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‭Summary paragraph (216 words, target: 200):‬‭Amazonia‬‭contains the most extensive tropical‬

‭forests on Earth, but Amazon carbon sinks of atmospheric CO‬‭2‬ ‭are declining, as‬

‭deforestation and climate change-associated droughts‬‭1–4‬ ‭threaten to push these forests past‬

‭a tipping point towards collapse‬‭5–8‬‭.‬‭Forests exhibit‬‭complex drought responses, indicating‬

‭both resilience (photosynthetic “greening”) and vulnerability (browning and tree‬

‭mortality), that are difficult to explain by climate variation alone‬‭9–17‬‭.‬‭Here, we combine‬

‭remotely-sensed photosynthetic indices with ground-measured tree demography to identify‬

‭mechanisms underlying drought resilience/vulnerability in different intact forest‬

‭‘ecotopes’‬‭18,19‬ ‭(defined by water-table depth, soil‬‭fertility and texture, and vegetation‬

‭characteristics). In higher-fertility southern Amazonia, drought response was structured by‬

‭water-table depth, with resilient greening in shallow-water-table-forests (where greater‬

‭water availability heightened response to excess sunlight), contrasting with vulnerability‬

‭(“browning” and excess tree mortality) over deeper water tables. Notably,‬

‭shallow-water-table-forest resilience weakened as drought lengthened. By contrast,‬

‭lower-fertility northern Amazonia, with slower-growing but hardier trees (or alternatively,‬
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‭tall forests, with deep-rooted water access), supported more drought-resilient forests‬

‭independent of water-table depth. This new functional biogeography of drought response‬

‭provides a framework for conservation decisions and improved predictions of‬

‭heterogeneous forest responses to future climate changes, warning that Amazonia’s most‬

‭productive forests are also at greatest risk, and that longer/more frequent droughts are‬

‭undermining multiple ecohydrological strategies and capacities for Amazon forest‬

‭resilience.‬

‭Three ‘once in a century’ droughts (Extended Data Fig. 1) occurred in the Amazon basin‬

‭over a single decade, in 2005, 2010, and 2015-2016‬‭20,21‬‭,‬‭provoking multiple difficult-to-explain‬

‭forest responses (‬‭Fig. 1‬‭,‬‭Extended Data Fig.‬‭2). For‬‭instance, unexpected overall increases‬

‭(“green-up”) in remotely sensed canopy greenness (a proxy for photosynthetic function) during‬

‭the 2005 drought‬‭9,10‬ ‭(‬‭Fig. 1a‬‭,‬‭Extended Data Fig‬‭.‬‭2a) appear at odds with reports of simultaneous‬

‭carbon losses from increased tree mortality observed in ground plots‬‭16‬‭. Further, the 2005‬

‭green-up contrasts with a strong decrease in greenness (“browndown”) during the 2010 drought‬‭11‬

‭(‬‭Fig. 1b‬‭,‬‭Extended Data Fig‬‭. 2b), while the 2015/2016‬‭El Niño, the largest and most intense‬

‭drought of the three, provoked an intermediate response that also included significant green-up‬

‭regions (‬‭Fig. 1c‬‭,‬‭Extended Data Fig‬‭. 2c). Climate‬‭drivers alone, though important‬‭10‬‭, are evidently‬

‭insufficient to predict the complexity of drought responses across heterogeneous landscapes‬‭22‬‭.‬

‭Still missing is a general understanding of what drives differences in drought resilience across‬

‭Amazonian landscapes, a “functional biogeography”‬‭23‬ ‭of forest drought response that can‬

‭address the question: why are some forests (or times) resilient (exhibiting green-up, or reduced‬

‭mortality), while others are vulnerable (exhibiting browndown, or enhanced mortality)?‬

‭Here, we used satellite indices of forest photosynthesis to test whether three‬

‭non-exclusive ecological hypotheses that go beyond climate-only explanations, developed from‬
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‭forest plot-scale observations, can also predict regional scale responses to these recent droughts‬

‭across intact‬‭terra firme‬‭forest types of the Amazon‬‭basin.‬

‭The first (“other side of drought”‬‭24‬‭) hypothesis is‬‭that shallow water table hydrological‬

‭environments‬‭25‬ ‭provide trees with greater access to‬‭water resources, making them more drought‬

‭resilient (as observed in forest plots near Manaus‬‭26,27‬‭),‬‭than trees in forests over deep water‬

‭tables, whose mortality rates typically increase with drought‬‭2,16‬‭. This hypothesis predicts that‬

‭shallow water table forests should show less browndown (or even experience green-up with‬

‭reduced anoxia or more sunlight due to reduced cloud cover during drought) compared to forests‬

‭with deep water tables.‬

‭The second (“soil fertility”) hypothesis‬‭28,29‬ ‭is that‬‭in more fertile forests, where tree‬

‭growth and turnover rates are high, fast growing trees that invest less in drought tolerance have a‬

‭competitive advantage over trees that invest more. This is because it is easier to simply regrow‬

‭trees cheaply when resources are plentiful, especially when tree-killing droughts are rare. This‬

‭hypothesis thus predicts that more fertile forests will exhibit greater drought susceptibility (more‬

‭browndown or less green-up) than less fertile forests.‬

‭The third (“rooting depth/traits”) hypothesis focuses on the role of tree characteristics‬

‭themselves. This hypothesis predicts that forests dominated either by species with drought‬

‭avoidance traits (tall, deeply rooted trees)‬‭30–33‬‭,‬‭or drought tolerance traits (high wood density or‬

‭embolism resistant xylem)‬‭29,34–36‬ ‭are more drought‬‭tolerant, even over deep water tables.‬

‭These three dimensions (water table depth, soil fertility, and vegetation properties) define‬

‭an ‘ecotope space’, within which different forest ecotopes are located and may interact with and‬

‭respond to climate in different ways. To the extent such responses are predictably structured by‬

‭ecotopes (which also vary by geographic region within the Amazon,‬‭Extended Data Fig‬‭. 3), it‬
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‭should be possible to derive a unified functional biogeography of the basin-wide diversity of‬

‭forest drought responses.‬

‭We tested these hypotheses using satellite indices of photosynthetic capacity (the‬

‭Enhanced Vegetation Index, EVI, corrected for view- and illumination-geometry artifacts)‬‭37‬ ‭and‬

‭of photosynthetic activity (the Global OCO-2 Solar Induced Fluorescence product, GOSIF)‬‭38‬‭. We‬

‭focused on drought-affected regions, defined as those whose maximum cumulative water deficit‬

‭(MCWD, methods §2.3) reached more than one standard deviation below the mean of the remote‬

‭sensing record (from 2000-2020)‬‭39‬‭. Vegetation index‬‭anomalies during drought were analyzed as‬

‭a function of water table depth (as captured by “height above nearest drainage”, or HAND‬‭25‬‭) and‬

‭of gridded climate data (photosynthetically active radiation (PAR), vapor pressure deficit (VPD),‬

‭and precipitation) derived from remote sensing platforms (see methods §2.4,‬‭Extended Data Fig‬‭.‬

‭5).‬

‭We took relative green-up (more positive or less negative vegetation anomalies) as an‬

‭index of resilient photosynthetic capacity or activity, because it suggests more carbon resources‬

‭for responding to stress, and, notably, is predictive of outcomes on the ground commonly‬

‭associated with resilience at the individual tree scale (lower mortality, greater growth, and‬

‭greater xylem embolism resistance, see methods §2.4).‬

‭Southern Amazon forest drought response‬

‭Focusing first on the locale of the 2005 drought (in the Southern Amazon, one of three‬

‭regions identified in methods §2.2,‬‭Extended Data‬‭Fig‬‭. 6), we found substantial structuring of the‬

‭2005 greening by water table depth across the drought-impacted region. This is visually evident‬

‭in the spatial correspondence of 2005 forest green-up/browndown regions (Fig. 1a, ellipse) with‬
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‭shallow/deep water table forests (‬‭Fig. 2a‬‭, ellipse), and is quantified by bin-averaged EVI (‬‭Fig.‬

‭2b‬‭) and GOSIF (‬‭Extended Data Fig‬‭. 2d, green symbols/lines)‬‭observations vs. water table depth.‬

‭Vegetation green-up in 2005 was concentrated in pixels with shallow water tables, but as water‬

‭tables deepened, positive vegetation index “greening” anomalies decreased and then reversed to‬

‭become negative anomalies (Fig. 2b,‬‭Extended Data‬‭Fig‬‭. 2d). The strongest 2005 green-up,‬

‭intriguingly, was in forests that experienced the strongest drought (Fig. 2b, dark orange points),‬

‭apparently because these areas experienced a greater frequency of excess sunlight (‬‭Fig. 2c‬

‭histograms), which was particularly advantageous to shallow water table forests (Fig. 2c,‬

‭blue-hued lines).‬

‭In order to rigorously quantify the sensitivity of forest response across multiple droughts,‬

‭we implemented two separate statistical approaches in sequence: non-linear multiple regression‬

‭(using Generalized Additive Modeling, GAM), to test hypotheses and predict basin-wide drought‬

‭anomalies, using AIC selection to identify the best predictive models (methods §2.6.1)‬‭40‬‭, and‬

‭Structural Causal Modeling (SCM) (using Directed Acyclic Graphs, DAGs) to more‬

‭systematically evaluate the causal relations suggested by the GAM analysis (methods §2.6.2)‬‭41‬‭,‬

‭Both modeling approaches were conducted on a 0.4 degree grid, the resolution needed to avoid‬

‭inflation of statistical significance by accounting for spatial autocorrelation among nearby pixels‬

‭(methods §2.5,‬‭Extended Data Fig‬‭. 7). We focus on‬‭the multiple regression GAM results below,‬

‭and report comparisons with SCM results in methods §2.6.3.‬

‭When all three droughts were modeled simultaneously within Southern Amazonia, using‬

‭GAM to also account for the effects of climate (‬‭Extended‬‭Data Table 1a‬‭), we found that despite‬

‭large differences observed in responses among the years (Fig. 1: a vs b vs c), the overall‬

‭other-side-of-drought (hypothesis 1) prediction of a negative relationship between remotely‬
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‭sensed vegetation anomalies and deepening water tables observed in 2005 was consistently‬

‭confirmed across all three droughts in this region (‬‭Fig. 3a‬‭). Notably, though there was an almost‬

‭universal browning response to the 2010 drought (Fig. 1b), vegetation anomalies remained‬

‭significantly structured by water table depth (Fig. 3a, purple symbols/lines).‬

‭This analysis suggests that the ability of shallow water table forests (but not of deep) to‬

‭respond positively to excess sunlight (possibly including relief from anoxia‬‭24‬‭) was a key general‬

‭(multi-drought) mechanism of southern Amazon forest drought response (‬‭Fig. 3b‬‭colored‬

‭curves). Inter-drought differences in climate drivers — not differences in water-table depth‬

‭distribution of impacted areas (Fig. 3a, distributions did not differ much) — accounted for much‬

‭of the inter-drought differences in forest response (in Fig. 3a, the observed points correspond‬

‭well with the model predictions, which differ among droughts only due to climate). Notably,‬

‭PAR increased during the 2005 and 2015/2016 droughts (Fig. 3b distributions;‬‭Extended Data‬

‭Fig‬‭. 5a, g), promoting green-up, but decreased during‬‭the 2010 drought (due in part to excess‬

‭smoke aerosols from high fire rates‬‭42‬‭, Fig. 3b distribution;‬‭Extended Data Fig‬‭. 5d). Anomalously‬

‭high VPD across the droughted region in 2010 (‬‭Extended‬‭Data Fig‬‭. 5e vs‬‭Extended Data Fig‬‭. 5b,‬

‭H), may also have contributed to reduced green-up/increased browndown in 2010.‬

‭Importantly, inter-drought differences in Southern Amazon forest responses were‬

‭mediated by drought length (‬‭Fig. 3c‬‭) (as hypothesized‬‭in Costa et al‬‭24‬‭). Despite the even greater‬

‭sunlight increases in 2015 than in 2005 (Fig. 3b histograms), the overall green-up in 2015/2016‬

‭was less than in 2005 (Fig. 3a), apparently due to the exceptional length of the latter drought‬

‭(Fig. 3c distribution). Initial green-up in shallow-water-table-forests (blue lines in Fig. 3c)‬

‭reversed to browndown in regions experiencing drought longer than three months, with‬
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‭increasingly stronger browndown the longer the drought. Sufficiently long droughts thus likely‬

‭deplete shallow water tables, diminishing and then reversing their protective effect.‬

‭The contrasting responses between shallow and deep water table forests of the southern‬

‭Amazon support the “other side of drought” (hypothesis 1), and at the same time help reconcile‬

‭the much-discussed apparent disagreement between remote sensing studies showing 2005‬

‭drought-associated green-up on average‬‭9,10‬ ‭(interpreted‬‭as showing forest resilience to or even‬

‭benefit from drought) and ground-based plot studies showing 2005 drought-associated excess in‬

‭tree mortality on average‬‭16‬ ‭(interpreted as showing‬‭forest vulnerability to drought).  Our more‬

‭fine-grained analysis suggests, however, that the excess greening and the excess mortality were‬

‭not in the same places; it is the locales with shallow water table forests that were benefited by‬

‭drought, while deep water table forests are vulnerable, a consistent pattern revealed by both‬

‭remote sensing (Figs. 3a, 2b) and ground-based forest demography (tree mortality drought‬

‭response increases with water table depth,‬‭Fig. 3d‬‭).‬‭The apparent disagreement arises because‬

‭the published plot-based sampling efforts‬‭2,16‬ ‭are‬‭not random, but skewed towards the deeper‬

‭water table regions which experienced browndown during drought (‬‭Fig. 3e‬‭& Fig. 2b,‬

‭orange-shaded regions), while the basin as a whole has more shallow water table forests like‬

‭those that experienced greening (Fig. 3e & Fig. 2b, green-shaded regions) (half of the Amazon‬

‭basin). Shallow water tables may thus gain (or lose less) carbon during drought (as seen in‬

‭Esteban et al.‬‭27‬‭) partially offsetting the more negative‬‭effect of drought seen on forest mortality‬

‭and carbon balance in deeper water table forests‬‭2,16‬‭.‬

‭Basin-wide forest drought response‬

‭Although we observed consistent support for the “other-side-of-drought” (hypothesis 1)‬

‭across both time (three droughts) and space in southern Amazon forests (Fig. 3a) (separately‬
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‭confirmed by causal modeling analysis,‬‭Extended Data Fig.‬‭10a), we found consistently‬‭opposite‬

‭drought responses with water table depth (EVI anomalies increased with water table depth) in the‬

‭everwet Amazon of the northwest and in the lower-fertility Guiana shield in the northeast‬

‭(‬‭Extended Data Fig‬‭. 8, where fertility is quantified‬‭as exchangeable base cations‬‭43‬‭). These‬

‭observations falsify hypothesis 1 outside the southern Amazon. We next used forest responses to‬

‭the 2015/2016 drought (the only drought large enough to substantially impact large portions of‬

‭all three regions of the basin simultaneously), to test whether joint consideration of all three‬

‭hypotheses together could explain the biogeography of forest drought response across the basin‬

‭as a whole.‬

‭When gridded ecotope factors (soil fertility and texture‬‭43,44‬ ‭and  vegetation properties‬

‭such as canopy height‬‭34,45‬‭) were included as predictors‬‭in our GAM analyses for the 2015/2016‬

‭drought (‬‭Fig. 4‬‭, Extended Data Table 1d), coherent‬‭differences between southern and northern‬

‭Amazon regions emerged from interacting effects of water table depth (hypothesis 1‬‭24‬‭), soil‬

‭fertility (hypothesis 2‬‭28,29‬‭) and tree rooting depth‬‭(hypothesis 3, using forest canopy height as a‬

‭rough proxy for rooting depth when water tables are deep, consistent with limited observations‬

‭of tree height-rooting depth relations‬‭31–33,46‬‭.‬

‭The effect of water-table depth on drought response across regions depended on soil‬

‭fertility (Fig. 4a): Highly fertile areas most strongly evinced the protective effect of shallow‬

