3 

respectively, and are as follows: 

Chapter 5 Hypothesis: Remote sensing can detect disturbances and changes in forest 

structure associated with selective logging and the subsequent recovery. The most 

disturbance sensitive remote sensing metrics of horizontal structural complexity, vertical 

structural complexity, and forest stand height will more accurately calculate stand 

biomass than a single variable model. 

Chapter 6 Hypothesis: Remote sensing can be used to replicate traditional field inventory 

methods at the plot level through use of appropriate data collection methods and 

processing tools.  

1.3 Thesis structure 

Chapter 1 has provided context to the drivers behind the transformation to CCF and the   

need for methods of monitoring CCF. The aims and hypotheses of the thesis have been 

introduced. 

Chapter 2 introduces CCF in greater detail, including discussion of analogous silvicultural 

systems and the relative advantages and disadvantages of CCF compared to traditional - 20th 

century, timber production focused - forestry.  A review of the overlap between remote 

sensing and CCF is presented including the ways that remote sensing could address the 

challenges and knowledge gaps of CCF. There is also discussion of how interested parties 

can get started with remote sensing to promote remote sensing use in the field of CCF. 
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Chapter 3 is a summation of work conducted as part of an action for the European 

Cooperation in Science and Technology (eCOST) and acts a s a review of publicly available 

TLS processing solutions. The work is a novel presentation of information regarding publicly 

available TLS processing solutions and is the first example of a single point of reference for 

information about such solutions and their functions.  

Chapter 4 is a description of the methods used for data collection and processing within this 

work. This chapter covers traditional field methods of inventory and the methods relating 

the remote sensing data collections. A summary is provided of the key concepts of remote 

sensing, the tools and equipment used, the programs for data processing, and an outline of 

the processing methodology. 

Chapter 5 is a published work describing the applications of remote sensing in complex 

tropical forest. It specifically describes the use of remote sensing for detecting small-scale 

forest disturbances and developing a model for biomass estimation using disturbance 

sensitive metrics that correspond to traits of forest morphology. 

Chapter 6 examines how remote sensing can be used to replicate traditional forest inventory 

methods such as recording DBH measurements and heights. This chapter then goes on to 

explore how remote sensing can be used to directly measure additional inventory relevant 

values such as stem volume and thus how in concert with species data collected in the field 

it is possible to estimate merchantable volume by species. 

And finally, Chapter 7 provides a summary of the findings and contributions of this work, 

specifically regarding public sector parties to whom the work provides value. Chapter 8 also 
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reflects on the challenges that CCF continues to pose for inventory assessment and 

monitoring going forward. 

Figure 1-1. A schematic diagram of the thesis structure
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CHAPTER 2  Review of Literature: Continuous cover forestry 

and remote sensing 

2.1 Preface 

This chapter is comprised of a lightly edited version of the published manuscript for the 

work: 

Continuous Cover Forestry and Remote Sensing: A Review of Knowledge Gaps, 

Challenges, and Potential Directions. 

Stoddart, J., Suarez, J., Mason, W. et al. Current Forestry Reports, 9, 490–501 (2023). 

https://doi.org/10.1007/s40725-023-00206-0
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Continuous cover forestry and remote sensing: A 

review of knowledge gaps, challenges, and potential 

directions 

Jaz Stoddart1*, Juan Suarez2, William Mason2, Ruben Valbuena3 

1. School of Natural Sciences, Bangor University, Bangor, LL57 2DG, UK 

2. Forest Research, the Agency of the Forestry Commission, Northern Research Station, 

Roslin, Midlothian EH25 9SY, Scotland, UK 

3. Division of Forest Remote Sensing, Department of Forest Resource Management, 

Swedish University of Agricultural Sciences (SLU), Skogsmarksgränd 17, SE-901 83 

Umeå, Sweden 

2.2 Abstract 

2.2.1 Purpose of review 

Continuous cover forestry (CCF) is a sustainable management approach for forestry in 

which forest stands are manipulated to create irregular stand structures with varied species 

composition. This approach differs greatly from the traditional approaches of plantation-

based forestry, in which uniform monocultures are maintained, and thus traditional 

methods of assessment, such as productivity (yield class) calculations, are less applicable. 

This creates a need to identify new methods to succeed the old and be of use in operational 

forestry and research. By applying remote sensing techniques to CCF it may be possible to 

identify novel solutions to the challenges introduced through the adoption of CCF.  

2.2.2 Recent findings 

There has been a limited amount of work published on the applications of remote sensing 

to CCF in the last decade. Research can primarily be characterised as explorations of 

different methods to quantify the target state of CCF and monitor indices of stand structural 
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complexity during transformation to CCF, using terrestrial and aerial data collection 

techniques. 

2.2.3 Summary 

We identify a range of challenges associated with CCF and outline the outstanding gaps 

within the current body of research in need of further investigation, including a need for the 

development of new inventory methods using remote sensing techniques. We identify 

methods, such as individual tree models, that could be applied to CCF from other complex, 

heterogenous forest systems and propose the wider adoption of remote sensing including 

information for interested parties to get started.  

Keywords: Remote sensing; Continuous cover forestry; Biomass estimation; Individual tree 

growth models, Forest inventory 

2.3 Introduction 

2.3.1 Continuous cover forestry and its challenges 

As concern for the environment has grown in the past decades, the role of forest 

management in mitigating the impacts of climate change and biodiversity losses has 

garnered greater importance. The landmark resolutions for a coordinated international 

move towards sustainable forest management in the 1990s, the Rio Forest principles [1] and 

the Helsinki Process [2], promoted a resurgence in interest in ‘close-to-nature’ forestry and 

continuous cover forestry (CCF), having initially gained popularity in the early years of the 

20th century with concepts such as the ‘Dauerwald’ [3-5]. These sustainable silvicultural 

practices are based around a set of five defining principles: partial harvesting rather than 

clear-felling; preferential use of natural regeneration rather than planting; developing 
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structural diversity and spatial variability within forests; fostering mixed species stands and 

avoidance of intensive site management practices such as soil cultivation, herbicide 

application and fertiliser input [6,7]. For the purposes of this paper, we will refer to the 

sustainable silvicultural practices that adhere to these five principles as CCF, though many 

terms are used [6,8,9]. There is a level of contention over the use of close-to-nature as a 

term within these practices as the level of human interference within these silvicultural 

systems can be considered far from natural [10-12]. The specific silvicultural systems that 

fall within the definition of CCF include irregular shelterwoods, and group and single stem 

selection (terminology follows Matthews 1989). [7,13,14]. 

The driving forces behind the adoption of CCF are the many environmental advantages CCF 

presents over clear-cutting in traditional uniform even-aged forest monocultures. CCF is 

recommended by the European Union (EU) Biodiversity Strategy as a beneficial form of 

forest management for biodiversity [15]. Where transformation to CCF accompanies a 

transition away from monocultures the increased tree species diversity provides additional 

habitats; as tree species richness strongly influences the diversity of forest inhabiting species 

[16]. Increased diversity of tree species and genetics are important contributing factors to 

increased resilience, resistance, and capacity for adaptation with regards to climate change 

[17], pathogens, and pests [18].  

The persistence of stands between harvests, characteristic of CCF, has been found to 

improve multifunctionality of production forests in Fennoscandia and specifically to 

improve diversity of ectomycorrhizal fungi and herbivorous larvae [19]. CCF also has better 

retention of late successional forest species – particularly with regards to shade-tolerant 

understory plants, and bird species assemblages - than traditional clear cutting [20-23]. CCF 
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is thought to be second only to retention forestry with regards to habitat preservation [24]; 

where retention forestry is itself a form of CCF in which dead wood, habitat trees and trees 

with larger contributions to diversity are retained during harvesting [24,25]. The risk and 

impact of soil erosion, particularly on slopes, is also reduced dramatically by the continued 

presence of vegetation and thus CCF provides greater soil stability and reduces soil losses 

relative to clear cutting [26]. Additionally, continuous cover reduces the creation of brown 

edges, which are newly exposed edges in neighbouring stands when a site is clear felled, 

that  are less resilient to windthrow and particularly susceptible to storms [27] CCF shows 

greater windthrow stability and resistance to storms than clear cut sites [28,29] and the 

increased structural complexity of the stands also appears to have a positive impact on wind 

resilience [29]. 

In addition to the environmental benefits of CCF, there are also economic considerations 

surrounding CCF uptake. It can be a smaller financial burden to manage and thin naturally 

regenerating forest than to establish and tend restocking sites after clear cutting [30,31], 

though the regular respacing of some prolific species such as Sitka spruce can itself incur 

large costs. Natural regeneration also mitigates much of the impact of pests such as the pine 

weevil [32] which can devastate restocked sites owing to the vulnerable and attractive 

nature of the seedlings. The products of CCF can also be larger and more valuable than 

equivalent volumes of even-aged forest. For example, study by Hanewinkel et al [33] found 

that CCF stands produced many more high-value large-sized logs which commanded high 

timber prices and thus increased the profitability of CCF almost 2-fold over even-aged 

stands. However, it should be noted that to produce more valuable timber yields, CCF stands 
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require appropriate management, which is specialist knowledge that many foresters lack, 

and for which there continues to be a significant lack of adequate guidance [7].  

2.3.2 Challenges and knowledge gaps in CCF 

Whether CCF adoption presents an economic advantage over clear cutting and even-aged 

forestry is unclear and debated and this is one of many challenges facing the adoption of 

CCF [7,31,34]. From a management perspective, CCF can be a considerably more complex 

procedure than traditional clear cutting in even-aged stands and this requires specialist 

knowledge and training for forest managers and harvest workers [7]. Selective harvesting 

can limit the use of mechanised felling and extraction machinery which can subsequently 

drive-up costs for labour to manually fell the desired trees and extract the timber without 

significantly disturbing the stand. Additionally, yields for each harvest are smaller owing to 

the very nature of selective harvests, thus it takes a longer time or a greater area to produce 

yields of equivalent volume to clear felling which can disincentivise investment and 

adoption. 

The timber industries in the majority of the European countries where CCF uptake is 

increasing are set up to receive near-uniform logs from even-aged monocultures with little 

variability within their dimensions and properties. However, CCF produces logs of a wider 

range of diameters and potentially different species with each harvest and thinning [7,35] 

and this introduces a need for investment into new equipment and tools which is only 

justifiable if the supply of these forest products is both predictable and reliable. 

Estimating standing stocks and future harvest volumes in CCF is considerably more difficult 

than in clear cutting systems as the forest manager must be able to estimate the whole 
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volume of the stand in addition to the volume of exclusively either the harvested or retained 

stems. Forest managers must map which stems are to be harvested, to subsequently 

estimate harvest yield and retained stock. This challenge is being addressed by the advent 

of precision forestry - greater volumes of detailed information facilitating targeted 

interventions aimed at maximising yields of more valuable products - which is inextricably 

linked to developments in remote sensing.  

CCF often requires multiple interventions throughout its growth to maintain the desired 

forest structures where clear cutting typically requires less active management. Typically, 

in a clear-cutting system, a monoculture stand of even-age will be planted on a previously 

cleared site, maintained during its growth, and harvested upon reaching the desired size or 

age. By contrast, CCF is a multi-stage cycle of harvests, regeneration, and growth with no 

clear demarcation between the end of one cycle and the start of the next. Due to the selective 

nature of the harvests and varied approaches to CCF, harvests can vary in scale from large 

group fellings to individual stems as required. To direct harvesting, forest managers may 

rely upon target diameters (maximum diameters) for a species in each stand to inform when 

a harvest is due. Alternatively, there is also the reverse-J distribution (J-curve model) for 

stem diameters which is considered an easily identifiable and achievable distribution within 

CCF that could be used as an indicator of when to harvest and where to concentrate harvests 

in accordance with which diameter classes are found to be in surplus to maintain the desired 

forest structure [36,37]. 

The constant regeneration, management, and recruitment of understory trees provide a 

challenge for mapping inventory as there is a need to record the locations and species of 

trees as well as their development over time. Currently, inventory protocols for CCF are 



16 

 

based on relatively labour-intensive manual data collection methodologies [36]. Monitoring 

regeneration is of particular importance as many forest managers overestimate the 

likelihood of regeneration at their sites or find the success of regeneration to be less 

predictable than that of planting [37].  

Future yield forecasting and growth modelling are currently significantly under-developed 

areas of research for CCF, and for mixed species stands in general. In the UK there are 

currently no models for CCF forecasting [7] and approaches used in traditional methods of 

even-aged forestry are inapplicable to CCF, e.g. yield classes which are an index of the 

potential productivity of even-aged stands of trees [7]. 

2.4 Remote sensing and CCF 

2.4.1 Existing research 

There is currently a dearth of research exploring the application of remote sensing to CCF, 

despite the general growth of interest in both fields separately in recent years. Searches for 

literature to include in this review were conducted using Google Scholar and Scopus with 

search queries comprising keywords used for CCF, the Boolean operator ‘AND’, and 

keywords for remote sensing. The keywords used were: ‘CCF’, ‘Shelterwood’, ‘sustainable 

forestry’, ‘Dauerwald’, or ‘close-to-nature’ plus ‘remote sensing’, ‘LiDAR’, ‘earth 

observation’, ‘laser scanning’ or ‘photogrammetry’. Once completed, the returned titles and 

abstracts of highlighted papers were assessed for relevance, and the few relevant studies 

were subsequently reviewed. Relevance here being defined as works exploring the 

intersection of the two fields, sustainable forestry, and remote sensing, thus eliminating the 
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significant proportion of the search results returned which only made passing reference to 

continuous cover systems or remote sensing. 

There is an obvious need for more work specific to the overlap of these subjects to further 

encourage the adoption of CCF [38,39]. The need for accurate information to support CCF 

also requires a cost-effective method that traditional field data collection cannot solve. 

Therefore, remote sensing is being applied to forestry at a range of scales from that of a 

landscape down to the individual saplings, owing to the efficient and scalable nature of 

remote sensing, and yet there are few examples of remote sensing being applied to CCF. 

Remote sensing can be used to derive a range of forest metrics or to directly monitor stands 

and trees which can then be used to inform models or identify observable trends in growth 

[40-44]. There are a range of remote sensing data sources which could be applied to 

monitoring CCF, however they do not all describe the specific forest stand traits. As such 

each data source is best suited to monitoring specific traits; ALS for height and canopy cover, 

TLS for stem structure, and spectral data to monitor photosynthetic capacity. 

A selection of key forest metrics and traits and that can be measured operationally by 

different remote sensing data sources are explored below, in (Table 1.). The listed traits and 

remote sensing methods are themselves presented grouped into categories with shared 

characteristics. The “inventory data” traits - tree location, tree height, and diameter at breast 

height – are all forest traits which are commonly recorded and measured as part of forest 

inventory activities. “Structural metrics” describes all measurements of horizontal 

complexity, such as gap fraction, leaf area index, and percentage cover; as well as vertical 

complexity, such as foliage height diversity, Gini coefficient of heights and standard 

deviation of heights. The “other CCF traits” is a catch all category for remaining observable 
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traits of specific interest in CCF. Stem volume is included owing to its potential for yield 

measurement and forecasting in uneven-aged stands where traditional models are not 

applicable. Similarly, regeneration is included as it is a defining characteristic of CCF and 

the capacity to monitor regeneration also has implications for yield measurement and 

forecasting. Tree species is of interest as CCF can includes species mixtures and so remote 

identification of species is necessary for stock mapping and monitoring successional 

development of the forest. 

The remote sensing methods, presented in Table 1, are separated by whether they generate 

3-dimensional point cloud or 2-dimensional image data. Within the 3-dimensional point 

cloud generating methods there are three laser scanning methods and two photogrammetric 

methods. Photogrammetric data typically also captures optical data owing to the use of 

optical (camera) sensors for data collection, and it is possible to generate photogrammetric 

point clouds with images from outside the visible spectrum, however it is uncommon. The 

“optical” 2-dimensional image based remote sensing method includes a range of methods 

such as multispectral and hyperspectral imaging in addition to specialist imaging methods 

such as hemispherical photography used in canopy cover measurement [45].   
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✔ represents information that can be reliably and directly extracted using this remote 

sensing data source, ~ represents information which may be extracted using the stated 

data source but can be subject to complications such as occlusion which may impact or 

reduce reliability, # represents information which has only been derived from the outputs 

of the stated data source using machine learning methods, X indicates that we did not find 

references that showed this information could be directly and reliably extracted with the 

stated data source 

 

Relevant remote sensing research on CCF, Dauerwald and shelterwood systems has shown 

that it may be possible to both monitor the transformation of a traditional stand to CCF and 

monitor the progression of growth and the associated changes in forest structural type that 

can be applied to describe CCF stands. At the individual tree level, Bennet et al [46] describe 

a novel method of using aerial data from photogrammetry and ALS to detect individual trees 

with improved detection rates among smaller diameter trees than previous methods, which 

makes the model applicable to monitoring transformation to CCF. This model relies upon a 

Bayesian optimisation approach to the parameterisation of the tree detection algorithm; by utilising 

external datasets they eliminate the requirement for site specific allometric models derived from field 

data which can also reduce required fieldwork [46]. At the stand level, Stiers et al. [5] used TLS to 

measure structural complexity within forest and proposed a novel index of structural 

complexity. This index quantifies stands by their structural type and serves as an indicator 

of how close a stand is to the CCF ‘target structure’. This work has strong similarities to the 

work of Valbuena et al. who instead used ALS to classify the forest structural types of a stand 

[49]. Their classification was based upon two more widely used measures of forest 
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structure; Lorenz asymmetry, where greater asymmetry is associated with the idealised 

‘target structure’ (characterised by the reverse-j shape), and the Gini coefficient, a measure 

of inequality in size (DBH). By integrating these classifications into forest structural types 

as a guideline, forest managers could make informed decisions about when to harvest for 

large regions of forest without the need for extensive fieldwork. Annually updated maps of 

structural types could be used to monitor important processes within CCF systems and 

inform managers of where regeneration and recruitment are occurring. 

