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 Summary paragraph (216 words, target: 200):  Amazonia  contains the most extensive tropical 

 forests on Earth, but Amazon carbon sinks of atmospheric CO  2  are declining, as 

 deforestation and climate change-associated droughts  1–4  threaten to push these forests past 

 a tipping point towards collapse  5–8  .  Forests exhibit  complex drought responses, indicating 

 both resilience (photosynthetic “greening”) and vulnerability (browning and tree 

 mortality), that are difficult to explain by climate variation alone  9–17  .  Here, we combine 

 remotely-sensed photosynthetic indices with ground-measured tree demography to identify 

 mechanisms underlying drought resilience/vulnerability in different intact forest 

 ‘ecotopes’  18,19  (defined by water-table depth, soil  fertility and texture, and vegetation 

 characteristics). In higher-fertility southern Amazonia, drought response was structured by 

 water-table depth, with resilient greening in shallow-water-table-forests (where greater 

 water availability heightened response to excess sunlight), contrasting with vulnerability 

 (“browning” and excess tree mortality) over deeper water tables. Notably, 

 shallow-water-table-forest resilience weakened as drought lengthened. By contrast, 

 lower-fertility northern Amazonia, with slower-growing but hardier trees (or alternatively, 
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 tall forests, with deep-rooted water access), supported more drought-resilient forests 

 independent of water-table depth. This new functional biogeography of drought response 

 provides a framework for conservation decisions and improved predictions of 

 heterogeneous forest responses to future climate changes, warning that Amazonia’s most 

 productive forests are also at greatest risk, and that longer/more frequent droughts are 

 undermining multiple ecohydrological strategies and capacities for Amazon forest 

 resilience. 

 Three ‘once in a century’ droughts (Extended Data Fig. 1) occurred in the Amazon basin 

 over a single decade, in 2005, 2010, and 2015-2016  20,21  ,  provoking multiple difficult-to-explain 

 forest responses (  Fig. 1  ,  Extended Data Fig.  2). For  instance, unexpected overall increases 

 (“green-up”) in remotely sensed canopy greenness (a proxy for photosynthetic function) during 

 the 2005 drought  9,10  (  Fig. 1a  ,  Extended Data Fig  .  2a) appear at odds with reports of simultaneous 

 carbon losses from increased tree mortality observed in ground plots  16  . Further, the 2005 

 green-up contrasts with a strong decrease in greenness (“browndown”) during the 2010 drought  11 

 (  Fig. 1b  ,  Extended Data Fig  . 2b), while the 2015/2016  El Niño, the largest and most intense 

 drought of the three, provoked an intermediate response that also included significant green-up 

 regions (  Fig. 1c  ,  Extended Data Fig  . 2c). Climate  drivers alone, though important  10  , are evidently 

 insufficient to predict the complexity of drought responses across heterogeneous landscapes  22  . 

 Still missing is a general understanding of what drives differences in drought resilience across 

 Amazonian landscapes, a “functional biogeography”  23  of forest drought response that can 

 address the question: why are some forests (or times) resilient (exhibiting green-up, or reduced 

 mortality), while others are vulnerable (exhibiting browndown, or enhanced mortality)? 

 Here, we used satellite indices of forest photosynthesis to test whether three 

 non-exclusive ecological hypotheses that go beyond climate-only explanations, developed from 
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 forest plot-scale observations, can also predict regional scale responses to these recent droughts 

 across intact  terra firme  forest types of the Amazon  basin. 

 The first (“other side of drought”  24  ) hypothesis is  that shallow water table hydrological 

 environments  25  provide trees with greater access to  water resources, making them more drought 

 resilient (as observed in forest plots near Manaus  26,27  ),  than trees in forests over deep water 

 tables, whose mortality rates typically increase with drought  2,16  . This hypothesis predicts that 

 shallow water table forests should show less browndown (or even experience green-up with 

 reduced anoxia or more sunlight due to reduced cloud cover during drought) compared to forests 

 with deep water tables. 

 The second (“soil fertility”) hypothesis  28,29  is that  in more fertile forests, where tree 

 growth and turnover rates are high, fast growing trees that invest less in drought tolerance have a 

 competitive advantage over trees that invest more. This is because it is easier to simply regrow 

 trees cheaply when resources are plentiful, especially when tree-killing droughts are rare. This 

 hypothesis thus predicts that more fertile forests will exhibit greater drought susceptibility (more 

 browndown or less green-up) than less fertile forests. 

 The third (“rooting depth/traits”) hypothesis focuses on the role of tree characteristics 

 themselves. This hypothesis predicts that forests dominated either by species with drought 

 avoidance traits (tall, deeply rooted trees)  30–33  ,  or drought tolerance traits (high wood density or 

 embolism resistant xylem)  29,34–36  are more drought  tolerant, even over deep water tables. 

 These three dimensions (water table depth, soil fertility, and vegetation properties) define 

 an ‘ecotope space’, within which different forest ecotopes are located and may interact with and 

 respond to climate in different ways. To the extent such responses are predictably structured by 

 ecotopes (which also vary by geographic region within the Amazon,  Extended Data Fig  . 3), it 
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 should be possible to derive a unified functional biogeography of the basin-wide diversity of 

 forest drought responses. 

 We tested these hypotheses using satellite indices of photosynthetic capacity (the 

 Enhanced Vegetation Index, EVI, corrected for view- and illumination-geometry artifacts)  37  and 

 of photosynthetic activity (the Global OCO-2 Solar Induced Fluorescence product, GOSIF)  38  . We 

 focused on drought-affected regions, defined as those whose maximum cumulative water deficit 

 (MCWD, methods §2.3) reached more than one standard deviation below the mean of the remote 

 sensing record (from 2000-2020)  39  . Vegetation index  anomalies during drought were analyzed as 

 a function of water table depth (as captured by “height above nearest drainage”, or HAND  25  ) and 

 of gridded climate data (photosynthetically active radiation (PAR), vapor pressure deficit (VPD), 

 and precipitation) derived from remote sensing platforms (see methods §2.4,  Extended Data Fig  . 

 5). 

 We took relative green-up (more positive or less negative vegetation anomalies) as an 

 index of resilient photosynthetic capacity or activity, because it suggests more carbon resources 

 for responding to stress, and, notably, is predictive of outcomes on the ground commonly 

 associated with resilience at the individual tree scale (lower mortality, greater growth, and 

 greater xylem embolism resistance, see methods §2.4). 

 Southern Amazon forest drought response 

 Focusing first on the locale of the 2005 drought (in the Southern Amazon, one of three 

 regions identified in methods §2.2,  Extended Data  Fig  . 6), we found substantial structuring of the 

 2005 greening by water table depth across the drought-impacted region. This is visually evident 

 in the spatial correspondence of 2005 forest green-up/browndown regions (Fig. 1a, ellipse) with 
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 shallow/deep water table forests (  Fig. 2a  , ellipse), and is quantified by bin-averaged EVI (  Fig. 

 2b  ) and GOSIF (  Extended Data Fig  . 2d, green symbols/lines)  observations vs. water table depth. 

 Vegetation green-up in 2005 was concentrated in pixels with shallow water tables, but as water 

 tables deepened, positive vegetation index “greening” anomalies decreased and then reversed to 

 become negative anomalies (Fig. 2b,  Extended Data  Fig  . 2d). The strongest 2005 green-up, 

 intriguingly, was in forests that experienced the strongest drought (Fig. 2b, dark orange points), 

 apparently because these areas experienced a greater frequency of excess sunlight (  Fig. 2c 

 histograms), which was particularly advantageous to shallow water table forests (Fig. 2c, 

 blue-hued lines). 

 In order to rigorously quantify the sensitivity of forest response across multiple droughts, 

 we implemented two separate statistical approaches in sequence: non-linear multiple regression 

 (using Generalized Additive Modeling, GAM), to test hypotheses and predict basin-wide drought 

 anomalies, using AIC selection to identify the best predictive models (methods §2.6.1)  40  , and 

 Structural Causal Modeling (SCM) (using Directed Acyclic Graphs, DAGs) to more 

 systematically evaluate the causal relations suggested by the GAM analysis (methods §2.6.2)  41  , 

 Both modeling approaches were conducted on a 0.4 degree grid, the resolution needed to avoid 

 inflation of statistical significance by accounting for spatial autocorrelation among nearby pixels 

 (methods §2.5,  Extended Data Fig  . 7). We focus on  the multiple regression GAM results below, 

 and report comparisons with SCM results in methods §2.6.3. 

 When all three droughts were modeled simultaneously within Southern Amazonia, using 

 GAM to also account for the effects of climate (  Extended  Data Table 1a  ), we found that despite 

 large differences observed in responses among the years (Fig. 1: a vs b vs c), the overall 

 other-side-of-drought (hypothesis 1) prediction of a negative relationship between remotely 
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 sensed vegetation anomalies and deepening water tables observed in 2005 was consistently 

 confirmed across all three droughts in this region (  Fig. 3a  ). Notably, though there was an almost 

 universal browning response to the 2010 drought (Fig. 1b), vegetation anomalies remained 

 significantly structured by water table depth (Fig. 3a, purple symbols/lines). 

 This analysis suggests that the ability of shallow water table forests (but not of deep) to 

 respond positively to excess sunlight (possibly including relief from anoxia  24  ) was a key general 

 (multi-drought) mechanism of southern Amazon forest drought response (  Fig. 3b  colored 

 curves). Inter-drought differences in climate drivers — not differences in water-table depth 

 distribution of impacted areas (Fig. 3a, distributions did not differ much) — accounted for much 

 of the inter-drought differences in forest response (in Fig. 3a, the observed points correspond 

 well with the model predictions, which differ among droughts only due to climate). Notably, 

 PAR increased during the 2005 and 2015/2016 droughts (Fig. 3b distributions;  Extended Data 

 Fig  . 5a, g), promoting green-up, but decreased during  the 2010 drought (due in part to excess 

 smoke aerosols from high fire rates  42  , Fig. 3b distribution;  Extended Data Fig  . 5d). Anomalously 

 high VPD across the droughted region in 2010 (  Extended  Data Fig  . 5e vs  Extended Data Fig  . 5b, 

 H), may also have contributed to reduced green-up/increased browndown in 2010. 

 Importantly, inter-drought differences in Southern Amazon forest responses were 

 mediated by drought length (  Fig. 3c  ) (as hypothesized  in Costa et al  24  ). Despite the even greater 

 sunlight increases in 2015 than in 2005 (Fig. 3b histograms), the overall green-up in 2015/2016 

 was less than in 2005 (Fig. 3a), apparently due to the exceptional length of the latter drought 

 (Fig. 3c distribution). Initial green-up in shallow-water-table-forests (blue lines in Fig. 3c) 

 reversed to browndown in regions experiencing drought longer than three months, with 
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 increasingly stronger browndown the longer the drought. Sufficiently long droughts thus likely 

 deplete shallow water tables, diminishing and then reversing their protective effect. 

 The contrasting responses between shallow and deep water table forests of the southern 

 Amazon support the “other side of drought” (hypothesis 1), and at the same time help reconcile 

 the much-discussed apparent disagreement between remote sensing studies showing 2005 

 drought-associated green-up on average  9,10  (interpreted  as showing forest resilience to or even 

 benefit from drought) and ground-based plot studies showing 2005 drought-associated excess in 

 tree mortality on average  16  (interpreted as showing  forest vulnerability to drought).  Our more 

 fine-grained analysis suggests, however, that the excess greening and the excess mortality were 

 not in the same places; it is the locales with shallow water table forests that were benefited by 

 drought, while deep water table forests are vulnerable, a consistent pattern revealed by both 

 remote sensing (Figs. 3a, 2b) and ground-based forest demography (tree mortality drought 

 response increases with water table depth,  Fig. 3d  ).  The apparent disagreement arises because 

 the published plot-based sampling efforts  2,16  are  not random, but skewed towards the deeper 

 water table regions which experienced browndown during drought (  Fig. 3e  & Fig. 2b, 

 orange-shaded regions), while the basin as a whole has more shallow water table forests like 

 those that experienced greening (Fig. 3e & Fig. 2b, green-shaded regions) (half of the Amazon 

 basin). Shallow water tables may thus gain (or lose less) carbon during drought (as seen in 

 Esteban et al.  27  ) partially offsetting the more negative  effect of drought seen on forest mortality 

 and carbon balance in deeper water table forests  2,16  . 

 Basin-wide forest drought response 

 Although we observed consistent support for the “other-side-of-drought” (hypothesis 1) 

 across both time (three droughts) and space in southern Amazon forests (Fig. 3a) (separately 
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 confirmed by causal modeling analysis,  Extended Data Fig.  10a), we found consistently  opposite 

 drought responses with water table depth (EVI anomalies increased with water table depth) in the 

 everwet Amazon of the northwest and in the lower-fertility Guiana shield in the northeast 

 (  Extended Data Fig  . 8, where fertility is quantified  as exchangeable base cations  43  ). These 

 observations falsify hypothesis 1 outside the southern Amazon. We next used forest responses to 

 the 2015/2016 drought (the only drought large enough to substantially impact large portions of 

 all three regions of the basin simultaneously), to test whether joint consideration of all three 

 hypotheses together could explain the biogeography of forest drought response across the basin 

 as a whole. 

 When gridded ecotope factors (soil fertility and texture  43,44  and  vegetation properties 

 such as canopy height  34,45  ) were included as predictors  in our GAM analyses for the 2015/2016 

 drought (  Fig. 4  , Extended Data Table 1d), coherent  differences between southern and northern 

 Amazon regions emerged from interacting effects of water table depth (hypothesis 1  24  ), soil 

 fertility (hypothesis 2  28,29  ) and tree rooting depth  (hypothesis 3, using forest canopy height as a 

 rough proxy for rooting depth when water tables are deep, consistent with limited observations 

 of tree height-rooting depth relations  31–33,46  . 

 The effect of water-table depth on drought response across regions depended on soil 

 fertility (Fig. 4a): Highly fertile areas most strongly evinced the protective effect of shallow 

 water tables (Fig. 4a, green portion of the fertility distribution, corresponding to green lines in 

 Fig. 4c), while lower-fertility areas were either less affected by water table depth or showed the 

 opposite response pattern (Fig. 4a, blue portion of the forest height distribution, corresponding to 

 blue lines in Fig. 4c). This is consistent with hypothesis 2  28,29  that as soil nutrients become more 

 limiting, trees invest in drought resistance traits (e.g. high xylem embolism resistance), and with 
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 observations of strong association between regions of low soil fertility and high wood density 

 (Extended Data Table 2).  We also noted interactions of water table depth with soil texture 

 (  Extended Data Fig.  11), as discussed in methods §2.6.1(ii). 

 The effect of water-table depth on drought response also depended on forest height (Fig. 

 4b), with the tallest forests, expected to have deeper rooting zones, enabling green-up even in 

 regions (like the Guiana shield) with deeper water tables (Fig. 4b red portion of the forest height 

 distribution, corresponding to red lines in Fig. 4d).  Meanwhile, taller forests performed worse 

 than shorter tree forests in shallow water table areas (Fig. 4d and  Extended Data Fig  . 10d, red vs 

 blue lines), consistent with findings that when lacking a deep root advantage, tall trees may 

 suffer higher drought mortality due to greater exposure to atmospheric drought (high VPD)  47  . 

 Deep water tables may promote deep-rooted tall trees with resilience to seasonal atmospheric 

 and soil water deficit exposure, with access to more consistently available deep soil water, 

 enabling them (like shallow rooted trees over shallow water tables) to take advantage of extra 

 sunlight during moderate droughts. 

 An empirical test of the basin-wide model predictions (Fig. 4a-d) showed that the fully 

 integrated analysis accounting for the differences in the ecotope factors in different regions 

 (  Extended Data Fig  . 3), was able to consistently predict  the different kinds of drought responses 

 observed in different regions of the basin (Fig. 4e). 

 Our GAM modeling framework powerfully allows further investigation of additional 

 questions, generating a rich suite of testable hypotheses for future research into forest drought 

 response (methods §3). These include the question of whether coarse-scale patterns (like those 

 deriving from the 1-40 km pixels used here) may emerge from such mechanisms as access to 

 water tables, which vary across landscapes, from forest plateaus to adjacent valleys, at fine scales 
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 of just a few meters (  Extended Data Fig  . 12); how individual relatively tall trees may be at 

 greater drought risk  48,49  even within tall forests  whose average height is here predicted to be more 

 protective against drought; whether forests are more sensitive to droughts that occur in wet 

 versus dry seasons (  Extended Data Fig  . 13); the effects  of forest degradation on drought 

 sensitivity (  Extended Data Fig  . 14); and of the generality  of these mechanisms in other 

 ecosystem types in the Amazon basin and beyond. 