‭water tables (Fig. 4a, green portion of the fertility distribution, corresponding to green lines in‬

‭Fig. 4c), while lower-fertility areas were either less affected by water table depth or showed the‬

‭opposite response pattern (Fig. 4a, blue portion of the forest height distribution, corresponding to‬

‭blue lines in Fig. 4c). This is consistent with hypothesis 2‬‭28,29‬ ‭that as soil nutrients become more‬

‭limiting, trees invest in drought resistance traits (e.g. high xylem embolism resistance), and with‬
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‭observations of strong association between regions of low soil fertility and high wood density‬

‭(Extended Data Table 2).  We also noted interactions of water table depth with soil texture‬

‭(‬‭Extended Data Fig.‬‭11), as discussed in methods §2.6.1(ii).‬

‭The effect of water-table depth on drought response also depended on forest height (Fig.‬

‭4b), with the tallest forests, expected to have deeper rooting zones, enabling green-up even in‬

‭regions (like the Guiana shield) with deeper water tables (Fig. 4b red portion of the forest height‬

‭distribution, corresponding to red lines in Fig. 4d).  Meanwhile, taller forests performed worse‬

‭than shorter tree forests in shallow water table areas (Fig. 4d and‬‭Extended Data Fig‬‭. 10d, red vs‬

‭blue lines), consistent with findings that when lacking a deep root advantage, tall trees may‬

‭suffer higher drought mortality due to greater exposure to atmospheric drought (high VPD)‬‭47‬‭.‬

‭Deep water tables may promote deep-rooted tall trees with resilience to seasonal atmospheric‬

‭and soil water deficit exposure, with access to more consistently available deep soil water,‬

‭enabling them (like shallow rooted trees over shallow water tables) to take advantage of extra‬

‭sunlight during moderate droughts.‬

‭An empirical test of the basin-wide model predictions (Fig. 4a-d) showed that the fully‬

‭integrated analysis accounting for the differences in the ecotope factors in different regions‬

‭(‬‭Extended Data Fig‬‭. 3), was able to consistently predict‬‭the different kinds of drought responses‬

‭observed in different regions of the basin (Fig. 4e).‬

‭Our GAM modeling framework powerfully allows further investigation of additional‬

‭questions, generating a rich suite of testable hypotheses for future research into forest drought‬

‭response (methods §3). These include the question of whether coarse-scale patterns (like those‬

‭deriving from the 1-40 km pixels used here) may emerge from such mechanisms as access to‬

‭water tables, which vary across landscapes, from forest plateaus to adjacent valleys, at fine scales‬
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‭of just a few meters (‬‭Extended Data Fig‬‭. 12); how individual relatively tall trees may be at‬

‭greater drought risk‬‭48,49‬ ‭even within tall forests‬‭whose average height is here predicted to be more‬

‭protective against drought; whether forests are more sensitive to droughts that occur in wet‬

‭versus dry seasons (‬‭Extended Data Fig‬‭. 13); the effects‬‭of forest degradation on drought‬

‭sensitivity (‬‭Extended Data Fig‬‭. 14); and of the generality‬‭of these mechanisms in other‬

‭ecosystem types in the Amazon basin and beyond.‬

‭A functional biogeography of Amazon drought‬

‭We used the GAM predictions (Fig. 4) of different drought responses across different‬

‭forest ecotopes (here defined by water table depth, soil fertility and texture, and forest height) to‬

‭map a biogeography of forest drought resilience (where resilient pixels, as defined in methods‬

‭§2.4, are those in which ecotope factors promote relative green-up) and vulnerability (pixels in‬

‭which ecotope factors promote browndown) across the Amazon basin (‬‭Fig. 5a‬‭), including the‬

‭ecotope factor combinations conducive (or not) to resilience (‬‭Fig. 5b, c‬‭).‬

‭This functional biogeography reveals the importance of ecotopes in structuring forest‬

‭drought response: first, simply because the GAM models which accouted for forest ecotopes (via‬

‭the variables HAND, SoilFertility, SoilTexture, and ForestHeight;‬‭Extended Data Fig‬‭. 3) along‬

‭with climate had significantly more predictive power (higher R‬‭2‬ ‭while selected by lower AIC)‬

‭than climate-only models (Extended Data Table 1). More importantly, the ecotope-defined‬

‭biogeography allows attribution of greening-inferred resilience in different forests to distinct‬

‭mechanisms. For example, during the 2015/2016 drought, forest greening was observed both in‬

‭the shallow water table forests of the Rio Negro basin and in deep water table forests of Amapa‬

‭state (“RN” and “AP” regions, respectively, highlighted in Figs. 1c, 4b and 5a). The‬

‭biogeography (Fig. 5b) and GAM prediction (Fig. 4b) show both regions sharing infertile soils,‬
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‭but they point in particular to forest height—and associated deep rooting zones enabling access‬

‭to deep water—as a key factor supporting resilience/greening in the deep water table forests of‬

‭AP (coded orange in Fig. 5b, c), whereas the RN forests (coded green in Fig. 5b,c), though short,‬

‭had access to shallow water tables.‬

‭This new analysis goes beyond previous climate-based explanations of Amazon forest‬

‭drought response, and importantly complements the recent map of‬‭external‬‭anthropogenic‬

‭tipping-point threats (due to combined stresses of droughts, deforestation, fire, roads, etc.)‬‭7‬ ‭with‬

‭a biogeography of‬‭intrinsic‬‭ecological resilience/vulnerability‬‭(due to characteristics of forests in‬

‭their adapted environments). Interaction among the three different hypotheses—that hydrologic‬

‭environments, soil fertility , and tree drought resistance traits structure forest drought‬

‭response—shows that no single factor could explain drought response across the whole basin‬

‭through different droughts. Thus, shallow water table hydrologic environments do indeed protect‬

‭against drought‬‭24‬‭, but only relatively, especially‬‭in regions where high fertility stimulates the fast‬

‭growth of hydraulically more vulnerable trees‬‭28‬ ‭(Fig.‬‭5c, where the blue-labeled fertile regions‬

‭with shallow water tables are the least vulnerable among the first four “more vulnerable”‬

‭combinations on the left). The most resilient forest types (Fig. 5c) were those with low soil‬

‭fertility, occupying all categories of the “more resilient” end of the drought-response‬

‭biogeography (the right side of Fig. 5c).‬

‭Confidence in this new forest biogeography arises from corroboration by ground‬

‭observations, and by consistent results from different modeling approaches (GAM predictive‬

‭models, Figs. 3 & 4, suggested causal linkages to driving variables that were confirmed by SCM‬

‭models that more rigorously test for causation,‬‭Extended‬‭Data Figs.‬‭9 & 10). Remote sensing‬

‭observations generally align well with ecosystem photosynthetic fluxes derived from towers on‬
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‭the ground (methods §1.6), and here, with tree demography during the three droughts (Fig. 3a vs‬

‭3d for 2005 and 2010, and‬‭Extended Data Fig‬‭. 16, for‬‭2015), with remote photosynthetic‬

‭anomalies negatively correlated to mortality, and positively to recruitment, as expected if more‬

‭negative anomalies are associated with increased plant stress. Notably, our GAM-derived remote‬

‭sensing resilience map also independently predicted observations in forest plots of tree xylem‬

‭hydraulic safety margins to mortality-inducing embolism‬‭50‬‭,‬‭a widely-cited physiological drought‬

‭tolerance trait (Fig. 5a inset).‬

‭Implications of a new Biogeography‬

‭This work has important implications for understanding forest responses to climatic‬

‭variability and change. First, because shallow water table forests in Amazonia are extensive‬

‭(30-40% of the southern Amazon where they are found to be protective during drought) but‬

‭neglected by most previous studies of forest drought sensitivity (Fig. 3e histograms), southern‬

‭Amazon forests are likely more resilient to drought than common estimates of climate sensitivity‬

‭imply‬‭16‬‭, and large-scale plot-based estimates of a‬‭drought-induced decline in the Amazon forest‬

‭carbon sink‬‭2‬ ‭may need to be adjusted to account for‬‭these more drought resilient but neglected‬

‭forests.‬

‭However, this analysis also warns that climate change is likely simultaneously‬

‭undermining different strategies and capacities for drought resilience, and highlights specific‬

‭mechanisms and Amazon regions likely to be vulnerable to tipping-point failure:  the resilience‬

‭conveyed by shallow water table hydrologic environments in certain regions (or the long-term‬

‭benefits of a strategy of growing “trees fast in high-fertility environments to replace those easily‬

‭lost to drought‬‭28‬‭) is likely limited under growing‬‭climate change. The buffering effect of shallow‬

‭water tables appears limited to short duration droughts (< 3 months, Fig. 3c) that do not last long‬
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‭enough to deplete water tables. And the benefits of re-growing trees quickly that are lost to‬

‭once-in-a-century droughts (whether or not protected by shallow water tables) are much reduced‬

‭when those drought frequencies increase to become 5 or 10-year droughts (as seen recently and‬

‭as predicted to continue in the near future‬‭51,52‬‭).‬‭Importantly, these fertility results imply‬

‭(consistent with a recent ground-based study of hydraulic traits‬‭29‬‭) that it is Amazonia’s most‬

‭productive higher-fertility forests that are actually those most vulnerable to future climate‬

‭change.‬

‭Finally, we note that the geographic distribution of these most-vulnerable forests (Fig. 5a‬

‭reddish regions) has important warnings for sustaining the integrity of critical ecosystems both in‬

‭the basin and beyond. First, these vulnerable forests are at high risk of deforestation‬

‭(substantially overlapping with the “arc of deforestation,”‬‭Extended Data Fig‬‭. 18). More‬

‭importantly, because they are predominantly situated under prevailing winds that bring moist‬

‭Amazonian air to the south (‬‭Extended Data Fig‬‭. 18)‬‭they are critical to maintaining the‬

‭evapotranspiration that feeds (and likely amplifies‬‭53‬‭)‬‭the “atmospheric rivers” that bring‬

‭forest-recycled precipitable water from the Amazon regions to sustain South America’s‬

‭breadbasket in the agricultural regions of Brazil‬‭54‬‭.‬

‭This unified understanding of the functional biogeography of Amazon drought response‬

‭provides a basis both for establishing basin-wide priorities for conservation planning and for‬

‭achieving improved understanding and predictions of tropical forest vulnerability to current‬

‭droughts, threatened tipping points, and future climate change.‬
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‭FIGURE CAPTIONS‬

‭Fig. 1. Amazon forest remotely-sensed responses to the droughts of (a) 2005, (b) 2010, and‬

‭(c) 2015/2016, expressed as‬‭standardized anomalies‬‭of Enhanced Vegetation Index (EVI, a‬

‭proxy of photosynthetic capacity) in drought-affected pixels (defined in‬‭Extended Data Fig‬‭. 1).‬

‭(note:  panel A highlights an ellipse of green-up and browndown patterns that correspond to‬

‭shallow and deep water tables in Fig. 2a; panel C highlights two areas exhibiting green-up—RN,‬

‭in Rio Negro catchment, and AP in Amapa state—for comparison to Figs. 4-5).‬‭Insets:‬

‭Frequency distributions of MAIAC EVI anomalies in drought regions for (a) 2005 (‬ ‭=‬

‭+0.14, p<0.001, df =916, (b) 2010 (‬ ‭= -1.06, p<0.001,‬‭df=1057) and (c) 2015 (‬ ‭=‬

‭-0.57, p<0.001, df=2218) droughts. Statistics are from student's t-test, where, following the‬

‭variogram analysis (Methods §2.5) the degrees of freedom, df=n-1, were adjusted for‬

‭autocorrelation based on n = number of statistically independent 0.4° x 0.4° drought-affected‬

‭pixels in each drought region.‬

‭Fig. 2.‬‭Amazon forest response to 2005 drought is‬‭structured by water-table depth:‬‭(‬‭a‬‭)‬

‭Water-table depth map (indexed by Height Above Nearest Drainage, HAND, in meters, Andes‬

‭excluded‬‭25‬‭) with ellipse highlighting shallow and‬‭deep water tables that  correspond to green-up‬

‭and browndown patterns in Fig. 1a. (‬‭b‬‭) Observed EVI‬‭anomalies (solid symbols±SE, from Fig.‬

‭1a, left axis) bin-averaged by water-table depth (HAND), and by moderate, medium, and severe‬

‭drought pixels (those with MCWD 1-1.5 SD, 1.5-2 SD, and >2 SD below mean, respectively);‬

‭area histogram of drought-affected HAND (right axis). Average EVI anomaly across all‬

‭severities (horizontal lines) for shallow (0-8 m, green band) and deep water-table forests (>22 m,‬

‭orange band). (‬‭c‬‭) Observed EVI anomalies (solid symbols±SE,‬‭from Fig. 1a) bin-averaged by‬

‭PAR anomalies and by different water-table depths (HAND values) (upper panel); histograms of‬

‭PAR anomaly (lower panels) according to drought severity.‬
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‭Fig. 3. Southern Amazon forest responses to multiple droughts:  (a-c) GAM (Extended‬

‭Data Table 1a) predictions‬‭: (‬‭a‬‭) Climate-adjusted EVI‬‭responses vs. water-table depths (indexed‬

‭by HAND) support hypothesis 1 (with consistent negative slopes) for observations ( points ±95%‬

‭CI and solid regression line) and GAM predictions for the 2005 (green, slope=-0.019±0.001 SD‬

‭m‬‭-1‬‭), 2010 (purple, slope=-0.020±0.002 SD m‬‭-1‬‭), and‬‭2015 (blue, slope=-0.028±0.002 SD m‬‭-1‬‭)‬

‭droughts (shading and dashed regression lines), paired with HAND distributions  in each drought‬

‭region(bottom graphs, right axis); (‬‭b‬‭) PAR sensitivity,‬‭by HAND class, of (climate-adjusted) EVI‬

‭drought responses, paired with drought-specific area distributions of PAR anomalies (right axis),‬

‭show greater PAR sensitivity for shallower water tables. (‬‭c‬‭) Drought-length sensitivity, by‬

‭HAND class, of (climate-adjusted) EVI drought response, paired with drought-specific area‬

‭distributions of duration (in months) (bottom graphs, right axis) show that shallow-water-table‬

‭protection is diminished for long droughts. ‘Climate-adjusted’ responses use southern Amazon‬

‭drought-specific average climate to predict responses or adjust observations. Each drought’s‬

‭distribution occupies equal area across the three panels. (‬‭d‬‭) Above-ground biomass (AGB)‬

‭mortality drought responses (mortality-associated carbon flux, in percent change relative to‬

‭long-term MgC ha‬‭-1‬ ‭y‬‭-1‬ ‭in RAINFOR plots‬‭2‬‭) vs. water-table‬‭depth (HAND) ( points ±95% CI,‬

‭regression line for depths less than 30 meters) support hypothesis 1 (with consistent positive‬

‭slopes) for the 2005 (green, slope=1.4 % m‬‭-1‬‭, p=0.051)‬‭and 2010 (purple, slope=1.8 % m‬‭-1‬‭,‬

‭p=0.015) droughts, paired with (‬‭e‬‭) cumulative distributions‬‭of HAND area across basin (gray‬

‭bars, left axis), and distribution of plot-based sampling efforts (fractional effort, RAINFOR plot‬

‭area × years monitored, per HAND bin, divided by fractional basin area per HAND bin, blue‬

‭bars, right axis). This shows that plot sampling efforts underrepresent prevalent shallow‬

‭water-table forests that greened up (green band, ~55% of the basin, but 16% of the effort) and‬

‭over-represent deep water-table forests that browned down (orange band, ~20% of the basin but‬

‭55% of the effort).‬
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‭Fig. 4.‬‭Basin-wide Amazon forest responses to the‬‭2015 drought, structured by ecotopes‬

‭and predicted by whole-basin GAM analysis (Extended Data Table 1d):‬‭GAM partial‬

‭predictions of EVI anomalies (color scale) for (‬‭a‬‭)‬‭soil fertility‬‭43‬ ‭(vertical axis) and HAND‬‭25‬

‭(horizontal axis) terms only, and for (‬‭b‬‭) forest height‬‭45‬ ‭and HAND‬‭25‬ ‭terms only. Ecotope‬