2.4.2 Remote sensing for CCF inventory measurement and stock mapping 

Inventory protocols for CCF currently rely upon labour and time intensive fieldwork for data 

collection with three variations of commonly used protocols across a handful of plots (radii 

varying from 8 - 15m depending on protocol) taking one operator a whole working day and 

complete enumeration of plots taking a day for two operators [90]. By contrast, remote 

sensing can be used to completely enumerate a plot [91] and collect all protocol relevant 

data with greater efficiency resulting in faster, more cost-effective data collection [59]. 

Studies have shown that using TLS and MLS it is possible to detect and segment up to 100% 

of the trees within a plot [53] and 97% within 20m radius of a TLS scanning position, 

although this falls to 75% at a 40m radius due to occlusions and decreasing point density 

[90,92]. Combining data from TLS multi-scans or using MLS from less than 20m can 

mitigate occlusion-based inaccuracy. Consequently, MLS data from within the plots collected 

with a handheld or backpack mounted platform would be expected to suffer from less 

occlusion-based error than data from a vehicle mounted platform on a forest track, such as 

in Bienert et al. [60]. There is consensus in the literature that both TLS and MLS can be used 

for the accurate collection of inventory data such as DBH and height. Donager et al. found 
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that TLS had an RMSE of 7.2% for DBH and 2.7% for height, and in the same study MLS 

was found to have an RMSE of8.1% for DBH and 1.6% for height [53]. Hartley et al similarly 

found that for MLS derived DBH and height measurements they achieved RMSE values of 

5.4% and 3.0%, with R2 values of 0.99 and 0.94 respectively [74]. The accuracies achieved 

in these studies are very high and for the height measurements are more accurate than can 

be expected to measure from the ground with traditional field methods [93]. It can thus be 

argued that even if there is a potential decrease in accuracy relative to fieldwork it is likely 

to be extremely small and can be offset against the speed and efficiency with which data can 

be collected. It is worth noting that ground-based LiDAR systems can cost tens of thousands 

of dollars and, while this can be offset against the reduced costs for the labour brought about 

by greater data collection efficiency, it may not always be financially beneficial.  

In addition to improving the efficiency of data collections in existing inventory protocols, 

there is the potential for the development of novel remote sensing specific protocols. With 

remote sensing it is possible to calculate volumetric measurements of stands or individual 

trees directly from point clouds [68,69]. Direct measurement of volumes may allow for 

estimates with higher accuracies and lower uncertainties. Lowering uncertainty in volume 

estimates can directly improve sales prices, and profits, where the law of conservativeness 

is used in pricing, as is particularly common in forest products sold for pulp or fuel and the 

sale of logging rights.  

Tree identification and diameter measurement can be approached with remote sensing from 

either above or below the canopy. Aerial datasets can be used to map trees quite accurately 

within the overstory as there are many publicly available solutions with tools for tree 

identification and crown delineation that make use of optical and LiDAR data [46-48]. Tree 
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identification within the understory is also possible from high point density aerial LiDAR 

datasets however due to occlusion the precision drops off with smaller trees such as those 

from regeneration [50]. Below-canopy remote sensing techniques - such as TLS, MLS, and 

photogrammetry - are better suited to the accurate mapping of regeneration [59,72,82-84] 

and it has been shown in irregular tropical forests that MLS can identify small diameter 

understory trees with far greater geospatial positioning accuracy, 6cm, than methods using 

aerial data, which had 6m positioning error [91]. The field of tree detection algorithms from 

below-canopy point clouds is rapidly developing and there are several solutions available 

which can accurately locate, identify, and measure trees and saplings from point cloud data 

[95-98]. In addition to tree identification, it is also possible to measure metrics such as the 

straightness of trees and even the calculation of lengths and sizes of logs that can be 

harvested from below-canopy point clouds [98-100]. Trunk straightness and merchantable 

log estimation from the integration of remote sensing technology into CCF inventory 

protocols could potentially allow forest managers to tailor harvests to meet market demands 

or to list their stocks for sale in advance more accurately. 

There continue to be challenges in remotely identifying tree species, as LiDAR data alone 

appears to be insufficient for species delineation. Current literature suggests that it is 

possible with the use of deep learning and tree species classification systems and optical 

remote sensing techniques, and there is evidence that channels in these algorithms can be 

substituted with LiDAR metrics [101]. These methods could be applied to CCF stands for 

stock mapping, mapping of inventory with species distributions and abundance, 

[57,86,87,89,94] however for aerial data occlusion below dense canopy would limit 

reliability and for terrestrial data the extent would be limited. Modern ALS methods with 
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laser scanning at angles close to NADIR can improve canopy penetration though dense 

canopy continues to obscure the understory and the close to NADIR angled pulses are less 

likely to reflect off the vertical stem surfaces. 

2.4.3 Remote sensing for CCF yield modelling and forecasting 

Beyond improving data collection for existing inventory protocols, remote sensing could be 

used for the development of new models estimating current biomass yields. Biomass 

estimation is typically performed with single variable models, such as the model by Asner 

and Mascaro [102] which uses top of canopy height to predict biomass in each area. 

However, the variables used in these models cannot describe the irregular horizontal and 

vertical structure of CCF, as such there is a need for models with variables that better 

describe the structure of CCF. Remote sensing-informed multivariate models are already 

being applied to similarly complex irregular forest systems, such as selectively logged 

tropical forests, and thus it may be prudent to apply similar approaches to CCF. Various 

approaches have been proposed to involve other non-height morphological traits of forest 

ecosystems [43] - often one of either cover or vertical structural complexity - to make a 

biomass prediction that would be better applicable to CCF systems [44,103-106]. One 

example of note is the ‘ecosystem morphological trait’ (EMT) framework proposed by 

Valbuena et al. which is intended to be applicable across a range of diverse and complex 

ecosystems and across multiple sources of 3D data [43]. The proposed EMT framework 

posits that all forest can be effectively characterised through use of measures for all three 

morphological traits of height, horizontal structural complexity, and vertical structural 

complexity. The EMT model lacks a trait to describe species diversity and distribution, and 

this could be considered an essential trait of forest structure however the EMT model was 
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intended to provide a sensor, scale, and ecosystem agnostic means of describing three-

dimensional ecosystem structure.  

In addition to estimating current biomass there is also the need to predict future biomass 

yields which requires that biomass estimations be combined with growth models to provide 

estimates of future biomass. Observed trends of growth are an effective way to create 

estimates of future growth by simply projecting past patterns of growth forward. The 

location specificity of observed trends makes them particularly appealing tools for growth 

forecasting however such trends are limited by their specificity to current and historical 

climatic conditions. Multi-temporal data for tree heights and diameters can be modelled to 

find trends and these can be projected forward using individual tree growth models, at both 

the tree and stand level. Such multi-temporal data can be used to train individual tree 

growth models which can be used to simulate growth of individual trees within a stand. 

Individual tree growth models have historically been successfully applied to traditional 

uniform age monocultures to model and identify dominant and subdominant trees and 

responses to management activities such as thinning [107,108]. The most recent form of the 

Canadian tree and stand simulator (TASSIII) can model complex systems with multiple 

species (a limited number for now but including several key timber species) and spatial 

heterogeneity and thus could be suitable for use in CCF [108]. An earlier iteration of TASS 

was applied to CCF in the UK by Suarez and found to be useful for modelling the growth of 

trees in CCF stands [109] and thus with the improvements made in the newer TASSIII could 

render it a valuable tool for CCF forecasting.  

There are other individual tree models that could also be applied to CCF using data from 

remote sensing sources, such as CAPSIS which is already used to assess the sustainability of 
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harvests by predicting the impacts of harvests on the future growth of trees in the stands 

[110]. Such insights within CCF could allow forest managers to predict the impacts of 

management and harvests on a CCF stand. Further development of these predictive tools 

could inform harvesting approaches and potentially allow managers to influence the future 

forest products as desired, prioritising the retention of slow growing, high density timber 

or alternatively prioritising harvests which create conditions which favour faster growing, 

high volume wood for fuel or pulp.  

2.4.4 Practicalities of remote sensing 

To further develop remote sensing tools for CCF there is a need for a wider remote sensing 

culture among foresters with greater adoption and development of remote sensing 

techniques for inventory assessment and monitoring. Promoting adoption of remote sensing 

will require opening communication between existing remote sensing practitioners and 

interested parties, particularly forest managers, and thus the intent of this section is to 

introduce the practicalities of remote sensing. 

Getting started with remote sensing can seem technically daunting however it does not need 

to be a challenge; there are multiple ways to approach data collection and processing, 

varying in their required investment of time and money, and from relatively accessible to 

requiring programming skills. 

To illustrate this point, below is a list of point cloud data acquisition approaches in an order 

indicative of typical associated costs per unit area, informed by the combined experience of 

the authors, and descending from most to least expensive.  
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1. Inventory fieldwork requires operators to travel to the plots and collect data 

manually which is a relatively slow and inefficient method with low spatial 

coverage. 

2. MLS and TLS require relatively expensive, specialist equipment and an operator to 

attend each of the plots and collect the data. However this method is considerably 

faster than conventional inventory fieldwork allowing for greater spatial coverage 

in a day [58,90,91]. 

3. Unmanned aerial vehicle (UAV) mounted ALS requires an unmanned craft to be 

flown over a forest at a relatively low altitude collecting high point density data. 

UAV mountable laser scanners vary in price but tend to be relatively expensive, 

however they are often commercially available. Additional costs are the UAV, which 

are becoming relatively affordable for the required payload capacities, and an 

operator. Spatial coverage and data collection speed is generally greater than that 

of ground-based techniques and can vary greatly between quadcopters and fixed-

wing UAVs; the latter being capable of larger scale data collections owing to longer 

flight times. 

4. UAV mounted photogrammetry has many of the same requirements as UAV 

mounted ALS however the costs for the UAV and sensors are typically lower. 

Photogrammetry coverage can be similar to ALS however canopy penetration is 

often greatly reduced. 

5. Manned aerial vehicle mounted ALS requires a plane to be flown over a forest and 

tends to be performed by third parties that survey areas of interest with 

contractually stipulated minimum point densities. These companies either perform 
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surveys of their own and sell access to data they have already collected or may also 

be commissioned to survey specific areas. This method can be used to collect data 

over a whole forest in a single survey and thus can be extremely cost effective when 

a large spatial coverage is required. 

6. Publicly available ALS datasets are provided by some government agencies or 

bodies at no or low cost.  A significant disadvantage of using public datasets is that 

there is no control of spatial and temporal coverage, there may be limited data for 

some areas and the period between surveys may be several years These datasets 

also tend to have low point densities due to the high altitudes these ALS datasets 

are collected from which can be particularly limiting for CCF due to the vertical 

complexity below the canopy. 

Examples include the UK (data.gov.uk), Finland (maanmittauslaitos.fi), Denmark 

(download.kortforsyningen.dk), Spain (centrodedescargas.cnig.es), and the 

Netherlands (lists.osgeo.org). 

Most of the discussed methods of remote sensing data acquisition produce point clouds 

which can be processed directly to extract inventory information; photogrammetry first 

requires conversion of photographs into a point cloud. Point clouds yielded from 

photogrammetry are not directly equivalent to point clouds yielded from laser scanning 

primarily due to lower vegetation penetration and this can restrict their utility, as outlined 

in Table 1. Solutions for photogrammetry point cloud generation are available within suites 

of commercially available tools for data acquisition, such as the Pix4D suite, as standalone 

commercial packages for point cloud generation, like Agisoft Metashape, and even as open-

source solutions which are freely available to install, such as WebODM.  
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Processing point clouds to extract inventory information can be performed in multiple 

programming languages. However, some of the most comprehensive packages appear in R 

where lidR [111] is the first choice of many for processing aerial data. For terrestrial data 

there are a range of packages with different utilities, such as TreeLS (available at 

https://github.com/tiagodc/TreeLS)[97] rTLS[112], and FORTLS[113], some such as 

ITSMme[98] and aRchi[114] even include tools to produce quantitative structure models of 

trees. Additionally, there is soon to be a public database of publicly available terrestrial point 

cloud processing solutions for forestry including information on their function and guidance 

on their use. It is to be an output of the 3DForEcoTech COST action and was publicised at 

the Silvilaser conference in 2023 [115,116]. For those not wishing to use programming there 

are standalone software solutions available such as: LiDAR360, a commercial solution 

produced by GreenValley International, which has aerial and terrestrial point cloud specific 

forestry packages available; LASTools, a licensable library of executables specific to various 

processing functions; Cloudcompare, an open-source solution with forestry specific tools 

available and for which public users and researchers often develop add-ons and; 

FUSION/LDV, a freely available software for point cloud data analysis and visualisation 

produced by the United States Department of Agriculture (USDA) Forest Service. 

2.5 Conclusion 

As we have explored it is evident there are a host of ways in which remote sensing could be 

used to address the challenges CCF faces for monitoring and management. It is our belief 

that there needs to be a concerted effort to further research the ways remote sensing can be 

applied to CCF. Remote sensing can monitor several parameters relevant to CCF, as shown 

in Table 1, and thus it is simply the identifying how monitoring these parameters can inform 

https://github.com/tiagodc/TreeLS
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our management and understanding of CCF that is the required. As forests are increasingly 

being transformed from even-aged stands to irregular CCF systems, there is increasing 

opportunity to make use of remote sensing in the monitoring and management of the 

changes in stand structure that characterise the transformation to CCF. Methods such as 

those already presented by Bennet et al, Stiers et al and Valbuena et al. [5,46,49] will be 

important contributors to the success of these efforts.  Models, such as TASIII and CAPSIS, 

will similarly become more important over time with the increased availability of multi-

temporal CCF datasets allowing the impacts of management and environmental conditions 

to be seen; providing the data required to inform more accurate yield forecasting models. 

The accuracy and precision of remote sensing methods have dramatically improved in the 

years since CCF began to gain widespread traction and adoption; thus, where CCF 

historically represented a challenging and complex system to study, it is now well within the 

capabilities of the technology and the limitation has now become the lack of research into 

applications of remote sensing for CCF. We invite further research into the topics listed 

below exploring how the application of remote sensing can improve the management of CCF 

so that it might become a more easily adopted and managed silvicultural approach.  

Topics for further research: 

● Development of remote sensing supplemented inventory protocols for improved CCF 

management 

● Stem volume estimation from below-canopy point clouds to improve estimates of 

standing stocks 

● Stem segmentation and marketable timber estimation from below-canopy point 

clouds 
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● Application of individual tree growth modelling approaches to CCF yield estimation 

and forecasting 

● Use of multi-temporal remote sensing datasets to develop methods to produce 

spatially localised growth trends and yield forecasts for CCF  

● Improving regeneration prescriptions from localised information about canopy gaps 

and competition 
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CHAPTER 3  

Reviewing Publicly Available TLS Processing Solutions and 

Their Functions 

3.1 Preface 

The work presented in this chapter is a brief review of publicly available TLS processing 

solutions and was completed as part of a short-term scientific mission (STSM) organised by 

the European Cooperation in Science and Technology (COST) as part of COST action 

CA20118, “Three-dimensional Forest Ecosystem Monitoring and Better Understanding by 

Terrestrial-based Technologies”. 

Further materials and outputs of this work will be produced and shared by those involved 

in the COST action and thus the materials presented represent an early milestone in 

understanding and assessing the current state of processing solutions for three-dimensional 

TLS data in forestry. One such output of this work was the conference presentation, Cabo et 

al. (2023) [1], which presented this work and the conference presentation that presented 

the platform in which it is now publicly available, Mokros et al. (2023) [2].  

3.2 Purpose of review 

The purpose of this work was to create a single point of reference for information about 

publicly available TLS processing solutions for forest inventory applications to improve 

accessibility to information and lower the bar to entry for forestry researchers and 

practitioners. Specifically, the focus was on TLS processing solutions that could yield tree or 

stand level metric of forest structure rather than for more general processing such as 
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classification or normalisation of point clouds. The output was to a database of processing 

solutions and their functions in addition to details regarding applicability, ownership, 

availability, licensing, and documentation, found at https://3dforecotech.eu/database/. This 

review contributed to  work presented in the Cabo et al. (2023) and Mokros et al. (2023) 

conference presentations [1,2] and can be seen included in an edited format in the upcoming 

publication “A review of point cloud processing software solutions in forest applications” 

Murtiyoso, et al. (2024)[3]. 

3.3 Methodology 

Efforts to identify publicly available TLS processing solutions started with a survey 

distributed both to the working group of the COST action and the public, with a call for 

responses from practitioners and researchers that currently use TLS, to crowdsource a list 

of TLS processing solutions for forest inventory. This crowdsourced list was then expanded 

upon through systematic searches of Google, GitHub, and the R CRAN directory of packages; 

the search terms used for the search were permutations of “Forest” and “Forestry” and then 

one of “TLS,” “Terrestrial LiDAR”, “MLS”, “Mobile LiDAR” and either the terms “processing” 

or “inventory”. A total of 40 solutions were identified by name from the survey and searches. 

Results were assessed for relevance; discounting all ALS exclusive solutions, solutions 

without forestry applications, and any solutions for which a version could not be found 

publicly. After discounting there were 16 TLS processing solutions remaining and these were 

individually investigated populate a spreadsheet consisting of general information about 

each solution.  
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The investigation process for each solution involved testing to confirm function but no 

comparative assessments nor benchmarking as the solutions served a range of purposes and 

at this early stage of the larger COST action it was not within the scope of the work. Two 

test files of TLS point clouds were used, a circular plot and an individual tree extracted from 

the plot point cloud, as not all solutions operated at plot or stand level. The point clouds 

were selected for ease of testing with low noise, and collected in a low density, thinned Black 

Pine (Pinus nigra) forest in Southern Spain, where the trees have few low branches 

obscuring the stems. The point cloud was generated from multiple scans made using a 

RIEGL VZ-400i laser scanner (RIEGL Laser Measurement Systems GmbH; Horn, Austria). 