 A functional biogeography of Amazon drought 

 We used the GAM predictions (Fig. 4) of different drought responses across different 

 forest ecotopes (here defined by water table depth, soil fertility and texture, and forest height) to 

 map a biogeography of forest drought resilience (where resilient pixels, as defined in methods 

 §2.4, are those in which ecotope factors promote relative green-up) and vulnerability (pixels in 

 which ecotope factors promote browndown) across the Amazon basin (  Fig. 5a  ), including the 

 ecotope factor combinations conducive (or not) to resilience (  Fig. 5b, c  ). 

 This functional biogeography reveals the importance of ecotopes in structuring forest 

 drought response: first, simply because the GAM models which accouted for forest ecotopes (via 

 the variables HAND, SoilFertility, SoilTexture, and ForestHeight;  Extended Data Fig  . 3) along 

 with climate had significantly more predictive power (higher R  2  while selected by lower AIC) 

 than climate-only models (Extended Data Table 1). More importantly, the ecotope-defined 

 biogeography allows attribution of greening-inferred resilience in different forests to distinct 

 mechanisms. For example, during the 2015/2016 drought, forest greening was observed both in 

 the shallow water table forests of the Rio Negro basin and in deep water table forests of Amapa 

 state (“RN” and “AP” regions, respectively, highlighted in Figs. 1c, 4b and 5a). The 

 biogeography (Fig. 5b) and GAM prediction (Fig. 4b) show both regions sharing infertile soils, 
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 but they point in particular to forest height—and associated deep rooting zones enabling access 

 to deep water—as a key factor supporting resilience/greening in the deep water table forests of 

 AP (coded orange in Fig. 5b, c), whereas the RN forests (coded green in Fig. 5b,c), though short, 

 had access to shallow water tables. 

 This new analysis goes beyond previous climate-based explanations of Amazon forest 

 drought response, and importantly complements the recent map of  external  anthropogenic 

 tipping-point threats (due to combined stresses of droughts, deforestation, fire, roads, etc.)  7  with 

 a biogeography of  intrinsic  ecological resilience/vulnerability  (due to characteristics of forests in 

 their adapted environments). Interaction among the three different hypotheses—that hydrologic 

 environments, soil fertility , and tree drought resistance traits structure forest drought 

 response—shows that no single factor could explain drought response across the whole basin 

 through different droughts. Thus, shallow water table hydrologic environments do indeed protect 

 against drought  24  , but only relatively, especially  in regions where high fertility stimulates the fast 

 growth of hydraulically more vulnerable trees  28  (Fig.  5c, where the blue-labeled fertile regions 

 with shallow water tables are the least vulnerable among the first four “more vulnerable” 

 combinations on the left). The most resilient forest types (Fig. 5c) were those with low soil 

 fertility, occupying all categories of the “more resilient” end of the drought-response 

 biogeography (the right side of Fig. 5c). 

 Confidence in this new forest biogeography arises from corroboration by ground 

 observations, and by consistent results from different modeling approaches (GAM predictive 

 models, Figs. 3 & 4, suggested causal linkages to driving variables that were confirmed by SCM 

 models that more rigorously test for causation,  Extended  Data Figs.  9 & 10). Remote sensing 

 observations generally align well with ecosystem photosynthetic fluxes derived from towers on 
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 the ground (methods §1.6), and here, with tree demography during the three droughts (Fig. 3a vs 

 3d for 2005 and 2010, and  Extended Data Fig  . 16, for  2015), with remote photosynthetic 

 anomalies negatively correlated to mortality, and positively to recruitment, as expected if more 

 negative anomalies are associated with increased plant stress. Notably, our GAM-derived remote 

 sensing resilience map also independently predicted observations in forest plots of tree xylem 

 hydraulic safety margins to mortality-inducing embolism  50  ,  a widely-cited physiological drought 

 tolerance trait (Fig. 5a inset). 

 Implications of a new Biogeography 

 This work has important implications for understanding forest responses to climatic 

 variability and change. First, because shallow water table forests in Amazonia are extensive 

 (30-40% of the southern Amazon where they are found to be protective during drought) but 

 neglected by most previous studies of forest drought sensitivity (Fig. 3e histograms), southern 

 Amazon forests are likely more resilient to drought than common estimates of climate sensitivity 

 imply  16  , and large-scale plot-based estimates of a  drought-induced decline in the Amazon forest 

 carbon sink  2  may need to be adjusted to account for  these more drought resilient but neglected 

 forests. 

 However, this analysis also warns that climate change is likely simultaneously 

 undermining different strategies and capacities for drought resilience, and highlights specific 

 mechanisms and Amazon regions likely to be vulnerable to tipping-point failure:  the resilience 

 conveyed by shallow water table hydrologic environments in certain regions (or the long-term 

 benefits of a strategy of growing “trees fast in high-fertility environments to replace those easily 

 lost to drought  28  ) is likely limited under growing  climate change. The buffering effect of shallow 

 water tables appears limited to short duration droughts (< 3 months, Fig. 3c) that do not last long 
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 enough to deplete water tables. And the benefits of re-growing trees quickly that are lost to 

 once-in-a-century droughts (whether or not protected by shallow water tables) are much reduced 

 when those drought frequencies increase to become 5 or 10-year droughts (as seen recently and 

 as predicted to continue in the near future  51,52  ).  Importantly, these fertility results imply 

 (consistent with a recent ground-based study of hydraulic traits  29  ) that it is Amazonia’s most 

 productive higher-fertility forests that are actually those most vulnerable to future climate 

 change. 

 Finally, we note that the geographic distribution of these most-vulnerable forests (Fig. 5a 

 reddish regions) has important warnings for sustaining the integrity of critical ecosystems both in 

 the basin and beyond. First, these vulnerable forests are at high risk of deforestation 

 (substantially overlapping with the “arc of deforestation,”  Extended Data Fig  . 18). More 

 importantly, because they are predominantly situated under prevailing winds that bring moist 

 Amazonian air to the south (  Extended Data Fig  . 18)  they are critical to maintaining the 

 evapotranspiration that feeds (and likely amplifies  53  )  the “atmospheric rivers” that bring 

 forest-recycled precipitable water from the Amazon regions to sustain South America’s 

 breadbasket in the agricultural regions of Brazil  54  . 

 This unified understanding of the functional biogeography of Amazon drought response 

 provides a basis both for establishing basin-wide priorities for conservation planning and for 

 achieving improved understanding and predictions of tropical forest vulnerability to current 

 droughts, threatened tipping points, and future climate change. 
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 FIGURE CAPTIONS 

 Fig. 1. Amazon forest remotely-sensed responses to the droughts of (a) 2005, (b) 2010, and 

 (c) 2015/2016, expressed as  standardized anomalies  of Enhanced Vegetation Index (EVI, a 

 proxy of photosynthetic capacity) in drought-affected pixels (defined in  Extended Data Fig  . 1). 

 (note:  panel A highlights an ellipse of green-up and browndown patterns that correspond to 

 shallow and deep water tables in Fig. 2a; panel C highlights two areas exhibiting green-up—RN, 

 in Rio Negro catchment, and AP in Amapa state—for comparison to Figs. 4-5).  Insets: 

 Frequency distributions of MAIAC EVI anomalies in drought regions for (a) 2005 (  = 

 +0.14, p<0.001, df =916, (b) 2010 (  = -1.06, p<0.001,  df=1057) and (c) 2015 (  = 

 -0.57, p<0.001, df=2218) droughts. Statistics are from student's t-test, where, following the 

 variogram analysis (Methods §2.5) the degrees of freedom, df=n-1, were adjusted for 

 autocorrelation based on n = number of statistically independent 0.4° x 0.4° drought-affected 

 pixels in each drought region. 

 Fig. 2.  Amazon forest response to 2005 drought is  structured by water-table depth:  (  a  ) 

 Water-table depth map (indexed by Height Above Nearest Drainage, HAND, in meters, Andes 

 excluded  25  ) with ellipse highlighting shallow and  deep water tables that  correspond to green-up 

 and browndown patterns in Fig. 1a. (  b  ) Observed EVI  anomalies (solid symbols±SE, from Fig. 

 1a, left axis) bin-averaged by water-table depth (HAND), and by moderate, medium, and severe 

 drought pixels (those with MCWD 1-1.5 SD, 1.5-2 SD, and >2 SD below mean, respectively); 

 area histogram of drought-affected HAND (right axis). Average EVI anomaly across all 

 severities (horizontal lines) for shallow (0-8 m, green band) and deep water-table forests (>22 m, 

 orange band). (  c  ) Observed EVI anomalies (solid symbols±SE,  from Fig. 1a) bin-averaged by 

 PAR anomalies and by different water-table depths (HAND values) (upper panel); histograms of 

 PAR anomaly (lower panels) according to drought severity. 
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 Fig. 3. Southern Amazon forest responses to multiple droughts:  (a-c) GAM (Extended 

 Data Table 1a) predictions  : (  a  ) Climate-adjusted EVI  responses vs. water-table depths (indexed 

 by HAND) support hypothesis 1 (with consistent negative slopes) for observations ( points ±95% 

 CI and solid regression line) and GAM predictions for the 2005 (green, slope=-0.019±0.001 SD 

 m  -1  ), 2010 (purple, slope=-0.020±0.002 SD m  -1  ), and  2015 (blue, slope=-0.028±0.002 SD m  -1  ) 

 droughts (shading and dashed regression lines), paired with HAND distributions  in each drought 

 region(bottom graphs, right axis); (  b  ) PAR sensitivity,  by HAND class, of (climate-adjusted) EVI 

 drought responses, paired with drought-specific area distributions of PAR anomalies (right axis), 

 show greater PAR sensitivity for shallower water tables. (  c  ) Drought-length sensitivity, by 

 HAND class, of (climate-adjusted) EVI drought response, paired with drought-specific area 

 distributions of duration (in months) (bottom graphs, right axis) show that shallow-water-table 

 protection is diminished for long droughts. ‘Climate-adjusted’ responses use southern Amazon 

 drought-specific average climate to predict responses or adjust observations. Each drought’s 

 distribution occupies equal area across the three panels. (  d  ) Above-ground biomass (AGB) 

 mortality drought responses (mortality-associated carbon flux, in percent change relative to 

 long-term MgC ha  -1  y  -1  in RAINFOR plots  2  ) vs. water-table  depth (HAND) ( points ±95% CI, 

 regression line for depths less than 30 meters) support hypothesis 1 (with consistent positive 

 slopes) for the 2005 (green, slope=1.4 % m  -1  , p=0.051)  and 2010 (purple, slope=1.8 % m  -1  , 

 p=0.015) droughts, paired with (  e  ) cumulative distributions  of HAND area across basin (gray 

 bars, left axis), and distribution of plot-based sampling efforts (fractional effort, RAINFOR plot 

 area × years monitored, per HAND bin, divided by fractional basin area per HAND bin, blue 

 bars, right axis). This shows that plot sampling efforts underrepresent prevalent shallow 

 water-table forests that greened up (green band, ~55% of the basin, but 16% of the effort) and 

 over-represent deep water-table forests that browned down (orange band, ~20% of the basin but 

 55% of the effort). 
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 Fig. 4.  Basin-wide Amazon forest responses to the  2015 drought, structured by ecotopes 

 and predicted by whole-basin GAM analysis (Extended Data Table 1d):  GAM partial 

 predictions of EVI anomalies (color scale) for (  a  )  soil fertility  43  (vertical axis) and HAND  25 

 (horizontal axis) terms only, and for (  b  ) forest height  45  and HAND  25  terms only. Ecotope 

 distributions in southern, everwet, and Guiana shield forests are in A-B margins, and associated 

 99% confidence ellipses are in the graphs. Mean values of two areas exhibiting green-up in Fig. 

 1c (RN, in Rio Negro catchment, and AP in Amapa state) illustrate differing mechanisms of 

 green-up (especially evident in B, where tall trees, despite deep water tables, promote green-up 

 in AP, while shallow water tables promote green-up for RN). (  c  )(  d  ) adjusted EVI anomaly versus 

 HAND with increasing (c) fertility (blue to green, corresponding to colored areas in fertility 

 distributions in a) or (d) forest height (blue to red, corresponding to colored areas in forest height 

 distributions in b). (  e  ) Region-specific EVI anomaly  sensitivities to HAND, comparing adjusted 

 observations (symbols) to adjusted GAM predictions (lines and 95% confidence shaded area). 

 Note: ‘adjusted’ EVI anomalies indicate that climate and ecotope factors not displayed in the 

 graph are held constant at basin-wide (a-d) or regional average values (e). 

 Fig. 5. A biogeography of Amazon forest drought resilience and vulnerability:  (  a  ) Regions 

 relatively more resilient (likely to exhibit EVI green-up) (green) or more vulnerable (red) to 

 drought, based on standardized GAM drought response predictions of EVI anomaly from 

 ecotope factors only (from Fig. 4, Extended Data Table 1d) (removing effects of climate 

 variability by setting climate equal to its basin-wide average) (see methods §2.8). Crosses are 

 validation sites where remote sensing-derived resilience predicts plot-based physiological 

 drought tolerance (tree hydraulic safety margins, HSM  50  ) as seen in the inset (R  2  =0.65; p=0.008); 

 (  b  ) Overlapping strategies and ecotopes structuring  the distribution of relative drought resilience 

 mapped in (a), as promoted by presence of resilience factors:  shallow water tables 

 (HAND<10m, blue), low-fertility soils (cation concentrations<10  -0.35  cmol  +  /kg, yellow), or tall 

 deep-rooted trees (heights>32.5 m, red), with overlap indicated by the primary color mixing rules 

 in the legend, and white indicating no resilience factor (which notably corresponds well to the 

 most vulnerable red regions in a). (  c  ) Distribution  of resilience factor groups, and the proportion 

 of relatively vulnerable, resilient, or neutral forest associated with each (left axis) and mean 

 relative resilience (blue horizontal lines, right axis), ordered from most vulnerable to most 

 resilient. 

 16 

 358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 

 367 

 368 

 369 

 370 

 371 

 372 

 373 

 374 

 375 

 376 

 377 

 378 

 379 

 380 

 381 

 382 

 383 

 384 

 385 

 386 

 387 

 388 

https://paperpile.com/c/gDKLkA/x1zXd
https://paperpile.com/c/gDKLkA/465Cp
https://paperpile.com/c/gDKLkA/pbgPo
https://paperpile.com/c/gDKLkA/465Cp


 References 

 1.  Pan, Y.  et al.  A Large and Persistent Carbon Sink  in the World’s Forests.  Science  vol. 333 988–993 

 Preprint at https://doi.org/  10.1126/science.1201609  (2011). 

 2.  Brienen, R. J. W.  et al.  Long-term decline of the  Amazon carbon sink.  Nature  519  , 344–348 (2015). 

 3.  Wigneron, J.-P.  et al.  Tropical forests did not  recover from the strong 2015–2016 El Niño event. 

 Science Advances  6  , eaay4603 (2020). 

 4.  Gatti, L. V.  et al.  Amazonia as a carbon source  linked to deforestation and climate change.  Nature 

 595  , 388–393 (2021). 

 5.  Boulton, C. A., Lenton, T. M. & Boers, N. Pronounced  loss of Amazon rainforest resilience since the 

 early 2000s.  Nat. Clim. Chang.  12  , 271–278 (2022). 

 6.  Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer,  M. Global resilience of tropical forest and 

 savanna to critical transitions.  Science  334  , 232–235  (2011). 

 7.  Flores, B. M.  et al.  Critical transitions in the  Amazon forest system.  Nature  626  , 555–564 (2024). 

 8.  Oyama, M. D. & Nobre, C. A. A new climate‐vegetation  equilibrium state for Tropical South 

 America.  Geophys. Res. Lett.  30  , (2003). 

 9.  Saleska, S. R., Didan, K., Huete, A. R. & da Rocha,  H. R. Amazon forests green-up during 2005 

 drought.  Science  318  , 612 (2007). 

 10.  Brando, P. M.  et al.  Seasonal and interannual  variability of climate and vegetation indices across the 

 Amazon.  Proc. Natl. Acad. Sci. U. S. A.  107  , 14685–14690  (2010). 

 11.  Xu, L.  et al.  Widespread decline in greenness  of Amazonian vegetation due to the 2010 drought. 

 Geophysical Research Letters  vol. 38 Preprint at https://doi.org/  10.1029/2011gl046824  (2011). 

 12.  Yang, J.  et al.  Amazon drought and forest response:  Largely reduced forest photosynthesis but 

 slightly increased canopy greenness during the extreme drought of 2015/2016.  Glob. Chang. Biol. 

 24  , 1919–1934 (2018). 