‭distributions in southern, everwet, and Guiana shield forests are in A-B margins, and associated‬

‭99% confidence ellipses are in the graphs. Mean values of two areas exhibiting green-up in Fig.‬

‭1c (RN, in Rio Negro catchment, and AP in Amapa state) illustrate differing mechanisms of‬

‭green-up (especially evident in B, where tall trees, despite deep water tables, promote green-up‬

‭in AP, while shallow water tables promote green-up for RN). (‬‭c‬‭)(‬‭d‬‭) adjusted EVI anomaly versus‬

‭HAND with increasing (c) fertility (blue to green, corresponding to colored areas in fertility‬

‭distributions in a) or (d) forest height (blue to red, corresponding to colored areas in forest height‬

‭distributions in b). (‬‭e‬‭) Region-specific EVI anomaly‬‭sensitivities to HAND, comparing adjusted‬

‭observations (symbols) to adjusted GAM predictions (lines and 95% confidence shaded area).‬

‭Note: ‘adjusted’ EVI anomalies indicate that climate and ecotope factors not displayed in the‬

‭graph are held constant at basin-wide (a-d) or regional average values (e).‬

‭Fig. 5. A biogeography of Amazon forest drought resilience and vulnerability:‬‭(‬‭a‬‭) Regions‬

‭relatively more resilient (likely to exhibit EVI green-up) (green) or more vulnerable (red) to‬

‭drought, based on standardized GAM drought response predictions of EVI anomaly from‬

‭ecotope factors only (from Fig. 4, Extended Data Table 1d) (removing effects of climate‬

‭variability by setting climate equal to its basin-wide average) (see methods §2.8). Crosses are‬

‭validation sites where remote sensing-derived resilience predicts plot-based physiological‬

‭drought tolerance (tree hydraulic safety margins, HSM‬‭50‬‭) as seen in the inset (R‬‭2‬‭=0.65; p=0.008);‬

‭(‬‭b‬‭) Overlapping strategies and ecotopes structuring‬‭the distribution of relative drought resilience‬

‭mapped in (a), as promoted by presence of resilience factors:  shallow water tables‬

‭(HAND<10m, blue), low-fertility soils (cation concentrations<10‬‭-0.35‬ ‭cmol‬‭+‬‭/kg, yellow), or tall‬

‭deep-rooted trees (heights>32.5 m, red), with overlap indicated by the primary color mixing rules‬

‭in the legend, and white indicating no resilience factor (which notably corresponds well to the‬

‭most vulnerable red regions in a). (‬‭c‬‭) Distribution‬‭of resilience factor groups, and the proportion‬

‭of relatively vulnerable, resilient, or neutral forest associated with each (left axis) and mean‬

‭relative resilience (blue horizontal lines, right axis), ordered from most vulnerable to most‬

‭resilient.‬
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‭Methods‬
‭In this study, we applied a hypothesis-testing framework‬‭55,56‬‭,‬‭using remote sensing methods‬

‭to test a sequence of three key ecological hypotheses that predict how different forest types‬
‭respond to drought. To conduct these tests, we assembled key datasets (‬‭Section 1‬‭), including two‬
‭classic satellite products of vegetation photosynthetic function (the most recent version of the‬
‭Enhanced Vegetation Index, EVI, and Solar Induced Fluorescence, SIF) (section 1.1, including‬
‭their validation), gridded products of climate (section 1.2), water table depth, soil fertility and‬
‭texture, and vegetation properties defining ecotopes (section 1.3). We focused on intact‬
‭evergreen forests, mapping data in areas corresponding to evergreen forest cover in‬
‭non-floodplain, non-deforested forest regions (section 1.4). We assembled field datasets of forest‬
‭demography (from RAINFOR‬‭2‬ ‭and from Sousa et al.‬‭26‬‭)‬‭and of physiological drought tolerance‬
‭(Tavares et. al‬‭50‬‭) (section 1.5) to test remote sensing‬‭skill at capturing ground-measured metrics‬
‭for forest drought response (section 1.6).‬

‭To conduct the statistical analysis (‬‭Section 2‬‭), we‬‭first interpolated data products onto grids‬
‭of appropriate spatial resolution (section 2.1), and conducted a supervised classification analysis‬
‭of Amazon forests into three distinct regions defined by ecotope (section 2.2). We defined‬
‭climate anomalies and drought characteristics and duration on a pixel-by-pixel basis (section‬
‭2.3), defined forest drought resilience in terms of anomalies in vegetation function (section 2.4),‬
‭conducted a variogram analysis to remove effects of spatial autocorrelation (section 2.5), and‬
‭then evaluated the scale dependence, or sensitivity of key results to the pixel size/spatial‬
‭resolution (section 3). We derived statistical models of drought response (section 2.6) using two‬
‭independent approaches:  predictive regression modeling (General Additive Modeling, GAM, a‬
‭non-linear multiple regression technique where the most predictive models are selected by an‬
‭information criterion) (section 2.6.1), and Structural Causal Modeling (SCM, using Directed‬
‭Acyclic Graphs, DAG, section 2.6.2). We tested GAM predictions by comparison to adjusted‬
‭observations (section 2.7) and then used the basin-wide GAM predictive model (from section‬
‭2.6.1) to derive a functional biogeography of drought response (section 2.8).‬

‭Finally (‬‭Section 3‬‭), we addressed confidence in our‬‭interpretations by exploring potential‬
‭alternative mechanisms and caveats, and by using the predictive GAM framework to conduct‬
‭tests of alternative hypotheses that could either support or reject those presented in the main text.‬
‭These provided evidence in support of our interpretation, but also pointed to future research‬
‭needs.‬
‭1. Datasets‬
‭1.1.  Remote sensing indices of photosynthesis‬

‭We applied two widely used, ground-validated remote sensing indices of photosynthesis‬
‭to provide a sensitivity analysis that brackets the plausible range of forest canopy response to‬
‭drought:  the Enhanced Vegetation Index (EVI), constructed from observations of surface‬
‭reflectance by the MODerate resolution Imaging Spectroradiometer (MODIS) onboard the‬
‭Terra/Aqua satellites; and the global OCO-2 Solar-induced Fluorescence (GOSIF) product‬
‭derived from observations by the Orbiting Carbon Observatory 2 satellite. EVI, derived from the‬
‭spectra of light reflected from surface vegetation, is designed as an index of the‬‭photosynthetic‬
‭capacity‬‭57‬‭. GOSIF is designed to represent the active‬‭light emission from fluorescing chlorophyll‬
‭molecules during photosynthesis, which is often well-correlated with canopy-scale instantaneous‬
‭photosynthetic activity‬‭57‬‭.‬‭This distinction (between‬‭reflected light used to construct EVI as a‬

‭22‬

‭506‬

‭507‬

‭508‬

‭509‬

‭510‬

‭511‬

‭512‬

‭513‬

‭514‬

‭515‬

‭516‬

‭517‬

‭518‬

‭519‬

‭520‬

‭521‬

‭522‬

‭523‬

‭524‬

‭525‬

‭526‬

‭527‬

‭528‬

‭529‬

‭530‬

‭531‬

‭532‬

‭533‬

‭534‬

‭535‬

‭536‬

‭537‬

‭538‬

‭539‬

‭540‬

‭541‬

‭542‬

‭543‬

‭544‬

‭545‬

‭546‬

‭547‬

‭548‬

‭549‬

https://paperpile.com/c/gDKLkA/Ytisa+xdvJm
https://paperpile.com/c/gDKLkA/ANsHP
https://paperpile.com/c/gDKLkA/7LA7D
https://paperpile.com/c/gDKLkA/xHuM4
https://paperpile.com/c/gDKLkA/lnNzK


‭proxy for capacity, versus actively emitted light used to construct GOSIF as a proxy for activity)‬
‭means that these indices may be expected to display divergent responses.‬

‭We chose these indices because they aim to capture different end-members of a spectrum‬
‭of canopy responses:  from transient physiological changes in photosynthesizing/fluorescing‬
‭leaves (which might be due, for example, to stomatal regulation in response to changing‬
‭atmospheric VPD) which affect photosynthetic activity for a given capacity‬‭58‬‭, versus more‬
‭structural responses associated with leaf turnover such as leaf flushing or shedding which also‬
‭change canopy photosynthetic capacity‬‭59‬‭. We primarily‬‭focus here on EVI responses, which have‬
‭been shown to remotely capture seasonal canopy greenup dynamics that are consistent with‬
‭underlying mechanisms of leaf development and demography‬‭60‬‭.‬‭However, GOSIF corroboration‬
‭of EVI drought responses at broadscales would suggest that ecophysiological and structural‬
‭canopy responses to drought are aligned in the Amazon, increasing confidence in the robustness‬
‭of remotely observed drought responses.‬

‭MAIAC EVI‬‭:  The Multi-Angle Implementation of Atmospheric‬‭Correction (MAIAC)‬
‭algorithm rigorously accounts for sun-sensor geometry, as represented in a bidirectional‬
‭reflectance distribution function (BRDF), estimating reflectance at a nadir view and 45° solar‬
‭zenith angle, with strict atmosphere, aerosol, and cloud corrections‬‭61‬‭. We used the 8-day‬
‭MCD19A3 (MAIAC) 1-km product from MODIS collection six, a level 3 product composited‬
‭from cloud-free and low aerosol conditions. We applied the coefficients (weights) of the‬
‭RossThick/Li-Sparse (RTLS) Bidirectional Reflectance Distribution Function (BRDF) model‬
‭(available at‬‭https://e4ftl01.cr.usgs.gov/MOTA/MCD19A3.006/‬‭).‬‭We calculated the 8-day EVI‬
‭from the MAIAC surface reflectances of red, blue, and near-infrared bands as in Huete et al.‬‭57‬

‭from 2001-2019. The 8-day EVI is then aggregated to a monthly time step.‬
‭GOSIF‬‭: Solar induced fluorescence (SIF), emitted by‬‭chlorophyll molecules in green plants‬

‭that have been excited by absorption of sunlight, provides a direct index of the current‬
‭physiological state of a photosynthesizing canopy‬‭62‬‭.‬‭The OCO-2 satellite observes SIF at coarse‬
‭resolutions‬‭63‬‭, and these are used to create the modeled‬‭GOSIF data product‬‭64‬ ‭available at‬
‭http://data.globalecology.unh.edu/data/GOSIF_v2‬‭),‬‭which simulates higher resolution SIF‬
‭dynamics over longer time periods by interpolating among discrete OCO-2 SIF soundings using‬
‭the MODIS surface reflectance product MCD43C4 (BRDF-corrected to nadir view and to the‬
‭solar zenith angle at local noon), and meteorological reanalysis data‬‭64‬‭. We used the monthly‬
‭composite GOSIF product with high spatial resolution of 0.05° over the period from 2001 to‬
‭2019. Among SIF-related products, GOSIF has been found to be the best predictor of GPP across‬
‭land cover types‬‭65‬‭.‬
‭1.2. Climate variables‬

‭To explore climate effects on forest drought responses, we used‬‭monthly precipitation,‬
‭Maximum Cumulative Water Deficit (MCWD), surface downwelling shortwave radiation and‬
‭Vapor Pressure Deficit (VPD) resampled at 0.4°. Precipitation and MCWD are from the Global‬
‭Precipitation Mission (GPM) and Tropical Rainfall Measuring Mission (TRMM) 3B43-v7 for‬
‭2000-2020 at 0.25° resolution (~25 km x 25 km)‬
‭(‬‭https://disc2.gesdisc.eosdis.nasa.gov/data/TRMM_L3/TRMM_3B43.7/‬‭)‬‭66‬‭.‬

‭MCWD measures local drought intensity, defined as the maximum deficit reached in the‬
‭last month of a string of dry months for each grid cell within the year‬‭39‬‭, treating forest water‬
‭deficit as analogous to a bucket whose deficit is zero when the bucket is full. To avoid splitting a‬
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‭string of dry months between two years, we used a 12-month ‘hydrological year’ running from‬
‭May to the following April (e.g., MCWD for 2004 was calculated using CWD data from May‬
‭2004 to April 2005). We also used monthly surface downwelling shortwave radiation from‬
‭Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2‬
‭Reanalysis) for 2000 to 2019 as a proxy for PAR at spatial resolution of 0.5° x 0.625°‬
‭(‬‭https://goldsmr4.gesdisc.eosdis.nasa.gov/data/MERRA2_MONTHLY/M2TMNXRAD.5.12.4/‬‭)‬‭67‬

‭. Vapor Pressure Deficit (VPD) was calculated based on surface air temperature and relative‬
‭humidity (L3 Standard Monthly Product, AIRS3STM) from version 6 of the Atmospheric‬
‭Infrared Sounder (AIRS) at the spatial resolution of 1 degree for 2003-2017 (~100 km,‬
‭https://airs.jpl.nasa.gov/data/get-data/standard-data/‬‭)‬‭68–71‬‭.‬
‭1.3. Ecotope variables‬

‭We follow the ecosystem ecology approach‬‭18,19‬ ‭of characterizing‬‭different ecosystem types‬
‭(in this case, forest ecosystems) by their “ecotopes”, that is, by the combination of biotic‬
‭characteristics and abiotic environments that define them, here including their hydrological‬
‭environment (water table depth), soil types (fertility and texture), vegetation characteristics, and‬
‭other factors‬‭72‬‭.‬

‭We used the Height Above the Nearest Drainage (HAND) normalized terrain model‬‭25,73‬ ‭as a‬
‭proxy of water table depth and for plant access to groundwater, rederived at 100m resolution‬
‭from digital elevation model-Shuttle Radar Topography Mission (SRTM) data for this study‬‭26,74‬‭.‬
‭The HAND normalization is relative to the local drainage height, using the flow paths to connect‬
‭all cells (pixels) with the cells of the nearest drainage. The HAND model has been validated over‬
‭an area of 18,000 km‬‭2‬ ‭in the lower Rio Negro catchment‬‭25‬ ‭and used for a wide range of‬
‭ecohydrological studies‬‭27,75,76‬‭. HAND is comparable‬‭to the water table depth (WTD) model-based‬
‭product of Fan & Miguez-Macho‬‭77‬‭, which gave broadly‬‭similar results to those reported here‬
‭with HAND. For this study the HAND normalized terrain model was derived from SRTM-DEM‬
‭at 100 m resolution.‬

‭For soil fertility, we used a map (0.1° spatial resolution) of exchangeable base cations (Ca‬‭+‬

‭+ Mg‬‭+‬ ‭+ K‬‭+‬ ‭measured in cmol(+)/kg) for the Amazon‬‭basin‬‭43‬‭, the most extensive‬
‭empirically-validated gridded soil fertility product currently available. Soil cation concentrations‬
‭estimated from this product achieved good agreement with an independent dataset of‬
‭field-measured values (correlation of r = 0.71‬‭43‬‭).‬

‭Our analysis does not include phosphorus, generally considered to be limiting to tropical‬
‭forest productivity‬‭78,79‬‭, but not currently available‬‭as a high-quality validated gridded data‬
‭product. We expect base cations to be a partial index of phosphorus availability, as both cations‬
‭and phosphorus become available though weathering of young soils arising from Andean parent‬
‭material or runoff sediment, but are eventually leached, leaving older highly weathered soils in‬
‭the Guiana Shields depleted of both. Cation concentration should also be directly relevant to‬
‭drought tolerance, as high concentrations should improve osmotic regulation of stomatal‬
‭conductance, an important regulator of drought response‬‭80‬‭.‬

‭For soil texture, we used soil sand/clay fractions from “SoilGrids” system released by‬
‭ISRIC (International Soil Reference Information Centre) World Soil Information‬‭44‬‭.‬