3.4 Publicly available TLS processing solutions 

The primary output of this work is a table to be used as a reference tool for parties interested 

in TLS processing in forestry (Table 3-1), the table is entirely novel with there being no 

comparable collection of this information or similar information. It holds great potential for 

facilitating easier access to information and marks the beginning of the larger work of the 

COST action into 3D forest monitoring and terrestrial-based technology.  

The outputs of this work, Table 3-1, are correct as of their writing in November 2022 

however as this field continues to develop with new solutions being developed and newer 

versions being released for existing solutions it is likely that list remains incorrect or 

contains some out-of-date information. 

In time it is hoped that this table will become the foundation of a maintained database that 

will contain accurate, and up-to-date information for all the solutions and their functions in 

addition to standardised documentation of how to get started with each solution. By 
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providing a user-friendly and accessible repository of information the hope is that we can 

remove the barrier to entry to working with TLS in forestry and can promote the 

democratisation of information.  

Table 3-1 – A novel collation of information regarding TLS processing solutions 
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3.5 Discussion 

While this work is simply a review of the publicly available processing solutions for ground-

based remote sensing and their functions, there is still room for discussion regarding the 

impact of this work and the state of the field and further work regarding benchmarking 

performance and other means of intercomparison.  

This work identified and characterised the functions of 16 processing solutions, many with 

significant overlaps in their functions and scope. This highlights a common issue in 

academic fields where individuals are not aware of pre-existing work and tools, duplication, 

and repetition of tools. While a selection of tools can be beneficial, opening the possibility of 

comparisons between different algorithms and the opportunity for tool specialisation, it can 

also result in confusion of which solutions to use, what is ‘best’, and the developers 

committing significant time to the creation and upkeep of tools which they may otherwise 

have spent on other work. These concerns were raised in Cabo et al. (2023) and Mokros et 

al. (2023) and were the driving force behind this work. This is not however a call for the 

cessation of the development of new tools. Since this work was completed there have been 

at least three new solutions made public and this is likely to continue however it hoped that 

with the advent of a centralised database, outlined in Mokros et al. (2023), fewer new tools 

will be developed and the community can instead rally behind the current solutions, aiding 

in their development and innovation through use, and feedback. 

Going forward there will be a need for the development and implementation of robust 

benchmarking to assess the performance of these tools both in terms of speed and 

processing demand but also accuracy and precision against a known high-quality dataset 
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with field validated measurements. This may be most easily achieved through use of virtual 

machines that can be initiated with the same allocated resources and thus be functionally 

comparable. Much of the complication regarding benchmarking for accuracy and precision 

comes from the differences between the processing solutions, it may not be possible to run 

each solution with the same parameters, and it also may not be reasonable to attempt to 

standardise parameters owing to any optimisation the authors may have performed.  The 

3DForEcoTech working group have already begun efforts to benchmark and further 

compare solutions as part of a workshop however the results of this benchmarking are still 

being collated and verified and thus there are publicly available results at this time. 
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CHAPTER 4  

Methods of Data Collection and Pre-Processing 

4.1 Introduction 

In this chapter the sites are briefly introduced, their locations provided, and detailed 

descriptions of conditions given. Explanations of the methods of data collection and the 

collection protocols are also provided. Most of this data was collected specifically for use in 

this work or was from previous data collections at the sites, as is the case of the earlier data 

in the temporal datasets and is used with the express permission of those that initially 

collected it. 

4.2  Study areas 

4.2.1 Amazon – Fazenda Cauaxi 

The Fazenda Cauaxi study area is a site of tropical rainforest arranged into 12 blocks of 100 

hectares and served as the field site for Chapter 5. The area is subject to selective logging 

activities and different blocks have been logged at different times between 2006 and 2013. 

The site is in the Paragominas region of the northern state of Pará in Brazil at 3º43’ S, 48º17’ 

W. The study area has a tropical climate and the soils in the region are described as low 

fertility due to limited availability of key minerals such as potassium, phosphorus and 

magnesium and saturating concentrations of aluminium. A full characterisation of the site’s 

soil information and vegetation structure is available in Rex et al. (2020) [1].  
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The region is humid and tropical with the average total precipitation annually being 2,200 

mm and predominantly flat topology and an elevation ranging between 74 and 150 m above 

sea level [2]. The primary form of vegetation in the region is Ombrophilous Dense Forest 

with the upper canopy having a mean height between 30-40 m and emergent trees reaching 

above the canopy up to 50 m tall [2,3]. The site consisted of a region split into 12 blocks of 

100 ha which were either left unlogged or subject to selective logging of similar methods at 

different times in the years 2006-2013 [4]. Previous works in this same area have carried 

out assessments of forest types at different stages of degradation [5], the impact of LiDAR 

pulse density on the accuracy of AGB estimations [6], an identification of logging damage 

impacts and recovery [5], and the development of an improved framework for reduced 

impact logging [7]. Previous AGB models from LiDAR in this study area were ‘statistical 

models’ using either machine learning or statistical approaches for variable selection 

[1,4,5,6,8,9]. 

4.2.1.1 Field data 

The Amazon field dataset was collected in 2014 and comprised of 85 plots located at 100 m 

intervals along transects through logged regions of the study area. Plots were square with 

an area of 0.25 hectares (50 x 50 m) and their corners were registered using differential 

GNSS (GeoXH6000, Trimble Navigation, Ltd.; Dayton, OH, USA). Each plot contained a sub-

plot of 5 × 50 m (250 m²) along one side. Trees with a diameter at 1.3 m breast height (DBH; 

cm) greater than or equal to 35 cm were measured within the entire of the larger plot, 

whereas trees with DBH 35-10 cm were measured exclusively within the 250 m² subplot. 

DBH was measured using DBH tapes (scaled in π·mm) at a height of 1.3m from the ground 

or from the top of a buttress if present. AGB estimates for each field data plot were 
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aggregated from the AGB estimated for each tree using the Chave et al. (2014) [10] 

allometric model. The value for the environmental stress parameter (E) used in the model 

for all calculations was E = -0.104. 
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Figure 4-1. A map depicting the location of the study area in Brazil (dark grey), South 

America (grey), and its location within the state of Pará (green). 

4.2.2 British Mixed Forest – Alice Holt, Penwood, and Eartham  

Chapter 6 focuses primarily on British mixed forest across Southern England. All three 

forests are natural or semi-natural, managed continuous cover systems with a mixture of 

typical British woodland tree species, the species distributions in the areas chosen are 

heavily skewed towards broadleaves with however some coniferous species interspersed. 

All three sites share the same climatic conditions given their geographic proximity. The 

climate is characteristic of southern England, displaying a yearly temperature span and 

precipitation levels akin to the inner regions of south-central Britain. The data from the 

weather station at Alice Holt Lodge from 1971 to 2000 indicates an average annual 

precipitation during of 782 mm and an annual temperature range of -0.5 °C to 22.5°C with 

a mean of 10.5 °C [11]. 

The selected areas of forest in which plots were placed were chosen for their highly complex 

vegetation structures consisting of species and height mixtures as well as significant 

understory vegetation. The justification for selecting such complex sites is to assess the 

methods used in chapter 6 against the most complex structures that might be anticipated 

from CCF. 

All data in the British mixed forest dataset was collected from 7 plots of 30 x 30 m (0.09 ha), 

plots of this size were selected to reduce the processing demand of the corresponding MLS 

data being collected at each site. Each tree of DBH greater than 70mm was recorded using 

digital callipers along with their species. 
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Plots were marked out using 50mm wide red and white barrier tape. Starting from the 

southwest corner, a compass was used to identify a bearing to the next corner and a 

measuring tape was used to mark 30m. The barrier tape was placed at approximately 1.3 m 

above the ground and care was taken not to twist the tape so that the flat surface would be 

visible in TLS scans to denote the edges of the plot. The barrier tape also serves as a clear 

indication of the edge of the plot when manually measuring trees. 
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Figure 4-2. Images depicting the range of vegetation structures found across the British 

mixed forest sites. Top: Two panels depicting species and height mixtures within plots. 

Middle: An example of dense understory vegetation on the site which can make MLS data 

processing more challenging. Bottom: An example of a sparser understory with regeneration 

including younger trees. 
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Figure 4-3. A map depicting study area locations in the south of England with colour-coded 

legend.  
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4.2.2.1 Alice Holt  

The Alice Holt plots were located just outside the grounds of Alice Holt Lodge, Farnham, the 

headquarters of Forest Research at 51°11’ N, 0°51’ W. Geologically Alice Holt is situated in 

the north-western part of the Weald region, where the encircling perimeter of chalk 

transitions from an orientation running from south to north to the east-west arrangement 

of the Hog’s Back anticline. Much of the forest lies primarily on Gault Clay but is also 

underlain by gravel deposits and greensands. These are topped by a range of soils from 

widespread brown earths and podzols to Gley soils in the wetter areas towards streams and 

rivers [11]. 

The species composition for chosen areas at Alice Holt were predominantly broadleaved 

dominated by Fagus sylvatica and Betula pendula with further mixtures of Quercus robur, 

Fraxinus excelsior, Castanea sativa, and Salix alba. Where coniferous species were present, 

they were predominantly Pinus nigra and Tsuga heterophylla. 

4.2.2.2 Penwood 

The plots in Penwood are in Great Pen Wood, found at 51°21’N, 1°21’W. The ground in the 

area is heavily waterlogged owing to the 4 rivers that flow through the woodland and as 

such the soils are characterised as Gleys. Approximately 10% of the forest area of Great Pen 

Wood is classed as semi-natural ancient woodland. The sample plots at this site were located 

within this area where the species composition is primarily Betula pendula mixed with other 

broadleaves such as Quercus robur, Alnus glutinosa, Fagus sylvatica, Populus tremula, and 

Fraxinus excelsior [12]. 
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4.2.2.3 Eartham 

Eartham Wood is located on the south downs, at 50°53’N, 0°39’W, and thus predominantly 

overlies chalk geology. The soils vary from brown earths to rendzinas with better soil 

towards the bottom of the south facing slop on which the wood sits. Eartham is 

predominantly replanted ancient woodland, dominated by Fagus sylvatica with some 

conifer plantations [13]. Additional species found distributed across the site include Betula 

pendula, Fraxinus excelsior, Salix alba, and Corylus avellana.  

4.3 Fieldwork 

4.3.1 Measuring DBH 

Measuring DBH is a core practice of field-based inventory within forestry and thus a 

standardised approach is taken. Below is an illustration of the correct practices of how to 

locate the DBH point when measuring from ground level on a tree under a range of 

circumstances (Figure 4-4) as outlined in Forest Mensuration: A handbook for practitioners 

[14] which serves as the Forestry Commission handbook for mensuration guidelines. 

In the case of buttressed trees, the 1.3 metres to the DBH point is measured from the top of 

the buttress and not from the ground but guidance regarding forking, swelling, and leaning 

is still applicable. 
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Once the appropriate point on the tree has been identified, DBH is measured using either 

callipers (scaled in cm or mm) or diameter tapes (scaled in π·mm) and recorded. Where 

callipers are used, two diameters are measured with the callipers rotated around the tree 

90° between measurements. The average of these measurements is then recorded in an 

effort eliminate error from non-circular trees.  
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Figure 4-4. An illustrated guide to locating the correct DBH point. Reproduced with author 

permission from Matthews and Mackie, 2006. 

4.4 Remote sensing 

4.4.1 Aerial laser scanning 

4.4.1.1 Amazon 

The LiDAR datasets for the Amazon were collected as part of a joint venture between the 

Brazilian Corporation of Agricultural Research (EMBRAPA) and the United States Forest 

Service (USFS), called ‘Sustainable Landscapes Brazil.’ The data was collected from manned 

flights in 2012, 2014, and 2017, with a survey path altitude of 850m and a horizontal overlap 

of the scan path of the laser scanner of 65-70%. Further details regarding LiDAR data 

collection such as sensor attributes and flight details are available in Table 4-1 which is 

reproduced from Table 2 of Rex et al. (2020) [1].  

Table 4-1 Details of LiDAR data acquisitions - reproduced from Table 2 of Rex et al. (2020) 

Specifications 2012 2014 2017 

LiDAR system ALTM 3100 ALTM 300 ALTM 3100 

Acquisition date 27–29 July 26–27 December 12 December 

Datum Sirgas 2000 Sirgas 2000 Sirgas 2000 

Pulse density (pulses/m2) 13.89 37.50 22.61 

Flying height (m) 850 m 850 m 850 m 

Field of view (°) 11 12 15 

Scanning Frequency (Hz) 59.8 83.0 40.0 

Overlap Percentage (%) 65 65 70 
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4.4.2 Mobile laser scanning  

4.4.2.1 MLS data acquisition 

For MLS data acquisition in this work a GeoSLAM ZEB Horizon (GeoSLAM Ltd., Nottingham, 

U.K.) handheld laser scanner platform was used. The ZEB Horizon has 300,000 scanner 

points per second and can achieve relative accuracies of 6mm [15]. The field of view for the 

scanner is 360°x270° and the scanning range is 100m however due to divergence increasing 

with distance from scanner, and thus point density decreasing in accordance with the 

inverse square law, scans can be cropped during processing to only include returns within 

a set distance of the scanner’s path, as desired. MLS data collection occurred concurrently 

with field data collection at the British mixed forest sites, in the spring, from mid-March 

until the start of April when broadleaves were still mostly in leaf off conditions.  

At each site, the data capture happened in one continuous path. The laser scanner was 

carried by an operator at approximately 1.5m from the ground and held in front, with the 

operator outside the field of view to avoid artefacts. Starting from the southwest corner, the 

operator first walked around the outer perimeter of the plot, following the barrier tape, to 

capture a clear boundary and to ensure edge trees were captured from the outside. Then a 

path was taken from each corner to its diagonal opposite and from the centre of each side 

to the opposite side, with deviation from direct paths permitted owing to understory 

vegetation and tree stems. The scanner must then return to the starting point to complete a 

scan and prepare data for copying from the datalogger, such loop closure is necessary to 

minimise drift error [16]. An approximation of the basic path for MLS coverage is illustrated 

in Figure 4-5.  
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Figure 4-5. An illustration of the basic path for MLS coverage. The plot area is depicted in 

light green with trees shown in dark green. The path starts and ends at the southwest corner, 

marked with a star, and follows the black lines in a continuous path. 

After each scan, data is offloaded from the datalogger and must be processed to produce the 

final point clouds. The processing of collected data into point clouds is performed through 

GeoSLAM’s Hub software (https://geoslam.com/solutions/hub/) which processes the laser 

scanner returns with a SLAM (simultaneous localisation and mapping) algorithm. The 

specific mechanisms of GeoSLAM’s SLAM algorithms are not disclosed. During this stage it 

is possible to restrict the laser scan returns used in point cloud generation to those within a 

set distance from the scanner platform and to specify specific algorithms for different use 

cases. We set this distance, the returns limit, to 15m from the scanner and used a closed loop 

algorithm to minimise drift [16] Once generated, point clouds are finally exported in the 

.LAS format ready for pre-processing. 

Plot Area 
Trees 
MLS path 
Scan start/end 
point 

https://geoslam.com/solutions/hub/
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4.4.2.2 Point cloud pre-processing 

Point clouds must undergo pre-processing before they can be used for calculations of LiDAR 

metrics or used for inventory measurements. The extent of a point cloud is typically larger 

than the study plots and thus point clouds must be clipped to size. Additionally, point clouds 

capture information that is not relevant to the work, such as topographical information, and 

this must be removed to prevent errors – called point cloud normalisation. 

There are multiple ways point clouds can be processed, clipping and normalisation can be 

performed in standalone software solutions such as LiDAR360 or through use of LiDAR 

specific packages in R and python. 

All pre-processing of point clouds used in this work was performed through use of the lidR 

package in R [17,18]. 

The locations of the corners of the plots were recorded either using GNSS locations for ALS 

or through visualisation in a point cloud viewing software, CloudCompare [19], for MLS 

point clouds which use a local coordinate system. An example of a plot corner, as visualised 

in CloudCompare is displayed in Figure 4-6.  
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Figure 4-6. A depiction of an MLS- derived forest point cloud at a plot corner. Top: The point 

cloud as seen in CloudCompare. Bottom: The point cloud as seen in cloud compare with 

overlayed illustration to highlight the post marking the plot corner, white line, and the 

boundary tape, dashed red line. 

Point clouds were first clipped to the area of the plot, this was done using the clip_polygon 

function. clip_polygon requires vectors of x and y coordinates for each of the corner 

locations of a plot.  
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The clipped point clouds were then classified through use of the classify_ground function. 

This uses a cloth simulation function [20] to identify ground points and classify them as 

class 2 – ground – in the point cloud. 

The classified point clouds were normalised using the normalize_height function. The 

elevation of the ground is removed through use of a spatial interpolation algorithm, based 

upon a Delaunay triangulation, which performs a linear interpolation within each triangle 

and generates a convex hull - the smallest convex polyhedron, that encloses all the points in 

a set – for the classified ground points. The values of the z coordinates at each point on the 

surface of this convex hull are then subtracted from those of all points which share the same 

x and y coordinates. The resultant z coordinates have had the topography of the ground 

removed, leaving a normalised point cloud, the difference between non-normalised and 

normalised point clouds is depicted in Figure 4-6.  

Figure 4-7. A 3D depiction of a forest point cloud before and after normalisation. The point 

cloud is viewed from the side and is first depicted non-normalised, with topography, and 

normalised, without topography.