 13.  Anderson, L. O.  et al.  Vulnerability of Amazonian  forests to repeated droughts.  Philos. Trans. R. 

 17 

 389 

 390 

 391 

 392 

 393 

 394 

 395 

 396 

 397 

 398 

 399 

 400 

 401 

 402 

 403 

 404 

 405 

 406 

 407 

 408 

 409 

 410 

 411 

 412 

 413 

http://paperpile.com/b/gDKLkA/DpETc
http://paperpile.com/b/gDKLkA/DpETc
http://dx.doi.org/10.1126/science.1201609
http://paperpile.com/b/gDKLkA/DpETc
http://paperpile.com/b/gDKLkA/ANsHP
http://paperpile.com/b/gDKLkA/iy17K
http://paperpile.com/b/gDKLkA/iy17K
http://paperpile.com/b/gDKLkA/yG3t8
http://paperpile.com/b/gDKLkA/yG3t8
http://paperpile.com/b/gDKLkA/FOu1E
http://paperpile.com/b/gDKLkA/FOu1E
http://paperpile.com/b/gDKLkA/luvcw
http://paperpile.com/b/gDKLkA/luvcw
http://paperpile.com/b/gDKLkA/WeoKb
http://paperpile.com/b/gDKLkA/5Fkp
http://paperpile.com/b/gDKLkA/5Fkp
http://paperpile.com/b/gDKLkA/p6yui
http://paperpile.com/b/gDKLkA/p6yui
http://paperpile.com/b/gDKLkA/5gmaM
http://paperpile.com/b/gDKLkA/5gmaM
http://paperpile.com/b/gDKLkA/iVEDO
http://paperpile.com/b/gDKLkA/iVEDO
http://dx.doi.org/10.1029/2011gl046824
http://paperpile.com/b/gDKLkA/iVEDO
http://paperpile.com/b/gDKLkA/cxkiq
http://paperpile.com/b/gDKLkA/cxkiq
http://paperpile.com/b/gDKLkA/cxkiq
http://paperpile.com/b/gDKLkA/32L0g


 Soc. Lond. B Biol. Sci.  373  , (2018). 

 14.  Anderegg, W. R. L., Trugman, A. T., Badgley, G.,  Konings, A. G. & Shaw, J. Divergent forest 

 sensitivity to repeated extreme droughts.  Nature Climate  Change  vol. 10 1091–1095 Preprint at 

 https://doi.org/  10.1038/s41558-020-00919-1  (2020). 

 15.  Feldpausch, T. R.  et al.  Amazon forest response  to repeated droughts.  Global Biogeochemical Cycles 

 vol. 30 964–982 Preprint at https://doi.org/  10.1002/2015gb005133  (2016). 

 16.  Phillips, O. L.  et al.  Drought sensitivity of  the Amazon rainforest.  Science  323  , 1344–1347 (2009). 

 17.  Esquivel-Muelbert, A.  et al.  Tree mode of death  and mortality risk factors across Amazon forests. 

 Nat. Commun.  11  , 5515 (2020). 

 18.  Tansley, A. G. The Use and Abuse of Vegetational  Concepts and Terms.  Ecology  16  , 284–307 

 (1935). 

 19.  Whittaker, R. H., Levin, S. A. & Root, R. B. Niche,  Habitat, and Ecotope.  Am. Nat.  107  , 321–338 

 (1973). 

 20.  Jiménez-Muñoz, J. C.  et al.  Record-breaking warming  and extreme drought in the Amazon rainforest 

 during the course of El Niño 2015–2016.  Sci. Rep.  6  , 33130 (2016). 

 21.  Marengo, J. A. & Espinoza, J. C. Extreme seasonal  droughts and floods in Amazonia: causes, trends 

 and impacts.  Int. J. Climatol.  36  , 1033–1050 (2016). 

 22.  Longo, M.  et al.  Ecosystem heterogeneity and diversity  mitigate Amazon forest resilience to 

 frequent extreme droughts.  New Phytol.  219  , 914–931  (2018). 

 23.  Violle, C., Reich, P. B., Pacala, S. W., Enquist,  B. J. & Kattge, J. The emergence and promise of 

 functional biogeography.  Proc. Natl. Acad. Sci. U.  S. A.  111  , 13690–13696 (2014). 

 24.  Costa, F. R. C., Schietti, J., Stark, S. C. &  Smith, M. N. The other side of tropical forest drought: do 

 shallow water table regions of Amazonia act as large-scale hydrological refugia from drought?  New 

 Phytol.  (2022) doi:  10.1111/nph.17914  . 

 25.  Nobre, A. D.  et al.  Height Above the Nearest Drainage  – a hydrologically relevant new terrain 

 model.  Journal of Hydrology  vol. 404 13–29 Preprint  at 

 18 

 414 

 415 

 416 

 417 

 418 

 419 

 420 

 421 

 422 

 423 

 424 

 425 

 426 

 427 

 428 

 429 

 430 

 431 

 432 

 433 

 434 

 435 

 436 

 437 

 438 

 439 

http://paperpile.com/b/gDKLkA/32L0g
http://paperpile.com/b/gDKLkA/X3RnW
http://paperpile.com/b/gDKLkA/X3RnW
http://paperpile.com/b/gDKLkA/X3RnW
http://dx.doi.org/10.1038/s41558-020-00919-1
http://paperpile.com/b/gDKLkA/X3RnW
http://paperpile.com/b/gDKLkA/z2d2x
http://paperpile.com/b/gDKLkA/z2d2x
http://dx.doi.org/10.1002/2015gb005133
http://paperpile.com/b/gDKLkA/z2d2x
http://paperpile.com/b/gDKLkA/i3iSm
http://paperpile.com/b/gDKLkA/fBlmh
http://paperpile.com/b/gDKLkA/fBlmh
http://paperpile.com/b/gDKLkA/TeqQr
http://paperpile.com/b/gDKLkA/TeqQr
http://paperpile.com/b/gDKLkA/0BEgg
http://paperpile.com/b/gDKLkA/0BEgg
http://paperpile.com/b/gDKLkA/A3Jno
http://paperpile.com/b/gDKLkA/A3Jno
http://paperpile.com/b/gDKLkA/nw4KX
http://paperpile.com/b/gDKLkA/nw4KX
http://paperpile.com/b/gDKLkA/5XhwX
http://paperpile.com/b/gDKLkA/5XhwX
http://paperpile.com/b/gDKLkA/Y8kQ8
http://paperpile.com/b/gDKLkA/Y8kQ8
http://paperpile.com/b/gDKLkA/32xKg
http://paperpile.com/b/gDKLkA/32xKg
http://paperpile.com/b/gDKLkA/32xKg
http://dx.doi.org/10.1111/nph.17914
http://paperpile.com/b/gDKLkA/32xKg
http://paperpile.com/b/gDKLkA/465Cp
http://paperpile.com/b/gDKLkA/465Cp


 https://doi.org/  10.1016/j.jhydrol.2011.03.051  (2011). 

 26.  Sousa, T. R.  et al.  Palms and trees resist extreme  drought in Amazon forests with shallow water 

 tables.  Journal of Ecology  vol. 108 2070–2082 Preprint  at https://doi.org/  10.1111/1365-2745.13377 

 (2020). 

 27.  Esteban, E. J. L., V. Castilho, C., Melgaço, K.  L. & Costa, F. R. C. The other side of droughts: Wet 

 extremes and topography as buffers of drought negative effects in an Amazonian forest.  New Phytol. 

 229  , 1995–2006 (2021). 

 28.  Oliveira, R. S.  et al.  Linking plant hydraulics  and the fast--slow continuum to understand resilience 

 to drought in tropical ecosystems.  New Phytol.  230  ,  904–923 (2021). 

 29.  Garcia, M. N., Domingues, T. F., Oliveira, R.  S. & Costa, F. R. C. The biogeography of embolism 

 resistance across resource gradients in the Amazon.  Glob. Ecol. Biogeogr.  (2023) 

 doi:  10.1111/geb.13765  . 

 30.  Chitra-Tarak, R.  et al.  Hydraulically-vulnerable  trees survive on deep-water access during droughts 

 in a tropical forest.  New Phytol.  231  , 1798–1813 (2021). 

 31.  Brum, M.  et al.  Hydrological niche segregation  defines forest structure and drought tolerance 

 strategies in a seasonal Amazon forest.  J. Ecol.  107  ,  318–333 (2019). 

 32.  Tumber-Dávila, S. J., Schenk, H. J., Du, E. &  Jackson, R. B. Plant sizes and shapes above and 

 belowground and their interactions with climate.  New  Phytol.  235  , 1032–1056 (2022). 

 33.  Giardina, F.  et al.  Tall Amazonian forests are  less sensitive to precipitation variability.  Nature 

 Geoscience  vol. 11 405–409 Preprint at https://doi.org/  10.1038/s41561-018-0133-5  (2018). 

 34.  ter Steege, H.  et al.  Continental-scale patterns  of canopy tree composition and function across 

 Amazonia.  Nature  443  , 444–447 (2006). 

 35.  McDowell, N.  et al.  Mechanisms of plant survival  and mortality during drought: why do some plants 

 survive while others succumb to drought?  New Phytol.  178  , 719–739 (2008). 

 36.  Anderegg, W. R. L.  et al.  Meta-analysis reveals  that hydraulic traits explain cross-species patterns of 

 drought-induced tree mortality across the globe.  Proc.  Natl. Acad. Sci. U. S. A.  113  , 5024–5029 

 19 

 440 

 441 

 442 

 443 

 444 

 445 

 446 

 447 

 448 

 449 

 450 

 451 

 452 

 453 

 454 

 455 

 456 

 457 

 458 

 459 

 460 

 461 

 462 

 463 

 464 

 465 

http://paperpile.com/b/gDKLkA/465Cp
http://dx.doi.org/10.1016/j.jhydrol.2011.03.051
http://paperpile.com/b/gDKLkA/465Cp
http://paperpile.com/b/gDKLkA/7LA7D
http://paperpile.com/b/gDKLkA/7LA7D
http://dx.doi.org/10.1111/1365-2745.13377
http://paperpile.com/b/gDKLkA/7LA7D
http://paperpile.com/b/gDKLkA/7LA7D
http://paperpile.com/b/gDKLkA/2ZZig
http://paperpile.com/b/gDKLkA/2ZZig
http://paperpile.com/b/gDKLkA/2ZZig
http://paperpile.com/b/gDKLkA/zXgTd
http://paperpile.com/b/gDKLkA/zXgTd
http://paperpile.com/b/gDKLkA/7oh5P
http://paperpile.com/b/gDKLkA/7oh5P
http://paperpile.com/b/gDKLkA/7oh5P
http://dx.doi.org/10.1111/geb.13765
http://paperpile.com/b/gDKLkA/7oh5P
http://paperpile.com/b/gDKLkA/EwUsf
http://paperpile.com/b/gDKLkA/EwUsf
http://paperpile.com/b/gDKLkA/Dy8Mm
http://paperpile.com/b/gDKLkA/Dy8Mm
http://paperpile.com/b/gDKLkA/qawQE
http://paperpile.com/b/gDKLkA/qawQE
http://paperpile.com/b/gDKLkA/ycA42
http://paperpile.com/b/gDKLkA/ycA42
http://dx.doi.org/10.1038/s41561-018-0133-5
http://paperpile.com/b/gDKLkA/ycA42
http://paperpile.com/b/gDKLkA/bb7bO
http://paperpile.com/b/gDKLkA/bb7bO
http://paperpile.com/b/gDKLkA/t3f2K
http://paperpile.com/b/gDKLkA/t3f2K
http://paperpile.com/b/gDKLkA/ZRaSR
http://paperpile.com/b/gDKLkA/ZRaSR


 (2016). 

 37.  Lyapustin, A. I.  et al.  Multi-angle implementation  of atmospheric correction for MODIS (MAIAC): 

 3. Atmospheric correction.  Remote Sensing of Environment  vol. 127 385–393 Preprint at 

 https://doi.org/  10.1016/j.rse.2012.09.002  (2012). 

 38.  Li, X. & Xiao, J. A Global, 0.05-Degree Product  of Solar-Induced Chlorophyll Fluorescence Derived 

 from OCO-2, MODIS, and Reanalysis Data.  Remote Sensing  vol. 11 517 Preprint at 

 https://doi.org/  10.3390/rs11050517  (2019). 

 39.  Aragão, L. E. O. C.  et al.  Spatial patterns and  fire response of recent Amazonian droughts. 

 Geophysical Research Letters  vol. 34 Preprint at https://doi.org/  10.1029/2006gl028946  (2007). 

 40.  Hastie, T. J. & Tibshirani, R. J.  Generalized  Additive Models  . (CRC Press, 1990). 

 41.  Pearl, J. Causal inference in statistics: An overview.  ssu  3  , 96–146 (2009). 

 42.  Aragão, L. E. O. C.  et al.  21st Century drought-related  fires counteract the decline of Amazon 

 deforestation carbon emissions.  Nat. Commun.  9  , 536  (2018). 

 43.  Zuquim, G.  et al.  Making the most of scarce data:  Mapping soil gradients in data‐poor areas using 

 species occurrence records.  Methods Ecol. Evol.  10  ,  788–801 (2019). 

 44.  Hengl, T.  et al.  SoilGrids250m: Global gridded  soil information based on machine learning.  PLoS 

 One  12  , e0169748 (2017). 

 45.  Simard, M., Pinto, N., Fisher, J. B. & Baccini,  A. Mapping forest canopy height globally with 

 spaceborne lidar.  Journal of Geophysical Research  vol. 116 Preprint at 

 https://doi.org/  10.1029/2011jg001708  (2011). 

 46.  Christina, M.  et al.  Almost symmetrical vertical  growth rates above and below ground in one of the 

 world’s most productive forests.  Ecosphere  2  , 1–10  (2011). 

 47.  da Costa, A. C. L.  et al.  Effect of 7 yr of experimental  drought on vegetation dynamics and biomass 

 storage of an eastern Amazonian rainforest.  New Phytol.  187  , 579–591 (2010). 

 48.  Nepstad, D. C., Tohver, I. M., Ray, D., Moutinho,  P. & Cardinot, G. Mortality of large trees and 

 lianas following experimental drought in an Amazon forest.  Ecology  88  , 2259–2269 (2007). 

 20 

 466 

 467 

 468 

 469 

 470 

 471 

 472 

 473 

 474 

 475 

 476 

 477 

 478 

 479 

 480 

 481 

 482 

 483 

 484 

 485 

 486 

 487 

 488 

 489 

 490 

 491 

http://paperpile.com/b/gDKLkA/ZRaSR
http://paperpile.com/b/gDKLkA/Tj9G
http://paperpile.com/b/gDKLkA/Tj9G
http://paperpile.com/b/gDKLkA/Tj9G
http://dx.doi.org/10.1016/j.rse.2012.09.002
http://paperpile.com/b/gDKLkA/Tj9G
http://paperpile.com/b/gDKLkA/WUcO
http://paperpile.com/b/gDKLkA/WUcO
http://paperpile.com/b/gDKLkA/WUcO
http://dx.doi.org/10.3390/rs11050517
http://paperpile.com/b/gDKLkA/WUcO
http://paperpile.com/b/gDKLkA/HHtIX
http://paperpile.com/b/gDKLkA/HHtIX
http://dx.doi.org/10.1029/2006gl028946
http://paperpile.com/b/gDKLkA/HHtIX
http://paperpile.com/b/gDKLkA/LHorB
http://paperpile.com/b/gDKLkA/LEqb
http://paperpile.com/b/gDKLkA/qBmgd
http://paperpile.com/b/gDKLkA/qBmgd
http://paperpile.com/b/gDKLkA/x1zXd
http://paperpile.com/b/gDKLkA/x1zXd
http://paperpile.com/b/gDKLkA/8CpZL
http://paperpile.com/b/gDKLkA/8CpZL
http://paperpile.com/b/gDKLkA/pbgPo
http://paperpile.com/b/gDKLkA/pbgPo
http://paperpile.com/b/gDKLkA/pbgPo
http://dx.doi.org/10.1029/2011jg001708
http://paperpile.com/b/gDKLkA/pbgPo
http://paperpile.com/b/gDKLkA/uVIEh
http://paperpile.com/b/gDKLkA/uVIEh
http://paperpile.com/b/gDKLkA/74BPM
http://paperpile.com/b/gDKLkA/74BPM
http://paperpile.com/b/gDKLkA/dqt9C
http://paperpile.com/b/gDKLkA/dqt9C


 49.  Phillips, O. L.  et al.  Drought–mortality relationships for tropical forests.  New Phytol.  187  , 631–646 

 (2010). 

 50.  Tavares, J. V.  et al.  Basin-wide variation in  tree hydraulic safety margins predicts the carbon balance 

 of Amazon forests.  Nature  617  , 111–117 (2023). 

 51.  Duffy, P. B., Brando, P., Asner, G. P. & Field,  C. B. Projections of future meteorological drought and 

 wet periods in the Amazon.  Proc. Natl. Acad. Sci.  U. S. A.  112  , 13172–13177 (2015). 