‭For forest height, we used a canopy height metric derived from spaceborne lidar‬
‭measurements‬‭45‬ ‭(‬‭https://webmap.ornl.gov/ogc/dataset.jsp?dg_id=10023_1‬‭)‬‭and validated by field‬
‭measurements, with an increased accuracy in the Amazon compared to previous metrics‬‭33‬‭). This‬
‭wall‐to‐wall global map of canopy height is at 1‐km spatial resolution, interpolated from lidar‬
‭observations by the Geoscience Laser Altimeter System (GLAS) aboard ICESat (Ice, Cloud, and‬
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‭Land Elevation Satellite). We take forest canopy height as a proxy of rooting depth, based on‬
‭standard allometries backed by observations in Brazilian tree plantations‬‭31,32,46‬‭, in a central‬
‭Amazon forest‬‭31,32,46‬ ‭and across biomes‬‭31,32,46‬ ‭that‬‭show they are correlated‬‭31,32,46‬‭.  However,‬
‭observations of the tree height-rooting depth allometry are limited, especially in tropical forests‬
‭(although one study cited here‬‭31‬‭is directly relevant,‬‭as it is from central-eastern Amazon upland‬
‭forest, conducted during the 2015 drought); this limitation remains a key uncertainty in our‬
‭ability to confidently attribute variations in drought response to rooting depth, as opposed to‬
‭canopy height itself, or other (as yet unidentified) correlates of canopy height. We also note that‬
‭shallow WTD limits rooting depth such that canopy height correlations to rooting depth in these‬
‭forests may be diminished‬‭81‬‭.‬

‭We also applied community-weighted mean wood density and the abundance of Fabaceae‬
‭(legumes)‬‭34‬‭. Fabaceae refers to a large, nearly cosmopolitan‬‭family that relates woody plants‬
‭with nitrogen-fixing nodulation, usually assumed adaptations to low-fertility soils‬‭82‬‭.‬
‭1.4. Identification of terra firme Amazon basin forests using land cover maps‬

‭In order to focus our analysis on the desired domain of terra firme forests, we used a‬
‭forest map at 1 km‬‭spatial resolution (MOD12Q1.006)‬‭to identify evergreen forest pixels within‬
‭the Amazon basin‬‭83‬‭, excluding open water, deforested‬‭forests, and non-forest vegetation types. A‬
‭floodplain map was also used in order to identify targeted non-flooded forests, and exclude‬
‭floodplain forests‬‭84‬‭. We used the map of Gomez et‬‭al.‬‭85‬ ‭to define the boundary of the Amazon‬
‭basin, an inclusive definition encompassing all forested parts of the Amazon river catchment and‬
‭Amazon forests technically within the Orinoco river catchment. We used a recently published‬
‭forest cover classification that now includes a category for “degraded” forests at 30 meter spatial‬
‭resolution (Vancutsem et al.‬‭86‬‭, updated to 2022),‬‭to test drought sensitivity (methods 3).‬
‭1.5. Forest Plot Data‬

‭RAINFOR long-term forest plots:‬‭We used demographic‬‭datasets over the period‬
‭1983-2011 from all of the 321 re-censused forest plots that were published and used to estimate‬
‭Amazon basin-wide carbon balance (most, but not all, of these were from the RAINFOR‬
‭network)‬‭2‬‭, for three purposes: (1) to characterize‬‭the spatial representativity of the reported‬
‭plot-based sampling efforts (area-weighted frequency‬‭×‬‭duration‬‭that plots were monitored) with‬
‭respect to the distribution of water table depths (HAND) across the Amazon basin (Fig. 3e);  (2)‬
‭to test whether forest mortality anomalies (% deviation from long term mean) in 247 plots‬
‭subject to the 2005 and 2010 droughts were associated with water table depth (Fig. 3d); and (3)‬
‭to validate EVI remote sensing with spatial variations in long term (2000-2011) average‬
‭above-ground net primary productivity (ANPP) rates across the Amazon basin (section 1.6.b,‬
‭Extended Data Fig‬‭. 15). The full RAINFOR and related‬‭networks sample more plots than these,‬
‭likely including a greater range of environments‬‭87‬‭,‬‭but published results representing drought‬
‭response of “the Amazon rainforest”‬‭16‬ ‭and “the Amazon‬‭carbon sink”‬‭2‬ ‭are the ones whose‬
‭sample plot distributions are analyzed here for their representivity.‬

‭Shallow water table forest plots‬‭:  For remote sensing‬‭validation, we also used mortality‬
‭and recruitment data from 25 1-ha plots distributed across eight research sites along the BR-319‬
‭road in the southern Amazon between Manaus and Porto Velho (from 62.5°W, 5.9°S to 60.9°W,‬
‭4.4°S) as analyzed in Sousa et al.‬‭26‬ ‭These are shallow‬‭water table sites (2.81 m ± 2.38 deep [M ±‬
‭SD]) intended to complement the on average deeper water table sites of the RAINFOR network‬
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‭(above). These more recent data focused on mortality and recruitment rates calculated for the‬
‭2015-2016 drought (section 1.6.b,‬‭Extended Data Fig‬‭.‬‭16).‬

‭Forest plot hydraulic safety margins.‬‭We used a published‬‭pan-Amazon hydraulic trait‬
‭dataset (hydraulic safety margins, HSM, the difference between water potentials experienced by‬
‭a species in the field and the water potentials leading to hydraulic failure, with narrower margins‬
‭indicating greater mortality risk)‬‭50‬‭, including 108‬‭species distributed across 9 forest sites across‬
‭western, central eastern and southern Amazon, to validate our derived resilience map (Fig. 5).‬
‭These sites belong to old-growth lowland forests, little disturbed by human activities, spanning‬
‭the Amazonian precipitation gradient and encompassing the principal axes of species‬
‭composition in the Amazon‬‭50‬‭. The HSM was calculated‬‭with respect to P50/88 (HSM50/88) at‬
‭species level, and then basal-area weighted averaged occurring at sites‬‭50‬‭.‬

‭1.6. Remote sensing validation and consistency‬

‭1.6.1 Validation by ecosystem flux measurements (eddy flux towers)‬
‭MAIAC EVI‬‭:  EVI has been extensively validated against‬‭measurements of ecosystem‬

‭photosynthesis (Gross Primary Productivity, GPP) from eddy flux towers across land types‬
‭world-wide‬‭88‬‭, including temperate‬‭89–91‬ ‭and tropical‬‭biomes‬‭92–94‬‭. Earlier versions of MODIS EVI‬
‭were criticized as influenced by aerosol or sun-sensor geometry artifacts when detecting tropical‬
‭forest greening‬‭95,96‬‭, but such effects are largely‬‭eliminated in the current MAIAC EVI product‬
‭used here (which corrects artifacts from aerosol contamination and sun-sensor geometry)‬‭61‬‭.‬
‭Particularly relevant for this study, MAIAC EVI well-detected Amazon forest seasonal green-up‬
‭dynamics across a network of eddy flux tower sites in the Brazilian Amazon‬‭97,98‬‭, with patterns‬
‭shown to be consistent with understandings of leaf development and demography derived from‬
‭flux towers and phenocam studies on the ground‬‭60‬‭.‬

‭EVI or EVI-based models predict independent tower measurements of monthly GPP with‬
‭R‬‭2‬‭~0.5-0.7 for tropical‬‭92–94,97‬‭, and R‬‭2‬‭~0.7-0.8+ for‬‭temperate biomes‬‭89–91‬‭.‬

‭GOSIF‬‭: Despite non-linear and sometimes decoupled‬‭relationships between chlorophyll‬
‭fluorescence and photosynthesis at leaf scales‬‭99‬‭,‬‭satellite observations of SIF from OCO-2 have‬
‭been shown to be linearly related to canopy scale GPP‬‭63‬‭, suggesting that canopy scale processes‬
‭can effectively average over leafscale complexities. GOSIF modeled datasets built from SIF‬
‭observations have been multiply validated by tower-based CO2 flux estimates of GPP, achieving‬
‭good correlation (R‬‭2‬ ‭=0.73 globally) with the 91 sites‬‭of global Fluxnet GPP (2015 Tier 1‬
‭dataset)‬‭64‬‭, with somewhat lower correlations (R‬‭2‬‭=0.51,‬‭comparable to EVI in the tropics) for the‬
‭evergreen broadleaf forest biome, including sites in the Amazon‬‭65‬‭.‬

‭Note on lower R‬‭2‬ ‭for Tropical vs Temperate forest‬‭GPP detection‬‭:  Although both indices‬
‭(GOSIF and EVI) capture GPP comparably in deciduous broadleaf (temperate) versus evergreen‬
‭broadleaf (tropical) forests‬‭within‬‭active growing‬‭seasons, most statistical assessments are of full‬
‭annual cycles, which typically show substantially better statistics (R‬‭2‬ ‭> 0.8) for temperate zone‬
‭forests, simply because temperate forests include easily detectable dormant periods when GPP ~‬
‭0, which make total annual variability (hence R‬‭2‬‭)‬‭higher, while tropical evergreen forests are‬
‭active year round.‬

‭1.6.2. Validation by forest plot metrics of demography and of physiological drought tolerance‬
‭We investigated the effect of variations in remotely sensed photosynthesis on downstream‬

‭forest demographic effects (growth, recruitment, and mortality, section 1.5). We should expect‬
‭remote sensing skill in predicting demography to be weaker than for predicting photosynthetic‬
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‭fluxes, because demography emerges, not from photosynthesis alone, but from the balance of‬
‭photosynthesis and autotrophic respiration, and is also influenced by other factors such as‬
‭disturbance.‬

‭We nevertheless found validation at multiple scales:  MAIAC EVI significantly predicted‬
‭spatial variations in decadal forest ANPP (during 2000-2011) across the Amazon basin‬
‭(RAINFOR network, methods section 1.5,‬‭Extended Data‬‭Fig‬‭. 15). Using more recent data, we‬
‭also confirmed consistent detection by EVI and GOSIF of short-term demographic‬
‭drought-response metrics during the 2015/2016 drought (mortality, recruitment, and the‬
‭mortality:recruitment ratio,‬‭Extended Data Fig‬‭. 16),‬‭as expected if excess mortality (or a decline‬
‭in recruitment) follows declines in photosynthetic carbon assimilation. The R‬‭2‬ ‭values of 0.25 to‬
‭0.35 for remote detection of demography (‬‭Extended‬‭Data Fig‬‭s. 15-16) are consistent with our‬
‭expectation that they should be about half of the remote detection R‬‭2‬ ‭for GPP (0.5 to 0.6,‬
‭discussed in 1.6.1), since GPP is about one-half the determinant of the NPP driver of‬
‭demography.‬

‭With respect to remote detection of the physiological drought tolerance of trees, we‬
‭investigated the ability of our remote sensing-derived forest photosynthetic “resilience” map‬
‭(Fig. 5a, see methods section 2.8) to predict a metric of the resilience of individual trees to‬
‭drought, hydraulic safety margins (HSM) for xylem embolism. Individual tree HSM -- the‬
‭difference between observed stem water potentials and the stem water potentials at which trees‬
‭become vulnerable to xylem embolism -- are widely regarded as predictors of tree mortality risk‬
‭under drought‬‭50‬‭, with narrower HSMs indicating greater‬‭mortality risk‬‭36‬‭.  We found that our‬
‭remote sensing-derived estimates of forest resilience (Fig. 5a) could significantly predict‬
‭basal-area weighted tree HSM measured on the ground at forest plots across the Amazon basin‬
‭(Fig. 5a inset) (reported in Tavares et al.‬‭50‬‭, as‬‭summarized in section 1.5). (Note that forest‬
‭resilience was estimated as in methods section 2.8, but using canopy height mapped at 0.1 degree‬
‭resolution--instead of the baseline model resolution of 0.4 degrees--in order to avoid mixing the‬
‭height signal of intact HSM plot forests with that of occasionally nearby deforested areas.) This‬
‭validation strongly supports the validity of using remotely sensed photosynthetic indices to‬
‭derive a definition of photosynthetic resilience to drought.‬

‭1.6.3. Consistency between EVI and GOSIF‬
‭Are the two remote sensing metrics showing consistent response to drought?  The spatial‬

‭locations of the drought anomalies appear similar, though not the same (Fig. 1 vs‬‭Extended Data‬
‭Fig‬‭. 2) – but since EVI and GOSIF are intended to‬‭be sensitive to distinct dimensions of canopy‬
‭photosynthetic function -- i.e., to photosynthetic capacity versus activity, respectively (as‬
‭discussed in section 1.1), we should not expect sameness.‬

‭We do expect‬‭activity‬‭to be generally more sensitive‬‭to drought than‬‭capacity‬‭, because‬
‭activity-based responses encompass both transient/reversible physiological responses (e.g.‬
‭stomatal adjustment) as well as slower structural effects due to changes in capacity (e.g.‬
‭biochemical inhibition, leaf growth or shedding)‬‭58,100‬‭.‬ ‭We indeed see this expectation reflected in‬
‭observed drought response, with the range of GOSIF (activity) anomalies (from -9.6 to +4.8‬
‭standard deviations, excluding 0.1% of the distribution in each tail) 30% greater than the range‬
‭of EVI anomalies (-6.5 to +4.5 standard deviations,‬‭Extended Data Fig‬‭. 2 vs Fig. 1 insets).‬

‭More important, we ask whether there is consistency in terms of support for or rejection of‬
‭hypotheses that are the focus of this analysis -- for example, whether the “other side of drought”‬
‭prediction that drought response anomalies should decline with water table depth, and here we‬
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‭do see broad support for this hypothesis from both EVI and GOSIF: for the 2005 drought‬
‭“ellipse” region that was discussed in the main text (‬‭Extended Data Fig‬‭. 2d), and for the three‬
‭droughts considered together (Fig. 3a vs‬‭Extended‬‭Data Fig‬‭. 2e).  We also see similar ability of‬
‭the two metrics to predict tree demographic responses to drought on the ground (‬‭Extended Data‬
‭Fig‬‭. 16).  Together, these comparisons increase confidence‬‭that forest drought response‬
‭hypotheses are robustly supported by the two indices.‬

‭Within the broadscale consistency, there is also substantial finescale differences in spatial‬
‭location of anomalies (Fig. 1 vs‬‭Extended Data Fig‬‭.‬‭2) and the detailed structure of responses‬
‭(the pattern of residuals in Fig. 3a vs.‬‭Extended‬‭Data Fig‬‭. 2e), suggesting that more nuanced‬
‭study of these finer-scale differences could reveal additional insights into the biogeography of‬
‭forest drought response‬‭101‬‭.‬

‭2. Mapping and Statistical Analysis‬
‭2.1. Spatial Grid resolutions‬

‭We interpolated the differently resolved data products to different grid resolutions as needed‬
‭for mapping and modeling. Native resolutions were used to display most maps (exceptions‬
‭noted):‬

‭-‬ ‭1 km for MAIAC EVI (Figs. 1-2,‬‭Extended Data Fig‬‭s.‬‭12b, 15, 16a-c);‬
‭-‬ ‭100 m for HAND, composited to 1 km for mapping (Fig. 2a,‬‭Extended Data Fig‬‭. 3a);‬
‭-‬ ‭0.05 degrees for GOSIF (‬‭Extended Data Fig‬‭s. 2, 16d-f);‬
‭-‬ ‭0.25 degrees for precipitation-derived products (‬‭Extended‬‭Data Fig‬‭s. 3f-g, 4-5);‬
‭-‬ ‭0.625×0.5 degrees for PAR;‬
‭-‬ ‭1 degree for VPD (‬‭Extended Data Fig‬‭. 5);‬
‭-‬ ‭0.1 degrees for soil fertility (‬‭Extended Data Fig‬‭.‬‭3b);‬
‭-‬ ‭0.25 km for soil sand content (‬‭Extended Data Fig‬‭.‬‭3h),‬
‭-‬ ‭1 km for forest canopy height (‬‭Extended Data Fig‬‭.‬‭3c); and‬
‭-‬ ‭1 degree for wood density and proportion of Fabaceae (‬‭Extended Data Fig‬‭. 3d-e).‬
‭For statistical modeling we interpolated different datasets to common grid resolutions,‬