Before normalisation After normalisation 
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CHAPTER 5  

Applications of Remote Sensing in Complex Tropical Forest  

5.1 Preface 

Owing to the SARS-CoV-2 (Covid-19) pandemic and the associated restrictions imposed by 

the UK government it became impossible to travel and collect field data for analysis in the 

early stages of this work and so the decision was made to work with an available dataset 

from the Brazilian Amazon. The work conducted was based upon the 2020 publication by 

Valbuena et al. [10] which proposed the use of a system of ecosystem agnostic descriptors 

of morphological traits which can describe a wide range of ecosystems and thus the 

principles of the modelling are applicable to UK forestry despite the dataset used being from 

Amazonian Forest. 

This chapter is adapted from the published work: 

A Conceptual Model for Detecting Small-Scale Forest Disturbances Based on Ecosystem 

Morphological Traits 

Stoddart, J.; de Almeida, D.R.A.; Silva, C.A.; Görgens, E.B.; Keller, M.; Valbuena, R. 

Remote Sens. 2022, 14, 933. doi:10.3390/rs14040933 

The version of the work presented herein has been amended with the benefit of hindsight 

and experience gained over the course of my studies. The most significant deviations from 

the published text can be found in the discussion section. 
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A conceptual model for detecting small-scale forest 
disturbances based on ecosystem morphological 

traits 

5.2 Abstract 

Current LiDAR based methods for detecting forest change use a host of statistically selected 

variables which typically lack a biological link with the characteristics of the ecosystem. 

Consensus of literature indicates many authors use LiDAR to derive ecosystem 

morphological traits (EMTs) – namely vegetation height, vegetation cover, and vertical 

structural complexity – to identify small scale changes in forest ecosystems.  

Here we provide a conceptual, biological model for predicting forest above ground biomass 

(AGB) change based on EMTs. We showed that through use of a multitemporal dataset it is 

possible to not only significantly identify losses caused by logging in the period between data 

collections but also identify regions of regrowth from prior logging. This sensitivity to the 

change in forest dynamics was the criterion by which LiDAR metrics were selected as proxies 

for each EMT. 

For vegetation height, results showed that the top-of-canopy height derived from a canopy 

height model was more sensitive to logging than the average or high percentile of raw LiDAR 

height distributions. For vegetation cover metrics, lower height thresholds for fractional 

cover calculations were more sensitive to selective logging and the regeneration of 

understory. For describing the structural complexity in the vertical profile, the Gini 

coefficient was found superior to foliage height diversity for detecting the dynamics 

occurring over the years after logging.  
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The subsequent conceptual model for AGB estimation obtained a level of accuracy which 

was comparable to a model that was statistically optimized for that same area. We argue a 

widespread adoption of an EMT-based conceptual model would improve the transferability 

and comparability of LiDAR models for AGB worldwide. 

Keywords: Vegetation structure, Carbon stock, LiDAR, Modelling 

5.3 Introduction 

Tropical forests are complex ecosystems which importantly provide ecosystem services, 

especially relating to global carbon and water cycles [1,2]. Tropical forests suffer from 

deforestation and illegal logging which has significant environmental, ecological, and 

economic impacts locally and globally [3,4]. Remote sensing technologies are becoming 

increasingly efficient at detecting large-scale deforestation [5], however small-scale 

clearance activities in the Amazon rainforest account for half of Brazil’s deforestation rate 

[6]. This small-scale deforestation includes natural windfall, legal, and illegal selective 

logging and is difficult to detect. There is therefore a need to further develop remote sensing 

technologies into methods that are more sensitive to such selective logging which would 

then be capable of detecting and monitoring the deforestation. 

Ecosystem morphological traits (EMTs) – namely vegetation height, vegetation cover, and 

vertical structural complexity – are a proposed framework of ‘ecosystem-agnostic’ variables, 

which can be derived from a suite of three-dimensional (3D) remote sensing methods, to 

comprehensively describe the structural properties of a range of diverse ecosystems 

environments [7-10]. Ecosystem disturbance, such as small-scale selective logging in 

tropical forests, can cause changes in any of these EMTs [11], and therefore each of these 
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EMTs may be independently relevant to monitor to effectively fight tropical forest 

deforestation. Efforts to fight deforestation have been typically based on the detection of 

changes in either forest cover only [5] or forest height only [12]. These approaches can 

potentially miss selective logging activities concentrating on small trees underneath the 

upper canopy. There is thus a need to develop methods that can identify deforestation from 

changes in any of these EMTs, and not simply based on the loss of either forest cover or 

vegetation height. 

Since remote sensing methods are best suited to tackle large-scale logging [5], the 

monitoring and mapping of small-scale selective logging in tropical forests still relies on 

expensive and time-consuming field survey techniques [13]. Among the multiple techniques 

that can be used to combat deforestation, airborne LiDAR – one type of 3D remote sensing 

[10] – has become of widespread use due to its capacity to reliably measure detailed 

characteristics of forest ecosystems at very high spatial resolutions [14-18]. In addition to 

reliable and accurate data collection, the use of airborne LiDAR benefits from fast and 

affordable large-scale estimation, which allows to detect logging activities and subsequent 

biomass changes over large and inaccessible landscapes [19, 20].  

Models using data from airborne LiDAR can be used to generate maps of above ground 

biomass (AGB) estimates over large areas [16-18, 21-32]. Multi-temporal LiDAR can be used 

to evaluate small-scale changes [33, 34] but the capacity of these maps to quantify small 

scale changes in forest biomass is contingent upon AGB estimation models being accurate 

enough to detect forest disturbance [35]. The selection of predictor variables for AGB 

estimation models from LiDAR follow two fundamentally distinctive approaches: data-

driven methods employing a statistical criterion that delivers an ad hoc selection of variables 
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(referred to as ‘statistical models’ hereafter), or conceptual approaches driven by knowledge 

of biological relationships and aim to obtain generalisable models of global validity (referred 

to as ‘conceptual models’ hereafter). Statistical models are based on the selecting predictors 

under a given criterion tested over a given sample: such as statistical significance [15,33,35], 

information criteria [36], penalized likelihood [37], maximization of accuracy [21, 30], or 

algorithms combining several criteria [38]. These models only work ad hoc, and potential 

issues have been identified, such as tendencies to overfit to their sample and lack of 

transferability [39-41]. By contrast, conceptual models employ variables that are decided 

beforehand because they are known to have biological and physical relationship with forest 

AGB and thus allow for a generalisation of the approach to AGB estimation [22, 41,]. We 

argue that modelling forest AGB should be based on EMTs, and thus an investigation on 

LiDAR proxies identified for each of them can help identify forest AGB changes from small-

scale logging. The approach to conceptual modelling taken in this work fundamentally builds 

upon the previous work of Rex et al., 2020 [33] which used the same data set for a statistical 

modelling approach. 

The current paradigm shift around LiDAR remote sensing is that EMTs may be better 

measured directly using LiDAR than by other methods, including ground assessments [42]. 

Thus, LiDAR could ultimately ‘ground truth’ other data sources and serve as reference to 

combine different data sources [27]. However, there is still a lack of consensus as to which 

exact LiDAR proxies (a.k.a. LiDAR metrics, sensu. Naesset, 2002) that would most suitably 

correspond to each of the EMTs: height, cover, and complexity [10]. For this reason, in this 

study we focus on identifying the LiDAR proxies for each EMT on the basis of their sensitivity 

to small-scale disturbances (e.g. Nunes et al., 2021 rather than on the estimated AGB change 
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itself (e.g. Rex et al., 2020). The expected behaviours of each of the EMTs in response to 

small-scale disturbance are outlined below (Figure 5-1). For each EMT there is a range of 

proxies that are commonly employed by authors in AGB  

modelling (Table 5-1). 

 

Figure 5-1. An illustration depicting the changes in each of the three ecosystem 

morphological traits over time in a forest stand which is subject to both selective logging 

and then a period of stand recovery. (a) Vegetation height – there is expected to initially be 

a decrease in the vegetation height EMT immediately after logging and this will then 

increase over time as the stand recovers and the trees continue to grow. (b) Vegetation cover 

– there is expected to be an initial reduction is the vegetation cover EMT immediately after 

logging due to gaps in the canopy. This then increases over time as the stand recovers and 

the canopy infills. (c) Structural complexity of vegetation – The measurable structural 
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complexity is expected to increase after logging due to the heterogeneity of the stand 

increasing and the opening of the canopy to permit greater detection of the understory. This 

is expected to decrease as the canopy infills and the understory grows over time. 

EMT Metrics References 

Vegetation height 

Top of Canopy Height 

(TCH) 

Lefsky et al., 1999 [43]; Asner and 

Mascaro, 2014; Fahey et al., 2019; 

Silva et al., 2019; Almeida et al., 

2019. 

Mean Height (MEANH) 

Næsset et al., 2002, Hinsley et al., 

2009 [44], Kane et al., 2010 [45]; 

Fahey et al., 2019; Rex et al., 2020; 

Zellweger et al., 2016 [46] 

Modal Height (MODEH) 
Næsset et al., 2002, Rex et al., 2020, 

Fahey et al., 2019 

Median Height (MEDIANH) Næsset et al., 2002, Rex et al., 2020 

Percentiles of height (H95, 

H75 etc.) 

Næsset et al., 2002; Kane et al., 

2010; Bater et al., 2011 [47]; 

Zellweger et al., 2016 

Vegetation cover 

Leaf area 

index/plant 

area index 

Percentage 

First Returns 

above 

threshold 

COVER2 

COVER5 

COVER10 

COVER20 

Nelson et al., 1988 [48]; Næsset et 

al., 2002 

Morsdorf et al., 2006 [49]; Solberg, 

2010 [50]; Korhonen et al., 2011 

[51]; Görgens et al. 2017; Schneider 

et al., 2017; 

Gap Fraction 
Wedeux & Coomes, 2015 [52]; 

Jucker et al., 2018; Silva et al., 2019 

Structural 

complexity of 

vegetation 

Entropy 

Foliage 

Height 

Diversity 

(FHD) 

Clawges et al., 2008 [53]; Bergen et 

al., 2009 [54]; Valbuena et al. 2012 

[55]; Zellweger et al., 2016; 

Schneider et al., 2017 
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Table 5-1 – Ecosystem morphological traits. their associated metrics, and examples of their 

use 

In this study, we set out to identify which LiDAR-derived metrics best detect small scale 

disturbances and then to see if the same metrics could be applied as proxies for EMTs – 

namely vegetation height, cover, and structural complexity – to model AGB more accurately 

in selectively logged forests. Specifically, we evaluated the temporal dynamics of LiDAR-

derived metrics after selective logging activities, assessing which of these metrics were more 

sensitive to logging. Additionally, we assessed the capacity of the metrics to identify 

historical logging which preceded LiDAR survey through detection of additional growth in 

multitemporal data sets. These analyses identified candidate LiDAR proxies for each of the 

three EMTs – those most sensitive to small-scale selective logging. In turn, this allowed us 

to develop a conceptual model for AGB estimation using EMTs to produce the most suitable 

LiDAR model both in terms of its accuracy and its capacity to describe the overall variability 

in AGB. The advantage of our EMT-based conceptual model is that the traits have a 

mechanistic link with the characteristics of the ecosystem rather than being selected via 

machine learning and statistical analyses.  

5.4 Materials and methods 

5.4.1 Study area 

See Chapter 4 section 4.2.1. 

Variability 

Standard 

Deviation of 

Heights (SD) 

Kane et al., 2010; Bouvier et al., 

2015; Coops et al., 2016; Zellweger 

et al., 2016 

Gini 

Coefficient of 

Heights (GC) 

Kane et al., 2010; Valbuena et al., 

2013; 2017b; 2020; Adnan et al., 

2021 
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5.4.2 Field data 

See Chapter 4 section 4.2.1. 

5.4.3 LiDAR data acquisition and processing 

5.4.3.1 LiDAR data acquisition  

See Chapter 4, section 4.4.2.1 

5.4.3.2 LiDAR data processing 

Processing of LiDAR data was conducted using the software FUSION/LDV version 3.8 [62], 

LAStools [63] and the LidR package in R [64].  

Initially the data was classified to identify ground returns and then the elevation values 

for returns were normalised to heights-above-ground. The pulse densities were not 

standardised across the LiDAR data collections, as it was shown in Silva et al. (2017) that for 

plot level AGB predictions there is no significant impact to the accuracy of mean height 

measurements when the pulse density is above the range of 2.0 pulses·m-2. As the pulse 

densities of the scans are all sufficiently above this threshold it is unlikely there will be any 

meaningful impact on accuracy or resolution for height measurements. We therefore do not 

anticipate any meaningful impact on other LiDAR-derived structural metrics, such as 

vertical and horizontal complexity as these are calculated from measurements of point 

heights. 

Of the metrics listed in Table 5-1, not all were selected in this study as candidates for 

EMT proxies. MEANH, P75 and P95 were calculated directly from the pointcloud. A canopy 

height model (CHM) was generated at 1-m spatial resolution using the grid_canopy function 

available in LidR. TCH, was subsequently calculated as the mean of the CHM values 

aggregated at the grid resolution of 50m; differences in pulse density are again believed to 
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be negligible during this aggregation. The cover was calculated at a range of height 

thresholds: 2, 5, 10 and 20 m above the ground (COVER2, COVER5, COVER10 and COVER20 

respectively). FHD was calculated based upon Shannon’s diversity [65] abundances being 

the proportion of LiDAR returns within six contiguous strata along the vertical profile: <2, 

2-5, 5-10, 10-20, 20-30, >30 m above the ground. GC was calculated as half of the relative 

mean absolute difference [39]. Unless otherwise specified the LiDAR-derived metrics were 

available from the outputs of functions in FUSION, and they were calculated for the LiDAR 

returns at the position of the field plots, and throughout the entire study area using a grid 

of 50-m spatial resolution, resulting in one complete grid for each of the collection years.  

The maps of percentage change between 2012 and 2014 in LiDAR-derived metrics were 

generated using the raster package in R [66] and the software QGIS [67]. To produce graphs 

of temporal dynamics for each metric, we calculated the number of complete years since 

logging which was then subsequently used as the variable expressing the temporal 

dimension. Since metrics were expressed in different units and had disparate variances, we 

used normalised z-scores to fairly compare the changes observed at different metrics. The 

normalised z-scores of each metric were plotted against the years since logging - calculated 

from all three collection years - using the R package ggplot2 [68], showing the mean of all 

the corresponding 50 × 50 m cells of the grid along with ribbons showing their 95% 

confidence intervals.  

5.4.4 AGB modelling  

The dataset used for the development of models consisted of the plot aggregate AGB 

estimations from the field data and the 2014 LiDAR metrics calculated at the location of 
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those same plots. The power-law equation for the Asner et al. (2012) model (hereafter 

referred to as the ‘TCH model’) was:   

 

𝐴𝐺𝐵 = 𝑎 × 𝑇𝐶𝐻𝑏     (1) 

 

where AGB was the aboveground biomass in Mg/ha and TCH the top-of-canopy height 

in meters derived from LiDAR. The model parameters a and b were determined through the 

linearized log-log version of the model [12], including the correction for the intercept value 

when back-transforming the parameter a from the linear model [69]. 

Further from TCH model which accounted for a vegetation height EMT only, we 

considered a conceptual model under the postulate that all the EMTs considered in Valbuena 

et al. (2020) – vegetation height, vegetation cover and vertical structural complexity – 

explain an independent proportion of variability in AGB. The theory behind this is that there 

is a power to which height, as a measure of distance in physical space, can describe the 

volume of a forest stand as a cuboid. This value could be multiplied by a constant, e.g. a 

density, to give AGB – this is what the TCH model does. In our conceptual model there is no 

constant thus this is equivalent to attempting to describe a volume equal to AGB thus by 

using powers of height, cover, and complexity multiplied together we describe a larger 

volume in which each variable essentially alters the scale of the dimensions of the cuboid. 

Given that each EMT has low collinearity (addendum 1) and thus describes unique variation 

in forest structure the AGB described by three EMTs should be more accurate and capture 

more of the variation than AGB calculated from a monovariate model, This conceptual model 
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of three EMTs hereafter referred to as the ‘EMT model,’ has a power-law form as is typical 

in these relationships [70, 71, 72] and in LiDAR modelling [15]:   

  

   𝐴𝐺𝐵 = ℎ𝑒𝑖𝑔ℎ𝑡𝑏1 × 𝑐𝑜𝑣𝑒𝑟𝑏2 × 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑏3  (2) 

 

were height was the value of the LiDAR metric chosen for vegetation height ETM (TCH 

being one of the candidates) in meters above the ground, cover was the value of the LiDAR 

metric chosen for vegetation cover in units between 0-1 expressing the proportion of area 

covered by vegetation above a chosen height threshold, and complexity is the value of the 

LiDAR metric chosen for the structural complexity trait. The units for expressing complexity 

are dependent upon the metric chosen, with the SD being expressed in meters, the GC 

ranging 0-1 with GC = 0 denoting no height variability and GC = 1 denoting maximally 

variable, and FHD being a dimensionless measure ranging between FHD = 0 for an area 

with no vegetation and the logarithm of the number of strata used in its calculation which 

provides a value for maximum entropy (FHD = ln(6) = 1.79 in this case). Again, the model 

parameters a, b1, b2, and b3 were determined in the linearized log-log from of the model, 

including Baskerville’s (1972) correction for bias in the estimation of a. 

To identify the metrics that would serve as the LiDAR proxies for the EMTs in the EMT 

model (equation 2) several means of variable selection were employed: 

1. Maps of percentage change in metrics (denoted as Δ in front of each metric). From the 

maps of change in the metrics it was possible identify the metrics which showed the 

greatest percentage change in areas of recent and historical selective logging, and thus 

sensitivity to small-scale disturbance and this was one factor that was used to select 
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LiDAR proxies. One-tailed Wilcoxon rank tests, for data grouped by the logging year, 

was used to assess the significance of the increase or decrease in a given metric 

compared to the baseline defined by the unlogged areas. 