 52.  Wunderling, N.  et al.  Recurrent droughts increase  risk of cascading tipping events by outpacing 

 adaptive capacities in the Amazon rainforest.  Proc.  Natl. Acad. Sci. U. S. A.  119  , e2120777119 

 (2022). 

 53.  Makarieva, A. M.  et al.  The role of ecosystem  transpiration in creating alternate moisture regimes by 

 influencing atmospheric moisture convergence.  Glob.  Chang. Biol.  29  , 2536–2556 (2023). 

 54.  Costa, M. H.  et al.  Biogeophysical Cycles: Water  Recycling, Climate Regulation. in  Amazon 

 Assessment Report 2021  (eds. Nobre, C. et al.) Chapter  7 (United Nations Sustainable Development 

 Solutions Network, New York, USA., 2021). 

 21 

 492 

 493 

 494 

 495 

 496 

 497 

 498 

 499 

 500 

 501 

 502 

 503 

 504 

 505 

http://paperpile.com/b/gDKLkA/ld6M0
http://paperpile.com/b/gDKLkA/ld6M0
http://paperpile.com/b/gDKLkA/xHuM4
http://paperpile.com/b/gDKLkA/xHuM4
http://paperpile.com/b/gDKLkA/snI53
http://paperpile.com/b/gDKLkA/snI53
http://paperpile.com/b/gDKLkA/B55Fz
http://paperpile.com/b/gDKLkA/B55Fz
http://paperpile.com/b/gDKLkA/B55Fz
http://paperpile.com/b/gDKLkA/TqlQZ
http://paperpile.com/b/gDKLkA/TqlQZ
http://paperpile.com/b/gDKLkA/Cut6I
http://paperpile.com/b/gDKLkA/Cut6I
http://paperpile.com/b/gDKLkA/Cut6I


 Methods 
 In this study, we applied a hypothesis-testing framework  55,56  ,  using remote sensing methods 

 to test a sequence of three key ecological hypotheses that predict how different forest types 
 respond to drought. To conduct these tests, we assembled key datasets (  Section 1  ), including two 
 classic satellite products of vegetation photosynthetic function (the most recent version of the 
 Enhanced Vegetation Index, EVI, and Solar Induced Fluorescence, SIF) (section 1.1, including 
 their validation), gridded products of climate (section 1.2), water table depth, soil fertility and 
 texture, and vegetation properties defining ecotopes (section 1.3). We focused on intact 
 evergreen forests, mapping data in areas corresponding to evergreen forest cover in 
 non-floodplain, non-deforested forest regions (section 1.4). We assembled field datasets of forest 
 demography (from RAINFOR  2  and from Sousa et al.  26  )  and of physiological drought tolerance 
 (Tavares et. al  50  ) (section 1.5) to test remote sensing  skill at capturing ground-measured metrics 
 for forest drought response (section 1.6). 

 To conduct the statistical analysis (  Section 2  ), we  first interpolated data products onto grids 
 of appropriate spatial resolution (section 2.1), and conducted a supervised classification analysis 
 of Amazon forests into three distinct regions defined by ecotope (section 2.2). We defined 
 climate anomalies and drought characteristics and duration on a pixel-by-pixel basis (section 
 2.3), defined forest drought resilience in terms of anomalies in vegetation function (section 2.4), 
 conducted a variogram analysis to remove effects of spatial autocorrelation (section 2.5), and 
 then evaluated the scale dependence, or sensitivity of key results to the pixel size/spatial 
 resolution (section 3). We derived statistical models of drought response (section 2.6) using two 
 independent approaches:  predictive regression modeling (General Additive Modeling, GAM, a 
 non-linear multiple regression technique where the most predictive models are selected by an 
 information criterion) (section 2.6.1), and Structural Causal Modeling (SCM, using Directed 
 Acyclic Graphs, DAG, section 2.6.2). We tested GAM predictions by comparison to adjusted 
 observations (section 2.7) and then used the basin-wide GAM predictive model (from section 
 2.6.1) to derive a functional biogeography of drought response (section 2.8). 

 Finally (  Section 3  ), we addressed confidence in our  interpretations by exploring potential 
 alternative mechanisms and caveats, and by using the predictive GAM framework to conduct 
 tests of alternative hypotheses that could either support or reject those presented in the main text. 
 These provided evidence in support of our interpretation, but also pointed to future research 
 needs. 
 1. Datasets 
 1.1.  Remote sensing indices of photosynthesis 

 We applied two widely used, ground-validated remote sensing indices of photosynthesis 
 to provide a sensitivity analysis that brackets the plausible range of forest canopy response to 
 drought:  the Enhanced Vegetation Index (EVI), constructed from observations of surface 
 reflectance by the MODerate resolution Imaging Spectroradiometer (MODIS) onboard the 
 Terra/Aqua satellites; and the global OCO-2 Solar-induced Fluorescence (GOSIF) product 
 derived from observations by the Orbiting Carbon Observatory 2 satellite. EVI, derived from the 
 spectra of light reflected from surface vegetation, is designed as an index of the  photosynthetic 
 capacity  57  . GOSIF is designed to represent the active  light emission from fluorescing chlorophyll 
 molecules during photosynthesis, which is often well-correlated with canopy-scale instantaneous 
 photosynthetic activity  57  .  This distinction (between  reflected light used to construct EVI as a 
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 proxy for capacity, versus actively emitted light used to construct GOSIF as a proxy for activity) 
 means that these indices may be expected to display divergent responses. 

 We chose these indices because they aim to capture different end-members of a spectrum 
 of canopy responses:  from transient physiological changes in photosynthesizing/fluorescing 
 leaves (which might be due, for example, to stomatal regulation in response to changing 
 atmospheric VPD) which affect photosynthetic activity for a given capacity  58  , versus more 
 structural responses associated with leaf turnover such as leaf flushing or shedding which also 
 change canopy photosynthetic capacity  59  . We primarily  focus here on EVI responses, which have 
 been shown to remotely capture seasonal canopy greenup dynamics that are consistent with 
 underlying mechanisms of leaf development and demography  60  .  However, GOSIF corroboration 
 of EVI drought responses at broadscales would suggest that ecophysiological and structural 
 canopy responses to drought are aligned in the Amazon, increasing confidence in the robustness 
 of remotely observed drought responses. 

 MAIAC EVI  :  The Multi-Angle Implementation of Atmospheric  Correction (MAIAC) 
 algorithm rigorously accounts for sun-sensor geometry, as represented in a bidirectional 
 reflectance distribution function (BRDF), estimating reflectance at a nadir view and 45° solar 
 zenith angle, with strict atmosphere, aerosol, and cloud corrections  61  . We used the 8-day 
 MCD19A3 (MAIAC) 1-km product from MODIS collection six, a level 3 product composited 
 from cloud-free and low aerosol conditions. We applied the coefficients (weights) of the 
 RossThick/Li-Sparse (RTLS) Bidirectional Reflectance Distribution Function (BRDF) model 
 (available at  https://e4ftl01.cr.usgs.gov/MOTA/MCD19A3.006/  ).  We calculated the 8-day EVI 
 from the MAIAC surface reflectances of red, blue, and near-infrared bands as in Huete et al.  57 

 from 2001-2019. The 8-day EVI is then aggregated to a monthly time step. 
 GOSIF  : Solar induced fluorescence (SIF), emitted by  chlorophyll molecules in green plants 

 that have been excited by absorption of sunlight, provides a direct index of the current 
 physiological state of a photosynthesizing canopy  62  .  The OCO-2 satellite observes SIF at coarse 
 resolutions  63  , and these are used to create the modeled  GOSIF data product  64  available at 
 http://data.globalecology.unh.edu/data/GOSIF_v2  ),  which simulates higher resolution SIF 
 dynamics over longer time periods by interpolating among discrete OCO-2 SIF soundings using 
 the MODIS surface reflectance product MCD43C4 (BRDF-corrected to nadir view and to the 
 solar zenith angle at local noon), and meteorological reanalysis data  64  . We used the monthly 
 composite GOSIF product with high spatial resolution of 0.05° over the period from 2001 to 
 2019. Among SIF-related products, GOSIF has been found to be the best predictor of GPP across 
 land cover types  65  . 
 1.2. Climate variables 

 To explore climate effects on forest drought responses, we used  monthly precipitation, 
 Maximum Cumulative Water Deficit (MCWD), surface downwelling shortwave radiation and 
 Vapor Pressure Deficit (VPD) resampled at 0.4°. Precipitation and MCWD are from the Global 
 Precipitation Mission (GPM) and Tropical Rainfall Measuring Mission (TRMM) 3B43-v7 for 
 2000-2020 at 0.25° resolution (~25 km x 25 km) 
 (  https://disc2.gesdisc.eosdis.nasa.gov/data/TRMM_L3/TRMM_3B43.7/  )  66  . 

 MCWD measures local drought intensity, defined as the maximum deficit reached in the 
 last month of a string of dry months for each grid cell within the year  39  , treating forest water 
 deficit as analogous to a bucket whose deficit is zero when the bucket is full. To avoid splitting a 
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 string of dry months between two years, we used a 12-month ‘hydrological year’ running from 
 May to the following April (e.g., MCWD for 2004 was calculated using CWD data from May 
 2004 to April 2005). We also used monthly surface downwelling shortwave radiation from 
 Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2 
 Reanalysis) for 2000 to 2019 as a proxy for PAR at spatial resolution of 0.5° x 0.625° 
 (  https://goldsmr4.gesdisc.eosdis.nasa.gov/data/MERRA2_MONTHLY/M2TMNXRAD.5.12.4/  )  67 

 . Vapor Pressure Deficit (VPD) was calculated based on surface air temperature and relative 
 humidity (L3 Standard Monthly Product, AIRS3STM) from version 6 of the Atmospheric 
 Infrared Sounder (AIRS) at the spatial resolution of 1 degree for 2003-2017 (~100 km, 
 https://airs.jpl.nasa.gov/data/get-data/standard-data/  )  68–71  . 
 1.3. Ecotope variables 

 We follow the ecosystem ecology approach  18,19  of characterizing  different ecosystem types 
 (in this case, forest ecosystems) by their “ecotopes”, that is, by the combination of biotic 
 characteristics and abiotic environments that define them, here including their hydrological 
 environment (water table depth), soil types (fertility and texture), vegetation characteristics, and 
 other factors  72  . 

 We used the Height Above the Nearest Drainage (HAND) normalized terrain model  25,73  as a 
 proxy of water table depth and for plant access to groundwater, rederived at 100m resolution 
 from digital elevation model-Shuttle Radar Topography Mission (SRTM) data for this study  26,74  . 
 The HAND normalization is relative to the local drainage height, using the flow paths to connect 
 all cells (pixels) with the cells of the nearest drainage. The HAND model has been validated over 
 an area of 18,000 km  2  in the lower Rio Negro catchment  25  and used for a wide range of 
 ecohydrological studies  27,75,76  . HAND is comparable  to the water table depth (WTD) model-based 
 product of Fan & Miguez-Macho  77  , which gave broadly  similar results to those reported here 
 with HAND. For this study the HAND normalized terrain model was derived from SRTM-DEM 
 at 100 m resolution. 

 For soil fertility, we used a map (0.1° spatial resolution) of exchangeable base cations (Ca  + 

 + Mg  +  + K  +  measured in cmol(+)/kg) for the Amazon  basin  43  , the most extensive 
 empirically-validated gridded soil fertility product currently available. Soil cation concentrations 
 estimated from this product achieved good agreement with an independent dataset of 
 field-measured values (correlation of r = 0.71  43  ). 

 Our analysis does not include phosphorus, generally considered to be limiting to tropical 
 forest productivity  78,79  , but not currently available  as a high-quality validated gridded data 
 product. We expect base cations to be a partial index of phosphorus availability, as both cations 
 and phosphorus become available though weathering of young soils arising from Andean parent 
 material or runoff sediment, but are eventually leached, leaving older highly weathered soils in 
 the Guiana Shields depleted of both. Cation concentration should also be directly relevant to 
 drought tolerance, as high concentrations should improve osmotic regulation of stomatal 
 conductance, an important regulator of drought response  80  . 

 For soil texture, we used soil sand/clay fractions from “SoilGrids” system released by 
 ISRIC (International Soil Reference Information Centre) World Soil Information  44  . 

 For forest height, we used a canopy height metric derived from spaceborne lidar 
 measurements  45  (  https://webmap.ornl.gov/ogc/dataset.jsp?dg_id=10023_1  )  and validated by field 
 measurements, with an increased accuracy in the Amazon compared to previous metrics  33  ). This 
 wall‐to‐wall global map of canopy height is at 1‐km spatial resolution, interpolated from lidar 
 observations by the Geoscience Laser Altimeter System (GLAS) aboard ICESat (Ice, Cloud, and 

 24 

 594 

 595 

 596 

 597 

 598 

 599 

 600 

 601 

 602 

 603 

 604 

 605 

 606 

 607 

 608 

 609 

 610 

 611 

 612 

 613 

 614 

 615 

 616 

 617 

 618 

 619 

 620 

 621 

 622 

 623 

 624 

 625 

 626 

 627 

 628 

 629 

 630 

 631 

 632 

 633 

 634 

 635 

 636 

 637 

 638 

 639 

https://goldsmr4.gesdisc.eosdis.nasa.gov/data/MERRA2_MONTHLY/M2TMNXRAD.5.12.4/
https://paperpile.com/c/gDKLkA/GBlpD
https://airs.jpl.nasa.gov/data/get-data/standard-data/
https://paperpile.com/c/gDKLkA/Z0XoR+nuxWq+xswbt+rF674
https://paperpile.com/c/gDKLkA/TeqQr+0BEgg
https://paperpile.com/c/gDKLkA/WwPel
https://paperpile.com/c/gDKLkA/465Cp+8zNlf
https://paperpile.com/c/gDKLkA/OK4pb+7LA7D
https://paperpile.com/c/gDKLkA/465Cp
https://paperpile.com/c/gDKLkA/38cqI+b73Ja+2ZZig
https://paperpile.com/c/gDKLkA/0ESYS
https://paperpile.com/c/gDKLkA/x1zXd
https://paperpile.com/c/gDKLkA/x1zXd
https://paperpile.com/c/gDKLkA/AGBb2+sRQI4
https://paperpile.com/c/gDKLkA/tQsvY
https://paperpile.com/c/gDKLkA/8CpZL
https://paperpile.com/c/gDKLkA/pbgPo
https://webmap.ornl.gov/ogc/dataset.jsp?dg_id=10023_1
https://paperpile.com/c/gDKLkA/ycA42


 Land Elevation Satellite). We take forest canopy height as a proxy of rooting depth, based on 
 standard allometries backed by observations in Brazilian tree plantations  31,32,46  , in a central 
 Amazon forest  31,32,46  and across biomes  31,32,46  that  show they are correlated  31,32,46  .  However, 
 observations of the tree height-rooting depth allometry are limited, especially in tropical forests 
 (although one study cited here  31  is directly relevant,  as it is from central-eastern Amazon upland 
 forest, conducted during the 2015 drought); this limitation remains a key uncertainty in our 
 ability to confidently attribute variations in drought response to rooting depth, as opposed to 
 canopy height itself, or other (as yet unidentified) correlates of canopy height. We also note that 
 shallow WTD limits rooting depth such that canopy height correlations to rooting depth in these 
 forests may be diminished  81  . 

 We also applied community-weighted mean wood density and the abundance of Fabaceae 
 (legumes)  34  . Fabaceae refers to a large, nearly cosmopolitan  family that relates woody plants 
 with nitrogen-fixing nodulation, usually assumed adaptations to low-fertility soils  82  . 
 1.4. Identification of terra firme Amazon basin forests using land cover maps 

 In order to focus our analysis on the desired domain of terra firme forests, we used a 
 forest map at 1 km  spatial resolution (MOD12Q1.006)  to identify evergreen forest pixels within 
 the Amazon basin  83  , excluding open water, deforested  forests, and non-forest vegetation types. A 
 floodplain map was also used in order to identify targeted non-flooded forests, and exclude 
 floodplain forests  84  . We used the map of Gomez et  al.  85  to define the boundary of the Amazon 
 basin, an inclusive definition encompassing all forested parts of the Amazon river catchment and 
 Amazon forests technically within the Orinoco river catchment. We used a recently published 
 forest cover classification that now includes a category for “degraded” forests at 30 meter spatial 
 resolution (Vancutsem et al.  86  , updated to 2022),  to test drought sensitivity (methods 3). 
 1.5. Forest Plot Data 

 RAINFOR long-term forest plots:  We used demographic  datasets over the period 
 1983-2011 from all of the 321 re-censused forest plots that were published and used to estimate 
 Amazon basin-wide carbon balance (most, but not all, of these were from the RAINFOR 
 network)  2  , for three purposes: (1) to characterize  the spatial representativity of the reported 
 plot-based sampling efforts (area-weighted frequency  ×  duration  that plots were monitored) with 
 respect to the distribution of water table depths (HAND) across the Amazon basin (Fig. 3e);  (2) 
 to test whether forest mortality anomalies (% deviation from long term mean) in 247 plots 
 subject to the 2005 and 2010 droughts were associated with water table depth (Fig. 3d); and (3) 
 to validate EVI remote sensing with spatial variations in long term (2000-2011) average 
 above-ground net primary productivity (ANPP) rates across the Amazon basin (section 1.6.b, 
 Extended Data Fig  . 15). The full RAINFOR and related  networks sample more plots than these, 
 likely including a greater range of environments  87  ,  but published results representing drought 
 response of “the Amazon rainforest”  16  and “the Amazon  carbon sink”  2  are the ones whose 
 sample plot distributions are analyzed here for their representivity. 