‭according to the resolution of the model. For this we initially downscaled all maps to the native‬
‭resolution of the EVI product (1km), then aggregated to the desired coarser resolution, typically‬
‭0.4°, that was needed to avoid inflation of statistical significance of drought responses in models‬
‭by accounting for spatial autocorrelation among nearby pixels using variogram analysis (section‬
‭2.5,‬‭Extended Data Fig‬‭. 7). Grid cells in the drought-affected‬‭domain that included no intact‬
‭forest were excluded from analysis. When an analyzed grid cell (at coarse resolution, typically‬
‭0.4°) included a mix of intact forests and non-forest or deforested regions, we selected and‬
‭aggregated all intact forest pixels at the smaller (1km) subgrid scale to accurately represent intact‬
‭vegetation properties (EVI, canopy height, etc), and represented the coarser model grid cell by‬
‭those intact forest properties.‬

‭2.2. Classification of forest regions according to ecotopes‬
‭We investigated whether the distribution of factors defining forest types (ecotopes) across‬

‭Amazonia could lead to a coherent clustering of different forest ecotopes into different regions,‬
‭each with different broadscale forest drought responses.  To this end, we conducted a supervised‬
‭forest classification,  using factors identified in previous studies as important:‬‭17,34,102,103‬ ‭two‬
‭climate variables (average minimum monthly precipitation and MCWD variability), soil fertility‬
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‭(concentration of exchangeable base cations‬‭43‬‭) and three tree functional characteristics (forest‬
‭height, wood density, and proportion of trees in the family Fabaceae).‬

‭We conducted the classification in four steps:‬ ‭First‬‭,‬‭the six ecotope factors, standardized by‬
‭their mean and SD, were mapped, with each grid cell considered to occupy a point in a six‬
‭dimensional space, and each dimension indexed in comparable units of standard deviations.‬
‭Second‬‭, a principal component analysis (PCA)‬‭104‬ ‭(“FactoMineR”‬‭package in R,‬‭Extended Data‬
‭Fig‬‭. 6a) identified three complementary dimensions‬‭of forests in this space: a dimension defined‬
‭by‬‭vegetation‬‭characteristics (wood density, and proportions‬‭of the family Fabaceae), nearly‬
‭coincident with the first principal component (horizontal axis,‬‭Extended Data Fig‬‭. 6a); a‬
‭dimension defined by water availability (minimum monthly precipitation and MCWD‬
‭variability), nearly coincident with the second principal component (vertical axis,‬‭Extended Data‬
‭Fig‬‭. 6a), and a third dimension defined mainly by‬‭soil fertility‬‭(‬‭Extended Data Fig‬‭. 6a). Based on‬
‭these initial PCA results suggesting three relatively distinct dimensions, we chose to cluster‬
‭Amazon basin pixels into three classes. Given their diversity, Amazon forests could likely be‬
‭classified into more than three, but we judged that three would be sufficient to capture substantial‬
‭functional variation, without being so complex as to prevent intuitive understanding.‬

‭Third‬‭, an automatic procedure extracted endmember‬‭characteristics based on percentile‬
‭thresholds‬‭105‬ ‭from the PCA space‬‭106‬‭. Pixels with low‬‭climate variability had high minimum‬
‭precipitation and long wet seasons (in the 90th percentile), and were identified as a water‬
‭availability spectrum end-member. Grid cells with the highest proportion of Fabaceae,‬
‭overlaying with tall, dense-wooded trees (in the 90th percentile) and low-fertility soils, were‬
‭identified as another endmember. A third endmember was defined by a combination of high‬
‭variability climates and moderately high (67th percentile) soil fertility.‬‭Finally‬‭, supervised‬
‭classification via the Minimum Distance method was used in ENVI 5.3 software‬‭107‬ ‭to cluster‬
‭each region based on proximity to the endmembers selected in Step three.‬

‭This process identified three clusters of pixels in functional PCA space that turned out to‬
‭also correspond to geographically distinct Amazonian regions that were mostly contiguous‬
‭(‬‭Extended Data Fig‬‭. 6b): an‬‭Ever-wet Amazon‬‭region‬‭in the northwest, a‬‭Guiana shield‬‭region‬
‭in the northeast, and‬‭the southern Amazon‬‭. The standardized‬‭values within each cluster, of each‬
‭of the characteristics defining the regional clustering (ordered by water availability, soil fertility,‬
‭and tree traits), exhibit the distinct niches of each region (‬‭Extended Data Fig‬‭. 6c). The ever-wet‬
‭Amazon is differentiated by lack of dry seasons (periods with months < 100 mm rainfall,‬
‭Extended Data Fig‬‭. 3a). Forests in this region might‬‭be composed of species that do not‬
‭well-tolerate climate conditions (such as droughts), compared to tree assemblies (in other‬
‭regions) adapted to regular droughts or dry seasons. The Guiana shield region is distinct in‬
‭having old, highly weathered, low-fertility soils, with tree communities containing the largest‬
‭proportion of trees in the family Fabaceae, with dense wood and high seed mass (‬‭Extended Data‬
‭Fig‬‭. 3c-e)‬‭34‬‭. The southern Amazon is then differentiated‬‭further from the Guiana shield as‬
‭slightly dryer, with soil fertility that was both higher on average but also more variable.‬

‭This three-region classification (which we use to define the regions depicted in the main‬
‭text figures) is independent of the results (Figs. 3-4) of the basin-wide modeling investigation‬
‭(described in sections 2.6-2.7 below) because model predictions depend on pixel-pixel variations‬
‭of environmental factors regardless of what region they are in. However, the three region‬
‭Amazon is useful for presenting model results because it illustrates how different functional‬
‭responses emerge from different ecotope regions (as shown in Fig. 4e).‬
‭2.3. Climate anomalies for Drought definition and Mapping‬

‭29‬

‭820‬

‭821‬

‭822‬

‭823‬

‭824‬

‭825‬

‭826‬

‭827‬

‭828‬

‭829‬

‭830‬

‭831‬

‭832‬

‭833‬

‭834‬

‭835‬

‭836‬

‭837‬

‭838‬

‭839‬

‭840‬

‭841‬

‭842‬

‭843‬

‭844‬

‭845‬

‭846‬

‭847‬

‭848‬

‭849‬

‭850‬

‭851‬

‭852‬

‭853‬

‭854‬

‭855‬

‭856‬

‭857‬

‭858‬

‭859‬

‭860‬

‭861‬

‭862‬

‭863‬

‭864‬

‭865‬

https://paperpile.com/c/gDKLkA/x1zXd
https://paperpile.com/c/gDKLkA/hH6ge
https://paperpile.com/c/gDKLkA/Nhqun
https://paperpile.com/c/gDKLkA/9pQaU
https://paperpile.com/c/gDKLkA/G2070
https://paperpile.com/c/gDKLkA/bb7bO


‭The spatial extent for each of the three droughts (‬‭d‬‭) was taken to be all grid cells where the‬
‭MCWD anomaly was more than one standard deviation below the long-term mean for that cell‬
‭(‬‭Extended Data Fig‬‭. 1).  MCWD anomaly for each grid‬‭cell is calculated by Eqn. (1):‬

‭(1)‬
‭where‬‭MCWD‬‭d‬‭is the data value in drought year (‬‭d‬‭),‬ ‭is the average of 19 yearly MCWD‬
‭values for hydrological years 2000-2019 (May 2000 to April 2020) and‬‭σ‬‭MCWD‬‭is the standard‬
‭deviation for the same time period. Anomalies of the other climate variables were calculated‬
‭analogously.‬

‭Drought severity in each grid cell was classified into three levels by standardized MCWD‬
‭anomaly: modest drought (-1.5 to -1 standard deviations relative to the mean), medium drought‬
‭(-2 to -1.5 standard deviations relative to the mean) and severe drought (greater magnitude than‬
‭-2 deviations) (‬‭Extended Data Fig‬‭. 1).‬

‭Drought duration (for each of the three droughts separately for each grid cell) was measured‬
‭in terms of number of drought months (‬‭i‬‭) for a particular‬‭drought (‬‭d‬‭) for each grid cell within the‬
‭period (May to the following April) for the droughts of 2005 and 2010; and from May to October‬
‭of the following year for the El Nino drought of 2015/2016. The drought onset month is found‬
‭where the following is true, recalling that CWD and MCWD are more negative with greater‬
‭water deficit:‬

‭(2)‬
‭The end month of drought interval (‬‭i‬‭) for each grid‬‭cell for each of the three droughts is‬

‭defined as follows:‬

‭(3)‬
‭Then for each grid cell,‬‭duration‬‭d‬ ‭=‬‭End‬‭d‬ ‭-‬‭Onset‬‭d‬‭+1‬‭as shown in‬‭Extended Data Fig‬‭. 4.‬

‭2.4. Drought resilience and Vegetation Anomalies‬
‭We defined drought resilience as a forest’s ability to increase (or relatively better maintain)‬

‭photosynthetic capacity or activity during a perturbation -- that is, by its tendency to exhibit more‬
‭positive/less negative anomalies in vegetation indices (relative green-up) during drought. There‬
‭is a broad literature on resilience‬‭108,109‬‭, and our‬‭definition (which can also be characterized as‬
‭“resistance” or ability to resist changes in function with perturbation‬‭108‬‭) is nominally distinct for‬
‭example, from another common definition, the capacity of a system to return to its equilibrium‬
‭state following a disturbance‬‭110‬‭.  We chose relative‬‭green-up here for conceptual and practical‬
‭reasons.  Conceptually, greater relative green-up implies relatively more photosynthesis and‬
‭hence, all else equal, more carbon resources to respond to stress, encompassing different‬
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‭strategies (likely including system capacity to return to equilibrium following disturbance),‬
‭making it a logical general metric of resilience.  Practically, greening has been widely cited and‬
‭discussed in the literature, and, notably, is predictive of outcomes on the ground commonly‬
‭associated with resilience at the individual tree and plot scale (lower mortality, greater growth,‬
‭and greater xylem embolism resistance, see methods section 1.6,‬‭Extended Data Fig‬‭. 16).‬

‭In order to quantify photosynthetic resilience‬‭, we‬‭extracted from each grid cell for each of‬
‭the three droughts, the anomalies in photosynthetic indices for the period of drought (Figs. 1,‬
‭2b-c;‬‭Extended Data Fig‬‭. 2, 4-5), calculated as the‬‭departure (in standard deviations from their‬
‭non-drought-year means) across a 9-year window centered on each drought (for example,‬
‭2001-2009 for the 2005 drought and 2011-2019 for the 2015 drought):‬

‭(4)‬
‭where‬‭X‬‭d,du‬ ‭is the value of the index in a grid cell‬‭during drought‬‭d‬‭, averaged over the duration‬‭du‬
‭(extracted by Eqn. (2) and (3)) – and‬ ‭and‬‭σ‬‭du‬ ‭are‬‭the average and standard deviation,‬
‭respectively, of the same‬‭‘du’‬‭period across the years‬‭of data availability (with the drought years‬
‭2005, 2010 and 2015 excluded). Including pixel-specific drought duration introduces greater‬
‭realism in drought response metrics by capturing pixel-pixel variability in drought response due‬
‭to duration‬‭du‬‭, which has been treated in some previous‬‭analyses as fixed (e.g. in analyses of the‬
‭2005 drought,‬‭du‬‭was assumed to be the three months‬‭of July-August-September for all‬
‭pixels)‬‭9,10,111‬‭.‬

‭Correspondingly, we also calculated the field-based demographic mortality anomalies for‬
‭drought years 2005 and 2010 from RAINFOR plots,‬‭2‬ ‭as‬‭above-ground biomass (AGB) mortality‬
‭drought responses (mortality carbon flux following drought, in percent change relative to‬
‭long-term mean MgC ha‬‭-1‬ ‭y‬‭-1‬‭.‬
‭2.5. Variogram analysis for removal of spatial autocorrelation‬

‭Observations from spatial samples are not independent, due to spatial autocorrelation‬
‭among grid cells that are near to each other‬‭112‬‭. To‬‭obtain independent observations for general‬
‭additive models (GAM) and for statistical quantification of average drought response (Fig. 1),‬
‭we resampled grid cells at increasingly coarse resolutions, until response differences (between‬
‭forests with different water table depths) were no longer spatially autocorrelated -- that is, a sill‬
‭(plateau) was reached in the variogram (‬‭Extended Data‬‭Fig‬‭. 7) at around 40 km, indicating a‬
‭scale at which samples could be treated as statistically independent. The variogram was‬
‭calculated from the covariance of the difference between drought responses in shallow and deep‬
‭water table grid cells:‬

‭(5)‬

‭(6)‬

‭(7)‬
‭where‬‭N(h)‬‭was the number of grid-cell pairs (‬‭m‬‭,‬‭n‬‭)‬‭separated by distance‬‭h‬‭. Each‬‭z‬‭m‬ ‭is the‬
‭standardized EVI anomaly of the first member of a grid cell pair, drawn only from cells having‬
‭shallow water table depths (0, 1, 2, …, 9), while‬‭z‬‭n‬ ‭is the second member of each pair, drawn‬
‭only from cells with deep water tables (10, 11, 12, ..., 19).‬
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‭2.6. Statistical analyses for inferring causes of, and predicting, drought response‬
‭Our statistical analysis had two main goals: first, to test the three core hypotheses‬

‭presented in the main text introduction (causal inference), and to develop the best possible‬
‭predictions of regional to basin-wide drought response by combining ecotope factors with‬
‭climate (predictive inference).‬

‭For this, we implemented two sequential statistical approaches: First (§2.6.1), we used‬
‭GAM statistical regression‬‭110‬‭, selecting among ecologically-informed‬‭models by the Akaike‬
‭information criterion (AIC) to both test hypotheses about variables thought to influence forest‬
‭drought response and to identify the best predictive models of regional to basin-wide drought‬
‭response‬‭111,112‬‭. To avoid known inferential biases‬‭of building large regression models out of many‬
‭variables selected blindly by information criteria like AIC‬‭111,113,114‬‭, we construct our‬
‭moderate-sized models within a hypothesis-testing framework, where causal hypotheses are‬
‭specified based on ecological considerations and the selected regression fits test the predictions‬
‭made by those hypotheses. Second (§2.6.2), we also employed structural causal modeling‬
‭(SCM)‬‭40,113‬ ‭an approach which formalizes hypothesis‬‭testing as part of the model structure (e.g.,‬
‭using Directed Acyclic Graphs, DAG‬‭114,115‬‭). SCM reduces‬‭risk from confounding variables that‬
‭can mask or dilute (or magnify) true causal relationships between the ‘exposure’ variables (e.g.,‬
‭climate, soil types) and the ‘outcome’ variable (e.g., forest greening/browning). We note that in‬
‭both approaches, accurate inference of the relative magnitude or importance of inferred relations‬
‭is conditional on the model being true.‬

‭Finally, we compare the two approaches (§2.6.3), based on the idea that if the inferences‬
‭from the two approaches are consistent with each other in terms of their conclusions about‬
‭hypotheses, this increases confidence in those conclusions.‬
‭2.6.1. AIC-selected General Additive Models (GAM) for hypothesis testing and prediction‬

‭We developed GAM regression models of forest drought response as a function of climate‬
‭variables and ecotope factors‬‭10,18,37‬ ‭to represent‬‭our three core hypotheses of water table depth‬‭28‬‭,‬
‭soil fertility‬‭32,33‬‭, and tree characteristics‬‭34–36,49‬‭.GAMs‬‭allow for non-linear relationships between‬
‭response and multiple explanatory variables, in which underlying model structure can be‬
‭analyzed to understand why they make the predictions they make -- in contrast, for example, to‬
‭machine learning techniques, like boosted regression trees or neural networks‬‭40,113‬‭. GAM links‬
‭response variables to explanatory variables with a smoothing function, or a spline, which can‬
‭take a variety of shapes, which are then added together.‬

‭We developed GAMs of two types:‬ ‭(i) regional models‬‭—fit‬‭within regions—‬‭designed to‬
‭test the “other side of drought” hypothesis 1, by including hydrological environments (as‬
‭represented by HAND) in addition to climate variables used in previous climate-only regression‬
‭models of forest drought response‬‭10‬‭; and‬‭(ii) basin-wide‬‭models‬‭designed to test all three of our‬
‭hypotheses together (including effects of soil fertility and tree characteristics), and in particular‬
‭to understand the opposite sensitivity of forest responses to water tables across different regions‬
‭(Fig. 3a vs‬‭Extended Data Fig‬‭. 8).‬
‭(i) Effect of local hydrological environment and climate on drought response‬‭(‬‭regional GAMs).‬
‭GAMs were fit separately for the southern Amazon, Guiana shield, and ever-wet Amazon‬
‭regions, and for all three droughts together, as:‬