2. Graphs of temporal dynamics of metrics in the years following logging. The graphs of 

normalised Z-scores (in which the mean is equal to 0) were used to identify which 

metrics showed the greatest change in the years after selective logging and the graphs 

also highlighted how long it took metrics to stabilise and thus for how long after logging 

metrics were sensitive to the impacts of small-scale disturbance.  

3. Correlation plots and Pearson correlation coefficients. Plots of the correlation of change 

in metrics, with trendlines and inset correlation values. These identified relationships 

between metrics that allowed for informed decisions to be made with regards to the use 

of metrics which may be explaining the same variance. 

Final selection of the metrics which were used as variables in the EMT model was 

achieved through comparison of the information derived from the above methods of variable 

selection and information from accuracy assessments of predictive models using the 

different metrics to identify the metrics which are most sensitive to small-scale disturbance. 

5.4.5 Accuracy assessment 

Leave-one-out cross-validation (LOOCV) was carried out to assess the predictions of the 

two models. This is performed through the iterative removal of one case (i) from the total n, 

with the remaining used to calculate a new AGB prediction for the absence of that case 

(𝑝𝑟𝑒𝑑𝑖
𝑐𝑣). For the purposes of notation superscript ‘cv’ identifies calculations after the cross-

validation procedure, as opposed to superscript ‘fit’ which denotes non-cross-validated 
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measures. We employed five analytical measures and two graphical methods for accuracy 

diagnosis. The analytical measures were employed to evaluate:  

1)  The precision of predictions given as the absolute and relative root mean squared 

error (RMSE) of predictions against the observed: 

    𝑅𝑀𝑆𝐸 = 𝑆𝑆𝑐𝑣 𝑛⁄        (3) 

where 𝑆𝑆𝑐𝑣 was the predicted sum of squares through LOOCV: 

    𝑆𝑆𝑐𝑣 = ∑ (𝑝𝑟𝑒𝑑𝑖
𝑐𝑣 − 𝑜𝑏𝑠𝑖)𝑛

𝑖=1
2

    (4) 

The error in RMSE was given in AGB units, and also the relative error RMSE% as the 

coefficient of variation of RMSE, i.e. calculated by dividing it by the mean observed AGB 

(𝑜𝑏𝑠̅̅ ̅̅ ̅). 

2) The degree of under- or over-prediction as the mean difference (MD) of the predictions 

minus the observed:     

    𝑀𝐷 = ∑
(𝑝𝑟𝑒𝑑𝑖

𝑐𝑣−𝑜𝑏𝑠𝑖)

𝑛

𝑛
𝑖=1      (5) 

Likewise, MD was presented both in AGB units and relative mean difference (MD%) 

calculated by dividing it by 𝑜𝑏𝑠̅̅ ̅̅ ̅. 

3) The agreement between observed and predicted, evaluated by the coefficient of 

determination 𝑅2 [83]: 

    𝑅2 =  1 − 𝑆𝑆𝑐𝑣 𝑆𝑆𝑜𝑏𝑠
𝑡𝑜𝑡⁄      (6) 

where 𝑆𝑆𝑜𝑏𝑠
𝑡𝑜𝑡  was the sum of squared differences of each observation from 𝑜𝑏𝑠̅̅ ̅̅ ̅: 

    𝑆𝑆𝑜𝑏𝑠
𝑡𝑜𝑡 = ∑ (𝑜𝑏𝑠𝑖 − 𝑜𝑏𝑠̅̅ ̅̅ ̅)𝑛

𝑖=1

2
    (7) 

Another measure of agreement depicted in Taylor diagrams (see below) was Pearson’s 

correlation (r) but discarded in favour of adjusted 𝑅2 its analytical use since Valbuena et al. 
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(2019) [83] showed 𝑅2 to more faithfullty represent the agreement between observed and 

predicted. 

4) The degree of overfitting, comparing the sums of squares obtained with (‘cv’) and 

without (‘fit’) cross-validation [18], calculated as the sum of squares ratio (SSR): 

    𝑆𝑆𝑅 =  √𝑆𝑆𝑐𝑣 √𝑆𝑆𝑓𝑖𝑡⁄      (8) 

where 𝑆𝑆𝑓𝑖𝑡 was the predicted sum of squares without LOOCV: 

    𝑆𝑆𝑓𝑖𝑡 = ∑ (𝑝𝑟𝑒𝑖
𝑓𝑖𝑡

− 𝑜𝑏𝑠𝑖)𝑛
𝑖=1

2
   (9) 

SSR provides a suitable measure of increase in the unexplained variance when carrying 

out the LOOCV. It has been suggested that the difference between model fit and cross- 

validation exceeding 10% (i.e. SSR = 0.90-1.10) signals a model that is overfitted to the 

sample [39, 73]. 

5) The model’s capacity to match the AGB variability originally observed. As the standard 

deviation ratio (SDR): 

    𝑆𝐷𝑅 =  √𝑆𝑆𝑝𝑟𝑒
𝑡𝑜𝑡 √𝑆𝑆𝑜𝑏𝑠

𝑡𝑜𝑡⁄      (10) 

where 𝑆𝑆𝑝𝑟𝑒
𝑡𝑜𝑡  was the sum of squared differences of each observation from the mean 

predicted AGB (𝑝𝑟𝑒̅̅ ̅̅ ̅): 

    𝑆𝑆𝑝𝑟𝑒
𝑡𝑜𝑡 = ∑ (𝑝𝑟𝑒𝑖 − 𝑝𝑟𝑒̅̅ ̅̅ ̅)𝑛

𝑖=1
2

    (11) 

 

Moreover, the graphical methods employed for accuracy assessment were: 

 Observed versus predicted plots depicting the LOOCV predictions. The plots include 

both the 1:1 line and their regression, which can be tested against the null hypothesis of 
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alpha = 0 and beta = 1 [18], on the basis that predicted be x and observed y in that regression 

analysis [74]. 

 Taylor diagrams. A prerequisite for AGB models to produce reliable maps (especially 

to detect small-scale changes) is to ensure that they not just predict the average AGB but the 

observed variability in AGB too. To that end, we produced Taylor diagrams [75] for each of 

the LOOCV models using the taylor.diagram function of the package plotrix [76] which was 

then modified to normalise standard deviation without normalising RMSE and for additional 

clarity of interpretation through colour coding. Overfitting makes models less transferable 

by being too specific to a single site and or dataset, whereas the intent with the conceptual 

EMT model is to have a widely usable alternative to statistically driven, site specific models. 

Taylor diagrams are a method of summarising multiple aspects of model performance in a 

single diagram. Three statistics are plotted on Taylor diagrams: 

a) Correlation, denoted by the azimuthal angle (blue radial dashed lines and arc) 

and which represents the Pearson correlation coefficient, evaluating similarity 

in patterns of distribution of the predicted and observed, which is also a measure 

of the similarity of the means. The Pearson correlation coefficient a normalised 

measure of the linear correlation between two datasets, in this case the 

predictions of a leave-one-out model and the observed dataset [77]. Only the 

squared correlation gives values comparable to the coefficient of determination 

in Eq. (3), but correlation is added here as implemented in the R package stats. 

b) RMSE, proportional to the distance of a point from the reference for observed 

data, on the x-axis (which is shown by green arcs). 
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c) The standard deviation ratio of the cross-validation predictions to the observed 

is proportional to the radial distance from the origin (black arcs). The standard 

deviation ratio reflects how well the predictions reflect the variance of observed 

data. 

5.5 Results 

5.5.1 Vegetation height 

The maps of the percentage change in LiDAR-derived height metrics (Figure 5-2 - ΔTCH, 

ΔMEANH, ΔH75 and ΔH95), show that all the height metrics highlight areas of logging in 

the years between the 2012 and 2014 data collections. The areas of highest decrease in height 

metrics were the areas which were selectively logged in 2012 and 2013 (significant decrease 

in all metrics, P < 0.01). For TCH and H75 it was even possible to detect logging activities 

occurring before 2012 from anomalously greater increases compared to the baseline growth 

in unlogged areas (significant increases, P < 0.01). Other common metrics like HMEAN or 

H95 could not detect this anomalous growth (non-significant increase, P > 0.05).  
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Figure 5-2. Maps of the percentage change in height metrics across the study area between 

2012 and 2014 (resolution 50m). Change depicted by colour gradient with red representing 

the greatest negative change and blue the greatest positive change. ΔTCH – Top of Canopy 

Height, ΔMEANH – Mean height, ΔP75 and ΔP95 – 75th and 95th percentiles of height.  

The graph of the temporal dynamics of height metrics (Fig. 5-3a) shows that H95 had 

the greatest decrease in the years immediately following logging. However, it also showed 

an erratic upward trend after four years since logging, which may be an indication of lack 

of robustness in this metric. Considering this in addition to the lower sensitivity shown in 
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the maps of change H95, may be an indication that H95 is not a the most suitable LiDAR 

proxy for vegetation height. Of the other three metrics H75 also showed low sensitivity in 

the maps and thus given the dynamics in the years after selective logging are quite similar, 

indicated by their overlapping confidence ribbons. MEANH and TCH appeared to be the most 

sensitive to logging, which can make them the most suitable metrics to select as LiDAR proxy 

for vegetation height. 
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Figure 5-3 Graphs of the temporal dynamics of LiDAR metrics in the years after selective 

logging for each of the EMTs, normalised using Z-score for comparison between metrics. 

a) EMT – Height, TCH – Top of Canopy Height, MEANH – Mean height, P75 and P95 – 75th 

and 95th percentiles of height. 

b) EMT – Cover, COVER2, 5, 10, and 20 are the percentage cover at height thresholds of 2, 

5, 10 and 20m respectively.  

c) EMT – Structural complexity, GC – Gini coefficient, SD – standard deviation of height, 

FHD – Foliage height diversity. 

Single variable models of AGB estimation were produced for each of the height metrics 

to assess their relationship to AGB. Their respective RMSEs (Table 5-2) showed that the 

model accuracy was greatest for TCH. The SDRs also demonstrated that TCH can best model 

the range of variability in the area, with the TCH-based model predicting 88% of total 

standard deviation in AGB. SSR results show that none of the models were overfitted to the 

sample, with cross-validated values deviating less than 10% from model residuals. Although 

the MD of H95 showed a tendency for higher biasness than other metrics. Based on these 
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model results, the results of the graph of temporal dynamics, and the maps it is unclear 

which of TCH or MEANH would be the most suitable LiDAR proxy for vegetation height. We 

will use TCH as the LiDAR proxy as it allows for a more direct comparison against the mono-

variate TCH model. 

Table 5-2 Statistics reflecting accuracy and goodness of fit for AGB models 

 Adj.

R2 

RMSE 

(Mg/ha) 

RMS

E (%) 

MD 

(Mg/ha) 

MD 

(%) 

SSR SDR 

Height 

a* × TCH* 0.82 49.93 20.97 1.64 0.69 1.03 0.8

8 

MEANH* 0.82 50.66 21.28 -7.89 3.31 1.01 0.69 

H95* 0.60 69.54 29.20 -11.24 -4.72 1.01 0.58 

a* × H75* 0.56 56.73 23.83 1.02 0.43 0.91 0.76 

Cover 

COVER2* 0.01 87.77 36.86 -15.84 -6.65 1.03 0.10 

COVER5* 0.21 85.67 35.98 -15.53 -6.52 1.04 0.15 

a*×COVER10* 0.50 74.72 31.38 1.41 0.59 1.02 0.52 

COVER20* 0.75 57.54 24.16 -5.85 -2.46 1.01 0.75 

Structural 

Complexity 

a* × GC* 0.13 80.79 33.93 1.92 0.81 1.02 0.46 

a* × FHD* 0.37 70.31 29.53 2.64 1.11 1.05 0.8

0 

a* × SD* 0.07 83.06 34.88 1.62 0.68 1.03 0.32 

Bi-variate models 

TCH*×COVER2* 0.82 50.07 21.03 -5.47 -2.30 1.03 0.83 

TCH*×COVER5* 
0.81 50.96 21.40 -6.15 -2.58 1.03 0.8

0 

TCH*×COVER10* 0.80 52.95 22.24 -7.79 -3.27 1.03 0.72 

TCH*×COVER20* 0.80 54.73 22.98 -8.66 -3.64 1.03 0.62 

Tri-variate models 

TCH*×COVER2*×GC* 0.81 50.46 21.19 -4.52 -1.90 1.05 0.87 

TCH*×COVER2*×SD* 0.81 51.17 21.49 -4.71 -1.98 1.05 0.86 

* denotes variable is significant (P<0.05), a=1 if not shown, only significant models 

shown. 
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5.5.2 Vegetation cover 

The maps of percentage change in LiDAR-derived cover metrics (Figure 5-4 - ΔCOVER2, 

ΔCOVER5, ΔCOVER10 and ΔCOVER20) clearly identify the regions that were logged in 2012 

and 2013 (significant decreases, P < 0.01). ΔCOVER2, ΔCOVER5, and ΔCOVER10 highlight 

the different stages of regrowth in blocks from earlier logging activities in 2006-2010 

(significant increases, P < 0.01). On the other hand, this regrowth cannot be identified from 

ΔCOVER20 (non-significant increase, P > 0.05).  
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Figure 5-4. Maps of the percentage change in cover metrics of different height threshold 

across the study area between 2012 and 2014 (resolution 50m). Change depicted by colour 

gradient with red representing the greatest negative change and blue the greatest positive 

change. ΔCOVER2, 5, 10, and 20 are the change in percentage cover at height thresholds of 

2, 5, 10 and 20m respectively. 

 

The temporal dynamics of the cover metrics (Fig. 5-3) show that the most significant 

decrease in the years following logging can be detected using COVER2. In the short term 

COVER2 will be most sensitive to recovery post logging but will provide less useful 

information after this period as it will return to a pre-logging value range. Metrics with 

greater height thresholds likely have greater potential to detect changes in cover for more 

years after logging. These results suggest that lower height thresholds are more sensitive to 

reduced impact logging in the short term and subsequently may therefore contribute to 

more accurate estimation of AGB if used as one of the morphological traits in calculations in 

the years immediately following logging events but may have their reliability and suitability 

drop off over greater time scales, particularly as larger and older trees are known to be the 

greater AGB sinks.  

Univariate models of cover (Table 5-2) to predict AGB shows a trend of RMSE falling 

and SDR increasing as the cover threshold height increases, thus accuracy increases with 

the cover. By contrast when cover is modelled together with TCH (Table 5-2, bi-variate 

models) the trends in the values of RMSE and SDR reverse, and the lower height thresholds 

performed better. Based on the maps, the graph of temporal dynamics and the accuracy 
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results of the bi-variate models, COVER2 is the clear choice of LiDAR proxy for the vegetation 

cover EMT.  

5.5.3 Structural complexity 

The maps of percentage change in the structural metrics (Figure 5-5 – ΔGC, ΔFHD, and 

ΔSD) between 2012 and 2014 in the 12 blocks of the study area and an inset map of the years 

each block was logged. All the metrics show (significant increases, P<0.01). ΔGC and ΔFHD 

highlight decreases in structural complexity in the regions that were logged prior to LiDAR 

data collections as the regions regrow (significant decreases, P<0.01), by contrast SD does 

not describe regions of regrowth from previous logging (non-significant decrease, P>0.05).  
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Figure 5-5. Maps of the percentage change in structural complexity metrics across the study 

area between 2012 and 2014 (resolution 50m). Change depicted by colour gradient with red 

representing the greatest negative change and blue the greatest positive change. ΔGC – 

Change in Gini coefficient, ΔFHD – Change in foliage height diversity, ΔSD – Change in 

standard deviation of heights 
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The graph of temporal dynamics of structural complexity metrics after selective logging 

(Fig. 5-3c) showed that all the structural complexity metrics are sensitive to selective 

logging. The temporal dynamics of all three metrics are quite similar, with sharp increases 

in the years after logging before beginning to stabilise and the confidence ribbons of all 

metrics overlap substantially. 

Accuracy assessment of the single-variable models of AGB estimation for each of the 

structural complexity metrics (Table 5-2) shows that FHD performs best with the highest 

explained variance (SDR) and lowest RMSE. Accuracy assessment of three-variable models 

of the same structure as that proposed for the final EMT model (Table 5-2) found that FHD 

yielded an insignificant model and in further contrast to the univariate models, the tri-

variate models with GC and SD perform similarly to each other. GC will be selected as the 

LiDAR proxy for structural complexity, given the similar performance of GC to SD in the tri-

variate models and that GC could significantly detect the changes in structural complexity 

from the logging 2006-2010.  

5.5.4 TCH model versus EMT model 

The chosen LiDAR proxies for the EMT model were TCH, COVER2, and GC. The EMT 

model was compared to the TCH model and the results of the accuracy assessment show 

that the TCH model and the EMT model were able to predict AGB with very similar levels of 

accuracy. From the observed vs leave-one-out prediction plots (Fig. 5-6) there appears to be 

a very high level of correlation between the AGB values derived from field plot observations 

and the leave-one-out predictions of the two models. The plots for the two models show that 

both models fail to quite capture the variance of the observed data, as they overpredict low 
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values and under predict high values but they do have relatively small values for RMSE and 

mean difference, with the TCH model performing slightly better.  

The inset Taylor diagrams show the RMSE values of the two models as well as show 

that the variance of the predictions of both models are not quite as great as the observed 

data, with both models showing a SDR of 0.88, thus only 88% of the variance of the observed 

data is explained. The Taylor diagram also gives a measure of the correlation that is seen 

between the predictions and the observations, the Pearson Correlation Coefficient, which 

for both models appears to be approximately 0.8. 

The plotted predictions of the LOOCV analyses show very similar relationships to the 

predictions of the full models which suggests that neither model suffered from significant 

overfitting. This is corroborated by the SSR values, which show that neither model shows 

significant overfitting, though the EMT model may be more overfitted than the TCH model. 