 Shallow water table forest plots  :  For remote sensing  validation, we also used mortality 
 and recruitment data from 25 1-ha plots distributed across eight research sites along the BR-319 
 road in the southern Amazon between Manaus and Porto Velho (from 62.5°W, 5.9°S to 60.9°W, 
 4.4°S) as analyzed in Sousa et al.  26  These are shallow  water table sites (2.81 m ± 2.38 deep [M ± 
 SD]) intended to complement the on average deeper water table sites of the RAINFOR network 
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 (above). These more recent data focused on mortality and recruitment rates calculated for the 
 2015-2016 drought (section 1.6.b,  Extended Data Fig  .  16). 

 Forest plot hydraulic safety margins.  We used a published  pan-Amazon hydraulic trait 
 dataset (hydraulic safety margins, HSM, the difference between water potentials experienced by 
 a species in the field and the water potentials leading to hydraulic failure, with narrower margins 
 indicating greater mortality risk)  50  , including 108  species distributed across 9 forest sites across 
 western, central eastern and southern Amazon, to validate our derived resilience map (Fig. 5). 
 These sites belong to old-growth lowland forests, little disturbed by human activities, spanning 
 the Amazonian precipitation gradient and encompassing the principal axes of species 
 composition in the Amazon  50  . The HSM was calculated  with respect to P50/88 (HSM50/88) at 
 species level, and then basal-area weighted averaged occurring at sites  50  . 

 1.6. Remote sensing validation and consistency 

 1.6.1 Validation by ecosystem flux measurements (eddy flux towers) 
 MAIAC EVI  :  EVI has been extensively validated against  measurements of ecosystem 

 photosynthesis (Gross Primary Productivity, GPP) from eddy flux towers across land types 
 world-wide  88  , including temperate  89–91  and tropical  biomes  92–94  . Earlier versions of MODIS EVI 
 were criticized as influenced by aerosol or sun-sensor geometry artifacts when detecting tropical 
 forest greening  95,96  , but such effects are largely  eliminated in the current MAIAC EVI product 
 used here (which corrects artifacts from aerosol contamination and sun-sensor geometry)  61  . 
 Particularly relevant for this study, MAIAC EVI well-detected Amazon forest seasonal green-up 
 dynamics across a network of eddy flux tower sites in the Brazilian Amazon  97,98  , with patterns 
 shown to be consistent with understandings of leaf development and demography derived from 
 flux towers and phenocam studies on the ground  60  . 

 EVI or EVI-based models predict independent tower measurements of monthly GPP with 
 R  2  ~0.5-0.7 for tropical  92–94,97  , and R  2  ~0.7-0.8+ for  temperate biomes  89–91  . 

 GOSIF  : Despite non-linear and sometimes decoupled  relationships between chlorophyll 
 fluorescence and photosynthesis at leaf scales  99  ,  satellite observations of SIF from OCO-2 have 
 been shown to be linearly related to canopy scale GPP  63  , suggesting that canopy scale processes 
 can effectively average over leafscale complexities. GOSIF modeled datasets built from SIF 
 observations have been multiply validated by tower-based CO2 flux estimates of GPP, achieving 
 good correlation (R  2  =0.73 globally) with the 91 sites  of global Fluxnet GPP (2015 Tier 1 
 dataset)  64  , with somewhat lower correlations (R  2  =0.51,  comparable to EVI in the tropics) for the 
 evergreen broadleaf forest biome, including sites in the Amazon  65  . 

 Note on lower R  2  for Tropical vs Temperate forest  GPP detection  :  Although both indices 
 (GOSIF and EVI) capture GPP comparably in deciduous broadleaf (temperate) versus evergreen 
 broadleaf (tropical) forests  within  active growing  seasons, most statistical assessments are of full 
 annual cycles, which typically show substantially better statistics (R  2  > 0.8) for temperate zone 
 forests, simply because temperate forests include easily detectable dormant periods when GPP ~ 
 0, which make total annual variability (hence R  2  )  higher, while tropical evergreen forests are 
 active year round. 

 1.6.2. Validation by forest plot metrics of demography and of physiological drought tolerance 
 We investigated the effect of variations in remotely sensed photosynthesis on downstream 

 forest demographic effects (growth, recruitment, and mortality, section 1.5). We should expect 
 remote sensing skill in predicting demography to be weaker than for predicting photosynthetic 

 26 

 683 

 684 

 685 

 686 

 687 

 688 

 689 

 690 

 691 

 692 

 693 

 694 

 695 

 696 

 697 

 698 

 699 

 700 

 701 

 702 

 703 

 704 

 705 

 706 

 707 

 708 

 709 

 710 

 711 

 712 

 713 

 714 

 715 

 716 

 717 

 718 

 719 

 720 

 721 

 722 

 723 

 724 

 725 

 726 

 727 

 728 

https://paperpile.com/c/gDKLkA/xHuM4
https://paperpile.com/c/gDKLkA/xHuM4
https://paperpile.com/c/gDKLkA/xHuM4
https://paperpile.com/c/gDKLkA/iDzAC
https://paperpile.com/c/gDKLkA/wXWDd+GW25c+DVKM2
https://paperpile.com/c/gDKLkA/ooK3T+WU5y2+NDDFx
https://paperpile.com/c/gDKLkA/jKqsW+TC3d7
https://paperpile.com/c/gDKLkA/yZ3zl
https://paperpile.com/c/gDKLkA/PFdXY+QfZai
https://paperpile.com/c/gDKLkA/frCbw
https://paperpile.com/c/gDKLkA/ooK3T+WU5y2+NDDFx+PFdXY
https://paperpile.com/c/gDKLkA/wXWDd+GW25c+DVKM2
https://paperpile.com/c/gDKLkA/PRORn
https://paperpile.com/c/gDKLkA/AT7FJ
https://paperpile.com/c/gDKLkA/6LNG5
https://paperpile.com/c/gDKLkA/mwrB7


 fluxes, because demography emerges, not from photosynthesis alone, but from the balance of 
 photosynthesis and autotrophic respiration, and is also influenced by other factors such as 
 disturbance. 

 We nevertheless found validation at multiple scales:  MAIAC EVI significantly predicted 
 spatial variations in decadal forest ANPP (during 2000-2011) across the Amazon basin 
 (RAINFOR network, methods section 1.5,  Extended Data  Fig  . 15). Using more recent data, we 
 also confirmed consistent detection by EVI and GOSIF of short-term demographic 
 drought-response metrics during the 2015/2016 drought (mortality, recruitment, and the 
 mortality:recruitment ratio,  Extended Data Fig  . 16),  as expected if excess mortality (or a decline 
 in recruitment) follows declines in photosynthetic carbon assimilation. The R  2  values of 0.25 to 
 0.35 for remote detection of demography (  Extended  Data Fig  s. 15-16) are consistent with our 
 expectation that they should be about half of the remote detection R  2  for GPP (0.5 to 0.6, 
 discussed in 1.6.1), since GPP is about one-half the determinant of the NPP driver of 
 demography. 

 With respect to remote detection of the physiological drought tolerance of trees, we 
 investigated the ability of our remote sensing-derived forest photosynthetic “resilience” map 
 (Fig. 5a, see methods section 2.8) to predict a metric of the resilience of individual trees to 
 drought, hydraulic safety margins (HSM) for xylem embolism. Individual tree HSM -- the 
 difference between observed stem water potentials and the stem water potentials at which trees 
 become vulnerable to xylem embolism -- are widely regarded as predictors of tree mortality risk 
 under drought  50  , with narrower HSMs indicating greater  mortality risk  36  .  We found that our 
 remote sensing-derived estimates of forest resilience (Fig. 5a) could significantly predict 
 basal-area weighted tree HSM measured on the ground at forest plots across the Amazon basin 
 (Fig. 5a inset) (reported in Tavares et al.  50  , as  summarized in section 1.5). (Note that forest 
 resilience was estimated as in methods section 2.8, but using canopy height mapped at 0.1 degree 
 resolution--instead of the baseline model resolution of 0.4 degrees--in order to avoid mixing the 
 height signal of intact HSM plot forests with that of occasionally nearby deforested areas.) This 
 validation strongly supports the validity of using remotely sensed photosynthetic indices to 
 derive a definition of photosynthetic resilience to drought. 

 1.6.3. Consistency between EVI and GOSIF 
 Are the two remote sensing metrics showing consistent response to drought?  The spatial 

 locations of the drought anomalies appear similar, though not the same (Fig. 1 vs  Extended Data 
 Fig  . 2) – but since EVI and GOSIF are intended to  be sensitive to distinct dimensions of canopy 
 photosynthetic function -- i.e., to photosynthetic capacity versus activity, respectively (as 
 discussed in section 1.1), we should not expect sameness. 

 We do expect  activity  to be generally more sensitive  to drought than  capacity  , because 
 activity-based responses encompass both transient/reversible physiological responses (e.g. 
 stomatal adjustment) as well as slower structural effects due to changes in capacity (e.g. 
 biochemical inhibition, leaf growth or shedding)  58,100  .  We indeed see this expectation reflected in 
 observed drought response, with the range of GOSIF (activity) anomalies (from -9.6 to +4.8 
 standard deviations, excluding 0.1% of the distribution in each tail) 30% greater than the range 
 of EVI anomalies (-6.5 to +4.5 standard deviations,  Extended Data Fig  . 2 vs Fig. 1 insets). 

 More important, we ask whether there is consistency in terms of support for or rejection of 
 hypotheses that are the focus of this analysis -- for example, whether the “other side of drought” 
 prediction that drought response anomalies should decline with water table depth, and here we 
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 do see broad support for this hypothesis from both EVI and GOSIF: for the 2005 drought 
 “ellipse” region that was discussed in the main text (  Extended Data Fig  . 2d), and for the three 
 droughts considered together (Fig. 3a vs  Extended  Data Fig  . 2e).  We also see similar ability of 
 the two metrics to predict tree demographic responses to drought on the ground (  Extended Data 
 Fig  . 16).  Together, these comparisons increase confidence  that forest drought response 
 hypotheses are robustly supported by the two indices. 

 Within the broadscale consistency, there is also substantial finescale differences in spatial 
 location of anomalies (Fig. 1 vs  Extended Data Fig  .  2) and the detailed structure of responses 
 (the pattern of residuals in Fig. 3a vs.  Extended  Data Fig  . 2e), suggesting that more nuanced 
 study of these finer-scale differences could reveal additional insights into the biogeography of 
 forest drought response  101  . 

 2. Mapping and Statistical Analysis 
 2.1. Spatial Grid resolutions 

 We interpolated the differently resolved data products to different grid resolutions as needed 
 for mapping and modeling. Native resolutions were used to display most maps (exceptions 
 noted): 

 -  1 km for MAIAC EVI (Figs. 1-2,  Extended Data Fig  s.  12b, 15, 16a-c); 
 -  100 m for HAND, composited to 1 km for mapping (Fig. 2a,  Extended Data Fig  . 3a); 
 -  0.05 degrees for GOSIF (  Extended Data Fig  s. 2, 16d-f); 
 -  0.25 degrees for precipitation-derived products (  Extended  Data Fig  s. 3f-g, 4-5); 
 -  0.625×0.5 degrees for PAR; 
 -  1 degree for VPD (  Extended Data Fig  . 5); 
 -  0.1 degrees for soil fertility (  Extended Data Fig  .  3b); 
 -  0.25 km for soil sand content (  Extended Data Fig  .  3h), 
 -  1 km for forest canopy height (  Extended Data Fig  .  3c); and 
 -  1 degree for wood density and proportion of Fabaceae (  Extended Data Fig  . 3d-e). 
 For statistical modeling we interpolated different datasets to common grid resolutions, 

 according to the resolution of the model. For this we initially downscaled all maps to the native 
 resolution of the EVI product (1km), then aggregated to the desired coarser resolution, typically 
 0.4°, that was needed to avoid inflation of statistical significance of drought responses in models 
 by accounting for spatial autocorrelation among nearby pixels using variogram analysis (section 
 2.5,  Extended Data Fig  . 7). Grid cells in the drought-affected  domain that included no intact 
 forest were excluded from analysis. When an analyzed grid cell (at coarse resolution, typically 
 0.4°) included a mix of intact forests and non-forest or deforested regions, we selected and 
 aggregated all intact forest pixels at the smaller (1km) subgrid scale to accurately represent intact 
 vegetation properties (EVI, canopy height, etc), and represented the coarser model grid cell by 
 those intact forest properties. 

 2.2. Classification of forest regions according to ecotopes 
 We investigated whether the distribution of factors defining forest types (ecotopes) across 

 Amazonia could lead to a coherent clustering of different forest ecotopes into different regions, 
 each with different broadscale forest drought responses.  To this end, we conducted a supervised 
 forest classification,  using factors identified in previous studies as important:  17,34,102,103  two 
 climate variables (average minimum monthly precipitation and MCWD variability), soil fertility 
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 (concentration of exchangeable base cations  43  ) and three tree functional characteristics (forest 
 height, wood density, and proportion of trees in the family Fabaceae). 

 We conducted the classification in four steps:  First  ,  the six ecotope factors, standardized by 
 their mean and SD, were mapped, with each grid cell considered to occupy a point in a six 
 dimensional space, and each dimension indexed in comparable units of standard deviations. 
 Second  , a principal component analysis (PCA)  104  (“FactoMineR”  package in R,  Extended Data 
 Fig  . 6a) identified three complementary dimensions  of forests in this space: a dimension defined 
 by  vegetation  characteristics (wood density, and proportions  of the family Fabaceae), nearly 
 coincident with the first principal component (horizontal axis,  Extended Data Fig  . 6a); a 
 dimension defined by water availability (minimum monthly precipitation and MCWD 
 variability), nearly coincident with the second principal component (vertical axis,  Extended Data 
 Fig  . 6a), and a third dimension defined mainly by  soil fertility  (  Extended Data Fig  . 6a). Based on 
 these initial PCA results suggesting three relatively distinct dimensions, we chose to cluster 
 Amazon basin pixels into three classes. Given their diversity, Amazon forests could likely be 
 classified into more than three, but we judged that three would be sufficient to capture substantial 
 functional variation, without being so complex as to prevent intuitive understanding. 

 Third  , an automatic procedure extracted endmember  characteristics based on percentile 
 thresholds  105  from the PCA space  106  . Pixels with low  climate variability had high minimum 
 precipitation and long wet seasons (in the 90th percentile), and were identified as a water 
 availability spectrum end-member. Grid cells with the highest proportion of Fabaceae, 
 overlaying with tall, dense-wooded trees (in the 90th percentile) and low-fertility soils, were 
 identified as another endmember. A third endmember was defined by a combination of high 
 variability climates and moderately high (67th percentile) soil fertility.  Finally  , supervised 
 classification via the Minimum Distance method was used in ENVI 5.3 software  107  to cluster 
 each region based on proximity to the endmembers selected in Step three. 

 This process identified three clusters of pixels in functional PCA space that turned out to 
 also correspond to geographically distinct Amazonian regions that were mostly contiguous 
 (  Extended Data Fig  . 6b): an  Ever-wet Amazon  region  in the northwest, a  Guiana shield  region 
 in the northeast, and  the southern Amazon  . The standardized  values within each cluster, of each 
 of the characteristics defining the regional clustering (ordered by water availability, soil fertility, 
 and tree traits), exhibit the distinct niches of each region (  Extended Data Fig  . 6c). The ever-wet 
 Amazon is differentiated by lack of dry seasons (periods with months < 100 mm rainfall, 
 Extended Data Fig  . 3a). Forests in this region might  be composed of species that do not 
 well-tolerate climate conditions (such as droughts), compared to tree assemblies (in other 
 regions) adapted to regular droughts or dry seasons. The Guiana shield region is distinct in 
 having old, highly weathered, low-fertility soils, with tree communities containing the largest 
 proportion of trees in the family Fabaceae, with dense wood and high seed mass (  Extended Data 
 Fig  . 3c-e)  34  . The southern Amazon is then differentiated  further from the Guiana shield as 
 slightly dryer, with soil fertility that was both higher on average but also more variable. 