‭(8)‬
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‭where‬‭∆EVI‬‭is the vegetation response anomaly,‬‭∆PAR‬‭,‬‭∆VPD‬‭,‬‭∆P‬‭and‬‭∆MCWD‬‭are the‬
‭radiation, VPD, precipitation, and MCWD anomalies, respectively;‬‭DL‬‭denotes the drought‬
‭length;‬‭ε‬‭is the normally distributed residual;‬‭s‬‭()‬‭and‬‭ti‬‭() are the smoothing functions of predictor‬
‭variables, obtained using a scatterplot smoothing algorithm with a back-fitting procedure for the‬
‭appropriate smoothing function for each predictor. The degree of freedom (df) for the smoothers‬
‭is determined with “REML” with gaussian distribution implemented by Wood’s R package‬
‭“mgcv”‬‭113‬‭. Models were implemented with gam.check‬‭function by R package “mgcv”‬‭113‬ ‭for‬
‭diagnostics of residual, distribution and k basis dimension as well as concurvity. All the‬
‭predictors were scaled to the same range and unit (40 kms, or ~0.4 degree).‬

‭The smooth functions were determined by thin plate splines‬‭114,115‬‭. Here, we fitted thin plate‬
‭regression splines using automatically optimized smoothing parameters using the restricted‬
‭maximum likelihood, or REML method. Three optimal models were selected for the‬
‭corresponding three regions, with all three model selection procedures evaluated by delta AIC‬
‭and R square‬‭116‬ ‭using the  “dredge'' function in the‬‭mgcv package in R‬‭113‬‭, with results reported in‬
‭Extended Data Table 1‬‭(models a, b, and c).‬
‭(ii) Effect of hydrological environment interacting with regional ecotopes‬‭(‬‭basin-wide GAM).‬
‭We included soil types (fertility and texture) and vegetation characteristics (forest height, wood‬
‭density) into the GAM of section (i). Without specifying regions, we aimed to explore whether‬
‭soil and vegetation characteristics (‬‭Extended Data‬‭Fig‬‭. 3) are able to explain regional differences‬
‭in the sensitivity of forest response to water table depth. GAMs were fitted across the whole‬
‭basin for the 2015/2016 El Niño drought, the only drought that had substantial simultaneous‬
‭impacts on all three regions of the Amazon basin. The forest responses were comprised of three‬
‭components: (Ⅰ) the climate predictor variables (PAR anomaly, VPD anomaly, precipitation‬
‭anomaly and MCWD anomaly); (Ⅱ) the ecotope-based environmental predictor variables, in‬
‭addition to HAND, associated with regional differences: soil fertility, soil texture, forest height‬
‭and wood density; (III) error terms assumed to be a Gaussian distribution. Specifically, GAMs‬
‭were fitted as below:‬

‭(9)‬

‭where‬‭DSL‬‭denotes dry season length,‬‭FH‬‭denotes forest‬‭height,‬‭ST‬‭denotes soil texture and‬‭SF‬
‭denotes soil fertility. Considering variable correlations (‬‭Extended Data Table 2‬‭), we avoided‬
‭choosing highly correlated variables for the same model (which for example excluded wood‬
‭density when soil fertility was in the model). Considering the complexity of the model and‬
‭computational cost, the pairwise interactions were included separately among ecotope factors,‬
‭among climate variables, and between HAND and PAR, but did not traverse interactions among‬
‭every possible pair of variables. The fitting process was the same as for the regional GAMs of‬
‭(i): smoother determined with “REML” as implemented by “mgcv”‬‭113‬‭, and models evaluated by‬
‭delta AIC and R square‬‭116‬ ‭coded by the “dredge'' function‬‭in the “mgcv” package in R, with final‬
‭results reported in‬‭Extended Data Table 1‬‭(model d).‬‭Basin-wide modeled forest response for‬
‭the 2015/2016 drought is presented in‬‭Extended Data‬‭Fig‬‭. 17 where the GAM well-predicts the‬
‭pattern of response (‬‭Extended Data Fig‬‭. 17b), but‬‭under-estimates the extremes of the responses‬
‭(as evident from residuals in‬‭Extended Data Fig‬‭. 17c‬‭showing greening/browning patterns‬
‭beyond the predictions).‬
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‭Beyond the three more recent hypotheses discussed in the main text, soil texture was also‬
‭expected to affect soil hydraulic properties and forest ecosystem response to drought‬‭102,117‬‭. We‬
‭found that forests on sandy soils were more resilient (i.e., higher relative green-up) than those on‬
‭clay soils (which bind water more closely), consistent with findings of process model studies‬‭22‬ ‭of‬
‭clays that bring soils more quickly to wilting points‬‭23‬‭.‬‭But again, this depended on water table‬
‭depth, and deep water table forests also became more vulnerable with increasing sand content‬
‭(‬‭Extended Data Fig‬‭. 11), perhaps because in the absence‬‭of a shallow water resource, sandy soils‬
‭drained water too quickly‬

‭This final basin-wide GAM model (Extended Data Table 1d) including soil texture (along‬
‭with WTD, forest height, and soil fertility) suggests a further hypothesis for how soil texture‬
‭moderates the effects of forest height and water table depth on drought response (‬‭Extended Data‬
‭Fig‬‭. 11). The potential counteracting effects of the‬‭positively correlated forest height (which‬
‭increases resilience when water tables are deep) and soil clay fraction (which generally decreases‬
‭resilience due to binding water more tightly to soil particles) may explain the otherwise puzzling‬
‭result that the tall forest advantage in deep water table forests does not just disappear but reverses‬
‭in shallow water table environments (Fig. 4d). As shown in‬‭Extended Data Fig‬‭. 11, the reversal‬
‭of the general trend (of decreasing resilience as clay fraction increases = sand fraction decreases)‬
‭in deep water table forests (red lines in‬‭Extended‬‭Data Fig‬‭. 11 reverse as sand content falls below‬
‭50%), is associated with increasing forest height, especially in deep water table forests. Thus, at‬
‭the low sand (=high clay) end of the spectrum, the effect of soil texture depends strongly on‬
‭WTD:  in shallow WTD forests where tall trees are not advantaged, the negative effect of clay‬
‭depresses forest drought response, but in deep WTD forests drought resilience increases again,‬
‭even with increasing clay (decreasing sand), possibly because the associated taller tree effect‬
‭outweighs the negative effect of clay soils.  This mechanism could serve to improve models of‬
‭how soil texture modulates drought response‬‭118,119‬‭.‬
‭2.6.2. Structural Causal Modeling (SCM) using Directed Acyclic Graphs (DAG)‬

‭In order to further test the causal mechanisms proposed by our three core hypotheses, we‬
‭used a framework for causal inference from SCM‬‭40,118‬‭,‬‭DAG analysis‬‭119,120‬‭.  We proposed and‬
‭tested hypothesized causal relationships (represented by DAG diagrams, as in‬‭Extended Data‬
‭Fig‬‭. 9a).‬

‭Implementing DAG analysis with ‘dagitty’ (R package‬‭120‬‭,‬‭we first developed a DAG‬
‭diagram for Amazon forest drought response with relevant climate variables and ecotope factors‬
‭expected from the literature‬‭10,17,34‬‭, including our‬‭three core hypotheses of water table depth‬‭24‬‭, soil‬
‭fertility‬‭28,29‬‭, and tree characteristics‬‭30–32,50‬ ‭(‬‭Extended‬‭Data Fig‬‭. 9a).  We assessed ‘DAG-data‬
‭consistency’, testing to ensure that unconnected nodes are not correlated, applying root mean‬
‭square error of approximation (RMSEA) (R functions “localTests” and “cis.loess” to allow‬
‭potential non-linear correlations using loess fits‬‭120‬‭;‬‭Extended Data Fig‬‭. 9b).‬

‭We iteratively tested and revised the DAG by repairing detected independence violations‬
‭between unconnected nodes (i.e. where RMSEA was greater than 0.30, as in Ankan et al.‬‭121‬‭), by‬
‭adding either a new direct causal link between such nodes (after first verifying an ecological‬
‭basis for the link), or new links to each of the correlated nodes from a common causal node‬
‭(again, if they made ecological sense). For example, longer dry season length should promote‬
‭generally drier conditions, including greater VPD and MCWD; positive precipitation anomalies‬
‭will cause higher relative humidity and therefore lower VPD anomaly‬‭33‬‭; more clayey soils allow‬
‭taller trees‬‭122‬‭, supporting the addition of links‬‭between these nodes. These adjustments gave a‬
‭final DAG with a greater number of links (‬‭Extended‬‭Data Fig‬‭. 9c) and no independence‬
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‭violations among the remaining unconnected nodes (‬‭Extended Data Fig‬‭. 9d). We next utilized the‬
‭“backdoor criterion” to test the causal effects of key predictors, exposing the influence of each‬
‭variable on drought response, one-by-one, while blocking (or adjusting for) the influence of‬
‭“backdoor” variables on non-causal pathways (i.e., pathways in which at least one arrow points‬
‭in a direction opposite to the hypothesized causal influence)‬‭123,124‬‭.‬‭Extended Data Fig‬‭. 9c‬
‭illustrates blocking the confounding ‘backdoor path’ influence of average dry-season length‬
‭[DSL] on the causal relationship between drought length [DL] and drought response [DR];‬
‭Extended Data Fig‬‭. 10 shows non-linear (GAM) model‬‭results for causal relationships‬
‭addressing our hypotheses identified this way. Completing these steps, we accepted our finalized‬
‭DAG (‬‭Extended Data Fig‬‭. 9c) as representing detected‬‭causal links for forest drought response‬
‭and blocked all backdoor paths in subsequent analysis by including the confounding variables in‬
‭multiple regression (in GAM analysis), as reported in‬‭Extended Data Fig.‬‭10.‬
‭2.6.3. Comparing inferences from SCM with predictive GAM regressions‬

‭We found that both modeling approaches consistently supported the “other side of‬
‭drought” hypothesis (hypothesis 1) for forest drought response in the southern Amazon across all‬
‭three droughts (negative dependence on water table depth, Fig. 3a and‬‭Extended Data Fig.‬‭10a),‬
‭with associated consistent climate dependencies (positive dependence on sunlight, Fig. 3b and‬
‭Extended Data Fig.‬‭10b, and declining overall dependence‬‭on drought length, but with a peak at‬
‭~3 months duration, Fig. 3c,‬‭Extended Data Fig.‬‭10c).‬‭Across the basin for the 2015/2016‬
‭drought, both modeling approaches supported hypothesis 2, that increasing soil fertility (past a‬
‭moderate fertility level) would negatively affect drought response (Fig. 4a,c and‬‭Extended Data‬
‭Fig.‬‭10e), and both supported a “hypothesis 1- hypothesis‬‭3” interaction, finding that increasing‬
‭forest height (and presumed deeper rooting depth) positively affected drought response in deep‬
‭water-table forests, but had the opposite effect in shallow water-table forests (Fig. 4b,d and‬
‭Extended Data Fig.‬‭10d). Finally, though not part‬‭of the three core hypotheses, both modeling‬
‭approaches found similar effects of soil texture on drought response (‬‭Extended Data Fig‬‭. 10f and‬
‭Extended Data Fig.‬‭11).‬
‭2.7. Comparing adjusted observations to GAM predictions for different predictor variables‬

‭The observed vegetation indices (MAIAC EVI, and GOSIF) were graphed in adjusted form‬
‭(as “climate adjusted” or “ecotope-adjusted” observations) in order to compare observed versus‬
‭predicted relationships with one predictor variable at a time (e.g. water table depth) while‬
‭adjusting for the effect of the other, potentially influential, predictor variables represented in the‬
‭GAM models (section 2.6.1, above). This is analogous to partial regression plots or adjusted‬
‭variable plots in conventional regression models‬‭125‬‭.‬‭EVI (Figs. 3a, 4e,‬‭Extended Data Fig‬‭. 8a, b)‬
‭or GOSIF (‬‭Extended Data Fig‬‭. 8c, d) observations of‬‭anomalies were adjusted by the difference‬
‭between the full GAM predictions at each pixel and the partial prediction for the median‬
‭conditions. For example, to plot climate-adjusted EVI/GOSIF versus water table depth (across‬
‭different HAND bins) as in Fig. 3a and‬‭Extended Data‬‭Fig‬‭. 8, the adjustment (shown for EVI)‬
‭was:‬

‭(10)‬
‭where‬ ‭is the observed‬‭i‬‭th‬‭EVI‬‭anomaly,‬ ‭is the‬‭prediction of the‬‭i‬‭th‬
‭EVI‬‭anomaly from GAM (model function for Eqn. 8 denoted‬‭as‬‭f()‬‭here) and‬
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‭is the prediction when holding climates constant at the median value of the‬
‭domain of the prediction (in this case, the median climate within each drought).‬

‭Similar calculations are applied to observations in Fig. 4e to account for the regional‬
‭differences in climates and ecotopes (Ever-wet, Guiana shield, and southern Amazon), while‬
‭isolating the effects of water-table depth (HAND) on EVI anomalies with the basin-wide GAM‬
‭model. The correction term applied to Eqn. 9 in the case of Fig. 4e was‬

‭(11)‬
‭where‬‭SF‬‭denotes soil fertility,‬‭ST‬‭denotes soil texture,‬‭and‬‭FH‬‭denotes forest height.  The‬
‭domain of the prediction for which median values of ecotope distributions were taken was, in‬
‭this case, each of the three regions, considered separately.‬
‭2.8. Deriving the basin-wide biogeography of forest drought resilience/vulnerability‬

‭Classic biogeography in ecology focuses on the drivers of the distribution of species and‬
‭their phylogenies over space and time, as an emergent consequence of their evolutionary‬
‭histories‬‭126,127‬‭. Here, following recent ideas in‬‭the emerging field of functional biogeography‬‭23,128‬‭,‬
‭we extend classic species-based biogeography to derive a functional biogeography of Amazon‬
‭forest drought resilience and vulnerability. To accomplish this, we used the GAM analysis that‬
‭included ecotopes and was derived for the whole basin (section 2.6.1, Eqn. 9, Extended Data‬
‭Table 1d,‬‭Extended Data Fig‬‭. 17). Resilience (as plotted‬‭in Fig. 5a) was defined as the‬
‭standardized GAM prediction (positive values corresponding to greening and resilience) from‬
‭the spatially varying ecotope factors alone (with effects of spatial variation in climate removed‬
‭by setting each pixel’s climate factors equal to their basin wide average during the 2015‬
‭drought):‬

‭(12)‬

‭(13)‬

‭where‬‭Resilience‬‭i‬ ‭is the prediction for pixel‬‭i‬‭using‬‭Eqn. 9 as function‬‭f()‬‭, and‬ ‭and‬
‭denote mean and standard deviation‬‭across the basin, respectively.‬‭𝑆𝐷‬

‭𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒‬

‭We defined thresholds conducive to resilience to define ecotope factor groups associated‬
‭with resilience or vulnerability. Overlapping ecotope factors generally conducive to resilience‬
‭(shallow water tables, low soil fertility, and tall trees) were distributed across the basin (Fig. 5b,‬
‭C). The resilience thresholds for the different factors were:‬‭shallow water table forests‬‭:  <10m,‬
‭taken from Nobre et al.‬‭25‬‭,‬‭low soil fertility‬‭: exchangeable‬‭base cation concentrations <10‬‭-0.35‬

‭cmol‬‭+‬‭/kg; and‬‭tall forests:‬‭heights>32.5 m. The thresholds‬‭for soil fertility and forest height were‬
‭chosen as the level where average slope of EVI anomaly sensitivity to HAND changed sign (in‬
‭Fig. 4a, b, respectively).‬
‭3.‬‭Testing alternative interpretations and considering‬‭caveats‬