Given the very similar performance of the two models, Occam’s razor (lex parsimoniae) 

suggests that the simpler, monovariate, TCH model is the better choice in this scenario. 
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Figure 5-6 - Graphs of predicted vs observed AGB in Mg/ha for the LOOCV of the TCH and 

EMT models with inset statistical analysis results and a Taylor diagram representing how 

well the models’ predictions reflect the observed data. 

5.6 Discussion 

Detection of logging continues to be a challenge and the development of new methods 

and models which can identify small-scale forest disturbance, particularly in the understory, 

is of great importance. Selective logging is even harder to detect than equivalent amounts 

of clear-felling as the disturbances are spread out and thus the localised impacts are 

significantly reduced. As a result, methods of AGB calculation and detection of large-scale 

deforestation are stretched to the limits of their sensitivity. More sensitive methods which 

could identify such selective logging practices are still in an early stage of development [79] 

hence in this study we have identified and proposed a conceptual modelling approach which 

could be adopted to detect small-scale forest disturbances more accurately. 

A standardised framework of essential biodiversity variables could be used to model 

ecosystems from a range of 3D-imaging remote sensing data sources [10]. This framework 

is the basis of the conceptual model in this study with terms for the ecosystem morphological 

traits of vegetation height, vegetation cover and vertical structural complexity. The model 

developed using this method, the ‘EMT model’, was compared to a traditional method of 

AGB modelling presented in Asner and Mascaro (2014) and Coomes et al. (2017), the ‘TCH 

model’, a single variable model based upon TCH, which is a descriptor of ecosystem height. 

The TCH model does not account for variation in density of cover nor for a non-uniform 

ecosystem structure which is not thought to be a limitation of the model in undisturbed 
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ecosystems replete with old growth and consistently high cover but could be in regions of 

small-scale disturbance. 

Trait selection for the EMT model was based on maps of percentage change of metrics, 

normalised graphs of temporal dynamics of metrics and the results of accuracy assessments 

of models using those metrics. The chosen LiDAR proxies to represent the traits in the EMT 

model were TCH, COVER2, and GC. Developing models for AGB estimation can sometimes 

be very intensive computationally, relying heavily upon statistics and even machine learning 

[33, 60, 80] for metric selection. In this study, we made use of visualisations of the change 

in metrics to determine the suitability of a metric to be included in a model. We believe that 

the change in metrics is a far better criterion upon which to base metric selection than raw 

metrics. 

The visualisations of the temporal dynamics of metrics (Fig. 5-3) support the conceptual 

theory of how EMTs were expected to behave over time in a forest stand subject to selective 

logging and a period of recovery (Fig. 5-1). However as the temporal dynamics only show 

data for the first 8 years after logging the conclusions that can be drawn from them are 

somewhat limited. It is likely over longer periods that the higher threshold cover metrics 

become more meaningful as trees will take far more than 8 years to recover to 10 or even 

20 metres height. The initial behaviour of the height metrics over time (Fig. 5-3a) reflects 

the expected initial decline and there also is evidence of the expected subsequent recovery 

over time, these changes would be expected to be reflected by the TCH and EMT models 

which include height as a parameter. However, the EMT model additionally includes 

parameters for cover and structural complexity, which the graphs of their behaviour show 

to behave differently to one another and to height metrics. It should however be noted that 
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there is an expected degree of collinearity between the metrics and height which is observed 

in correlation plots and that for TCH the collinearity is quite high suggesting that it may be 

capturing more of the structural variance than initially anticipated. Structural complexity 

rapidly changes in the first years after logging before rapidly stabilising whereas the cover 

metrics take longer to stabilise especially at the lower height thresholds where the early 

regenerative growth is detected. EMTs are sensitive to changes in the stand structure in the 

years after selective logging and can even detect historical logging that predates the survey 

through changes in the stand structure as illustrated by the clear delineation of the 12 plots 

logged at different times in the maps of percentage change in cover metrics (Fig. 5-4).  

The choice of TCH is notable as, from the visualisations of the change in metrics, the 

selection of the height metric was not clear. The results of accuracy analysis of univariate 

models of height metrics, and the graphs of the temporal dynamics of metrics, show that 

both TCH and MEANH perform similarly to one another and are more sensitive than H75 

and H95. The maps of percentage change in the height metrics (Fig. 5-1) were supplemented 

by additional one-tailed Wilcoxon rank tests to assess how the significance of the change in 

metrics for each logging year compared to the baseline of the unlogged areas. From the maps 

it was again clear that the TCH and MEANH performed similarly and were more sensitive 

to selective logging than the other height metrics however the Wilcoxon rank tests showed 

that TCH had sensitivity to historical logging that was not seen in MEANH. Given the 

similarity in results and the results of the Wilcoxon tests it could be argued that either metric 

could have made a suitable LiDAR proxy for height EMT. It was decided that TCH would be 

selected as LiDAR proxy despite it being generated from a CHM rather than directly from 

the point cloud. Asner and Mascaro (2014) suggested that the top of canopy height (TCH; 
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[43]) could be a simple proxy for vegetation height universally linked to forest AGB and, 

although the derivation of CHMs involves additional processing, the use of CHMs provides 

a common processing milestone across sensors and platforms of 3D remote sensing [81], 

which enables their robust inter-comparability and combination [10]. It is worth noting that 

TCH, as derived from the mean of a CHM, will reflect not just the height of the canopy trees, 

but also cover and vertical complexity to some degree (as the CHM height will decrease in 

gaps given the high 1m resolution). This may explain why the models were found to perform 

so similarly as there does appear to be evidence for some degree of collinearity between TCH 

and the LiDAR-derived metrics selected for the other EMTs (addendum 1).  

COVER2 was the standout metric for the cover EMT which was an interesting outcome 

as in other works that have made use of cover metrics in their predictive models, higher 

height thresholds were often the norm for cover metrics. Jucker et al. (2018) used a cover 

metric, which they called gap fraction, which they calculated at 20m above ground level. 

COVER20 was included in this study, and it was found to be significantly less sensitive to 

selective logging than lower height thresholds and the sensitivity to selective logging 

appears to vary inversely with the height of the height threshold for the cover calculation. 

The result was not entirely unexpected as Kent et al. (2015) [82] showed that it was possible 

to identify regions of selectively logged forest in the advanced stages of recovery due to an 

elevated number of gaps which penetrated to the forest floor, as determined by gaps in 

vegetation at a height of 2m using LiDAR data. 

The chosen structural complexity term was GC which describes skewness of the forest 

structure, with low values representing uniformity of the heights of trees and high values 

representing an approach to bimodality. The relationship of GC and forest structural types 
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is explored in greater depth by Valbuena et al. (2014) [82]. It should be noted that only the 

structural metrics describing variability yielded significant tri-variate models, since FHD is 

a metric which describes entropy and was found to produce an insignificant tri-variate 

model. SD was not chosen due to relative insensitivity to selective logging. In AGB models 

from LiDAR, the role of the structural complexity of vegetation is typically neglected, with 

few exceptions [31,41]. It may be however that vertical structural complexity is not as 

suitable in certain ecosystems, the amazon included, where the variability in the canopy is 

dominated by a few large individuals, emergent trees, which reduces the impact of the 

structural complexity of the smaller trees that make up the canopy and understory. 

Direct comparison of the two models, the conceptually derived EMT model and the TCH 

model, shows that they performed similarly at estimating AGB, however the differences 

between the models may be understated due to the fraction of plots in areas subject to 

selective logging being small. Consequently, most plots were not subject to disturbance thus 

the benefits of the logging sensitive metrics of the EMT model may have been impacted 

reducing the overall improvement to modelling accuracy. Other factors to consider here are 

that TCH was found to describe a greater degree of the cover and structural complexity 

EMTs than initially expected which may have also further reduced the impact that the 

addition of terms for these EMTs to the model may have had. The field data used was 

calculated using the Chave model, which like many allometric models, is limited in its 

capactiy to accurately describe the forest with the training data skewed towards smaller 

trees [84]. Such field data may therefore better match the predictions of the TCH model 

which tends towards an average for the heights of trees in a stand. .  
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Accuracy assessment of the two models found the TCH and EMT models to have very 

similar levels of accuracy; the explained variance, MD, and RMSE for the two models are 

extremely similar. An argument could be made for this being a failure of the EMT model and 

the method of its development as it has been shown in literature that with more variables, 

models are able to replicate the mean more accurately at the expense of variance [18], and 

thus by only being marginally more accurate than the TCH model it indicates the model is 

flawed due to the less significant parameters. A rebuttal to this argument is that the 

overfitting analyses showed that both models being slightly overfitted, to a very similar 

degree, and that both underpredict variance by 12-13%. This similar degree of overfitting 

suggests that the additional terms of the EMT model have therefore fallen victim to the MD-

variance trade-off. The method of overfitting analysis used was LOOCV, which is known to 

yield lower MD, higher variance results than k-fold cross validation. LOOCV was chosen 

however due to the sample size, and the results of the LOOCV were very similar to the fully 

fitted models for values of RMSE, MD and variance which suggests the effects of overfitting 

are small. If one is confident to use the existing TCH model, then similar confidence should 

extend to the use of our proposed conceptual model outlined in this study, however TCH 

model remains the default option in accordance with the law of parsimony (lex 

parsimoniae). One could argue that the proposed form of the EMT model, as found in this 

study, reflects a development of the TCH model in which the intercept, a, in Equation 1 is 

replaced by the terms for cover and structural complexity in Equation 2 – and thus the model 

becomes more informed by biological relationships.  

Comparison of both models to the results of the statistically derived multivariate models 

of Rex et al [33], finds that they perform similarly to the best performing model of that 
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paper. Their Ordinary least squares (OLS) model had an RMSE of 19.71%, a MD of -0.24%, 

and a R2  of 0.70. Thus, the OLS model was capturing a similar amount of variance as both 

the TCH and EMT models and better captured the mean value however it was markedly less 

well fitted thus both models presented here arguably performed better than those derived 

by Rex et al. 

5.7 Conclusion 

The sensitivity of EMTs to the changes that happen in a selectively logged forest stands 

over time is evident, and this underlines the potential for a more biologically informed AGB 

estimation which makes use of EMTs. In addition to being suitable for the detection and 

quantification of illegal logging practices there are many managed regions of forest that 

make use of selective logging and so the use of EMTs for detecting changes in forest stands 

and using those same EMTs for accurate AGB estimation could aid in monitoring these 

regions. Landscape scale methods of AGB estimation that are sensitive to selective logging 

will help prevent the over prediction of AGB stocks in regions where illegal logging takes 

place and may support monitoring of forests in selectively logged regions, particularly below 

the top of the canopy in the period immediately following logging activities. 

More work is needed to assess whether the EMT model structure could prove to be more 

accurate than the TCH model, ideally using datasets derived from destructive sampling and 

a greater proportion of plots in selectively logged areas as discussed above. 
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CHAPTER 6  

Assessing the Capacity of Three Inventory Data Extraction 

Tools and MLS Data for Replicating Field Inventory 

Measurements in Continuous Cover Forest Stands 

6.1 Abstract 

Inventory assessments of forests typically make use of labour-intensive field work methods 

to collect inventory metrics such as tree diameter (DBH), height and location and rely upon 

allometric modelling with large margins of error. Continuous cover forestry (CCF) stands 

have a greater diversity of diameters and species than traditional monoculture planta-tions, 

often requiring multiple allometric models to calculate standing stocks, further increasing 

potential errors. By contrast, mobile laser scan-ning (MLS) can rapidly measure several 

forest metrics however it must be processed to extract the inventory measurements of 

interest, which leads to a dependence upon the processing solution chosen. 

This work sets out to identify the capacity of three MLS forest point cloud processing 

solutions to replicate traditional inventory data collection distributions and values at the 

plot level. The three solutions tested were FORTLS, TreeLS, and 3DFin. The comparisons 

were performed using data collected with traditional methods and MLS from seven squared 

30 × 30 m field plots in CCF forests across the south of England. The analyses were achieved 

through comparisons of DBH distributions using Bhattacharyya distances and population 

level comparisons with Welch’s t-test. 
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Of the three solutions tested, only 3DFin was found to replicate observed diameter 

distributions in a statistically significant manner (P<0.05,) and was found to produce values 

for individual DBHs with non-meaningful differences from those collected using traditional 

inventory methods when assessed with Cohen’s d. 

This work shows that MLS can be used effectively in place of more la-bour-intensive manual 

methods for inventory data collection, even in complex CCF stands. However, this is only 

possible when the point clouds are processed with processing solutions which have been 

demon-strated to be effective in complex forest environments as outwardly sim-ilar 

processing tools can provide significantly different outputs. Our re-sults showed 3DFin to 

be superior to other alternatives. 

6.2 Introduction 

6.2.1 Traditional forest inventory 

Traditionally, forest inventories have consisted of systematic or random sampling of large 

areas with small, fixed area plots. The data collected from these plots consists of 

measurements of DBH for each tree; tree height, position and species may also be recorded 

although they may not be required or there may obstacles to their inclusion, such as 

difficulty collecting the data. Tree height can be difficult to accurately measure from the 

ground, through use of clinometers or height poles - owing to sources of error such as tree-

top occlusion, ground slope and parallax [1-3] - and the accuracy and precision of positioning 

data from GNSS tools can be impacted by forest canopy [4]. Given the relative ease with 

which DBH can be collected, DBH measurements are often collected and used in allometric 
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models to estimate other more difficult to measure parameters such as tree height, volume, 

and biomass [5].  

Allometric models rely upon the principles of allometric theory, outlined as follows: in all 

organisms, greater linear dimensions imply greater volume and thus greater mass. At its 

most basic, this is the fundamental relationship called an allometry [6-8]. For trees, this 

translates to the height being allometrically related to tree dimensions. Theories exist to 

explain and predict the ways trees are expected to scale, such as the pipe model theory [9]; 

which suggests that trees can be modelled as a bundle of independent vessels running from 

the root hairs to the leaves. Given that the vessels are less densely arranged in the crown 

and roots and constrained in a tight bundle at the trunk, a tree could be theoretically 

considered a cylindrical object and its volume would then scale as the product of total tree 

height and trunk cross-sectional area. Alternatively, the West-Brown-Enquist theory of 

power law scaling suggests that a plant’s mass is constrained by its capacity to harvest light, 

which goes on to predict that tree biomass should scale as the 8/3 power of trunk diameter 

[10]. 

In practice, most allometric models are not theoretically derived but instead generated as 

empirical functions, inferentially derived from reference datasets [5,11,12]. Consequently, 

allometric models are limited in their applicability as they are dependent upon the reference 

dataset from which they were inferred and thus are typically species or genus specific, 

location and climate specific, and only accurate within the range of diameters of the 

reference data [5]. These local models are often preferred as they are perceived as more 

accurate than general models however, they can create a need to use multiple models where 

there is a range of species and diameters, as is common in naturally regenerating forest and 
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CCF. Therefore, with the widespread transformation of forest to CCF the use of traditional 

inventory methods to monitor progressively more complex and varied forest becomes 

impractical. Stands with large intra-specific diameter ranges and species mixtures may 

require several allometric models to be applied and require the recording of the species for 

every tree which increases the time taken for inventory in the field. 

6.2.2 Remote sensing for forest inventory 

In contrast to traditional forest inventory, in which typically only DBH is directly measured, 

remote sensing tools allow for the direct measurement of a range of inventory metrics, 

including DBH, height and even volume. Ground-based LiDAR methods, such as MLS and 

TLS, can produce highly detailed below-canopy point clouds of forests such that it is possible 

to extract inventory measurements from the point clouds and even reconstruct stem profiles 

[13-18]. The previous works in which inventory measurements have been taken using MLS 

datasets have been conducted primarily in well managed or plantation forest with relatively 

simple forest structures compared to CCF stands. Consequently, there are already several 

publicly avaible solutions capable of processing MLS and TLS data [19-37] (see chapter 3), 

to facilitate the extraction of inventory measurements. It has been demonstrated that 

automatic extraction and measurement of individual trees from MLS point clouds is possible 

[13-37], however given issues with reliability are often cited for areas with dense understory 

or complex structures the applicability of this technology to British CCF stands remains to 

be demonstrated. Furthermore, as many forest products are sold and quantified by volume, 

it may be possible to increase the accuracy and efficiency of volume estimation through 

direct measurement from point cloud data [5].  
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6.2.3 Objectives 

This chapter aims to evaluate whether MLS can reliably capture DBH values in complex, 

heterogenous forest equivalent to a traditional inventory method. Additionally, this chapter 

will evaluate and compares the performance of three different MLS processing solutions at 

replicating traditional inventory methods. MLS data from 7 semi-natural, complex forest 

sites across the south of England will be processed with 3 different TLS/MLS processing 

solutions and the outputs compared to field data collected at each site. 

The DBH measurements from the field data and the remotely sensed data will be compared 

to indicate whether they could be from the same population and the different MLS 

processing solution will be compared against one another to test if any solution outperforms 

the others. Following the results of these tests there will be discussion of the advantages and 

disadvantages of the remotely sensed approach to forest inventory including potential 

applications to volume estimation and wood quality assessment and directions for future 

work on the topic. 

6.3 Methodology 

6.3.1 Study area and data acquisition 

The locations of the field plots for this work, introduced in 4.2.3, are all located in the south 

of England, and all in mixed, primarily broadleaved forest that is classed as ancient 

woodland, or replanted ancient woodland. The three forests - Alice Holt Forest, Great Pen 

Wood, and Eartham Wood – represent some of the most complex mixed forest stands in 

Britain in terms of structure and were selected on this basis to provide the greatest challenge 

to the remote sensing inventory approach.  
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Field data at these plots was acquired in line with the methods laid out in section 4.3, and 

MLS data was collected and pre-processed in accordance with methods described in section 

4.4. 