 This three-region classification (which we use to define the regions depicted in the main 
 text figures) is independent of the results (Figs. 3-4) of the basin-wide modeling investigation 
 (described in sections 2.6-2.7 below) because model predictions depend on pixel-pixel variations 
 of environmental factors regardless of what region they are in. However, the three region 
 Amazon is useful for presenting model results because it illustrates how different functional 
 responses emerge from different ecotope regions (as shown in Fig. 4e). 
 2.3. Climate anomalies for Drought definition and Mapping 
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 The spatial extent for each of the three droughts (  d  ) was taken to be all grid cells where the 
 MCWD anomaly was more than one standard deviation below the long-term mean for that cell 
 (  Extended Data Fig  . 1).  MCWD anomaly for each grid  cell is calculated by Eqn. (1): 

 (1) 
 where  MCWD  d  is the data value in drought year (  d  ),  is the average of 19 yearly MCWD 
 values for hydrological years 2000-2019 (May 2000 to April 2020) and  σ  MCWD  is the standard 
 deviation for the same time period. Anomalies of the other climate variables were calculated 
 analogously. 

 Drought severity in each grid cell was classified into three levels by standardized MCWD 
 anomaly: modest drought (-1.5 to -1 standard deviations relative to the mean), medium drought 
 (-2 to -1.5 standard deviations relative to the mean) and severe drought (greater magnitude than 
 -2 deviations) (  Extended Data Fig  . 1). 

 Drought duration (for each of the three droughts separately for each grid cell) was measured 
 in terms of number of drought months (  i  ) for a particular  drought (  d  ) for each grid cell within the 
 period (May to the following April) for the droughts of 2005 and 2010; and from May to October 
 of the following year for the El Nino drought of 2015/2016. The drought onset month is found 
 where the following is true, recalling that CWD and MCWD are more negative with greater 
 water deficit: 

 (2) 
 The end month of drought interval (  i  ) for each grid  cell for each of the three droughts is 

 defined as follows: 

 (3) 
 Then for each grid cell,  duration  d  =  End  d  -  Onset  d  +1  as shown in  Extended Data Fig  . 4. 

 2.4. Drought resilience and Vegetation Anomalies 
 We defined drought resilience as a forest’s ability to increase (or relatively better maintain) 

 photosynthetic capacity or activity during a perturbation -- that is, by its tendency to exhibit more 
 positive/less negative anomalies in vegetation indices (relative green-up) during drought. There 
 is a broad literature on resilience  108,109  , and our  definition (which can also be characterized as 
 “resistance” or ability to resist changes in function with perturbation  108  ) is nominally distinct for 
 example, from another common definition, the capacity of a system to return to its equilibrium 
 state following a disturbance  110  .  We chose relative  green-up here for conceptual and practical 
 reasons.  Conceptually, greater relative green-up implies relatively more photosynthesis and 
 hence, all else equal, more carbon resources to respond to stress, encompassing different 
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 strategies (likely including system capacity to return to equilibrium following disturbance), 
 making it a logical general metric of resilience.  Practically, greening has been widely cited and 
 discussed in the literature, and, notably, is predictive of outcomes on the ground commonly 
 associated with resilience at the individual tree and plot scale (lower mortality, greater growth, 
 and greater xylem embolism resistance, see methods section 1.6,  Extended Data Fig  . 16). 

 In order to quantify photosynthetic resilience  , we  extracted from each grid cell for each of 
 the three droughts, the anomalies in photosynthetic indices for the period of drought (Figs. 1, 
 2b-c;  Extended Data Fig  . 2, 4-5), calculated as the  departure (in standard deviations from their 
 non-drought-year means) across a 9-year window centered on each drought (for example, 
 2001-2009 for the 2005 drought and 2011-2019 for the 2015 drought): 

 (4) 
 where  X  d,du  is the value of the index in a grid cell  during drought  d  , averaged over the duration  du 
 (extracted by Eqn. (2) and (3)) – and  and  σ  du  are  the average and standard deviation, 
 respectively, of the same  ‘du’  period across the years  of data availability (with the drought years 
 2005, 2010 and 2015 excluded). Including pixel-specific drought duration introduces greater 
 realism in drought response metrics by capturing pixel-pixel variability in drought response due 
 to duration  du  , which has been treated in some previous  analyses as fixed (e.g. in analyses of the 
 2005 drought,  du  was assumed to be the three months  of July-August-September for all 
 pixels)  9,10,111  . 

 Correspondingly, we also calculated the field-based demographic mortality anomalies for 
 drought years 2005 and 2010 from RAINFOR plots,  2  as  above-ground biomass (AGB) mortality 
 drought responses (mortality carbon flux following drought, in percent change relative to 
 long-term mean MgC ha  -1  y  -1  . 
 2.5. Variogram analysis for removal of spatial autocorrelation 

 Observations from spatial samples are not independent, due to spatial autocorrelation 
 among grid cells that are near to each other  112  . To  obtain independent observations for general 
 additive models (GAM) and for statistical quantification of average drought response (Fig. 1), 
 we resampled grid cells at increasingly coarse resolutions, until response differences (between 
 forests with different water table depths) were no longer spatially autocorrelated -- that is, a sill 
 (plateau) was reached in the variogram (  Extended Data  Fig  . 7) at around 40 km, indicating a 
 scale at which samples could be treated as statistically independent. The variogram was 
 calculated from the covariance of the difference between drought responses in shallow and deep 
 water table grid cells: 

 (5) 

 (6) 

 (7) 
 where  N(h)  was the number of grid-cell pairs (  m  ,  n  )  separated by distance  h  . Each  z  m  is the 
 standardized EVI anomaly of the first member of a grid cell pair, drawn only from cells having 
 shallow water table depths (0, 1, 2, …, 9), while  z  n  is the second member of each pair, drawn 
 only from cells with deep water tables (10, 11, 12, ..., 19). 
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 2.6. Statistical analyses for inferring causes of, and predicting, drought response 
 Our statistical analysis had two main goals: first, to test the three core hypotheses 

 presented in the main text introduction (causal inference), and to develop the best possible 
 predictions of regional to basin-wide drought response by combining ecotope factors with 
 climate (predictive inference). 

 For this, we implemented two sequential statistical approaches: First (§2.6.1), we used 
 GAM statistical regression  110  , selecting among ecologically-informed  models by the Akaike 
 information criterion (AIC) to both test hypotheses about variables thought to influence forest 
 drought response and to identify the best predictive models of regional to basin-wide drought 
 response  111,112  . To avoid known inferential biases  of building large regression models out of many 
 variables selected blindly by information criteria like AIC  111,113,114  , we construct our 
 moderate-sized models within a hypothesis-testing framework, where causal hypotheses are 
 specified based on ecological considerations and the selected regression fits test the predictions 
 made by those hypotheses. Second (§2.6.2), we also employed structural causal modeling 
 (SCM)  40,113  an approach which formalizes hypothesis  testing as part of the model structure (e.g., 
 using Directed Acyclic Graphs, DAG  114,115  ). SCM reduces  risk from confounding variables that 
 can mask or dilute (or magnify) true causal relationships between the ‘exposure’ variables (e.g., 
 climate, soil types) and the ‘outcome’ variable (e.g., forest greening/browning). We note that in 
 both approaches, accurate inference of the relative magnitude or importance of inferred relations 
 is conditional on the model being true. 

 Finally, we compare the two approaches (§2.6.3), based on the idea that if the inferences 
 from the two approaches are consistent with each other in terms of their conclusions about 
 hypotheses, this increases confidence in those conclusions. 
 2.6.1. AIC-selected General Additive Models (GAM) for hypothesis testing and prediction 

 We developed GAM regression models of forest drought response as a function of climate 
 variables and ecotope factors  10,18,37  to represent  our three core hypotheses of water table depth  28  , 
 soil fertility  32,33  , and tree characteristics  34–36,49  .GAMs  allow for non-linear relationships between 
 response and multiple explanatory variables, in which underlying model structure can be 
 analyzed to understand why they make the predictions they make -- in contrast, for example, to 
 machine learning techniques, like boosted regression trees or neural networks  40,113  . GAM links 
 response variables to explanatory variables with a smoothing function, or a spline, which can 
 take a variety of shapes, which are then added together. 

 We developed GAMs of two types:  (i) regional models  —fit  within regions—  designed to 
 test the “other side of drought” hypothesis 1, by including hydrological environments (as 
 represented by HAND) in addition to climate variables used in previous climate-only regression 
 models of forest drought response  10  ; and  (ii) basin-wide  models  designed to test all three of our 
 hypotheses together (including effects of soil fertility and tree characteristics), and in particular 
 to understand the opposite sensitivity of forest responses to water tables across different regions 
 (Fig. 3a vs  Extended Data Fig  . 8). 
 (i) Effect of local hydrological environment and climate on drought response  (  regional GAMs). 
 GAMs were fit separately for the southern Amazon, Guiana shield, and ever-wet Amazon 
 regions, and for all three droughts together, as: 

 (8) 
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 where  ∆EVI  is the vegetation response anomaly,  ∆PAR  ,  ∆VPD  ,  ∆P  and  ∆MCWD  are the 
 radiation, VPD, precipitation, and MCWD anomalies, respectively;  DL  denotes the drought 
 length;  ε  is the normally distributed residual;  s  ()  and  ti  () are the smoothing functions of predictor 
 variables, obtained using a scatterplot smoothing algorithm with a back-fitting procedure for the 
 appropriate smoothing function for each predictor. The degree of freedom (df) for the smoothers 
 is determined with “REML” with gaussian distribution implemented by Wood’s R package 
 “mgcv”  113  . Models were implemented with gam.check  function by R package “mgcv”  113  for 
 diagnostics of residual, distribution and k basis dimension as well as concurvity. All the 
 predictors were scaled to the same range and unit (40 kms, or ~0.4 degree). 

 The smooth functions were determined by thin plate splines  114,115  . Here, we fitted thin plate 
 regression splines using automatically optimized smoothing parameters using the restricted 
 maximum likelihood, or REML method. Three optimal models were selected for the 
 corresponding three regions, with all three model selection procedures evaluated by delta AIC 
 and R square  116  using the  “dredge'' function in the  mgcv package in R  113  , with results reported in 
 Extended Data Table 1  (models a, b, and c). 
 (ii) Effect of hydrological environment interacting with regional ecotopes  (  basin-wide GAM). 
 We included soil types (fertility and texture) and vegetation characteristics (forest height, wood 
 density) into the GAM of section (i). Without specifying regions, we aimed to explore whether 
 soil and vegetation characteristics (  Extended Data  Fig  . 3) are able to explain regional differences 
 in the sensitivity of forest response to water table depth. GAMs were fitted across the whole 
 basin for the 2015/2016 El Niño drought, the only drought that had substantial simultaneous 
 impacts on all three regions of the Amazon basin. The forest responses were comprised of three 
 components: (Ⅰ) the climate predictor variables (PAR anomaly, VPD anomaly, precipitation 
 anomaly and MCWD anomaly); (Ⅱ) the ecotope-based environmental predictor variables, in 
 addition to HAND, associated with regional differences: soil fertility, soil texture, forest height 
 and wood density; (III) error terms assumed to be a Gaussian distribution. Specifically, GAMs 
 were fitted as below: 

 (9) 

 where  DSL  denotes dry season length,  FH  denotes forest  height,  ST  denotes soil texture and  SF 
 denotes soil fertility. Considering variable correlations (  Extended Data Table 2  ), we avoided 
 choosing highly correlated variables for the same model (which for example excluded wood 
 density when soil fertility was in the model). Considering the complexity of the model and 
 computational cost, the pairwise interactions were included separately among ecotope factors, 
 among climate variables, and between HAND and PAR, but did not traverse interactions among 
 every possible pair of variables. The fitting process was the same as for the regional GAMs of 
 (i): smoother determined with “REML” as implemented by “mgcv”  113  , and models evaluated by 
 delta AIC and R square  116  coded by the “dredge'' function  in the “mgcv” package in R, with final 
 results reported in  Extended Data Table 1  (model d).  Basin-wide modeled forest response for 
 the 2015/2016 drought is presented in  Extended Data  Fig  . 17 where the GAM well-predicts the 
 pattern of response (  Extended Data Fig  . 17b), but  under-estimates the extremes of the responses 
 (as evident from residuals in  Extended Data Fig  . 17c  showing greening/browning patterns 
 beyond the predictions). 
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 Beyond the three more recent hypotheses discussed in the main text, soil texture was also 
 expected to affect soil hydraulic properties and forest ecosystem response to drought  102,117  . We 
 found that forests on sandy soils were more resilient (i.e., higher relative green-up) than those on 
 clay soils (which bind water more closely), consistent with findings of process model studies  22  of 
 clays that bring soils more quickly to wilting points  23  .  But again, this depended on water table 
 depth, and deep water table forests also became more vulnerable with increasing sand content 
 (  Extended Data Fig  . 11), perhaps because in the absence  of a shallow water resource, sandy soils 
 drained water too quickly 

 This final basin-wide GAM model (Extended Data Table 1d) including soil texture (along 
 with WTD, forest height, and soil fertility) suggests a further hypothesis for how soil texture 
 moderates the effects of forest height and water table depth on drought response (  Extended Data 
 Fig  . 11). The potential counteracting effects of the  positively correlated forest height (which 
 increases resilience when water tables are deep) and soil clay fraction (which generally decreases 
 resilience due to binding water more tightly to soil particles) may explain the otherwise puzzling 
 result that the tall forest advantage in deep water table forests does not just disappear but reverses 
 in shallow water table environments (Fig. 4d). As shown in  Extended Data Fig  . 11, the reversal 
 of the general trend (of decreasing resilience as clay fraction increases = sand fraction decreases) 
 in deep water table forests (red lines in  Extended  Data Fig  . 11 reverse as sand content falls below 
 50%), is associated with increasing forest height, especially in deep water table forests. Thus, at 
 the low sand (=high clay) end of the spectrum, the effect of soil texture depends strongly on 
 WTD:  in shallow WTD forests where tall trees are not advantaged, the negative effect of clay 
 depresses forest drought response, but in deep WTD forests drought resilience increases again, 
 even with increasing clay (decreasing sand), possibly because the associated taller tree effect 
 outweighs the negative effect of clay soils.  This mechanism could serve to improve models of 
 how soil texture modulates drought response  118,119  . 
 2.6.2. Structural Causal Modeling (SCM) using Directed Acyclic Graphs (DAG) 

 In order to further test the causal mechanisms proposed by our three core hypotheses, we 
 used a framework for causal inference from SCM  40,118  ,  DAG analysis  119,120  .  We proposed and 
 tested hypothesized causal relationships (represented by DAG diagrams, as in  Extended Data 
 Fig  . 9a). 

 Implementing DAG analysis with ‘dagitty’ (R package  120  ,  we first developed a DAG 
 diagram for Amazon forest drought response with relevant climate variables and ecotope factors 
 expected from the literature  10,17,34  , including our  three core hypotheses of water table depth  24  , soil 
 fertility  28,29  , and tree characteristics  30–32,50  (  Extended  Data Fig  . 9a).  We assessed ‘DAG-data 
 consistency’, testing to ensure that unconnected nodes are not correlated, applying root mean 
 square error of approximation (RMSEA) (R functions “localTests” and “cis.loess” to allow 
 potential non-linear correlations using loess fits  120  ;  Extended Data Fig  . 9b). 