‭To address potential questions about whether alternative interpretations might either‬
‭undermine or further illuminate our reported results, we identified additional hypotheses posing‬
‭alternative interpretations. Among the additional hypotheses we considered were the following‬
‭five, the first four of which we were able to partially test here with the functional biogeography‬
‭GAM model:‬
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‭H1. That spatial scaling artifacts contaminate the results.‬‭In particular, it might be that the‬
‭primary spatial scale of our analysis (~40km, in order to achieve statistical independence, see‬
‭section 2.5) is too large and does not reflect the fine scale of individual tree response to drought‬
‭in distinct environments, raising the question of whether the effects reported here can be‬
‭confidently attributed to the aggregation of these fine scale responses, or to some other effect.‬

‭In order to test this hypothesis, we investigated how sensitivity of forest drought response to‬
‭water table depth depended on the scale of the analysis (‬‭Extended Data Fig.‬‭12), from 40 km‬
‭(Fig. 3a, reproduced in‬‭Extended Data Fig‬‭. 12a) to‬‭the native MODIS scale (1km) (‬‭Extended‬
‭Data Fig‬‭. 12b), and across the finer scales (resolved‬‭to 30 meters using Landsat OLI 8 land‬
‭surface reflectance, see‬‭Extended Data Fig‬‭. 12c) available‬‭for a region near Manaus‬‭129‬ ‭(at scales‬
‭below 40 km, spatial autocorrelation is evident; this artificially narrows confidence intervals, but‬
‭does not hinder the scaling comparisons). These analyses showed that sensitivity of forest‬
‭drought response to water table depth did not detectably depend on scale, adding confidence that‬
‭the key factor of water table depth indeed structures Southern Amazon drought response (as in‬
‭Fig. 3a) across different scales. We note that this analysis suggests a need for future investigation‬
‭of how the actual magnitudes of greenness anomalies at the ecological neighborhood scale (1 ha)‬
‭of operation of community and ecophysiological mechanisms translate to magnitudes at larger‬
‭scales.‬

‭H2. That different aspects of drought dynamics (e.g. severity interacting with duration) may‬
‭confound the reported interpretation of drought duration (as in Fig. 3).‬‭Drought severity and‬
‭duration are known to have distinct effects on different species in other biomes, raising the‬
‭question of whether these dimensions of drought have distinct effects in the Amazon.‬

‭We tested the interacting effects of severity (as defined as in section 2.3, by the MCWD‬
‭anomaly) and drought duration by further analyzing the model of Extended Data Table 1a. This‬
‭analysis (‬‭not shown‬‭) confirms that droughts that are‬‭both deep and long have the most negative‬
‭effects on photosynthesis. This also confirmed the hump-shaped response to drought duration‬
‭reported in Fig. 3c (with a primary hump occurring earlier but persisting longer through a‬
‭secondary hump for less severe droughts).‬

‭H3: That drought impacts during dry seasons are different than during wet seasons,‬
‭complicating interpretation of PAR anomaly and drought length effects (Fig. 3).‬‭If light‬
‭limitation (and hence PAR sensitivity) is stronger in the wet season (because light is already‬
‭more limiting in the wet season due to greater cloud cover), longer droughts will not just be‬
‭longer, but (because seasons are of finite length) they will also be more likely to encompass, in‬
‭varying fractions, the differing light sensitivities of dry and wet seasons.‬

‭In order to test whether the proportion of the drought that occurs in the wet versus dry‬
‭season affects reported forest responses, we constructed “DryDrought” as a predictor variable,‬
‭representing the proportion of a given pixel’s drought that occurred in the dry season. We, added‬
‭DryDrought to the GAM for the Southern Amazon (Extended Data Table 1a), comprising‬
‭HAND, climate factors and the error terms. Specifically:‬

‭(14)‬

‭This analysis (‬‭Extended Data Fig‬‭. 13) showed that‬‭the longest drought (2015) also had the‬
‭broadest distribution of occurrences across dry and wet seasons, with about equal parts of the‬
‭drought occurring in the dry versus the wet season (median fraction in the dry season = 0.51,‬
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‭Extended Data Fig‬‭. 13a).  By contrast, the 2005 and 2010 droughts were primarily dry season‬
‭droughts (median dry season fractions = 0.83 and 0.77, respectively).  This analysis confirms our‬
‭finding of a generally positive sensitivity of droughted forests to sunlight reported in the main‬
‭narrative (Fig. 3b), but further shows that the greater the proportion of the drought that occurs in‬
‭the wet season, the greater the positive sensitivity to sunlight anomalies (in‬‭Extended Data Fig‬‭.‬
‭13b, the blue line representing pixels experiencing predominantly wet season drought is steeper‬
‭than the red line representing pixels predominantly experiencing dry season drought).  This‬
‭analysis also confirms (‬‭Extended Data Fig‬‭. 13c) that‬‭the hump shaped response to drought‬
‭duration (as in Fig. 3c, especially the peak of vegetation response at three month’s duration) is‬
‭general across both dry and wet season droughts.  A consistent result of both analyses is that‬
‭(with the exception of PAR anomalies greater than +2 standard deviations,‬‭Extended Data Fig‬‭.‬
‭13b), forests experiencing wet season droughts are generally more negatively affected by drought‬
‭than are forests experiencing dry season droughts, consistent with the idea that although trees are‬
‭adapted to the dry conditions of annually recurring dry seasons, they are especially vulnerable‬
‭when droughts hit in the wet (recovery) season.‬

‭H4: That deforested or degraded forests‬‭may be driving or contaminating results that are‬
‭reported as for “intact” forests.‬‭Deforested regions‬‭are excluded from the analysis, but the mask‬
‭may still include forests in proximity to deforested regions that, though not deforested, may be‬
‭experiencing degradation. We conducted a sensitivity test to address the question of whether‬
‭different drought responses in degraded forests could be contaminating our findings, using a‬
‭recent classification‬‭86‬ ‭that identifies partially‬‭degraded forests as distinct from both deforested‬
‭and intact forests, now updated through 2022.  We repeated the GAM analysis reported in Fig. 4,‬
‭but here excluded pixels representing degraded forests.  The results (‬‭Extended Data Fig‬‭. 14,‬
‭styled after Fig. 4 in the main text) suggest that partially degraded forests likely are indeed more‬
‭vulnerable: the curves in panels C and D of‬‭Extended‬‭Data Fig‬‭. 14 (for purely intact forests)‬
‭reach a slightly greater EVI anomaly value than the corresponding curves of Fig. 4c, d (including‬
‭mainly intact and but also some degraded forests). This suggests that a functional biogeography‬
‭approach may be fruitful for future investigations of the effect of forest degradation on drought‬
‭sensitivity at the local scale. However, the differences are slight at the basin scale, and the overall‬
‭patterns in Fig. 4 and Fig. 5 results do not depend much on whether these forests “in between”‬
‭deforested and intact regions are included or excluded.‬

‭H5: That relatively taller individual trees are more vulnerable to drought, even as‬
‭tall-canopy deep water table forests are on average more resilient to drought.‬‭We found that‬
‭greater forest canopy height promoted resilience for deep water table forests, but increased‬
‭vulnerability for shallow water table forests (Fig. 4d,‬‭Extended Data Fig‬‭. 11d). Observations of‬
‭drought responses in the RAINFOR network‬‭49‬ ‭and drought‬‭experiments‬‭47,48‬ ‭report that tall trees‬
‭were more vulnerable to drought. One of the drought experiments was above a moderately‬
‭shallow water table (7-10m) and the vulnerability of tall trees there could be explained by our‬
‭result‬‭47‬‭, but the forest of the Nepstad et al drought‬‭experiment‬‭48‬‭, and many of the plots in the‬
‭RAINFOR network, are over deep water tables, raising the question as to whether the results‬
‭reported here might be inconsistent with those.‬

‭Recalling that the satellite-derived canopy heights are not individual tree heights but overall‬
‭mean heights of forest canopies over a 1km pixel, we hypothesize that both results are true:  that‬
‭deep water table forests that are tall on average (and presumed to have on average deeper roots‬
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‭that bring greater collective access to deep water resources) are more resilient than forests that‬
‭are on average shorter, but that individual tall trees, subject to greater atmospheric drought stress‬
‭from higher VPD, may be individually more vulnerable than their average-height neighbors.‬
‭Hydraulic redistribution by roots, observed as part of the Nepstad et al‬‭48‬ ‭Amazon drought‬
‭experiment‬‭130‬ ‭and by other studies, is a mechanism‬‭that could further enhance forest benefit from‬
‭redistributing deep waters upward in the soil profile.‬

‭This is a more challenging hypothesis to test, and in contrast to the hypotheses above, it is‬
‭beyond the scope of our current study to test here. However, this could be tested by extensive‬
‭plot data or higher resolution LIDAR data (e.g. Smith et al.‬‭100‬‭; Nunes et al.‬‭131‬‭) that could resolve‬
‭individual tall trees in the canopy, and compare their drought induced mortality rates across‬
‭forests of different average heights.‬
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‭Extended Data Fig. 1 Maximum cumulative water deficit (MCWD) standardized anomalies‬‭(relative‬
‭to the long term mean MCWD across years, blue=positive, orange=negative) during drought for (‬‭a‬‭)‬
‭2005, ‬‭(b)‬‭2010, and‬‭(c)‬‭2015 droughts. MCWD is calculated‬‭(methods section 1.2) as the maximum water‬
‭deficit reached for each hydrologic year (from May of the nominal year to the following April). The‬
‭“drought region” is defined as pixels whose MCWD anomaly is more than one SD below the mean (light‬
‭orange to red).‬

‭Extended Data Fig. 2. GOSIF-based forest response to droughts.‬‭GOSIF anomalies during drought,‬
‭relative to the long term mean GOSIF (green=positive, orange=negative) in drought regions for the (‬‭a‬‭)‬
‭2005, (‬‭b‬‭) 2010 and (‬‭c‬‭) 2015 droughts, respectively.‬‭(‬‭d‬‭) Photosynthetic index anomalies in the 2005‬
‭drought elliptical region: EVI and GOSIF (left and right vertical axes) versus HAND (elliptical region is‬
‭depicted in Fig. 1a and‬‭Extended Data Fig‬‭. 2a); (‬‭e‬‭)‬‭GOSIF responses (anomalies) vs. HAND for‬
‭observations (solid points +/- 95% CI and regression line) for the 2005 (green, slope=-0.016±0.006 SD‬
‭m‬‭-1‬‭), 2010 (purple, slope=-0.012±0.003 SD m‬‭-1‬‭), and‬‭2015 (blue, slope=-0.010±0.003 SD m‬‭-1‬‭) droughts,‬
‭paired with area distributions of drought-affected HAND values for each drought (right axis).‬

‭Extended Data Fig. 3. Ecotope factors of the Amazon basin.‬‭(‬‭a‬‭) Height Above Nearest Drainage‬
‭(HAND), a proxy for water-table depth‬‭25‬‭;‬‭(‬‭b)‬‭Soil‬‭fertility, as exchangeable base cation concentrations‬‭43‬‭;‬
‭(‬‭c‬‭) Average forest heights as acquired by lidar‬‭45‬‭;‬‭(‬‭d‬‭) Community-weighted wood density‬‭34‬‭; (‬‭e‬‭) Proportion‬
‭of trees belonging to the Fabaceae family‬‭34‬‭; (‬‭f‬‭) MCWD‬‭variability (see methods section 2.3), in terms of‬
‭the standard deviation of the long-term MCWD timeseries. High variance in climate and low soil fertility‬
‭in Guiana shield might contribute to the greatest proportion of trees belonging to the family Fabaceae‬
‭with the very high wood density; (‬‭g‬‭) Averaged minimum‬‭monthly precipitation (low=green,‬
‭high=orange). The north-west everwet Amazon is distinguished by lacking a dry season (precipitation‬
‭exceeds evapotranspiration).‬‭(h)‬‭Soil sand content‬‭44‬‭. The first row of factors are used as ecotope‬
‭predictors in the GAM analysis of Extended Data Table 1.‬

‭Extended Data Fig. 4. Pixel-based drought duration.‬‭Panels‬‭a‬‭,‬‭d‬‭, and‬‭g‬‭show dates of the onset of the‬
‭2005, 2010 and 2015 droughts, respectively. Panels‬‭b‬‭,‬‭e‬‭, and‬‭h‬‭show dates of the end of the 2005, 2010‬
‭and 2015 droughts. Panels‬‭c‬‭,‬‭f‬‭, and‬‭i‬‭show the duration‬‭(end date minus start date, in number of months)‬
‭of the 2005, 2010 and 2015 droughts.  Pixel-by-pixel drought responses (EVI in Figs. 1-3, 4; or GOSIF in‬
‭Extended Data Figs. 6 & 11) are taken as the vegetation index standardized anomalies that occur during‬
‭the pixel-specific drought period defined here.‬

‭Extended Data Fig. 5. Spatial distributions of climate variations’ anomalies across 2005, 2010 and‬
‭2015 droughts.‬‭Panels‬‭a‬‭,‬‭d‬‭, and‬‭g‬‭show photosynthetic‬‭active radiation (PAR) anomaly distributions‬
‭(blue=negative, red=positive) in the drought regions of the 2005, 2010 and 2015 droughts, respectively.‬‭b‬‭,‬
‭e‬‭, and‬‭h‬‭show the vapor pressure deficit (VPD) anomaly‬‭distributions (blue=negative, red=positive) in the‬
‭drought regions of the 2005, 2010 and 2015 droughts. Panels‬‭c‬‭,‬‭f‬‭, and‬‭i‬‭show the precipitation anomaly‬
‭distributions (red=negative, blue=positive) in the drought regions of the 2005, 2010 and 2015 droughts.‬

‭Extended Data Fig. 6. Regions in the Amazon basin‬‭that emerge from a principal components analysis‬
‭(PCA) followed by classification: (‬‭a‬‭) PCA of the Amazon‬‭basin pixel data (colored according to a‬
‭supervised classification into three classes identified by variance minimization), projected onto their first‬
‭two principal components, which are composed mainly of three dimensions, one defined by wood density‬
‭and proportions of the family Fabaceae (first principal component, horizontal axis), one defined by‬
‭minimum monthly precipitation and MCWD variability (second principal component, vertical axis), and a‬
‭third defined mainly by soil fertility; the classes are significantly separated in PCA space (F=950, df=2,‬
‭3805, p~ 0, permanova test);  (‬‭b‬‭) Th Amazon pixels‬‭colored according to their class (corresponding to the‬
‭colors in a), showing that the classification of (a) maps pixels into distinct, mostly contiguous spatial‬
‭regions. ) (‬‭c‬‭) Standardized values, for each region,‬‭of each group of characteristics (ordered by water‬
‭availability, soil fertility, and tree traits/characteristics), illustrate distinct regional niches:  the Everwet‬

‭50‬

‭1473‬

‭1474‬

‭1475‬

‭1476‬

‭1477‬

‭1478‬

‭1479‬

‭1480‬

‭1481‬

‭1482‬

‭1483‬

‭1484‬

‭1485‬

‭1486‬

‭1487‬

‭1488‬

‭1489‬

‭1490‬

‭1491‬

‭1492‬

‭1493‬

‭1494‬

‭1495‬

‭1496‬

‭1497‬

‭1498‬

‭1499‬

‭1500‬

‭1501‬

‭1502‬

‭1503‬

‭1504‬

‭1505‬

‭1506‬

‭1507‬

‭1508‬

‭1509‬

‭1510‬

‭1511‬

‭1512‬

‭1513‬

‭1514‬

‭1515‬

‭1516‬

‭1517‬

‭1518‬

‭1519‬

https://paperpile.com/c/gDKLkA/465Cp
https://paperpile.com/c/gDKLkA/x1zXd
https://paperpile.com/c/gDKLkA/pbgPo
https://paperpile.com/c/gDKLkA/bb7bO
https://paperpile.com/c/gDKLkA/bb7bO
https://paperpile.com/c/gDKLkA/8CpZL


‭Amazon is highest in minimum precipitation and lowest (highest negative) in MCWD variability; the‬
‭Southern Amazon is moderately high in mean fertility, and the Guiana shield has the tallest mean forest‬
‭height and greatest wood density.‬‭(d)‬‭scree plot of‬‭the eigenvalues of PCA shown in (a), plotted in rank‬
‭order.‬