6.3.2 Extraction of inventory data from point clouds 

Extraction of inventory data from the pre-processed MLS point clouds was achieved using 

three separate ground-based forest point cloud processing solutions. The three solutions, 

TreeLS [32], FORTLS [34,35], and 3DFin [19], were selected for their capacity to measure 

DBH as well as to perform individual tree detection and segmentation for stand-level  

processing of point clouds.. This selection contrasts with previous studies which reported 

high levels of accuracy for inventory data extraction from TLS and MLS point clouds; 

previous studies used individual tree point clouds for inventory data extraction with the 

individual tree clouds being generated using separate tree segmentation algorithms such as 

treeseg [38]. TreeLS and FORTLS are both R packages and thus were selected for added 

familiarity with the programming language and environment, 3DFin is available as a 

standalone program and was also selected for the ease of set up prior to testing. 

All three solutions were tested with minimal optimisation, keeping to default parameters 

for ‘out-of-the-box’ testing. This approach as taken as it is likely that the creators or an 

experienced user could fine tune any solution to work in highly complex forest 

environments. In contrast, the average user is likely to rely on the default parameters of the 

creators, who through testing and benchmarking will have, hopefully, identified a default 

set of parameters sufficiently robust to provide usable outputs in a range of different forest 

structures. 
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6.3.2.1 TreeLS 

TreeLS is an R package for the manipulation of terrestrial and ground-based point clouds. It 

is built upon the lidR package’s point cloud processing tools and libraries and has many 

customisable parameters, such as circle fitting algorithms and tree segmentation 

methodologies. 

The following code snippet, Snippet 6-1, illustrates the workflow for a single plot, annotated 

with comments to explain each step.  

Snippet 6-1. Example TreeLS R code depicting the functions used to extract inventory data 

with comments describing each line.  

The process for inventory data extraction using TreeLS first requires that the plot point 

cloud be loaded as an environmental variable. The point cloud is then subsampled to a 

resolution of one point per voxel, side length 2cm. The thinned point cloud is then used to 

produce a tree map – in which trees are identified and the locations of their stem centres 

recorded to allow tree segmentation. Tree segmentation is performed using an algorithm 

that sorts points in the un-thinned point cloud based on their nearest tree map coordinate. 
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Stem points are then identified for each set of tree points, the stem points are identified 

through use of an adapted Hough Transform circle search algorithm. This applies a 

constrained circle search on discretised layers of the point cloud and then performs a 

recursive circle search on each tree with the search area constrained to the area occupied by 

stem sections below. The initial estimates of the stem's feature space are performed on a 

baseline stem segment, where the tree’s stem is expected to be clearly visible and relatively 

unobstructed by branches, in this case the slice from 1m to 2.5m above ground was used 

[39]. 

The point cloud is then filtered to only include points identified as stem points to reduce 

point cloud size and increase speed of processing for inventory extraction. Finally, inventory 

data is extracted and written to a .csv file. To calculate DBH, circles are fitted to the tree at 

1.3m using an Iterative Reweighted Least Squares (IRLS) algorithm. This algorithm 

determines the best circle to fit the cloud at that location by performing automatic outlier 

assigning iterative reweighting with M-estimators, followed by a Nelder-Mead optimization 

of squared distance sums; based upon a method by Liang et al. (2012) [32, 40]. 

6.3.2.2 FORTLS 

FORTLS is an R package that among other functions has the capacity to detect trees and 

estimate DBH and other attributes. It can be used with single-scan TLS data in addition to 

multi-scan and SLAM MLS, as was used in this work, and is designed to be easy to use. As 

such, the code required to extract forest inventory is relatively short and simple, see Snippet 

6-2. The algorithms and design of FORTLS ae explored in detail in Molina-Valero et al. 

(2022) [34]. 
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Snippet 6-2. Example FORTLS R code depicting the functions used to extract inventory data 

with comments describing the purpose of each function.  

FORTLS does not have a separate point cloud importing function and instead imports as 

part of the first step in processing, normalisation. Given the data was pre-processed and 

thus already normalised, the “normalize=TRUE” argument is included to simply import the 

point cloud without further manipulation. 

The next step is tree detection, FORTLS has separate tree detection functions for single scan 

and multi-scan data, MLS data from SLAM is treated as a form of multi-scan data when 

choosing between functions in FORTLS. The tree detection algorithm in FORTLS identifies 

trees, calculates DBH and gives a measure of occlusion through how many sectors around 

the circle fitted to the tree have points in. The parameters for FORTLS allow systematic 

exclusion of trees outside the DBH range of interest, as in traditional inventory. The 

minimum dbh was set to 7cm (70mm) and the maximum at 200cm. The region of interest 

to identify tree stems was set to 0.5m to 5m elevation, this range is greater than the default 

used by FORTLS due to significant occlusion but understory in some places. The 
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“understory” argument was set to “TRUE” to indicate the presence of dense understory 

vegetation.  

Once trees were detected, the recorded data for each tree was stored to a data frame and the 

data frame was written to a .csv file. 

6.3.2.3 3DFin: 3D Forest inventory 

3DFin is a free software that is available four ways; as a CloudCompare plugin, a QGIS 

plugin, a Python package, and as a standalone program. In this work, the CloudCompare 

plugin was used as it is the recommended way to use 3DFin given the availability of 

CloudCompare tools to visualise and export outputs, however there should be no difference 

in functions relative to other implementations [19]. 

3DFin has 3 tiers of editable parameters – basic, advanced, and expert – which allow for a 

large range of customisation from basic parameters such as whether or not the point cloud 

is normalised and the height range in which to search for unobstructed stems, to expert 

parameters such as allowed deviation of stem profile from verticality and the minimum 

number of voxels required to determine if a tree is present. 

Most parameters were left as default to perform the inventory data extraction as initial tests 

found they performed well. Pruning intensity, the number of iterations an algorithm is run 

to eliminate branches and clean up stem surfaces, was set to 3 owing to the number of 

branches present in height range, the stripe, in which 3DFin searched for stems. 
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6.3.3 Statistical testing and comparisons 

As the field data does not have tree-level location information, in the form of GNSS, the 

comparisons of the traditional inventory dataset to each remote sensing inventory dataset 

must be at the plot-level rather than the tree-level. Comparison of the plot-level inventory 

datasets is achieved through comparison of the distributions of DBH measurements to 

indicate whether the two datasets could be from the same population, and thus whether the 

remote sensing approach is performing equivalently to traditional inventory methods. If two 

compared datasets were found to have different distributions of diameters this would be 

indicative of the two methods capturing different data and thus, where the traditional 

inventory represents a benchmark for accuracy, the remote sensing approach would be 

underperforming.  

The process of comparing the datasets derived from the two approaches was conducted 

entirely in R and first required that for each combination of seven plots and four methods – 

traditional inventory and the three solutions for point cloud processing – a Weibull 

distribution was fitted to the distribution of DBH measurements. 

6.3.3.1 Weibull distributions 

A Weibull distribution is a probability distribution characterized by two parameters: shape, 

which affects the curve's steepness, and scale, which affects the distribution's overall range. 

Weibull distributions are flexible and can therefore be fitted to several types of distributions 

including normal (Gaussian), exponential and skewed (heavy tailed) distributions. The 

Weibull distributions were fitted using maximum likelihood estimation (MLE). 
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The R packages dplyr [41], and fitdistrplus [42] were used, in addition to core R packages 

[43], to fit the Weibull distributions to each dataset, using the code below (Snippet 6-3). The 

DBH data from all the plots and for each method was aggregated into a single file. Weibull 

distributions were fitted using the fitdist() function from fitdistrplus with the distribution 

type set to “weibull” and the method used was maximum likelihood estimation. Upon fitting 

the Weibull parameters, scale and shape, were written to a data frame for each plot and 

method. The parameters for traditional field inventory distributions were written to a 

separate data frame to for ease of comparison to LiDAR inventory parameters at a later stage 

in the script. 
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Snippet 6-3. Example R code depicting the process of fitting Weibull distributions to 

inventory data. 

6.3.3.2 Bhattacharyya distances – Analysis of variance and Tukey’s HSD 

To compare the similarity of distributions, the Bhattacharyya distance was used. The 

Bhattacharyya distance is a statistical measure quantifying the dissimilarity between two 

probability distributions. It is based upon the Bhattacharyya coefficient (BC), which gauges 

the overlap between the two distributions through the overlap of their square root-

transformed probabilities; calculated as: 
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𝐵𝐶 = ∑ √𝑝(𝑥) × 𝑞(𝑥)     (1)  

where, 𝑝(𝑥) and 𝑞(𝑥) are the probability density functions of the two Weibull distributions 

[44]. 

The Bhattacharyya distance is computed as the negative logarithm of the Bhattacharyya 

coefficient, indicating the degree of divergence.  

𝐵ℎ𝑎𝑡𝑡𝑎𝑐ℎ𝑎𝑟𝑦𝑦𝑎 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = − ln(𝐵𝐶)   (2) 

The Bhattacharyya distances were calculated, see Snippet 6-4, with a custom function for 

Bhattacharyya distance which took the Weibull parameters of the two distributions as 

inputs, calculated the probability distribution for DBH values from 7omm to 1000mm, and 

output the Bhattacharyya distance for those two distributions. This function was used within 

a loop to calculate the Bhattacharyya distance for the distributions at for each plot; between 

the traditional inventory data and LiDAR processing solutions’ data, and between the 

traditional inventory data and itself. The Bhattacharyya distances were then written to a 

data frame along with details of the corresponding plot and method assessed.  

It should be noted that owing to rounding the Bhattacharyya distance calculated between a 

distribution and itself does not return 0 as it should. To amend this for the comparison of 

field data against field data would invalidate the subsequent analysis of variance between, 

given all the methods are subject to the same systematic error in rounding the interpretation 

of the subsequent analysis should remain the same. 

Following the calculation of the Bhattacharyya distances an analysis of variance (ANOVA) 

was performed to assess whether there were any significant differences in the distributions 
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of the remote sensing solutions and the field data, with a null hypothesis that all four 

distributions were equal. The ANOVA does this by checking whether the Bhattacharyya 

distances for each method were statistically different from one another. 

If the ANOVA indicates that Bhattacharyya distances of the methods are significantly 

different from one another, Tukey’s Honestly Significant Difference (HSD) test will be used 

as a post hoc test to identify which methods differ from one another. 
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Snippet 6-4. Example R code depicting the approach to calculating Bhattacharyya distances 

and performing an analysis of variance. 

6.3.3.3 Welch’s T-test and Cohen’s d 

To assess how well each remote sensing solution replicated the DBH measurements 

themselves, as opposed to the plot level distribution, Welch’s t-test was employed. A 

pairwise t-test was performed for each of the remote sensing solutions, the t-test assesses 

whether two populations are different with a null hypothesis of no significant difference. 

The t-test was performed in R with the R core stats package, a Welch’s t-test was performed 

by setting the argument “var.equal” to “FALSE”. By performing a Welch’s t-test rather than 

a Student’s t-test we account for unequal variances, and generally it should always be the 

preferred t-test as if variances are equal the Welch approximation to the degrees of freedom 

is the same as the pooled variance akin to the Student’s t-test. 

In addition to the t-test, Cohen’s d is calculated for each of remote sensing solutions. Cohen’s 

d is a standardised effect size measure which quantifies the differences between the means 

of two groups, in terms of the number of standard deviations. It's a way to express the size 

of the difference between groups' means in a common unit, making it easier to compare 

effect sizes across different studies or contexts. In this context, Cohen’s d serves as a 

measure of the practical significance of differences between groups, if the t-test shows that 

there are significant differences. 

Cohen’s d is calculated as: 

𝐶𝑜ℎ𝑒𝑛′𝑠 𝑑 =
𝜇1−𝜇2

𝜎𝑝𝑜𝑜𝑙𝑒𝑑
     (3)  
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where 𝜇1 represents the mean of population 1, the DBH measurements from the remote 

sensing method; 𝜇2 represents the mean of population 2, the DBH measurements from the 

traditional inventory; and 𝜎𝑝𝑜𝑜𝑙𝑒𝑑 represents the pooled standard deviation, which is a 

combined measure of the variability within both groups. 

Snippet 6-5. Example R code depicting the approach to performing pairwise t-tests and 

calculating Cohen’s d. 

Interpretation of Cohen’s d broadly follows the pattern that values between 0 and 

approximately 0.2 are small effects that may not be impactful. Values around 0.5 are 

moderate effects where the difference is expected to be meaningful, and values around 0.8 

or higher are large effects where the difference is substantial.  

6.4 Results 

The analyses were run twice, once with the complete dataset and once with plots 3 and 4 

removed owing to poor point cloud quality and reduced point density which could impact 
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and skew results. Owing to the poor point cloud quality not all the processing solutions were 

able to extract inventory data for plots 3 and 4, FORTLS failed to extract inventory data at 

plot 3, and 3DFin failed on plot 4. Where solutions did extract inventory data for plots 3 and 

4 there were very few trees identified compared to the traditional inventory which indicated 

that the solutions have been unable to identify and measure many of the trees in each plot. 

The results were found to change significantly from this the removal of poor-quality data as 

outlined below. 

6.4.1 Complete dataset – all plots 

The results presented in this section are from analyses performed on the Weibull 

distributions depicted below, figure 6-1. 
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Figure 6-1 – Plots of probability density curves of diameter arranged by plot and point cloud 

processing solution. Each plot includes the reference curve, black, generated from 

traditional inventory data at that plot and the curve for the processing solution data. 

6.4.1.1 Analysis of variance and Tukey’s HSD 

For the complete dataset, the ANOVA results indicated that there was no statistically 

significant difference in the probability distributions of tree diameters for the four methods 

(F(3, 22) = 2.438, p = 0.092). To confirm this non-significant result, post hoc testing was 

performed using Tukey’ HSD to confirm the relationship indicated by the ANOVA. The 

results of the Tukey’s HSD, summarised in Table 7-1, indicated that the mean Bhattacharyya 

distances for all methods were not significantly different (p>0.05) than the mean 

Bhattacharyya distance for the traditional inventory or from one another.  

Table 6-1 Results of the Tukey’s HSD post hoc testing for the complete dataset. 

6.4.1.2 Welch’s t-test and Cohen’s d 

The t-test results showed significant differences between the remote sensing solutions and 

traditional inventory data in terms of DBH measurements. For TreeLS, the t-test yielded a 

highly significant p-value (p < 0.01), coupled with a substantial effect size (Cohen's d = 

0.690), indicating substantial overestimates in DBH estimations. Similarly, FORTLS 

Method 

Mean 
Bhattacharyya 

distance SD n SE 

Upper 
95% 

CI 

Lower 
95% 

CI Groups 

Traditional 

Inventory 0.143 0.079 7 0.076 
0.292 -0.006 

A 

TreeLS 0.391 0.176 7 0.071 0.530 0.252 A 

FORTLS 0.224 0.103 6 0.076 0.373 0.075 A 

3DFin 0.338 0.314 6 0.071 0.477 0.199 A 
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demonstrated a highly significant p-value (p < 0.01) and an intermediate effect size (Cohen's 

d = 0.404), signifying meaningful overestimations relative to traditional inventory 

measurements. 

3DFin exhibited a highly significant p-value (p < 0.01), accompanied by a smaller negative, 

but still notable, effect size (Cohen's d = -0.218) compared to the other solutions. The 

negative value suggests that 3DFin underestimates DBH values in this setting and that the 

effect size is less pronounced compared to the positive values observed for TreeLS and 

FORTLS. 

6.4.2 Partial dataset – plots 1,2,5,6,7 

6.4.2.1 Analysis of variance and Tukey’s HSD 

For the partial dataset, the analysis of variance was repeated, and the results changed 

indicating the low-quality point clouds may have skewed the initial data analysis. 

The ANOVA results indicated a significant difference among the diameter probability 

distributions for each of the methods (F(3, 16) = 4.279, p < 0.05). Owing to the highly 

significant result of the ANOVA, a Tukey’s HSD post hoc test was again conducted to examine 

where there were significant differences between pairs of methods.  

The Tukey’s HSD test revealed significant differences in Bhattacharyya distances among the 

methods. Only mean Bhattacharyya distance of TreeLS was significantly different from that 

of the traditional inventory, no other pairs of methods had significantly different mean 

Bhattacharyya distances from one another. This indicates that 3DFin and FORTLS may be 
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statistically indistinguishable from traditional inventory however these methods also 

overlap with the lower confidence interval of TreeLS. 

Table 6-2 Results of the Tukey’s HSD post hoc testing for the partial dataset. 

6.4.2.2 Welch’s t-test and Cohen’s d 

The t-test results revealed significant discrepancies between the solutions and traditional 

inventory data in terms of estimating DBH. For TreeLS, the t-test yielded a highly significant 

p-value (p < 0.01) along with a substantial effect size (Cohen's d = 0.978), indicating notable 

disparities in DBH estimations. Similarly, FORTLS exhibited a highly significant p-value (p 

< 0.01) and a substantial effect size (Cohen's d = 0.987), suggesting substantial deviations 

from traditional inventory measurements. 

3DFin had a statistically significant p-value (p = 0.05), accompanied by a small effect size 

(Cohen's d = 0.140), especially compared to the other solutions. This implies a small but 

detectable difference in DBH estimations between 3DFin and traditional inventory data, 

though the effect size may not be meaningful. 

6.5 Discussion 

Upon entering discussion of these results, their implications, and where this work fits in in 

the greater context of the field, it should be noted that the chosen study areas were selected 

Method 

Mean 
Bhattacharyya 

distance SD n SE 

Upper 
95% 

CI 

Lower 
95% 

CI Groups 

Traditional 

Inventory 0.171 0.057 5 0.046 
0.261 0.081 

A 

TreeLS 0.389 0.162 5 0.046 0.479 0.299 B 

FORTLS 0.244 0.101 5 0.046 0.334 0.154 AB 

3DFin 0.211 0.046 5 0.046 0.301 0.121 AB 
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to provide the greatest challenge to the solutions for inventory data extraction. It is only 

with this in mind that one can discuss these results as all the processing solutions assessed 

are known to perform accurately with data from more favourable, plantation forest settings 

[19,32,34,35].  