 We iteratively tested and revised the DAG by repairing detected independence violations 
 between unconnected nodes (i.e. where RMSEA was greater than 0.30, as in Ankan et al.  121  ), by 
 adding either a new direct causal link between such nodes (after first verifying an ecological 
 basis for the link), or new links to each of the correlated nodes from a common causal node 
 (again, if they made ecological sense). For example, longer dry season length should promote 
 generally drier conditions, including greater VPD and MCWD; positive precipitation anomalies 
 will cause higher relative humidity and therefore lower VPD anomaly  33  ; more clayey soils allow 
 taller trees  122  , supporting the addition of links  between these nodes. These adjustments gave a 
 final DAG with a greater number of links (  Extended  Data Fig  . 9c) and no independence 

 34 

 1024 

 1025 

 1026 

 1027 

 1028 

 1029 

 1030 

 1031 

 1032 

 1033 

 1034 

 1035 

 1036 

 1037 

 1038 

 1039 

 1040 

 1041 

 1042 

 1043 

 1044 

 1045 

 1046 

 1047 

 1048 

 1049 

 1050 

 1051 

 1052 

 1053 

 1054 

 1055 

 1056 

 1057 

 1058 

 1059 

 1060 

 1061 

 1062 

 1063 

 1064 

 1065 

 1066 

 1067 

 1068 

 1069 

https://paperpile.com/c/gDKLkA/YHtwN+yyNc4
https://paperpile.com/c/gDKLkA/5XhwX
https://paperpile.com/c/Loc88a/v79L
https://paperpile.com/c/gDKLkA/M8m9h+RZBy5
https://paperpile.com/c/gDKLkA/6mJto+LEqb
https://paperpile.com/c/gDKLkA/l06Rv+79rbG
https://paperpile.com/c/gDKLkA/rSRtL
https://paperpile.com/c/gDKLkA/bb7bO+5gmaM+fBlmh
https://paperpile.com/c/gDKLkA/32xKg
https://paperpile.com/c/gDKLkA/zXgTd+7oh5P
https://paperpile.com/c/gDKLkA/EwUsf+Dy8Mm+qawQE+xHuM4
https://paperpile.com/c/gDKLkA/rSRtL
https://paperpile.com/c/gDKLkA/xV5A0
https://paperpile.com/c/gDKLkA/ycA42
https://paperpile.com/c/gDKLkA/MzLtI


 violations among the remaining unconnected nodes (  Extended Data Fig  . 9d). We next utilized the 
 “backdoor criterion” to test the causal effects of key predictors, exposing the influence of each 
 variable on drought response, one-by-one, while blocking (or adjusting for) the influence of 
 “backdoor” variables on non-causal pathways (i.e., pathways in which at least one arrow points 
 in a direction opposite to the hypothesized causal influence)  123,124  .  Extended Data Fig  . 9c 
 illustrates blocking the confounding ‘backdoor path’ influence of average dry-season length 
 [DSL] on the causal relationship between drought length [DL] and drought response [DR]; 
 Extended Data Fig  . 10 shows non-linear (GAM) model  results for causal relationships 
 addressing our hypotheses identified this way. Completing these steps, we accepted our finalized 
 DAG (  Extended Data Fig  . 9c) as representing detected  causal links for forest drought response 
 and blocked all backdoor paths in subsequent analysis by including the confounding variables in 
 multiple regression (in GAM analysis), as reported in  Extended Data Fig.  10. 
 2.6.3. Comparing inferences from SCM with predictive GAM regressions 

 We found that both modeling approaches consistently supported the “other side of 
 drought” hypothesis (hypothesis 1) for forest drought response in the southern Amazon across all 
 three droughts (negative dependence on water table depth, Fig. 3a and  Extended Data Fig.  10a), 
 with associated consistent climate dependencies (positive dependence on sunlight, Fig. 3b and 
 Extended Data Fig.  10b, and declining overall dependence  on drought length, but with a peak at 
 ~3 months duration, Fig. 3c,  Extended Data Fig.  10c).  Across the basin for the 2015/2016 
 drought, both modeling approaches supported hypothesis 2, that increasing soil fertility (past a 
 moderate fertility level) would negatively affect drought response (Fig. 4a,c and  Extended Data 
 Fig.  10e), and both supported a “hypothesis 1- hypothesis  3” interaction, finding that increasing 
 forest height (and presumed deeper rooting depth) positively affected drought response in deep 
 water-table forests, but had the opposite effect in shallow water-table forests (Fig. 4b,d and 
 Extended Data Fig.  10d). Finally, though not part  of the three core hypotheses, both modeling 
 approaches found similar effects of soil texture on drought response (  Extended Data Fig  . 10f and 
 Extended Data Fig.  11). 
 2.7. Comparing adjusted observations to GAM predictions for different predictor variables 

 The observed vegetation indices (MAIAC EVI, and GOSIF) were graphed in adjusted form 
 (as “climate adjusted” or “ecotope-adjusted” observations) in order to compare observed versus 
 predicted relationships with one predictor variable at a time (e.g. water table depth) while 
 adjusting for the effect of the other, potentially influential, predictor variables represented in the 
 GAM models (section 2.6.1, above). This is analogous to partial regression plots or adjusted 
 variable plots in conventional regression models  125  .  EVI (Figs. 3a, 4e,  Extended Data Fig  . 8a, b) 
 or GOSIF (  Extended Data Fig  . 8c, d) observations of  anomalies were adjusted by the difference 
 between the full GAM predictions at each pixel and the partial prediction for the median 
 conditions. For example, to plot climate-adjusted EVI/GOSIF versus water table depth (across 
 different HAND bins) as in Fig. 3a and  Extended Data  Fig  . 8, the adjustment (shown for EVI) 
 was: 

 (10) 
 where  is the observed  i  th  EVI  anomaly,  is the  prediction of the  i  th 
 EVI  anomaly from GAM (model function for Eqn. 8 denoted  as  f()  here) and 
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 is the prediction when holding climates constant at the median value of the 
 domain of the prediction (in this case, the median climate within each drought). 

 Similar calculations are applied to observations in Fig. 4e to account for the regional 
 differences in climates and ecotopes (Ever-wet, Guiana shield, and southern Amazon), while 
 isolating the effects of water-table depth (HAND) on EVI anomalies with the basin-wide GAM 
 model. The correction term applied to Eqn. 9 in the case of Fig. 4e was 

 (11) 
 where  SF  denotes soil fertility,  ST  denotes soil texture,  and  FH  denotes forest height.  The 
 domain of the prediction for which median values of ecotope distributions were taken was, in 
 this case, each of the three regions, considered separately. 
 2.8. Deriving the basin-wide biogeography of forest drought resilience/vulnerability 

 Classic biogeography in ecology focuses on the drivers of the distribution of species and 
 their phylogenies over space and time, as an emergent consequence of their evolutionary 
 histories  126,127  . Here, following recent ideas in  the emerging field of functional biogeography  23,128  , 
 we extend classic species-based biogeography to derive a functional biogeography of Amazon 
 forest drought resilience and vulnerability. To accomplish this, we used the GAM analysis that 
 included ecotopes and was derived for the whole basin (section 2.6.1, Eqn. 9, Extended Data 
 Table 1d,  Extended Data Fig  . 17). Resilience (as plotted  in Fig. 5a) was defined as the 
 standardized GAM prediction (positive values corresponding to greening and resilience) from 
 the spatially varying ecotope factors alone (with effects of spatial variation in climate removed 
 by setting each pixel’s climate factors equal to their basin wide average during the 2015 
 drought): 

 (12) 

 (13) 

 where  Resilience  i  is the prediction for pixel  i  using  Eqn. 9 as function  f()  , and  and 
 denote mean and standard deviation  across the basin, respectively.  𝑆𝐷 

 𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒 

 We defined thresholds conducive to resilience to define ecotope factor groups associated 
 with resilience or vulnerability. Overlapping ecotope factors generally conducive to resilience 
 (shallow water tables, low soil fertility, and tall trees) were distributed across the basin (Fig. 5b, 
 C). The resilience thresholds for the different factors were:  shallow water table forests  :  <10m, 
 taken from Nobre et al.  25  ,  low soil fertility  : exchangeable  base cation concentrations <10  -0.35 

 cmol  +  /kg; and  tall forests:  heights>32.5 m. The thresholds  for soil fertility and forest height were 
 chosen as the level where average slope of EVI anomaly sensitivity to HAND changed sign (in 
 Fig. 4a, b, respectively). 
 3.  Testing alternative interpretations and considering  caveats 

 To address potential questions about whether alternative interpretations might either 
 undermine or further illuminate our reported results, we identified additional hypotheses posing 
 alternative interpretations. Among the additional hypotheses we considered were the following 
 five, the first four of which we were able to partially test here with the functional biogeography 
 GAM model: 
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 H1. That spatial scaling artifacts contaminate the results.  In particular, it might be that the 
 primary spatial scale of our analysis (~40km, in order to achieve statistical independence, see 
 section 2.5) is too large and does not reflect the fine scale of individual tree response to drought 
 in distinct environments, raising the question of whether the effects reported here can be 
 confidently attributed to the aggregation of these fine scale responses, or to some other effect. 

 In order to test this hypothesis, we investigated how sensitivity of forest drought response to 
 water table depth depended on the scale of the analysis (  Extended Data Fig.  12), from 40 km 
 (Fig. 3a, reproduced in  Extended Data Fig  . 12a) to  the native MODIS scale (1km) (  Extended 
 Data Fig  . 12b), and across the finer scales (resolved  to 30 meters using Landsat OLI 8 land 
 surface reflectance, see  Extended Data Fig  . 12c) available  for a region near Manaus  129  (at scales 
 below 40 km, spatial autocorrelation is evident; this artificially narrows confidence intervals, but 
 does not hinder the scaling comparisons). These analyses showed that sensitivity of forest 
 drought response to water table depth did not detectably depend on scale, adding confidence that 
 the key factor of water table depth indeed structures Southern Amazon drought response (as in 
 Fig. 3a) across different scales. We note that this analysis suggests a need for future investigation 
 of how the actual magnitudes of greenness anomalies at the ecological neighborhood scale (1 ha) 
 of operation of community and ecophysiological mechanisms translate to magnitudes at larger 
 scales. 

 H2. That different aspects of drought dynamics (e.g. severity interacting with duration) may 
 confound the reported interpretation of drought duration (as in Fig. 3).  Drought severity and 
 duration are known to have distinct effects on different species in other biomes, raising the 
 question of whether these dimensions of drought have distinct effects in the Amazon. 

 We tested the interacting effects of severity (as defined as in section 2.3, by the MCWD 
 anomaly) and drought duration by further analyzing the model of Extended Data Table 1a. This 
 analysis (  not shown  ) confirms that droughts that are  both deep and long have the most negative 
 effects on photosynthesis. This also confirmed the hump-shaped response to drought duration 
 reported in Fig. 3c (with a primary hump occurring earlier but persisting longer through a 
 secondary hump for less severe droughts). 

 H3: That drought impacts during dry seasons are different than during wet seasons, 
 complicating interpretation of PAR anomaly and drought length effects (Fig. 3).  If light 
 limitation (and hence PAR sensitivity) is stronger in the wet season (because light is already 
 more limiting in the wet season due to greater cloud cover), longer droughts will not just be 
 longer, but (because seasons are of finite length) they will also be more likely to encompass, in 
 varying fractions, the differing light sensitivities of dry and wet seasons. 

 In order to test whether the proportion of the drought that occurs in the wet versus dry 
 season affects reported forest responses, we constructed “DryDrought” as a predictor variable, 
 representing the proportion of a given pixel’s drought that occurred in the dry season. We, added 
 DryDrought to the GAM for the Southern Amazon (Extended Data Table 1a), comprising 
 HAND, climate factors and the error terms. Specifically: 

 (14) 

 This analysis (  Extended Data Fig  . 13) showed that  the longest drought (2015) also had the 
 broadest distribution of occurrences across dry and wet seasons, with about equal parts of the 
 drought occurring in the dry versus the wet season (median fraction in the dry season = 0.51, 
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 Extended Data Fig  . 13a).  By contrast, the 2005 and 2010 droughts were primarily dry season 
 droughts (median dry season fractions = 0.83 and 0.77, respectively).  This analysis confirms our 
 finding of a generally positive sensitivity of droughted forests to sunlight reported in the main 
 narrative (Fig. 3b), but further shows that the greater the proportion of the drought that occurs in 
 the wet season, the greater the positive sensitivity to sunlight anomalies (in  Extended Data Fig  . 
 13b, the blue line representing pixels experiencing predominantly wet season drought is steeper 
 than the red line representing pixels predominantly experiencing dry season drought).  This 
 analysis also confirms (  Extended Data Fig  . 13c) that  the hump shaped response to drought 
 duration (as in Fig. 3c, especially the peak of vegetation response at three month’s duration) is 
 general across both dry and wet season droughts.  A consistent result of both analyses is that 
 (with the exception of PAR anomalies greater than +2 standard deviations,  Extended Data Fig  . 
 13b), forests experiencing wet season droughts are generally more negatively affected by drought 
 than are forests experiencing dry season droughts, consistent with the idea that although trees are 
 adapted to the dry conditions of annually recurring dry seasons, they are especially vulnerable 
 when droughts hit in the wet (recovery) season. 

 H4: That deforested or degraded forests  may be driving or contaminating results that are 
 reported as for “intact” forests.  Deforested regions  are excluded from the analysis, but the mask 
 may still include forests in proximity to deforested regions that, though not deforested, may be 
 experiencing degradation. We conducted a sensitivity test to address the question of whether 
 different drought responses in degraded forests could be contaminating our findings, using a 
 recent classification  86  that identifies partially  degraded forests as distinct from both deforested 
 and intact forests, now updated through 2022.  We repeated the GAM analysis reported in Fig. 4, 
 but here excluded pixels representing degraded forests.  The results (  Extended Data Fig  . 14, 
 styled after Fig. 4 in the main text) suggest that partially degraded forests likely are indeed more 
 vulnerable: the curves in panels C and D of  Extended  Data Fig  . 14 (for purely intact forests) 
 reach a slightly greater EVI anomaly value than the corresponding curves of Fig. 4c, d (including 
 mainly intact and but also some degraded forests). This suggests that a functional biogeography 
 approach may be fruitful for future investigations of the effect of forest degradation on drought 
 sensitivity at the local scale. However, the differences are slight at the basin scale, and the overall 
 patterns in Fig. 4 and Fig. 5 results do not depend much on whether these forests “in between” 
 deforested and intact regions are included or excluded. 

 H5: That relatively taller individual trees are more vulnerable to drought, even as 
 tall-canopy deep water table forests are on average more resilient to drought.  We found that 
 greater forest canopy height promoted resilience for deep water table forests, but increased 
 vulnerability for shallow water table forests (Fig. 4d,  Extended Data Fig  . 11d). Observations of 
 drought responses in the RAINFOR network  49  and drought  experiments  47,48  report that tall trees 
 were more vulnerable to drought. One of the drought experiments was above a moderately 
 shallow water table (7-10m) and the vulnerability of tall trees there could be explained by our 
 result  47  , but the forest of the Nepstad et al drought  experiment  48  , and many of the plots in the 
 RAINFOR network, are over deep water tables, raising the question as to whether the results 
 reported here might be inconsistent with those. 

 Recalling that the satellite-derived canopy heights are not individual tree heights but overall 
 mean heights of forest canopies over a 1km pixel, we hypothesize that both results are true:  that 
 deep water table forests that are tall on average (and presumed to have on average deeper roots 
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 that bring greater collective access to deep water resources) are more resilient than forests that 
 are on average shorter, but that individual tall trees, subject to greater atmospheric drought stress 
 from higher VPD, may be individually more vulnerable than their average-height neighbors. 
 Hydraulic redistribution by roots, observed as part of the Nepstad et al  48  Amazon drought 
 experiment  130  and by other studies, is a mechanism  that could further enhance forest benefit from 
 redistributing deep waters upward in the soil profile. 

 This is a more challenging hypothesis to test, and in contrast to the hypotheses above, it is 
 beyond the scope of our current study to test here. However, this could be tested by extensive 
 plot data or higher resolution LIDAR data (e.g. Smith et al.  100  ; Nunes et al.  131  ) that could resolve 
 individual tall trees in the canopy, and compare their drought induced mortality rates across 
 forests of different average heights. 
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 Extended Data Fig. 1 Maximum cumulative water deficit (MCWD) standardized anomalies  (relative 
 to the long term mean MCWD across years, blue=positive, orange=negative) during drought for (  a  ) 
 2005,   (b)  2010, and  (c)  2015 droughts. MCWD is calculated  (methods section 1.2) as the maximum water 
 deficit reached for each hydrologic year (from May of the nominal year to the following April). The 
 “drought region” is defined as pixels whose MCWD anomaly is more than one SD below the mean (light 
 orange to red). 

 Extended Data Fig. 2. GOSIF-based forest response to droughts.  GOSIF anomalies during drought, 
 relative to the long term mean GOSIF (green=positive, orange=negative) in drought regions for the (  a  ) 
 2005, (  b  ) 2010 and (  c  ) 2015 droughts, respectively.  (  d  ) Photosynthetic index anomalies in the 2005 
 drought elliptical region: EVI and GOSIF (left and right vertical axes) versus HAND (elliptical region is 
 depicted in Fig. 1a and  Extended Data Fig  . 2a); (  e  )  GOSIF responses (anomalies) vs. HAND for 
 observations (solid points +/- 95% CI and regression line) for the 2005 (green, slope=-0.016±0.006 SD 
 m  -1  ), 2010 (purple, slope=-0.012±0.003 SD m  -1  ), and  2015 (blue, slope=-0.010±0.003 SD m  -1  ) droughts, 
 paired with area distributions of drought-affected HAND values for each drought (right axis). 