‭Extended Data Fig. 7. Variograms of spatial autocorrelation effect across three droughts.‬‭The‬
‭variance of the difference of MAIAC EVI anomalies between shallow and deep water tables against‬
‭distance between pairs of pixels from shallow and deep water tables for the whole basin (‬‭a‬‭,‬‭e‬‭, and‬‭h‬‭),‬
‭southern Amazon (‬‭b‬‭,‬‭f‬‭, and‬‭i‬‭), everwet Amazon (‬‭c‬‭,‬‭g‬‭, and‬‭j‬‭) and Guiana shield (‬‭d‬‭and‬‭k‬‭),‬
‭respectively. Variance was lower (indicating spatial autocorrelation) for pairs formed from nearby pixels,‬
‭but tended to reach a sill (plateau) at around 40 km, indicating a scale at which spatial autocorrelation‬
‭weakened, and samples could be treated as independent for purposes of statistical analysis.‬

‭Extended Data Fig. 8. Amazon forest EVI and GOSIF responses to multiple droughts in (a, c)‬
‭ever-wet northwest and (b, d) in northeast Guiana shield regions show consistently positive slopes‬
‭with HAND, in contrast to responses in the Southern Amazon (Fig. 3a)‬‭:‬‭(a), (b)‬‭Enhanced vegetation‬
‭index (EVI) anomalies versus water table depth (i.e., HAND) for observations (solid points with standard‬
‭error bars, with linear regression solid line) and for unified multi-drought GAM predictions (Extended‬
‭Data Table 1b, c) (with climate fixed to region-wide average drought conditions for each drought, smooth‬
‭lines with shaded uncertainty regions, and associated linear regression dashed line) for the 2005 (green),‬
‭2010 (purple), and 2015/2016 (blue) droughts in drought regions of Guiana shield (a) and ever-wet‬
‭Amazon (b). The 2010 drought did not significantly affect the Guiana shield.‬‭(c), (d)‬‭ GOSIF anomalies‬
‭versus water table depth (HAND), following the same analysis as in (a, b) for EVI.‬

‭Extended Data Fig. 9. Development of a Directed acyclic graph (DAG) representing the structure of‬
‭factors influencing tropical forest responses to drought. (a)‬‭Initially hypothesized DAG‬‭characterizing‬
‭the causal relationships among climatic, environmental, and forest variables (measured variables depicted‬
‭as blue nodes, unmeasured rooting depth is depicted in gray) leading to forest drought response (other‬
‭color node), with arrows representing the hypothesized causal links.‬‭(b)‬‭DAG-data consistency tests for‬
‭initial DAG‬‭, with the largest 20 approximated non-linear‬‭correlation coefficients (estimated via root mean‬
‭square error of approximation, RMSEA) between unlinked variables in (a). (Note:  unlinked variables in a‬
‭DAG are hypothesized to have zero correlation or zero conditional correlation; thus, the second row of‬
‭panel b tests “DR_||_DSL | DL” -- whether DR is independent of DSL conditioned on DL, by estimating‬
‭the non-linear correlation between DR and the residuals of DSL regressed on DL.)  Correlations greater‬
‭than an acceptability threshold (dashed vertical lines at ±0.30) fail the test of conditional independence,‬
‭addressed by adding to the DAG either a direct causal link (indicated by a green symbol), or links to a‬
‭common cause (pink symbol) (such added arrows are included in panel c).‬‭(c)‬‭Final DAG‬‭after correcting‬
‭for conditional independency inconsistencies of the initial DAG in A, in light of ecological‬
‭considerations. Also illustrates use of the backdoor criterion to determine the causal effect of ‘drought‬
‭length (DL)’ (the exposed predictor node and associated forward causal paths, in green) on forest drought‬
‭response (corresponding to the model in‬‭Extended Data‬‭Fig‬‭. 10c ), while blocking the confounding‬
‭variable dry season length, DSL (hypothesized to itself affect DL) and its associated causal backdoor‬
‭paths (which are considered non-causal paths with respect to the exposed variable DL) (in pink).‬‭(D)‬
‭DAG-Data consistency tests for final DAG‬‭(panel c),‬‭showing the largest 20 RMSEA values.‬

‭Extended Data Fig. 10. Causal effects of different variables derived from DAG employing backdoor‬
‭criterion, for:  (a)(b)(c) the Southern Amazon across all three droughts:  (a)‬‭of HAND (no backdoor‬
‭to be blocked) (‬‭b‬‭) of PAR (adjusting for back door‬‭paths through drought length, dry season length) (‬‭c‬‭) of‬
‭Drought length (adjusting for back door path through dry season length) on EVI responses (adjusted EVI‬
‭prediction)‬‭; (d)(e)(f) the Amazon basin during the‬‭2015 drought: (d)‬‭of‬‭forest height, categorized by‬
‭shallow (blue, HAND=0-10 m) and deep (red, HAND=20-40 m) water tables (adjusting for back door‬
‭paths through soil fertility, soil texture and dry season length),‬‭(e)‬‭of soil fertility (adjusting‬‭for back door‬
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‭path through dry season length)‬ ‭(f)‬‭of‬‭soil texture (no backdoor path to be blocked). Causal effects are on‬
‭EVI drought anomalies (adjusted EVI predictions after conditioning confounding variables in causal‬
‭GAMs, lines with 95% confidence shaded area).‬

‭Extended‬‭Data‬‭Fig.‬‭11.‬‭The‬‭sensitivity‬‭of‬‭forest‬‭response‬‭to‬‭soil‬‭texture‬‭(sand‬‭content)‬‭in‬‭basin-wide‬
‭GAM‬ ‭analysis:‬ ‭GAM-predicted‬ ‭adjusted‬ ‭EVI‬ ‭anomaly‬ ‭(left‬ ‭axis)‬ ‭versus‬ ‭soil‬ ‭sand‬ ‭content‬ ‭(%),‬ ‭with‬
‭water‬‭table-depth‬‭in‬‭color‬‭(shallow=blue‬‭to‬‭deep=red),‬‭paired‬‭with‬‭distributions‬‭of‬‭mean‬‭forest‬‭height‬‭in‬
‭each‬ ‭soil‬ ‭texture‬ ‭bin‬ ‭(bottom‬ ‭graph,‬ ‭right‬ ‭axis).‬ ‭‘Adjusted’‬ ‭GAM‬ ‭predictions‬ ‭are‬ ‭made‬ ‭by‬ ‭setting‬
‭non-displayed‬ ‭predictors‬ ‭(climate‬ ‭variables,‬ ‭tree-height,‬ ‭soil‬ ‭fertility)‬ ‭to‬ ‭their‬ ‭median‬‭values‬‭during‬‭the‬
‭drought.‬

‭Extended Data Fig. 12‬‭.‬‭Scale-dependence of Southern‬‭Amazon forest responses to drought, showing‬
‭that detected response patterns are largely invariant across different scales of analysis‬‭: (‬‭a‬‭) At 0.4‬
‭degree (40-km) scale (across the Southern Amazon. all three droughts):  Climate-adjusted EVI responses‬
‭(standardized anomalies from MODIS) vs. water-table depths (indexed by HAND) for observations (solid‬
‭points ±95% CI and solid regression line) and for unified multi-drought GAM predictions (model of‬
‭Extended Data Table 1a, shaded bands and dashed regression line slopes) for the 2005 (green,‬
‭slope=-0.019 ±0.001 SD m-1), 2010 (purple, slope=-0.020±0.002 SD m-1), and 2015 (blue,‬
‭slope=-0.028±0.002 SD m-1) droughts; (‬‭b‬‭) At 1-km scale‬‭(across the Southern Amazon, all three‬
‭droughts), as in (a): climate-adjusted EVI responses vs. HAND for observations (solid points and‬
‭regression line) and corresponding GAM (with the same Extended Data Table 1a model now fit at 1km‬
‭scale, revealing autocorrelation in observations causing too-narrow confidence bands, and slight model‬
‭underpredictions of the extremes of the 2005 greenup and the 2010 browdown, but maintaining the‬
‭similar negative dependence on HAND across all droughts); (‬‭c‬‭) At 30 to 180 m scales (for a forest region‬
‭around Manaus, 2015-2016 drought only):  Delta EVI (the fraction change in EVI due to the drought =‬
‭(after-drought EVI (July 2016) - pre-drought EVI (August 2015))/pre-drought EVI) (Landsat OLI8, at‬
‭30m resolution) vs. water-table depths (indexed by HAND) for Landsat observations (solid points ±95%‬
‭CI and solid regression line) at native (30m) and aggregated to 90 and 180-m scales.  Also shown in the‬
‭bottom of each panel is the distribution of water table depth at each scale.  Aggregations to larger‬
‭(coarser) scales induce an apparent regression towards the mean in the water table depth distributions (as‬
‭more extreme water table depths at finer scales become diluted by averaging to large scales), while‬
‭similar dilution of extremes in EVI response (not shown) preserves the overall relation between EVI‬
‭responses and water table depth (especially evident in the Landsat analysis where the slopes through data‬
‭aggregated at different scales do not detectably differ).‬

‭Extended Data Fig. 13. The sensitivity of Amazon forest drought responses to dry versus wet season‬
‭drought periods, across the three-droughts: (a)‬‭distribution‬‭of the proportion of drought that was in the‬
‭dry season (0 = all in the wet season to 1= all in the dry season) for drought-affected pixels in each of the‬
‭three droughts.‬‭(b)‬‭GAM-predicted EVI anomaly versus‬‭PAR, for different proportions of dry season‬
‭drought (blue=all wet to red=all dry, corresponding to colored tick marks in‬‭the vertical axis of a).‬ ‭(c)‬
‭Adjusted EVI anomaly from GAM prediction versus drought length, for different proportions of‬
‭dry-season drought (blue to red, as in panel b).‬

‭Extended Data Fig. 14. The sensitivity of Amazon intact terra firme forest to drought responses,‬
‭excluding degraded forests.‬‭Basin-wide Amazon intact‬‭forest responses to the 2015 drought, structured‬
‭by ecotopes and predicted by whole-basin GAM analysis (fit by model of Extended Data Table 1d, but‬
‭fully excluding forests categorized as degraded‬‭86‬ ‭in fitting the model): GAM partial predictions of EVI‬
‭anomalies (color scale), displayed identical to the design of Fig. 4 (for intact terra firme forests, but‬
‭including some partly degraded forests) for (‬‭a‬‭) soil‬‭fertility‬‭43‬ ‭and HAND‬‭25‬‭, and for (‬‭b‬‭) forest height‬‭45‬ ‭and‬
‭HAND‬‭25‬‭. ecotope distributions are in the margins,‬‭identical to those shown in Fig. 4. (‬‭c‬‭)(‬‭d‬‭) adjusted‬‭EVI‬
‭anomaly versus HAND with increasing (c) fertility or (d) forest height, each color-coded as in Fig. 4.‬
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‭Note: ‘adjusted’ EVI anomalies indicate that climate and ecotope factors not displayed in the graph are‬
‭held constant at basin-wide (a-d) or regional average values (e).‬

‭Extended Data Fig. 15. (a) Remotely sensed map of MAIAC EVI (1-km resolution) (green to blue‬
‭color scale), overlaid with aboveground NPP (ANPP) rates from 321 ground-monitored forest plots‬
‭(red circles, % y‬‭-1‬‭) as aggregated to 1 degree grid‬‭plots (RAINFOR plots in Brienen et al.‬‭2‬‭), with‬‭both‬‭EVI‬
‭and ANPP taken during the 2000-2011 interval. ANPP rate is calculated as Aboveground Biomass (AGB)‬
‭gain (Mg/(ha‬‭·‬‭yr)) (total annual AGB productivity of‬‭surviving trees plus recruitment, plus inferred growth‬
‭of trees that died between censusing intervals) divided by initial AGB (Mg/ha) (standing above ground‬
‭biomass at the start of the census interval).‬‭(b)‬‭ANPP rates as predicted by EVI‬‭(points from (a) plus‬
‭solid regression line with statistics; Dashed line and associated statistics in gray represent linear‬
‭regression without the high leverage point, shown in red, with Cook’s distances > 4/n, where n=number of‬
‭points‬‭132‬‭.).  EVI is the mean extracted from intervals‬‭matching the average census interval of the‬
‭corresponding plots in Brienen et al.‬‭2‬

‭Extended Data Fig. 16. Remotely sensed photosynthetic indices versus ground-monitored tree‬
‭demography in shallow water table forests during the 2015-2016 drought‬‭26‬‭: Top row:‬‭MAIAC EVI‬
‭standardized drought anomalies‬‭:‬‭26‬‭(1-km pixels) versus‬‭corresponding ground-monitored (‬‭a‬‭) mortality, (‬‭b‬‭)‬
‭recruitment, and (‬‭c‬‭) mortality:recruitment ratios‬‭in 1-ha plots.‬‭Bottom row‬‭: GOSIF standardized drought‬
‭anomalies (5-km pixels) versus ground-monitored (‬‭d‬‭)‬‭mortality, (‬‭e‬‭) recruitment, and (‬‭f‬‭)‬
‭mortality:recruitment ratios; Solid lines and statistics (R‬‭2‬ ‭and p-values) represent standard linear‬
‭regression fits to all data. Red points, if they exist, are high leverage, i.e. with Cook’s distances > 4/n,‬
‭where n=number of points‬‭132‬‭, and dotted lines and‬‭associated statistics in gray represent standard linear‬
‭regressions without such points , showing that remote detection of ground-derived demographic trends is‬
‭robust.‬

‭Extended Data Fig. 17.‬‭Forest response to the 2015‬‭drought in drought-affected pixels:‬ ‭(‬‭a‬‭)‬‭Observed‬
‭EVI anomalies (resampled at 0.4 degrees to match model resolution which accounts for spatial‬
‭autocorrelation (see‬‭Extended Data Fig‬‭. 7). (‬‭b‬‭)‬‭GAM-predicted‬‭EVI anomalies (model of Extended Data‬
‭Table 1d). (‬‭c‬‭) Residual EVI anomalies (panel a observations‬‭minus panel b predictions). The GAM‬
‭well-predicts the pattern of response (Panel b), but under-estimates the extremes of the responses (as‬
‭evident from residuals in panel c continuing to show greening/browning patterns beyond the predictions).‬

‭Extended Data Fig. 18. Map of Amazon forest biogeography of resilience, overlaid with mean winds‬
‭(arrows, at height 650 hPa) and arc of deforestation.‬‭The most productive as well as the most‬
‭vulnerable forests (in red) are also the ones most suffering deforestation (the “arc of deforestation” which‬
‭is causing local climate affects that are stressing even more our most vulnerable forests. These “arc of‬
‭deforestation”/ vulnerable  forests are often upwind forests‬‭133‬ ‭(especially when the Intertropical‬
‭convergence zone, ITCZ, swings to the south) so they are the leading edge of hydrological recycling in‬
‭the Amazon.‬
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‭Extended Data Table 1‬‭.‬‭Generalized Additive Models‬‭(GAM)‬‭for‬‭: (‬‭a‬‭) the southern Amazon, (‬‭b‬‭) the‬
‭everwet Amazon, (‬‭c‬‭) the Guiana shield (all droughts‬‭combined), and for (‬‭d‬‭) the whole basin (2015‬
‭drought only), all on a 0.4 degree spatial grid. The‬ ‭is the difference from the lowest AIC (selected)‬‭∆‬‭𝐴𝐼𝐶‬
‭model (‬ ‭=0), relative to a “full model” defined‬‭in columns 2-3.  For details, see Methods, Section‬‭∆‬‭𝐴𝐼𝐶‬
‭2.6.1.‬

‭Extended Data Table 2.‬‭Variable inflation factors‬‭(VIF, top row) and pearson correlation coefficients‬
‭(matrix) among climate and ecotope variables in drought-affected regions, across all droughts (first‬
‭number in each entry) and in the 2015/16 drought only (second number). Variable inflation factors‬
‭measure the severity of multicollinearity of a variable with all other independent variables jointly in a‬
‭multiple regression, with VIFs of 5 or less often considered acceptable‬‭134‬‭.‬
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