Given the differences in results between the complete and partial datasets, it appears that 

the inclusion of plots 3 and 4 in the complete dataset skewed the results. For each of plots 3 

and 4, one processing solution failed to extract any inventory data and the other two 

solutions yielded data for fewer than twenty trees. The point clouds for the clipped plots of 

plots 3 and 4 were found to be 6 to 8 times smaller in file size and this reflects a significantly 

lower number of points which is assumed to be caused by operator error or technical error 

during data collection. For both scans only a portion of the plot had been successfully 

scanned before appearing to drop dramatically in quality or cease altogether, as such it may 

have been user error, corruption of the data when transferred from the data logger or a 

transient technical issue with the scanner. It should not be understated that the potential 

for such poor-quality data collections could severely impact operational suitability of MLS 

for inventory data collections. We experienced a 28% failure rate for data collection on this 

occasion, though typically we find this to be much lower, but in operational use this would 

significantly reduce the efficiency gains for this approach and could even result in a lack of 

data where traditional inventory would have delivered. It is our belief, however, that this is 

unlikely to be a significant issue most of the time and that with widespread adoption of the 

methods operator error would decrease and technical reliability would improve.  
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For the sake of comparison, so that all solutions were tested on the same 5 plots, this 

discussion draws exclusively upon the results of the partial dataset when comparing the 

performance of the different LiDAR processing solutions.  

The results of the analysis of variance for the partial dataset indicated that there were 

significant differences in the diameter probability distributions of the four methods, and the 

Tukey’s HSD indicated that the primary difference was traditional inventory and TreeLS; 

FORTLS and TreeLS. This is consistent with the highly significant ANOVA result and 

suggests there were significant differences in how well the LiDAR solutions replicated the 

traditional inventory measurements. The Tukey’s HSD also showed that there were non-

significant differences in the diameter probability distributions of both traditional inventory 

and 3DFin and traditional inventory and FORTLS. This suggests that the inventory data 

produced by 3DFin and FORTLS is similarly distributed to the traditional inventory data and 

that the datasets could therefore be describing the same population, which is necessary if a 

remote sensing tool is to be used to replicate traditional inventory methods. 

The results of Welch’s t-test indicated that for all the LiDAR processing solutions the DBH 

values were statistically different from the traditional inventory values. This result is 

unsurprising as there are several opportunities to accumulate systematic and random errors 

in the LiDAR derived data. Identifying the correct point on a tree for a DBH measurement is 

a likely source of error as the normalisation process may not be entirely accurate and the 

solutions may calculate the base of the tree differently. The circle fitting algorithms used in 

LiDAR processing solutions select the circle that best fits the stem points, and this can be 

influenced by the shape of the stem and may result in different measurements to the 

averaged calliper measurement used. The MLS can introduce random error during data 
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collection and has a variable precision depending upon variables such as distance to target, 

changes in movement speed, and sensor temperature. Additionally, the SLAM algorithm that 

generates the point clouds can introduce noise and misattribute points. 

Cohen’s d was used as a post hoc measure of effect size for the t-test results, and the results 

show that for TreeLS and FORTLS the effect is significant and meaningful but for 3DFin the 

effect size is small and within the range that it could be considered not impactful.  

Had the traditional inventory data for each tree been correlated with its digital twin  it would 

have been possible to validate both how effectively the LiDAR processing solutions identified 

trees and how accurate each DBH estimate was, without the need for plot level assessments 

of probability distributions and diameters [15], as in the tree identification validation 

performed by Bienart et al. (2021). This would allow for greater confidence in the 

assessment of processing solution performance and is an area for improvement should this 

work be repeated in future.  It can be seen from the counts of diameters measured at each 

plot by the different methods (Addendum 2) that the methods often under and over 

predicted the number of trees at each plot which suggests all the solutions struggled at times 

with the complex understory structure resulting in erroneous detections or omissions of 

trees. And thus, we do believe there is a need for further assessment of the capacity of such 

processing tools to function in complex forest types like CCF at an individual tree level going 

forwards. 

Even without geolocated inventory data, the results of these analyses indicate that 3DFin is 

most capable of replicating traditional inventory measurements with a statistically 

significant similarity in distribution, and with a non-meaningful difference in DBH values, 

in the structurally complex and computationally taxing forest types chosen for testing. There 
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are, of course, areas for improvement, MLS cannot currently classify species and thus while 

it is possible to get DBH distributions for a stand it is not possible to subset these by species 

which may impact its adoption operationally. Tools are being developed that work in concert 

with MLS or may even be used in place of MLS and which may address the issues of species 

detection. Multiple laser scanner manufacturers now offer a camera attachment to their 

handheld scanners which can capture images of the forest which can then be mapped onto 

the point cloud and provide context information that could be assessed visually or by 

machine learning tools for this application currently in development by various research 

groups globally.  

These findings underscore the critical importance of carefully testing remote sensing 

solutions for accuracy in diverse forest environments. There is a dearth of literature in which   

remote sensing tools are tested in or applied to CCF systems and this may negatively impact 

the uptake of CCF or impede the progression of research in CCF.  

6.6 Conclusions 

In summary, this work has shown that point cloud processing solutions, specifically 3DFin 

and FORTLS, can replicate plot-level traditional field inventory derived distributions of DBH 

from point clouds such that there is no statistically significant difference. Furthermore, it 

was shown that when comparing the populations of individual diameters returned by 

remote sensing processing solutions and traditional forest inventory no meaningful 

difference was observed for DBH measurements returned by 3DFin. Therefore, one can 

conclude that ground-based remote sensing can be used as a suitable substitute for 

traditional inventory in CCF stands and that if one wishes to use ground-based laser 

scanning in this way, they should use 3DFin to process their data.



119 

CHAPTER 7  

Discussion and Conclusions 

7.1 Introduction 

The overall aim of this thesis, as set out in the statement of intent, was to examine the use 

of remote sensing for describing and monitoring CCF stands. Given the extensive discussion 

of remote sensing and continuous cover forestry in Chapter 2, and the end of chapter 

discussions for the other sections of this work, this final discussion section will serve to: 

further justify why this work was needed, explore how the work from the previous chapters 

addresses needs, where this work could have been improved, implications for operational 

use of remote sensing in CCF, where things could be taken next, and, finally, a summary of 

whether hypotheses were proven and what this work has demonstrated. 

7.2 Justification for work 

This body of work represents just the beginning of what is needed if UK forestry is to 

transition successfully to sustainable silviculture and stay productive. Considering the 

ongoing global climate crisis [1], we must all make efforts to transition to more sustainable 

practices to reduce carbon emissions. The UK has committed to becoming net-zero by 2050 

but currently has one of the lowest forest cover rates in Europe at just 13% [2] which is 

paltry compared to the European average of 46% and still less than half the global average 

of 31%. While forest cover is not the only path to net-zero and will by no means be the only 

way the UK reaches this goal it will be a significant part of the effort to sequester and offset 

carbon emissions where they cannot be reduced. Consequently, the UK intends address the 
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low forest cover through forest and woodland creation. To date Forest Research has 

identified a potential 2.7 million hectares in Scotland, 3.9 million hectares in Wales and 1.5 

million hectares in England for woodland creation in Britain. With woodland creation comes 

considerations for what to plant and how to manage it. Matthews et al. (2022) showed that 

over 80 years the planting of any forest with any management approach was expected to 

result in an annualised net sequestration of CO2 emissions of at least 5 tonnes/hectare, see 

Matthews et al. figure S1, and that over the first 30 years none of the options the presented 

data for resulted in significant net emissions [3].  

From the data presented in Matthews et al. (2022) it initially appears that a fast-growing 

Sitka spruce monoculture with thinning is the best option for carbon mitigation, and it may 

well be when solely considering sequestration. However, forests provide more than simply 

timber and carbon sequestration; as stated in the introduction, sustainable forests are 

managed to provide improved community and ecosystem services without significantly 

sacrificing timber production. Matthews et al. (2022) show that depending upon the type of 

CCF practiced – such as whether species mixtures are employed, whether those mixtures 

are coniferous or broadleaved, and the intensity of management – the potential annualised 

net carbon sequestration is still more than 10 tonnes/hectare [3].  

Given the benefits of CCF, as explored in section 2.2, and the current efforts to transform 

traditional production forests, it stands to reason that much of the new planting will be some 

form of CCF. This will therefore greatly increase the demand for reliable methods of 

inventory assessment and monitoring in CCF stands and thus creates a considerable urgency 

for the development of these methods. Additionally, scalable, and more efficient means of 

data collection are going to be necessary if the UK forestry sector is to keep up with the 
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increase in forest cover and so remote sensing will be essential to the success of these 

methods. 

7.3 Addressing current needs and shortcomings 

As laid out in the justification, and in section 2.2, there are growing needs for methods of 

remote sensing in CCF, and this work was conceptualised to address some of these demands. 

Applications to CCF has long been an overlooked area of remote sensing research and though 

doctoral research has nominally been performed in these areas previously it has primarily 

been either in CCF or remote sensing but rarely addressing the specific niche of the overlap 

of these two subject areas.  

Chapter 3 of this work addressed a knowledge gap within the field regarding the availability 

of point cloud processing tools, this itself was not directly CCF related however it was a 

fundamental steppingstone that led to Chapter 6. Chapter 3 is of course an incomplete 

reference for all publicly available ground-based point cloud processing solutions as they 

continue to be updated and new solutions released. This is why the goal of the COST action 

working group has been to create a live database that is regularly maintained by the 

community that it serves and thus the work following my own contributions is already well 

underway.  

Chapter 6 contributes to addressing perhaps the most crucial knowledge gap in the 

application of remote sensing to CCF – how accurately can remote sensing collect inventory 

data in complex stands. From chapter 6 we can see that remote sensing can replicate the 

distributions of datasets collected with traditional forest inventory techniques and therefore, 

given the known advantages of speed and efficiency and capacity for direct volume 
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measurement [4-6], remote sensing is a far more practical tool for monitoring CCF stand 

distributions than traditional inventory methods. As first discussed in section 2.3.2, the 

reverse-J distribution (J-curve model) for stem diameters is an easily identifiable and 

achievable distribution within CCF that could be used as an indicator of when to harvest and 

where to concentrate harvests and this can be easily monitored through remote sensing 

methods. Chapter 6 also highlighted both the importance of good data collection and the 

importance of analyses like these to assess varying performance of tools which otherwise 

outwardly appear broadly similar. Chapter 6 was, however, limited in scope by the lack of 

individual-tree level analyses of diameter estimation and assessments of the tree detection 

accuracy to establish the number of missed stems when fully enumerating stands and the 

accuracy of the DBH algorithms in these complex forest environments. Were the work to be 

repeated or completed with knowledge gained in hindsight some means of correlating the 

individual trees between MLS point clouds and the field would have been incorporated. This 

could have been achieved through unique high contrast, reflective patterns or potentially 

even numbers affixed to trees or through use of more advanced tools that have since become 

available. What is possible with remote sensing tools changes rapidly and so it would now 

be possible to use RTK equipped poles to mark individual tree locations, allowing for co-

registration of their physical locations with the point clouds..  

Chapter 5 of this work used ALS and took a landscape level view of the forest stands in which 

it was being used to monitor disturbance and growth. Such approaches will be required 

when scaling up plot level measurements recorded with TLS/MLS and so this chapter 

explored methods of modelling biomass from remotely sensed data that would be more 

sensitive to the structural complexity and heterogeneity of CCF stands. This work did not 
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show an increased accuracy in predicted biomass for the model with terms that accounted 

for structural complexity however this may have been due to the low number of reference 

plots in areas with high levels of heterogeneity in stand structure, caused by selective 

logging. It stands to reason that models with terms to account for the heterogeneity of 

structures in CCF should more accurately predict biomass than those that are solely 

informed by top-of-canopy height. Further testing of this approach in highly heterogeneous 

forest with more extensive reference data coverage in areas of heterogeneity may highlight 

the theorised advantages of a structurally informed model for biomass estimation. 

7.4 Operational use of remote sensing in CCF 

For those interested in pursuing the use of remote sensing in CCF I would direct your 

attention back to Chapter 2 and then recommend that they keep an ear to the ground with 

regards to further developments in the field. For now, it is worth remembering that remote 

sensing cannot yet provide all the answers and is not magic; for monitoring diameter 

distributions at the plot level, it is more than capable however for accurately quantifying 

volume of mercantile timber, while the functional capacity is there, the accuracy of results 

is highly variable.  

The method of remote sensing you intend to use will affect how operationally useful remote 

sensing will be to CCF; ALS may have limited value for management and monitoring of 

complex forest types with significant below canopy structures but will remain valuable for 

upscaling ground-based data collections from plot level to forest level. Ground-based LiDAR 

will likely become the most valuable tool in CCF management as it can fully capture the 

below canopy structure and precise direct measurements, albeit with their accuracy 

dependent upon the quality of tree segmentation and circle or cylinder fitting algorithms. 
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Thus, as the field develops it is worth always approaching CCF management conscious of 

what remote sensing has successfully been shown to do so far to get the most value out of 

it. Currently, I recommend adopting the use of diameter distributions to monitor stand 

structure and dynamics and make decisions and MLS as the potential efficiency gains in this 

case appear significant.  

7.5 Directions for future work 

There are plenty of opportunities for further work that could fall within the scope of the 

thesis title, “Exploring the application of remote sensing to the monitoring of continuous 

cover forestry”. In addition to improving upon the work that has been presented here, there 

are many directions for work that were simply not explored here due to the constraints of 

time and resources with many theses worth of questions to answer. 

In section 2.5 a list of topics for further research was proposed. Of these, the first, 

“Development of remote sensing supplemented inventory protocols for improved CCF 

management” is now partially addressed through the work of Chapter 6, and the 

corresponding methods in section 4.4.2. The other proposed directions for work are still 

areas of great need. To identify areas of future research of the greatest interest to forest 

stakeholders I engaged in two days of discussions with forest stakeholders, approximately 

80 stakeholders over 16 hours, about potential uses for remote sensing in a range of forest 

types, though primarily with regards to facilitating CCF. From these discussions, it became 

evident that of the potential directions for research already identified in section 2.5 the areas 

greatest interest to stakeholders were stem volume estimation and marketable timber 

estimation. Many cited the development of reliable methods for estimation of these two 

values, in addition to the development of reliable remote sensing inventory methods would 



125 

encourage them to fully embrace both CCF and remote sensing. Consequently, below are 

expanded outlines on how one might proceed with such research. 

• Stem volume estimation from below-canopy point clouds to improve estimates of standing 

stocks. 

Assessments of point cloud processing tools for the accuracy with which direct 

measurement with laser scanning can be used to measure stem volumes would eliminate 

error introduced by allometric modelling. This work would require measurement of stands 

with remote sensing and traditional inventory methods before destructive sampling to 

collect reference volumes for validation. This work is of course applicable to more than 

just CCF but given the added complexity in CCF stands, where species and age mixtures 

are commonplace, it would provide greatest added value and facilitate the ongoing to 

transition of silvicultural practices. 

• Stem segmentation and marketable timber estimation from below-canopy point clouds. 

Like with the previous point, this work would require data collections with remote sensing 

tools in areas marked for harvesting and then validation against post-harvest data, such 

as that generated at a mill. Here, merchantable timber estimation implies estimates of the 

number of logs of appropriate length and profile for processing into solid-wood products 

by lumber mills. Developments in this area would benefit managers of CCF woodland 

where accurately predicting the yield of timber after a prescribed partial harvest would 

otherwise prove extremely difficult relative to a clear felling. 

7.6 Conclusions 

In closing, all that remains is to address whether the aims and hypotheses goals laid out in 

section 1.2.1 were addressed by the body of work presented here. 
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Aim 1 was addressed first by Chapter 2 systematically reviewing the literature surrounding 

remote sensing in CCF, the knowledge gaps and the ways that other forest remote sensing 

work could be applied to CCF. Aim 1 was then further addressed in Chapter 3 where some 

of the processing solutions available for implementing remote sensing in CCF were 

highlighted and the groundwork was laid for further work to improve accessibility to this 

area of study and practice. 

Chapter 5 addressed Aim 2 and subsequently confirmed Hypothesis 1 by showing that 

remote sensing can detect disturbances in forest structure associated with selective logging. 

Additionally, it showed that the most disturbance sensitive remote sensing metrics for each 

of the ecosystem morphological traits were found to model stand biomass with equivalent 

accuracy to a widely accepted and used single variable biomass model. It was also shown 

that remote sensing could monitor change over time in the forest structure corresponding 

to growth and recovery. 

Finally, Aim 3 and Hypothesis 2 were addressed and confirmed by showing that through use 

of appropriate processing solutions one could use remotely sensed point clouds to replicate 

field inventory derived plot-level distributions of DBH. It is possible to find no significant 

difference between the distributions of the different methods, though this finding was 

contingent on the use of good quality data. Additionally, it was shown that the individual 

diameters returned by remote sensing processing solutions could be found to non-

meaningfully differ from those observed with traditional inventory, and thus ground-based 

remote sensing is a suitable substitute for traditional inventory.  
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It is my hope that this work is recognised as meaningful contribution to the field of remote 

sensing and CCF and that the scarcity of CCF specific remote sensing knowledge will come 

to an end as further research is conducted.
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ADDENDA 

ADDENDUM 1  
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Addendum 1 consists of a correlation matrix showing the correlations between each of the 

tested LiDAR derived metrics used in the modelling of Chapter 5. This was done to rule out 

significant levels of collinearity between metrics used for different ecosystem morphological 

traits.  

ADDENDUM 2 

Addendum 2 consists of a plot of counts of diameters measured at each plot by each method 

used in Chapter 6.  
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