 Extended Data Fig. 3. Ecotope factors of the Amazon basin.  (  a  ) Height Above Nearest Drainage 
 (HAND), a proxy for water-table depth  25  ;  (  b)  Soil  fertility, as exchangeable base cation concentrations  43  ; 
 (  c  ) Average forest heights as acquired by lidar  45  ;  (  d  ) Community-weighted wood density  34  ; (  e  ) Proportion 
 of trees belonging to the Fabaceae family  34  ; (  f  ) MCWD  variability (see methods section 2.3), in terms of 
 the standard deviation of the long-term MCWD timeseries. High variance in climate and low soil fertility 
 in Guiana shield might contribute to the greatest proportion of trees belonging to the family Fabaceae 
 with the very high wood density; (  g  ) Averaged minimum  monthly precipitation (low=green, 
 high=orange). The north-west everwet Amazon is distinguished by lacking a dry season (precipitation 
 exceeds evapotranspiration).  (h)  Soil sand content  44  . The first row of factors are used as ecotope 
 predictors in the GAM analysis of Extended Data Table 1. 

 Extended Data Fig. 4. Pixel-based drought duration.  Panels  a  ,  d  , and  g  show dates of the onset of the 
 2005, 2010 and 2015 droughts, respectively. Panels  b  ,  e  , and  h  show dates of the end of the 2005, 2010 
 and 2015 droughts. Panels  c  ,  f  , and  i  show the duration  (end date minus start date, in number of months) 
 of the 2005, 2010 and 2015 droughts.  Pixel-by-pixel drought responses (EVI in Figs. 1-3, 4; or GOSIF in 
 Extended Data Figs. 6 & 11) are taken as the vegetation index standardized anomalies that occur during 
 the pixel-specific drought period defined here. 

 Extended Data Fig. 5. Spatial distributions of climate variations’ anomalies across 2005, 2010 and 
 2015 droughts.  Panels  a  ,  d  , and  g  show photosynthetic  active radiation (PAR) anomaly distributions 
 (blue=negative, red=positive) in the drought regions of the 2005, 2010 and 2015 droughts, respectively.  b  , 
 e  , and  h  show the vapor pressure deficit (VPD) anomaly  distributions (blue=negative, red=positive) in the 
 drought regions of the 2005, 2010 and 2015 droughts. Panels  c  ,  f  , and  i  show the precipitation anomaly 
 distributions (red=negative, blue=positive) in the drought regions of the 2005, 2010 and 2015 droughts. 

 Extended Data Fig. 6. Regions in the Amazon basin  that emerge from a principal components analysis 
 (PCA) followed by classification: (  a  ) PCA of the Amazon  basin pixel data (colored according to a 
 supervised classification into three classes identified by variance minimization), projected onto their first 
 two principal components, which are composed mainly of three dimensions, one defined by wood density 
 and proportions of the family Fabaceae (first principal component, horizontal axis), one defined by 
 minimum monthly precipitation and MCWD variability (second principal component, vertical axis), and a 
 third defined mainly by soil fertility; the classes are significantly separated in PCA space (F=950, df=2, 
 3805, p~ 0, permanova test);  (  b  ) Th Amazon pixels  colored according to their class (corresponding to the 
 colors in a), showing that the classification of (a) maps pixels into distinct, mostly contiguous spatial 
 regions. ) (  c  ) Standardized values, for each region,  of each group of characteristics (ordered by water 
 availability, soil fertility, and tree traits/characteristics), illustrate distinct regional niches:  the Everwet 
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 Amazon is highest in minimum precipitation and lowest (highest negative) in MCWD variability; the 
 Southern Amazon is moderately high in mean fertility, and the Guiana shield has the tallest mean forest 
 height and greatest wood density.  (d)  scree plot of  the eigenvalues of PCA shown in (a), plotted in rank 
 order. 

 Extended Data Fig. 7. Variograms of spatial autocorrelation effect across three droughts.  The 
 variance of the difference of MAIAC EVI anomalies between shallow and deep water tables against 
 distance between pairs of pixels from shallow and deep water tables for the whole basin (  a  ,  e  , and  h  ), 
 southern Amazon (  b  ,  f  , and  i  ), everwet Amazon (  c  ,  g  , and  j  ) and Guiana shield (  d  and  k  ), 
 respectively. Variance was lower (indicating spatial autocorrelation) for pairs formed from nearby pixels, 
 but tended to reach a sill (plateau) at around 40 km, indicating a scale at which spatial autocorrelation 
 weakened, and samples could be treated as independent for purposes of statistical analysis. 

 Extended Data Fig. 8. Amazon forest EVI and GOSIF responses to multiple droughts in (a, c) 
 ever-wet northwest and (b, d) in northeast Guiana shield regions show consistently positive slopes 
 with HAND, in contrast to responses in the Southern Amazon (Fig. 3a)  :  (a), (b)  Enhanced vegetation 
 index (EVI) anomalies versus water table depth (i.e., HAND) for observations (solid points with standard 
 error bars, with linear regression solid line) and for unified multi-drought GAM predictions (Extended 
 Data Table 1b, c) (with climate fixed to region-wide average drought conditions for each drought, smooth 
 lines with shaded uncertainty regions, and associated linear regression dashed line) for the 2005 (green), 
 2010 (purple), and 2015/2016 (blue) droughts in drought regions of Guiana shield (a) and ever-wet 
 Amazon (b). The 2010 drought did not significantly affect the Guiana shield.  (c), (d)   GOSIF anomalies 
 versus water table depth (HAND), following the same analysis as in (a, b) for EVI. 

 Extended Data Fig. 9. Development of a Directed acyclic graph (DAG) representing the structure of 
 factors influencing tropical forest responses to drought. (a)  Initially hypothesized DAG  characterizing 
 the causal relationships among climatic, environmental, and forest variables (measured variables depicted 
 as blue nodes, unmeasured rooting depth is depicted in gray) leading to forest drought response (other 
 color node), with arrows representing the hypothesized causal links.  (b)  DAG-data consistency tests for 
 initial DAG  , with the largest 20 approximated non-linear  correlation coefficients (estimated via root mean 
 square error of approximation, RMSEA) between unlinked variables in (a). (Note:  unlinked variables in a 
 DAG are hypothesized to have zero correlation or zero conditional correlation; thus, the second row of 
 panel b tests “DR_||_DSL | DL” -- whether DR is independent of DSL conditioned on DL, by estimating 
 the non-linear correlation between DR and the residuals of DSL regressed on DL.)  Correlations greater 
 than an acceptability threshold (dashed vertical lines at ±0.30) fail the test of conditional independence, 
 addressed by adding to the DAG either a direct causal link (indicated by a green symbol), or links to a 
 common cause (pink symbol) (such added arrows are included in panel c).  (c)  Final DAG  after correcting 
 for conditional independency inconsistencies of the initial DAG in A, in light of ecological 
 considerations. Also illustrates use of the backdoor criterion to determine the causal effect of ‘drought 
 length (DL)’ (the exposed predictor node and associated forward causal paths, in green) on forest drought 
 response (corresponding to the model in  Extended Data  Fig  . 10c ), while blocking the confounding 
 variable dry season length, DSL (hypothesized to itself affect DL) and its associated causal backdoor 
 paths (which are considered non-causal paths with respect to the exposed variable DL) (in pink).  (D) 
 DAG-Data consistency tests for final DAG  (panel c),  showing the largest 20 RMSEA values. 

 Extended Data Fig. 10. Causal effects of different variables derived from DAG employing backdoor 
 criterion, for:  (a)(b)(c) the Southern Amazon across all three droughts:  (a)  of HAND (no backdoor 
 to be blocked) (  b  ) of PAR (adjusting for back door  paths through drought length, dry season length) (  c  ) of 
 Drought length (adjusting for back door path through dry season length) on EVI responses (adjusted EVI 
 prediction)  ; (d)(e)(f) the Amazon basin during the  2015 drought: (d)  of  forest height, categorized by 
 shallow (blue, HAND=0-10 m) and deep (red, HAND=20-40 m) water tables (adjusting for back door 
 paths through soil fertility, soil texture and dry season length),  (e)  of soil fertility (adjusting  for back door 
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 path through dry season length)  (f)  of  soil texture (no backdoor path to be blocked). Causal effects are on 
 EVI drought anomalies (adjusted EVI predictions after conditioning confounding variables in causal 
 GAMs, lines with 95% confidence shaded area). 

 Extended  Data  Fig.  11.  The  sensitivity  of  forest  response  to  soil  texture  (sand  content)  in  basin-wide 
 GAM  analysis:  GAM-predicted  adjusted  EVI  anomaly  (left  axis)  versus  soil  sand  content  (%),  with 
 water  table-depth  in  color  (shallow=blue  to  deep=red),  paired  with  distributions  of  mean  forest  height  in 
 each  soil  texture  bin  (bottom  graph,  right  axis).  ‘Adjusted’  GAM  predictions  are  made  by  setting 
 non-displayed  predictors  (climate  variables,  tree-height,  soil  fertility)  to  their  median  values  during  the 
 drought. 

 Extended Data Fig. 12  .  Scale-dependence of Southern  Amazon forest responses to drought, showing 
 that detected response patterns are largely invariant across different scales of analysis  : (  a  ) At 0.4 
 degree (40-km) scale (across the Southern Amazon. all three droughts):  Climate-adjusted EVI responses 
 (standardized anomalies from MODIS) vs. water-table depths (indexed by HAND) for observations (solid 
 points ±95% CI and solid regression line) and for unified multi-drought GAM predictions (model of 
 Extended Data Table 1a, shaded bands and dashed regression line slopes) for the 2005 (green, 
 slope=-0.019 ±0.001 SD m-1), 2010 (purple, slope=-0.020±0.002 SD m-1), and 2015 (blue, 
 slope=-0.028±0.002 SD m-1) droughts; (  b  ) At 1-km scale  (across the Southern Amazon, all three 
 droughts), as in (a): climate-adjusted EVI responses vs. HAND for observations (solid points and 
 regression line) and corresponding GAM (with the same Extended Data Table 1a model now fit at 1km 
 scale, revealing autocorrelation in observations causing too-narrow confidence bands, and slight model 
 underpredictions of the extremes of the 2005 greenup and the 2010 browdown, but maintaining the 
 similar negative dependence on HAND across all droughts); (  c  ) At 30 to 180 m scales (for a forest region 
 around Manaus, 2015-2016 drought only):  Delta EVI (the fraction change in EVI due to the drought = 
 (after-drought EVI (July 2016) - pre-drought EVI (August 2015))/pre-drought EVI) (Landsat OLI8, at 
 30m resolution) vs. water-table depths (indexed by HAND) for Landsat observations (solid points ±95% 
 CI and solid regression line) at native (30m) and aggregated to 90 and 180-m scales.  Also shown in the 
 bottom of each panel is the distribution of water table depth at each scale.  Aggregations to larger 
 (coarser) scales induce an apparent regression towards the mean in the water table depth distributions (as 
 more extreme water table depths at finer scales become diluted by averaging to large scales), while 
 similar dilution of extremes in EVI response (not shown) preserves the overall relation between EVI 
 responses and water table depth (especially evident in the Landsat analysis where the slopes through data 
 aggregated at different scales do not detectably differ). 

 Extended Data Fig. 13. The sensitivity of Amazon forest drought responses to dry versus wet season 
 drought periods, across the three-droughts: (a)  distribution  of the proportion of drought that was in the 
 dry season (0 = all in the wet season to 1= all in the dry season) for drought-affected pixels in each of the 
 three droughts.  (b)  GAM-predicted EVI anomaly versus  PAR, for different proportions of dry season 
 drought (blue=all wet to red=all dry, corresponding to colored tick marks in  the vertical axis of a).  (c) 
 Adjusted EVI anomaly from GAM prediction versus drought length, for different proportions of 
 dry-season drought (blue to red, as in panel b). 

 Extended Data Fig. 14. The sensitivity of Amazon intact terra firme forest to drought responses, 
 excluding degraded forests.  Basin-wide Amazon intact  forest responses to the 2015 drought, structured 
 by ecotopes and predicted by whole-basin GAM analysis (fit by model of Extended Data Table 1d, but 
 fully excluding forests categorized as degraded  86  in fitting the model): GAM partial predictions of EVI 
 anomalies (color scale), displayed identical to the design of Fig. 4 (for intact terra firme forests, but 
 including some partly degraded forests) for (  a  ) soil  fertility  43  and HAND  25  , and for (  b  ) forest height  45  and 
 HAND  25  . ecotope distributions are in the margins,  identical to those shown in Fig. 4. (  c  )(  d  ) adjusted  EVI 
 anomaly versus HAND with increasing (c) fertility or (d) forest height, each color-coded as in Fig. 4. 
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 Note: ‘adjusted’ EVI anomalies indicate that climate and ecotope factors not displayed in the graph are 
 held constant at basin-wide (a-d) or regional average values (e). 

 Extended Data Fig. 15. (a) Remotely sensed map of MAIAC EVI (1-km resolution) (green to blue 
 color scale), overlaid with aboveground NPP (ANPP) rates from 321 ground-monitored forest plots 
 (red circles, % y  -1  ) as aggregated to 1 degree grid  plots (RAINFOR plots in Brienen et al.  2  ), with  both  EVI 
 and ANPP taken during the 2000-2011 interval. ANPP rate is calculated as Aboveground Biomass (AGB) 
 gain (Mg/(ha  ·  yr)) (total annual AGB productivity of  surviving trees plus recruitment, plus inferred growth 
 of trees that died between censusing intervals) divided by initial AGB (Mg/ha) (standing above ground 
 biomass at the start of the census interval).  (b)  ANPP rates as predicted by EVI  (points from (a) plus 
 solid regression line with statistics; Dashed line and associated statistics in gray represent linear 
 regression without the high leverage point, shown in red, with Cook’s distances > 4/n, where n=number of 
 points  132  .).  EVI is the mean extracted from intervals  matching the average census interval of the 
 corresponding plots in Brienen et al.  2 

 Extended Data Fig. 16. Remotely sensed photosynthetic indices versus ground-monitored tree 
 demography in shallow water table forests during the 2015-2016 drought  26  : Top row:  MAIAC EVI 
 standardized drought anomalies  :  26  (1-km pixels) versus  corresponding ground-monitored (  a  ) mortality, (  b  ) 
 recruitment, and (  c  ) mortality:recruitment ratios  in 1-ha plots.  Bottom row  : GOSIF standardized drought 
 anomalies (5-km pixels) versus ground-monitored (  d  )  mortality, (  e  ) recruitment, and (  f  ) 
 mortality:recruitment ratios; Solid lines and statistics (R  2  and p-values) represent standard linear 
 regression fits to all data. Red points, if they exist, are high leverage, i.e. with Cook’s distances > 4/n, 
 where n=number of points  132  , and dotted lines and  associated statistics in gray represent standard linear 
 regressions without such points , showing that remote detection of ground-derived demographic trends is 
 robust. 

 Extended Data Fig. 17.  Forest response to the 2015  drought in drought-affected pixels:  (  a  )  Observed 
 EVI anomalies (resampled at 0.4 degrees to match model resolution which accounts for spatial 
 autocorrelation (see  Extended Data Fig  . 7). (  b  )  GAM-predicted  EVI anomalies (model of Extended Data 
 Table 1d). (  c  ) Residual EVI anomalies (panel a observations  minus panel b predictions). The GAM 
 well-predicts the pattern of response (Panel b), but under-estimates the extremes of the responses (as 
 evident from residuals in panel c continuing to show greening/browning patterns beyond the predictions). 

 Extended Data Fig. 18. Map of Amazon forest biogeography of resilience, overlaid with mean winds 
 (arrows, at height 650 hPa) and arc of deforestation.  The most productive as well as the most 
 vulnerable forests (in red) are also the ones most suffering deforestation (the “arc of deforestation” which 
 is causing local climate affects that are stressing even more our most vulnerable forests. These “arc of 
 deforestation”/ vulnerable  forests are often upwind forests  133  (especially when the Intertropical 
 convergence zone, ITCZ, swings to the south) so they are the leading edge of hydrological recycling in 
 the Amazon. 
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 Extended Data Table 1  .  Generalized Additive Models  (GAM)  for  : (  a  ) the southern Amazon, (  b  ) the 
 everwet Amazon, (  c  ) the Guiana shield (all droughts  combined), and for (  d  ) the whole basin (2015 
 drought only), all on a 0.4 degree spatial grid. The  is the difference from the lowest AIC (selected)  ∆  𝐴𝐼𝐶 
 model (  =0), relative to a “full model” defined  in columns 2-3.  For details, see Methods, Section  ∆  𝐴𝐼𝐶 
 2.6.1. 

 Extended Data Table 2.  Variable inflation factors  (VIF, top row) and pearson correlation coefficients 
 (matrix) among climate and ecotope variables in drought-affected regions, across all droughts (first 
 number in each entry) and in the 2015/16 drought only (second number). Variable inflation factors 
 measure the severity of multicollinearity of a variable with all other independent variables jointly in a 
 multiple regression, with VIFs of 5 or less often considered acceptable  134  . 
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